Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/24909
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorPenman, David-
dc.contributor.authorOral, Munevver-
dc.date.accessioned2017-02-01T12:10:56Z-
dc.date.available2017-02-01T12:10:56Z-
dc.date.issued2016-10-31-
dc.identifier.urihttp://hdl.handle.net/1893/24909-
dc.description.abstractIsogenic clonal fish lines are a powerful resource for aquaculture-related research. Fully inbred individuals, clone founders, can be produced either through mitotic gynogenesis or androgenesis and a further generation from those propagates fully inbred clonal lines. Despite rapid generation, as opposed to successive generation of sibling mating as in mice, the production of such lines may be hampered due to (i) potential residual contribution from irradiated gametes associated with poorly optimised protocols, (ii) reduced survival of clone founders and (iii) spontaneous arisal of meiotic gynogenetics with varying degree of heterozygosity, contaminating fully homozygous progenies. This research set out to address challenges and gain insights into isogenic clonal fish lines development by using double-digest RADseq (ddRADseq) to generate large numbers of genetic markers covering the genome of interest. Analysis of potential contribution from irradiated sperm indicated successful uniparental inheritance in meiotic and mitotic gynogenetics European seabass. Exclusive transmission of maternal alleles was detected in G1 progeny of Atlantic salmon (with a duplicated genome), while G2 progenies presented varying levels of sire contribution suggesting sub-optimal UV irradiation which was undetected previously with 27 microsatellite markers. Identification of telomeric markers in European seabass, with higher recombination frequencies for efficient differentiation of meiotic and mitotic gynogenetics was successful, and a genetic linkage map was generated from this data. One clear case of a spontaneous meiotic gynogenetic fish was detected among 18 putative DH fish in European seabass, despite earlier screening for isogenicity using 11 microsatellite markers. An unidentified larval DNA restriction digestion inhibition mechanism observed in Nile tilapia prevented the construction of SNP-based genetic linkage map. In summary, this study provides strong evidence on efficacy of NGS technologies for the development and verification of isogenic clonal fish lines. Reliable establishment of isogenic clonal fish lines is critical for their utility as a research tool.en_GB
dc.language.isoenen_GB
dc.publisherUniversity of Stirlingen_GB
dc.publisherInstitute of Aquacultureen_GB
dc.subjectIsogenic fish linesen_GB
dc.subjectHigh Throughput Sequencingen_GB
dc.subjectAquacultureen_GB
dc.subjectMeiotic Gynogeneticsen_GB
dc.subjectEuropean seabassen_GB
dc.subjectAtlantic salmonen_GB
dc.subjectNile tilapiaen_GB
dc.subject.lcshAquaculture Research-
dc.subject.lcshFishes Molecular aspects-
dc.subject.lcshMolecular biology Research-
dc.subject.lcshAtlantic salmon-
dc.subject.lcshEuropean seabass-
dc.subject.lcshNile tilapia-
dc.titleInsights into isogenic clonal fish line development using high-throughput sequencing technologiesen_GB
dc.typeThesis or Dissertationen_GB
dc.type.qualificationlevelDoctoralen_GB
dc.type.qualificationnameDoctor of Philosophyen_GB
dc.contributor.funderTurkish Government (law: 1416) - Ministry of Education dept, AQUAEXCEL project (FP7 and follow up Horizon2020)en_GB
dc.author.emailmunevverorall@gmail.comen_GB
Appears in Collections:Aquaculture eTheses

Files in This Item:
File Description SizeFormat 
M_ORAL_PhD_thesis_final.pdfPhD thesis4.57 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.