Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/24678
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Longyueen_UK
dc.contributor.authorTu, Zhaopengen_UK
dc.contributor.authorZhang, Xiaojunen_UK
dc.contributor.authorLiu, Siyouen_UK
dc.contributor.authorLi, Hangen_UK
dc.contributor.authorWay, Andyen_UK
dc.contributor.authorLiu, Qunen_UK
dc.date.accessioned2017-07-31T23:23:03Z-
dc.date.available2017-07-31T23:23:03Z-
dc.date.issued2017-06en_UK
dc.identifier.urihttp://hdl.handle.net/1893/24678-
dc.description.abstractA significant challenge for machine translation (MT) is the phenomena of dropped pronouns (DPs), where certain classes of pronouns are frequently dropped in the source language but should be retained in the target language. In response to this common problem, we propose a semi-supervised approach with a universal framework to recall missing pronouns in translation. Firstly, we build training data for DP generation in which the DPs are automatically labelled according to the alignment information from a parallel corpus. Secondly, we build a deep learning-based DP generator for input sentences in decoding when no corresponding references exist. More specifically, the generation has two phases: (1) DP position detection, which is modeled as a sequential labelling task with recurrent neural networks; and (2) DP prediction, which employs a multilayer perceptron with rich features. Finally, we integrate the above outputs into our statistical MT (SMT) system to recall missing pronouns by both extracting rules from the DP-labelled training data and translating the DP-generated input sentences. To validate the robustness of our approach, we investigate our approach on both Chinese–English and Japanese–English corpora extracted from movie subtitles. Compared with an SMT baseline system, experimental results show that our approach achieves a significant improvement of++1.58 BLEU points in translation performance with 66% F-score for DP generation accuracy for Chinese–English, and nearly++1 BLEU point with 58% F-score for Japanese–English. We believe that this work could help both MT researchers and industries to boost the performance of MT systems between pro-drop and non-pro-drop languages.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationWang L, Tu Z, Zhang X, Liu S, Li H, Way A & Liu Q (2017) A Novel and Robust Approach for Pro-Drop Language Translation. Machine Translation, 31 (1-2), pp. 65-87. https://doi.org/10.1007/s10590-016-9184-9en_UK
dc.rightsThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectPro-drop languageen_UK
dc.subjectDropped pronoun annotationen_UK
dc.subjectDropped pronoun generationen_UK
dc.subjectMachine translationen_UK
dc.subjectRecurrent neural networksen_UK
dc.subjectMultilayer perceptronen_UK
dc.subjectSemi-supervised approachen_UK
dc.titleA Novel and Robust Approach for Pro-Drop Language Translationen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1007/s10590-016-9184-9en_UK
dc.citation.jtitleMachine Translationen_UK
dc.citation.issn1573-0573en_UK
dc.citation.issn0922-6567en_UK
dc.citation.volume31en_UK
dc.citation.issue1-2en_UK
dc.citation.spage65en_UK
dc.citation.epage87en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.author.emailxiaojun.zhang@stir.ac.uken_UK
dc.citation.date13/01/2017en_UK
dc.contributor.affiliationDublin City Universityen_UK
dc.contributor.affiliationHuawei Technologies (HK)en_UK
dc.contributor.affiliationEnglish Studiesen_UK
dc.contributor.affiliationMacao Polytechnic Instituteen_UK
dc.contributor.affiliationHuawei Technologies (HK)en_UK
dc.contributor.affiliationADAPT Centreen_UK
dc.contributor.affiliationADAPT Centreen_UK
dc.identifier.scopusid2-s2.0-85010748085en_UK
dc.identifier.wtid542718en_UK
dc.contributor.orcid0000-0003-3514-1981en_UK
dc.date.accepted2016-11-10en_UK
dcterms.dateAccepted2016-11-10en_UK
dc.date.filedepositdate2016-12-13en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorWang, Longyue|en_UK
local.rioxx.authorTu, Zhaopeng|en_UK
local.rioxx.authorZhang, Xiaojun|0000-0003-3514-1981en_UK
local.rioxx.authorLiu, Siyou|en_UK
local.rioxx.authorLi, Hang|en_UK
local.rioxx.authorWay, Andy|en_UK
local.rioxx.authorLiu, Qun|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2017-01-13en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2017-01-13en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2017-01-13|en_UK
local.rioxx.filenameWang_etal_MachTranslat_2017.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0922-6567en_UK
Appears in Collections:Literature and Languages Journal Articles

Files in This Item:
File Description SizeFormat 
Wang_etal_MachTranslat_2017.pdfFulltext - Published Version2.48 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.