Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/24183
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMilne, Peteren_UK
dc.date.accessioned2018-01-10T23:26:36Z-
dc.date.available2018-01-10T23:26:36Z-
dc.date.issued2017en_UK
dc.identifier.urihttp://hdl.handle.net/1893/24183-
dc.description.abstractWe refine the interpolation property of classical first-order logic (without identity and without functionsymbols), showing that if G & , & D and G $ D then there is an interpolant c, constructed using onlynon-logical vocabulary common to both members of G and members of D, such that (i) G entails c in thefirst-order version of Kleene's strong three-valued logic, and (ii) c entails D in the first-order version ofPriest's Logic of Paradox. The proof proceeds via a careful analysis of derivations employing semantictableaux. Lyndon's strengthening of the interpolation property falls out of an observation regardingsuch derivations and the steps involved in the construction of interpolants.Through an analysis of tableaux rules for identity, the proof is then extended to classical first-orderlogic with identity (but without function symbols).en_UK
dc.language.isoenen_UK
dc.publisherPeeters Publishersen_UK
dc.relationMilne P (2017) A refinement of the Craig-Lyndon Interpolation Theorem for classical first-order logic (with identity). Logique et Analyse, 60 (240), pp. 389-420. https://doi.org/10.2143/LEA.240.0.3254088en_UK
dc.rightsAuthors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. Proper attribution of authorship and correct citation details should be given. Authors are permitted to post the published version of the work in an institutional repository and on a personal website, with an acknowledgement of its initial publication in this journal.en_UK
dc.subjectCraig–Lyndon Interpolation Theorem (for classical first-order logic)en_UK
dc.subjectKleene’s strong 3-valued logicen_UK
dc.subjectPriest’s Logic of Paradoxen_UK
dc.subjectBelnap’s four-valued logicen_UK
dc.subjectblock tableauxen_UK
dc.titleA refinement of the Craig-Lyndon Interpolation Theorem for classical first-order logic (with identity)en_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.2143/LEA.240.0.3254088en_UK
dc.citation.jtitleLogique et Analyseen_UK
dc.citation.issn0024-5836en_UK
dc.citation.volume60en_UK
dc.citation.issue240en_UK
dc.citation.spage389en_UK
dc.citation.epage420en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.author.emailpeter.milne@stir.ac.uken_UK
dc.citation.date31/08/2016en_UK
dc.contributor.affiliationPhilosophyen_UK
dc.identifier.isiWOS:000417658900001en_UK
dc.identifier.scopusid2-s2.0-85038578286en_UK
dc.identifier.wtid555659en_UK
dc.date.accepted2016-07-04en_UK
dcterms.dateAccepted2016-07-04en_UK
dc.date.filedepositdate2016-09-15en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorMilne, Peter|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2016-09-15en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2016-09-15|en_UK
local.rioxx.filenamefirst-order interpolation LetA FINAL corrected.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0024-5836en_UK
Appears in Collections:Law and Philosophy Journal Articles

Files in This Item:
File Description SizeFormat 
first-order interpolation LetA FINAL corrected.pdfFulltext - Accepted Version254.61 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.