Please use this identifier to cite or link to this item:
Appears in Collections:Biological and Environmental Sciences eTheses
Title: Bridging the capability gap in environmental gamma-ray spectrometry
Author(s): Varley, A L
Supervisor(s): Tyler, A N
Smith, L
Davies, M
Keywords: Radioactivity
Contaminated land
Artificial intelligence
Neural networks
Spectral processing
Support vector machines
gamma-ray spectroscopy
Issue Date: 18-Sep-2015
Publisher: University of Stirling
Citation: Varley A., Tyler A., Smith L. and Dale P. (2015) Development of a neural network approach to characterise 226Ra contamination at legacy sites using gamma-ray spectra taken from boreholes, Journal of Environmental Radioactivity, 140, 130-140
Varley A., Tyler A., Smith L., Dale P. and Davies M. (2015) Remediating radium contaminated legacy sites: Advances made through machine learning in routine monitoring of “hot” particles, Science of the Total Environment, 521–522, 270–279
Varley A., Tyler A., Smith L., Dale P. and Davies M. (2016) Mapping the spatial distribution and activity of 226Ra at legacy sites through Machine Learning interrogation of gamma-ray spectroscopy data, Science of the Total Environment, 545-546, 654-661
Abstract: Environmental gamma-ray spectroscopy provides a powerful tool that can be used in environmental monitoring given that it offers a compromise between measurement time and accuracy allowing for large areas to be surveyed quickly and relatively inexpensively. Depending on monitoring objectives, spectral information can then be analysed in real-time or post survey to characterise contamination and identify potential anomalies. Smaller volume detectors are of particular worth to environmental surveys as they can be operated in the most demanding environments. However, difficulties are encountered in the selection of an appropriate detector that is robust enough for environmental surveying yet still provides a high quality signal. Furthermore, shortcomings remain with methods employed for robust spectral processing since a number of complexities need to be overcome including: the non-linearity in detector response with source burial depth, large counting uncertainties, accounting for the heterogeneity in the natural background and unreliable methods for detector calibration. This thesis aimed to investigate the application of machine learning algorithms to environmental gamma-ray spectroscopy data to identify changes in spectral shape within large Monte Carlo calibration libraries to estimate source characteristics for unseen field results. Additionally, a 71 × 71 mm lanthanum bromide detector was tested alongside a conventional 71 × 71 mm sodium iodide to assess whether its higher energy efficiency and resolution could make it more reliable in handheld surveys. The research presented in this thesis demonstrates that machine learning algorithms could be successfully applied to noisy spectra to produce valuable source estimates. Of note, were the novel characterisation estimates made on borehole and handheld detector measurements taken from land historically contaminated with 226Ra. Through a novel combination of noise suppression and neural networks the burial depth, activity and source extent of contamination was estimated and mapped. Furthermore, it was demonstrated that Machine Learning techniques could be operated in real-time to identify hazardous 226Ra containing hot particles with much greater confidence than current deterministic approaches such as the gross counting algorithm. It was concluded that remediation of 226Ra contaminated legacy sites could be greatly improved using the methods described in this thesis. Finally, Neural Networks were also applied to estimate the activity distribution of 137Cs, derived from the nuclear industry, in an estuarine environment. Findings demonstrated the method to be theoretically sound, but practically inconclusive, given that much of the contamination at the site was buried beyond the detection limits of the method. It was generally concluded that the noise posed by intrinsic counts in the 71 × 71 mm lanthanum bromide was too substantial to make any significant improvements over a comparable sodium iodide in contamination characterisation using 1 second counts.
Type: Thesis or Dissertation

Files in This Item:
File Description SizeFormat 
Adam Varley (Bridging the capability gap in environmental gamma-ray spectroscopy).pdfIt was found that Machine Learning algorithms could be used on routine radioactive surveys5.06 MBAdobe PDFView/Open

This item is protected by original copyright

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.