Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/23249
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMilne, Peteren_UK
dc.contributor.editorArazim, Pen_UK
dc.contributor.editorDancak, Men_UK
dc.date.accessioned2016-12-02T01:09:15Z-
dc.date.available2016-12-02T01:09:15Z-
dc.date.issued2016en_UK
dc.identifier.urihttp://hdl.handle.net/1893/23249-
dc.description.abstractIn Lewis Carroll’s Through the Looking Glass and What Alice Found There, Alice enters through a mirror into the realm reflected. It is, of course, left-right reversed but this is only the start of the fun and games when Alice explores the world on the other side of the mirror. Borrowing, if only in part, Carroll’s theme of inversion, my aim is to take a look at classical logic in something of an inverted way, or, to be more exact, in three somewhat inverted ways. Firstly, I come at proof of the completeness of classical logic in the Lindenbaum-Henkin style backwards: I take for granted the existence of a set Σ for which it holds, for some formula φ, that ψ !in Σ if, and only if, Σu{ψ} |- φ  then read off the rules of inference governing connectives and quantifiers that most directly yield the desired (classical) semantic properties. We thus obtain general elimination rules and what I have elsewhere called general introduction rules. Secondly, the same approach lets us read off a different set of rules: those of the cut-free sequent calculus S' of (Smullyan, 1968). Smullyan uses this calculus in proving the Craig-Lyndon interpolation theorem for first-order logic (without identity and function symbols). By attending very carefully to the steps in Smullyan’s proof, we obtain a strengthening: if φ |- ψ,  /|- ¬φ and /|- ψ then there is an interpolant χ, a formula employing only the non-logical vocabulary common to φ and ψ, such that φ entails χ in the first-order version of Kleene’s 3-valued logic and χ entails ψ in the first-order version of Graham Priest’s Logic of Paradox. The result, which is hidden from view in natural deduction formulations of classical logic, extends, I believe, to firstorder logic with identity. Thirdly, we look at a contraction-free “approximation” to classical propositional logic. Adding the general introduction rules for negation or the conditional leads to Contraction being a derived rule, apparently blurring the distinction between structural and operational rules.en_UK
dc.language.isoenen_UK
dc.publisherCollege Publicationsen_UK
dc.relationMilne P (2016) Classical Logic through the Looking-Glass. In: Arazim P & Dancak M (eds.) Logica Yearbook 2015. Logica 2015, Hejnice, Czech Republic, 15.06.2015-19.06.2015. London: College Publications. http://www.collegepublications.co.uk/logica/?00029en_UK
dc.rightsAuthor retains copyright. Published in Logica Yearbook 2015 edited by Pavel Arazim and Michal Dancak: http://www.collegepublications.co.uk/logica/?00029en_UK
dc.subjectCompleteness proof for classical first-order logicen_UK
dc.subjectLindenbaum-Henkin constructionen_UK
dc.subjectgeneral elimination rulesen_UK
dc.subjectgeneral introduction rulesen_UK
dc.subjectCraig interpolation lemmaen_UK
dc.subjectKleene’s strong three-valued logicen_UK
dc.subjectLogic of Paradoxen_UK
dc.subjectŁukasiewicz’s infinite-valued logicen_UK
dc.subjectContractionen_UK
dc.titleClassical Logic through the Looking-Glassen_UK
dc.typeConference Paperen_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedUnrefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.identifier.urlhttp://www.collegepublications.co.uk/logica/?00029en_UK
dc.author.emailpeter.milne@stir.ac.uken_UK
dc.citation.btitleLogica Yearbook 2015en_UK
dc.citation.conferencedates2015-06-15 - 2015-06-19en_UK
dc.citation.conferencelocationHejnice, Czech Republicen_UK
dc.citation.conferencenameLogica 2015en_UK
dc.citation.date30/06/2015en_UK
dc.citation.isbn978-1-84890-213-8en_UK
dc.publisher.addressLondonen_UK
dc.contributor.affiliationPhilosophyen_UK
dc.identifier.wtid569054en_UK
dc.date.accepted2016-03-31en_UK
dcterms.dateAccepted2016-03-31en_UK
dc.date.filedepositdate2016-05-30en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionAMen_UK
local.rioxx.authorMilne, Peter|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorArazim, P|en_UK
local.rioxx.contributorDancak, M|en_UK
local.rioxx.freetoreaddate2016-05-31en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2016-05-31|en_UK
local.rioxx.filenameLogica 2015 Classical Logic Through the Looking Glass (3).pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-84890-213-8en_UK
Appears in Collections:Law and Philosophy Conference Papers and Proceedings

Files in This Item:
File Description SizeFormat 
Logica 2015 Classical Logic Through the Looking Glass (3).pdfFulltext - Accepted Version297.95 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.