Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/23248
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMilne, Peteren_UK
dc.date.accessioned2017-02-01T00:16:06Z-
dc.date.available2017-02-01T00:16:06Z-
dc.date.issued2016-09en_UK
dc.identifier.urihttp://hdl.handle.net/1893/23248-
dc.description.abstractWe refine the interpolation property of the {^, v, ¬}-fragment of classical propositional logic, showing that if /|= ¬Φ, and /|= Ψ then there is an interpolant Χ constructed using at most atomic formulas occurring in both Φ and Ψ and negation, conjunction and disjunction, such that (i) Φ   entails Χ in Kleene’s strong three-valued logic and (ii) Χ entails Ψ  in Priest’s Logic of Paradox.en_UK
dc.language.isoenen_UK
dc.publisherPeeters-Leuvenen_UK
dc.relationMilne P (2016) A non-classical refinement of the interpolation property for classical propositional logic. Logique et Analyse, 59 (235), pp. 273-281. http://virthost.vub.ac.be/lnaweb/ojs/index.php/LogiqueEtAnalyse/article/view/1856; https://doi.org/10.2143/LEA.235.0.3170109en_UK
dc.rightsPublisher policy allows this work to be made available in this repository. Published in Logique et Analyse by Peeters Publishing. with the following policy: Authors retain copyright and grant the journal right of first publication (paper and online on the publisher's and journal's website). Authors are permitted to post the published version of the work in an institutional repository and on a personal website, with an acknowledgement of its initial publication in this journal. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work. The original publication is available at: http://virthost.vub.ac.be/lnaweb/ojs/index.php/LogiqueEtAnalyse/article/view/1856en_UK
dc.subjectInterpolation theorem for classical propositional logicen_UK
dc.subjectKleene’s strong 3-valued logicen_UK
dc.subjectPriest’s Logic of Paradoxen_UK
dc.titleA non-classical refinement of the interpolation property for classical propositional logicen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.2143/LEA.235.0.3170109en_UK
dc.citation.jtitleLogique et Analyseen_UK
dc.citation.issn0024-5836en_UK
dc.citation.volume59en_UK
dc.citation.issue235en_UK
dc.citation.spage273en_UK
dc.citation.epage281en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.identifier.urlhttp://virthost.vub.ac.be/lnaweb/ojs/index.php/LogiqueEtAnalyse/article/view/1856en_UK
dc.author.emailpeter.milne@stir.ac.uken_UK
dc.contributor.affiliationPhilosophyen_UK
dc.identifier.isiWOS:000388787000002en_UK
dc.identifier.scopusid2-s2.0-85009112227en_UK
dc.identifier.wtid569069en_UK
dc.date.accepted2014-12-05en_UK
dcterms.dateAccepted2014-12-05en_UK
dc.date.filedepositdate2016-05-30en_UK
rioxxterms.apcnot requireden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionAMen_UK
local.rioxx.authorMilne, Peter|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.freetoreaddate2016-09-30en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||2016-09-30en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/all-rights-reserved|2016-09-30|en_UK
local.rioxx.filenameMILNE A non-classical refinement of the interpolation property for classical propositional logic.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source0024-5836en_UK
Appears in Collections:Law and Philosophy Journal Articles

Files in This Item:
File Description SizeFormat 
MILNE A non-classical refinement of the interpolation property for classical propositional logic.pdfFulltext - Accepted Version274.18 kBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.