Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/23239
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPerrotta, Carloen_UK
dc.contributor.authorWilliamson, Benen_UK
dc.date.accessioned2018-04-07T02:37:42Z-
dc.date.available2018-04-07T02:37:42Z-
dc.date.issued2018en_UK
dc.identifier.urihttp://hdl.handle.net/1893/23239-
dc.description.abstractThis paper argues that methods used for the classification and measurement of online education are not neutral and objective, but involved in the creation of the educational realities they claim to measure. In particular, the paper draws on material semiotics to examine cluster analysis as a ‘performative device’ that, to a significant extent, creates the educational entities it claims to objectively represent through the emerging body of knowledge of Learning Analytics (LA). It also offers a more critical and political reading of the algorithmic assemblages of LA, of which cluster analysis is a part. Our argument is that if we want to understand how algorithmic processes and techniques like cluster analysis function as performative devices, then we need methodological sensibilities that consider critically both their political dimensions and their technical-mathematical mechanisms. The implications for critical research in educational technology are discussed.en_UK
dc.language.isoenen_UK
dc.publisherTaylor and Francisen_UK
dc.relationPerrotta C & Williamson B (2018) The social life of Learning Analytics: cluster analysis and the 'performance' of algorithmic education. Learning, Media and Technology, 43 (1), pp. 3-16. https://doi.org/10.1080/17439884.2016.1182927en_UK
dc.rights© 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.en_UK
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_UK
dc.subjectAlgorithmsen_UK
dc.subjectcluster analysisen_UK
dc.subjectLearning Analyticsen_UK
dc.subjectmethodsen_UK
dc.subjectperformativityen_UK
dc.titleThe social life of Learning Analytics: cluster analysis and the 'performance' of algorithmic educationen_UK
dc.typeJournal Articleen_UK
dc.identifier.doi10.1080/17439884.2016.1182927en_UK
dc.citation.jtitleLearning, Media and Technologyen_UK
dc.citation.issn1743-9892en_UK
dc.citation.issn1743-9884en_UK
dc.citation.volume43en_UK
dc.citation.issue1en_UK
dc.citation.spage3en_UK
dc.citation.epage16en_UK
dc.citation.publicationstatusPublisheden_UK
dc.citation.peerreviewedRefereeden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.contributor.funderEconomic and Social Research Councilen_UK
dc.author.emailben.williamson@stir.ac.uken_UK
dc.citation.date17/05/2016en_UK
dc.contributor.affiliationUniversity of Leedsen_UK
dc.contributor.affiliationEducationen_UK
dc.identifier.isiWOS:000427058300002en_UK
dc.identifier.scopusid2-s2.0-84969134440en_UK
dc.identifier.wtid568995en_UK
dc.contributor.orcid0000-0001-9356-3213en_UK
dc.date.accepted2016-04-12en_UK
dcterms.dateAccepted2016-04-12en_UK
dc.date.filedepositdate2016-05-30en_UK
dc.relation.funderprojectCode Acts in Education: Learning through code, learning to codeen_UK
dc.relation.funderrefES/L001160/1en_UK
rioxxterms.apcpaiden_UK
rioxxterms.typeJournal Article/Reviewen_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorPerrotta, Carlo|en_UK
local.rioxx.authorWilliamson, Ben|0000-0001-9356-3213en_UK
local.rioxx.projectES/L001160/1|Economic and Social Research Council|http://dx.doi.org/10.13039/501100000269en_UK
local.rioxx.freetoreaddate2016-05-30en_UK
local.rioxx.licencehttp://creativecommons.org/licenses/by/4.0/|2016-05-30|en_UK
local.rioxx.filenameThe social life of Learning Analytics cluster analysis and the performance of algorithmic education.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source1743-9884en_UK
Appears in Collections:Faculty of Social Sciences Journal Articles

Files in This Item:
File Description SizeFormat 
The social life of Learning Analytics cluster analysis and the performance of algorithmic education.pdfFulltext - Published Version1.37 MBAdobe PDFView/Open


This item is protected by original copyright



A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.