Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/22316
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorGallagher, Iain-
dc.contributor.advisorWalshe, Ian-
dc.contributor.authorKortzon, Evelina C-
dc.date.accessioned2015-10-13T09:43:57Z-
dc.date.available2015-10-13T09:43:57Z-
dc.date.issued2014-10-
dc.identifier.urihttp://hdl.handle.net/1893/22316-
dc.description.abstractSkeletal muscle atrophy occurs in many pathological conditions, e.g. AIDS, cancer, sepsis and starvation, and with increased age. There is currently no effective treatment to prevent or reverse this muscle wasting. The TRPV1 agonist, capsaicin, has previously been shown to have a protective effect against skeletal muscle atrophy in mice as well as stimulate hypertrophy. We therefore investigated the effects of capsaicin against dexamethasone-induced atrophy in human primary skeletal muscle myotubes. By treating myotubes with 50μM dexamethasone we successfully induced atrophy, and saw a significant decrease in total protein content as well as MYH2 expression without a change in the atrophy genes BNIP3, GABARAPL1 and FBXO32. 100nM capsaicin treatment in isolation had no effect on protein content but significantly elevated the expression of MYH2 and MYOG above that of dexamethasone-treated cells as well as untreated control. However when combined with dexamethasone, capsaicin reduced some of the negative effects seen previously with dexamethasone alone. The addition of TNFα to the cell culture medium failed to induce atrophy in these myotubes. From the findings of this initial experiment it can be conclude that capsaicin has the capacity to protect against dexamethasone-induced atrophy in these human skeletal myotubes.en_GB
dc.language.isoenen_GB
dc.publisherUniversity of Stirlingen_GB
dc.subjectSkeletal muscleen_GB
dc.subjectCapsaicinen_GB
dc.subjectAtrophyen_GB
dc.subjectTRPV1en_GB
dc.subjectDexamethasoneen_GB
dc.subjectTNF-alphaen_GB
dc.subjectTumor Necrosis Factor alphaen_GB
dc.subjectCell cultureen_GB
dc.subject.lcshCapsaicinen_GB
dc.subject.lcshMusculoskeletal systemen_GB
dc.subject.lcshMuscular atrophyen_GB
dc.titleCapsaicin protects against atrophy in human skeletal muscle cellsen_GB
dc.typeThesis or Dissertationen_GB
dc.relation.referencesZhang, P., Chen, X. & Fan, M. Signaling mechanisms involved in disuse muscle atrophy. Med. Hypotheses 69, 310–21 (2007en_GB
dc.relation.referencesFavier, F. B., Benoit, H. & Freyssenet, D. Cellular and molecular events controlling skeletal muscle mass in response to altered use. Pflugers Arch. 456, 587–600 (2008)en_GB
dc.relation.referencesBonaldo, P. & Sandri, M. Cellular and molecular mechanisms of muscle atrophy. Dis. Model. Mech. 6, 25–39 (2013).en_GB
dc.relation.referencesFearon, K. et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12, 489–95 (2011)en_GB
dc.relation.referencesEvans, W. J. et al. Cachexia: a new definition. Clin. Nutr. 27, 793–9 (2008)en_GB
dc.relation.referencesFontes-Oliveira, C. C. et al. Mitochondrial and sarcoplasmic reticulum abnormalities in cancer cachexia: altered energetic efficiency? Biochim. Biophys. Acta 1830, 2770–8 (2013)en_GB
dc.relation.referencesBaracos, V. & Kazemi-Bajestani, S. M. R. Clinical outcomes related to muscle mass in humans with cancer and catabolic illnesses. Int. J. Biochem. Cell Biol. 45, 2302–8 (2013)en_GB
dc.relation.referencesFearon, K., Arends, J. & Baracos, V. Understanding the mechanisms and treatment options in cancer cachexia. Nat. Rev. Clin. Oncol. 10, 90–9 (2013)en_GB
dc.relation.referencesJohns, N., Stephens, N. a & Fearon, K. C. H. Muscle wasting in cancer. Int. J. Biochem. Cell Biol. 45, 2215–29 (2013)en_GB
dc.relation.referencesEvans, W. J. Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am. J. Clin. Nutr. 91, 1123S–1127S (2010)en_GB
dc.relation.referencesArgilés, J. M., Busquets, S., Felipe, A. & López-Soriano, F. J. Molecular mechanisms involved in muscle wasting in cancer and ageing: cachexia versus sarcopenia. Int. J. Biochem. Cell Biol. 37, 1084–104 (2005)en_GB
dc.relation.referencesSandri, M. Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int. J. Biochem. Cell Biol. 45, 2121–9 (2013)en_GB
dc.relation.referencesSchiaffino, S., Dyar, K. a, Ciciliot, S., Blaauw, B. & Sandri, M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 280, 4294–314 (2013)en_GB
dc.relation.referencesFanzani, A., Conraads, V. M., Penna, F. & Martinet, W. Molecular and cellular mechanisms of skeletal muscle atrophy: an update. J. Cachexia. Sarcopenia Muscle 3, 163–79 (2012).en_GB
dc.relation.referencesLecker, S. H. et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J. 18, 39–51 (2004)en_GB
dc.relation.referencesLodish, H. et al. Molecular Cell Biology. (W. H. Freeman and Company, 2008)en_GB
dc.relation.referencesWojcik, S. Crosstalk between autophagy and proteasome protein degradation systems : possible implications for cancer therapy. 51, 249–264 (2013)en_GB
dc.relation.referencesPark, C. & Cuervo, A. M. Selective Autophagy : talking with the UPS. Cell Biochem Biophys 67, 3–13 (2013).en_GB
dc.relation.referencesLokireddy, S. et al. The ubiquitin ligase Mul1 induces mitophagy in skeletal muscle in response to muscle-wasting stimuli. Cell Metab. 16, 613–24 (2012)en_GB
dc.relation.referencesMizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–41 (2011).en_GB
dc.relation.referencesSandri, M., Coletto, L., Grumati, P. & Bonaldo, P. Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies. J. Cell Sci. 126, 5325–33 (2013)en_GB
dc.relation.referencesTu, Y. et al. The Ubiquitin Proteasome Pathway ( UPP ) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis. 5, 726–738 (2012)en_GB
dc.relation.referencesLecker, S. H., Goldberg, A. L. & Mitch, W. E. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J. Am. Soc. Nephrol. 17, 1807–19 (2006).en_GB
dc.relation.referencesClarke, B. a et al. The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab. 6, 376–85 (2007)en_GB
dc.relation.referencesEgerman, M. a & Glass, D. J. Signaling pathways controlling skeletal muscle mass. Crit. Rev. Biochem. Mol. Biol. 49, 59–68 (2014)en_GB
dc.relation.referencesBodine, S. C. et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294, 1704–1708 (2001)en_GB
dc.relation.referencesBodine, S. C. & Baehr, L. M. Skeletal Muscle Atrophy and the E3 Ubiquitin Ligases, MuRF1 and MAFbx/Atrogin-1. Am. J. Physiol. Endocrinol. Metab. 307, E469–84 (2014)en_GB
dc.relation.referencesShi, J., Luo, L., Eash, J., Ibebunjo, C. & Glass, D. J. The SCF-Fbxo40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling. Dev. Cell 21, 835–847 (2011)en_GB
dc.relation.referencesDice JF, Terlecky SR, Chiang HL, Olson TS, Isenman LD, Short-Russell SR, Freundlieb S, T. L. A selective pathway for degradation of cytosolic proteins by lysosomes. Semin. Cell Biol. 1, 449–455 (1990).en_GB
dc.relation.referencesSandri, M. Autophagy in skeletal muscle. FEBS Lett. 584, 1411–1416 (2010)en_GB
dc.relation.referencesMammucari, C. et al. FoxO3 Controls Autophagy in Skeletal Muscle In Vivo. Cell Metab. 6, 458–471 (2007)en_GB
dc.relation.referencesReed, S. a, Sandesara, P. B., Senf, S. M. & Judge, A. R. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB J. 26, 987–1000 (2012)en_GB
dc.relation.referencesZhao, J. et al. FoxO3 Coordinately Activates Protein Degradation by the Autophagic/Lysosomal and Proteasomal Pathways in Atrophying Muscle Cells. Cell Metab. 6, 472–483 (2007)en_GB
dc.relation.referencesHornberger, T. A., Sukhija, K. B. & Chien, S. Regulation of mTOR by Mechanically Induced Signaling Events in Skeletal Muscle. Cell Cycle 5, 1391–1396 (2006)en_GB
dc.relation.referencesHornberger, T. a. Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle. Int. J. Biochem. Cell Biol. 43, 1267–1276 (2011)en_GB
dc.relation.referencesDickinson, J. M. et al. Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids. J.Nutr. 141, 856–862 (2011)en_GB
dc.relation.referencesRennie, M. J., Wackerhage, H., Spangenburg, E. E. & Booth, F. W. Control of the size of the human muscle mass. Annu. Rev. Physiol. 66, 799–828 (2004)en_GB
dc.relation.referencesStitt, T. N. et al. The IGF-1 / PI3K / Akt Pathway Prevents Short Article Expression of Muscle Atrophy-Induced Ubiquitin Ligases by Inhibiting FOXO Transcription Factors. Mol. Cell 14, 395–403 (2004)en_GB
dc.relation.referencesOhanna, M. et al. Atrophy of S6K1(-/-) skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control. Nat. Cell Biol. 7, 286–294 (2005).en_GB
dc.relation.referencesGallagher, I. J. et al. Suppression of skeletal muscle turnover in cancer cachexia: evidence from the transcriptome in sequential human muscle biopsies. Clin. Cancer Res. 18, 2817–27 (2012)en_GB
dc.relation.referencesVary, C. & Kimball, S. R. Sepsis-induced changes in protein synthesis : differential effects on fast- and slow-twitch muscles. 513–519 (1992)en_GB
dc.relation.referencesGordon, B. S., Kelleher, A. R. & Kimball, S. R. Regulation of muscle protein synthesis and the effects of catabolic states. Int. J. Biochem. Cell Biol. 45, 2147–57 (2013)en_GB
dc.relation.referencesAdey, D., Kumar, R., McCarthy, J. T. & Nair, K. S. Reduced synthesis of muscle proteins in chronic renal failure. Am. J. Physiol. Endocrinol. Metab. 278, E219–E225 (2000)en_GB
dc.relation.referencesBossola, M. et al. Increased muscle proteasome activity correlates with disease severity in gastric cancer patients. Ann. Surg. 237, 384–9 (2003)en_GB
dc.relation.referencesBraun, T. P. et al. Muscle atrophy in response to cytotoxic chemotherapy is dependent on intact glucocorticoid signaling in skeletal muscle. PLoS One 9, e106489 (2014)en_GB
dc.relation.referencesKayali, a G., Young, V. R. & Goodman, M. N. Sensitivity of myofibrillar proteins to glucocorticoid-induced muscle proteolysis. Am. J. Physiol. 252, E621–E626 (1987)en_GB
dc.relation.referencesLatres, E. et al. Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J. Biol. Chem. 280, 2737–44 (2005)en_GB
dc.relation.referencesShimizu, N. et al. Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab. 13, 170–82 (2011)en_GB
dc.relation.referencesMenconi, M., Gonnella, P., Petkova, V., Lecker, S. & Hasselgren, P.-O. Dexamethasone and corticosterone induce similar, but not identical, muscle wasting responses in cultured L6 and C2C12 myotubes. J. Cell. Biochem. 105, 353–64 (2008)en_GB
dc.relation.referencesSchakman, O., Gilson, H., Kalista, S. & Thissen, J. P. Mechanisms of muscle atrophy induced by glucocorticoids. Horm. Res. 72 Suppl 1, 36–41 (2009)en_GB
dc.relation.referencesSchakman, O., Gilson, H. & Thissen, J. P. Mechanisms of glucocorticoid-induced myopathy. J. Endocrinol. 197, 1–10 (2008)en_GB
dc.relation.referencesWaddell, D. S. et al. The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene. Am. J. Physiol. Endocrinol. Metab. 295, E785–97 (2008)en_GB
dc.relation.referencesBritto, F. a et al. REDD1 deletion prevents dexamethasone-induced skeletal muscle atrophy. Am. J. Physiol. Endocrinol. Metab. 307, E983–93 (2014).en_GB
dc.relation.referencesWu, Y. et al. REDD1 is a major target of testosterone action in preventing dexamethasone-induced muscle loss. Endocrinology 151, 1050–9 (2010)en_GB
dc.relation.referencesQin, W., Pan, J., Wu, Y., Bauman, W. a & Cardozo, C. Protection against dexamethasone-induced muscle atrophy is related to modulation by testosterone of FOXO1 and PGC-1α. Biochem. Biophys. Res. Commun. 403, 473–8 (2010)en_GB
dc.relation.referencesLi, Y.-P. et al. TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J. 19, 362–70 (2005)en_GB
dc.relation.referencesMarta Correiaa, Marília Cravoa, , , Pedro Marques-Vidalb, c, Robert Grimbled, António Dias-Pereiraa, Sandra Faiasa, C. N.-L. Serum concentrations of TNF-alpha as a surrogate marker for malnutrition and worse quality of life in patients with gastric cancer. Clin. Nutr. 26, 728–735 (2007)en_GB
dc.relation.referencesDe Larichaudy, J. et al. TNF-α- and tumor-induced skeletal muscle atrophy involves sphingolipid metabolism. Skelet. Muscle 2, 2 (2012)en_GB
dc.relation.referencesGrohmann, M. et al. Isolation and validation of human prepubertal skeletal muscle cells: maturation and metabolic effects of IGF-I, IGFBP-3 and TNFalpha. J. Physiol. 568, 229–42 (2005)en_GB
dc.relation.referencesFoulstone, E. J., Huser, C., Crown, A. L., Holly, J. M. P. & Stewart, C. E. H. Differential signalling mechanisms predisposing primary human skeletal muscle cells to altered proliferation and differentiation: roles of IGF-I and TNFalpha. Exp. Cell Res. 294, 223–35 (2004)en_GB
dc.relation.referencesIto, N., Ruegg, U. T., Kudo, A., Miyagoe-Suzuki, Y. & Takeda, S. Activation of calcium signaling through Trpv1 by nNOS and peroxynitrite as a key trigger of skeletal muscle hypertrophy. Nat. Med. 19, 101–6 (2013)en_GB
dc.relation.referencesIto, N., Ruegg, U. T., Kudo, A. & Miyagoe-suzuki, Y. Capsaicin mimics mechanical load-induced intracellular signaling events. 1–4 (2013)en_GB
dc.relation.referencesOwens, J., Moreira, K. & Bain, G. Characterization of primary human skeletal muscle cells from multiple commercial sources. In Vitro Cell. Dev. Biol. Anim. 49, 695–705 (2013)en_GB
dc.relation.referencesBentzinger, C. F., Wang, Y. X. & Rudnicki, M. a. Building muscle: molecular regulation of myogenesis. Cold Spring Harb. Perspect. Biol. 4, (2012)en_GB
dc.relation.referencesZammit, P. S., Partridge, T. a & Yablonka-Reuveni, Z. The skeletal muscle satellite cell: the stem cell that came in from the cold. J. Histochem. Cytochem. 54, 1177–91 (2006).en_GB
dc.relation.referencesYablonka-Reuveni, Z. et al. The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev. Biol. 210, 440–55 (1999)en_GB
dc.relation.referencesSundaram, P., Pang, Z., Miao, M., Yu, L. & Wing, S. S. USP19-deubiquitinating enzyme regulates levels of major myofibrillar proteins in L6 muscle cells. Am. J. Physiol. Endocrinol. Metab. 297, E1283–90 (2009)en_GB
dc.relation.referencesSchakman, O. et al. Role of Akt/GSK-3beta/beta-catenin transduction pathway in the muscle anti-atrophy action of insulin-like growth factor-I in glucocorticoid-treated rats. Endocrinology 149, 3900–8 (2008)en_GB
dc.relation.referencesTe Pas MF, de Jong PR, V. F. Glucocorticoid inhibition of C2C12 proliferation rate and differentiation capacity in relation to mRNA levels of the MRF gene family. Mol Biol Rep 27, 87–98 (2000)en_GB
dc.relation.referencesTe Pas MF, de Jong PR, Verburg FJ, Duin M, H. R. Gender related and dexamethasone induced differences in the mRNA levels of the MRF genes in rat anterior tibial skeletal muscle. Mol Biol Rep 26, 277–284 (1999)en_GB
dc.relation.referencesSong, Z. G., Zhang, X. H., Zhu, L. X., Jiao, H. C. & Lin, H. Dexamethasone alters the expression of genes related to the growth of skeletal muscle in chickens (Gallus gallus domesticus). J. Mol. Endocrinol. 46, 217–25 (2011)en_GB
dc.relation.referencesPessina, P. et al. Skeletal muscle of gastric cancer patients expresses genes involved in muscle regeneration. Oncol. Rep. 24, 741–745 (2010)en_GB
dc.relation.referencesKang, J.-S. & Krauss, R. S. Muscle stem cells in developmental and regenerative myogenesis. Curr Opin Clin Nutr Metab Care 13, 243–248 (2010)en_GB
dc.relation.referencesCornelison, D. D. & Wold, B. J. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev. Biol. 191, 270–83 (1997).en_GB
dc.relation.referencesLe Grand, J. N. et al. GABARAPL1 (GEC1) Original or copycat? Autophagy 7, 1098–1107 (2011)en_GB
dc.relation.referencesRozenknop, A. et al. Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1. J. Mol. Biol. 410, 477–487 (2011)en_GB
dc.relation.referencesBlum, D. et al. Cancer cachexia: a systematic literature review of items and domains associated with involuntary weight loss in cancer. Crit. Rev. Oncol. Hematol. 80, 114–44 (2011)en_GB
dc.relation.referencesTsoli, M. & Robertson, G. Cancer cachexia: malignant inflammation, tumorkines, and metabolic mayhem. Trends Endocrinol. Metab. 24, 174–83 (2013)en_GB
dc.relation.referencesArgilés, J. M., Busquets, S. & López-Soriano, F. J. The pivotal role of cytokines in muscle wasting during cancer. Int. J. Biochem. Cell Biol. 37, 1609–19 (2005).en_GB
dc.relation.referencesZhao, Q. et al. TNF alpha inhibits myogenic differentiation of C2C12 cells through NF-κB activation and impairment of IGF-1 signaling pathway. Biochem. Biophys. Res. Commun. 458, 790–5 (2015).en_GB
dc.relation.referencesAbe Vicente, M. et al. The influence of nutritional status and disease on adiponectin and TNF-α; levels in colorectal cancer patients. Nutr. Hosp. 30, 140–6 (2014)en_GB
dc.relation.referencesConstantinou, C. et al. Nuclear magnetic resonance in conjunction with functional genomics suggests mitochondrial dysfunction in a murine model of cancer cachexia. Int. J. Mol. Med. 27, 15–24 (2011)en_GB
dc.relation.referencesBach, D. et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J. Biol. Chem. 278, 17190–7 (2003)en_GB
dc.relation.referencesLuo, Z. et al. TRPV1 activation improves exercise endurance and energy metabolism through PGC-1α upregulation in mice. Cell Res. 22, 551–64 (2012)en_GB
dc.type.qualificationlevelMastersen_GB
dc.type.qualificationnameMaster of Philosophyen_GB
dc.author.emaile.kortzon@gmail.comen_GB
Appears in Collections:Faculty of Health Sciences and Sport eTheses

Files in This Item:
File Description SizeFormat 
MPhil Thesis.pdfMPhil Thesis 1.16 MBAdobe PDFView/Open


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.