Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/22016
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMilne, Peteren_UK
dc.contributor.editorWansing, Hen_UK
dc.date.accessioned2015-07-18T01:40:03Z-
dc.date.available2015-07-18T01:40:03Zen_UK
dc.date.issued2015en_UK
dc.identifier.urihttp://hdl.handle.net/1893/22016-
dc.description.abstractFollowing Gentzen’s practice, borrowed from intuitionist logic, Prawitz takes the introduction rule(s) for a connective to show how to prove a formula with the connective dominant. He proposes an inversion principle to make more exact Gentzen’s talk of deriving elimination rules from introduction rules. Here I look at some recent work pairing Gentzen’s introduction rules with general elimination rules. After outlining a way to derive Gentzen’s own elimination rules from his introduction rules, I give a very different account of introduction rules in order to pair them with general elimination rules in such a way that elimination rules can be read off introduction rules, introduction rules can be read off elimination rules, and both sets of rules can be read off classical truth-tables. Extending to include quantifiers, we obtain a formulation of classical first-order logic with the subformula property.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationMilne P (2015) Inversion principles and introduction rules. In: Wansing H (ed.) Dag Prawitz on Proofs and Meaning. first ed. Outstanding Contributions to Logic, 7. Cham, Heidelberg, New York, Dordrecht, London: Springer, pp. 189-224. http://www.springer.com/us/book/9783319110400en_UK
dc.relation.ispartofseriesOutstanding Contributions to Logic, 7en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectIntroduction rulesen_UK
dc.subjectElimination rulesen_UK
dc.subjectGeneral elimination rulesen_UK
dc.subjectInversion principleen_UK
dc.subjectSequent calculusen_UK
dc.titleInversion principles and introduction rulesen_UK
dc.typePart of book or chapter of booken_UK
dc.rights.embargodate3000-12-01en_UK
dc.rights.embargoreason[MILNE Inversion principles and introduction rules PRAWITZ Festschrift REVISED.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.citation.issn2211-2758en_UK
dc.citation.spage189en_UK
dc.citation.epage224en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusAM - Accepted Manuscripten_UK
dc.identifier.urlhttp://www.springer.com/us/book/9783319110400en_UK
dc.author.emailpeter.milne@stir.ac.uken_UK
dc.citation.btitleDag Prawitz on Proofs and Meaningen_UK
dc.citation.isbn978-3-319-11040-0en_UK
dc.publisher.addressCham, Heidelberg, New York, Dordrecht, Londonen_UK
dc.contributor.affiliationPhilosophyen_UK
dc.identifier.wtid595756en_UK
dcterms.dateAccepted2015-12-31en_UK
dc.date.filedepositdate2015-07-10en_UK
dc.subject.tagPhilosophy of Logicen_UK
rioxxterms.typeBook chapteren_UK
rioxxterms.versionAMen_UK
local.rioxx.authorMilne, Peter|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorWansing, H|en_UK
local.rioxx.freetoreaddate3000-12-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameMILNE Inversion principles and introduction rules PRAWITZ Festschrift REVISED.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-319-11040-0en_UK
Appears in Collections:Law and Philosophy Book Chapters and Sections

Files in This Item:
File Description SizeFormat 
MILNE Inversion principles and introduction rules PRAWITZ Festschrift REVISED.pdfFulltext - Accepted Version278.42 kBAdobe PDFUnder Embargo until 3000-12-01    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.