Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/208
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Mestel, Ben | - |
dc.contributor.author | Hulton, Sarah | - |
dc.date.accessioned | 2007-06-13T10:07:51Z | - |
dc.date.available | 2007-06-13T10:07:51Z | - |
dc.date.issued | 2006-11 | - |
dc.identifier.uri | http://hdl.handle.net/1893/208 | - |
dc.description.abstract | A renormalization analysis is presented for a generalized Harper equation (1 + α cos(2π(ω(i + 1/2) + φ)))ψi+1 + (1 + α cos(2π(ω(i − 1/2) + φ)))ψi−1 +2λ cos(2π(iω + φ))ψi = Eψi. (0.1) For values of the parameter ω having periodic continued-fraction expansion, we construct the periodic orbits of the renormalization strange sets in function space that govern the wave function fluctuations of the solutions of the generalized Harper equation in the strong-coupling limit λ→∞. For values of ω with non-periodic continued fraction expansions, we make some conjectures based on work of Mestel and Osbaldestin on the likely structure of the renormalization strange set. | en |
dc.language.iso | en | en |
dc.publisher | University of Stirling | en |
dc.subject | renormalization | en |
dc.subject | fluctuations | en |
dc.subject.lcsh | Renormalization (Physics) | en |
dc.subject.lcsh | Eigenvalues | en |
dc.subject.lcsh | Chaotic behavior in systems | en |
dc.title | Renormalization of wave function fluctuations for a generalized Harper equation | en |
dc.type | Thesis or Dissertation | en |
dc.type.qualificationlevel | Doctoral | en |
dc.type.qualificationname | Doctor of Philosophy | en |
dc.rights.embargodate | 2006-11 | - |
dc.contributor.affiliation | School of Natural Sciences | - |
dc.contributor.affiliation | Computing Science and Mathematics | - |
Appears in Collections: | Computing Science and Mathematics eTheses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
thesis_23may07_new.pdf | 2.81 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.