Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/20887
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lessard, Sarah J | en_UK |
dc.contributor.author | Rivas, Donato A | en_UK |
dc.contributor.author | Alves-Wagner, Ana B | en_UK |
dc.contributor.author | Hirshman, Michael F | en_UK |
dc.contributor.author | Gallagher, Iain J | en_UK |
dc.contributor.author | Constantin-Teodosiu, Dumitru | en_UK |
dc.contributor.author | Atkins, Ryan | en_UK |
dc.contributor.author | Greenhaff, Paul L | en_UK |
dc.contributor.author | Qi, Nathan R | en_UK |
dc.contributor.author | Gustafsson, Thomas | en_UK |
dc.contributor.author | Fielding, Roger A | en_UK |
dc.contributor.author | Timmons, James A | en_UK |
dc.contributor.author | Britton, Steven L | en_UK |
dc.contributor.author | Koch, Lauren G | en_UK |
dc.contributor.author | Goodyear, Laurie J | en_UK |
dc.date.accessioned | 2016-10-08T22:56:50Z | - |
dc.date.available | 2016-10-08T22:56:50Z | en_UK |
dc.date.issued | 2013-08 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/20887 | - |
dc.description.abstract | Low aerobic exercise capacity is a risk factor for diabetes and a strong predictor of mortality, yet some individuals are "exercise-resistant" and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease risk, we used selective breeding for 15 generations to develop rat models of low and high aerobic response to training. Before exercise training, rats selected as low and high responders had similar exercise capacities. However, after 8 weeks of treadmill training, low responders failed to improve their exercise capacity, whereas high responders improved by 54%. Remarkably, low responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise-resistant phenotype segregates with disease risk. Low responders had impaired exercise-induced angiogenesis in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low responders. Low responders had increased stress/inflammatory signaling and altered transforming growth factor-β signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system, we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | American Diabetes Association | en_UK |
dc.relation | Lessard SJ, Rivas DA, Alves-Wagner AB, Hirshman MF, Gallagher IJ, Constantin-Teodosiu D, Atkins R, Greenhaff PL, Qi NR, Gustafsson T, Fielding RA, Timmons JA, Britton SL, Koch LG & Goodyear LJ (2013) Resistance to aerobic exercise training causes metabolic dysfunction and reveals novel exercise-regulated signaling networks. Diabetes, 62 (8), pp. 2717-2727. https://doi.org/10.2337/db13-0062 | en_UK |
dc.rights | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved | en_UK |
dc.title | Resistance to aerobic exercise training causes metabolic dysfunction and reveals novel exercise-regulated signaling networks | en_UK |
dc.type | Journal Article | en_UK |
dc.rights.embargodate | 3000-01-01 | en_UK |
dc.rights.embargoreason | [Diabetes 2013.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work. | en_UK |
dc.identifier.doi | 10.2337/db13-0062 | en_UK |
dc.citation.jtitle | Diabetes | en_UK |
dc.citation.issn | 1939-327X | en_UK |
dc.citation.issn | 0012-1797 | en_UK |
dc.citation.volume | 62 | en_UK |
dc.citation.issue | 8 | en_UK |
dc.citation.spage | 2717 | en_UK |
dc.citation.epage | 2727 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.author.email | i.j.gallagher@stir.ac.uk | en_UK |
dc.contributor.affiliation | Joslin Diabetes Center | en_UK |
dc.contributor.affiliation | Tufts University | en_UK |
dc.contributor.affiliation | Joslin Diabetes Center | en_UK |
dc.contributor.affiliation | Joslin Diabetes Center | en_UK |
dc.contributor.affiliation | Sport | en_UK |
dc.contributor.affiliation | University of Nottingham | en_UK |
dc.contributor.affiliation | University of Nottingham | en_UK |
dc.contributor.affiliation | University of Nottingham | en_UK |
dc.contributor.affiliation | University of Michigan | en_UK |
dc.contributor.affiliation | Karolinska University Hospital | en_UK |
dc.contributor.affiliation | Tufts University | en_UK |
dc.contributor.affiliation | Loughborough University | en_UK |
dc.contributor.affiliation | University of Michigan | en_UK |
dc.contributor.affiliation | University of Michigan | en_UK |
dc.contributor.affiliation | Joslin Diabetes Center | en_UK |
dc.identifier.isi | WOS:000322431100017 | en_UK |
dc.identifier.scopusid | 2-s2.0-84891687846 | en_UK |
dc.identifier.wtid | 629335 | en_UK |
dc.contributor.orcid | 0000-0002-8630-7235 | en_UK |
dcterms.dateAccepted | 2013-08-31 | en_UK |
dc.date.filedepositdate | 2014-08-13 | en_UK |
rioxxterms.type | Journal Article/Review | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Lessard, Sarah J| | en_UK |
local.rioxx.author | Rivas, Donato A| | en_UK |
local.rioxx.author | Alves-Wagner, Ana B| | en_UK |
local.rioxx.author | Hirshman, Michael F| | en_UK |
local.rioxx.author | Gallagher, Iain J|0000-0002-8630-7235 | en_UK |
local.rioxx.author | Constantin-Teodosiu, Dumitru| | en_UK |
local.rioxx.author | Atkins, Ryan| | en_UK |
local.rioxx.author | Greenhaff, Paul L| | en_UK |
local.rioxx.author | Qi, Nathan R| | en_UK |
local.rioxx.author | Gustafsson, Thomas| | en_UK |
local.rioxx.author | Fielding, Roger A| | en_UK |
local.rioxx.author | Timmons, James A| | en_UK |
local.rioxx.author | Britton, Steven L| | en_UK |
local.rioxx.author | Koch, Lauren G| | en_UK |
local.rioxx.author | Goodyear, Laurie J| | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.freetoreaddate | 3000-01-01 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved|| | en_UK |
local.rioxx.filename | Diabetes 2013.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 0012-1797 | en_UK |
Appears in Collections: | Faculty of Health Sciences and Sport Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Diabetes 2013.pdf | Fulltext - Published Version | 1.89 MB | Adobe PDF | Under Embargo until 3000-01-01 Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.