Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/20589
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCambria, Eriken_UK
dc.contributor.authorGrassi, Marcoen_UK
dc.contributor.authorPoria, Soujanyaen_UK
dc.contributor.authorHussain, Amiren_UK
dc.contributor.editorRamzan, Nen_UK
dc.contributor.editorvan Zwol, Ren_UK
dc.contributor.editorLee, J-Sen_UK
dc.contributor.editorCluver, Ken_UK
dc.contributor.editorHua, X-Sen_UK
dc.date.accessioned2017-08-11T23:14:00Z-
dc.date.available2017-08-11T23:14:00Zen_UK
dc.date.issued2013en_UK
dc.identifier.urihttp://hdl.handle.net/1893/20589-
dc.description.abstractAs the web is rapidly evolving, web users are evolving with it. In the era of social colonisation, people are getting more and more enthusiastic about interacting, sharing and collaborating through social networks, online communities, blogs, wikis and other online collaborative media. In recent years, this collective intelligence has spread to many different areas in the web, with particular focus on fields related to our everyday life such as commerce, tourism, education, and health. These online social data, however, remain hardly accessible to computers, as they are specifically meant for human consumption. To overcome such obstacle, we need to explore more concept-level approaches that rely more on the implicit semantic texture of natural language, rather than its explicit syntactic structure. To this end, we further develop and apply sentic computing tools and techniques to the development of a novel unified framework for social media analysis, representation and retrieval. The proposed system extracts semantics from natural language text by applying graph mining and multidimensionality reduction techniques on an affective common sense knowledge base and makes use of them for inferring the cognitive and affective information associated with social media.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationCambria E, Grassi M, Poria S & Hussain A (2013) Sentic Computing for Social Media Analysis, Representation, and Retrieval. In: Ramzan N, van Zwol R, Lee J, Cluver K & Hua X (eds.) Social Media Retrieval. Computer Communications and Networks. London: Springer, pp. 191-215. http://link.springer.com/chapter/10.1007/978-1-4471-4555-4_9en_UK
dc.relation.ispartofseriesComputer Communications and Networksen_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.titleSentic Computing for Social Media Analysis, Representation, and Retrievalen_UK
dc.typePart of book or chapter of booken_UK
dc.rights.embargodate3000-12-01en_UK
dc.rights.embargoreason[Sentic Computing for Social Media Analysis.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.citation.issn1617-7975en_UK
dc.citation.spage191en_UK
dc.citation.epage215en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.identifier.urlhttp://link.springer.com/chapter/10.1007/978-1-4471-4555-4_9en_UK
dc.author.emailamir.hussain@stir.ac.uken_UK
dc.citation.btitleSocial Media Retrievalen_UK
dc.citation.isbn978-1-4471-4554-7en_UK
dc.publisher.addressLondonen_UK
dc.contributor.affiliationNational University of Singaporeen_UK
dc.contributor.affiliationMarche Polytechnic Universityen_UK
dc.contributor.affiliationJadavpur Universityen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.wtid625232en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dcterms.dateAccepted2013-12-31en_UK
dc.date.filedepositdate2014-07-09en_UK
rioxxterms.typeBook chapteren_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorCambria, Erik|en_UK
local.rioxx.authorGrassi, Marco|en_UK
local.rioxx.authorPoria, Soujanya|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorRamzan, N|en_UK
local.rioxx.contributorvan Zwol, R|en_UK
local.rioxx.contributorLee, J-S|en_UK
local.rioxx.contributorCluver, K|en_UK
local.rioxx.contributorHua, X-S|en_UK
local.rioxx.freetoreaddate3000-12-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameSentic Computing for Social Media Analysis.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-1-4471-4554-7en_UK
Appears in Collections:Computing Science and Mathematics Book Chapters and Sections

Files in This Item:
File Description SizeFormat 
Sentic Computing for Social Media Analysis.pdfFulltext - Published Version639.13 kBAdobe PDFUnder Embargo until 3000-12-01    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.