Please use this identifier to cite or link to this item:
Appears in Collections:Faculty of Health Sciences and Sport Journal Articles
Peer Review Status: Refereed
Title: Identifying which septic patients have increased mortality risk using severity scores: a cohort study
Author(s): Marwick, Charis
Guthrie, Bruce
Pringle, Jan E C
McLeod, Shaun R
Evans, Josie
Davey, Peter G
Contact Email:
Keywords: Sepsis
Risk scores
Systemic inflammatory response syndrome
Issue Date: 2-Jan-2014
Date Deposited: 26-Mar-2014
Citation: Marwick C, Guthrie B, Pringle JEC, McLeod SR, Evans J & Davey PG (2014) Identifying which septic patients have increased mortality risk using severity scores: a cohort study. BMC Anesthesiology, 14 (1), Art. No.: 1.
Abstract: Background: Early aggressive therapy can reduce the mortality associated with severe sepsis but this relies on prompt recognition, which is hindered by variation among published severity criteria. Our aim was to test the performance of different severity scores in predicting mortality among a cohort of hospital inpatients with sepsis. Methods: We anonymously linked routine outcome data to a cohort of prospectively identified adult hospital inpatients with sepsis, and used logistic regression to identify associations between mortality and demographic variables, clinical factors including blood culture results, and six sets of severity criteria. We calculated performance characteristics, including area under receiver operating characteristic curves (AUROC), of each set of severity criteria in predicting mortality. Results: Overall mortality was 19.4% (124/640) at 30 days after sepsis onset. In adjusted analysis, older age (odds ratio 5.79 (95% CI 2.87-11.70) for ≥80y versus <60y), having been admitted as an emergency (OR 3.91 (1.31-11.70) versus electively), and longer inpatient stay prior to sepsis onset (OR 2.90 (1.41-5.94) for >21d versus <4d), were associated with increased 30 day mortality. Being in a surgical or orthopaedic, versus medical, ward was associated with lower mortality (OR 0.47 (0.27-0.81) and 0.26 (0.11-0.63), respectively). Blood culture results (positive vs. negative) were not significantly association with mortality. All severity scores predicted mortality but performance varied. The CURB65 community-acquired pneumonia severity score had the best performance characteristics (sensitivity 81%, specificity 52%, positive predictive value 29%, negative predictive value 92%, for 30 day mortality), including having the largest AUROC curve (0.72, 95% CI 0.67-0.77). Conclusions: The CURB65 pneumonia severity score outperformed five other severity scores in predicting risk of death among a cohort of hospital inpatients with sepsis. The utility of the CURB65 score for risk-stratifying patients with sepsis in clinical practice will depend on replicating these findings in a validation cohort including patients with sepsis on admission to hospital.
DOI Link: 10.1186/1471-2253-14-1
Rights: © 2014 Marwick et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Licence URL(s):

Files in This Item:
File Description SizeFormat 
anesthesiology.pdfFulltext - Published Version438.29 kBAdobe PDFView/Open

This item is protected by original copyright

A file in this item is licensed under a Creative Commons License Creative Commons

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.