Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/16520
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZakir, Usmanen_UK
dc.contributor.authorHussain, Amiren_UK
dc.contributor.authorAli, Liaqaten_UK
dc.contributor.authorLuo, Binen_UK
dc.contributor.editorLiu, Den_UK
dc.contributor.editorAlippi, Cen_UK
dc.contributor.editorZhao, DBen_UK
dc.contributor.editorHussain, Aen_UK
dc.date.accessioned2016-12-07T05:13:13Z-
dc.date.available2016-12-07T05:13:13Zen_UK
dc.date.issued2013en_UK
dc.identifier.urihttp://hdl.handle.net/1893/16520-
dc.description.abstractThis paper describes an efficient approach towards road sign detection, and recognition. The proposed system is divided into three sections namely: Road Sign Detection where Colour Segmentation of the road traffic signs is carried out using HSV colour space considering varying lighting conditions and Shape Classification is achieved by using Contourlet Transform, considering possible occlusion and rotation of the candidate signs. Road Sign Tracking is introduced by using Kalman Filter where object of interest is tracked until it appears in the scene. Finally, Road Sign Recognition is carried out on successfully detected and tracked road sign by using features of a Local Energy based Shape Histogram (LESH). Experiments are carried out on 15 distinctive classes of road signs to justify that the algorithm described in this paper is robust enough to detect, track and recognize road signs under varying weather, occlusion, rotation and scaling conditions using video stream.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationZakir U, Hussain A, Ali L & Luo B (2013) Improved efficiency of road sign detection and recognition by employing Kalman filter. In: Liu D, Alippi C, Zhao D & Hussain A (eds.) Advances in Brain Inspired Cognitive Systems: 6th International Conference, BICS 2013, Beijing, China, June 9-11, 2013. Proceedings. Lecture Notes in Computer Science, 7888. 6th International Conference on Brain Inspired Cognitive Systems, BICS 2013, Beijing, China, 09.06.2013-11.06.2013. Berlin Heidelberg: Springer, pp. 216-224. http://link.springer.com/chapter/10.1007/978-3-642-38786-9_25#; https://doi.org/10.1007/978-3-642-38786-9_25en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 7888en_UK
dc.relation.urihttp://www.conference123.org/bics2013/en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectRoad Signsen_UK
dc.subjectHSVen_UK
dc.subjectContourlet Transformen_UK
dc.subjectLESHen_UK
dc.subjectColour Segmentationen_UK
dc.subjectAutonomous Vehiclesen_UK
dc.subjectKalman Filteren_UK
dc.subjectSVMen_UK
dc.titleImproved efficiency of road sign detection and recognition by employing Kalman filteren_UK
dc.typeConference Paperen_UK
dc.rights.embargodate3000-05-31en_UK
dc.rights.embargoreason[Improved efficiency of road sign detection and recognition by employing Kalman.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1007/978-3-642-38786-9_25en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage216en_UK
dc.citation.epage224en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.identifier.urlhttp://link.springer.com/chapter/10.1007/978-3-642-38786-9_25#en_UK
dc.author.emailamir.hussain@stir.ac.uken_UK
dc.citation.btitleAdvances in Brain Inspired Cognitive Systems: 6th International Conference, BICS 2013, Beijing, China, June 9-11, 2013. Proceedingsen_UK
dc.citation.conferencedates2013-06-09 - 2013-06-11en_UK
dc.citation.conferencelocationBeijing, Chinaen_UK
dc.citation.conferencename6th International Conference on Brain Inspired Cognitive Systems, BICS 2013en_UK
dc.citation.date30/06/2013en_UK
dc.citation.isbn978-3-642-38785-2en_UK
dc.publisher.addressBerlin Heidelbergen_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationAnhui Universityen_UK
dc.identifier.scopusid2-s2.0-84880297006en_UK
dc.identifier.wtid686854en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dcterms.dateAccepted2013-06-30en_UK
dc.date.filedepositdate2013-08-12en_UK
rioxxterms.typeConference Paper/Proceeding/Abstracten_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorZakir, Usman|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.authorAli, Liaqat|en_UK
local.rioxx.authorLuo, Bin|en_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorLiu, D|en_UK
local.rioxx.contributorAlippi, C|en_UK
local.rioxx.contributorZhao, DB|en_UK
local.rioxx.contributorHussain, A|en_UK
local.rioxx.freetoreaddate3000-05-31en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameImproved efficiency of road sign detection and recognition by employing Kalman.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-642-38785-2en_UK
Appears in Collections:Computing Science and Mathematics Book Chapters and Sections

Files in This Item:
File Description SizeFormat 
Improved efficiency of road sign detection and recognition by employing Kalman.pdfFulltext - Published Version5.62 MBAdobe PDFUnder Embargo until 3000-05-31    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.