Please use this identifier to cite or link to this item:
http://hdl.handle.net/1893/16513
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ali, Rozniza | en_UK |
dc.contributor.author | Hussain, Amir | en_UK |
dc.contributor.author | Bron, James | en_UK |
dc.contributor.author | Shinn, Andrew | en_UK |
dc.contributor.editor | Huang, T | en_UK |
dc.contributor.editor | Zeng, Z | en_UK |
dc.contributor.editor | Li, C | en_UK |
dc.contributor.editor | Leung, CS | en_UK |
dc.date.accessioned | 2013-08-24T00:00:14Z | - |
dc.date.available | 2013-08-24T00:00:14Z | en_UK |
dc.date.issued | 2012 | en_UK |
dc.identifier.uri | http://hdl.handle.net/1893/16513 | - |
dc.description.abstract | Active Shape Models (ASM) are applied to the attachment hooks of several species of Gyrodactylus, including the notifiable pathogen G. salaris, to classify each species to their true species type. ASM is used as a feature extraction tool to select information from hook images that can be used as input data into trained classifiers. Linear (i.e. LDA and KNN) and non-linear (i.e. MLP and SVM) models are used to classify Gyrodactylus species. Species of Gyrodactylus, ectoparasitic monogenetic flukes of fish, are difficult to discriminate and identify on morphology alone and their speciation currently requires taxonomic expertise. The current exercise sets out to confidently classify species, which in this example includes a species which is notifiable pathogen of Atlantic salmon, to their true class with a high degree of accuracy. The findings from the current exercise demonstrates that data subsequently imported into a K-NN classifier, outperforms several other methods of classification (i.e. LDA, MLP and SVM) that were assessed, with an average classification accuracy of 98.75%. | en_UK |
dc.language.iso | en | en_UK |
dc.publisher | Springer | en_UK |
dc.relation | Ali R, Hussain A, Bron J & Shinn A (2012) The use of ASM feature extraction and machine learning for the discrimination of members of the fish ectoparasite genus gyrodactylus. In: Huang T, Zeng Z, Li C & Leung C (eds.) Neural Information Processing: 19th International Conference, ICONIP 2012, Doha, Qatar, November 12-15, 2012, Proceedings, Part IV. Lecture Notes in Computer Science, 7666. Berlin Heidelberg: Springer, pp. 256-263. http://link.springer.com/chapter/10.1007/978-3-642-34478-7_32#; https://doi.org/10.1007/978-3-642-34478-7_32 | en_UK |
dc.relation.ispartofseries | Lecture Notes in Computer Science, 7666 | en_UK |
dc.rights | The publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study. | en_UK |
dc.rights.uri | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved | en_UK |
dc.subject | Attachment hooks | en_UK |
dc.subject | image processing | en_UK |
dc.subject | SEM | en_UK |
dc.subject | parasite | en_UK |
dc.subject | machine learning classifier | en_UK |
dc.title | The use of ASM feature extraction and machine learning for the discrimination of members of the fish ectoparasite genus gyrodactylus | en_UK |
dc.type | Part of book or chapter of book | en_UK |
dc.rights.embargodate | 3000-12-01 | en_UK |
dc.rights.embargoreason | [Use of ASM Feature Extraction and Machine.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work. | en_UK |
dc.identifier.doi | 10.1007/978-3-642-34478-7_32 | en_UK |
dc.citation.issn | 0302-9743 | en_UK |
dc.citation.spage | 256 | en_UK |
dc.citation.epage | 263 | en_UK |
dc.citation.publicationstatus | Published | en_UK |
dc.citation.peerreviewed | Refereed | en_UK |
dc.type.status | VoR - Version of Record | en_UK |
dc.identifier.url | http://link.springer.com/chapter/10.1007/978-3-642-34478-7_32# | en_UK |
dc.author.email | amir.hussain@stir.ac.uk | en_UK |
dc.citation.btitle | Neural Information Processing: 19th International Conference, ICONIP 2012, Doha, Qatar, November 12-15, 2012, Proceedings, Part IV | en_UK |
dc.citation.isbn | 978-3-642-34477-0 | en_UK |
dc.publisher.address | Berlin Heidelberg | en_UK |
dc.contributor.affiliation | University of Stirling | en_UK |
dc.contributor.affiliation | Computing Science | en_UK |
dc.contributor.affiliation | Institute of Aquaculture | en_UK |
dc.contributor.affiliation | Institute of Aquaculture | en_UK |
dc.identifier.scopusid | 2-s2.0-84869025511 | en_UK |
dc.identifier.wtid | 721004 | en_UK |
dc.contributor.orcid | 0000-0002-8080-082X | en_UK |
dc.contributor.orcid | 0000-0003-3544-0519 | en_UK |
dc.contributor.orcid | 0000-0002-5434-2685 | en_UK |
dcterms.dateAccepted | 2012-12-31 | en_UK |
dc.date.filedepositdate | 2013-08-08 | en_UK |
rioxxterms.type | Book chapter | en_UK |
rioxxterms.version | VoR | en_UK |
local.rioxx.author | Ali, Rozniza| | en_UK |
local.rioxx.author | Hussain, Amir|0000-0002-8080-082X | en_UK |
local.rioxx.author | Bron, James|0000-0003-3544-0519 | en_UK |
local.rioxx.author | Shinn, Andrew|0000-0002-5434-2685 | en_UK |
local.rioxx.project | Internal Project|University of Stirling|https://isni.org/isni/0000000122484331 | en_UK |
local.rioxx.contributor | Huang, T| | en_UK |
local.rioxx.contributor | Zeng, Z| | en_UK |
local.rioxx.contributor | Li, C| | en_UK |
local.rioxx.contributor | Leung, CS| | en_UK |
local.rioxx.freetoreaddate | 3000-12-01 | en_UK |
local.rioxx.licence | http://www.rioxx.net/licenses/under-embargo-all-rights-reserved|| | en_UK |
local.rioxx.filename | Use of ASM Feature Extraction and Machine.pdf | en_UK |
local.rioxx.filecount | 1 | en_UK |
local.rioxx.source | 978-3-642-34477-0 | en_UK |
Appears in Collections: | Computing Science and Mathematics Book Chapters and Sections |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Use of ASM Feature Extraction and Machine.pdf | Fulltext - Published Version | 389.49 kB | Adobe PDF | Under Embargo until 3000-12-01 Request a copy |
This item is protected by original copyright |
Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.
The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/
If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.