Please use this identifier to cite or link to this item: http://hdl.handle.net/1893/16501
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZakir, Usmanen_UK
dc.contributor.authorUsman, Asimaen_UK
dc.contributor.authorHussain, Amiren_UK
dc.contributor.editorHuang, Ten_UK
dc.contributor.editorZeng, Zen_UK
dc.contributor.editorLi, Cen_UK
dc.contributor.editorLeung, CSen_UK
dc.date.accessioned2013-08-23T23:23:07Z-
dc.date.available2013-08-23T23:23:07Zen_UK
dc.date.issued2012en_UK
dc.identifier.urihttp://hdl.handle.net/1893/16501-
dc.description.abstractA real time road sign detection and recognition system can provide an additional level of driver assistance leading to an improved safety to passengers, road users and other vehicles. Such Advanced Driver Assistance Systems (ADAS) can be used to alert a driver about the presence of a road sign by reducing the risky situation during distraction, fatigue and in the presence of poor driving conditions. This paper is divided into two parts: Detection and Recognition. The detection part includes a novel Combined Colour Model (CCM) for the accurate and robust road sign colour segmentation from video stream. It is complemented by a novel approach to road sign recognition which is based on Local Energy based Shape Histogram (LESH). Experimental results and a detailed analysis to prove the effectiveness of the proposed vision system are provided. An accuracy rate of above 97.5% is recorded.en_UK
dc.language.isoenen_UK
dc.publisherSpringeren_UK
dc.relationZakir U, Usman A & Hussain A (2012) A novel road traffic sign detection and recognition approach by introducing CCM and LESH. In: Huang T, Zeng Z, Li C & Leung C (eds.) Neural Information Processing: 19th International Conference, ICONIP 2012, Doha, Qatar, November 12-15, 2012, Proceedings, Part III. Lecture Notes in Computer Science, 7665. Berlin Heidelberg: Springer, pp. 629-636. http://link.springer.com/chapter/10.1007/978-3-642-34487-9_76#; https://doi.org/10.1007/978-3-642-34487-9_76en_UK
dc.relation.ispartofseriesLecture Notes in Computer Science, 7665en_UK
dc.rightsThe publisher does not allow this work to be made publicly available in this Repository. Please use the Request a Copy feature at the foot of the Repository record to request a copy directly from the author. You can only request a copy if you wish to use this work for your own research or private study.en_UK
dc.rights.urihttp://www.rioxx.net/licenses/under-embargo-all-rights-reserveden_UK
dc.subjectColour Segmentationen_UK
dc.subjectDetectionen_UK
dc.subjectRecognitionen_UK
dc.subjectCCMen_UK
dc.subjectLESHen_UK
dc.subjectSVMen_UK
dc.subjectADASen_UK
dc.titleA novel road traffic sign detection and recognition approach by introducing CCM and LESHen_UK
dc.typePart of book or chapter of booken_UK
dc.rights.embargodate3000-12-01en_UK
dc.rights.embargoreason[A novel road traffic sign detection and recognition approach by introducing CCM and LESH.pdf] The publisher does not allow this work to be made publicly available in this Repository therefore there is an embargo on the full text of the work.en_UK
dc.identifier.doi10.1007/978-3-642-34487-9_76en_UK
dc.citation.issn0302-9743en_UK
dc.citation.spage629en_UK
dc.citation.epage636en_UK
dc.citation.publicationstatusPublisheden_UK
dc.type.statusVoR - Version of Recorden_UK
dc.identifier.urlhttp://link.springer.com/chapter/10.1007/978-3-642-34487-9_76#en_UK
dc.author.emailamir.hussain@stir.ac.uken_UK
dc.citation.btitleNeural Information Processing: 19th International Conference, ICONIP 2012, Doha, Qatar, November 12-15, 2012, Proceedings, Part IIIen_UK
dc.citation.isbn978-3-642-34486-2en_UK
dc.publisher.addressBerlin Heidelbergen_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationUniversity of Stirlingen_UK
dc.contributor.affiliationComputing Scienceen_UK
dc.identifier.scopusid2-s2.0-84869028683en_UK
dc.identifier.wtid687372en_UK
dc.contributor.orcid0000-0002-8080-082Xen_UK
dcterms.dateAccepted2012-12-31en_UK
dc.date.filedepositdate2013-08-08en_UK
rioxxterms.typeBook chapteren_UK
rioxxterms.versionVoRen_UK
local.rioxx.authorZakir, Usman|en_UK
local.rioxx.authorUsman, Asima|en_UK
local.rioxx.authorHussain, Amir|0000-0002-8080-082Xen_UK
local.rioxx.projectInternal Project|University of Stirling|https://isni.org/isni/0000000122484331en_UK
local.rioxx.contributorHuang, T|en_UK
local.rioxx.contributorZeng, Z|en_UK
local.rioxx.contributorLi, C|en_UK
local.rioxx.contributorLeung, CS|en_UK
local.rioxx.freetoreaddate3000-12-01en_UK
local.rioxx.licencehttp://www.rioxx.net/licenses/under-embargo-all-rights-reserved||en_UK
local.rioxx.filenameA novel road traffic sign detection and recognition approach by introducing CCM and LESH.pdfen_UK
local.rioxx.filecount1en_UK
local.rioxx.source978-3-642-34486-2en_UK
Appears in Collections:Computing Science and Mathematics Book Chapters and Sections

Files in This Item:
File Description SizeFormat 
A novel road traffic sign detection and recognition approach by introducing CCM and LESH.pdfFulltext - Published Version300.07 kBAdobe PDFUnder Embargo until 3000-12-01    Request a copy


This item is protected by original copyright



Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved https://creativecommons.org/publicdomain/zero/1.0/

If you believe that any material held in STORRE infringes copyright, please contact library@stir.ac.uk providing details and we will remove the Work from public display in STORRE and investigate your claim.