Please use this identifier to cite or link to this item:
Appears in Collections:Biological and Environmental Sciences eTheses
Title: Biologically Relevant Characteristics of Dissolved Organic Carbon (DOC) from Soil
Author(s): Bowen, Susan
Supervisor(s): Hopkins, David W.
Grieve, Ian C.
Keywords: dissolved organic carbon
dynamics of DOC biodegradation
microbial decomposition of DOC
influence of method of extraction of DOM from peat soil on biochemical composition and concentration
Issue Date: May-2006
Publisher: University of Stirling
Abstract: Of the organic matter in soils typically < 1% by weight is dissolved in the soil solution (dissolved organic matter; DOM). DOM is a continuum of molecules of various sizes and chemical structures which has largely been operationally defined as the fraction of total organic carbon in an aqueous solution that passes through a 0.45 µm filter. Although only representing a relatively small proportion, it represents the most mobile part of soil organic carbon and is probably enriched with highly labile compounds. DOM acts as a source of nutrients for both soil and aquatic micro-organisms, influences the fate and transport of organic and inorganic contaminants, presents a potential water treatment problem and may indicate the mobilisation rate of key terrestrial carbon stores. The objective of this research was to ascertain some of the biologically relevant characteristics of soil DOM and specifically to determine: (1) the influence of method and time of extraction of DOM from the soil on its biochemical composition and concentration; (2) the dynamics of DOM biodegradation; and, (3) the effects of repeated applications of trace amounts of DOM on the rate of soil carbon mineralization. To examine the influence of method and time of extraction on the composition and concentration of DOM, soil solution was collected from a raised peat bog in Central Scotland using water extraction, field suction lysimetry, and centrifugation techniques on a bimonthly basis over the period of a year (Aug 2003 – Jun 2004). Samples were analysed for dissolved organic carbon (DOC), dissolved organic nitrogen (DON), protein, carbohydrate and amino acid content. For all of the sampled months except June the biochemical composition of DOC varied with extraction method, suggesting the biological, chemical and/or physical influences on DOC production and loss are different within the differently sized soil pores. Water-extractable DOC generally contained the greatest proportion of carbohydrate, protein and/or amino acid of the three extraction methods. Time of extraction had a significant effect on the composition of water- and suction-extracted DOC: the total % carbohydrate + protein + amino acid C was significantly higher in Oct than Dec, Feb and Jun for water-extracted DOC and significantly greater in Dec than Aug, Apr and Jun for suction-extracted DOC. There was no significant change in the total % carbohydrate + protein + amino acid C of centrifuge-extracted DOC during the sampled year. Time of extraction also had a significant effect on the % protein + amino acid N in water- and centrifuge-extracted DON: Oct levels were significantly higher than Feb for water-extracted DON and significantly higher in Aug and Apr for centrifuge-extracted DON. Concentrations of total DOC and total DON were also found to be dependent on time of extraction. DOC concentrations showed a similar pattern of variation over the year for all methods of extraction, with concentrations relatively constant for most of the year, rising in April to reach a peak in Jun. DON concentrations in water- and centrifuge-extracted DON peaked later, in Aug. There were no significant seasonal changes in the concentration of suction-extracted DON. A lack of correlation between DOC and DON concentrations suggested that DOC and DON production and/or loss are under different controls. Laboratory-based incubation experiments were carried out to examine the dynamics of DOC biodegradation. Over a 70 day incubation period at 20oC, the DOM from two types of peat (raised and blanket) and four samples of a mineral soil (calcaric gleysol), each previously exposed to a different management strategy, were found to be comprised of a rapidly degradable pools (half-life: 3 – 8 days) and a more stable pool (half-life: 0.4 to 6 years). For all soil types/treatments, excepting raised peat, the total net loss of DOC from the culture medium was greater than could be accounted for by the process of mineralization alone. A comparison between net loss of DOC and loss of DOC to CO2 and microbial biomass determined by direct microscopy suggested that at least some of the differences between DOC mineralised and net DOC loss were due to microbial assimilation and release. Changes in the microbial biomass during the decomposition process showed proliferation followed by decline over 15 days. The protein and carbohydrate fractions showed a complex pattern of both degradation and production throughout the incubation. The effects of repeated applications of trace amounts of litter-derived DOC on the rate of carbon mineralization over a 35 day period were investigated in a laboratory based incubation experiment. The addition of trace amounts of litter-derived DOC every 7 and 10.5 days appeared to ‘trigger’ microbial activity causing an increase in CO2 mineralisation such that extra C mineralised exceeded DOC additions by more than 2 fold. Acceleration in the rate of extra C mineralised 7 days after the second addition suggested that either the microbial production of enzymes responsible for biodegradation and/or an increase in microbial biomass, are only initiated once a critical concentration of a specific substrate or substrates has been achieved. The addition of ‘DOC + nutrients’ every 3.5 days had no effect on the total rate of mineralization. To date DOC has tended to be operationally defined according to its chemical and physical properties. An understanding of the composition, production and loss of DOC from a biological perspective is essential if we are to be able to predict the effects of environmental change on the rate of mineralization of soil organic matter. This research has shown that the pools of DOC extracted, using three different methods commonly used in current research, are biochemically distinct and respond differently to the seasons. This suggests some degree of compartmentalisation of biological processes within the soil matrix. The observed similarities between the characteristics of the decomposition dynamics of both peatland and agricultural DOC suggests that either there is little difference in substrate quality between the two systems or that the microbial community have adapted in each case to maximise their utilisation of the available substrate. The dependency of the concentration and biochemical composition of DOC on the seasons requires further work to ascertain which biotic and/or abiotic factors are exerting control. Published research has focussed on factors such as temperature, wet/dry cycles, and freeze/thawing. The effect of the frequency of doses of trace amounts of DOC on increasing the rate of soil organic C mineralization, evident from this research, suggests that the interval between periods of rainfall may be relevant. It also emphasises how it can be useful to use knowledge of a biological process as the starting point in determining which factors may be exerting control on DOC production and loss.
Type: Thesis or Dissertation
Affiliation: School of Natural Sciences
Biological and Environmental Sciences

Files in This Item:
File Description SizeFormat 
PhD Thesis.pdf2.19 MBAdobe PDFView/Open

This item is protected by original copyright

Items in the Repository are protected by copyright, with all rights reserved, unless otherwise indicated.

The metadata of the records in the Repository are available under the CC0 public domain dedication: No Rights Reserved

If you believe that any material held in STORRE infringes copyright, please contact providing details and we will remove the Work from public display in STORRE and investigate your claim.