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Abstract 34 

Epidemics pose a major health risk to human, animal and plant life both 35 

domestically, in agricultural populations, and in the wild. To maintain global 36 

food security, biodiversity in the wild and human health, there is an urgent 37 

need for improved epidemic forecasting in response to broad environmental 38 

change. Most research concerned with this task is based on assessing 39 

individual epidemic size for a particular host-parasite interaction. However, in 40 

most cases, host populations experience recurrent epidemics that vary in size 41 

and severity through time, with shared characteristics among the diseases 42 

spread by different parasite species. In addition, there is a well-established 43 

link between environmental factors and disease transmission. Therefore, I 44 

propose a conceptual ‘Disease Cycle’ model to link the size of past and future 45 

epidemics. After highlighting the gaps in the current literature, I investigate 46 

some of the missing links in this theoretical model. Using a combination of 47 

real-world coevolution experiments, mathematical modelling of an infectious 48 

disease, and meta-analysis, I find: i) the amount of variation in host-parasite 49 

coevolutionary trajectories that is explained by the environment (chapter 3), 50 

ii) the effect of host-population genetic diversity on the variability in metrics of 51 

parasite success (chapter 4), (iii) the extent to which local hosts are affected 52 

by migrant competition (chapter 5) and iv) the additional accuracy that is 53 

gained by using replicate populations to forecast disease (chapter 6). Overall, 54 

I find strong support for certain links in the Disease Cycle, such as the effect 55 

of host population genetic diversity on future epidemic size, but there are 56 

others which require further study to understand the generality of this eco-57 

evolutionary concept of disease epidemics.  58 
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1. Thesis introduction 221 

My PhD has focused on predicting epidemic size and disease evolution in response 222 

to environmental change using a theoretical ‘Disease Cycle’ model to link past and 223 

future epidemics in combination with empirical experiments involving the natural 224 

coevolution of a model Daphnia host – parasite system. 225 

 226 

1.1 A theoretical ‘Disease Cycle’ model 227 

Outbreaks of infectious disease threaten species and community levels of 228 

biodiversity (Altizer et al., 2003; Schmeller et al., 2020), both wild and crop systems 229 

(Newton et al., 2011; Strange & Scott, 2005) and pose a major risk to humans 230 

through the emergence of highly virulent zoonotic diseases (Jones et al., 2008; 231 

Schmeller et al., 2020). Although there are shared characteristics among diseases 232 

and most systems experience repeated epidemics that vary in size or severity over 233 

time (Altizer et al., 2006), most of our understanding of what drives variation in 234 

patterns of disease severity is drawn from studying separate host-parasite 235 

associations (Brockhurst & Koskella, 2013) and individual epidemic size (Miller, 236 

2012). 237 

 238 

Since host population genetic diversity can limit the spread of disease (King & Lively, 239 

2012), and changes in both host and parasite diversity depend on the mode and 240 

pace of coevolutionary dynamics (Brockhurst & Koskella, 2013), it follows that the 241 

size of any contemporary outbreak is the product of previous patterns of host-242 

parasite (co)evolution and genetic diversity from past infections. In addition, as we 243 

are currently living in an era of broad environmental change, and there is a well-244 

established link between ambient temperature and disease transmission (Lafferty & 245 

Mordecai, 2016), there is an urgent need to better understand how we can effectively 246 

forecast disease in a changing world.  247 

 248 

To address this knowledge gap, I propose a theoretical ‘Disease Cycle’ model to link 249 

past and future epidemic size (Fig. 1.1). After compiling a review of the Disease 250 

Cycle from previously published articles (Chapter two), I found consistent evidence 251 

for some aspects of the Disease Cycle (such as the mean reduction in parasite 252 

spread in high versus low diversity host populations) and less for others (such as the 253 

relationship between epidemic size and the strength of antagonistic selection). 254 

Therefore, one of the main objectives of my PhD research was to address some of 255 

the knowledge gaps in theoretical Disease Cycle model within each chapter of my 256 
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thesis. This involved using a combination of experimental coevolution using a model 257 

Daphnia host - parasite system and mathematical models to forecast future 258 

epidemics. The specific research questions addressed in each subsequent chapter 259 

are discussed in the following sections. 260 

 261 

 

Figure 1.1. A Disease Cycle concept for linking the size of past and future 

epidemics. The proposed link between each component of the model (dashed 

circles) is shown by a numbered arrow (1-3). Specifically, I make the following 

predictions; 1) Epidemic size determines the strength of parasite (or host) 

mediated selection relative to other (a)biotic variables, 2) The tempo and mode of 

host-parasite co-evolution, which may be linked to the underlying model of host-

parasite infection genetics (Agrawal & Lively, 2002), determines how the level of 

host (or parasite) population genetic diversity changes over time (Brockhurst & 

Koskella, 2013) and 3) The level of host (or parasite) population genetic diversity 

determines future epidemic size. Previous studies have shown how host 

populations with higher levels of genetic diversity have a smaller mean epidemic 

size (Ekroth et al., 2019; Gibson & Nguyen, 2021), but it is unclear how this 

combines with the corresponding level of genetic diversity in the parasite 

population to affect the variability in future epidemic size. Each link in the Disease 

Cycle is set within the context of environmental change (triangle). 
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1.2 Co-evolutionary trajectories in ‘real-world’ environments 262 

Although there have been many laboratory-based measurements of the magnitude 263 

and direction of host-parasite co-evolution (coevolution potential), to what extent 264 

these patterns of host-parasite co-evolution translate over to ‘real-world’ 265 

environments is not entirely clear (coevolution realised). In addition, whether 266 

coevolution is repeatable remains a generally unanswered question in Evolutionary 267 

Biology. Therefore, I measured the extent to which environmental differences 268 

between populations with a shared ancestral origin followed similar coevolutionary 269 

trajectories. Ordinarily, natural populations vary so much that it difficult to examine 270 

the repeatability of host-parasite interactions, but the ability of Daphnia to produce 271 

parthenogenic clones means that starting populations were identical, which allowed 272 

me to pose the following questions: 273 

1. What is the pattern of host evolution of resistance, parasite evolution of 274 

infectivity, and coevolution (i.e., the extent to which the parasite population 275 

non-additively evolved in response to a changed complement of host 276 

genotypes)? 277 

2. How much of this change in host resistance, parasite infectivity and 278 

coevolution is driven by the environment? 279 

3. Overall, are host, parasite and both host and parasite patterns of coevolution 280 

repeatable? 281 

 282 

1.3 Is there really a conventional ‘monoculture effect’ beyond 283 

agriculture?  284 

So-called ‘conventional wisdom’ would have us believe that low levels of population 285 

genetic diversity in non-plant populations, usually increase the risk of infectious 286 

disease epidemics, which is sometimes referred to as a ‘monoculture effect’. This is 287 

because the susceptibility of low diversity crop mixtures to epidemics of disease, 288 

such as the devastation of crop monocultures that are entirely composed of a single 289 

species or cultivar, has been well-established in the plant literature for many years. 290 

Recent attempts to qualify the generality of this disease-diversity relationship beyond 291 

agriculture have focused on studying the mean, rather than the variability of metrics 292 

of parasite success. By re-analysing their meta-analytical data, I ask the following 293 

questions: 294 

1. What is the general effect of host population genetic diversity on not only the 295 

mean, but also the variability of parasite success? 296 
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2. Does this effect vary between parasite specialists and generalists, as well as 297 

parasite populations with different levels of genetic diversity? 298 

3. Overall, is this consistent with my proposed diversity-uncertainty model? 299 

 300 

1.4 Parasite-mediated competition in non-locally adapted host 301 

populations 302 

Local adaptation is a powerful evolutionary force, whereby the individuals within a 303 

population adapt to their local environment by evolving traits that increase their 304 

fitness in that environment relative to others. How variation in the competitive ability 305 

of local host populations is affected by patterns of local adaptation to the abiotic 306 

environment is poorly understood. To test whether host populations are better 307 

adapted to their local environment than migrants, and how a general parasite 308 

exposure can mediate their competitive interactions, I compared the reproductive 309 

output of adult hosts in a series of reciprocal transplant experiments, involving home, 310 

away and mixed host groups in either the presence or absence of a shared 311 

(ancestral) parasite, among 12 replicate Daphnia host – parasite pond populations. 312 

Specifically, I asked: 313 

1. What is the pattern of host local adaptation? 314 

2. Do immigrants suffer from competition with resident hosts?  315 

3. Overall, is there a parasite-mediated cost of competition with residents for 316 

immigrants? 317 

 318 

1.5 Quantity has a quality all of its own for predicting epidemic size 319 

Most researchers forecast disease in a single population using long-term historical 320 

data from that population. However, long-term data is not always available and 321 

instead it might be possible to borrow data from similar populations to forecast future 322 

epidemic size for a given population. We might further increase epidemic forecasting 323 

accuracy by weighting the contribution of individual epidemics to the future epidemic 324 

forecast based on their environmental similarity to a focal population. Therefore, I 325 

use a range of approaches to forecasting future epidemic size based on historical 326 

data collected from 20 semi-natural pond populations of a model Daphnia host - 327 

parasite system across four years (total of 80 epidemics). Specifically, I ask the 328 

following questions: 329 

1. Are forecasts of future epidemic size from models trained on multiple 330 

populations more accurate than those trained only on the target population? 331 
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2. Are forecasts of future epidemic size from ARIMA and regression models 332 

more accurate than benchmark models? 333 

3. Overall, can replicate populations across space and their corresponding 334 

variation in environmental conditions increase epidemic size forecast 335 

accuracy? 336 

 337 

1.6 Natural experimental coevolution of Daphnia – parasite 338 

systems as a useful model for research 339 

In the following section, I provide a brief introduction to the Daphnia host – parasite 340 

system used to study disease evolution in the wild in subsequent chapters. 341 

Specifically, I discuss the costs and benefits of Daphnia – parasite systems as model 342 

for my research on predicting epidemic size and disease evolution in ‘real-world’ 343 

environments. 344 

 345 

1.6.1 Why Daphnia hosts are a useful model for (co)evolution 346 

research 347 

To what extent D. magna is a unique model organism versus a good representation 348 

of other non-vertebrate (or even vertebrate) host species is not entirely objective 349 

(Ebert, 2008).  350 

 351 

D. magna (Fig. 1.2) are small, pond-dwelling organisms and, together with D. pulex, 352 

are the most well studied of species of this genus. They tend to occur mostly in 353 

freshwater, but also brackish, throughout the globe, and in particular Western Europe 354 

(Fig. 1.3). Some advantages of studying this model system include how easy they 355 

are to culture for scientific study and a well-documented host-parasite ecology 356 

(Ebert, 2005). The benefits of performing evolutionary studies with this system is that 357 

they are able to evolve rapidly in response to parasite-mediated selection 358 

(Paplauskas et al., 2021) and, most of all, have the ability to reproduce asexually via 359 

parthenogenesis (a form of asexual  reproduction where virgin females give birth to 360 

daughters, Fig. 1.4). Therefore, this means that ancestral genotypes can be 361 

maintained in isolation and compared to evolved genotypes in a so-called ‘time-shift’ 362 

experiment (Brockhurst & Koskella, 2013). 363 

 364 
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Figure 1.2. Photo of female Daphnia magna susceptible to (left) and infected by 

(right) Pasteuria ramosa (scale bar 1mm (Ebert, 2008). 

 365 

 

Figure 1.3. Examples of freshwater and brackish habitats D. magna live in. See 

the figure legend in (Ebert, 2022) for description of each letter. 

 366 
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Figure 1.4. Daphnia facultative reproduction and life-cycle (Ebert, 2022).  

 367 

Other examples of model host species used in coevolutionary studies include snails 368 

(Koskella & Lively, 2007, 2009), C. elegans (Papkou et al., 2019; Schulenburg & 369 

Müller, 2004; Schulte et al., 2011) and bacteria infected by phage parasites 370 

(Brockhurst et al., 2007; Castledine et al., 2022; Gómez & Buckling, 2011; Koskella, 371 

2013; Koskella & Brockhurst, 2014; Lopez Pascua et al., 2012) (for a review 372 

(Brockhurst & Koskella, 2013)). 373 

 374 

Potential disadvantages to the D. magna model host organism include: 375 

1) The unusual foraging behaviour responsible for causing primary infections 376 

(where individuals pick up infections from rummaging around in the 377 

substrate) of its environmentally transmitted parasite, Pasteruia ramosa (see 378 

1.6.2 Why Pasteuria parasites are a useful model for (co)evolution research). 379 

2)  Its unique mode of reproduction (which can also be very beneficial). 380 

 381 

Although there are legitimate concerns about the generality of Daphnia experiments 382 

due to these disadvantages, they are outweighed by the considerable benefits to 383 

host-parasite research. 384 

 385 
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1.6.2 Why Pasteuria parasites are a useful model for (co)evolution 386 

research  387 

Pasteuria ramosa is a sterilising obligate parasite of Daphnia, with the D. magna host 388 

being its most popular target (Fig. 1.5). It is commonly used in studies of host-389 

parasite coevolution, such as for the investigation of the genetic basis of infection as 390 

part of a matching-allele model (Bento et al., 2017a), due to its well-defined 391 

genetically determined stepwise infection process (Duneau et al., 2011; Luijckx et 392 

al., 2012, 2013a). 393 

 

Figure 1.5. Pasteuria ramosa as a model parasite. a) Healthy (left) and Pasteuria 

ramosa infected (right) adult D. magna. b) Transmission stage of the parasite 

(spores). Attachment of the parasite to the c) oesophagus and d) hindgut of D. 

magna adults. All photos courtesy to (Ebert, 2022). 

 394 

The parasite also has a strong impact on host fitness; it eventually kills the host as 395 

well as sterilising the host (Ebert, 2008). However, this is just as much of an 396 

advantage, in terms of having a strong disease phenotype, as it is a disadvantage. 397 

The extremely virulent nature of the parasite may be incomparable to other systems. 398 

In addition, as mentioned above, the ability of Pastueria to produce resting stages 399 

means that Daphnia primary infections are caused by their contact with these 400 

dormant parasite spores in pond sediments – which is an unorthodox mode of 401 

transmission.  402 

 403 

Despite this potential confounding characteristic of Pasteuria transmission, it also 404 

provides the unique opportunity to study historical patterns of host-parasite 405 

coevolution. Since Daphnia can produce sexual resting stages too, this means that 406 
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both host and parasite can be resurrected from pond ‘sediment cores’ (Decaestecker 407 

et al., 2007). 408 

 409 

In common with certain other Daphnia parasite species, such as Spirobacillus 410 

cienkowskii (Ebert, 2008), the infection of hosts caused by P. ramosa can be 411 

identified visually (Fig. 1.2 and 1.5a). In addition, in common with other model 412 

parasite species used in coevolutionary time-shift experiments (Brockhurst & 413 

Koskella, 2013), P. ramosa transmission stages can be kept in evolutionary stasis 414 

under freezing conditions, so that ancestral strains of the parasite can be compared 415 

to their contemporaries. 416 

 417 

1.6.3 Costs and benefits of experiments in so-called ‘real-world’ 418 

environments 419 

Mesocosms (Odum, 1984), or semi-natural environments, are a useful tool for 420 

studying ecological and evolutionary responses to climate-change (Stewart et al., 421 

2013). They are a fundamental part of aquatic ecological experimentation (Spivak et 422 

al., 2011) and allow the replication of laboratory studies whilst maintaining some kind 423 

of ecological realism.  424 

 425 

Mesocosms differ to microcosms by definition of their size, which includes 426 

enclosures from 1 to several thousands of litres (Stewart et al., 2013), but also 427 

through utilising natural, rather than artificially generated, abiotic conditions 428 

(Wijngaarden et al., 2005) (Fig. 1.6).  429 

 430 

 431 

Figure 1.6. Mesocosm experiment for freshwater climate change (Lake Mesocosm 432 

Warming Experiment (LMWE), AQUACOSM, Denmark, 2003-2024+). The tank 433 

volume is 2.8m3. 434 
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 435 

Laboratory studies for experimental (co)evolution rose to prominence as a 436 

replacement for the first wave of empirical coevolution research, which was 437 

predominantly observational and field based (Ehrlich & Raven, 1964; Janzen, 1966). 438 

They were useful for providing evidence of reciprocal antagonistic coevolutionary 439 

interactions (Kawecki & Ebert, 2004), which were otherwise both attributable to 440 

extraneous sources of variation (Brockhurst & Koskella, 2013). However, 441 

progressively more studies are returning to the field to study these ‘real-world’ 442 

environments (see reviews by (Brockhurst & Koskella, 2013; Koskella & Brockhurst, 443 

2014)).  444 

 445 

The main advantage of these experiments is also their biggest limitation. Since the 446 

same level of replication, control and tractability can usually only be achieved under 447 

laboratory conditions, there is a resulting trade-off between uncovering general 448 

evolutionary mechanisms and understanding how they apply in complex natural 449 

environments sensu (Scheinin et al., 2015). Others criticise mesocosm experiments 450 

as being unrealistic simplifications with limited relevance to natural ecosystems (for 451 

a review (Stewart et al., 2013), but see Box 1.1). 452 

 453 

Box 1.1. A response to critics 

In chapter two, I found that mesocosm environments (biotic and abiotic factors 

collectively referred to by ecology) were significantly involved in directing Daphnia 

magna host-parasite (co)evolutionary trajectories (Paplauskas et al., 2021). This 

study, made in answer to a call for more ways of measuring the strength of 

coevolution in the wild (Week & Nuismer, 2019), used the aforementioned 

mesocosm approach for experimental coevolution. 

 

Week and Nuismer (2019) commented on the fact that time-shift experiments had 

been broadly implemented in systems where experimental evolution was a 

tractable approach, but they had not yet yielded a quantitative assessment of the 

strength of coevolution (Koskella 2014; Blanquart & Gandon 2013; Gaba & Ebert 

2009). In addition, due to the constraints that can be imposed on coevolution by 

natural conditions, we propose that it is equally important to measure the strength 

of coevolution in both controlled, laboratory based environments and natural ones 

(Brockhurst & Koskella, 2013; Koskella & Brockhurst, 2014).  
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For example, unlike coevolution in the lab, which is characterized by an increase 

in both host resistance and parasite infectivity over time (sensu arms-race 

dynamics (Buckling & Rainey, 2002)), coevolution in soil mesocosms (or 

technically microcosms, see earlier definition; see 1.6.3 Costs and benefits of 

experiments in so-called ‘real-world’ environments) led to greater resistance to 

contemporary, rather than past or future, parasites (sensu fluctuating selection 

dynamics) in a bacteria-host-bacteriophage-parasite interaction (Gómez & 

Buckling, 2011). In the same host-parasite association, fluctuating selection 

dynamics switch back to arms-race dynamics under a mixing treatment (Gómez 

et al., 2014). Another seminal coevolutionary experiment showed that the 

evolution of resistance in populations of D. magna infected with a fungal parasite 

under natural conditions were associated with life-history costs (Zbinden et al., 

2008). 

 454 

1.7 Thesis structure 455 

In the remainder of the thesis, each chapter provides a more detailed introduction to 456 

the focal study, a description of the full methodology, the key findings and a 457 

discussion. In chapter seven, the results from each study are discussed in the 458 

context of the wider literature, integrated into an evaluation of the theoretical Disease 459 

Cycle model and I make some suggestions for future research. 460 

 461 
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2. A theoretical ‘Disease Cycle’ model to link past and future 613 

epidemics 614 

  615 
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2.1 Introduction 616 

Outbreaks of infectious diseases pose a major threat to biodiversity, agriculture and 617 

human health (Altizer et al., 2003; Jones et al., 2008; Schmeller et al., 2020). For 618 

any one host population, the various effects of disease can include reduced host 619 

genetic diversity, depressed population size and, in some cases, complete extinction 620 

(Alan Pounds et al., 2006; Boots & Sasaki, 2002; Vredenburg et al., 2010) These 621 

negative effects are also often exacerbated by anthropogenic selection pressures 622 

associated with urbanisation, intensive agriculture and human-induced climate 623 

change (Engebretsen et al., 2019; Price et al., 2019; White & Razgour, 2020). To 624 

protect populations in an era of broad environmental change, we require disease 625 

control strategies. The effective design of such strategies relies on (1) a detailed 626 

understanding of the various drivers of disease and (2) some capacity to predict 627 

outbreaks in the future. Understanding and forecasting any one disease is, however, 628 

fraught with challenges.  629 

 630 

These challenges stem from two important complexities associated with each 631 

disease system. First, transmission itself is typically a multistep process, comprising 632 

pathogen contact with the host, entry to the host, various interactions with the host 633 

immune system, within-host proliferation and onward transmission (McCallum et al., 634 

2017). Crucially, environmental variation can affect each of these steps (Duneau et 635 

al., 2011). For example, higher temperatures generally cause an increase in parasite 636 

growth rates, survival and vector competence (Dohm et al., 2002; Ohm et al., 2018; 637 

Piotrowski et al., 2004; Poulin, 2006) but these responses vary due to individual 638 

differences in thermal biology (Koprivnikar & Poulin, 2009; Mordecai et al., 2019; 639 

Poulin, 2006). In addition, covariation among various components of infection can 640 

lead to counter-intuitive effects on disease in the future (Fels & Kaltz, 2006; 641 

Paaijmans et al., 2012; Paull, Lafonte and Johnson, 2012; Lafferty & Mordecai, 2016; 642 

Shocket et al., 2019). For example, higher temperatures cause increased exposure 643 

to pathogen infectious stages in a Daphnia-parasite system (by speeding up host 644 

foraging rate), but reduce within-host parasite growth above a certain threshold once 645 

infection has occurred (Shocket et al., 2019). This results in fewer parasite 646 

transmission stages for onward transmission and thus potentially smaller epidemics 647 

in the future. 648 

 649 

Second, any particular host-pathogen relationship is part of a much wider, more 650 

complex, ecological arena where other interactions such as competition or predation 651 
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can play a greater role in shaping host and pathogen populations (Bowers et al., 652 

1994; Duffy et al., 2012; Gutierrez et al., 2022; Hall et al., 2005, 2009; Ibelings et al., 653 

2004; Paplauskas et al., 2021; Thieltges et al., 2008). In multi-host systems, despite 654 

a strong dilution effect, where the presence of compatible hosts that are less 655 

susceptible to infection (often termed, more ‘unsuitable’) reduces overall epidemic 656 

size, competition between different hosts can potentially lead to complex and varied 657 

disease outcomes (Cáceres et al., 2014) and in one study this lead to an increase in 658 

host density and overall epidemic size (Hall, Becker, et al., 2009). In populations with 659 

multiple parasites, there can be competition between parasites within the host which 660 

can determine their reproductive success (Refardt, 2011) and in some cases leads 661 

to the evolution of higher virulence (De Roode et al., 2005) Predation can affect host 662 

and pathogen populations in many different ways (Duffy et al., 2019), most notably, 663 

selective predation of infected individuals can reduce overall epidemic size 664 

(Gutierrez et al., 2022). Moreover, wider ecological shifts can alter the relative size 665 

and severity of disease outbreaks from each pathogen. For example, predation of 666 

buffalo with heavy tick infestations led to unusually high levels of parasitic infection 667 

in Serengeti lions which resulted in a high mortality rate due to the 668 

immunosuppressive effects of a coincident canine distemper virus (Munson et al., 669 

2008). In another example, ‘sloppy’ (messy) predation of Daphnia host individuals 670 

by Chaoborus phantom midge larvae, which results in indirect release of parasite 671 

transmission stages, has the capacity to mediate the abundance of different 672 

parasites by releasing faster-growing spores from infected individuals (Auld, Hall, et 673 

al., 2014).  674 

 675 

As previously described in the Thesis Introduction (chapter one), there are numerous 676 

factors, other than just the environment, which can affect disease as an additional or 677 

principal driver of transmission. This includes the concept of epidemics as drivers of 678 

host-parasite co-evolution, host-parasite coevolution mediated-changes in genetic 679 

diversity and the effects of host (or parasite) population-level genetic diversity on 680 

future epidemic size. Therefore, it follows that any given disease outbreak is a 681 

product of both past and present parasite transmission. 682 

 683 

Here, I present a simple conceptual model, the Disease Cycle, that bridges the 684 

evolutionary ecology of past and future disease outbreaks in a variable world (Fig. 685 

1.1). I review research relevant to each aspect of the Disease Cycle framework and 686 

evaluate how environment-mediated selection could influence different components 687 
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of the model to affect disease over time. My primary aim is to provide a framework 688 

for future modelling approaches that embrace epidemic disease as a recurrent 689 

episodic process and help better inform the forecasting and management of disease 690 

control strategies. 691 

 692 

2.2 Epidemics as drivers of host-parasite coevolution 693 

Epidemics occur when the number of hosts infected with a particular pathogen 694 

increases rapidly over a short period of time with respect to the usual baseline 695 

(endemic) prevalence (Dicker, 2006), and are implicated as engines of evolutionary 696 

change in numerous disease systems (Altizer et al., 2003; Auld & Brand, 2017a; 697 

Thrall et al., 2012). However, quantifying the specific relationships between epidemic 698 

size or severity and the underlying host-parasite (co)evolutionary change across 699 

replicated natural populations is a complex and delicate task. Epidemics are 700 

population-level expressions of individual-level infections. Each infection is a 701 

phenotype that is shaped by the environment and both host and parasite traits such 702 

as resistance and infectivity. Therefore, epidemics are both multivariate and 703 

multiscale in nature, and vary in magnitude both within and across disease systems 704 

(Altizer et al., 2006; Penczykowski et al., 2016). 705 

 706 

There are a number of key factors which determine epidemic size, such as the host-707 

pathogen contact rate. This primarily depends on the mode of transmission, which is 708 

driven by either the density or frequency of infected hosts. If pathogen transmission 709 

depends on host density, then the change in the number of infected hosts in a 710 

population is equal to: 711 

dI/dt = βSI 712 

where I is the number of infected individuals, t is time, β is the transmission rate and 713 

S is the number of susceptible individuals. This means that transmission of the 714 

pathogen increases with host density (linearly or non-linearly) and is referred to as 715 

density-dependent transmission. In comparison, if pathogen transmission depends 716 

on the frequency of infected hosts then the change in the number of infected is equal 717 

to: 718 

dI/dt = βSI/N 719 

where N is the population size. This is termed frequency dependent transmission. 720 

 721 
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Another major driver of epidemic size is environmental change. How organisms 722 

interact with their biotic (living) and abiotic (non-living) environment shapes the size 723 

and severity of future epidemics by affecting a number of different processes, 724 

including host supply (Begon et al., 2009) parasite load (Civitello et al., 2015), host-725 

parasite encounter rates (Hall, Becker, et al., 2009; Strauss et al., 2018), and 726 

transmission rate (Shocket et al., 2018). In particular, changes in temperature can 727 

dramatically alter parasite growth rates and transmission (Mordecai et al., 2019; 728 

Piotrowski et al., 2004; Poulin, 2006). 729 

 730 

2.2.1 What defines an epidemic? 731 

Disease systems vary considerably in what constitutes a rapid and large increase in 732 

infected hosts, i.e. the threshold for an epidemic (Reliefweb, 2008) making it difficult 733 

to compare across systems. The absence of a standard measure of epidemic size 734 

means that studies use a variety of different measures to describe epidemic size, 735 

including peak, mean, or integrated parasite prevalence (Fig. 2.1). Various measures 736 

of epidemic size will differ in how they predict important ecological or evolutionary 737 

processes in any one host-pathogen system. Similarly, disease systems vary in how 738 

they define the severity of an outbreak, which can be measured in terms of the overall 739 

impact on host health and fitness and may also account for epidemic size, although 740 

this is not a measure of severity per se, and is therefore closely tied to parasite 741 

virulence, which is the reduction in host fitness caused by infection (Read, 1994). 742 

For example, proliferative kidney disease of salmonid fish is caused by a highly 743 

virulent parasite and often mortalities reach as high as 95-100% (Hedrick et al., 744 

1993), whereas host abundance shrinks by 20-40% due to mycoplasmal conjunctivis 745 

affecting passerine birds, which is commonly regarded as another devastating 746 

parasite (Hochachka & Dhondt, 2000). There is, however, considerable merit in 747 

placing different disease systems on an equal footing, because it will allow us to 748 

make comparisons across disease systems; this will enable us to use knowledge of 749 

well-understood host-pathogen systems to understand (and potentially predict) the 750 

behaviours of other, less well-known systems (Han et al., 2020). 751 

 752 



 38 

 753 

2.2.2 Epidemics as engines for change 754 

Epidemics act as engines for rapid co-evolutionary change. This is because parasite-755 

mediated selection drives the evolution of hosts and vice-versa, host-mediated 756 

selection drives the evolution of parasites. Generally, hosts evolve higher resistance 757 

(Ameline et al., 2021, 2022; Auld & Brand, 2017a; Duffy & Forde, 2009; Duffy & 758 

Sivars-Becker, 2007; Duncan et al., 2006; Gómez & Buckling, 2011; Ibrahim & 759 

Barrett, 1991; Miller & Vincent, 2008; Paplauskas et al., 2021; Thrall et al., 2012; 760 

Zbinden et al., 2008) and parasites evolve higher infectivity (Auld, Wilson, et al., 761 

2014; Auld & Brand, 2017a; Gómez & Buckling, 2011; Paplauskas et al., 2021; Thrall 762 

et al., 2012). Also, parasites evolve towards greater virulence (Auld & Brand, 2017a), 763 

while hosts evolve to reduce the fitness impacts of parasite virulence (Zbinden et al., 764 

2008). One study even found the evolution of parasites in response to the changing 765 

complement of host genotypes (i.e. coevolution, Paplauskas et al., 2021). 766 

 767 

Although hosts and parasites generally evolve either higher resistance or infectivity 768 

in response to an epidemic, this is not always the case. Sometimes theory predicts 769 

the evolution of more susceptible hosts (Boots et al., 2009; Boots & Haraguchi, 1999; 770 

 

 

Figure 2.1. Various measures of epidemic size. Epidemic size is described using 

various measures of parasite prevalence (proportion of infected hosts); 𝑃𝑚𝑎𝑥 is 

the peak prevalence, 𝑃 is the mean prevalence and 𝐼𝑃 is the integrated 

prevalence (i.e. parasite prevalence over time, equal to the shaded area under 

the epidemic curve and calculated as 𝐼𝑃 =  ∫ 𝑓(𝑡)𝑑𝑡
𝑡=𝑛

𝑡=0
). 
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Bowers et al., 1994; Duffy & Forde, 2009; Koskella, 2018). For example, theory can 771 

predict the evolution of greater host susceptibility when selection directly favours 772 

reproduction over resistance. During small epidemics of parasites with low virulence, 773 

the benefits of higher fecundity outweigh higher resistance (Donnelly et al., 2015). 774 

For intermediate-sized epidemics, the survival benefits of resistance begin to 775 

outweigh the benefits of higher fecundity (Donnelly et al., 2015) and for large 776 

epidemics, higher fecundity and reduced resistance is most favorable again because 777 

the prevalence is so high that the survival benefits of resistance are vastly reduced 778 

(Donnelly et al., 2015). This has been supported by empirical assessment using a 779 

Daphnia-parasite system (Walsman et al., 2023) 780 

 781 

Ecological context can also influence epidemic size and the evolution of host 782 

susceptibility in Daphnia. For example, epidemics are smaller in lakes with low 783 

productivity and high predation so hosts evolve higher fecundity and lower 784 

resistance, whereas epidemics are larger in lakes with high productivity and low 785 

predation so hosts evolve lower fecundity and higher resistance (Duffy et al., 2012).  786 

 787 

There are several other examples of increased host susceptibility following an 788 

epidemic (Auld & Brand, 2017a; Mitchell et al., 2004; Parker, 1991; Strauss et al., 789 

2017; Thrall et al., 2012), but there are few examples of decreased parasite infectivity 790 

(but see Boots and Mealor, 2007 for a decrease in parasite infectivity during 791 

experimental coevolution). This is most likely a reflection of host and parasite 792 

generation times, which are much shorter for parasites and so they are expected to 793 

be better adapted more often than hosts (Schmid-Hempel, 2011).  794 

 795 

2.2.3 Does epidemic size determine the strength of selection? 796 

In theory, the size and severity of epidemics determine the level of selection on host 797 

and parasite populations. We conducted a meta-analysis to examine the relationship 798 

between epidemic size and host-parasite coevolution (Box 2.1, Fig. 2.2). We 799 

expected that changes in host resistance, parasite infectivity and coevolution would 800 

increase with epidemic size as the strength of host and parasite-mediated selection 801 

would also increase. 802 

 803 

 804 

 805 
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Box 2.1. Meta-analysis data collection 

A meta-analysis was performed on studies of host-parasite coevolution and 

epidemic size. Specifically, we pooled the data from different studies which 

measured the change in host resistance and parasite infectivity from infection 

assays involving an experimental time-shift, which compared ancestral and 

evolved hosts to the ancestral parasite or vice-versa, which compared ancestral 

and evolved parasites to the ancestral host, or, as in one study, compared evolved 

hosts to the ancestral and evolved parasite, and linked this to the change in 

genotype frequency data where available and the size of epidemics, defined as 

rapid increases in the proportion infected over a relatively short period, measured 

as integrated prevalence (proportion infected over time in days), to perform our 

own analysis (sensu Curran & Hussong, 2009).  

 

Relevant studies were searched for using Google scholar on 7th of March 2023. 

The search terms included “epidemic size” AND (“host evolution” OR “evolution of 

hosts” OR “parasite evolution” OR “evolution of parasites”), “rapid” AND 

“coevolution*” and “epidemic” AND “daphnia”, which returned approximately 

275,000 results. However, preliminary analysis showed that most of these studies 

were not relevant, so only the first 50 from each search term were used for 

subsequent analysis (total = 150). Analysis of titles and abstracts indicated that 

101 of these might include the appropriate data. Reading these studies in full 

showed this data was available for 10 of them and was extracted either from plots, 

using Plot Digitizer (http://plotdigitizer.sourceforge.net), or calculated from the raw 

data. 

 

Also, for an additional comparison, we took the data on the change in transmission 

rate from the evolution of parasites in response to a changing complement of host 

genotypes (i.e. coevolution) from Paplauskas et al., 2021 and plotted this against 

epidemic size. 

 806 

 807 

http://plotdigitizer.sourceforge.net/
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Figure 2.2. The relationship between epidemic size and host-parasite coevolution. 

The first two panels show (A) change in host resistance and (B) parasite infectivity 

in response to epidemic size across all three host classes. The next two panels 

show the relationship between epidemic size and either (C) the change in 

invertebrate host resistance or (D) the change in parasite infectivity (of invertebrate 

and bacterial hosts). The colour of the points indicates the host class. The thin 

dashed line is a reference point for positive and negative change. The thick solid 

and dashed black lines show the significant (P<0.05) and non-significant 

relationships between host-parasite (co)evolution and epidemic size respectively. 

Shaded bands denote 95% confidence intervals. 

 808 

Contrary to our hypothesis, the relationship between either the change in host 809 

resistance or parasite infectivity and epidemic size was not significant across all 810 

three bacteria, invertebrate and plant host classes (generalised additive model 811 

[GAM]: F=2.50, P=0.06; Fig. 2.2A and linear model [LM]: t=-0.65,  P=0.52; Fig. 2.2B). 812 

However, the relationship between either the change in host resistance or parasite 813 

infectivity and epidemic size seemed to vary with the host class. Specifically, change 814 

in host resistance initially increased with epidemic size for the bacteria and 815 

invertebrate host classes and then returned to zero for the plant host class. In 816 
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comparison, the negative relationship between change in parasite infectivity and 817 

epidemic size seemed to be driven by the plant host class.  818 

 819 

When examining a reduced dataset of only the invertebrate host class, the 820 

relationship between the change in host resistance and epidemic size was significant 821 

(GAM: F=7.475, P<0.001; Fig. 2.2C). This showed that host resistance increased 822 

with epidemic size and then plateaued. In comparison, parasite infectivity increased 823 

with epidemic size across a reduced dataset including the bacteria and host classes, 824 

but this was not significant (LM: t=0.59, P=0.57; Fig. 2.2D). 825 

 826 

Although there was clear no relationship between change in host resistance and 827 

epidemic size, the differences in the change in host resistance across the three host 828 

classes reflects host generation times. There was a large increase in bacterial 829 

resistance for a relatively small epidemic because of their short generation times, 830 

whereas invertebrate resistance increased more steadily with epidemic size due to 831 

intermediate generation times and changes in plant resistance were much more 832 

variable because of their long generation times. Some of the hosts evolved higher 833 

susceptibility, particularly in the plant host class. This seemingly counter-intuitive 834 

pattern of non-adaptive evolution has previously been shown in an annual legume 835 

(Parker, 1991) and could be attributable to negative frequency dependent selection 836 

(Thrall et al., 2012). Similarly, this could explain why so many of the parasites of plant 837 

hosts were found to have evolved lower infectivity in our meta-analysis, but it is often 838 

assumed that many plant host-parasite systems coevolve through directional 839 

selection (e.g. Zhong et al., 2016). 840 

 841 

The difference in the results between the full and reduced datasets reflects the 842 

asymmetry in host-parasite coevolution. Specifically, when examining the reduced 843 

datasets, the host resistance increased significantly with epidemic size because 844 

parasite-mediated selection increases with the proportion of infected individuals, 845 

whereas the change in parasite infectivity was always positive and not significantly 846 

associated with epidemic size because parasites are expected to die if they fail to 847 

infect (Salathé et al., 2008), so they are under stronger selection to infect than the 848 

host is to resist regardless of epidemic size. The change in invertebrate resistance 849 

plateaus at larger epidemics which is probably because there is limited genetic 850 

variation for resistance, despite stronger parasite-mediated selection. 851 

 852 
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Two studies which measured change in transmission rate were not included in the 853 

meta-analysis because they either used the same data as another study already 854 

included in the meta-analysis (Paplauskas et al., 2021) or because change in 855 

transmission rate data could not be directly compared to change measured from 856 

infection assays (Strauss et al., 2017). One of these studies supports the earlier 857 

results, showing that epidemics tend to increase or decrease the transmission rate 858 

owing to either host or parasite evolution (Paplauskas et al., 2021), whereas the 859 

other study shows something different (Strauss et al., 2017), but this is possibly 860 

because epidemics were very small (integrated prevalence < 11). A theoretical study 861 

which focused on changes in transmission rate found that both costs associated with 862 

resistance and ecological context, in terms of nutrient availability, can drive the 863 

evolution of greater host susceptibly (Walsman et al., 2023). 864 

 865 

One study also measured the relationship between change in parasite virulence or 866 

host susceptibility to it and epidemic size (Auld & Brand, 2017a). Parasites evolved 867 

to produce more spores regardless of epidemic size, whereas host susceptibility to 868 

parasite virulence increased with epidemic size. Again, this reflects the asymmetry 869 

of host-parasite coevolution. Another study found that parasite virulence measured 870 

in terms of host lifespan and number of clutches did not change over the course of 871 

an epidemic, but the parasite evolved to produce fewer spores (Gowler et al., 2022). 872 

It was suggested that the reduction in spore yield could have been a result of 873 

tradeoffs associated with parasite growth. 874 

 875 

Most significantly, another study found that sexual recombination results in genetic 876 

slippage, genetic change in the direction contrary to selection (Lynch & Deng, 1994), 877 

which restores host susceptibility in natural populations following bouts of parasite-878 

mediated selection (Ameline et al., 2022). This has the potential to disrupt the 879 

disease cycle, as this weakens the link between past and future epidemics, but the 880 

production of sexual resting stages which avoid selection by parasites until the 881 

following season is a unique phenomenon which is unlikely to be replicated in other 882 

organisms. 883 

 884 

2.2.4 Host-parasite coevolution in nature 885 

The context in which host-parasite coevolution occurs affects how accurately 886 

selection is measured. We can determine the potential for infectious disease 887 

epidemics to select on host and parasite populations using laboratory experiments 888 
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(Strauss et al., 2017; Walsman et al., 2023), but the extent to which epidemics drive 889 

actual host and parasite evolutionary change can only be measured in natural or 890 

semi-natural environments where other forces of selection are at play (Paplauskas 891 

et al., 2021). The importance of studying host-parasite coevolution in natural 892 

environments is reflected in the increasing number of studies published on this topic 893 

(Fig. 2.3). This allows us to measure not only the strength, but also the direction of 894 

selection. For example, a study in replicate populations of Daphnia showed that each 895 

population followed a unique coevolutionary trajectory, but the level of divergence 896 

between populations from a shared ancestral origin could be explained by 897 

differences in environmental conditions (Paplauskas et al., 2021). 898 

 899 

 

Figure 2.3. The amount of papers published on natural host-parasite coevolution 

by publication year. On 17th February 2020, the Thomas Reuter’s Web of Science 

portal was used to perform the analysis based on the following search terms, 

TOPIC: (host* parasite* coevolution natural) NOT TOPIC: ("natural selection"). 

There was a total of 363 records across all fields shown. The word ‘natural’ was 

commonly used to describe essential features of the study design such as natural 

environments (Gómez & Buckling, 2011), epidemics (Thrall et al., 2012) and 

populations (Hite et al., 2017). 

 900 

2.3 How does the mode of coevolution shape host and parasite 901 

genetic diversity? 902 

For many host-parasite systems, the nature of selection depends on the infection 903 

genetics of the system and shapes both host and parasite genetic diversity (Fig. 2.4). 904 



 45 

A low level of genetic specificity (e.g. the gene-for-gene model, Thompson & Burdon, 905 

1992; Sasaki, 2000), where parasites can infect multiple hosts and hosts can resist 906 

multiple parasites, leads to directional selection for the evolution of increased host 907 

resistance and parasite infectivity through a series of selective sweeps, which is 908 

referred to as arms-race dynamics (ARD) and decreases genetic diversity over time 909 

(Buckling & Rainey, 2002; Obbard et al., 2011). In comparison, a high level of genetic 910 

specificity, where infection depends on matching host and parasite genotypes (e.g. 911 

the matching allele model, Luijckx et al., 2013; Bento et al., 2017), drives negative 912 

frequency dependent selection, where parasite-mediated selection against common 913 

hosts causes parasite genotype frequencies to track host genotype frequencies over 914 

time, which can be called fluctuating selection dynamics (FSD, Levin, 1988; Koskella 915 

& Lively, 2009) or Red Queen dynamics (RQD, Van Valen, 1973; Decaestecker et 916 

al., 2007) and maintains genetic diversity. 917 

 918 

The tempo of coevolution depends on the nature of selection. ARD should generally 919 

lead to a slower rate of coevolution as directional selection strips genetic variation 920 

from populations (Anderson et al., 2017; Elena et al., 1996), but many studies of 921 

arms-races come from bacteria-phage populations where the rate of coevolution is 922 

already high (Brockhurst et al., 2003, 2007; Buckling & Rainey, 2002; Paterson et 923 

al., 2010). According to the Red Queen hypothesis, the reciprocal nature of selection 924 

between hosts and parasites should accelerate evolutionary rates through the need 925 

for continual adaptation and counter-adaptation. Empirical studies in snail-trematode 926 

and Daphnia-parasite systems suggest this may be the case by showing rapid 927 

coevolution between hosts and parasites (Decaestecker et al., 2007; Koskella & 928 

Lively, 2009), but a comparison to evolutionary rates in hosts and parasites when 929 

evolved in isolation would help to confirm this (Paterson et al., 2010). 930 

 931 
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Figure 2.4. The relationship between infection genetics, coevolutionary dynamics 

and change in genetic diversity. The tables with coloured squares represent the 

outcomes from two hypothetical cross-infection experiments, where samples of 

host and parasites genotypes from the same population have been crossed using 

a factorial design and the proportion of hosts that became infected (infection 

prevalence) was measured for all possible pairwise combinations of host and 

parasite genotypes. In population A, there is a low level of genetic specificity that 

drives arms-race dynamics (ARD) and this leads to the loss of genetic diversity 

over time. In contrast, there is a high level of genetic specificity in population B that 

drives fluctuating selection dynamics (FSD) and genetic diversity is maintained 

over time. The following abbreviation was used; Parasite (Para). 

 932 

2.3.1 A coevolutionary continuum 933 

ARD and RQD are two ends of a coevolutionary continuum (Agrawal & Lively 2002, 934 

Engelstädter et al., 2009). Different host-parasite systems will vary in where they fall 935 

along this continuum. In reality, extreme cases may not even exist (Luijckx et al., 936 

2013b; Schmid-Hempel et al., 1999; Thompson & Burdon, 1992) and there is some 937 

evidence for other types of parasite-mediated selection, including directional 938 

selection for increased host susceptibility (Duffy & Forde, 2009), stabilising selection 939 

(which favours an intermediate level of host resistance, Duffy & Forde, 2009) and 940 

disruptive selection (which favours highly resistant and highly susceptible host 941 

genotypes, Duffy & Forde, 2009). Several studies have shown that coevolving host 942 

and parasite populations can experience multiple modes of selection (Frickel et al., 943 

2016; A. R. Hall et al., 2011; Masri et al., 2015; Papkou et al., 2019) and the mode 944 

A 

B 
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of coevolution can vary between populations of functionally similar species (Betts et 945 

al., 2014) and even replicate populations (Kortright et al., 2022). However, we know 946 

relatively little of how this continuum is influenced by other factors, such as 947 

environmental variation. 948 

 949 

Studies performed in more realistic environments show the potentially significant 950 

impact that natural conditions have on the mode of coevolution. For example, 951 

experimental coevolution of a bacteria-phage system is known to follow ARD under 952 

controlled conditions (Gómez & Buckling, 2011), but in soil microcosms it follows 953 

FSD. Changes in the environment, such as higher nutrient availability and population 954 

mixing, can drive shifts from FSD back to ARD (Gómez et al., 2014; Lopez Pascua 955 

et al., 2014). Similarly, mixing outdoor pond populations of Daphnia disrupts FSD 956 

and causes adaptation of parasites to hosts of intermediate frequency (Auld & Brand, 957 

2017a). The temporal nature of the environmental change can matter too. In 958 

bacteria-phage populations, rapidly fluctuating environments constrain 959 

coevolutionary arms races by impeding selective sweeps (Harrison et al., 2013) and 960 

temperature fluctuations drive host and pathogen populations into and out of 961 

coevolutionary cold and hot spots (Duncan et al., 2017). 962 

 963 

Variation in the biotic environment, in terms of the presence of microbiota, 964 

coinfections and parasite diversity will also influence coevolutionary dynamics. For 965 

example, in a recent study of nematodes colonized by protective bacteria, there was 966 

reduced dominance of fluctuating selection dynamics in protected compared to 967 

unprotected host populations (Rafaluk-Mohr et al., 2022). For coinfections, where a 968 

host is infected with multiple parasites, theory predicts enhanced fluctuating 969 

selection dynamics when they increase fitness costs, but this depends on parasite 970 

characteristics, such as fecundity and virulence (Seppälä et al., 2020). However, we 971 

propose that the extent to which coinfections change the mode of coevolution may 972 

depend on the level of parasite genetic diversity between infections. If groups of 973 

similar parasites cluster together within hosts, coinfecting parasites will select 974 

against similar host genotypes and RQD dynamics will still occur. If there is no 975 

clustering of parasite genotypes within hosts, there will be low genetic specificity, 976 

hosts will be selected for general resistance and ARD will dominate. However, more 977 

empirical studies are required to test this hypothesis. 978 

 979 
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As for parasite diversity, one study found that increases in parasite diversity drove 980 

shifts in the mode of selection from fluctuating (Red Queen) dynamics to 981 

predominately directional (arms race) dynamics (Betts et al., 2018). In another study, 982 

phage populations evolved in isolation with bacteria showed increased phage 983 

infectivity and bacterial resistance through time, but two phage genotypes did not 984 

lead to an increase in bacterial resistance. This was most likely due to the inability 985 

of bacteria to evolve resistance to both phages via the same mutations and suggests 986 

that increasing initial parasite genotypic diversity can give parasites an evolutionary 987 

advantage that arrests long-term coevolution (Castledine et al., 2022).  988 

 989 

Furthermore, different stages of the infection process, which comprises multiple 990 

steps, could be subject to different selection dynamics (Agrawal & Lively, 2003; 991 

Duneau et al., 2011a; Fenton, Antonovics & Brockhurst, 2012). For example, certain 992 

stages of the infection process are more likely to require specific matching between 993 

host and parasite genotypes, such as host cell recognition, location of target tissues 994 

and attachment of microparasites to hosts, and therefore we would expect these 995 

traits to be governed by FSD. In contrast, host exploitation (Fenton, 2012), spore 996 

activation and host entry may require a low level of genetic specificity and therefore 997 

we would expect these traits to be governed by ARD. Also, preinfeciton may facilitate 998 

the subsequent penetration of hosts by other parasites, driving lower specificity 999 

(Gopko et al., 2018). 1000 

2.4 The effect of host (or parasite) population-level genetic 1001 

diversity on future epidemic size 1002 

Previously referred to only as ‘conventional wisdom’ (sensu (King & Lively, 2012)), 1003 

the generality of the effect of low genetic diversity on the propensity for host 1004 

populations, such as crop fields composed of a single species (monocultures), to 1005 

experience larger or more severe parasite outbreaks (referred to as the ‘monoculture 1006 

effect’ (Browning & Frey, 1969)) beyond agriculture was only recently studied (Ekroth 1007 

et al., 2019; Gibson & Nguyen, 2021). 1008 

 1009 

Despite a lack of studies measuring integrated epidemic size, rather than various 1010 

other metrics of parasite success in terms of disease spread (such as snapshot 1011 

prevalence, that only captures the proportion infected at a single point in time, or 1012 

mean prevalence, etc.), which would have enabled the precise quantification of the 1013 

increase in epidemic size linked to an increased level of host, or parasite, population-1014 
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level genetic diversity (the third link in the Disease Cycle), the importance of their 1015 

work shows that host population genetic diversity does indeed have a ‘conventional’ 1016 

effect on mean parasite success (but see chapter four (Paplauskas et al., 2024)). 1017 

However, their rationale for why there a clearly defined relationship between the host 1018 

population genetic diversity and epidemic size is not present in the current literature 1019 

is not clear (Ekroth et al., 2019). 1020 

 1021 

Primarily, they suggested that there could be variation in host density across 1022 

populations from different studies, arising from potentially reduced host range due to 1023 

habitat fragmentation, which could make it difficult to separate the relative effects of 1024 

host density and population genetic diversity on disease (Ekroth et al., 2019; King & 1025 

Lively, 2012). However, a study in bumblebees found that increased genetic diversity 1026 

reduced disease prevalence and the effect of genetic diversity was much larger than 1027 

colony density (Parsche & Lattorff, 2018). Although uncontrolled host density may 1028 

be a possible reason why a compelling diversity-disease relationship is lacking in 1029 

animal host studies, there are other, potentially more compelling, reasons why this 1030 

could be the case. For example, the principal idea cited in the past is that the 1031 

virulence and the presence of an infection depends on how disease interacts with 1032 

other stressors, such as abiotic aspects of the environment (temperature, resource 1033 

availability, etc.) and therefore, these additional stressors drive variation in how host 1034 

population genetic diversity influence parasite infection success (O’Brien & 1035 

Evermann, 1988). Alternatively, I suggest host genetic diversity may be lower due to 1036 

parasite-mediated selection, rather than inbreeding, and therefore we might expect 1037 

greater resistance (assuming that the chance of a host becoming infected relies on 1038 

a combination of specific and non-specific factors). However, even more significant 1039 

is that incomparable measures of host population diversity seem to be employed 1040 

across different studies. For example, a reduction in population-level host genetic 1041 

diversity as a result of inbreeding (Acevedo-Whitehouse et al., 2003) is very different 1042 

to a reduction caused by hunting (O’Brien et al., 1985; Roelke et al., 1993) or habitat 1043 

fragmentation (Belasen et al., 2019). This is because hunting reduces genetic 1044 

diversity by imposing strong directional selection for morphological (Pigeon et al., 1045 

2016) and behavioural (Leclerc et al., 2019) traits or by significantly reducing 1046 

population size (Allendorf et al., 2008), whereas inbreeding leads to a reduction in 1047 

genetic diversity by mainly increasing homozygosity (Charlesworth & Meagher, 1048 

2003) and habitat loss (or fragmentation) increases the spatial separation between 1049 

different sub-populations (Cushman, 2006; Leidner & Haddad, 2011) and potentially 1050 



 50 

may lead to reductions in gene flow and the overall genetic diversity (Aguilar et al., 1051 

2008; Frankham, 2005; Honnay & Jacquemyn, 2007). 1052 

 1053 

2.4.1 Parasite diversity 1054 

Although it has received less attention than the level of host diversity, the level of 1055 

parasite diversity is another key factor which influences the spread of disease. 1056 

Theory predicts that evolution in a diverse parasite population leads to 1057 

epidemiological feedbacks and when parasite-mediated selection is strong, this 1058 

facilitates the spread of disease (Lively, 2016). Empirical studies tend to focus on the 1059 

effect of parasite diversity on individual infections (Davies et al., 2002; De Roode et 1060 

al., 2005). There have been relatively few studies of the effect of parasite diversity 1061 

on population-level measures of disease. Since disease risk is based on some level 1062 

of specificity between hosts and parasites, we would expect parasites with higher 1063 

diversity to spread more rapidly through a host population due to the increased 1064 

likelihood of encountering a host they are adapted to. One study which measured 1065 

population-level effects of disease found that the effect of host genetic diversity on 1066 

the spread of disease depends on the level of genetic diversity in the parasite 1067 

population. They found that parasite prevalence increased with the number of 1068 

parasite strains and host monocultures exposed to several parasite strains had 1069 

higher mean parasite prevalence and higher variance than polycultures (Ganz & 1070 

Ebert, 2010). Other studies suggest that parasites may also facilitate one another by 1071 

compromising the host immune system (Karvonen et al., 2011). However, more 1072 

studies are needed in other disease systems to better understand the generality of 1073 

these results. 1074 

 1075 

2.4.2 The identity of host and parasite genotypes 1076 

Another factor which influences the spread of disease that has received relatively 1077 

little attention is the identity of the host and parasite genotypes. Controlled laboratory 1078 

experiments have shown that the identity of the host and/or pathogen genotype(s) 1079 

explain much of the variation in the likelihood of infection (over 44% in the Daphnia 1080 

magna-Pasteuria ramosa freshwater host-pathogen system: Vale et al., 2009 1081 

Heredity), and that these effects of genotype can further interact with environmental 1082 

variables in many host-pathogen systems (Echaubard et al., 2014; Lazzaro et al., 1083 

2008; Meixner et al., 2014; Vale & Little, 2009). 1084 

 1085 
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2.4.3 The genetic basis for infection 1086 

A fundamental knowledge gap is that we often do not know which traits, or genes, 1087 

underlie host and parasite diversity for resistance and infectivity (Ebert, 2018; Ebert 1088 

& Fields, 2020). However, recent studies have begun to address this gap. For 1089 

example, a study of coevolution in the nematode, Caenorhabditis elegans, and its 1090 

bacterial parasite has shown genomic changes in a parasite toxin gene in response 1091 

to selection (Papkou et al., 2019). In another study, coevolution in a bacteria-phage 1092 

community drove the diversification of CRISPR immunity (Guillemet et al., 2022). 1093 

Lastly, there has been strong evidence for a gene governing infectivity which 1094 

provides a molecular basis for study of Red Queen dynamics in the Daphnia model 1095 

system (Andras et al., 2020). Future work should aim to continue uncovering the 1096 

diverse range of traits for which is there is variation in host resistance and parasite 1097 

infectivity to answer questions such as; How many genes are involved in host–1098 

parasite interactions, and how are they organized in the genome (Ebert, 2018)? How 1099 

do they interact, and how specific are these interactions (Ebert, 2018)? What form 1100 

of selection operates on the genes (Ebert, 2018)? 1101 

 1102 

2.5 Summary 1103 

As a result of infection, disease can have several negative impacts on host 1104 

populations, including reduced genetic diversity, depressed population size and 1105 

complete extinction (Alan Pounds et al., 2006; Boots & Sasaki, 2002; Vredenburg et 1106 

al., 2010). To protect populations in an era of broad environmental change, we 1107 

require disease control strategies, and the effective design of such strategies relies 1108 

on a detailed understanding of the various drivers of disease and some capacity to 1109 

predict outbreaks in the future. 1110 

 1111 

We presented a simple conceptual model, the Disease Cycle, to bridge the gap 1112 

between the evolutionary ecology of past and future disease outbreaks in a variable 1113 

world. First, we considered epidemics as drivers of host-parasite coevolution. 1114 

Epidemics generally increase host resistance and parasite infectivity, and the 1115 

strength of parasite-mediated selection depends on epidemic size. In comparison, 1116 

the lack of any relationship between parasite evolution and epidemic size reflects the 1117 

asymmetry of coevolution. The shift towards studies of coevolution in natural 1118 

environments reflects the importance of measuring the extent to which epidemics 1119 

drive actual coevolutionary change. Previous research has focused on parasite 1120 
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rather than host-mediated selection so more theoretical and empirical studies are 1121 

required to address this gap. 1122 

 1123 

Second, we considered how the mode of coevolution shapes host and parasite 1124 

genetic diversity. A low level of genetic specificity leads to arms-race dynamics and 1125 

the loss of genetic diversity over time, whereas a high level of genetic specificity 1126 

leads to red-queen dynamics and maintains genetic diversity over time. In reality, 1127 

these represent two ends of a coevolutionary continuum and where a particular 1128 

interaction falls along this continuum depends on both biotic and abiotic features of 1129 

the environment, and the specific stage of infection considered. Short-term studies 1130 

of coevolution, such as those using bacteria and phages, often show rapid changes 1131 

in host resistance and parasite infectivity over relatively short time-scales 1132 

(Brockhurst et al., 2003, 2007; Buckling & Rainey, 2002; Paterson et al., 2010), but 1133 

the extent to which these findings represent non-model organisms, which possess a 1134 

much lower potential for evolution, is uncertain. More studies in non-model 1135 

organisms are required to demonstrate the potential for coevolution to drive rapid, 1136 

short-term change. On the other hand, long-term studies of coevolutionary 1137 

responses are relatively rare and tend to focus on host plant-pathogen associations 1138 

(Soubeyrand et al., 2009; Thrall et al., 2012; Susi and Laine, 2015; Ericson, Müller 1139 

and Burdon, 2017; but see Dewald-Wang et al., 2022). To what extent 1140 

coevolutionary dynamics are observable over the short-term (single epidemic) 1141 

compared to the long term (multi-epidemic) still remains uncertain. 1142 

 1143 

Third and finally, we considered how host and parasite genetic diversity affect future 1144 

epidemic size. Plant populations with higher genetic diversity are at less risk of the 1145 

more harmful effects of disease. Although the generality of this relationship outside 1146 

agricultural systems is unclear, recent evidence suggests that genetic diversity also 1147 

protect animals from disease. On the other hand, theoretical and empirical evidence 1148 

suggests that parasite diversity generally increases disease risk. The identity of the 1149 

host and parasite genotypes is also important. Fundamental knowledge gaps include 1150 

how genetic diversity affects variation in the level of disease and which traits underlie 1151 

host and parasite diversity for resistance and infectivity.  1152 

 1153 

Despite the potential for the Disease Cycle model to provide a theoretical framework 1154 

to link the size of past and future epidemics, I acknowledge that 1) this mainly applies 1155 

to microparasites (bacteria, viruses etc.) versus macroparasites (nematodes, etc.) 1156 



 53 

due to the ability of microparasites to induce a rapid increase in the number of 1157 

infected individuals over a short space of time (such that it meets a threshold for an 1158 

‘epidemic’, Hudson et al., 2002), and 2) this mainly applies to invertebrate versus 1159 

vertebrate hosts (i.e. those that have innate (Little et al., 2003) versus acquired 1160 

immunity (Babayan et al., 2011)). In the latter case, this is because vertebrate 1161 

acquired immunity is a fundamental mechanism that determines infection rate. In 1162 

support of this, studies in natural host-parasite associations, such as wild rodents 1163 

and their suite of parasites species (including nematodes, viruses and blood-borne 1164 

bacteria, etc.), show that antibodies and coinfection drive variation in parasite 1165 

burdens (Clerc et al., 2018). In addition to these considerations, there may be times 1166 

when a cycle of host-parasite coevolution is overshadowed by the interactions 1167 

between host and parasite ecology. In this sense, there may be times at which the 1168 

ecological theatre matters more than the (co)-evolutionary play (in the sense of 1169 

(Hutchinson, 1965)). Indeed, contemporary research shows that within-host 1170 

interactions are often crucial for determining the fitness and transmissibility of co-1171 

infecting parasites (Pedersen & Fenton, 2007). 1172 

 1173 

Overall, we hope that this model could provide a framework for future modelling 1174 

approaches that embrace epidemic disease as a recurrent episodic process and help 1175 

better inform the forecasting and management of disease control strategies. 1176 

 1177 
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3.1 Abstract 1678 

Host-parasite interactions often fuel coevolutionary change. However, 1679 

parasitism is one of a myriad of possible ecological interactions in nature. 1680 

Biotic (e.g., predation) and abiotic (e.g., temperature) variation can amplify or 1681 

dilute parasitism as a selective force on hosts and parasites, driving 1682 

population variation in (co)evolutionary trajectories. We dissected the 1683 

relationships between wider ecology and coevolutionary trajectory using 16 1684 

ecologically complex Daphnia magna-Pasteuria ramosa ponds seeded with 1685 

an identical starting host (Daphnia) and parasite (Pasteuria) population. We 1686 

show, using a time-shift experiment and outdoor population data, how 1687 

multivariate biotic and abiotic ecological differences between ponds caused 1688 

coevolutionary divergence. Wider ecology drove variation in host evolution of 1689 

resistance, but not parasite infectivity; parasites subsequently coevolved in 1690 

response to the changing complement of host genotypes, such that parasites 1691 

adapted to historically resistant host genotypes. Parasitism was a stronger 1692 

interaction for the parasite than for its host, likely because the host is the 1693 

principal environment and selective force, whereas for hosts, parasite-1694 

mediated selection is one of many sources of selection. Our findings reveal 1695 

the mechanisms through which wider ecology creates coevolutionary 1696 

hotspots and coldspots in biologically realistic arenas of host-parasite 1697 

interaction, and sheds light on how the ecological theatre can affect the 1698 

(co)evolutionary play.  1699 

 1700 

  1701 
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3.2 Introduction 1702 

Parasites are a strong selective force acting on host populations, and vice versa 1703 

(Paterson et al., 2010; Schulte et al., 2010), fuelling rapid cycles of adaptation and 1704 

counter-adaptation in terms of host resistance and parasite capacity to infect  1705 

(Decaestecker et al., 2007; Gómez & Buckling, 2011; Koskella & Lively, 2009; 1706 

Schulte et al., 2010). These coevolutionary processes can have profound effects on 1707 

disease outbreaks. For example, whether the host or the parasite is ahead in the 1708 

coevolutionary process can, in part, affect whether epidemics are emerging (Refardt 1709 

& Ebert, 2007) or in decline (Duffy et al., 2009). A key aim of evolutionary ecologists 1710 

is to understand the extent to which coevolution is: (1) a deterministic process with 1711 

repeated, predictable outcomes that are either hard-wired or shaped by measurable 1712 

abiotic and biotic ecological variation; and (2) a stochastic process driven by 1713 

unpredictable events. 1714 

 1715 

Ecological variation is known to have strong effects on coevolution (Springer, 2007; 1716 

Tack et al., 2015; Wolinska & King, 2009). However, dissecting host-parasite 1717 

coevolution in biologically realistic settings is fraught with difficulty, and much of our 1718 

understanding of coevolution therefore comes from laboratory experiments that 1719 

eliminate ecological complexity. This experimental control comes at a cost to 1720 

biological realism, because parasitism is just one of many ecological interactions that 1721 

hosts experience in the wild; predation, competition etc., and abiotic variables such 1722 

as temperature are already known to either amplify or diminish host evolutionary 1723 

responses to parasite-mediated selection (Auld, Hall, et al., 2014; Auld & Brand, 1724 

2017a; Decaestecker et al., 2007; Duffy et al., 2012; Su & Boots, 2017; Wright et al., 1725 

2016). By contrast, we expect parasite evolution, particularly for obligate 1726 

endoparasites, to be driven primarily by shifts in host-mediated selection caused by 1727 

changes in host genotype frequencies (Auld & Tinsley, 2015), because hosts 1728 

insulate their endoparasites from the wider environment. These asymmetries in host 1729 

and parasite responses to reciprocal selection could create discrepancies between 1730 

coevolution observed in the laboratory and in the natural arena. 1731 

 1732 

We quantified how coevolutionary trajectories varied among 16 biologically realistic 1733 

pond populations of Daphnia magna and its sterilizing bacterial endoparasite, 1734 

Pasteuria ramosa. Each pond was initiated with an identical suite of Daphnia 1735 

genotypes and the same starting population and dose of Pasteuria transmission 1736 

spores, and the densities of healthy and parasite-infected were then monitored 1737 
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weekly over the course of each pond epidemic. At the end of the epidemic, Daphnia 1738 

were sampled to determine the change in genotype frequencies and additional 1739 

infected Daphnia were sampled to obtain parasite isolates from each pond. We 1740 

subsequently conducted a time-shift experiment where we exposed replicates of the 1741 

original twelve Daphnia genotypes to either the ancestral parasite used to initiate the 1742 

pond populations, or to parasite isolates collected from each pond at the end of the 1743 

epidemic.  1744 

 1745 

By combining data from the time-shift experiment with changes in relative genotype 1746 

frequencies, we dissected, for each pond, the effects of the three components of 1747 

host-parasite coevolution on the change in parasite transmission rate over the 1748 

course of the season: host evolution of resistance, parasite evolution of infectivity, 1749 

and coevolution (i.e., the extent to which the parasite population non-additively 1750 

evolved in response to a changed complement of host genotypes). When host 1751 

genotypes that were resistant to the ancestral parasite increased in frequency within 1752 

a population, that host population evolved host resistance; when a parasite sample 1753 

collected at the end of the season caused more infections than the ancestral parasite 1754 

when exposed to the panel of host genotypes, that parasite population evolved 1755 

increased infectivity; and when a parasite sample collected at the end of the season 1756 

became proportionately more infectious to host genotypes that were resistant to the 1757 

ancestral parasite, that parasite population coevolved in response to the changing 1758 

complement of host genotypes.  1759 

 1760 

3.3 Results and Discussion 1761 

3.3.1 Coevolutionary trajectories varied among ponds 1762 

Whilst the ponds had the same starting populations of hosts and parasites, each 1763 

pond experienced its own natural temperature profile (with significant variation 1764 

across ponds), and half underwent an experimental manipulation of within-1765 

population flux (mixing) that simulated extreme precipitation events. We recorded 1766 

the natural variation in 10 biotic and abiotic ecological variables over the season: 1767 

temperature, pH, dissolved oxygen, chlorophyll, nitrate, and total dissolved salt, 1768 

parasite prevalence, predator density and adult host density. This allowed us to 1769 

examine the role of ecological variation early in the season in driving coevolutionary 1770 

divergence.  1771 

 1772 



 73 

We found that each pond population followed its own coevolutionary trajectory (with 1773 

respect to changes in parasite transmission rate). This was driven by variation in all 1774 

three coevolutionary axes: host evolution, parasite evolution and coevolution (Fig. 1775 

3.1a-c). We uncovered asymmetry in the magnitude of host and parasite evolution: 1776 

parasite populations evolved more in their capacity to infect the ancestral host 1777 

population than their corresponding hosts evolved capacity to resist the ancestral 1778 

parasite population (paired t = -3.25, P = 0.005; Fig. 3.1a). We also found a strong 1779 

positive relationship between the change in host resistance and coevolution, i.e., a 1780 

change in transmission rates due to a shifting complement of host genotypes (rs = 1781 

0.69, P = 0.004; Fig. 3.1b): over the course of the season, parasites became 1782 

disproportionately better at infecting those host genotypes that were previously 1783 

resistant at the beginning of the season (host genotypes that had become more 1784 

common), and also disproportionately poorer at infecting host genotypes that were 1785 

previously susceptible at the beginning of the season (host genotypes that had 1786 

become rarer). By contrast, there was a lack of relationship between the change in 1787 

parasite infectivity and coevolution (rs = 0.39, P = 0.135; Fig. 3.1c). These findings 1788 

are consistent with the idea that ecological interactions above and beyond parasitism 1789 

can select on hosts, but do not act on the host insulated parasites; shifts in host 1790 

genotype frequencies instead drive parasite genetic change via coevolution. 1791 

Whereas, for ectoparasites, which live on the host exterior, wider ecological 1792 

conditions are known to shape the evolution of virulence(Cardon et al., 2011; 1793 

Mahmud et al., 2017). 1794 

 1795 

 

Figure 3.1. Coevolutionary trajectories vary across populations. Vectors 

show pairwise relationships between a change in transmission rate due to host 

evolution of resistance (∆𝛽ℎ) and change in transmission rate due to parasite 

evolution of infectivity ( ∆𝛽𝑝), b host evolution of resistance (∆𝛽ℎ) and non-additive 

change in transmission rate due to coevolution (∆𝛽ℎ𝑝) and c parasite evolution of 

infectivity ( ∆𝛽𝑝) and coevolution (∆𝛽ℎ𝑝). Populations were identical pre-epidemic 
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(vector tails) and by the end of the epidemic phenotypes had diverged due to 

variation in evolutionary trajectories (vector heads, open arrowheads). Red arrows 

denote populations that underwent the mixing treatment and blue arrows denote 

populations that remained unmixed. 

 1796 

3.3.2 Ecology drives variation in coevolution 1797 

Initial inspection of the ten ecological variables in isolation revealed that the mixing 1798 

treatment had no effect on nine of the ten ecological variables, but that it was 1799 

associated with lower total adult host densities (see Table S3.1). This supports the 1800 

idea that the mixing treatment affected the ecology of the system primarily by 1801 

reducing host densities directly; indeed, it is known that sediment suspension can 1802 

interfere with Daphnia filter feeding, reducing population growth and the consumption 1803 

of algae (Arruda et al., 1983) (see later results). Higher temperatures and lower 1804 

chlorophyll concentration, dissolved oxygen and pH were each associated with the 1805 

evolution of host resistance, but none of the ecological variables were associated 1806 

with parasite evolution or coevolution (see Table S3.2).  1807 

 1808 

In comparison to the initial inspection of mixing treatment and its effect on the 1809 

ecological variables measured, a more holistic multivariate analysis uncovered a 1810 

much more interesting story. A Principal Components Analysis of the biotic and 1811 

abiotic variables (Fig. S3.1) revealed considerable ecological variation among 1812 

populations, with the first and second PC axes explaining 36.0% and 21.6% of that 1813 

variation. The main factors driving variation in unmixed populations were mean 1814 

temperature and host density, whereas several factors explained variation in mixed 1815 

populations: chlorophyll, predator density, oxygen, pH and nitrate. There was a 1816 

strong positive relationship between 𝛿𝑒𝑐𝑜the pairwise Mahalanobian distances 1817 

between populations in multivariate space for ecological variation, and 𝛿𝑐𝑜𝑒𝑣𝑜, the 1818 

pairwise Mahalanobian distances for coevolutionary net change (Fig. 3.2: Mantel r = 1819 

0.36, P = 0.029). Populations that were more ecologically different from each other 1820 

had more divergent coevolutionary trajectories. Both theory (Mostowy & Engelstädter, 1821 

2011) and empirical data (reviewed in (Wolinska & King, 2009)) have previously 1822 

shown how host and parasite genotypes can differentially respond to particular 1823 

environmental variation to create (co)evolutionary hotspots and coldspots 1824 

(Thompson, 2005); these results show how such environmental variables can act in 1825 

concert to mediate coevolution. 1826 
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Figure 3.2. Pairwise ecological differences explain population divergence in 

coevolutionary trajectory. Relationship between pairwise population distances 

(measured as Mahalanobis distances) for ecology (across PC1-PC4, 𝛿𝑒𝑐𝑜) and net 

coevolutionary trajectory (combining the three axes of host evolution, parasite 

evolution, coevolution, δcoevo). Pairwise differences are measured in standard 

deviations of the total variation. 

 1827 

3.3.3 Ecology affects host evolution, with consequences for 1828 

coevolution 1829 

The next step was to dissect precisely how ecological variation and coevolutionary 1830 

change were linked. Using Structural Equation Modelling (SEM; Fig. S3.2), we tested 1831 

which of two credible scenarios better explained the relationship between ecological 1832 

and coevolutionary variation among populations (Fig. 3.3). Scenario 1 (SEM1) 1833 

proposed that mixing affected ecology (measured as PC1), that ecology directly 1834 

affected host evolution, parasite evolution and coevolution, and that parasite 1835 

evolution also separately affected coevolution. Scenario 2 (SEM2) was similar, 1836 

except it proposed that ecology did not affect coevolution directly; here ecological 1837 

effects on coevolution were mediated by both host evolution and parasite evolution 1838 
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(see methods section for details). Whilst both SEM1 and SEM2 both provided 1839 

adequate fit to the data (SEM1: Fisher’s C = 19.80, D.F. = 12, P = 0.071, BIC = 1840 

64.16; SEM2: Fisher’s C = 12.66, D.F. = 12, P = 0.394, BIC = 57.02), SEM2 was the 1841 

better performing model (BIC = 7.14), demonstrating that there was greater support 1842 

for the scenario where ecological effects on coevolution were mediated by both host 1843 

evolution and parasite evolution.  1844 

 

Figure 3.3. Wider ecology drives coevolution through its effects on host 

evolution. Path diagram for SEM2 showing how ecology drives coevolution. 

Arrows represent unidirectional (single arrowhead) or bidirectional (double 

arrowheads) relationships. Black arrows denote positive relationships, red arrows 

negative ones. Significant (p<0.05) and non-significant relationships are 

represented by solid and partially transparent arrows respectively. The arrow width 

of significant relationships is scaled according to the standardised regression 

coefficient shown in the small boxes (see also Fig. 3.4, Table S3.1). Note that 

negative values of ∆𝛽ℎ represent evolution of host resistance. 

 1845 
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Analysis of SEM2 revealed that ecological conditions, as expressed by PC1, were 1846 

significantly different between mixed and unmixed populations (Fig. 3.3; Fig. 3.4a; 1847 

Table S3.1), and that epidemic size was negatively associated with this measure of 1848 

ecological variation (Fig. 3.4b; Table S3.1), such that epidemics were larger in 1849 

populations that were warmer, had lower chlorophyll concentrations, lower pH and 1850 

lower predator densities. Epidemic size was associated with the evolution of host 1851 

resistance (reduced transmission rate) (Fig. 3.4c; Table S3.1), but there was no 1852 

compelling evidence for an association between epidemic size and parasite 1853 

infectivity (Fig. 3.4d; Table S3.1), or coevolution (Fig. 3.4e; Table S3.1). Ecology was 1854 

also directly associated with evolution of host resistance (Fig. 3.4f; Table S3.1), but 1855 

not parasite infectivity (Fig. 3.4g; Table S3.1). Finally, the ability to examine partial 1856 

residuals after controlling for other variables (a major advantage of the SEM 1857 

approach) allowed us to uncover that coevolution was positively associated with both 1858 

the evolution of host resistance (Fig. 3.4h; Table S3.1) and the evolution of parasite 1859 

infectivity (Fig. 3.4i; Table S3.1).  1860 
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Figure 3.4. Ecological, epidemiological and coevolutionary relationships 

across populations. Relationships between variables from SEM2 a-i. Colours 

show positive (black) and negative (red) relationships, and bands denote 95% CIs. 

Note that negative values of ∆𝛽ℎ represent evolution of host resistance. Significant 

(p>0.05) and non-significant relationships are indicated by solid and dashed lines 

respectively. 

 1861 

These separate effects of epidemic size and wider ecology on host (but not parasite) 1862 

evolution provide two principal insights. They add support our assertion that hosts 1863 

are subject to a wide range of selective pressures due to both parasite-mediated 1864 

selection from disease epidemics and from wider ecology, whereas the parasite’s 1865 

insulation within the host environment and the obligate nature of its relationship with 1866 

the host ensures the host is the principal agent of selection (hence the relationship 1867 

between host evolution and coevolution). They also raise the intriguing hypothesis 1868 

that epidemic size and wider ecology (driven in part by mixing treatment) pull two 1869 

separate levers to drive host evolution of resistance. First, larger epidemics could 1870 

have exerted greater parasite-mediated selection for host resistance (Duffy et al., 1871 

2012). Second, populations with greater PC1 values, i.e., lower predation and higher 1872 

temperatures and thus higher Daphnia reproductive rate), had high population 1873 

densities (Brett, 1992),(Goss & Bunting, 1983), and therefore likely had a greater 1874 

capacity to respond to any parasite-mediated selection. This may have fuelled 1875 

coevolution, driving the divergence in coevolutionary trajectories we see in Fig. 3.1.  1876 

 1877 

The next step is to explain the relationships between host evolution, parasite 1878 

evolution and coevolution. Previous work demonstrated the Matching Allele Model 1879 

(MAM) best describes the infection genetics of the Daphnia-Pasteuria system (Bento 1880 

et al., 2017b; Decaestecker et al., 2007; Luijckx et al., 2013a): alleles conferring 1881 

parasite ability to infect one host genotype often preclude it from infecting other 1882 

different host genotypes (Auld & Brand, 2017a). However, MAM in its purest sense 1883 

requires just one susceptible host genotype for every infectious parasite genotype 1884 

(Grosberg, 2000), but in the Daphnia-Pasteuria system, parasite genotypes 1885 

commonly infect  >1 host genotypes and also vary in the number of host genotypes 1886 

each parasite can infect (Luijckx et al., 2013b). This deviation from MAM could 1887 

potentially explain why coevolution was positively associated with the evolution of 1888 

host resistance and, to a lesser extent, parasite infectivity (Fig. 3.4h,i; Table S3.1): 1889 

parasite populations that were more infectious to the ancestral complement of hosts 1890 
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were also better at infecting the new complement of hosts, and hosts that got better 1891 

at resisting the ancestral parasite also got better at resisting the evolved parasite. 1892 

Reciprocal selection could have acted in two ways. First, general selection could 1893 

have favoured parasite genotypes that infect the broadest range of host genotypes 1894 

(and vice versa for resistance in host genotypes), and second, specific selection 1895 

could have separately favoured parasite genotypes that could infect host genotypes 1896 

that had become particularly common (again, vice versa for resistance in hosts 1897 

genotypes).  1898 

 1899 

3.4 Conclusion 1900 

These results demonstrate that even in seemingly noisy environments, coevolution 1901 

was still largely driven by deterministic, ecologically-mediated processes. Individual 1902 

biotic and abiotic variables gave us a small glimpse of how wider ecology shaped 1903 

coevolution. It was only after viewing multiple ecological variables from a multivariate 1904 

perspective that we were able to observe that the ecological theatre determined the 1905 

(co)evolutionary play in a measurable understandable way (sensu Hutchinson, 1906 

1965). Recent work has demonstrated that quantitative differences among 1907 

qualitatively similar environments can explain evolutionary divergence among 1908 

stickleback populations (Stuart et al., 2017); we show the same is true for more 1909 

complex host-parasite coevolution, and that knowledge of multiple ecological 1910 

conditions could help us predict the distribution of coevolutionary hotspots and 1911 

coldspots (Thompson, 2005). 1912 

 1913 
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  2014 

3.7 Methods 2015 

3.7.1 Pond experiment 2016 

The pond experiment was used to test how epidemic size varied across populations 2017 

that were initiated with the same suite of hosts and parasites, but experienced 2018 

biologically realistic variation in biotic and abiotic ecological variables. Additionally, 2019 

healthy and infected hosts were sampled at the end of the season in order to quantify 2020 

the change in relative host genotype frequencies across populations and provide 2021 

parasite samples for the time shift experiment. 2022 

 2023 

To start with, replicate lines of the 12 genotypes of Daphnia magna were maintained 2024 

in the laboratory in a state of clonal reproduction for three generations to reduce 2025 

variation due to maternal effects. There were five replicates per genotype; each 2026 

replicate consisted of five Daphnia kept in 200 mL of artificial medium (Klüttgen et 2027 

al., 1994)  modified using 5% of the recommended SeO2 concentration (Ebert et al., 2028 

1998). Replicate jars were fed 5.0 ABS of Chlorella vulgaris algal cells per day 2029 

(where ABS is the optical absorbance of 650 nm white light by the Chlorella culture). 2030 

Daphnia medium was changed three times per week and three days prior to the start 2031 

of the pond experiment. On the day that the pond experiment commenced, 1–3 day 2032 
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old offspring were pooled according to host genotype. Ten offspring per genotype 2033 

were randomly allocated to each of the 16 ponds (giving a total of 120 Daphnia per 2034 

pond). From preliminary work, we knew that the 12 genotypes used in our pond and 2035 

laboratory experiments were a representative sample of parasite resistance profiles 2036 

observed in the source population. The proportion of Daphnia that became infected 2037 

with the ancestral mastermix Pasteuria after 48h exposure to 2 x 105 spores ranged 2038 

from 0 to 0.75 depending on genotype, with a mean of 0.27. 2039 

 2040 

Each pond consisted of a 0.65 m tall 1000 Liter PVC tank filled with rainwater. The 2041 

ponds were set to different depths into the ground and experienced different 2042 

temperature profiles (Auld & Brand, 2017b). In addition, six of the ponds experienced 2043 

a weekly mixing treatment where mixed ponds were stirred once across the middle 2044 

and once around the circumference with a 0.35 m2 paddle submerged halfway into 2045 

the pond (the exception to this was on the first day of the experiment, when all ponds 2046 

experienced the mixing treatment to ensure hosts and parasites were distributed 2047 

throughout the ponds). 2048 

 2049 

The experimental coevolution began on the 2nd April 2015 (Julian day 98), when 2050 

120 Daphnia (10 Daphnia x 12 genotypes) and 1 x 108 Pasteuria spores from the 2051 

ancestral mastermix were added to each of the 16 ponds. The ancestral mastermix 2052 

comprised Pasteuria ramosa spores propagated using 21 separate Daphnia 2053 

genotypes exposed to sediment from their original pond (Kaimes, Scottish Borders, 2054 

UK (Auld & Brand, 2017b)).  2055 

 2056 

Between the 2nd April and the 17th November 2015, we measured key abiotic and 2057 

biotic ecological variables on a weekly basis. Temperature, pH, dissolved oxygen 2058 

(%), chlorophyll (µg. L-1), nitrate (mg.L-1) and total dissolved salt (mg.L-1) were 2059 

recorded using an Aquaread AP-5000 probe (Aquaread, Broadstairs, Kent, UK). 2060 

Host density (L-1), parasite prevalence and predator density (L-1) were determined 2061 

using standard sampling procedures (Auld & Brand, 2017b).  2062 

 2063 

Twenty-thirty Daphnia were sampled from each pond for genotyping after peak 2064 

epidemic (17th November 2015; Julian Day 321). The DNA extraction and 2065 

microsatellite genotyping process is described in full in (Auld & Brand, 2017a). 2066 

Microsatellite genotyping was used to identify the twelve unique multilocus Daphnia, 2067 

and thus track the change in relative genotype frequencies between the beginning 2068 
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of the experiment (when all genotypes were at equal frequencies) and the end of the 2069 

experiment. The relative genotype frequencies were used as a measure of relative 2070 

genotype fitness within each pond. Finally, we sampled 90 infected hosts from each 2071 

of the 16 ponds, which were homogenised and pooled into three replicate isolates 2072 

per pond (30 infected Daphnia per isolate). 2073 

 2074 

3.7.2 Time shift experiment 2075 

The time shift experiment was used to understand host and parasite evolution over 2076 

the course of the epidemic. Specifically, the same panel of host genotypes used to 2077 

initiate the pond populations was exposed to either the ancestral parasite, or to 2078 

parasite samples collected from each population at the end of the epidemic, following 2079 

a fully factorial design.  2080 

 2081 

We established maternal lines for each of the 12 Daphnia genotypes used in the 2082 

pond experiment. There were three replicates per genotype; each replicate consisted 2083 

of eight adult animals in 100ml of artificial media. The Daphnia were fed 0.5 ABS 2084 

chemostat-grown Chlorella vulgaris algae per Daphnia per day. Jars were incubated 2085 

at 20°C on a 12L:12D light cycle, and their media was changed three times per week. 2086 

Offspring from early instars were taken from the second brood for use in the time 2087 

shift assay. 2088 

 2089 

The experimental design consisted of a factorial manipulation of the 12 host 2090 

genotypes and parasite samples collected from each pond (n = 16) plus the original 2091 

(ancestral) parasite mixed isolate used to seed the populations. There were three 2092 

independent replicate parasite isolates collected from each pond and a further three 2093 

replicate isolates of the ancestral parasite (17 parasite treatments; three replicates 2094 

per treatment). On the day of treatment exposure, neonates from each maternal line 2095 

were assigned to experimental jars (8 per jar, in 100ml of artificial media) and 2096 

allocated to parasite treatments following a split-clutch design. There was a total of 2097 

612 experimental jars (4896 Daphnia). Each jar received a dose of 2 × 105 Pasteuria 2098 

spores and kept under identical conditions as the maternal lines. After 48 hours 2099 

exposure to the Pasteuria spores, the experimental Daphnia were transferred into 2100 

fresh media. The infection status of each Daphnia was determined by eye 25 days 2101 

post exposure. 2102 

 2103 
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Using the results of these infection experiments for each host-parasite combination, 2104 

we calculated transmission rate (𝛽, L spore-1 day-1) using the following equation: 2105 

𝛽 = − 
1

𝑍0 · 𝑡
· ln (

𝑆𝑡

𝑆0
) 

(1) 

where 𝑍0 is the starting density of spores, 𝑡 is the duration of the trial exposure, 𝑆𝑡 is 2106 

the density of uninfected hosts at the end of the exposure and 𝑆0 is the initial density 2107 

of hosts.  2108 

 2109 

3.7.3 Dissection of host-parasite (co)evolution 2110 

By combining transmission rate data from the time shift experiment with relative 2111 

genotype frequency data from the pond experiment, we dissected the various host 2112 

and parasite contributions towards the evolution of transmission rate.  2113 

 2114 

To achieve this, we calculated the change in parasite transmission rate over the 2115 

course of the season and its three contributory components (eq. 2): change in 2116 

parasite transmission rate due to evolution of host resistance to the ancestral 2117 

parasite (hereafter, change in host resistance, ∆𝛽ℎ), change in parasite transmission 2118 

rate due to evolution of parasite infectivity to a set of reference hosts (hereafter, 2119 

change in parasite infectivity, ∆βp), change in parasite transmission rate due to 2120 

evolution of parasite infectivity to the evolved host population (non-additive 2121 

coevolution and hereafter, coevolution, ∆𝛽ℎ𝑝). 2122 

 ∆𝛽 = ∆𝛽ℎ + ∆𝛽𝑝 + ∆𝛽ℎ𝑝 (2) 

We used two essential pieces of information to determine how host evolution, 2123 

parasite evolution and coevolution contributed to changes in overall transmission 2124 

rate for each population: the change in the relative frequency of each host genotype 2125 

within each population during the course of the pond experiment; and the difference 2126 

in the susceptibility of these genotypes relative to the ancestral parasite mix used to 2127 

seed the populations and the parasite samples collected at the end of the epidemic.  2128 

First, we calculated the relative frequency of each genotype within each pond at the 2129 

end of the epidemic. This was done as follows:  2130 

 �̅�ℎ,𝑡 = 𝑃ℎ,𝑡 · 𝑛ℎ (3) 

where 𝑃ℎ,𝑡 is the frequency of host genotype ℎ at time 𝑡, and 𝑛ℎ is the total number 2131 

of host genotypes used to seed the population (in this case, nh = 12). The 2132 

coevolution experiment started at 𝑡 = 0, when all hosts had a genotype frequency of 2133 

1, and ended at 𝑡 = 1.  2134 
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 2135 

Then for each population, we calculated the overall change in mean transmission 2136 

rate. This was done by determining the change in parasite transmission rate for each 2137 

host genotype between the end of epidemic parasite samples and the ancestral 2138 

parasite sample, and weighting by the change in host genotype frequency to 2139 

calculate a mean for each population: 2140 

∆𝛽 =  
1

𝑛ℎ
· ∑ ((𝛽ℎ,𝑡=1 · �̅�ℎ,𝑡=1) − 𝛽ℎ,𝑡=0) ℎ   (4) 2141 

where 𝛽ℎ,𝑡 is the transmission rate of each host genotype. 2142 

 2143 

Next, we calculated the mean change in transmission rate due to population-level 2144 

evolution of host resistance to the ancestral parasite (∆𝛽ℎ) by calculating the mean 2145 

resistance to the ancestral parasite weighted by the change in host relative genotype 2146 

frequency for each population (eq. 5) and the mean change in transmission rate due 2147 

to parasite evolution in the capacity to infect the ancestral host population (∆𝛽𝑝, eq. 2148 

6). 2149 

 
∆𝛽𝑝 =  

1

𝑛ℎ
· ∑(𝛽ℎ,𝑡=1 − 𝛽ℎ,𝑡=0) 

ℎ

 
(6) 

 2150 

Finally, we calculated mean change in transmission rate due to host-parasite 2151 

coevolution (i.e., the non-additive component of disease evolution, ∆𝛽ℎ𝑝) using eq. 2152 

2. 2153 

 2154 

To visualise how changes in host resistance, parasite infectivity and coevolution 2155 

covaried, we made bivariate plots of ∆𝛽ℎ, ∆𝛽𝑝 and ∆𝛽ℎ𝑝 using vectors. 2156 

 2157 

3.7.4 Quantifying ecological variation among ponds 2158 

We calculated mean values (and also variance for temperature) for each of the 10 2159 

ecological variables over the early half of the epidemic season (over twelve sampling 2160 

dates; Julian days 106-200). Initially, we tested the effects of mixing treatment and 2161 

then fitted separate linear models to examine the relationships between these ten 2162 

variables and each of ∆𝛽ℎ, ∆𝛽𝑝 and ∆𝛽ℎ𝑝; we evaluated the statistical significance of 2163 

these relationships after applying a sequential Holm-Bonferroni adjustment for 2164 

multiple comparisons (Holm, 1979). Next, we conducted a Principal Components 2165 

 
∆𝛽ℎ =  

1

𝑛ℎ
· ∑((𝛽ℎ,𝑡=0 · �̅�ℎ,𝑡=1) − 𝛽ℎ,𝑡=0) 

ℎ

 
(5) 
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Analysis (using the R function princomp (R Core Team, 2019)) on the ten biotic and 2166 

abiotic environmental variables to generate a multivariate measure of ecological 2167 

variation across the pond populations (Fig. S3.1). We identified the first four principal 2168 

components as the minimum number of principal components necessary for 2169 

explaining over 80% of the combined variation, following standard practice (Brereton 2170 

& Lloyd, 2016), and used these in subsequent analyses. For outlier detection, we 2171 

calculated the squared Mahalanobian distances of each population from the mean 2172 

and compared these values to the critical threshold for Mahalanobis’ distance based 2173 

on a 2 distribution, with a critical  value of 0.05. We found that all populations were 2174 

below the threshold value for outlier detection and thus all of populations were 2175 

retained. 2176 

 2177 

3.7.5 Testing for associations between ecological variation and 2178 

(co)evolutionary trajectories 2179 

We conducted two separate analyses to test for relationships between variation in 2180 

disease coevolutionary trajectories and wider ecological variation. First, we tested 2181 

whether pairwise differences in ecological conditions among populations were 2182 

associated with pairwise differences in disease coevolutionary trajectories. We 2183 

calculated population differences in ecological conditions (𝛿𝑒𝑐𝑜), made up of the first 2184 

four principal components (over 80% of combined variation), using the Mahalanobian 2185 

distances between all of the possible pairwise comparisons of populations and the 2186 

R package StatMatch v1.3.0 (D’Orazio, 2019). We then calculated the overall 2187 

multivariate distances for net disease coevolution (𝛿𝑐𝑜𝑒𝑣𝑜), i.e., differences in change 2188 

in parasite transmission rates as a composite for differences across three 2189 

dimensions: host evolution, parasite evolution and coevolution. We then tested for a 2190 

relationship between 𝛿𝑒𝑐𝑜 and 𝛿𝑐𝑜𝑒𝑣𝑜 using a Mantel test fitted using the ecodist 2191 

package (Goslee & Urban, 2007). 2192 

 2193 

Second, we used Structural equation modelling (SEM) to dissect the various 2194 

relationships between ecological variation, epidemic size and the components of 2195 

coevolution. This was done using the piecewiseSEM package v2.0.2 in R (Lefcheck, 2196 

2016).  SEM allows the evaluation of different causal pathways between variables, 2197 

and therefore can evaluate support for alternative mediating variables that produce 2198 

similar associations. We specified two global SEMs (see Fig. S3.2, Table S3.3) with 2199 

the following variables; mixing, ecological variation (PC1 of the previously described 2200 

PCA), epidemic size, change in host resistance (∆𝛽ℎ), change in parasite infectivity 2201 
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(∆𝛽𝑝) and coevolution (∆𝛽ℎ𝑝). The hypothetical causal relationships between the 2202 

variables included in these SEMs are outlined below: 2203 

 2204 

Mixing: Mixing was an experimental treatment whereby six of the sixteen populations 2205 

were stirred on a weekly basis. We predicted that this would have a significant effect 2206 

on the ecological variables. For example, our previous work has shown that mixing 2207 

significantly changes Daphnia host population densities and affects epidemic size 2208 

(Auld & Brand, 2017b). 2209 

 2210 

Ecology: Ecological variation was represented by the first principal component 2211 

(PC1), which explained 36.0 % of the overall variation, extracted from the PCA of the 2212 

multiple environmental variables measured during the pond experiment. PC1 was 2213 

mainly associated with low mean temperature, high chlorophyll concentrations and 2214 

high predator density. The positive effects of temperature and negative effects of 2215 

predation on parasite prevalence have been well documented in Daphnia disease 2216 

systems (Auld, Wilson, et al., 2014; Auld & Brand, 2017b; Duffy et al., 2012; Shocket 2217 

et al., 2018). Therefore, we predicted that our measure of ecological variation would 2218 

be negatively associated with epidemic size and would be associated with the 2219 

components of transmission rate evolution (changes in host resistance, parasite 2220 

infectivity and coevolution). 2221 

 2222 

Epidemic size: Epidemic size (integrated parasite prevalence, calculated by 2223 

integrating the area under the time series of empirically determined prevalence for 2224 

each mesocosm) could potentially be both a cause and a consequence of host 2225 

evolution, parasite evolution and coevolution. There is ample evidence from previous 2226 

studies that epidemics exert parasite-mediated selection and can cause the 2227 

evolution of host resistance (Auld et al., 2013; Duncan et al., 2006; Laine, 2006; 2228 

Lohse et al., 2006), and that rapid host evolution of resistance can bring epidemics 2229 

to an end (Duffy & Sivars-Becker, 2007). Given the bi-directional relationship 2230 

between these variables we expected that there would be covariation between 2231 

epidemic size and changes in host resistance, parasite infectivity and coevolution, 2232 

but made no prediction about the direction of causality. 2233 

 2234 

Change in host resistance (∆𝛽ℎ), parasite infectivity (∆𝛽𝑝), and coevolution (∆𝛽ℎ𝑝): 2235 

We developed two SEMs to test between two hypothetical relationships between 2236 

epidemic size, ecology and different aspects of disease evolution. Hypothesis one is 2237 
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that ecology directly drives both epidemic size and all three components of disease 2238 

evolution (Fig. S3.2). Hypothesis two is that ecology affects epidemic size, host 2239 

evolution of resistance and parasite evolution of infectivity, but that decreases in host 2240 

resistance (i.e., increased transmission rate) should negatively affect coevolution 2241 

and increases in parasite infectivity should positively affect coevolution. Following 2242 

our prediction that the wider environment has a greater impact on hosts compared 2243 

to parasites, we expected that there would be asymmetry in the strength of the 2244 

relationship between these different components of evolution with coevolution, such 2245 

that hosts significantly affect coevolution more than parasites.  2246 

 2247 

After fitting the two SEMs, we tested which provided the superior fit using Bayesian 2248 

Information Criterion (BIC). We chose BIC over Akaike’s Information Criterion (AIC) 2249 

and AIC corrected for small sample sizes (AICc) because BIC has been shown to 2250 

better predict model performance when there is unobserved heterogeneity in the 2251 

data (Brewer et al., 2016), which seems highly likely in both our genotype frequency 2252 

and ecological variable data. We then conducted Fisher’s C tests (Shipley’s tests of 2253 

directed separation (Shipley, 2000) on the best-fitting model to discover potentially 2254 

relevant relationships that had been excluded from the model. Finally, in order to 2255 

achieve greater statistical power to test the significance of each of the proposed 2256 

relationships, we divided the best performing global SEM into two submodels. It 2257 

should be noted that the parameter estimates for each of the unidirectional 2258 

relationships in the submodels was identical to the corresponding parameter 2259 

estimates in the global model.  2260 

 2261 

Data availability: All data is available on dryad doi:10.5061/dryad.qv9s4mwd6.  2262 

 2263 

Code availability: All companion code is available on Dryad: 2264 

doi:10.5061/dryad.qv9s4mwd6. As we are actively researching these datasets, we 2265 

kindly ask that researchers contact us if they are planning to use the data for reasons 2266 

other than reproducing the findings of our paper. 2267 

 2268 
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3.9 Supplementary information 2313 

 2314 

Supplementary Figure S3.1. The composition of principal components in terms of 2315 

the environmental factors observed. The percentage of overall variance explained 2316 

by each principal component is shown in brackets. Population environments are 2317 

represented by the points and these have been coloured according to the mixing 2318 

treatment, including mixed (red) and unmixed (blue) populations. Variable loadings 2319 

(i.e. the composition of principal components in terms of the environmental factors 2320 

observed) are indicated by the green arrows for the following abiotic factors; 2321 

temperature (mean; temp.mean, variance; temp.var (°C)), pH, total dissolved salts 2322 

(total.salts (mg.L-1)), dissolved oxygen (oxygen (%)), water depth (m) and biotic 2323 

factors; chlorophyll (µg. L-1), nitrate ( mg.L-1), adult host density (host.density, (L-1)) 2324 

and predators density (predators.density, (L-1)). 2325 
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Supplementary Figure S3.2. Path diagram representing structural equation models 

for the effects of mixing and ecology on epidemic size and changes in host resistance 

(∆𝛽ℎ), parasite infectivity (∆𝛽𝑝) and coevolution (∆𝛽ℎ𝑝). Large boxes represent 

measured variables. Arrows represent unidirectional (single arrowhead) or 

bidirectional (double arrowheads) relationships among variables. There are two 

different versions of the model and either relationships are specified in both (solid 

arrows) or only one of the model versions (dashed arrows). In the first model, there 

is a relationship between change in host resistance and coevolution, whereas in the 

second model there is a relationship between the environment and coevolution 

(partially transparent arrow). 

  2326 
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Supplementary table S3.1. Effect of mixing treatment on each of the ten biotic and 

abiotic ecological variables. The p-value in bold is significant. 

  

Mean in group 

mixed 

Mean in group 

unmixed 
DF t P 

Chlorophyll 28.95 23.10 5.37 1.56 0.17 

Water depth 0.43 0.41 10.48 0.30 0.77 

Diss. Oxygen 106.98 99.97 7.76 1.82 0.11 

Nitrate 170.08 158.91 10.11 0.57 0.58 

pH 8.70 8.34 12.73 2.09 0.06 

Predator density 0.09 0.06 8.72 1.37 0.21 

Adult density 106.25 194.45 10.57 -2.94 0.01 

Total diss. salt 61.33 57.65 9.63 0.98 0.35 

Temp (mean) 13.66 14.30 6.26 -2.07 0.08 

Temp (var) 8.36 8.29 13.24 0.16 0.87 

 2327 

 2328 

 2329 

 2330 

 2331 

 2332 

 2333 

 2334 

 2335 

 2336 

 2337 

  2338 
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Supplementary table S3.2. General linear models testing the univariate 

relationships between each of the ten ecological variables and host evolution of 

resistance, parasite evolution of infectivity and host-parasite coevolution. P-values 

in bold remain significant following a sequential Holm-Bonferroni adjustment32 for 

multiple testing. 

  Intercept (s.e.) Coefficient (s.e.) P 

∆𝛽ℎ 
     

Chlorophyll -6.93E-07 1.76E-07 2.56E-08 6.79E-09 0.0020 

Water depth -1.62E-07 1.75E-07 2.80E-07 3.97E-07 0.4923 

Oxygen -2.33E-06 5.65E-07 2.23E-08 5.50E-09 0.0012 

Nitrate -2.83E-07 2.68E-07 1.46E-09 1.61E-09 0.3792 

pH -3.39E-06 9.63E-07 3.95E-07 1.13E-07 0.0037 

Predator density -2.40E-07 1.15E-07 2.75E-06 1.45E-06 0.0797 

Adult density 2.29E-07 1.24E-07 -1.70E-09 7.08E-10 0.0309 

Total diss. salt -2.84E-07 5.01E-07 4.05E-09 8.44E-09 0.6383 

Temp (mean) 3.95E-06 9.61E-07 -2.84E-07 6.83E-08 0.0010 

Temp (var) -3.56E-07 5.47E-07 3.74E-08 6.54E-08 0.5767 

      
∆𝛽𝑝 

     
Chlorophyll 2.37E-07 1.81E-07 -1.77E-09 6.95E-09 0.8027 

Water depth 3.73E-07 1.18E-07 -4.32E-07 2.68E-07 0.1296 

Oxygen 1.33E-07 3.36E-07 5.77E-10 5.86E-09 0.9229 

Nitrate 1.92E-07 1.99E-07 5.46E-12 1.20E-09 0.9964 

pH 5.24E-07 9.46E-07 -3.91E-08 1.11E-07 0.7308 

Predator density 2.63E-07 9.09E-08 -9.91E-07 1.15E-06 0.4019 

Adult density 1.56E-07 1.06E-07 2.27E-10 6.04E-10 0.7132 

Total diss. salt 7.20E-07 3.36E-07 -8.93E-09 5.66E-09 0.1372 

Temp (mean) 1.51E-09 1.04E-06 1.36E-08 7.37E-08 0.8562 

Temp (var) -4.13E-07 3.65E-07 7.28E-08 4.36E-08 0.1174 

      
∆𝛽ℎ𝑝 

     
Chlorophyll 5.92E-07 3.05E-07 -2.00E-08 1.17E-08 0.1101 

Water depth 4.05E-07 2.20E-07 -7.67E-07 4.99E-07 0.1468 

Oxygen 1.76E-06 1.02E-06 -1.63E-08 9.93E-09 0.1233 

Nitrate 2.82E-07 3.65E-07 1.21E-09 2.19E-09 0.5904 
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pH 3.09E-06 1.56E-06 3.88E-07 1.84E-07 0.0748 

Predator density 2.36E-07 1.67E-07 -2.12E-06 2.10E-06 0.3293 

Adult density -1.57E-07 1.84E-07 1.50E-09 1.05E-09 0.1741 

Total diss. salt 1.28E-06 5.94E-07 -2.03E-08 9.99E-09 0.0617 

Temp (mean) -3.21E-06 1.71E-06 2.34E-07 1.21E-07 0.0738 

Temp (var) -1.49E-07 7.36E-07 2.82E-08 

8.81sE-

08 0.7533 

      
 2339 

  2340 
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4. The effect of host population genetic diversity on variation 2341 

in metrics of parasite infection success 2342 

This chapter is the most up to date version of the pre-print which has been published 2343 

on BioRxiv. 2344 

All authors discussed the results and contributed to the final manuscript. Sam 2345 

Paplauskas performed the data collection, analysed the data and wrote the 2346 

manuscript. Dr Brad Duthie and Professor Matthew Tinsley contributed to the final 2347 

version of the manuscript and supervised the project. 2348 

  2349 
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4.1 Abstract 2350 

Conventional wisdom suggests that populations with lower levels of genetic 2351 

diversity are at a greater risk of the more harmful effects of disease. However, 2352 

previous attempts to qualify this proposition have focused on measuring the 2353 

mean, rather than the variability, in metrics of parasite infection success. 2354 

Since the ability of host population genetic diversity to limit the spread of 2355 

disease requires some specificity between hosts and parasites, and the 2356 

benefits of host population genetic diversity in resistance to infection may 2357 

depend on the respective parasite population genetic diversity, we propose a 2358 

diversity-uncertainty model which predicts that the mean and variability in 2359 

parasite success depend on a combination of parasite host range and 2360 

parasite population genetic diversity. By re-analyzing a dataset combining 48 2361 

studies collected by previous meta-analyses, we show that the effect of host 2362 

population genetic diversity reduces the mean infection success of single-2363 

host, but not host generalist, parasites. We find evidence for our original 2364 

hypothesis that the variability of parasite success depends on a combination 2365 

of host population genetic diversity, parasite population genetic diversity and 2366 

host range. Together, these results challenge conventional wisdom and have 2367 

important implications for how genetic diversity can be better managed in host 2368 

populations.  2369 
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4.2 Introduction 2370 

It is commonly believed that host populations with lower genetic diversity are at a 2371 

greater risk of experiencing higher parasite success (i.e. disease (King & Lively, 2372 

2012)). This refers to the population-level prevalence (proportion of infected hosts), 2373 

virulence (parasite-induced loss of fitness) or parasite load (average parasites per 2374 

host (Hamilton, 1987; O’Brien & Evermann, 1988; Sherman et al., 1988)). 2375 

 2376 

Previous studies of the generality of this proposed ‘conventional wisdom’ (King & 2377 

Lively, 2012), have often focused on measuring the mean, rather than the variability, 2378 

of parasite success (Ekroth et al., 2019; Gibson & Nguyen, 2021). This is surprising, 2379 

considering the importance of parasitic extremes, in terms of epidemics and whether 2380 

they cause mass extinction (Alan Pounds et al., 2006; De Castro & Bolker, 2004), 2381 

the predictably of recurrent bouts of disease across years and the repeatability of 2382 

disease experiments in general. As a result, the relationship between host diversity 2383 

and variability in parasite success is poorly understood (Gibson, 2022). However, it 2384 

is central to our ability to protect against future emerging diseases (Altizer et al., 2385 

2006). 2386 

 2387 

The implications of host community, species or genetic diversity on infectious 2388 

diseases is often referred to as ‘disease dilution’ (Johnson et al., 2015; Keesing et 2389 

al., 2006, 2010; Keesing & Ostfeld, 2021; Ostfeld & Keesing, 2012), the diversity-2390 

disease hypothesis (Altermatt & Ebert, 2008a; Johnson et al., 2012; Mihaljevic et al., 2391 

2014) or the monoculture effect (Browning & Frey, 1969; Elton, 1958; Garrett & 2392 

Mundt, 1999; Leonard, 1969; van der Plank, 1963). This can be caused by an 2393 

increase in individual host susceptibility (Coltman et al., 1999), or a variety of 2394 

population-level effects such as reducing the rate of encounter between susceptible 2395 

and infectious individuals (encounter reduction), reducing the probability of 2396 

transmission given an encounter (transmission reduction), decreasing the density of 2397 

susceptible individuals (susceptible host regulation), increasing the recovery rate 2398 

(recovery augmentation), or increasing the death rate of infected individuals (infected 2399 

host mortality) (for a review, see (Keesing et al., 2006)). 2400 

 2401 

Although the exact mechanism is unclear, the negative relationship between host 2402 

population genetic diversity and disease spread is often attributed to encounter 2403 

reduction (Anderson et al., 1986). Specifically, assuming that there is some level of 2404 

matching (or genetic specificity (Schmid-Hempel & Ebert, 2003)) required for a 2405 
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successful infection to occur (sensu matching alleles model [MAM] (Agrawal & 2406 

Lively, 2002)), there should be a lower chance of a parasite genotype encountering 2407 

a susceptible host genotype as it spreads through a more diverse host population. 2408 

Since the strength of genetic specificity varies across different host-parasite systems 2409 

(Agrawal & Lively, 2002), we might expect that the effect of host population diversity 2410 

on parasite success depends on the level of specificity for infection. 2411 

 2412 

In theory, the effects of host population diversity on parasite success may also 2413 

depend on the level of parasite diversity (Boomsma, 1996; Van Baalen & Beekman, 2414 

2006). For example, if there is a high level of genetic specificity for infection (sensu 2415 

MAM), then we might expect host populations composed of a single genotype to be 2416 

entirely susceptible to a single parasite genotype, which is much more likely to occur 2417 

in a population with a high level of parasite diversity (Boomsma, 1996; Van Baalen 2418 

& Beekman, 2006). One empirical study in a Daphnia host-parasite system found 2419 

that the benefits of host genetic diversity for resistance to infection were reliant on a 2420 

high level of parasite diversity (Ganz & Ebert, 2010). 2421 

 2422 

Therefore, if we assume that there is a high level of genetic specificity for infection 2423 

(sensu MAM) and both host and parasite populations are characterized by either 2424 

high or low levels of genetic diversity, we can predict the following patterns for both 2425 

the mean and variability in parasite success (Fig. 4.1): 2426 

 2427 

A) Low host x low parasite population genetic diversity (Fig. 4.1A): We predict that 2428 

there will be a high level of variability in parasite success, due to the host population 2429 

being composed entirely of susceptible, or resistant, host genotypes, and an 2430 

intermediate level of mean parasite success (determined by the overall frequency of 2431 

resistant cf. susceptible populations). 2432 

 2433 

B) High host x low parasite population genetic diversity (Fig. 4.1B): We predict that 2434 

there will be a low level of both mean parasite success and variability in parasite 2435 

success, due to the consistency of hosts to resist infection through a reduced 2436 

encounter rate with matching parasite genotypes. 2437 

 2438 

C) Low host x high parasite population genetic diversity (Fig. 4.1C): We predict that 2439 

there will be a high level of mean parasite success and a low level of variability in 2440 
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parasite success, due to the consistency of parasite transmission through an 2441 

enhanced encounter rate with matching host genotypes. 2442 

 2443 

D) High host x high parasite population genetic diversity (Fig. 4.1D): We predict that 2444 

there will be an intermediate level of both mean parasite success and variability in 2445 

parasite success, due to the diverging effects of host and parasite genetic diversity 2446 

leading to an inconsistent encounter rate between matching host and parasite 2447 

genotypes. 2448 

 2449 

Collectively, these predictions form our ‘diversity-uncertainty’ model for predicting 2450 

the mean and variability of parasite success across populations with different levels 2451 

of host and parasite diversity. This builds on previous work (Bensch et al., 2021), 2452 

which focused on the relationship between population diversity and variability in 2453 

parasite-induced host mortality and pathogen abundance for only three out of the 2454 

four possible combinations in Figure 4.1, without also acknowledging the influence 2455 

of the genetic specificity for infection on these hypotheses. 2456 

 2457 

To test our diversity-uncertainty model, we examine the relationship between host 2458 

population genetic diversity, parasite population genetic diversity and variability in 2459 

parasite success for different levels of a proxy for genetic specificity using meta-2460 

analysis. After confirming the results of previous studies (Ekroth et al., 2019; Gibson 2461 

& Nguyen, 2021), which found a significant difference in mean parasite success 2462 

between various host populations with high versus low genetic diversity, we then 2463 

extend their analysis to a study of variability using a suite of different moderator 2464 

variables. 2465 

 2466 

In particular, we compare the difference in the variability of parasite success between 2467 

host populations with high versus low genetic diversity using a combination of host 2468 

range and parasite population genetic diversity variables. Since the underlying 2469 

genetic model of infection is known for only a small number of host-parasite systems 2470 

(e.g. Daphnia-Pasteuria (Pepijn et al, 2013)), we instead used parasite host range 2471 

as a proxy for the genetic specificity of each host-parasite system. We characterised 2472 

parasites with a host range of one species by a matching-alleles model (Agrawal & 2473 

Lively, 2002) and parasites with a host range of more than one species by a gene-2474 

for-gene model of infection genetics (Agrawal & Lively, 2002). The reasoning behind 2475 

this was that tightly knit host-parasite coevolution (sensu a matching-alleles model 2476 
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of infection genetics) would be more likely for highly specific interactions between 2477 

host and parasite genotypes (Schmid-Hempel & Ebert, 2003), which might be 2478 

expected for specialist, rather than generalist parasites. On the other hand, we do 2479 

not make any predictions about the mean level of, or level of variability in, parasite 2480 

success for systems with a low genetic specificity for infection. 2481 

 2482 

Overall, we find that the relationship between host genetic diversity and both the 2483 

mean level of, and level of variability in, parasite success depends on a combination 2484 

of host range and parasite genetic diversity. 2485 

 2486 
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Figure 4.1. A hypothetical ‘Epidemic Diversity’ model for the combined relationship 

between host and parasite population genetic diversity and either the mean (µ) or 

the variability (σ) in parasite success. There are four hypothetical populations for 

each combination of host and parasite population genetic diversity (dashed 

circles). The level of population genetic diversity is indicated by the number of 

unique host and parasite genotypes (large and small shapes respectively) and is 
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the same in each replicate population. The colour of hosts indicates their infection 

status, such that susceptible hosts are white and infected hosts are black, whereas 

the parasite is always the same colour (also black). Parasite transmission can only 

occur between matching host and parasite genotypes (shapes) and is indicated 

by the red arrows. The resulting frequency distributions of parasite infection 

success for each set of replicate populations is shown at the bottom of each plot. 

Notably, this hypothetical model only applies for host--parasite systems that have 

a high level of genetic specificity for infection (i.e. matching-allele versus gene-for-

gene infection genetics (Agrawal & Lively, 2002)). 

 

 2487 

4.3 Methods 2488 

4.3.1 Summary 2489 

We combined the data from two previous meta-analyses (Ekroth et al., 2019; Gibson 2490 

& Nguyen, 2021) that used the standardised mean difference (SMD) to calculate the 2491 

significance of the relationship between host genetic diversity and metrics of mean 2492 

parasite infection success. These data were mainly from studies where the metrics 2493 

of parasite infection success were measured from replicate host populations that 2494 

were already classified qualitatively as having either a ‘high’ or ‘low’ level of genetic 2495 

diversity (27 out a total of 48 independent studies), including studies of replicate host 2496 

populations with a high versus low level of inbreeding (e.g. Baer & Schmid-Hempel, 2497 

1999), different combinations of host genotypes (e.g. Altermatt & Ebert, 2008) or 2498 

comparisons between wild host populations exposed to different selection regimes 2499 

(e.g. a population bottleneck, random genetic drift, e.g. Hale & Briskie, 2007). 2500 

However, there were some studies that measured the relationship between metrics 2501 

of parasite infection success and a continuous measure of host population genetic 2502 

diversity (for the absence of any significant correlation between metrics of mean 2503 

parasite infection success and host population genetic diversity, involving all of the 2504 

studies from this subset of data, see Gibson & Nguyen, 2021), and therefore these 2505 

data were binned into ‘high’ and ‘low’ categories (as mentioned above). We used the 2506 

data combined from the two previous meta-analyses (Ekroth et al., 2019; Gibson & 2507 

Nguyen, 2021) for further study of the factors influencing mean parasite success, 2508 

then we assessed how host population genetic diversity influenced variation in 2509 

parasite success by calculating the log coefficient of variation ratio (lnCVR). This 2510 

variation was quantified between experimental replicates in a laboratory 2511 
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environment, between multiple natural host populations with similar genetic diversity, 2512 

or sometimes between repeated measures of single populations along a time series. 2513 

 2514 

4.3.2 Data collection 2515 

The data collection for each comparison of a group of high versus low genetic 2516 

diversity populations, which was later used in calculating effect sizes, involved five 2517 

main steps (Fig. 4.1): 2518 

 2519 

1) First, we combined the list of studies from (Gibson & Nguyen, 2021) and (Ekroth 2520 

et al., 2019), removed any duplicate studies and added the data used to calculate 2521 

the effect size, SMD, and its sampling variance in the original studies (mean, 2522 

standard deviation, sample size), the metric of parasite success and the unique 2523 

study, experiment and replicate identifiers used to account for the non-independence 2524 

of separate effect sizes. We did not use the parasite success data from (Ekroth et 2525 

al., 2019) because the original data extracted from each study was missing from the 2526 

online supplementary material, meaning we were unable to check the data accuracy 2527 

during validation (step 3); for these studies we extracted the replicate or population 2528 

summaries from the original papers ourselves after step 3 and recalculated the 2529 

mean, standard deviation, sample size etc.. 2530 

 2531 

The data used to calculate Fisher’s z (an effect size for the difference between two 2532 

correlation coefficients) for the observational field studies from (Gibson & Nguyen, 2533 

2021), was not in the correct format to calculate either SMD or lnCVR. Therefore, we 2534 

did not include this information (from multiple populations with a continuous measure 2535 

of genetic diversity) at this stage and instead extracted the data from the original 2536 

publications ourselves and recalculated it during steps 4 and 5. Also, we excluded 2537 

any studies on plants (wild or agricultural) because a more detailed analysis of the 2538 

plant literature would require a separate review.  2539 

 2540 

2) Second, we amended the inclusion criteria used in the original meta-analyses 2541 

(Ekroth et al., 2019; Gibson & Nguyen, 2021) (Table S4.1) and removed any studies, 2542 

experiments or comparisons which did not meet these criteria: 2543 

 2544 

(i) ‘Parasite success’, which we define as the ability of a parasite to spread among 2545 

hosts (transmission rate, infection rate, prevalence), replicate on / within hosts 2546 
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(macro / microparasite load, disease severity) or kill hosts (virulence i.e. host survival 2547 

/ mortality rate) was measured among replicate populations across time or space. 2548 

 2549 

(ii) Parasite success data was collected from two or more host populations with a 2550 

difference in genetic diversity assessed by metrics such as: individual inbreeding 2551 

status (inbred versus outbred), genotypic diversity (high versus low) or 2552 

heterozygosity (high vs low). 2553 

 2554 

(iii) Genetic diversity was quantified at the level of the host population, rather than 2555 

for community-level diversity. 2556 

 2557 

(iv) The study focused on an animal (or bacterial) host species. 2558 

 2559 

(v) The study does not re-analyze the data from a previously published study. 2560 

 2561 

(vi) The parasite success data was not replicated simply by using an alternate way 2562 

of measuring host population diversity.  2563 

 2564 

(vii) Figures required to extract parasite success data were clearly legible.  2565 

 2566 

3) Third, we checked the accuracy of the data from the excel spreadsheets used to 2567 

calculate the summary of the parasite data for each group of host populations with 2568 

either high or low genetic diversity from the online data supplied by one of the 2569 

previous meta-analyses (Gibson & Nguyen, 2021) and corrected these in the fourth 2570 

step of the data collection before including them in our analysis. The different types 2571 

of error made by the previous meta-analysis included (i) 27 comparisons that did not 2572 

match the published raw data (available in the main text or online or in the 2573 

supplementary material of each publication), (ii) 32 comparisons where effect sizes 2574 

were calculated wrong and (iii) 10 comparisons which had not been transferred into 2575 

the final metadata file correctly. There was one study which we could not check, 2576 

because the original data was sent by personal communication from (King et al., 2577 

2011) to (Gibson & Nguyen, 2021), nevertheless we included it in our analysis. 2578 

 2579 

4) Fourth, for those studies or comparisons we had excluded (due to missing data or 2580 

data errors) we extracted the data from the main text or supplementary files by going 2581 

back to the original publications (we used PlotDigitizer (https://plotdigitizer.com/) to 2582 
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extract the information for any figures). In addition to the comparisons removed in 2583 

the third step of data collection, this also included (i) 26 studies that, despite meeting 2584 

our inclusion criteria, were removed because they were either missing the replicate-2585 

level raw data (Ekroth et al., 2019) or they were observational field studies based on 2586 

multiple populations with a continuous measure of genetic diversity (Gibson & 2587 

Nguyen, 2021) and (ii) additional data for 3 comparisons (Agha et al., 2018; Baer & 2588 

Schmid-Hempel, 2001; Giese & Hedrick, 2003) that were not made in the original 2589 

analysis by (Gibson & Nguyen, 2021). 2590 

 2591 

We also collected information on 10 different moderators (see Table 1) by 2592 

standardizing or recoding existing moderator variables used by (Gibson & Nguyen, 2593 

2021), including host range, parasite diversity, metric of parasite success, host 2594 

species, parasite type, source of host genetic diversity, scale of host diversity, mode 2595 

of host reproduction, whether the parasite induces host mortality and whether the 2596 

study was performed in a laboratory environment. Parasite diversity was not 2597 

quantified as a continuous variable in the original studies, nor was it examined as 2598 

part of the original experiment in most cases. Therefore, we binned parasite diversity 2599 

into ‘high’ or ‘low’ groups depending on the following reasoning; if the isolate was 2600 

collected from a natural population for a lab study, if the data was from an 2601 

observational or experimental field study, or if more than one genotype had been 2602 

identified (but this only applied to a small number of studies); low parasite diversity 2603 

was specified if it was a laboratory strain, or only one genotype had been identified 2604 

(but again, this only applied to a small number of studies). Where the information on 2605 

these moderator variables was not already available from the supplementary 2606 

material of (Gibson & Nguyen, 2021) and was not available in the published article, 2607 

we performed an online search to determine characteristics. 2608 

 2609 

5) Fifth, we calculated the mean, standard deviation and sample size for each 2610 

comparison of high versus low genetic diversity groups of host populations for the 2611 

data we extracted in the fourth step of data collection (Gibson & Nguyen, 2021). For 2612 

certain studies, we calculated a pooled measure of the mean metric of parasite 2613 

infection success for each group of high and low genetic diversity host populations, 2614 

along with a pooled standard deviation and a pooled sample size. This included (i) 2615 

studies based on multiple populations with one or more continuous measures of 2616 

genetic diversity (Dagan et al., 2013; Dionne et al., 2009; Ellison et al., 2011; S. G. 2617 

Field et al., 2007; Giese & Hedrick, 2003; King et al., 2011; Kyle et al., 2014; Loiseau 2618 
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et al., 2011; Meagher, 1999; Neumann & Moritz, 2000; Parsche & Lattorff, 2018; 2619 

Pierce et al., 2014; Puurtinen et al., 2004; Queirós et al., 2016; Rahn et al., 2016; 2620 

Savage et al., 2015; Trouvé et al., 2003; Velavan et al., 2009; Whitehorn et al., 2011, 2621 

2014; Whiteman et al., 2006), for which the most appropriate measure of population-2622 

level genetic diversity was used (e.g. a measure of population-level genetic diversity 2623 

based on Hardy-Weiberg equilibrium) and two separate groups of host and low 2624 

diversity host populations were made with the same number of host populations in 2625 

each group and (ii) studies with multiple groups of either high or low diversity host 2626 

populations that shared the same corresponding (or so-called ‘reference’) group 2627 

(Agha et al., 2018; Schmidt et al., 2011). In addition, host survival was converted into 2628 

host mortality in some studies to reflect our definition of parasite infection success 2629 

(see step two of data collection). Overall, this fifth step of data collection involved 2630 

calculating parasite success data for 130 comparisons. 2631 

 2632 

After finishing all five steps of data collection, there was enough parasite success 2633 

data to calculate both the SMD and lnCVR for 211 non-independent comparisons of 2634 

high versus low genetic diversity groups of host populations. 2635 

 2636 
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Figure 4.2 How data was collected for each comparison of a parasite infection 

success metric between high versus low genetic diversity groups of host populations, 

which was later used in calculating effect sizes. n = number of studies / experiments 

/ comparisons (the multi-level structure of the data make it appear that some sums 

are incorrect). Adapted from the preferred reporting items for systematic reviews and 

meta-analyses (PRIMSA) statement (Page et al., 2021). 

 2637 

4.3.3 Calculation of effect sizes (SMD, lnCVR, lnRR, lnVR) 2638 

We calculated two main effect sizes (standardized mean difference [SMD] and log 2639 

coefficient of variation ratio [lnCVR]) and (to test the robustness of our results) two 2640 

additional effects sizes (log response ratio [lnRR] and log variability ratio [lnVR]). All 2641 
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effect size calculations and subsequent calculations were performed in R v4.3.2 (R 2642 

Core Team, 2023). 2643 

 2644 

Main effect sizes - We chose SMD and lnCVR as our main effects sizes because 2645 

they compare the difference in either the mean or variability of two groups whilst 2646 

accounting for certain factors: (i) SMD measures the mean difference between two 2647 

groups (high versus low genetic diversity) in terms of standard deviations (Borenstein 2648 

et al., 2009; Field & Gillett, 2010), so it can be used to compare metrics measured 2649 

on very different scales (prevalence, load and virulence) (Higgins et al., 2024); it also 2650 

corrects for small sample sizes, which is a common feature of ecological studies 2651 

(Jennions, 2003). (ii) lnCVR measures the ratio of variability between two groups 2652 

adjusted for the size of the group means (Nakagawa et al., 2015) and as a result, 2653 

accounts for the possibility that the magnitude of the variability may scale with the 2654 

mean, as is the case for many types of count data (such as parasite load) that follow 2655 

a Poisson distribution. 2656 

 2657 

Alternative effect sizes - We calculated lnRR and lnVR as alternatives to our main 2658 

effect sizes, and although they did not account for all of the same factors, these 2659 

provided a separate way of assessing effects of host population genetic variation on 2660 

the mean and variability of parasite success (Nakagawa et al., 2015, 2023). By 2661 

comparing the two sets of effect sizes we assessed the robustness of our results 2662 

(Koricheva & Gurevitch, 2014). 2663 

 2664 

Before calculating our effect sizes, we added a small value (0.001) to the mean and 2665 

standard deviation in parasite success for each pair of control and treatment groups 2666 

to ensure log values were calculated correctly. For consistency, we calculated SMD 2667 

and its sampling variance from the formula derived from the supplementary material 2668 

of (Gibson & Nguyen, 2021), whereas we calculated all variability effect sizes and 2669 

their sampling variances using the code from (Nakagawa et al., 2015). We calculated 2670 

lnRR using the escalc function from the metafor package v4.4.0 (Viechtbauer, 2010). 2671 

To account for comparisons based on shared controls, we calculated the variance-2672 

covariance matrix for each effect size, using the make_VCV_matrix function from the 2673 

metaAidR package v0.0.0.9000 (Lagisz et al., 2024).  2674 

 2675 
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4.3.4 Publication bias 2676 

Before analyzing the data fully, we calculated the overall effect sizes for SMD and 2677 

lnCVR and tested for any potential publication bias using funnel plots and Egger’s 2678 

regression (Sutton, 2009).  2679 

 2680 

Meta-analytic models were fitted to the data using the rma.mv function from the 2681 

metafor package v4.4.0 (Viechtbauer, 2010). We included fixed effects for each type 2682 

of effect size, the variance-covariance matrix of sampling errors, standard random 2683 

effects for study and host genus, and correlated random effects for comparisons 2684 

taken from the same experiment. Standard random effects for study and host genus 2685 

were used to account for the possibility of non-independence between experiments 2686 

originating from the same study and potential correlations between effects from 2687 

closely related host species. Similarly, correlated random effects were used to 2688 

account for potential non-independence of comparisons taken from the same 2689 

experiment (multiple timepoints for a single comparison of control and treatment 2690 

groups, or effect sizes from the same group of populations based on different 2691 

measures of parasite success). 2692 

 2693 

Funnel plots were used to identify whether published effect sizes were evenly 2694 

distributed around model means by examining how outcomes varied as a function of 2695 

their precision (standard error). This was achieved from a visual inspection of these 2696 

plots and statistical evaluation using Egger’s regression. 2697 

 2698 

4.3.5 Meta-analysis of overall data 2699 

To test whether there was a significant difference in the mean parasite success 2700 

(SMD) or variability in parasite success (lnCVR) between host populations with high 2701 

versus low genetic diversity, we fitted mixed effects meta-analytic models. All of the 2702 

models used in this paper were based on the same structure as those used for 2703 

testing the presence of publication bias. 2704 

 2705 

4.3.6 Context dependence 2706 

Partial moderator analysis - To test if the overall effect of host population genetic 2707 

diversity on the mean and variability in parasite success depended on an interaction 2708 

between host range and parasite genetic diversity, we introduced an interaction term 2709 
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for these two moderators in our original meta-analytic models. Therefore, we could 2710 

compare: 2711 

1) High versus low single-host parasite population genetic diversity. 2712 

2) High versus low multi-host parasite population genetic diversity. 2713 

 2714 

We compared the significance level of each individual predictor within the model, as 2715 

well as the contrasts between them using the glht function from the multcomp 2716 

package v1.4.25 (Hothorn et al., 2008). 2717 

 2718 

Full moderator analysis – To test our additional hypotheses (Table 4.1) for the eight 2719 

remaining moderator variables, we modelled each moderator separately with its own 2720 

individual mixed effects model. Before running the models, we removed redundant 2721 

moderator categories with a limited sample size, such as transmission or infection 2722 

rate (versus prevalence) and disease severity (versus load) for the metric of parasite 2723 

success, and prokaryotic (versus vertebrate or invertebrate) for host species.  2724 

We compared the significance level of each individual predictor within the model, as 2725 

well as the contrasts between them using ANOVA with a correction for multiple 2726 

comparisons (Holm’s method). 2727 

 2728 

Table 4.1. Hypotheses for the influence of additional moderator variables on the 2729 

nature of the effect of host population genetic diversity on mean and variability in 2730 

parasite success. 2731 

Moderator Hypothesis 

Metric of 

parasite 

success 

Our study of ‘parasite success’ combined data of several types (eg 

prevalence, virulence, infection load). Using this moderator, we 

tested if the effects of host population genetic diversity differed 

between these different metrics.  

Host type The effect of host population genetic diversity may be influenced by 

the specificity of genetic interactions between host and parasite. 

These genetic interactions are thought to be more specific in 

invertebrates than in vertebrates (Dybdahl et al., 2014), therefore we 

tested for inconsistency of the host population genetic diversity 

effect in these two groups. 

Parasite 

type 

 Microparasites and macroparasites tend to have contrasting 

infection biology: microparasite infections are often short-lived, 

whereas macroparasite infections can be long-lasting due to 
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parasite abilities to circumvent host immune responses (Sorci, 

2014). These differences might drive variation in the impact of host 

population genetic diversity. Therefore, we tested for inconsistency 

of the host population genetic diversity effect in these two groups. 

Source of 

host genetic 

diversity 

Studies typically investigate the impact of host genetic diversity by 

either (i) inbreeding lineages to create a comparison between inbred 

and outbred populations, (ii) using a suite of wildtype genotypes for 

controlled experiments with either low genetic diversity or high 

genetic diversity, or (iii) sampling organisms from the wild from 

populations that have been characterised as having different levels 

of genetic diversity. We used this moderator to test if these different 

sources of genetic diversity affected the influence of host population 

genetic diversity. 

Scale of 

host 

diversity 

Host populations were predetermined as having either high or low 

diversity (discrete) or we separated them into such categories as 

part of our data collection (Fig. 2, step 5) because the authors used 

multiple populations with a continuous measure of diversity. We 

used this moderator to test if this feature of how studies were 

designed had an effect on the influence of host population genetic 

diversity. 

Mode of 

host 

reproduction 

Host species reproduced sexually, asexually or using a combination 

of the two (i.e. facultatively sexual, such as Daphnia). We used this 

moderator to test if these different modes of host reproduction 

affected the influence of host population genetic diversity. 

Host 

mortality? 

The range of parasites studied can be further categorised by 

whether or not infection typically kills the host (which may be proxy 

for virulence). We used this moderator to test if differences in the 

virulent effects of parasitism affected the influence of host population 

genetic diversity. 

Laboratory? We used this moderator to test if the difference in study setting 

(laboratory versus field) affected the influence of host population 

genetic diversity. 
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 2732 

4.3.7 Sensitivity analysis of overall effects 2733 

To test the robustness of our results for the combined (overall) dataset, we performed 2734 

a series of ‘leave-one-out’ sensitivity analyses. This involved the iterative exclusion 2735 

of either one independent comparison (i.e. treatments with shared controls were 2736 

considered grouped together into a single comparison) or study at a time.  2737 

 2738 

4.4 Results 2739 

4.4.1 Absence of publication bias 2740 

Our dataset contained 211 estimates of the effect that changes in host population 2741 

genetic diversity have on parasite success; we assessed this effect on both mean 2742 

parasite success (SMD) and the variability in parasite success (lnCVR). Visual 2743 

inspection of funnel plots for the effect of host population diversity on mean parasite 2744 

success (Fig. 4.3A) and its effect on the variability in parasite success (Fig. 4.3B), 2745 

showed no evidence for publication bias. More stringent evaluation showed that 2746 

there was no correlation between the size of the effects themselves and their 2747 

standard error (Egger’s test for both SMD and lnCVR: R = 0.06, 95% CI [-0.24, 0.37], 2748 

p = 0.67 and R = -0.03, 95% CI [-0.38, 0.32], p = 0.86, respectively). 2749 

 2750 

  

 

Figure 4.3. Testing for publication bias: the distribution of published effect sizes for 

our meta-analysis as a function of their precision (standard error). The x-axis in 

both plots shows effects of an increase in host population genetic diversity (high 
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vs low) on A) the mean difference in parasite success (SMD) and B) the ratio of 

variation in parasite success (lnCVR). Model means and their 95% confidence 

intervals are shown by the dashed black lines. 

 2751 

4.4.2 Evenly distributed animal host and parasite taxa 2752 

Our dataset included a diverse range of hosts and parasites, including 31 unique 2753 

host genera, 60 unique parasite genera and 71 unique combinations of host-parasite 2754 

genera (or 92 unique species combinations).  2755 

 2756 

Most unique host taxa in our dataset were animals (invertebrate and vertebrate 2757 

genera / species), with only two unique non-animal (prokaryotic) host species (Table 2758 

4.2). However, there was an even distribution of the unique parasite taxa across the 2759 

combination of all unique host taxa. 2760 

 2761 

Table 4.2. The number of unique host and parasite combinations and how evenly 2762 

they are distributed across different taxonomic groups. The number of unique 2763 

combinations of host and parasite genera and species is shown by the first two 2764 

numbers separated by a backslash (genera / species) and the number of studies 2765 

they correspond to in parentheses. The total number of studies (58) is higher than 2766 

the total number of studies in our dataset (48), because there were some studies 2767 

with multiple comparisons of unique host and parasite combinations. The colour 2768 

coding is based on the number of unique combinations of host and parasite genera. 2769 

 2770 
 

  Host taxon 
 

    Prokaryote Invertebrate Vertebrate Total 

P
a

ra
s
it
e

 t
a

x
o
n
 Animal 0 / 0 (0) 12 / 14 (6) 10 / 13 (8) 22 / 27 (14) 

Bacteria 0 / 0 (0) 2 / 2 (2) 13 / 16 (5) 15 / 18 (7) 

Fungi 1 / 1 (1) 15 / 18 (16) 1 / 1 (1) 17 / 20 (18) 

Protozoa 0 / 0 (0) 7 / 12 (11) 3 / 3 (2) 10 / 15 (13) 

Virus 1 / 1 (1) 3 / 7 (2) 4 / 4 (4) 7 / 12 (7) 

  Total 1 / 2 (2)  39 / 53 (37) 31 / 37 (20) 71 / 92 (59) 

 2771 
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4.4.3 Host population genetic diversity has an overall negative 2772 

effect on mean parasite success 2773 

Averaging over the whole data set, there was a significant effect of host population 2774 

genetic diversity on mean parasite success (SMD = -0.29, 95% CI = [-0.57, -0.02], n 2775 

= 211; Fig. 4.4A); higher levels of host population genetic diversity were associated 2776 

with lower mean parasite success. However, across the whole data set, there was 2777 

no effect of host population genetic diversity on the variability of parasite success 2778 

(lnCVR = 0.02, 95% CI = [-0.30, 0.35], n = 211; Fig. 4.4B). 2779 

 2780 

In these analyses the residual variation (heterogeneity) in the data for both the 2781 

difference in the mean and the variability of parasite success was high (I2 = 84.0% & 2782 

82.0% respectively). Most of this variation was explained by the effect of study 2783 

(84.0% & 80.7%) and only a small amount was explained by host genus (0.0% & and 2784 

3.3%). 2785 

 2786 

 

Figure 4.4. The overall effect of host population genetic diversity on the mean and 

variability in parasite success. The x-axis in each plot shows the effect that an 

increase in host population genetic diversity had on either A) the mean parasite 

success (SMD) or B) the variability in parasite success (lnCVR). The dashed line 
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indicates an effect size of zero where host population genetic diversity has no 

influence. Model means are shown with 95% confidence intervals (black rectangles 

and prediction intervals (thin black lines). Circles show individual effect sizes and are 

scaled according to the inverse of their standard error. n = sample size of the data 

(the number of effect sizes : the number of studies). The asterisk shows that the model 

means is significantly different from zero (p < 0.05). Forest plot alternatives are shown 

in the online supplementary material (Fig. S4.1). 

 2787 

4.4.4 Impacts of host population genetic variation on parasite 2788 

success differ between multi-host and single-host parasites 2789 

Next, we investigated whether the effect of host population genetic variation on 2790 

parasite success was influenced by two fundamental characteristics of the parasite: 2791 

the host-specificity of the parasite and the likely genetic diversity of the parasite 2792 

population studied.  2793 

 2794 

In contrast to the overall effect of host population genetic diversity on mean parasite 2795 

success, which was significantly negative (see above), separating the effects of host 2796 

population genetic diversity by a combination of parasite population genetic diversity 2797 

and host range showed that the effect of host population genetic diversity on mean 2798 

parasite success was only significant for single host parasites (Fig. 4.5A). In contrast, 2799 

there was no significant evidence of an effect of host-population genetic diversity on 2800 

the mean success of multi-host parasites (Fig. 4.5A). 2801 

 2802 

In addition, although there was no overall effect of host population genetic diversity 2803 

on the variability in parasite success (see above), there was a significant difference 2804 

in the effect of host population genetic diversity on the variability in the success of 2805 

singe-host parasites with low versus high population genetic diversity (glht: p = 0.03; 2806 

Fig. 4.5B). Specifically, increased host population genetic diversity lead to either an 2807 

increase (lnCVR = -0.54, Fig. 4.5B) or decrease (lnCVR = 0.61, Fig. 4.5B) in the 2808 

variability of the success of single-host parasites when their own population genetic 2809 

diversity was either high or low. 2810 

 2811 
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Figure 4.5. The influence of host range and parasite population genetic diversity on the 

effect of host population genetic diversity on the mean and variability in parasite 

success. The x-axis in each plot shows the effect of an increase in host population 

genetic diversity on either A) mean parasite success (SMD) or B) variability in parasite 

success (lnCVR). The dashed line indicates an effect size of zero where there is no 

influence of host population genetic diversity on parasite success. Model means are 

shown with 95% confidence intervals (black rectangles) and prediction intervals (thin 

black lines). Individual effect sizes (circles) are scaled according to the inverse of their 

standard error. n = sample size of the data (the number of effect sizes : the number of 

studies). The significance level of individual model means, as well as any pairwise 

contrasts, is indicated by one (p < 0.05) or three (p < 0.001) asterisks. 

 2812 

4.4.5 Context-dependent effect of host population genetic 2813 

diversity on parasite success 2814 

We investigated how eight other aspects of study design (see hypotheses in Table 2815 

4.1) influenced the effect of host population genetic diversity on the mean and 2816 

variability in parasite success (Fig. 4.6)  2817 

 2818 
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We found that the effect of host population genetic diversity was significantly 2819 

negative on the mean success of microparasites (Fig. 4.6C), for inbred versus 2820 

outbred hosts (Fig. 4.6D), for sexually reproducing hosts (SMD = -0.40, 95% CI = [-2821 

0.73, -0.07], p = 0.02, Fig. 4.6F), parasites which caused host mortality (SMD = -2822 

0.34, 95% CI = [-0.68, -0.00], p = 0.05, Fig. 4.6G) and non-lab based studies (SMD 2823 

= -0.33, 95% CI = [-0.65, -0.01], p = 0.04, Fig. 4.6H). For the effect of host population 2824 

genetic diversity on the variability in parasite success, we found that this was 2825 

significantly negative for asexually reproducing hosts (Fig. 4.6N). 2826 

 2827 

In addition, comparisons between specific levels of these moderators showed a 2828 

highly significant difference in the mean difference in parasite success between 2829 

micro- and macroparasites (QM = 13.2, df = 1, p < 0.001, Fig. 4.6) and also a 2830 

significant difference in the ratio of variability in parasite success between both 2831 

sexual hosts and either asexual (QM = 6.40, df = 1, p = 0.01, Fig. 4.6N) or 2832 

facultatively sexual hosts (QM = 5.53 df = 1, p = 0.02, Fig. 4.6N). 2833 

 2834 
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Figure 4.5. The context-dependence of the effect of host population genetic diversity on 

the mean and variability in parasite success. The y-axis in each plot shows the effect of 

an increase in host population genetic diversity on either the difference in mean parasite 

success (SMD) (panels A-H),  or the difference in the variability in parasite success 

(lnCVR) (panels I-P). Model means are shown with 95% confidence intervals and are 

scaled according to the number of experiments. The dashed line indicates an effect size 

of zero. The significance level of individual model means, as well as any pairwise 

contrasts, is indicated by one (p < 0.05), two (p < 0.01) or three (p < 0.001) asterisks. The 

following abbreviations are used; Prev. (Prevalence), Vir. (Virulence), Vert. (Vertebrate), 

Invert. (Invertebrate), Macro. (Macroparasite), Micro. (Microparasite), Source gen. var. 

(Source of host genetic diversity), Art. (Artificial), Nat. (Natural), Scale host div. (Scale of 

host diversity), Cont. (Continuous), Disc. (Discrete), Host mode repro. (Mode of host 

reproduction), Sex. (Sexual), Asex. (Asexual), Mixd (Mixed). 

 2835 
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4.4.6 Our results are robust to leaving data out, but require the 2836 

right ‘mean’ effect size 2837 

To test the robustness our of results, we performed a suite of ‘leave-one-out’ 2838 

sensitivity analyses and remodelled our parasite success data with an alternative set 2839 

of effect sizes. 2840 

 2841 

The suite of sensitivity analyses showed that the results of our main effects were not 2842 

dependent on the inclusion of a particular study (Table 4.3., Fig. S4.2) or 2843 

independent comparison in our dataset (Table 4.3, Fig. S4.3). However, they were 2844 

less robust to using the log response ratio (lnRR) as an alternative effect size to the 2845 

standardized mean difference (SMD) to measure to effect of host population genetic 2846 

diversity on mean parasite success. Although both measures showed a negative 2847 

effect of host population genetic diversity on mean parasite success, the alternate 2848 

way of measuring this was not significant (lnRR = 0.93, 95% CI = [-0.40, 2.25], n = 2849 

211). In comparison, the alternate variability measure, the log variability ratio (lnVR), 2850 

supported the result of the main effect size (the log coefficient of variation ratio, 2851 

lnCVR) by showing that there was no significant effect of host population genetic 2852 

diversity on the variability in parasite success. 2853 

 2854 

Table 4.3. Results of the leave-one-out sensitivity analyses. To test the robustness 2855 

of the results using our main effect sizes, we re-modelled the data using an iterative 2856 

exclusion of either one study (Leave1studyout) or one independent comparison 2857 

(Leave1trtout) and calculated the mean model estimate and the mean p-value across 2858 

all the models. The following abbreviations are used; ES (effect size), SE (mean 2859 

standard error across all models), ci.lb and ci.ub (mean lower and upper bounds of 2860 

95% confidence intervals across all models respectively). 2861 

 2862 

Method ES Estimate SE z-value p-value ci.lb ci.ub 

Leave1trtout SMD -0.29 0.14 -2.07 0.04 -0.56 -0.02 

Leave1trtout lnCVR 0.02 0.17 0.13 0.9 -0.3 0.35 

Leave1studyout SMD -0.29 0.14 -2.05 0.04 -0.57 -0.01 

Leave1studyout lnCVR 0.02 0.17 0.13 0.87 -0.31 0.35 

 2863 
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4.5 Discussion 2864 

By re-analysing the effect size data from two previous meta-analyses (Ekroth et al., 2865 

2019; Gibson & Nguyen, 2021) we show that conventional theory, which suggests 2866 

that a high level of host population genetic diversity tends to limit the spread of 2867 

disease in both wild and domestic animal (i.e. non-plant) populations (King & Lively, 2868 

2012), is only true some of the time. In fact, we show that the specific effect of host 2869 

population genetic diversity on either metrics of the mean or variability in parasite 2870 

infection success actually depend on a combination of both the host range of the 2871 

parasite and its level of population genetic diversity. For instance, a high level of host 2872 

population genetic diversity tends to limit metrics of mean infection success for 2873 

specialist, but not generalist, parasites relative to a low level of host population 2874 

genetic diversity, but also either increases or decreases the variability in metrics of 2875 

specialist parasite infection success relative to a low level of host population genetic 2876 

diversity depending on the corresponding level of parasite population genetic 2877 

diversity. Therefore, the idea that a relatively higher level of host population genetic 2878 

diversity tends to limit the spread of disease, and thus epidemic size, is not 2879 

necessarily best described as ‘conventional’ wisdom. 2880 

 2881 

Our results contrast those from previous meta-analytical studies of the effect of host 2882 

population genetic diversity on metrics of parasite infection success, which also 2883 

investigated the host range of the parasite as part of their analysis (Ekroth et al., 2884 

2019; Gibson & Nguyen, 2021). As already eluded to above, we found that the host 2885 

range of the parasite was a significant moderator of the effect of host population 2886 

genetic diversity on metrics of mean parasite infection success. Specifically, we 2887 

found that a high level of host population genetic diversity tended to limit metrics of 2888 

mean infection success for specialist, but not generalist, parasites relative to a low 2889 

level of host population genetic diversity. One possible explanation for this is the 2890 

increased statistical power of our study due to a larger number of effect sizes from 2891 

combining the effect size data from these previous analyses (Gibson, 2022). This 2892 

supports our original suggestion that parasite host range is closely related to the 2893 

level of genetic specificity for infection (because specialist parasites are more likely 2894 

to have evolved highly specific, matching-allele-type interactions between host 2895 

resistance and parasite infectivity alleles than generalist parasites that are less tightly 2896 

co-evolved to their range of hosts). It also highlights the susceptibility of host 2897 

populations with only a small amount of genetic diversity to consistently high levels 2898 

of infection success by specialist parasites.  2899 
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 2900 

Our finding that more diverse host populations tend to have smaller metrics of mean 2901 

infection success for specialist parasites shows how there is slightly more complexity 2902 

associated with conventional wisdom than previously thought (King & Lively, 2012). 2903 

It also has important implications for how the level of host population genetic diversity 2904 

is managed in species of conservation concern (Meuwissen et al., 2020). For 2905 

example, one approach to species management may be to prioritise the 2906 

maintenance or restoration of genetic diversity in host populations threatened by 2907 

specialist parasite species, or by finding a safe approach for broadening a specialist 2908 

parasite’s host range. For example, the introduction of a novel host or parasite 2909 

species, as some form of biological control (Stenberg et al., 2021), that can either 2910 

act as a catalyst for host-mediated parasite evolution of greater generality (Bull et 2911 

al., 2022) or cause a parasite host shift through direct competition for hosts (for a 2912 

review, see Bashley, 2015) may broaden the host range of a specialist parasite away 2913 

from its target host to include a non-target, pest species. In addition, recent empirical 2914 

work has started to test the theory that high host population genetic diversity (sensu 2915 

‘resource heterogeneity’) selects for the evolution, or maintenance, of a broader 2916 

parasite host range (sensu ‘niche width’, Gibson et al., 2020). Therefore, 2917 

understanding how host population genetic diversity is linked to the evolution of 2918 

parasite host range in a number of different host-parasite systems should be a 2919 

priority for future research. 2920 

 2921 

Again, in contrast to the results of previous meta-analytical studies (Ekroth et al., 2922 

2019; Gibson & Nguyen, 2021), we also found that there was a significant difference 2923 

between the effect of host population genetic diversity on the variability in metrics of 2924 

infection success for specialist parasites with a high level of parasite population 2925 

genetic diversity and a low level of parasite population genetic diversity. Specifically, 2926 

we showed that a high level of both host and parasite population genetic diversity 2927 

increased the variability in metrics of infection success for specialist parasites 2928 

relative to host populations with a low level of population genetic diversity, whereas 2929 

a high level of host population genetic diversity and a low level of parasite population 2930 

genetic diversity decreased the variability in metrics of infections success for 2931 

specialist parasites relative to host populations with a low level of population genetic 2932 

diversity. Although these previous meta-analytical studies focused on the mean, 2933 

rather than the variability in metrics of parasite infection success (Ekroth et al., 2019; 2934 

Gibson & Nguyen, 2021), nevertheless the authors of both studies had expected to 2935 

find a significant effect of parasite population genetic diversity on the relationship 2936 
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between host population genetic diversity and metrics of mean parasite infection 2937 

success and were surprised that there was no such significant result (Ekroth et al., 2938 

2019; Gibson & Nguyen, 2021). In addition to their reduced statistical power (as 2939 

mentioned above), one possible reason for this could be that only one out of two of 2940 

these studies investigated the interaction between different moderators (Gibson & 2941 

Nguyen, 2021). On the other hand, the difference we observed in the variability in 2942 

metrics of infection success for specialist parasites between host populations with 2943 

high parasite population genetic diversity and low parasite population genetic 2944 

diversity matched the initial predictions we made in our proposed Diversity-2945 

Uncertainty theoretical model (Fig. 4.1). This confirms previous theories that the 2946 

benefits of host population genetic diversity for resistance to disease depend on the 2947 

corresponding parasite population genetic diversity (Bensch et al., 2021; Boomsma, 2948 

1996; Van Baalen & Beekman, 2006). 2949 

 2950 

This idea that the combination of both host and parasite population genetic diversity 2951 

influence the variability in metrics of parasite infection success has important 2952 

implications for host-parasite systems in general. As already mentioned previously, 2953 

not only could such variability in metrics of parasite infection success be important 2954 

for predicting the occurrence of potentially severe disease epidemics, which could 2955 

benefit conservation by informing genetic diversity management strategies to 2956 

prioritise at risk host populations (Meuwissen et al., 2020), but it could also be central 2957 

to our ability to protect against future emerging diseases (Altizer et al., 2006) and for 2958 

understanding the extent to which disease experiments are repeatable. For example, 2959 

our results highlight that host populations with a low level of genetic diversity are 2960 

particularly susceptible to consistently large disease epidemics caused by specialist 2961 

parasites with a high level of diversity. Conversely, the inconsistent levels of parasite 2962 

success predicted for combinations of low host x low parasite and high host x high 2963 

parasite population genetic diversity suggest that the repeatability of both laboratory 2964 

and field experiments may be quite low, since they are often characterised 2965 

respectively by such combinations of host-parasite diversity. Similarly, patterns of 2966 

future disease occurrence (and emergence) may be more difficult to predict in such 2967 

systems compared to those with different combinations of diversity. 2968 

 2969 

In addition to our moderator analysis using models with an interaction term, we also 2970 

investigated the effects of eight other contextual factors to evaluate our list of 2971 

hypotheses (Table 4.1). These are the same as the moderators used in previous 2972 
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meta-analyses (Ekroth et al., 2019; Gibson & Nguyen, 2021), but in comparison to 2973 

the total number of significant effects they observed in their analysis (two), our results 2974 

show that there were six moderator levels that had significant effects. In particular, 2975 

the effect of host population genetic diversity on metrics of mean infection success 2976 

for microparasites was much more negative than for macroparasites. In agreement 2977 

with our original hypothesis, this suggests that the difference in infection durability 2978 

between micro- and macroparasites (Sorci, 2014) affects the specificity of their 2979 

interactions with the host (Schmid-Hempel & Ebert, 2003). Therefore, we suggest 2980 

that macroparasites, due the longer-lasting nature of their infections (Sorci, 2014), 2981 

are less tightly coevolved with their hosts and thus have a lower genetic specificity 2982 

for infection. We also found that there was a significant negative effect of host 2983 

population genetic diversity on metrics of mean parasite infection success for 2984 

comparisons of outbred versus inbred hosts. Although such an effect was absent for 2985 

other host population comparisons, such as between naturally high and low genetic 2986 

diversity populations of hosts, it was quite similar to the effect for host populations 2987 

composed of select genotypes. Therefore, this could suggest that experimental 2988 

manipulations of host population genetic diversity had a stronger effect on metrics of 2989 

mean parasite infection success than studies using a purely natural source of hosts. 2990 

However, it is worth noting that this result is somewhat inconsistent with the 2991 

significantly negative effect of host population genetic diversity on metrics of mean 2992 

parasite infection success observed for non-laboratory-based studies, for which the 2993 

opposite effect was observed in one out of the two previous meta-analyses (Ekroth 2994 

et al., 2019). As such, an alternative explanation would be that the effect of host 2995 

population genetic diversity on metrics of mean parasite infection success were 2996 

exacerbated for outbred versus inbred hosts by the increased susceptibility of inbred 2997 

hosts to disease (Coltman et al., 1999). 2998 

 2999 

Other notable observations from the individual models include a significant negative 3000 

effect of host population genetic diversity on metrics of mean parasite infection 3001 

success in sexually reproducing host populations and a significant negative effect of 3002 

host population genetic diversity on the variability in metrics of parasite infection 3003 

success for host populations reproducing asexually, which was strongly contrasted 3004 

against the absence of either a sexually reproducing or facultatively sexually 3005 

reproducing host. These results suggest that sexual reproduction might contribute to 3006 

the strength of how population genetic diversity limits disease spread due to greater 3007 

dissimilarity between genotypes from genetic recombination than achieved by 3008 

asexual reproduction (Hamilton et al., 1990), but also that asexual reproduction can 3009 
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lead to greater disparity between the consistency of metrics of parasite infection 3010 

success of host populations with high versus low genetic diversity than other forms 3011 

of host reproduction. There was also a significant negative effect of host population 3012 

genetic diversity on metrics of mean infection success for parasites that typically kill 3013 

the host. Compared to less harmful parasites, this suggests that virulent parasites 3014 

could select for higher levels of resistance and greater variation of resistance in the 3015 

host population (Ekroth et al., 2019). 3016 

 3017 

Despite the potentially exciting nature of our results, there are some additional 3018 

considerations that should be taken into account. For example, there is a large 3019 

number of effect sizes (68) for specialist parasites with low population genetic 3020 

diversity, but most of these actually come from a prokaryotic bacterial host study 3021 

(Van Houte et al., 2016), rather than a vertebrate or invertebrate host, which is the 3022 

case for most of our data. In addition, the host range of the parasite may not be a 3023 

reliable estimate of the genetic specificity for infection. The host range of the parasite 3024 

was used as a proxy for the genetic specificity for infection, as such a detailed level 3025 

of information was not available. Therefore, we made the prediction that highly 3026 

specific interactions between host and parasite genotypes (Schmid-Hempel & Ebert, 3027 

2003) would be more likely for tightly coevolving pathogens (i.e. following a MAM of 3028 

infection, Agrawal & Lively, 2002), as might be expected for specialist, but not 3029 

generalist parasites. Similarly, the results of our moderator analysis rely on 3030 

somewhat arbitrary ways of creating data sub-categories. In the case of parasite 3031 

population genetic diversity, comparing mainly natural versus laboratory strains of 3032 

parasites could be a poor indication of the effect of parasite population genetic 3033 

diversity because the exact level of diversity was not actually quantified. In the case 3034 

of the host range of the parasite, this measure is subjective and based somewhat on 3035 

an incomplete literature (Hyman & Abedon, 2010). 3036 

 3037 

One other final consideration is that the majority of our data concentrates on the 3038 

effect of host population genetic diversity on both the mean and variability in metrics 3039 

of parasite infection success for spatially replicated groups of host populations (but 3040 

see Hale & Briskie, 2007). Although we might expect the temporal pattern of the 3041 

effect of host population genetic diversity on metrics of parasite infection success to 3042 

be similar to that observed across space, we also predict some key differences. For 3043 

example, recurrent bouts of parasite-mediated directional selection have the ability 3044 

to reduce host and parasite population genetic diversity over time (Buckling & 3045 
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Rainey, 2002; Obbard et al., 2011), which could be accompanied by a higher mean 3046 

and lower variability in metrics of parasite infection success. However, the 3047 

maintaince of host and parasite genetic diversity over time depends on the precise 3048 

nature of selection and the underlying host-parasite infection genetics (i.e. a MAM 3049 

versus a GFG model for genetic specificity, Boots et al., 2014). Although there are 3050 

some studies which measure metrics of parasite infection success for host 3051 

populations with different levels of genetic diversity at multiple timepoints (e.g. 3052 

Altermatt & Ebert, 2008), more studies would be required to provide a 3053 

comprehensive test of the effect of host population genetic diversity on metrics of 3054 

parasite infection success over time. 3055 

 3056 

4.6 Summary 3057 

In this study, we measured the difference in the mean and variability in metrics of 3058 

parasite infection success between host populations with high versus low genetic 3059 

diversity. After first challenging so-called ‘conventional wisdom’ (sensu (King & 3060 

Lively, 2012)) we proposed a Diversity-Uncertainty model to better understand the 3061 

context around how host population genetic diversity might affect not only the mean, 3062 

but also the variability in metrics of parasite infection success. We found that host 3063 

population genetic diversity affected metrics of mean infection success for specialist 3064 

but not generalist parasites. We also found that the effect of host population diversity 3065 

on the variability in metrics of parasite infection success depends on a combination 3066 

of the host range of the parasite and the parasite population diversity, such that there 3067 

is some evidence for a Diversity-Uncertainty theoretical model, at least for the 3068 

collection of studies reviewed in this meta-analysis. Additionally, we found that there 3069 

was a number of other context dependent effects of host population genetic diversity 3070 

on both the mean and variability in metrics of parasite infection success, such as 3071 

parasite type. Overall, these findings represent a change of perspective that could 3072 

help to protect vulnerable host populations by prioritizing how genetic diversity within 3073 

these populations is managed. Future study of the Diversity-Uncertainty hypothesis 3074 

across a range of plant host-parasite systems would help generalize these findings. 3075 
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 3373 

4.10 Supplementary information 3374 

Supplementary table S4.1. The difference between our amended study inclusion 3375 

criteria and the original study inclusion criteria. 3376 

 3377 

New study inclusion criteria Original study inclusion 

criteria 

Why changed 

1) ‘Parasite success’, which 

we define as the ability of a 

parasite to spread among 

hosts (transmission rate, 

infection rate, prevalence), 

replicate on / within hosts 

(macro / microparasite load, 

disease severity), or kill 

hosts (virulence i.e. host 

survival / mortality rate) was 

measured among replicate 

populations across time or 

space. 

- Ekroth, Rafaluk-Mohr 

and King, 2019: Defined 

parasite success as any 

measure of a parasite’s 

ability to proliferate within 

a host population. 

- Gibson and Nguyen, 

2020: Focused on 

population-level 

parasitism, including 

prevalence, load and 

virulence. 

We combined the two 

previous versions of the 

study inclusion criteria to 

include several different 

measures of parasite 

success, which were later 

used for contextual factor 

analysis. 
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2) Parasite success data 

was collected from two or 

more host populations with 

any comparable difference 

in genetic diversity, such as 

the level of relatedness 

among individuals (inbred 

versus outbred), genotypic 

diversity (high versus low) or 

heterozygosity. 

- Ekroth, Rafaluk-Mohr 

and King, 2019: Data was 

collected from any study 

with two distinct 

populations and any 

measured difference in 

diversity. 

- Gibson and Nguyen, 

2020: Collected data for 

two or more populations. 

We collected data from 

studies of multiple 

populations with any 

comparable difference in 

genetic diversity to 

increase our sample size 

and because there was 

one study with 

differences in genetic 

diversity which were not 

comparable between all 

pairwise combinations 

(Baer 2001). 

3) Genetic diversity was 

measured at the host 

population level and not 

community diversity or 

individual-level genetic 

heterozygosity. 

- Ekroth, Rafaluk-Mohr 

and King, 2019: Used the 

exact same wording. 

- Gibson and Nguyen, 

2020: Stated that host 

genetic diversity had to 

be intra-specific. 

We followed both Ekroth, 

Rafaluk-Mohr and King, 

2019 and Gibson and 

Nguyen 2020 in this 

criterion. 

4) The study focused on an 

animal (or bacterial) host 

species. 

- Ekroth, Rafaluk-Mohr 

and King, 2019: Excluded 

studies of agricultural 

systems. 

- Gibson and Nguyen, 

2020: Did not specify the 

study system. 

We did not include any 

studies of non-animal 

populations, except for 

prokaryotic bacteria, 

because a more detailed 

analysis of the plant 

literature would require a 

separate review. 

5) The study does not re-

analyze the data from a 

previously published study. 

- Both Ekroth, Rafaluk-

Mohr and King, 2019 and 

Gibson and Nguyen, 

2020: Did not include this 

specification. 

We included this 

specification because 

Ekroth, Rafaluk-Mohr and 

King, 2019 included data 

from two different studies 

by Baer and Schmid-

Hempel which were 
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based on the same 

dataset. 

6) The parasite success 

data was not replicated 

simply by using an alternate 

way of measuring host 

population diversity. 

- Both Ekroth, Rafaluk-

Mohr and King, 2019 and 

Gibson and Nguyen, 

2020: Did not include this 

specification. 

We included this 

specification because 

there two studies 

included by the previous 

meta-analyses (Giese 

2003 and Puurtinen 

2004) which included 

parasite success data for 

the same populations 

with two different 

measures of genetic 

diversity, which was a 

form of 

pseudoreplication. 

7) An attempt to take the 

parasite success data from 

clearly illegible figures was 

not made. 

- Both Ekroth, Rafaluk-

Mohr and King, 2019 and 

Gibson and Nguyen, 

2020: Did not include this 

specification. 

We included this 

specification because 

Gibson and Nguyen, 

2020 had collected data 

from two studies with 

illegible figures (Agha, 

2018 and van Houte et al. 

2016. 

 3378 

 3379 
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Figure S4.1. Study effects of host population genetic diversity on the mean and 

variability in parasite success. The x-axis in each plot shows the effect of 

increasing host population genetic diversity on either A) the difference in mean 

parasite success (SMD) or B) the difference in the variability in parasite success 

(lnCVR). Aggregated effects for each study are shown with 95% confidence 

intervals. Where the same host genus was studied more than once (‘Duplicated 

Genus’), the colour of the points is white, rather than black, and the specific host 

genus studied is indicated by its shape (there were only five duplicated host 

genera). Each point is scaled by the amount of weighting they received in an 

aggregated mixed effects model, whereas the actual analysis was conducted 

based on the full set of 211 individual data points. The dashed lines indicate an 

effect size of zero and the overall model means are shown by the solid grey line 

with 95% confidence intervals bands in light grey. 

 3380 

  3381 
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Figure S4.2. The results of the leave-one-study-out method of sensitivity analysis. 

The x-axis in each plot shows the effect of increasing host population genetic 

diversity on either A) the difference in mean parasite success (SMD) or B) the 

difference in the variability in parasite success (lnCVR). The names of the authors 

and the publication date for the study omitted in each model iteration is shown on 

the left, with the overall effect size and its confidence interval shown on in the 

middle. The mean effect size across all models is shown by the vertical line and 

specific value is shown on the right (with 95% confidence intervals). The size of 

each point is scaled according to its precision. 

 3382 
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Figure S4.3. The results of the leave-one-independent-comparison-out method of 

sensitivity analysis visualized using a modified version of an orchard plot. The x-

axis in each plot shows the effect of increasing host population genetic diversity 

on either A) the difference in mean parasite success (SMD) or B) the difference in 

the variability in parasite success (lnCVR). Unlike traditional orchard plots, which 

show the distribution of individual effect sizes, the mean effect size for each model 

iteration is shown by the coloured circles. The size of each point is scaled by its 

precision (inverse of the standard error). The mean effect size across all models 

is shown by the dashed line. 
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5. The ability of non-locally adapted hosts to outcompete 3385 

resident hosts in wild populations 3386 

  3387 
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5.1 Abstract 3388 

Local adaptation is the process whereby the individuals within a population 3389 

adapt to their local environment by evolving traits that increase their fitness in 3390 

that environment relative to others. Local adaptation is expected to play a key 3391 

role in protecting species from climate change and can affect the strength of 3392 

species interactions, such as competition and parasitism. However, how local 3393 

adaptation to environmental conditions influences competition between 3394 

groups of local and migrant individuals from the same species is poorly 3395 

understood. In addition, how this intra-specific competition is influenced by 3396 

parasitism is also unclear. Therefore, to address this uncertainty, we 3397 

performed a host reciprocal transplant experiment across 12 artificial pond 3398 

populations of a naturally coevolving Daphnia host - parasite system. Animals 3399 

were grouped into separate Home, Away and Mixed field cages within each 3400 

pond and exposed to an ancestral parasite (with a control group). Specifically, 3401 

we measured the ability of resident hosts to withstand competition from 3402 

migrant hosts by comparing host fitness, in terms of the number of offspring, 3403 

in both home and away environments versus a mixture of animals from 3404 

different origins. Surprisingly, resident hosts were not locally adapted, and 3405 

despite quite a large, but not statistically significant, reduction in the fitness of 3406 

hosts between the mean of the unmixed and mixed categories in the third 3407 

week of data collection, this was only statistically significant for the parasite-3408 

exposed treatment and not the parasite-free control. Therefore, this 3409 

suggested that the cost of mixed competition for resident hosts was revealed 3410 

by the addition of the ancestral parasite as a general stressor. The ability of 3411 

resident hosts that are not locally adapted to outcompete migrant genotypes 3412 

under parasite exposure may promote gene flow and decrease the size and 3413 

severity of future disease outbreaks by increasing the capacity of host 3414 

population genetic diversity to reduce transmission.  3415 
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5.2 Introduction 3416 

Local adaptation is the process whereby the individuals within a population adapt to 3417 

their local environment by evolving traits that increase their fitness in that 3418 

environment relative to others (Kawecki & Ebert, 2004). Since the natural range of 3419 

many species, such as insect vectors of disease (Sternberg & Thomas, 2014), are 3420 

expected to shift in response to a warming climate (Price et al., 2019), and locally 3421 

maladapted populations are vulnerable to extinction (Bocedi et al., 2013), local 3422 

adaptation could increase the displacement of local populations by competitive 3423 

exclusion and potentially play a significant role in how species respond to climate 3424 

change (Aitken & Whitlock, 2013; Meek et al., 2023; Peterson et al., 2019). 3425 

 3426 

What exactly defines this environment depends on the aspect of local adaptation in 3427 

question. For example, local adaptation can refer to how well-adapted individuals 3428 

are to the biotic or abiotic environment, such as predation or temperature and food 3429 

availability respectively (Blanquart et al., 2013; Kawecki & Ebert, 2004). A special 3430 

case of local adaptation is found in host-parasite systems, where the parasites are 3431 

expected to be locally adapted to their hosts most of the time because they generally 3432 

evolve faster than their hosts (Gandon, 2002; Greischar & Koskella, 2007; 3433 

Hoeksema & Forde, 2008). This means that in examples of local adaptation, other 3434 

than those driven by host-parasite antagonistic coevolution, locals are generally 3435 

expected to be better adapted than immigrants to their local environment (Blanquart 3436 

et al., 2012; Hereford, 2009; Holt & Gomulkiewich, 1997; Lascoux et al., 2016; Reger 3437 

et al., 2018). However, in patterns of local adaptation driven by such antagonistic 3438 

coevolution between hosts and parasites, there is the opposite expectation that 3439 

immigrants are better adapted than residents to the local environment (Gandon & 3440 

Nuismer, 2009; Morgan et al., 2005; Refardt & Ebert, 2007; Schulte et al., 2011). 3441 

 3442 

The ability of migrant hosts to outcompete locals may depend on the strength of intra 3443 

versus inter-population intra-specific competition. This is analogous to the 3444 

competitive exclusion principle which relies on the strength of intra-specific 3445 

competition being greater than inter-specific competition for species co-existence 3446 

(Barabás et al., 2016). For example, even if locals are better adapted to their abiotic 3447 

environment, the competition for resources between individuals may be so high that 3448 

it significantly reduces their fitness by intraspecific competition. In this case, despite 3449 

being less adapted to their new environment, migrants could outcompete locals if 3450 

they exploit resources differently, so they actually have a higher fitness than locals. 3451 
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Although this is theoretically possible, it assumes that locals are near carrying 3452 

capacity for their particular resource exploitation behavior. 3453 

 3454 

The ability of migrant hosts to outcompete locals may also depend on how 3455 

environmental conditions differentially affect the competitive ability of locals versus 3456 

migrants. For example, temperature can determine the outcome of intra versus 3457 

interspecific competition (Ntiri et al., 2016) and heterogeneity of consumable 3458 

resources, such as the quality, quantity, size and availability of food particles, could 3459 

facilitate different exploitation strategies (Kolasa & Pickett, 1991). Previous studies 3460 

have shown that different species, such as Daphnia, have a range of these 3461 

consumption behaviours; body size in different Daphnia species affects the 3462 

maximum size of particle that can be ingested during filter-feeding (Burns, 1968). 3463 

Correspondingly, aspects of the biotic environment may also influence the outcome 3464 

of intra versus interspecific competition. For example, there may be predator-3465 

mediated competition of their prey (Wilson, 1989) or parasite-mediated competition 3466 

of their hosts (Orlansky & Ben-Ami, 2023).  3467 

 3468 

In particular, and as already introduced above, locally adapted parasites, to which 3469 

local hosts are less resistant than migrants, could determine the outcome of host 3470 

inter-population intra-specific competition. As predicted by general theory (Gandon, 3471 

2002), the tendency for parasites to have larger effective population sizes and 3472 

shorter generation times than hosts means that they are usually able to infect hosts 3473 

better if they are from their native environment (Greischar & Koskella, 2007; 3474 

Hoeksema & Forde, 2008). Since hosts are expected to be locally adapted to their 3475 

abiotic environment, but not to their corresponding parasites, the relative influence 3476 

of either form of local adaptation on the outcome of host intra-specific competition 3477 

with migrants is unclear. 3478 

 3479 

It has been suggested that partitioning the relative effects of intraspecific competition 3480 

and parasitism on host-parasite populations may be too difficult in the wild 3481 

(Hochberg, 1991). One solution would be to expose hosts originating from different 3482 

populations to a shared ancestral parasite (similar to experimental coevolution 3483 

(Brockhurst & Koskella, 2013). Despite not having a long history of coevolution with 3484 

different host populations, which makes them less likely to be more infectious of local 3485 

hosts, it would allow us to measure the extent of parasite-mediated intra-specific 3486 

competition between local and migrant hosts in a natural setting. We might expect 3487 
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that the effect of infection on a host’s fitness (in terms of reproduction) or competitive 3488 

ability to be resource dependent, such that locally adapted hosts that are better at 3489 

exploiting a shared resource also have a better condition than immigrants, and 3490 

therefore a higher fitness. 3491 

 3492 

In this study, I investigated the ability of locally adapted hosts to withstand 3493 

competition from migrants. I performed a series of reciprocal transplants across 12 3494 

outdoor mesocosms to measure the ability of local and migrant adult Daphnia to 3495 

reproduce in the presence or absence of a sterilizing microparasite and evaluated 3496 

the following hypotheses (i) intra-specific host competition is driven by some sort of 3497 

resource limitation, (ii) there is local adaptation of home (resident) versus away 3498 

(foreign) genotypes to abiotic factors, (iii) immigrants suffer from competition with 3499 

resident hosts and (iv) this cost is exacerbated for hosts artificially exposed to a 3500 

shared ancestral parasite. 3501 

 3502 

5.3 Methods 3503 

5.3.1 Methods (summary) 3504 

To measure how much wild Daphnia host genotypes are robust to competition from 3505 

other non-local genotypes, we performed a series of reciprocal transplant 3506 

experiments between nine pairs, six of which were not fully independent, of outdoor 3507 

pond populations of the invertebrate model host (Daphnia magna) and its sterilising 3508 

microparasite (Pasteuria ramosa) (Fig. 5.1A and B). We compared how host origin 3509 

(home, away and mixed) interacted with exposure to ancestral parasite (Fig. 5.1C-3510 

F). By assuming that the absence of any cost of competition experienced by either 3511 

the resident or immigrant host is consistent with no difference between the average 3512 

host fitness (adult survival and fecundity) from both the home and away groups 3513 

versus the mixed group, we were able to demonstrate a fitness cost when this value 3514 

was a non-zero sum. 3515 

 3516 

5.3.2 Study species 3517 

The experiment focussed on the freshwater micro-crustacean host, Daphnia magna, 3518 

and its sterilising bacterial parasite, Pasteuria ramosa. D. magna and P. ramosa 3519 

occur together naturally in lakes and ponds throughout Europe (Ebert, 2005). P. 3520 

ramosa infects Daphnia by attaching itself to the gut, penetrating the gut wall and 3521 
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then reproducing once inside the host (Auld et al., 2012; Auld, Hall, et al., 2014; 3522 

Duneau et al., 2011). It is a highly virulent parasite which severely limits Daphnia 3523 

reproduction and eventually kills the host. P. ramosa also causes infected Daphnia 3524 

to turn red from bacterial growth in the haemolymph and to grow significantly larger 3525 

through gigantism. Upon death, the infected cadaver releases millions of spores 3526 

which are released into the environment for onward transmission (Ebert et al. 1996). 3527 

 3528 

5.3.3 Experimental design 3529 

The experiment took place in 12 semi-natural outdoor pond populations (referred to 3530 

as mesocosms) that had been established in April 2015 as part of a previous long-3531 

term research project. Since being established with an identical mix of host 3532 

genotypes and parasite transmission stages (Auld & Brand, 2017b), differences in 3533 

the pond environments have driven rapid co-evolution and the populations have 3534 

subsequently diverged for both host and parasite characteristics (Paplauskas et al., 3535 

2021). 3536 

 3537 

They were each allocated a unique identifier and randomly paired to another 3538 

mesocosm (Fig. 5.1B). Generally, pairs were not made using adjacent mesocosms 3539 

to avoid the comparison of mesocosms with similar environments (Fig. S5.1). 3540 

Despite a large number of mesocosms (20 total), there was only a sufficiently large 3541 

number of healthy (uninfected) Daphnia adults to establish three fully independent 3542 

mesocosm pairs, so an additional three pairs of mesocosms were created by using 3543 

some of the same ponds within the other three pairs. Therefore, there were nine 3544 

pond pairs in total, but six of these were not entirely independent.  3545 

 3546 

In each mesocosm, there was a total of six treatment combinations made up of three 3547 

sources of Daphnia (pond of origin), including the local pond of origin (home), the 3548 

neighbouring pond (away) and mixed (50:50 home and away), and two parasite 3549 

treatments, including a control (P-) and parasite-exposed group (P+). For example, 3550 

within pond pair one, there were two ponds; the local pond environment one (E1, 3551 

Fig. 5.1C and D) was paired to the neighbouring pond environment (E2, Fig. 5.1E 3552 

and F). In pond environment one, there were three animal sources, including home 3553 

(E1 Daphnia only), away (E2 Daphnia only) and mixed (E1, E2), each crossed with 3554 

a control and parasite exposed treatment. In comparison, in pond environment two 3555 

(E2), there were the same three animals sources, but labelled accordingly, including 3556 
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(E2 Daphnia only), away (E1 Daphnia only) mixed (E1, E2), each crossed with a 3557 

control and parasite exposed treatment. 3558 

 3559 

Each treatment combination was set-up using a stainless-steel coffee filter basket 3560 

attached to a polystyrene tile (Fig. 5.2). Following a preliminary test of their wind-3561 

resistance, in which tiles were overturned by the strong winds, we weighted each tile 3562 

down using weight discs attached to large coach bolts. Each control and parasite-3563 

exposed set of field cages were kept separate to avoid cross-infection, but the 3564 

position of each field cage within the floating platform was randomised to avoid any 3565 

bias. A total of eight healthy adults were added to each field cage at the beginning 3566 

of the reciprocal transplant experiment. 3567 

 3568 

 

 

Figure 5.1. Summary of experimental design. Shown are A) photo of field setting 

and, B) reciprocal design, where M+No. refers to each mesocosm (M, note that 

there are some non-independent pairs) and C-F) photos of two experimental 

mesocosms within a single experiment transplant (C and E) and the treatment 

combinations within each mesocosm (D and F). There are three Daphnia origins 

(home, away, mixed) crossed with either a control (P-) or parasite-exposed (P+) 

treatment. The blue and red Daphnia refer to the control and parasite-exposed 

B 

D 
– 

E1 

A 

C 

E 

F 
– 

E2 
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treatment respectively. A total of eight healthy adult females were used to establish 

each treatment combination at the beginning of the reciprocal transplant 

experiment. Note that there are four holes in each float, but only three were used 

(fourth was a back-up if the tile broke). 

 3569 

 

Figure 5.2. Field cages (coffee filter baskets) used to establish each treatment 

combination for the transplant experiment. Inspired by (O’Connor et al., 2021). 

 3570 

5.3.4 Reciprocal transplant experiment 3571 

Daphnia were collected from each population by passing a 0.048 m2 pond net across 3572 

the diameter of each mesocosm (1.51 m) several times and transferred to a plastic 3573 

tray. Eight uninfected Daphnia adults (no observable infection) were transplanted to 3574 

each field cage from the appropriate origin (eight from home, eight from away or 4 3575 

from home and away in mixed treatment). 36 field cages were set up for three 3576 

mesocosms pairs each day from the 24th to 26th April 2023, in a staggered approach. 3577 

Although there were 20 mesocosms in total, there were only enough Daphnia to 3578 

establish reciprocal transplants from 12 ponds, which involved the re-implementation 3579 

of certain mesocosms with each pair (see above). 3580 

 3581 

Frozen parasite transmission stages, which had been produced by propagation of 3582 

21 unique D. magna clones exposed to sediment from their natural pond (Auld & 3583 

Brand, 2017b)), sampled as part of a previous experiment from Kaimes farm in at 3584 

Leitholm (Scottish Borders, UK, geographic coordinates: 2 °20′43 ″ W, 55 ° 423585 

′15 ″ N) (Auld, Wilson, et al., 2014), were used to apply a heavy dose of parasites 3586 

(approximately 1 x 108 Pasteuria spores) to each field cage that was part of the 3587 

parasite treatment. This was the same ancestral parasite used to establish the 3588 
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mesocosm populations in 2015 (Auld & Brand, 2017b). During the initial parasite 3589 

treatment, the surface temperature of each mesocosm was measured for one minute 3590 

using a thermometer inserted into a polystyrene buoyancy aid which held in the 3591 

centre of the pond, that was otherwise unreachable (Fig. 5.3).  3592 

 3593 

 

Figure 5.3. Thermometer inserted into a polystyrene buoyancy aid.  

 3594 

Subsequent temperature measurements were taken twice a week for three weeks, 3595 

along with weekly measurements on host demography, including the number of 3596 

healthy adults, the number of adults carrying ephippia (resting stages), the number 3597 

of infected adults and the number of offspring. To count the number of animals in 3598 

each field cage, a laboratory squeeze bottle used to spray pond water from the back 3599 

of the animals into a translucent plastic tray. The animals were counted visually and 3600 

then the tray was washed with the pond water and the animals were returned to their 3601 

corresponding field cage. The order in which animals were counted for each field 3602 

cage was randomised within and between mesocosms to avoid any bias. Collection 3603 

of this demographic data each week was staggered across a three-day period to 3604 

reflect how the experiment was established (see above). 3605 

 3606 

5.3.5 Preliminary analysis of host fitness 3607 

To determine the ability of resident hosts to withstand competition from migrants, we 3608 

compared estimates of adult fecundity across treatment groups by calculating the 3609 

mean change in the number of offspring per adult from the previous week. We did 3610 

not use the number of offspring per adult in the current week because this reflected 3611 

the accumulation of offspring over time, which meant that it was not an accurate 3612 
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reflection of adult fecundity each week (see Fig. S5.3). However, this information 3613 

was included as Fig. S5.3 to investigate the carrying capacity of the field cages.  3614 

 3615 

One potential limitation of this approach is that the number of adults varied by week 3616 

which could have been the major driving force behind the observed differences in 3617 

offspring production. This variation could have been caused by a combination of 3618 

different factors, such as survival, offspring maturation and mortality (Fig. 5.4). For 3619 

example, adult mortality prior to the weekly data collection might artificially inflate 3620 

adult fecundity. However, it is safe to assume that Daphnia are more likely to survive 3621 

and have chance to give birth during any previous week, than to die at the beginning 3622 

of the week. In week one, this could be explained as part of a stress-induced 3623 

response to transplanting. Therefore, it might be preferable to calculate the mean 3624 

change in the number of offspring per adult from the previous week, rather than the 3625 

current week. 3626 

 3627 

 

Figure 5.4. Sources of variation in the mean number of adults and offspring 

between consecutive weeks. For any given week (t = n), the number of susceptible 

adults (blue squares), infected adults (red squares) and the number of offspring 

(green squares) are determined by a combination of positive versus negative 

changes, such as infection, survival, maturation of offspring into adults and birth 

versus mortality (arrows). Infection tends to completely sterilise the host, with little 

chance of returning to a susceptible state (Ebert, 2005), and eventually leads to 

host mortality. 

 3628 
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Another considerable advantage of using the mean change in the number of 3629 

offspring per adult from the previous week, rather than the current week, to calculate 3630 

a cost of mixed competition, is that there will be immature offspring that look as if 3631 

they could have given birth during specific points in the experiment. However, if we 3632 

assume that the generation of D. magna is similar in the field to the lab, and occurs 3633 

every 8-14 days (Ebert, 2005), then the number of adults from counted the previous 3634 

week will exclude these immature offspring (Fig. 5.5). 3635 

 3636 

 

Figure 5.5. The benefit of using the number of adults observed from the previous 

week to calculate mean change in the number of offspring per adult. The 

experiment started on day one and ended on day 23 (arrow). Over the first three 

days of the experiment, the first generation of adults (F0) were added to the field 

cages in a staggered experimental design. Since the generation time of Daphnia 

is approximately 8-14 days in the laboratory (Ebert, 2005), we predicted that the 

earliest the F2 generation should have appeared was at day eight. Therefore, 

despite predicting the presence of immature offspring that would appear as if they 

could have given birth by this point, the actual number of adults during the counting 

period would be inaccurate if these immature offspring were included. 

 3637 

Finally, since we did not count any infected Daphnia in the parasite-exposed 3638 

treatment (which is probably due to a high level of density-dependent competition) 3639 

and it takes a couple of weeks for host sterilisation to set in (Ebert, 2005), we did not 3640 

need to account for any difference in the number of offspring per infected versus 3641 

susceptible adult from the previous week. 3642 

 3643 

5.3.6 Statistical analysis 3644 

To determine whether there was any evidence for intra-specific host competition, 3645 

that could possibly be driven by some sort of resource competition over food 3646 

limitation (sensu (Lang, 2013)), and may explain the expected variation in adult 3647 



 153 

survival and changes in the offspring between treatments, we developed a series of 3648 

linear mixed-effects models using the lmer function from the lme4 package version 3649 

in R to compare the change in the number of offspring per adult (from the current 3650 

and previous week) with the total number of adults for both the control and parasite-3651 

exposed treatment each week. The Daphnia pond of origin and the current pond 3652 

environment were treated as random effects. 3653 

 3654 

To determine if there was any local adaptation by the host to the abiotic environment 3655 

and how this was influenced by parasitism, we compared linear mixed effects models 3656 

with the same random effects structure as described above, but included an 3657 

additional interaction term for host origin, to examine the mean change in the number 3658 

of offspring per adult from the previous week across both different host origins 3659 

(home, away etc.) and the control versus parasite treatment for each week. As 3660 

mentioned previously, we did not test either host or parasite local adaptation to one 3661 

another. 3662 

 3663 

To measure the cost of mixed host competition and how this was influenced by 3664 

parasitism, we compared the mean change in the number of offspring per adult from 3665 

the previous week across a combination of the home and away origins with the mixed 3666 

origin for both the control and parasite-exposed treatment. This used the same 3667 

model structure as for the test of host local adaptation to environmental conditions. 3668 

 3669 

All analysis was performed in R version 4.4.1.  3670 

 3671 

5.4 Results 3672 

5.4.1 Habitat and species diversity 3673 

The replicate populations represented fairly unique environments (Fig 5.6). For 3674 

example, the water surface was covered in green floating plants in some ponds (Fig. 3675 

5.6A) and clear in others (Fig. 5.6B). There was variation in pond colour, from reddish 3676 

brown (Fig. 5.6C) to bright green (Fig. 5.6D), that corresponded with the relevant 3677 

field cages in these ponds (Fig. 5.6E and F) and was most likely caused by variation 3678 

in host density, leading to a red colour in ponds with a high population density and 3679 

low oxygen concentration (Fig. 5.6G).  3680 

 3681 
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There was also a large amount of variation observed in the diversity of pond wildlife 3682 

(Fig. 5.7). In some cases, there was a large density of Chaoborus (Fig. 5.7A) that 3683 

corresponded with very few Daphnia, suggesting that this may have been a key 3684 

factor in limiting host population size. In other ponds there was a mix of species in 3685 

variable abundances, including a large amount of Planorbidae snails in most ponds 3686 

(Fig. 5.7B), multiple species of worm (Fig. 5.7E, F) and beetle (Fig. 5.7C, D) and a 3687 

low abundance of other species (Fig. 5.7H, I, J). In addition, there were some species 3688 

on the water surface, such as pond skaters (Fig. 5.7G), bees (Fig. 5.7L) and even 3689 

ducks (Fig. XK). 3690 

 3691 

 



 155 

Figure 5.6. Observed differences in pond environments. A) A pond covered with 

duckweed algae versus B) a pond with completely clear water. C) A pond with 

reddish brown water versus D) a pond with bright green water. E) Field cages 

corresponding to D versus F) field cages corresponding to C. G) The origin of the 

reddish brown coloured ponds; a sample of pond water with a high density of 

Daphnia magna. 

 3692 

 

Figure 5.7. The diversity of pond wildlife in the outdoor mesocosms. A) Daphnia 

magna (top left) and phantom midge larva (Chaoborus) which is a common 

predator of Daphnia, B) ramshorn snails (Planorbidae), C) water boatman 
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(Corixidae), D) great diving beetle (Dytiscus marginalis), E) bloodworm (Glycera), 

F) nematode species, G) common pond skater (Gerris lacustris), H) mosquito larva 

(Culicidae), I) damselfly larva (Zygoptera), J) newt (Pleurodelinae), K) mallard 

(Anas platyrhynchos) L) bees (Anthophila). 

5.4.2 The presence of density-dependent competition between 3693 

adult hosts 3694 

To look for evidence of any competition between hosts, regardless of their origin 3695 

treatment (home, away or mixed), we investigated the relationship between the 3696 

change in the number of offspring per adult from the current week and the total 3697 

number (alt. density) of adults from the current week (Fig. 5.8, row one) versus the 3698 

change in the number of offspring per adult at a time-lag of one week with the total 3699 

number of adults at a time-lag of one week (Fig. 5.8, row two). We found a 3700 

consistently negative relationship between the independent and dependent variables 3701 

in the across weeks, regardless of parasite exposure or not, but this was only 3702 

significant for some models (Supplementary Table 5.1). This suggests that space or 3703 

resources are limiting in the field cages, which drives density-dependent adult host 3704 

fecundity, and in particular, any significant differences observed in the mean change 3705 

in the number of offspring per adult from the current week, or at a time-lag of one 3706 

week, among treatments will be due to how competition varies across treatments, as 3707 

opposed to other extraneous factors. 3708 

 3709 
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Figure 5.8. The presence of density-dependent competition between adult hosts. 

The different colours correspond to the control (blue) and parasite-exposed 

treatment (red). The linear relationship from a mixed effects model is shown for 

each subset of the data, where the dashed versus solid lines correspond to non-

significant versus significant effects. 95% confidence intervals are shown for the 

significant effects (grey bands). Row one - the consistently negative relationship 

between change in the number of offspring per adult from the current and the total 

number of adults from the current week across the entire duration of the 

experiment (three weeks in total). Row two - the consistently negative relationship 

between change in the number of offspring per adult at a time-lag of one week and 

the total number of adults at a time-lag of one week across the entire duration of 

the experiment (three weeks in total).  

 3710 
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5.4.3 Temporal variation in total adults and a cost of intra-specific 3711 

host competition he presence of density-dependent competition 3712 

between adult hosts 3713 

Although the experiment started with the same total number of adults (eight) in each 3714 

field cage, there was considerable variation in the mean number of adults each week 3715 

across treatment combinations (Fig. 5.9). There was a steady decline in the mean 3716 

number of adults across most treatment combinations in weeks one and two (Fig. 3717 

5.9A and B), followed by a relatively large increase in week 3 (Fig. 5.9C). These 3718 

relative differences in the mean number of adults between both weeks one and two 3719 

versus week three were highly significant (Tukey adjusted estimated marginal means 3720 

= -4.36 and -5.94; p = 0.0021 and < .0001 respectively) and probably stemmed from 3721 

a combination of reduced adult survival and offspring maturation (Fig. 5.4). In 3722 

addition, there were no significant pairwise differences between either home and 3723 

away groups from the control and parasite-exposed treatment (Tukey adjusted 3724 

comparison of all pairwise differences using estimated marginal means; p > 0.05, 3725 

Supplementary table S5.2), or the mean number of adults across both of the home 3726 

and away groups versus the mixed group (Tukey adjusted comparison of all pairwise 3727 

differences using estimated marginal means; p > 0.05, Supplementary table S5.3). 3728 

Therefore, this suggests that adult survival is not locally adapted to the abiotic 3729 

environment and there is no cost associated with host mortality as a result of intra-3730 

specific competition. 3731 

 3732 

On the other hand, the mean change in the number of offspring per adult at a time-3733 

lag of one week, which is indicate of adult fecundity (but see Fig. 5.4), showed some 3734 

interesting results. First, despite all pairwise differences being statistically equivalent 3735 

(Tukey adjusted comparison of all pairwise differences using estimated marginal 3736 

means; p > 0.05, Supplementary table S5.4), the mean change in the number of 3737 

offspring per adults at a time-lag of one week was consistently higher in the parasite-3738 

exposed treatment versus the control in week one (Fig. 5.9D). Second, there was an 3739 

absence of host local adaptation to the abiotic environment in terms of mean change 3740 

in offspring per adult at a time-lag of one week (i.e. adult fecundity, Supplementary 3741 

table S5.4), similar to adult survival (see above) and there was no cost of intra-3742 

specific competition in weeks one and two (Fig. 5.9D and E, Supplementary table 3743 

S5.5). However, this difference in the mean change in the number of offspring per 3744 

adult at a time-lag of one week for both the home and away groups versus the mixed 3745 

group was significant for the parasite-exposed treatment in week 3 (Tukey adjusted 3746 
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estimated marginal mean = 9.77; p = 0.035, Fig. 5.9F). These findings suggest 1) 3747 

there is short-term parasite-induced fecundity compensation and 2) and there is a 3748 

cost of intra-specific competition that is exacerbated by parasite-exposure. 3749 

 3750 

 

Figure 5.9. Evidence of short-term parasite-induced fecundity compensation, an 

absence of host local adaptation to the abiotic environment and the ability of non-

locally adapted hosts to outcompete resident genotypes. A-C) Variation in the 

mean number of adults each week, driven by both adult survival and offspring 

maturation. D-F) Variation in the mean change in the number of offspring per adult 

at a time-lag of one week. Since the change in offspring is not based on the number 

of adults from the current week (i.e. directly above the plot), the change in the 

offspring corresponds to the plot diagonally above it on the left-hand side (which 

means that the change in offspring at week one is based on the eight adults from 

the initial set-up of the experiment). The source of the Daphnia in each basket 

(Origin) is shown on the x-axis and the colour of the bars indicates the control 

(blue) and parasite exposed (red) treatments. Home and away groups are 

statistically equivalent (all pairwise differences; p > 0.05), so they share the letter 

‘a’. The mean of both the home and away groups (dashed lines) versus the mixed 

group was significantly different for the change in the number of offspring per adult 
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at a time-lag of one week for the parasite-exposed treatment in week three (single 

asterisk; p < 0.05). See Fig. S5.3 for additional analysis of the number of offspring. 

 3751 

To determine the precise cost of this mixed competition in week three, and who is 3752 

the most likely winner in this scenario, we compared the observed mean change in 3753 

the number of offspring per adult at a time-lag of one week (i.e. adult fecundity) for 3754 

the separate home and away groups compared to the expected proportion of the 3755 

mixed group that was composed of animals from the home and away origins (50:50). 3756 

This showed that overall cost of this mixed competition in week three for the parasite-3757 

exposed treatment was a 9.19 reduction in the mean change in the number of 3758 

offspring per adult at a time-lag of one week between both the home and away 3759 

groups compared to only the mixed group (Supplementary Table S5.6). Assuming 3760 

that this overall reduction was equally distributed across animals of both home and 3761 

away origin within the parasite-exposed mixed treatment, relative to what was 3762 

observed in the corresponding parasite-exposed unmixed home and away groups 3763 

(Supplementary Table S5.6; example C), then the expected mean change in the 3764 

number of offspring per adult at a time-lag of one week is net positive for migrants 3765 

(0.72) and net negative for locals (-1.04), which means that migrants are expected 3766 

to outcompete locals. 3767 

 3768 

We also found that the variation in the total number of adults in each treatment 3769 

combination, caused by adult mortality and offspring maturation (Fig. 5.4), was not 3770 

responsible for the differences observed between the mean change in number of 3771 

offspring per adult at a time-lag of one week (Fig. S5.3). 3772 

 3773 

5.5 Discussion 3774 

To measure whether hosts were adapted to their local abiotic environment and how 3775 

this might interact with parasitism to influence inter-population competition between 3776 

local and migrant hosts, we performed a series of reciprocal transplant experiments 3777 

in replicate populations of the naturally coevolving model Daphnia host – parasite 3778 

system. 3779 

 3780 

First, in support of our original hypothesis, we found that there was indeed evidence 3781 

for some sort of resource competition, as shown by the density-dependent change 3782 

in the number of offspring per adult at a time-lag of one week (i.e. adult fecundity), 3783 

which could potentially drive any variation subsequently observed in host competitive 3784 
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ability across the experimental treatment combinations. We anticipate this 3785 

competition could either be some form of scramble (also termed ‘exploitation’) 3786 

competition over a shared resource with limited availability, such as food, or it may 3787 

be some kind of interference competition, where Daphnia compete directly with one 3788 

another (Lang, 2013).  3789 

 3790 

It is more likely that this is some form of resource competition, as there is a large 3791 

amount of heterogeneity in the Daphnia food base (algae species), in terms of size, 3792 

quality, quantity and availability (Kolasa & Pickett, 1991). Analogous to examples of 3793 

interspecific resource competition between Daphnia with different body sizes 3794 

(Kreutzer & Lampert, 1999), which affects the rate at which they filter food out of the 3795 

environment (Burns, 1968; Porter et al., 1983), there may be similar patterns of 3796 

competition between hosts from different origins. In support of this idea, there is 3797 

genetic variation in Daphnia feeding behaviours within populations, but these are 3798 

related to only infected hosts (Pfenning‐Butterworth et al., 2023). Ideally, to 3799 

demonstrate the extent to which the competition observed in this study was driven 3800 

by variation in such feeding behaviours, we would have measured whether these 3801 

traits had diverged in the replicate populations.  3802 

 3803 

In comparison to the support found for resource competition between hosts, and in 3804 

contrary to all of the other three remaining hypotheses, we found no evidence for 3805 

host local adaptation to the environment and that migrant hosts were able to compete 3806 

with locals in terms of offspring birth rate and survival in the first two weeks of the 3807 

experiment, such that they eventually incurred a cost of competition that was shared 3808 

by locals, and exacerbated by exposure to an ancestral parasite. This is potentially 3809 

indicative of the ability of non-locally adapted hosts outcompete residents under a 3810 

high level of resource competition together with a general stressor, such as 3811 

parasitism. 3812 

 3813 

The lack of host local adaptation to the abiotic environment was consistent across 3814 

all three weeks of the experiment. This was surprising, given the absence of any 3815 

gene flow between separate mesocosms, which is a major factor driving patterns of 3816 

local adaptation across most wild systems (Kawecki & Ebert, 2004). Daphnia 3817 

populations are usually distinctly separated from each other as they are limited to 3818 

standing water bodies, so there are moderate amounts of gene flow (Ebert, 2022). 3819 

Therefore, in combination with their short generation times, populations have the 3820 
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ability to evolve rapidly in response to environmental conditions. Indeed, the variation 3821 

in pond diversity we observed, along with the differences observed in environmental 3822 

conditions between ponds from a previous study (Paplauskas et al., 2021), would 3823 

suggest there is significant potential for host local adaptation to the abiotic 3824 

environment. However, this could have not been observed due to being masked by 3825 

genetic drift (Gandon & Nuismer, 2009), as a result of variation in population density 3826 

across replicate ponds. 3827 

 3828 

It was also surprising that we found migrants had the ability to outcompete residents. 3829 

This was observed in the third week of the experiment, where both the control and 3830 

parasite exposed treatments suffered a cost of mixed competition. This cost was not 3831 

apparent in the first two weeks of the experiment, where the overall population 3832 

density was lower in each treatment combination, so the strength of intra-specific 3833 

resource competition would have been lower too. However, this cost of mixed 3834 

competition was only significant for the parasite exposed treatment of the third week. 3835 

This suggests that the parasites treatment, which was composed of a mixture of 3836 

shared ancestral parasites used to establish the replicate mesocosm environment 3837 

as part of a much earlier experiment (Auld & Brand, 2017a, 2017b), and was 3838 

therefore not locally adapted to the resident hosts in each mesocosm, exacerbated 3839 

the high level of resource competition by acting as a general stressor. 3840 

 3841 

One possible explanation for why parasites that were acting as a general stressor, 3842 

in combination with resource competition, may have impacted on resident host 3843 

fitness more than immigrants, is because there may have been a relative difference 3844 

in the strength of intra versus inter-population intra-specific competition (see 3845 

introduction). However, this would have been more relevant if there had been local 3846 

adaption to the abiotic environment. Alternatively, a more compelling reason is that 3847 

there may have been a differential response to the environment in the exploitative 3848 

behaviour of local and migrant hosts (see introduction). As described above, infected 3849 

hosts can demonstrate ‘sickness behaviours’ which affect their resource 3850 

consumption (Pfenning‐Butterworth et al., 2023). However, one study of parasite-3851 

mediated interspecific competition driven by these sickness behaviors in Daphnia 3852 

species actually found that they promoted species coexistence (Orlansky & Ben-3853 

Ami, 2023). Assuming interspecific competition can be considered analogous to 3854 

interpopulation (local versus migrant) intra-specific competition, we show a different 3855 
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version of events whereby parasite-mediated competition enhances the cost of 3856 

competition with migrant conspecifics. 3857 

 3858 

We also found that there was parasite-induced fecundity compensation of hosts in 3859 

week one. This result has been observed in a previous lab study of Pasteuria-3860 

infected D. magna (Vale & Little, 2012), but has not been confirmed in the wild. This 3861 

previous study compared the number of offspring produced in the first clutch of 3862 

infected hosts before sterilization to an unexposed control group, but did not 3863 

measure the number of offspring in subsequent clutches due to natural variation 3864 

between the timing of infection and the subsequent onset of sterilisation (Vale & 3865 

Little, 2012). Therefore, although D. magna are completely sterile between 3866 

approximately 5-15 days after an initial infection (Ebert, 2005), it is not clear how 3867 

long fecundity compensation lasts. 3868 

 3869 

Surprisingly, we counted only a very small number of infected Daphnia across all 3870 

replicate field cages, despite exposing them to a very high dose of parasite 3871 

transmission spores. Two possible reasons for why this happened are that 1) the 3872 

effect of resource competition combined with parasite infection may have lead to 3873 

high mortality of infected hosts and 2) the hosts were able to resist infection in the 3874 

parasite treatment, as they had evolved resistance to this ancestral parasite. The 3875 

latter is supported by a previous study, which found that most host populations 3876 

evolved resistance to this same parasite mix (Paplauskas et al., 2021), but it is 3877 

unclear how long this resistance would have been maintained as coevolution in 3878 

Daphnia species is generally driven by negative frequency-dependent selection 3879 

(Luijckx et al., 2013). This means that hosts that are uncommon are resistant to 3880 

parasites until they begin to increase in frequency and they are subject to parasites 3881 

becoming more infectious of them, at the cost of other hosts, and they quickly 3882 

become susceptible once again (Brockhurst & Koskella, 2013).  3883 

 3884 

The main reason for treating hosts with a shared, ancestral parasite from a previous 3885 

experiment (Auld & Brand, 2017a, 2017b), rather than relying on natural infection, 3886 

which would have been very low at the time of year the experiment was conducted, 3887 

was to use parasites as a general stressor. This was because there was no indication 3888 

of whether there would have been a significant amount of competition between 3889 

Daphnia (over food) within experimental replicates (i.e. field cages), especially 3890 

considering the fact that there were only eight adults in each field cage used to 3891 
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establish the experiment. Therefore, we had intended to use parasites as a general 3892 

stressor to reveal the effect of competition of host local adaptation to the abiotic 3893 

environment, but we found no evidence for such local adaptation. 3894 

 3895 

Since our previous study of host-parasite coevolution in the replicate pond 3896 

populations focused on the extent to which variation in pond environments could 3897 

explain variation in the direction of host-parasite coevolutionary trajectories 3898 

(Paplauskas et al., 2021), rather than testing whether hosts and parasites from 3899 

different ponds were locally adapted to one another, and we were unable to measure 3900 

the infection rate across Daphnia populations from different origins in this 3901 

experiment, there might be an opportunity for further research to measure how 3902 

variation among the environment of replicate populations drives patterns of both host 3903 

and parasite local adaptation. 3904 

 3905 
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5.8 Supplementary information 4057 

 

Supplementary figure S5.1. The relative location of each paired mesocosm in 

the reciprocal transfer experiment. Aerial photograph of the mesocosms used for 

the reciprocal transplant experiment (left) and a characterization of the selected 

comparisons (right). Each arrow represents a pond pair (reciprocal transfer). 
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Supplementary figure S5.2. Additional analysis of the number of offspring. The 

source of the Daphnia in each basket (Origin) is shown on the x-axis and the colour 

of the bars indicates the control (blue) and parasite exposed (red) treatments. 

Home and away groups are statistically equivalent (all pairwise differences; p > 
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0.05), so they share the letter ‘a’. The mean of both the home and away groups 

(dashed lines) is shown for comparison against the mixed group. 

 

Supplementary table S5.1. Linear model coefficients for the relationship between 4058 

the change in the number of offspring per adult from the current week and the total 4059 

number of adults from the current week (data with no time-lag) versus the change in 4060 

the number of offspring per adult at a time-lag of one week with the total number of 4061 

adults at a time-lag of one week (data with a time-lag). The treatment identifier refers 4062 

to the control (P-) and parasite-exposed treatment (P+). Significant p-values are 4063 

highlighted in bold (p < 0.05 or lower). 4064 

 4065 

Data lag Week Treatment Coef. SE t-value p-value 

No 1 P- -0.57 0.24 -2.37 0.022 

No 1 P+ -0.86 0.30 -2.86 0.006 

No 2 P- -2.22 0.92 -2.42 0.025 

No 2 P+ -1.78 0.67 -2.64 0.012 

No 3 P- -0.48 0.30 -1.60 0.001 

No 3 P+ -0.33 0.23 -1.40 0.806 

Yes 1 P- NA NA NA NA 

Yes 1 P+ NA NA NA NA 

Yes 2 P- -2.48 0.55 -4.49 0.120 

Yes 2 P+ -0.12 0.50 -0.25 0.172 

Yes 3 P- -2.28 0.77 -2.95 0.006 

Yes 3 P+ -1.94 0.71 -2.75 0.009 

 4066 

Supplementary table S5.2. Model results for test of host local adaptation to the 4067 

abiotic environment in terms of the mean number of adults each week. Test statistics 4068 

are shown for a post-hoc analysis of linear mixed effects models using Tukey-4069 

adjusted pairwise comparisons of estimated marginal means (EMM). The 4070 

comparison identifier refers to the origin combined with control (P-) and parasite-4071 

exposed treatment (P+).  4072 

 4073 

Response Week Comparison EMM SE df p-value 

Adults 1 Away P- vs Home P- -0.39 0.64 50.47 0.929 

Adults 1 Away P- vs Away P+ -0.22 0.64 50.47 0.985 
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Adults 1 Away P- vs Home P+ 0.41 0.65 51.12 0.921 

Adults 1 Home P- vs Away P+ 0.17 0.64 50.47 0.994 

Adults 1 Home P- vs Home P+ 0.80 0.65 51.12 0.610 

Adults 1 Away P+ vs Home P+ 0.63 0.65 51.12 0.764 

Adults 2 Away P- vs Home P- 0.45 1.18 45.31 0.981 

Adults 2 Away P- vs Away P+ 0.71 1.15 44.17 0.926 

Adults 2 Away P- vs Home P+ 0.77 1.18 45.31 0.915 

Adults 2 Home P- vs Away P+ 0.26 1.18 45.31 0.996 

Adults 2 Home P- vs Home P+ 0.32 1.20 45.34 0.993 

Adults 2 Away P+ vs Home P+ 0.06 1.18 45.31 1.000 

Adults 3 Away P- vs Home P- -1.23 3.69 43.12 0.987 

Adults 3 Away P- vs Away P+ -1.27 3.66 42.32 0.985 

Adults 3 Away P- vs Home P+ 1.20 3.76 43.24 0.989 

Adults 3 Home P- vs Away P+ -0.04 3.74 43.26 1.000 

Adults 3 Home P- vs Home P+ 2.43 3.82 43.38 0.920 

Adults 3 Away P+ vs Home P+ 2.47 3.81 43.31 0.915 

 4074 

Supplementary table S5.3. Model results for test of host local adaptation to the 4075 

abiotic environment in terms of the mean change in the number of offspring per adult 4076 

at a time-lag of one week. Test statistics are shown for a post-hoc analysis of linear 4077 

mixed effects models using Tukey-adjusted pairwise comparisons of estimated 4078 

marginal means (EMM). The comparison identifier refers to the origin combined with 4079 

control (P-) and parasite-exposed treatment (P+).  4080 

 4081 

Response Week Comparison EMM SE df p-value 

Offspring 1 Away P- vs Home P- -0.47 0.50 48.88 0.786 

Offspring 1 Away P- vs Away P+ -0.79 0.50 48.88 0.406 

Offspring 1 Away P- vs Home P+ -1.16 0.52 49.47 0.124 

Offspring 1 Home P- vs Away P+ -0.32 0.50 48.88 0.921 

Offspring 1 Home P- vs Home P+ -0.69 0.52 49.47 0.547 

Offspring 1 Away P+ vs Home P+ -0.37 0.52 49.47 0.892 

Offspring 2 Away P- vs Home P- -0.99 1.99 43.57 0.959 

Offspring 2 Away P- vs Away P+ 0.65 1.93 42.73 0.987 

Offspring 2 Away P- vs Home P+ 0.34 1.99 43.57 0.998 

Offspring 2 Home P- vs Away P+ 1.64 1.95 43.40 0.833 
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Offspring 2 Home P- vs Home P+ 1.34 1.98 43.39 0.906 

Offspring 2 Away P+ vs Home P+ -0.31 1.95 43.40 0.999 

Offspring 3 Away P- vs Home P- 3.25 5.96 35.82 0.947 

Offspring 3 Away P- vs Away P+ -2.50 5.87 35.59 0.974 

Offspring 3 Away P- vs Home P+ 5.19 6.25 37.36 0.840 

Offspring 3 Home P- vs Away P+ -5.75 5.58 35.09 0.733 

Offspring 3 Home P- vs Home P+ 1.94 6.01 37.13 0.988 

Offspring 3 Away P+ vs Home P+ 7.69 5.83 35.37 0.557 

 4082 

Supplementary table S5.4. Model results for the cost of migrant competition with 4083 

locals in terms of the mean number of adults. Test statistics are shown for a post-4084 

hoc analysis of linear mixed effects models using Tukey-adjusted pairwise 4085 

comparisons of estimated marginal means (EMM). All of the comparisons were 4086 

made between the mean of both the home and away groups (Comb.) versus the 4087 

mixed group. The treatment (Trt) refers to the control (P-) and parasite-exposed 4088 

treatment (P+). 4089 

 4090 

Response Week Comparison Trt EMM SE df p-value 

Adults 1 Comb, vs Mixed P- 0.92 0.49 53.66 0.257 

Adults 1 Comb. vs Mixed P+ -0.31 0.49 53.66 0.925 

Adults 2 Comb. vs Mixed P- -1.09 1.32 49.66 0.841 

Adults 2 Comb. vs Mixed P+ -0.88 1.32 49.66 0.908 

Adults 3 Comb. vs Mixed P- -1.09 2.57 47.58 0.974 

Adults 3 Comb. vs Mixed P+ -0.19 2.66 47.87 1.000 

 4091 

Supplementary table S5.5. Model results for the cost of migrant competition with 4092 

locals in terms of the mean change in the number of offspring per adult at a time-lag 4093 

of one week. Test statistics are shown for a post-hoc analysis of linear mixed effects 4094 

models using Tukey-adjusted pairwise comparisons of estimated marginal means 4095 

(EMM). All of the comparisons were made between the mean of both the home and 4096 

away groups (Comb.) versus the mixed group. The treatment (Trt) refers to the 4097 

control (P-) and parasite-exposed treatment (P+). The only significant p-value is 4098 

shown in bold for the parasite-exposed treatment in week three (p < 0.05). 4099 

Response Week Comparison Trt EMM SE df p-value 

Offspring 1 Comb, vs Mixed P- -0.04 0.41 52.94 1.000 
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Offspring 1 Comb. vs Mixed P+ 0.29 0.41 52.94 0.894 

Offspring 2 Comb. vs Mixed P- 0.06 2.01 48.54 1.000 

Offspring 2 Comb. vs Mixed P+ 0.77 1.98 48.38 0.980 

Offspring 3 Comb. vs Mixed P- 5.60 3.45 40.04 0.376 

Offspring 3 Comb. vs Mixed P+ 9.76 3.44 39.98 0.035 

 4100 

Supplementary table S5.6. All possible explanations for the significant difference in 4101 

the mean change in the number of offspring / adultt=-1 between both the Home and 4102 

Away treatments versus the Mixed treatment under parasite exposure. Both 4103 

observed and expected values for the mean change in the number of offspring / 4104 

adultt=-1 are shown. The observed values for the Mixed (M), Home (H) and Away (A) 4105 

treatments are shown, along with the mean of the Home and Away treatments 4106 

(H+A/2). The Cost / adultt=-1 refers to the cost of mixed competition in terms of the 4107 

difference between the mean change in the number of offspring / adultt=-1 for the 4108 

Mixed versus the mean of the Home and Away treatments (H+A/2). Assuming that 4109 

one half of the Mixed treatment is made up of local Daphnia adults and the other half 4110 

is made up of migrant Daphnia adults, we calculated the expected mean change in 4111 

the number of offspring / adultt=-1 owing to either the local (H (H+A/2) or migrant 4112 

Daphnia adults (A (H+A/2). The expected cost of mixed competition for both the local 4113 

(Cost (M H) and migrant Daphnia adults present in the Mixed treatment (Cost (M A), 4114 

and the combined total of these costs, are also shown. A) Only away loses: The 4115 

mean change in the number of offspring / adultt=-1 for local Daphnia is the same in 4116 

the mixed treatment as it is in the (unmixed) home treatment, but lower in the mixed 4117 

treatment compared to the (unmixed) away treatment for migrant Daphnia. 4118 

Therefore, the net mean change in the number of offspring / adultt=-1 for away 4119 

Daphnia under parasite exposure in week 3 is negative, and positive for local 4120 

Daphnia, so locals win. B) Only home loses: The mean change in the number of 4121 

offspring / adultt=-1 for migrant Daphnia is the same in the mixed treatment as it is in 4122 

the (unmixed) home treatment, but lower in the mixed treatment compared to the 4123 

(unmixed) away treatment for local Daphnia. Therefore, the net mean change in the 4124 

number of offspring / adultt=-1 for local Daphnia under parasite exposure in week 3 is 4125 

negative, and positive for migrant Daphnia, so migrants win. C) Both home and away 4126 

lose, but away wins overall: The mean change in the number of offspring / adultt=-1 4127 

for both local and migrant Daphnia is lower in the mixed treatment compared to the 4128 

(unmixed) home and away treatments as a proportion of their individual mean 4129 

change in the number of offspring / adultt=-1 divided by a combination of the two. 4130 
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Therefore, despite a significant reduction in the fecundity of both local and migrant 4131 

Daphnia, the net mean change in the number of offspring / adultt=-1 for local Daphnia 4132 

under parasite exposure in week 3 is slightly negative, and slightly positive for 4133 

migrant Daphnia, so migrants just win out (N.B. there is some uncertainty in this 4134 

result as the error associated with each expected mean is likely to be overlapping 4135 

with zero). 4136 

 4137 

Observed 

Example Mixed (M) Home (H) Away (A) H+A/2 Cost/adultt=-1 

A -0.3 4.9 12.9 8.9 9.2 

B -0.3 4.9 12.9 8.9 9.2 

C -0.3 4.9 12.9 8.9 9.2 

Expected 

Example H (H+A/2) A (H+A/2) Cost (M H) Cost (M A) Total cost 

A 2.4 -2.7 0.0 9.2 9.2 

B -6.8 6.5 9.2 0.0 9.2 

C -1.0 0.7 3.5 5.7 9.2 

 4138 

 4139 

Fig. S5.3: Variation in fecundity is not linked to the total number of 4140 

adults  4141 

Assuming that reproduction and population growth rate did not exceed the carrying 4142 

capacity in each field cage, to allow a direct comparison of adult host fecundity using 4143 

the mean change in the number of offspring, rather than the mean change in the 4144 

number of offspring per adult, either with or without a time-lag of one week, we would 4145 

have required a constant total number of adults in each field cage. However, due to 4146 

variation in adult host survival and offspring maturation, it was possible that the 4147 

variation observed adult fecundity could have been driven by changes in the total 4148 

number of adults each week. Therefore, to investigate the relationship between adult 4149 

fecundity and the total number of adults, we performed a series of correlations using 4150 

linear mixed effects models (Supplementary Figure S5.2). 4151 

 4152 

We found that there was not a consistent pattern across all three weeks between the 4153 

change in the number of offspring and the total number of adults from either the 4154 

current or previous week. Although testing each week separately, we found a 4155 
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significant positive relationship between change in the number of offspring and the 4156 

total number of adults from the current week in week two for both the control and 4157 

parasite-exposed treatment (t > 1.96 for both the parasite control and treatment), this 4158 

does not affect either of the interesting results from our main analysis, including A) 4159 

the parasite-induced fecundity compensation observed in week one and B) the cost 4160 

of mixed competition in terms of offspring in the parasite-exposed treatment in week 4161 

three. 4162 

 4163 

 

Figure S5.3. Variation in fecundity is not linked to the total number of adults. The 

different colours correspond to the control (blue) and parasite-exposed treatment 

(red). The linear relationship from a mixed effects model is shown for each subset 

of the data, where the dashed versus solid lines correspond to non-significant 

versus significant effects. 95% confidence intervals are shown for the significant 

effects (grey bands). Row one - the relationship between change in the number of 

offspring and the total number of adults from the current week. Row two - the 

relationship between change in the number of offspring and the total number of 

adults at a time-lag of one week. 

 4164 

  4165 
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6. Borrowing data from other populations to forecast 4166 

epidemic size 4167 

  4168 
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6.1 Abstract 4169 

A key challenge for disease ecology is predicting the size of epidemics. Most 4170 

models forecast disease in a single population using long-term historical data 4171 

from that population. However, long-term data is not always available and a 4172 

possible alternative is to borrow data from multiple similar populations to 4173 

forecast disease for a population of interest. One step further is to weight the 4174 

contribution of epidemics to the forecast based on their similarity to the focal 4175 

population. In this study, we use data from twenty populations of the 4176 

freshwater crustacean Daphnia magna and its sterilizing bacterial parasite 4177 

Pasteuria ramosa tracked over four epidemic seasons (a total of 80 4178 

epidemics) to predict future epidemics. We evaluate single population, 4179 

multiple average population and multiple weighted average population 4180 

approaches for training three suites of forecast model: seasonal naïve, auto-4181 

regressive integrated moving average and time series regression models. We 4182 

found that forecast accuracy depended on both the type of training data and 4183 

the choice of forecast model, but models trained on data from multiple 4184 

populations consistently outperformed those trained on single population 4185 

data. Our study demonstrates the benefit of using a collection of similar 4186 

populations to forecast disease for a focal population which has limited data.  4187 

  4188 
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6.1 Introduction 4189 

Epidemic size is a key metric of infectious disease and can be defined as the 4190 

proportion of individuals within a population that are infected at any given time 4191 

(disease prevalence), or across multiple timepoints (mean or integrated disease 4192 

prevalence, see chapter two, Fig. 2.1). In the wild, epidemics occur periodically and 4193 

largely predictably, but their precise magnitude often varies depending on wider 4194 

environmental factors such as temperature (Altizer et al., 2006).  4195 

 4196 

Predicting the precise magnitude of future epidemics is very difficult for two main 4197 

reasons. First, since disease prevalence is calculated as the number of infected 4198 

individuals as a proportion of the overall population size, it is the product of two 4199 

varying measurements: the total number of infected and healthy hosts. This means 4200 

that the variation in each separate measurement contributes to the total variation in 4201 

disease prevalence. Second, there is substantial spatiotemporal variation in disease 4202 

prevalence across different populations over time (Altizer et al., 2004; Aznar et al., 4203 

2015; Cáceres et al., 2006; Carlsson-Granér & Thrall, 2002; Ericson et al., 1999; 4204 

Montano et al., 2016; Thrall et al., 2012; Vergara et al., 2013). For example, peak 4205 

prevalence of Metschnikowia bicuspidata in populations of Daphnia dentifera varies 4206 

from 0% to more than 60% across lakes (Penczykowski et al., 2016), and peak 4207 

cowpox prevalence varies from 9% to >30% in field voles over the course of a season 4208 

(Begon et al., 2009). The large amount of spatiotemporal variation in disease 4209 

prevalence makes it difficult to identify common drivers of epidemic size across both 4210 

within and between host-parasite systems. 4211 

 4212 

Although producing epidemic forecasts is challenging, there are opportunities for us 4213 

to use our understanding of environmental variation to better forecast disease in 4214 

focal populations. Temperature is easy to measure, and variation in temperature is 4215 

associated with patterns of disease prevalence in a range of host-parasite systems 4216 

(Alonso et al., 2011; Auld & Brand, 2017b; Beckley et al., 2016; Bravo et al., 2020; 4217 

Groner et al., 2018, 2021; Krauer et al., 2021; Ruiz-Moreno et al., 2012; Schaaf et 4218 

al., 2017; Susi et al., 2017; Swinford & Anderson, 2021; Thoirain et al., 2007). For 4219 

example, an approach to disease forecasting using time-series analysis can be used 4220 

to incorporate information on environmental conditions. This includes autoregressive 4221 

integrated moving average (ARIMA) and time-series regression models. ARIMA 4222 

models make inferences based on underlying patterns of temporal autocorrelation, 4223 

and despite previously having been used in disease forecasting without the addition 4224 
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of environmental data (Allard, 1998; Helfenstein, 1991), they can easily be adjusted 4225 

to incorporate seasonality into epidemic predictions (Hyndman & Athanasopoulos, 4226 

2021). For time-series regression, which naturally rely on the effect of predictor 4227 

variables (Hyndman & Athanasopoulos, 2021), they have often been used to 4228 

forecast cases of vector-borne viruses, such as malaria and dengue, using 4229 

environmental factors, such as temperature and rainfall (Gao et al., 2012; Hii et al., 4230 

2012; Hu et al., 2006). 4231 

 4232 

In addition, there is the potential to use information from a group of similar 4233 

populations to forecast disease in a population of interest. For some infectious 4234 

disease systems, we have a lot of data and a long-term dataset for a single 4235 

population of interest. Whereas, for others, we have little data available for the focal 4236 

population, but data from various other populations that might vary in their similarity 4237 

to the focal population. To reflect these differences in data availability, it would be 4238 

possible to compare models trained only on individual populations (single population 4239 

models), models which exclude the focal population and are trained on averages 4240 

from the other remaining populations (average population models) and models which 4241 

use weighted averages based on similarity to the focal population in terms of 4242 

environmental temperature (weighted average population models).  4243 

 4244 

It might also be better to forecast other additional components of disease rather than 4245 

just disease prevalence. Studies of infectious diseases in the wild usually use 4246 

disease prevalence as a measure of epidemic size (Jennelle et al., 2007). However, 4247 

predicting the density of infected hosts (incidence) and healthy hosts over time might 4248 

be preferable for some systems. For example, the risk of infection to certain vector-4249 

borne diseases is driven by infected vector density (Pepin et al., 2012) and 4250 

conservation may only be interested in predicting the number of healthy hosts. 4251 

 4252 

Here, we used epidemic and temperature data collected from 20 replicated semi-4253 

natural Daphnia-parasite pond populations over four seasons (80 epidemics) to 4254 

predict three variables over time (disease prevalence, infected host density and the 4255 

density of healthy hosts) using three sets of training data (single population, average 4256 

population and population data weighted by temperature similarity) to train three 4257 

suites of forecast models (benchmark, ARIMA and regression). Additional regression 4258 

models were built to compare the use of photoperiod data for predicting different 4259 

response variables. We expected that the models trained on multiple populations 4260 
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would perform better than the models trained on only the target population due to 4261 

the inclusion of a larger amount of data and that the ARIMA and regression models 4262 

would outperform the benchmark models due to their ability to model more complex 4263 

time series patterns. Therefore, our two main hypotheses were (i) the models trained 4264 

on multiple populations would perform better than the models trained on only the 4265 

target population and (ii) the ARIMA and regression models would outperform the 4266 

benchmark models. However, our results were nuanced: we found that the 4267 

performance of models varied according to the type of data used to train the models 4268 

and the class of forecast model used. 4269 

 4270 

6.2 Methods 4271 

6.2.1 Study system 4272 

In this study, we focused on the Daphnia magna-Pasteuria ramosa host-parasite 4273 

system. D. magna is a small freshwater crustacean and naturally occurs with the 4274 

obligate sterilizing bacterial micro-parasite, P. ramosa. In the wild, D. magna 4275 

populations experience regular epidemics of P. ramosa on an annual basis. Initially, 4276 

hosts become infected when they ingest parasite spores from the pond sediment 4277 

during filter feeding and epidemics begin as host densities peak in spring (Ebert, 4278 

2005). Parasite prevalence fluctuates throughout the summer and declines in the 4279 

autumn, with parasites often disappearing completely in winter due to a drop in host 4280 

density. 4281 

 4282 

6.2.2 Pond experiment 4283 

To start with, replicate lines of the 12 genotypes of Daphnia magna were maintained 4284 

in the laboratory in a state of clonal reproduction for three generations to reduce 4285 

variation due to maternal effects. There were five replicates per genotype; each 4286 

replicate consisted of five Daphnia kept in 200 ml of artificial medium (Klüttgen et al., 4287 

1994)  modified using 5% of the recommended SeO2 concentration(Ebert et al., 4288 

1998). Replicate jars were fed 5.0 ABS of Chlorella vulgaris algal cells per day 4289 

(where ABS is the optical absorbance of 650 nm white light by the Chlorella culture). 4290 

Daphnia medium was changed three times per week and three days prior to the start 4291 

of the pond experiment. On the day that the pond experiment commenced, 1–3 day 4292 

old offspring were pooled according to host genotype. Ten offspring per genotype 4293 
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were randomly allocated to each of the 20 ponds (giving a total of 120 Daphnia per 4294 

pond). 4295 

 4296 

Each pond consisted of a 0.65 m tall 1000 litre PVC tank filled with rainwater. The 4297 

ponds were set to different depths into the ground and experienced different 4298 

temperature profiles (Auld & Brand, 2017b). In addition, six of the ponds experienced 4299 

a weekly mixing treatment where mixed ponds were stirred once across the middle 4300 

and once around the circumference with a 0.35 m2 paddle submerged halfway into 4301 

the pond (the exception to this was on the first day of the experiment, when all ponds 4302 

experienced the mixing treatment to ensure hosts and parasites were distributed 4303 

throughout the ponds). 4304 

 4305 

The experiment began on the 2nd April 2015 (Julian day 98), when 120 Daphnia (10 4306 

Daphnia x 12 genotypes) and 1 x 108 Pasteuria spores from the mastermix were 4307 

added to each of the 20 ponds. The mastermix comprised Pasteuria ramosa spores 4308 

propagated using 21 separate Daphnia genotypes exposed to sediment from their 4309 

original pond (Kaimes, Scottish Borders, UK, Auld & Brand, 2017). Seasonal 4310 

epidemics were tracked for the next four years between April 2015 and November 4311 

2018. This involved weekly measurements of parasite prevalence, the number of 4312 

diseased adults, the number of healthy adults and pond temperature between either 4313 

April or May and November each year (see Chapter 3, Auld & Brand, 2017b 4314 

Paplauskas et al., 2021). 4315 

 4316 

6.2.3 Format of the time series 4317 

For each population, there were multiple time series data collected across four years 4318 

for the following variables, temperature, the number of healthy adults and the number 4319 

of diseased adults. Disease prevalence, healthy adult density and diseased adult 4320 

density were calculated from the original time series data. Density data were all 4321 

natural logarithm transformed prior to model construction.  4322 

 4323 

The set of multiple time series for each population was collectively referred to as a 4324 

multivariate time series (MTS). The first three years of data were used to train the 4325 

forecast models (hereafter referred to as training data) and were evaluated against 4326 

the final year of data (hereafter referred to as the test data). 4327 

 4328 
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All of the MTS consisted of weekly data based on the UK convention where week of 4329 

the year was represented as a decimal number (00–53) using Monday as the first 4330 

day of week (and typically with the first Monday of the year as day 1 of week 1). 4331 

Means were taken of weeks with multiple recorded values. Missing values were 4332 

added via linear interpolation so that the time series length each year, referred to as 4333 

the frequency, was constant across the first three years, 31 weeks, except where 4334 

there were three or more missing values in a row in which case NA values were 4335 

used. The final year had a frequency of 26 weeks. 4336 

 4337 

6.2.4 Model construction 4338 

Three types of training data were used for three distinct modelling frameworks (see 4339 

later) and were used to predict disease prevalence, log diseased adult density and 4340 

log healthy adult density. The first two sets of training data, the mean and 4341 

temperature weighted mean, borrowed data from other populations to make 4342 

predictions about disease in the focal population, whereas the third set of training 4343 

data was taken from the test population and acted as a control by only using historical 4344 

data from the focal population. These three classes of training data were created as 4345 

follows.  4346 

 4347 

The calculation of the mean and weighted mean data consisted of two steps. First, 4348 

the time series data for disease prevalence, log diseased adult density and log 4349 

healthy adult density for all 20 populations was divided into all possible combinations 4350 

of 19 training populations and 1 test population (Fig. 6.1A). Using different sets of 4351 

training and test data was a form of cross-validation; different sets of data were used 4352 

to evaluate the accuracy of forecast models for a number of different focal 4353 

populations. Second, the mean training data was calculated across each set of 4354 

training populations. Similar to the mean training data, the weighted mean datasets 4355 

were calculated using the following equation: 4356 

∑ 𝑤𝑥

∑ 𝑤
 4357 

where 𝑤 is the weighting calculated as the similarity of the average temperature each 4358 

year between the training and test populations and 𝑥 is the disease prevalence, log 4359 

diseased adult density or log healthy adult density at each week. Where the 4360 

difference between the training and test population was zero, 0.1 was used to avoid 4361 

producing ‘not a real number’ when calculating the similarity. For the time series 4362 
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regression models, the mean and weighted mean temperature and photoperiod were 4363 

also calculated for use as independent variables. 4364 

 4365 

The mean and weighted mean training data underwent a final calculation depending 4366 

on the type of forecast used. For the first set of forecasts, each epidemic was treated 4367 

as separate from one another to calculate a global average of the mean and 4368 

weighted mean data (Fig. 6.1B). For the second and third set of forecasts, epidemics 4369 

from the same population were grouped into time series to model patterns across 4370 

years (Fig. 6.1C).  4371 

 4372 

The third set of training data came from the test population data. For the first set of 4373 

forecast models, this consisted of the third year of epidemic data. For the second 4374 

and third set of forecast models, this consisted of the first three years of epidemic 4375 

data. 4376 

 4377 

For each set of training data, there was the corresponding test data. This consisted 4378 

of the fourth year of epidemic data and was used as validation of forecast accuracy. 4379 

Finally, the MTS containing the training and test data for all three suites of forecast 4380 

models were converted into time series objects. 4381 

 4382 
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Figure 6.1. Model construction. A) Calculation of mean and weighted mean 

training data. The time series data for all 20 populations (ponds) were divided into 

all possible combinations of 19 training populations and 1 test population. The 

mean training data was calculated across each set of training populations, 

whereas the weighted mean training data used only the five most similar 

populations to the test population. B) The final multivariate time series (MTS) for 

the benchmark models. For each population, there were time series for the three 

classes of training data and the corresponding test data. The mean and 

temperature weighted mean training data consisted of a global average calculated 

across the first three years of epidemic data (blue squares). For the test population 

data, only the third year of epidemic data was used as training data (blue squares) 

and the fourth year was used to evaluate the accuracy of the benchmark forecasts 

(red circles). C) The final multivariate time series (MTS) for the ARIMA and 
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regression models. For each population, there were time series for the three 

classes of training data and the corresponding test data. The training data 

consisted of the first three years epidemic data (blue squares) and the test data 

consisted of the fourth year of epidemic data (red circles). For both B and C, each 

MTS had a frequency of 31 weeks in the first three years and a frequency of 26 in 

the final year. The direction of time is represented by black arrows. The grey 

shapes represent skipped MTS. 

 4383 

6.2.5 Forecasting 4384 

As mentioned above, each set of training data was combined with three suites of 4385 

forecasting models, including a benchmark, an autoregressive integrated moving 4386 

average (ARIMA) and a time-series regression-based model. The first group of 4387 

models was the benchmark group that provided a baseline comparison for the 4388 

accuracy of more complex models. This benchmark was produced using a Seasonal 4389 

Naïve forecasting technique, which is a type of time-series analysis that is quite 4390 

basic, as it assumes that the forecast is directly equal the same observed value as 4391 

in the previous season (Hyndman, 2021), but works remarkably well for many 4392 

economic and financial time series (Hyndman, 2021). The second group of models 4393 

included the ARIMA models, which were based on a linear combination of past 4394 

values of the variable (‘autocorrelation’), past forecast errors (‘moving average’) and 4395 

extended to incorporate the seasonality of the time-series data (seasonal 4396 

autoregressive integrated moving average, often referred to as ‘SARMIA’, Hyndman, 4397 

2021). The third group of forecasting models used time-series regression to predict 4398 

the time series for (x) by assuming that it had a linear relationship with 4399 

temperature (sensu a predictor variable, y, Hyndman, 2021). The temperature 4400 

values of the test population from the fourth year of epidemic data were used as 4401 

‘future’ values for the time series regression group of models. 4402 

 4403 

For the benchmark models, the mean and weighted mean training data was used 4404 

differently to the training data which came from the test population. Specifically, the 4405 

mean and weighted mean training data used the global average of epidemic data, 4406 

whereas the training data which came from the test population used only the third 4407 

year of epidemic data. For the ARIMA models, forecasts were produced using the 4408 

auto.arima function in R which selected the model with the lowest corrected Akaike 4409 

information criterion (AICc, Hyndman, 2021). 4410 

 4411 
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For the time series regression models, forecasts were produced using temperature, 4412 

Julian Day (a proxy for photoperiod) and a combination of the two as predictor 4413 

variables. Both temperature and photoperiod are important in influencing epidemics. 4414 

Photoperiod captures the seasonality of the data which is explicitly modelled in the 4415 

benchmark and ARIMA models. However, seasonality is not central to a standard 4416 

regression model in the way it is in an ARIMA, so we therefore modelled photoperiod 4417 

independently in the regression models. 4418 

 4419 

For regression models using temperature as a predictor, mean and temperature 4420 

weighted mean disease prevalence, log diseased adult density and log healthy adult 4421 

density were fitted against mean temperature, whereas the test population data were 4422 

fitted against test population temperature. For regression models using Julian Day 4423 

as a predictor, Julian Day was treated as a polynomial. For regression models using 4424 

log healthy and log diseased adult density as predictors, the mean, weighted mean 4425 

and test population data was fitted against mean, weighted mean and test population 4426 

log diseased and log healthy adult host density respectively. Multiple regression was 4427 

used for models with a combination of temperature and photoperiod as predictors. 4428 

Test population temperature, photoperiod, log diseased and log healthy adult density 4429 

from the fourth year of epidemic data were used as ‘future’ values for regression 4430 

forecast models.  4431 

 4432 

For all three suites of forecasting models, a forecast horizon of 26 weeks was used 4433 

to match the time series frequency in the final year of data. 17 forecasts were made 4434 

for each of the mean, temperature weighted mean and test population data, 4435 

excluding years in which there was no epidemic. Forecast accuracy was determined 4436 

using root mean squared error (RMSE), which measured the difference between 4437 

predicted and observed values. For the ARIMA and time series regression models, 4438 

the forecasts predicted some negative values on a normal scale and some extremely 4439 

small values on a log scale. These were removed by zero-bounding the disease 4440 

prevalence and effectively zero-bounding the log diseased and log healthy adult 4441 

density (log(0.01)-bound). This involved adding the difference between zero and the 4442 

minimum disease prevalence value to the forecast or adding the difference between 4443 

log(0.01) and the minimum log diseased or log healthy adult density to the forecast. 4444 

The average adjusted RMSE was calculated for each set of training data. 4445 

 4446 
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6.2.6 Analysis of model error 4447 

Significant differences between mean model errors were calculated using estimated 4448 

marginal means (EMMs) from generalised least squares (GLS) models accounting 4449 

for unequal variances among the three classes of training data. Two sets of three 4450 

EMMs were performed in total, one for each of the three forecast variables and one 4451 

for each set of comparisons. The first three EMMs calculated the significance of 4452 

differences between models trained on different data grouped by the type of forecast 4453 

model. The second three EMMs calculated the significance of differences between 4454 

forecast models grouped by training data. 4455 

 4456 

Also, GLS was used to test the significance of the association between the mean 4457 

error of forecasts and the average temperature in the fourth year of the focal 4458 

population for each type of forecast model.  4459 

 4460 

6.3 Results 4461 

As expected, there was a clear seasonal pattern in temperature across the 20 4462 

populations and across all years (Fig. 6.2). This showed that temperature increased 4463 

from approximately 10°C at the beginning of each year, peaked at approximately 15 4464 

to 20°C around the halfway point of in the season and then declined back to 4465 

approximately 10°C by the end of each season. There was substantial variation in 4466 

disease prevalence across the 20 populations and across all years (Fig. 6.2). Further 4467 

inspection shows this variation in disease prevalence was driven principally by 4468 

variation in log diseased adult density; log healthy adult density was more consistent 4469 

across epidemics. Healthy adult density consistently peaked at around 10 weeks. 4470 

 4471 
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Figure 6.2. Plots A-D show temperature, infection prevalence, log diseased adult 

density and log healthy adult density over time respectively. Lines are loess fits for 

all populations. Prevalence was zero-bound by performing loess on a log(1 + 𝑥) 

transformation and then back-transforming the result using the inverse, exp (𝑥) −

1. Years one to four are indicated by the colour of the lines. 

 4472 

There was significant variation in forecast accuracy between ponds (Fig. 6.3). For 4473 

the first suite of forecasts, benchmark forecasts, where the forecasts were equal to 4474 

the values observed in the previous season, the mean and temperature weighted 4475 

mean forecasts of disease prevalence were more similar to the test data than the 4476 

test population forecasts in pond one and two, but not pond three. For benchmark 4477 

forecasts of log diseased and log healthy adult density, there was less variation 4478 

among the different classes of forecast in terms of similarity to the test data. 4479 
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Similar to the first suite of forecasts, the mean and temperature weighted mean 4480 

forecasts of disease prevalence for the second suite of forecasts, ARIMA forecasts, 4481 

were more similar to the test data than the test population forecasts in pond one and 4482 

two, but not pond three. The automated function which was used to develop the 4483 

ARIMA forecasts selected a structure equivalent to the benchmark forecasts in some 4484 

cases, such as for the test population forecasts, except for the test population 4485 

forecast of disease prevalence in pond two. Similar to the first suite of forecasts, the 4486 

ARIMA forecasts of log diseased and log healthy adult density showed a small 4487 

amount of variation among the different classes of forecast in terms in similarity to 4488 

the test data. 4489 

 4490 

For the third suite of forecasts, regression forecasts, which used temperature as a 4491 

predictor, in comparison to the first and second suite of forecasts, the test population  4492 

forecasts of disease prevalence were similar to the mean and temperature weighted 4493 

mean forecasts. However, similar to the first and second suite of forecasts, the 4494 

regression forecasts of log diseased and log healthy adult density showed a small 4495 

amount of variation among the different classes of forecast in terms in similarity to 4496 

the test data. 4497 

 4498 
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Figure 6.3. Variation in forecast accuracy between three example ponds. For each 

forecast variable, disease prevalence, log diseased adult density and log healthy 

adult density, there were three suites of model, benchmark, where the forecast 

was equal to the values observed in the previous season, auto-regressive 

integrated moving average (ARIMA) and regression models which used 

temperature as a predictor. For each model, there were three classes of training 

data which produced three separate forecasts, the mean, temperature weighted 

mean and test population forecasts which are indicated by the red, blue and green 

lines respectively, as well as the corresponding test data which was used to 

evaluate the accuracy of forecasts as indicated by the black lines. The text shows 

the different pond numbers. 

 4499 

  4500 
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Forecasting infection prevalence 4501 

The mean error for forecasts of disease prevalence, incidence and healthy host 4502 

density varied according to the model and the training data (Fig. 6.4). Mean error for 4503 

forecasts of disease prevalence was not significantly different between the three 4504 

suites of forecast models trained on either the mean or the weighted mean data. In 4505 

contrast, the mean error of regression models trained on only the test population 4506 

data was significantly lower than the benchmark and ARIMA models trained on the 4507 

same data. The mean error for forecasts of incidence was not significantly different 4508 

between models, but the range of error was very low for the regression models. 4509 

However, the mean error for forecasts of healthy host density was significantly 4510 

different between models. Specifically, the mean error for benchmark and ARIMA 4511 

models was significantly lower than the mean error for the regression models. In 4512 

addition, the range of error was very low for the forecast models of healthy host 4513 

density. 4514 

 4515 

Forecasting density of infected hosts (infection incidence) 4516 

Second, comparisons of models trained on different sets of data were made. For 4517 

forecasts of disease prevalence, the mean error of benchmark and ARIMA models 4518 

trained on either the mean or the weighted mean data were significantly lower than 4519 

those trained on only the test population data. In contrast, there was no significant 4520 

difference in the mean error between regression models trained on different data. 4521 

For forecasts of incidence, there was no significant difference between the mean 4522 

error of benchmark and regression models. However, the mean error of the ARIMA 4523 

models trained on the mean and weighted mean data was significantly lower than 4524 

those trained on only the test population data.  4525 

 4526 

Forecasting healthy host density 4527 

For forecasts of healthy adult density, there was no significant difference between 4528 

the mean error of benchmark models. In comparison, the mean error of ARIMA and 4529 

regression models trained on the mean and weighted mean data was significantly 4530 

lower than those trained on only the test population. 4531 

 4532 
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Figure 6.4. Model error for forecasts of disease prevalence, log diseased adult 

density and log healthy adult density. The mean model error across all 20 

populations (large points), with error bars indicating the standard error, and the 

individual model error for each population (small points), with the colour scale 

indicating the average temperature of the focal population in year four and with 

lines connecting forecasts with the same population of interest, are shown for three 

sets of models, benchmark (grey points), ARIMA (black points in the first column 
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of panels; A, C, E) and regression (black points in the second column of panels; 

B, D, F) and three sets of training data, the mean (Mean), temperature weighted 

mean (Weighted mean) and test population (Test pop.) data. Model error is root 

mean squared error.  

 4533 

6.4 Discussion 4534 

A key aim of epidemiology is to predict the timing and size of epidemics. This is 4535 

challenging because of natural variation in epidemics caused by environmental and 4536 

ecological factors, such as temperature (Alan Pounds et al., 2006; Descloux et al., 4537 

2012; El-Sayed & Kamel, 2020; Zell, 2004) and epidemic termination due to rapid 4538 

evolution of host resistance (Duffy et al., 2012). Most studies tend to focus on 4539 

predicting disease in a single population based on historical data from that 4540 

population. We asked whether it is possible to borrow data from other populations to 4541 

predict future epidemics, including when weighting the influence of populations 4542 

based on their environmental similarity to the population of interest. We found that 4543 

models trained on mean and ecologically weighted mean data often performed better 4544 

than those trained only on the focal population data.  4545 

 4546 

Overall, we found that disease prevalence, log diseased adult density and log 4547 

healthy adult density are difficult to predict. This was reflected in both the variation 4548 

in the range of model errors and the relatively large mean errors. In our first set of 4549 

results, which tested the significance of differences between models trained on 4550 

different data grouped by the type of forecast model, the mean error for forecast 4551 

models of disease prevalence based on historical data and trained on the mean and 4552 

temperature weighted mean data was significantly lower than the mean error for the 4553 

same models trained on only the test population data. Therefore, in agreement with 4554 

our hypothesis, we demonstrated the potential for forecasting disease prevalence in 4555 

populations where there is no historical data by using data from replicate populations 4556 

across space. This approach can be easily generalised to other systems where there 4557 

is a lack of research about forecasting disease in the wild.  4558 

 4559 

In our second set of results, which tested the significance of differences between 4560 

forecast models grouped by training data, we found that the mean error of models 4561 

which were trained on the test population data and used future temperature values 4562 

to predict disease prevalence was significantly lower than models which used 4563 

historical data. This demonstrates the benefit of data-rich systems for predicting 4564 
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disease from only one population. However, for forecasts of log diseased and log 4565 

healthy adult density, the models which used future temperature values performed 4566 

the same as or worse than the models which used historical data.  4567 

 4568 

Also, we found a significant association between the mean error for the benchmark 4569 

forecasts of log diseased adult density and the average temperature of the focal 4570 

population, as well as between the mean error for all of the regression models and 4571 

the average temperature of the focal population. 4572 

 4573 

Previous basic ecological models of disease have focused on Daphnia-parasite 4574 

systems using a small number of populations and a few select ecological drivers, 4575 

such as host density and temperature (Duffy et al., 2005; Duffy & Sivars-Becker, 4576 

2007; Hall, Becker, et al., 2009; Hall, Knight, et al., 2009). These studies have been 4577 

useful in understanding how ecological drivers of disease affect the timing of 4578 

epidemics, but they are not forecasts of disease prevalence and the emergent 4579 

models are often highly specific and thus lack generality. In this study, we performed 4580 

forecasts of disease prevalence, log diseased adult density and log healthy adult 4581 

density using limited data from across a group of spatially explicit populations with 4582 

ecologically realistic variation. We found that models trained on mean and 4583 

ecologically weighted mean data often performed better than those trained only on 4584 

the focal population data and this approach can be easily generalized to other 4585 

systems. 4586 

 4587 

A potential shortcoming of using mean and weighted mean data from multiple 4588 

populations to forecast disease rather than data from a single population is the trade-4589 

off between being roughly accurate most of the time with being highly accurate some 4590 

of the time. However, the spread of model errors shows that this is not the case 4591 

because they are roughly the same between models trained on the mean and 4592 

temperature weighted mean data compared to the test population data. 4593 

 4594 

The mean error for the benchmark forecasts of log diseased adult density was 4595 

significantly associated with the average temperature of the focal population, but not 4596 

disease prevalence or log healthy adult density. Previous findings show that there is 4597 

a strong relationship between temperature and the spread of disease. There are 4598 

temperature-dependent effects on host and parasites in the Daphnia-Pasteuria 4599 

system (Allen & Little, 2011; Vale et al., 2008) and biologically reasonable increases 4600 
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in environmental temperature can cause larger epidemics (Auld & Brand, 2017b). 4601 

Interestingly, the absence of any significant relationship between the mean error for 4602 

benchmark forecasts of disease prevalence or healthy adult density with the average 4603 

temperature of the focal population indicates that there are varying effects of 4604 

temperature between diseased and healthy hosts. 4605 

 4606 

Other forecasting models that are based on time series data are available including 4607 

models which use artificial intelligence (Chimmula & Zhang, 2020; Lalmuanawma et 4608 

al., 2020; Yang et al., 2020). However, the results of these models can be difficult to 4609 

interpret. Although benchmark forecasts are commonly outperformed by these more 4610 

complex forecasting techniques (Abbasimehr & Paki, 2021; Baquero et al., 2018; 4611 

Perone, 2022), our study shows that simple benchmark forecasting techniques can 4612 

still produce the most accurate results. 4613 

 4614 

Future work should focus on two fronts. First, future work should focus on performing 4615 

the forecasting techniques used in this study in other systems where there is a lack 4616 

of research about forecasting disease in the wild. Secondly, future work should focus 4617 

on understanding how ecological and environmental drivers of disease can affect the 4618 

size and shape of epidemics, for example by the termination of epidemics. 4619 

Traditionally, the termination of parasite epidemics has been attributed to the 4620 

depletion of susceptible hosts as a result of mortality or acquired immunity (Anderson 4621 

& May, 1978; Kermack & McKendrick, 1927) and more recently due to rapid host 4622 

evolution (Duffy & Sivars-Becker, 2007; Gandon et al., 2016). Most studies which 4623 

investigate the ecological and environmental drivers of disease focus on changes in 4624 

parasite transmission (e.g. Shocket et al., 2018), rather than the size and shape of 4625 

epidemics. In turn, a better understanding of how ecological and environmental 4626 

drivers affect the size and shape of epidemics will contribute to refining forecasts of 4627 

disease. 4628 
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7. Thesis discussion 4826 

In the following discussion, the results of each research chapter (3-6) are 4827 

contextualised with the current state of knowledge and the original questions or 4828 

hypotheses outlined previously (see chapter one; Thesis introduction). How the 4829 

results of each chapter addressed some of the gaps identified in the proposed 4830 

Disease Cycle model (see chapter two; Literature Review) are presented in a final 4831 

integrated discussion together with recommendations for the direction of future 4832 

research. 4833 

 4834 

7.1 Chapter three: Ecology directs host–parasite coevolutionary 4835 

trajectories across Daphnia–microparasite populations 4836 

In chapter three (published by 2021 in Nat. Eco. & Evo.), I found the precise level of 4837 

variation in host-parasite coevolutionary trajectories in wild populations that could be 4838 

explained by environmental factors, such as temperature and food availability, in a 4839 

‘world-first’ study of its kind. In agreement with our original hypothesis, this means 4840 

that there is some level of repeatability in host-parasite coevolutionary trajectories in 4841 

the wild, despite their ecological ‘noise’. Another exciting result that I found was that 4842 

the environment influenced coevolution indirectly through changes in host 4843 

resistance, rather than parasite infectivity, in the replicate pond populations. This 4844 

supports my original hypothesis that endoparasites would be less affected by 4845 

external abiotic factors compared to their hosts (alt. ectoparasites (Cardon et al., 4846 

2011; Mahmud et al., 2017) because they are insulated from the wider environment. 4847 

 4848 

Together the results of this study demonstrate that the ability of host-parasite 4849 

(potential) coevolution measured in a laboratory-based environment to translate into 4850 

(observed or realized) natural (i.e. ‘real-world’) environments depends on the 4851 

strength of host and parasite-mediated selection relative to other biotic and abiotic 4852 

factors. Regarding the first link in the Disease Cycle model, I confirm that epidemics 4853 

can exert strong parasite-mediated selection, which can interact with other ecological 4854 

(i.e. ‘environmental’) factors, to drive host-parasite coevolutionary asymmetry. 4855 

 4856 

As a closing remark, if there was one criticism of the experiment, I would have liked 4857 

to publish the analysis of not only the direction, but also the magnitude of change 4858 

and the distance between phenotypic endpoints (Adams & Collyer, 2009; Bolnick et 4859 
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al., 2018), to demonstrate how these other aspects of phenotypic trajectories are 4860 

dependent (or not) on an interaction with the environment (Fig. S7.1). 4861 

 4862 

7.2 Chapter four: The effect of host population genetic diversity 4863 

on metrics of parasite infection success 4864 

In chapter four, I investigated the third link in the Disease Cycle, which focused on 4865 

the effect of host population genetic diversity on epidemic size. By re-analysing the 4866 

meta-analytical data collected by two previous studies (Ekroth et al., 2019; Gibson 4867 

& Nguyen, 2021), I found that the effect of host population genetic diversity on 4868 

metrics of parasite infection success was not as straightforward as previous studies 4869 

would have us believe. Although previous studies have shown a ‘conventional’ effect 4870 

of host population genetic diversity in limiting the metrics of mean parasite infection 4871 

success, I found that this is an over-generalisation. In actual fact, host population 4872 

genetic diversity limits metrics of mean infection success for specialist, but not 4873 

generalist, parasites (Paplauskas et al., 2024). This challenges conventional theory 4874 

(King & Lively, 2012) and has large implications for how genetic diversity is managed 4875 

in wild host communities. For example, we ought to be prioritising host populations 4876 

with low genetic diversity that are susceptible to specialist parasites for management 4877 

of genetic diversity (Meuwissen et al., 2020), or genetic restoration (Whiteley et al., 4878 

2015). 4879 

 4880 

I also found support for my proposed diversity uncertainty model, which predicts a 4881 

complex interaction between the effect of host population genetic diversity on both 4882 

the mean and variability in metrics of parasite infection success with both parasite 4883 

host range and parasite population genetic diversity. This result further challenges 4884 

conventional theory, which is focused on the relationship between host population 4885 

genetic diversity and epidemic size (King & Lively, 2012), by identifying how the 4886 

variability in metrics of parasite success e.g. epidemic size, are determined by a 4887 

combination of host and parasite disease traits, such as parasite host range and 4888 

parasite population genetic diversity. Perhaps a measure of the variability in parasite 4889 

success is better suited to investigating the relationship between host population 4890 

genetic diversity and epidemic size, rather than a measure of mean parasite 4891 

success, as the definition of an epidemic is a relatively large increase in the 4892 

proportion of infected individuals over time above the threshold for endemic-level 4893 

disease (Dicker, 2006). In other words, it constitutes an unusually large amount of 4894 

change (i.e. variation) in the proportion of diseased hosts within a population. In 4895 
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comparison, the concept of mean parasite success may be more relevant to small, 4896 

but significant, shifts in the endemic level of disease. 4897 

 4898 

Some of the limitations of this study, shared by previous research (Ekroth et al., 4899 

2019; Gibson & Nguyen, 2021), is the difficulty in communicating what the difference 4900 

is between a high versus low genetic diversity population. This can refer to studies 4901 

which have (i) inbred lineages to create a comparison between inbred and outbred 4902 

populations (Baer & Schmid-Hempel, 2001), (ii) used a suite of wildtype genotypes 4903 

for controlled experiments with either low genetic diversity or high genetic diversity 4904 

(Florian Altermatt & Ebert, 2008), (iii) sampled organisms from the wild from 4905 

populations that have been characterised as having different levels of genetic 4906 

diversity (Tarpy & Seeley, 2006) or (iv) quantified a continuous measure of genetic 4907 

diversity, such as heterozygosity (Ellison et al., 2011). The inconsistency between 4908 

these different metrics of host population genetic diversity, combined with a lack of 4909 

understanding as to what ‘parasite infection success’ actually refers to, limits the 4910 

ability to quantify exactly how host population genetic diversity leads to some kind of 4911 

tractable change in future epidemic size (third link in the Disease Cycle). Although a 4912 

previous meta-analysis went some way to quantifying the effect of host population 4913 

genetic diversity on the spread of disease, by showing the reduction in metrics of 4914 

mean parasite infection success between host populations with high versus low 4915 

genetic diversity was approximately 20% for non-crop hosts and 50% for crop hosts 4916 

(Gibson & Nguyen, 2021), there is potential confusion over what the distinction 4917 

between high and low population genetic diversity is. 4918 

 4919 

This lack of a quantitative estimate of the effect of host population genetic diversity 4920 

on the spread of disease has been studied previously as part of the concept of a 4921 

‘diversity threshold’ (Lively, 2010). This research was motivated by the idea that 4922 

parasites might be eliminated by increasing host genetic diversity above a certain 4923 

level. By simulating hosts with two resistance loci and up to three alleles (total of nine 4924 

genotypes), the author found that, despite the positive effect of increasing population 4925 

size on R0, doubling host population size and increasing the number of genotypes 4926 

by four times decreases R0 below zero. I proposed one possible solution to this 4927 

problem would be for future studies to utilize a standardized measure of epidemic 4928 

size, such as integrated disease prevalence (which is the proportion of infected 4929 

individuals within in a population over time).  4930 

 4931 
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Another potentially confounding factor, which may limit the ability of this study to 4932 

identify the real relationship between the effect of host population genetic diversity 4933 

on metrics of infection parasite success, is what the shape is of the host and parasite 4934 

genetic diversity distributions. Since the ability of host population genetic diversity to 4935 

affect metrics of parasite infection success relies on matching host and parasite 4936 

genotypes (Schmid-Hempel & Ebert, 2003), a key question becomes are these 4937 

distributions symmetrical? For example, host populations with a low level of genetic 4938 

diversity may have undergone balancing selection, and suffered from a loss of 4939 

extreme phenotypes. Alternatively, host populations may have experienced genetic 4940 

diversity loss through direction selection, leading to a loss of one group of extreme 4941 

genotypes, but not the other. This is implicated with the history of antagonistic 4942 

selection between the host and parasite populations (i.e. selective sweeps versus 4943 

negative frequency dependent selection that either erode or maintain genetic 4944 

diversity over time (see Fig. 2.4)) and the reason for genetic diversity loss e.g. 4945 

hunting versus inbreeding (see chapter two, 2.4). Finally, the particular model of 4946 

infection genetics that describes a given host-parasite system (i.e. matching-alleles 4947 

vs gene-for-gene (Agrawal & Lively, 2002)) and the corresponding infection 4948 

specificity (Schmid-Hempel & Ebert, 2003) will influence how important the symmetry 4949 

in host and parasite genetic diversity distributions is. If there is a high level of 4950 

specificity for infection (i.e. matching-alleles) then we would expect symmetry to be 4951 

important, whereas if there is a low level of specificity for infection (i.e. gene-for-4952 

gene) then we would not. 4953 

 4954 

One parting comment on the potential limitation of using the log coefficient of 4955 

variation ratio (lnCVR) over an alternative effect size (such as the log variability ratio, 4956 

lnVR) is that it is not possible to model a mean-variance relationship between the 4957 

standardized mean difference (SMD) and lnCVR (Supplementary figure S7.2). This 4958 

is because the calculation of both SMD and lnCVR involves using the mean of each 4959 

control (high diversity) and treatment (low diversity) within a comparison. To the best 4960 

our knowledge, this issue has not been encountered before in previous research. To 4961 

enable a direct comparison of the effect of host population genetic diversity on the 4962 

mean and variability in metrics of parasite infection success between host 4963 

populations with high versus low genetic diversity, we would require a much larger 4964 

amount of data on the specific sampling distribution which most accurately reflect 4965 

the true probability term for a positive occurrence in each metric of parasite success 4966 

(transmission, parasite load and virulence). For example, if we were interested in 4967 

simulating epidemic size (proportion of infected hosts) as a metric of parasite 4968 
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infection success, this would require an estimate for the binomial probability term 4969 

used to define whether any given susceptible host is infected within a population. 4970 

Once this data is available, we would then be able to test the extent to which any 4971 

regression model of true (observed) effect sizes deviates from a simulated dataset. 4972 

Producing such a detailed background dataset of sampling distributions would 4973 

require an enormous amount of empirical work in different host-parasite systems. 4974 

 4975 

7.3 Chapter five: The ability of non-locally adapted hosts to 4976 

outcompete resident hosts in wild populations 4977 

In chapter five, I found the ability of non-locally adapted hosts to outcompete resident 4978 

host genotypes under parasite exposure. This could affect future epidemic size in 4979 

host populations in various ways. For example, the inability of residents hosts to 4980 

withstand migrant invasion means that gene flow, and the accompanying overall 4981 

level of host population genetic diversity, could potentially increase and lead to small 4982 

average epidemic size in the future (Paplauskas et al., 2024). Alternatively, the 4983 

susceptibility of residents to invasion by migrant hosts may limit future mean 4984 

epidemic size increasing the turnover rate of local populations. Since fundamental 4985 

local adaptation theory predicts that parasites will be less well-adapted to non-local 4986 

hosts, as local hosts are often trapped on the losing side of a cycle of antagonistic 4987 

coevolution (Gandon, 2002), newly founded migrant host populations could be more 4988 

resistant to disease.  4989 

 4990 

Similarly, the lack of host local adaptation to the abiotic environment observed in the 4991 

experimental populations suggests that local populations are also at risk of 4992 

displacement by migrants undergoing range shifts in response to climate change 4993 

(Price et al., 2019). Although in comparison to interspecific competition, rather than 4994 

inter-population competition between local and migrant conspecifics, in exploratory 4995 

experiments varying the strength of adaptation and competition, one study found that 4996 

competition actually reduced the level of population genetic diversity in competing 4997 

species, leading to a reduction in the rate of range change (Bocedi et al., 2013). 4998 

However, in accordance with the results of my study, weak selection on local 4999 

adaptation resulted in the tracking of cooler-adapted phenotypes away from an 5000 

expanding range margin and therefore a loss of warmer-adapted phenotypes. 5001 

 5002 
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As alluded to in the discussion section of chapter five, there might be an opportunity 5003 

for future research to study patterns of parasite local adaptation in the replicate pond 5004 

populations (Supplementary S7.3). In comparison to my previous research, which 5005 

focused on the extent to which variation in pond environments could explain variation 5006 

in the direction of host-parasite coevolutionary trajectories (Paplauskas et al., 2021), 5007 

a test of parasite local adaptation would focus on whether parasites from different 5008 

ponds were better adapted to local versus away hosts (Gandon & Nuismer, 2009). 5009 

Also, this would offer the opportunity to examine the environmental drivers of 5010 

parasite local adaptation patterns, which is a common goal of local adaptation 5011 

experiments (Blanquart et al., 2013; Kawecki & Ebert, 2004).  5012 
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7.4 Chapter six: Borrowing data from other populations to 5013 

forecast epidemics 5014 

In chapter six, I found that data from replicate Daphnia host populations could be 5015 

used to improve forecast accuracy relative to using a single population. Specifically, 5016 

other than the regression models that used predicted temperature values to forecast 5017 

disease prevalence, where the mean accuracy between single and multi-population 5018 

models was equivalent, the mean accuracy of disease prevalence forecasts based 5019 

on both the mean and temperature weighted mean data was significantly higher than 5020 

the mean accuracy of those same models trained on data from a single population. 5021 

This was consistent with the benchmark models, which showed similar accuracy to 5022 

the other more complex forecasting approaches, and for environmentally 5023 

(temperature) weighted versus standard means, which were also equivalent. 5024 

Therefore, despite the lack of forecast accuracy gained by using the similarity in 5025 

environmental conditions between replicate populations, this study demonstrated 5026 

how data from separate populations can be used to predict future epidemic size, 5027 

rather than relying on several years of historical data from a single population. 5028 

 5029 

Overall, a major application of this work could be in a new method that can be used 5030 

for quickly predicting the size of future epidemics of emerging or novel wildlife 5031 

diseases. For a great many disease systems, forecasting future epidemic size relies 5032 

on extensive historical data from a single population. However, since there is no such 5033 

historical data for emerging diseases, it might instead be possible to forecast the 5034 

magnitude of a future emerging disease epidemic by establishing a group of replicate 5035 

populations across space, similar to the method used in this study, as a trade-off 5036 

against time. However, the extent to which this method can be employed in a non-5037 

model system, such as vertebrates or plant host – parasite systems, that may require 5038 

a large amount of habitat space, is not well-understood. Similar to predicting 5039 

epidemic size for emerging or novel disease, although the epidemic forecasting 5040 

models trained on my temperature-weighted mean were not significantly better than 5041 

those using a standard mean, the same method could theoretically be applied to 5042 

predict epidemic size in response to climate change. 5043 

 5044 

As previously mentioned, although I found that weighting the training datasets by 5045 

their (temperature) similarity to the focal population, one possible direction for future 5046 

work is to measure precisely how much additional accuracy is (or is not) gained by 5047 

adding further variables. For example, it would be useful to know how much a 5048 
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multivariate measure of environment similarity (e.g. using Mahalanobis distance in 5049 

the sense of (Paplauskas et al., 2021) improves forecast accuracy relative to a more 5050 

limited dataset with only a single variable, and whether it is worth all of the extra 5051 

effort in collecting the data in the first place. This idea of how much data a model 5052 

really needs in order to avoid a diminishing return, is a fundamental unanswered 5053 

question in statistics generally (McCrea et al., 2023; Simmonds et al., 2020). 5054 

 5055 

7.5 Impact of my proposed Disease Cycle 5056 

The primary objective of this thesis was to evaluate the current support for the 5057 

Disease Cycle model proposed in chapter one, intended to provide a theoretical 5058 

framework to link the size of past and future epidemics of disease (Fig. 1.1), and 5059 

address any knowledge gaps that would require filling to complete the cycle.  5060 

 5061 

Following my review of the current literature in chapter two, I identified a few areas 5062 

for future research. This included (i) measuring the extent to which epidemics drive 5063 

realised coevolutionary change (versus its potential) in ‘real-world’ environments 5064 

(first link in the Disease Cycle), and (ii) the extent to which host population genetic 5065 

diversity limits the mean and affects the variability in future epidemic size (third link 5066 

in the Disease Cycle). In chapter three, using parasite infectivity data and change in 5067 

host genotype frequencies within replicate host-parasite populations, I was able to 5068 

demonstrate the precise amount of variation in coevolutionary trajectories that was 5069 

driven by a mixture of biotic and abiotic environmental conditions (Paplauskas et al., 5070 

2021). In chapter four, by re-analysing the meta-analytical data collected by two 5071 

previous studies (Ekroth et al., 2019; Gibson & Nguyen, 2021), I found that the effect 5072 

of host population genetic diversity on the mean and variability metrics of parasite 5073 

infection success depended on a combination of parasite specificity and parasite 5074 

population genetic diversity (Paplauskas et al., 2024). Specifically, I found that (a) 5075 

host population genetic diversity limited the metrics of mean infection success for 5076 

specialist, but not generalist, parasites and (b) there was support for a diversity 5077 

uncertainty model that predicts a complex interaction between the effect of host 5078 

population genetic diversity on the variability in metrics of parasite infection success 5079 

with both parasite host range and parasite population genetic diversity. 5080 

 5081 

These findings from chapters three and four have helped to fill major gaps in the 5082 

Disease Cycle. In comparison, the findings from chapters five and six have 5083 

addressed more specific topics within the overall Disease Cycle perspective. In 5084 
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chapter five, I found the ability of non-locally adapted hosts to outcompete resident 5085 

hosts in the wild. This has implications for the extent of gene flow between host 5086 

subpopulations, which may increase in response to successful migrant competition, 5087 

and therefore decrease the size and severity of future disease outbreaks by 5088 

increasing the level of host population genetic diversity (Paplauskas et al., 2024). In 5089 

chapter six, I borrowed data from other populations to forecast epidemic size and 5090 

found that it increases forecast accuracy relative to single population models. This 5091 

was an actual demonstration of how the size of past epidemics can be used to predict 5092 

the size of future epidemics. 5093 

 5094 

In realisation of a somewhat narrow focus of my preceding work, there is a 5095 

substantial knowledge gap which remains in the second link in the Disease Cycle, 5096 

between the effect of coevolution on the amount of host and parasite population-5097 

level genetic diversity. In particular, how the tempo and mode of coevolution affects 5098 

the maintenance of host and parasite population genetic diversity is still limited to 5099 

model systems, such as Daphnia host – parasite systems (Bento et al., 2017a). More 5100 

studies in non-model organisms, such as long-lived vertebrates or plants, for which 5101 

the genetic basis for infection is less well-understood (Brockhurst & Koskella, 2013; 5102 

Schmid-Hempel & Ebert, 2003), are required to confirm the generality of current 5103 

theory. In addition, more long-term studies of coevolution are required to understand 5104 

the extent to which coevolutionary dynamics are maintained over time (but see 5105 

(Soubeyrand et al., 2009; Thrall et al., 2012; Susi and Laine, 2015; Ericson, Müller 5106 

and Burdon, 2017; but see Dewald-Wang et al., 2022)). 5107 

 5108 

Moving forward, I propose that future studies utilize standardized measures of 5109 

epidemic size, such as integrated disease prevalence (which is the proportion of 5110 

infected in a population over time, see chapter two Fig. 2.1) to understand how it 5111 

shapes patterns of host and parasite population genetic diversity. Ideally, future 5112 

research should focus on developing a true measure of epidemic severity which 5113 

combines size (transmission) and virulence. This would further help to quantify the 5114 

realised versus potential ability of epidemics to drive evolutionary change. 5115 

 5116 

Another potential direction for future research is to build deterministic forecast 5117 

models for future epidemic size which account for the strength of host-parasite 5118 

selection, the tempo and mode of coevolution and population-level genetic diversity 5119 

(the three major axes of the Disease Cycle, Fig. 1.1). These sorts of processes are 5120 
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not part of current epidemic modelling research, but could be useful for disease 5121 

systems where there is strong host and parasite-mediated reciprocal selection. This 5122 

would be particularly relevant for invertebrates and other non-vertebrate systems, 5123 

where there is innate (Little et al., 2003) versus acquired immunity (Babayan et al., 5124 

2011). However, this approach to epidemic modelling would perhaps require a 5125 

require a large amount of data that is currently unavailable, such as (i) a general 5126 

estimate of the potential for epidemics to drive host-parasite evolutionary change, (ii) 5127 

system-specific rates of host evolution of resistance and parasite evolution of 5128 

infectivity and (iii) a measure of host (and parasite) population genetic diversity, to 5129 

parameterise these Disease Cycle processes within a mathematical model. In 5130 

addition, maybe prediction is not as useful as prevention in some disease systems. 5131 

For example, for human hosts, we may not require a high level of forecasting 5132 

accuracy because after an initial outbreak occurs, the priority quickly shifts to 5133 

intervention (i.e. development of a vaccine, such as for Covid-19 (Moghadas et al., 5134 

2021), and for other (vertebrate) host systems, acquired immunity has the ability to 5135 

break the cycle of disease by disrupting the link between the size of past and future 5136 

epidemics. 5137 

 5138 

Overall, the concept of a Disease Cycle offers a new, coevolutionary perspective on 5139 

epidemics in a range of host-parasite systems. This includes microparasites, whose 5140 

infections of host populations are characterised by epidemics (Hudson et al., 2002), 5141 

and host species with innate rather than acquired immunity, including plants, fungi, 5142 

prokaryotes and invertebrates (Janeway et al., 2001). The intended use of the model 5143 

is to provide a theoretical link between the size and severity of past and future 5144 

epidemics within a broad context of environmental change, that can be applied to a 5145 

wide range of host-parasite systems, to better understand the underlying 5146 

coevolutionary processes that cause epidemic size to vary across time and space. 5147 

This theoretical Disease Cycle model can be further evaluated and reinforced by 5148 

future empirical studies.  5149 

 5150 
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7.7 Supplementary information 5264 

 

Supplementary figure S7.1. Demonstrative host-parasite coevolutionary 

trajectories and their measurement in different ways (L, ∆L, θ and δ). Each quarter 

of the plotting area shows a different (co)evolutionary relationship, where negative 

values represent a loss of either host resistance (y-axis) or parasite infectivity (x-

axis), and positive values of change in host or parasite disease traits the opposite 

(uppercase letters A-D). No change in either host or parasite (co)evolutionary 

trajectories is indicated at zero (dashed line in the middle of each antagonist’s 

axis). The vectors (phenotypic, so-called trajectories), correspond to the solid 

arrows. They share a common origin (vector tails) and divergent end positions 

(open arrows). There are five cases of host-parasite (co)evolution (lowercase a-e) 

and four different units for measuring phenotypic trajectories (annotations in red). 

The magnitude of evolution is represented by L, vector length (e.g. La represents 

the magnitude of evolution trajectory a). The difference in L (∆L) represents the 

difference in the length of phenotypic trajectories, such as a and d (∆La,d). The 

relative contribution of each axis to the combined host-parasite vector is shown by 

θ, which is the difference in the direction (or angle) between two vectors, such as 

a and b (θb,c). The degree of dissimilarity between evolved phenotypes (open 

arrowheads) is indicated by the distance between vector endpoints, such between 

endpoints of vectors d and e (δd,e). Adapted from Stuart et al. (2017). 
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Supplementary figure S7.2. Pairwise comparison of the mean proportion of 

infected hosts as part of a hypothetical local adaptation experiment in the 

experimental pond populations. The home and away origin of the parasite is 

indicated by the solid and dashed lines respectively. 
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Supplementary figure S7.3. The mean-variance relationship between the 

difference in the mean (standardized mean difference [SMD] or “Hedge’s g”) and 

variability in parasite success (log coefficient of variation ratio [lnCVR]). A) Effect 

sizes from the actual data and B) effect sizes from the simulated data. Assuming 

that there were approximately ten replicates per study in the actual effect size data, 

simulated data were randomly generated from a normal distribution for each high 

versus low population genetic diversity comparison for the calculation of simulated 

effect sizes. The significance of the mean-variance relationships for each dataset 
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was tested using linear modelling and is shown by the blues lines with 95% 

confidence interval bands (linear model coefficient = -0.24 and -1.15; SE = 0.04 

and 0.06; p < 0.001 and p < 0.001 for the real and fake dataset respectively). 
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