
N E U R O E V O L U T I O N T R A J E C T O RY N E T W O R K S

illuminating the evolution of artificial neural networks

stefano sarti

Doctor of Philosophy

Division of Computing Science and Mathematics
University of Stirling

November 2023

[13th June 2024 at 16:43]

D E C L A R AT I O N

I hereby declare that this dissertation is the result of my own work and
includes nothing which is the outcome of work done in collaboration except
where specifically indicated in the text and bibliography.

I also declare that this dissertation (or any significant part of my disserta-
tion) is not substantially the same as any that I have submitted, or that is
being concurrently submitted, for a degree or diploma or other qualification
at the University of Stirling or similar institution.

I was admitted as a research student in October 2019 and a candidate for
the degree of Doctor of Philosophy in December 2020. This dissertation is
a record of the work carried out at the University of Stirling between 2019

and 2023, under the supervision of Professor Gabriela Ochoa and Doctor
Jason Adair.
I have read, and adhered to, the University’s plagiarism policy, as detailed
at:
http://www.plagiarism.stir.ac.uk/

Stirling, November 2023

Stefano Sarti

ii

[13th June 2024 at 16:43]

http://www.plagiarism.stir.ac.uk/

A B S T R A C T

Neuroevolution is the discipline whereby Artificial Neural Networks (ANNs)
are automatically generated using Evolutionary Computation (EC). This field
began with the evolution of dense (shallow) neural networks for reinforce-
ment learning task; neurocontrollers capable of evolving specific behaviours
as required.

Since then, neuroevolution has been used to discover architectures and
hyperparameters of Deep Neural Networks, in ways never before conceived
by human experts, with many achieving state-of-the-art results. Similar to
other types of Evolutionary Algorithms (EAs), there is a wide variety of
neuroevolution algorithms constantly being introduced. However, there is
a lack of effective tools to examine these systems and assess whether they
share underlying principles.

This thesis proposes Neuroevolution Trajectory Networks (NTNs), an
advanced visualisation tool that leverages complex networks to explore the
intrinsic mechanisms inherent in the evolution of neural networks. In this
research the tool was developed as a specialised version of Search Trajectory
Networks, and it was particularly instantiated to illuminate the behaviour
of algorithms navigating neuroevolution search spaces.

Throughout the progress, this technique has been progressively applied
from systems of shallow network evolution, to deep neural networks. The
examination has focused on explicit characteristics of neuroevolution system.
Specifically, the learnings achieved highlighted the importance of under-
standing the role of recombination in neuroevolution, revealing critical
inefficiencies that hinder overall algorithm performance. A relation between
neurocontrollers’ diversity and exploration exists, as topological structures
can influence the behavioural characterisations and the diversity generation
of different search strategies. Furthermore, our analytical tool has offered
insights into the favoured dynamics of transfer learning paradigm in the
deep neuroevolution of Convolutional Neural Networks; shedding light on
promising avenues for further research and development.

All of the above have offered substantial evidence that this advanced tool
can be regarded as a specialised observational technique to better understand
the inner mechanics of neuroevolution and its specific components, beyond
the assessment of accuracy and performance alone. This is done so that

iii

[13th June 2024 at 16:43]

collective efforts can be concentrated on aspects that can further enhance
the evolution of neural networks.

Illuminating their search spaces can be seen as a first step to analysing
neural network compositions.

iv

[13th June 2024 at 16:43]

A C K N O W L E D G M E N T S

Embarking on a Ph.D. research is akin to setting sail into uncharted ter-
ritories. Navigating this academic journey requires a reliable “crew”, and
the people chosen for this venture must be prepared to provide assistance
throughout the arduous yet fulfilling process.

I am immensely grateful for my exceptional crew, whose unwavering
support has been instrumental in making this challenging expedition feel like
a success. I extend my heartfelt thanks to each of them for their contributions,
transforming this academic endeavour into a truly memorable adventure.

Foremost, my sincere appreciation goes to my primary supervisor, Prof.
Gabriela Ochoa. Their constant guidance, wealth of knowledge, and honest
feedback have made me into the researcher I am today. I owe a signific-
ant portion of my development to their continual support from the very
beginning.

I also extend my deepest gratitude to my second supervisor, Dr. Jason
Adair, whose genuine advice and strong guidance have been indispensable
in navigating the complexities of a research degree. Their assistance, defined
by their kind and approachable manner, has profoundly influenced my
academic path.

A special acknowledgment is reserved for my wife, Kate, whose constant
support, kind advice, and enduring presence have shown strength through-
out this lengthy project. Her care and understanding have made a significant
difference, for which I express my deepest love and appreciation.

To my family, the unwavering harbour in a tempest and the radiant
sunshine after, I send you heartfelt gratitude. Your constant presence during
both joyous and challenging times has been a source of immense strength,
and I am truly blessed to have you by my side. You have always believed in
my potential, and never doubted me.

Lastly, my sincere thanks go to friends and colleagues who have added
joy, laughter, constructive criticism, and countless happy memories to this
Ph.D. journey. Your companionship has made the experience both fun and
intellectually stimulating. This academic endeavour would not have been as
enriching without your friendship.
I will treasure these memories for years to come.

v

[13th June 2024 at 16:43]

to Laura and Massimo; for always believing in me.

vi

[13th June 2024 at 16:43]

L I S T O F P U B L I C AT I O N S

The chapters below are based on publications output during this Ph.D.
research. Each row relates to the chapter and its relevant publication.

Chapter # Publication

3 Sarti, S., Ochoa, G., (2021), December. A NEAT Visualisa-
tion of Neuroevolution Trajectories. In: Castillo, P.A., Jiménez
Laredo, J.L. (eds) Applications of Evolutionary Computa-
tion. EvoApplications 2021. Lecture Notes in Computer
Science(), vol 12694. Springer, Cham.
(Best Paper Nomination, Best Student Paper Nomination)

4 Sarti, S., Adair, J., Ochoa, G. Recombination and Novelty in
Neuroevolution: A Visual Analysis. SN COMPUT. SCI. 3, 185

(2022)

5 Sarti, S., Adair, J., Ochoa, G. (2022). Neuroevolution Traject-
ory Networks of the Behaviour Space. In: Jiménez Laredo, J.L.,
Hidalgo, J.I., Babaagba, K.O. (eds) Applications of Evolu-
tionary Computation. EvoApplications 2022. Lecture Notes
in Computer Science, vol 13224.

6 Sarti, S., Lourenço, N., Adair, J., Machado, P., Ochoa, G.
(2023). Under the Hood of Transfer Learning for Deep Neur-
oevolution. In: Correia, J., Smith, S., Qaddoura, R. (eds)
Applications of Evolutionary Computation. EvoApplica-
tions 2023. Lecture Notes in Computer Science, vol 13989.
Springer, Cham.
(Best Paper Award, Best Student Paper Award)

6 Stefano Sarti. 2023. Neuroevolution Trajectory Networks:
revealing the past of incrementally neuroevolved CNNs.
In Proceedings of the Companion Conference on Genetic
and Evolutionary Computation (GECCO ’23 Companion).
Association for Computing Machinery, New York, NY, USA,
41–42.

vii

[13th June 2024 at 16:43]

C O N T E N T S

1 chapter 1 — introduction 1

1.1 Overview . 1

1.1.1 Modelling the world . 1

1.1.2 The necessity to illuminate neuroevolution 3

1.2 Research hypothesis . 5

1.3 Contributions . 5

1.4 Thesis structure . 5

2 chapter 2 — preliminaries and background knowledge 7

2.1 Network Theory . 7

2.1.1 Local Optima Networks 9

2.1.2 Search Trajectory Networks 10

2.1.3 Neuroevolution Trajectory Networks 14

2.2 Algorithms and Search Strategies 15

2.2.1 NEAT . 15

2.2.2 Novelty Search vs Objective Search 18

2.2.3 DSGE-Powered Neuroevolution 21

3 chapter 3 — literature review 28

3.1 Early days of Neuroevolution 28

3.2 Recombination in NEAT . 29

3.3 Scaling up to Deep Learning 30

3.4 The search for Novelty and increased diversity 32

3.5 The indirect encoding paradigm 34

3.6 Neuroplasticity and meta-learning 37

3.7 The modern days of Neuroevolution 40

3.8 Illuminating fitness landscapes and the search space 42

3.9 Conclusions . 44

4 chapter 4 — recombination in neat : a search traject-
ory networks perspective 46

4.1 Key contributions and motivations 47

4.2 Historical Markings in recombination 47

4.3 Modelling NEAT architectures to STNs signatures 49

4.4 Complex networks characterisation 55

4.4.1 Merged Search Trajectory Networks 55

4.4.2 The Reingold-Tilford tree layout 56

4.5 Experimental settings . 58

4.6 Analysis rationale . 62

viii

[13th June 2024 at 16:43]

4.7 Results and discussion . 63

4.7.1 Statistical performance results 63

4.7.2 Illumination of NEAT search space using STNs 67

4.8 Summary . 72

5 chapter 5 — the role of recombination in the pursuit

of behavioural novelty 74

5.1 Key contributions and motivations 74

5.2 Deceiving domains, recombination and diversity 75

5.3 Complex networks characterisation 77

5.3.1 Merged Compressed STNs 77

5.3.2 Fruchterman-Reingold Force Directed layout 79

5.4 Experimental settings . 79

5.5 Analysis rationale . 81

5.5.1 Statistical analysis . 82

5.5.2 Merged CSTNs analysis 83

5.6 Results and discussion . 84

5.6.1 Hard maze . 89

5.6.2 STNs analysis of search strategies dynamics 89

5.6.3 Results discussion . 93

5.7 Summary . 94

6 chapter 6 — the behaviour search space under neur-
oevolution trajectory networks observation 97

6.1 Key contributions and motivations 97

6.2 Illuminating Behavioural Characterisations 98

6.3 The Inception of Neuroevolution Trajectory Networks 99

6.4 Analysis rationale . 101

6.5 Results and Discussion . 102

6.5.1 Behavioural diversity related to topological complexity 102

6.5.2 Visualising the behaviour search space with NTNs . . 106

6.6 Summary . 111

7 chapter 7 — revealing the past of incrementally neur-
oevolved convolutional neural networks 113

7.1 Key contributions and motivations 113

7.2 From shallow to layer-based Neuroevolution 114

7.3 Tracking the transfer of evolutionary units 115

7.4 Analysis rationale: NTNs characterisation 117

7.5 Experimental settings . 119

7.6 Results . 120

7.6.1 Revealing transfer learning through NTNs 123

7.7 Conclusions . 128

ix

[13th June 2024 at 16:43]

8 chapter 8 — research synopsis 131

8.1 Summary of contributions . 131

8.2 Network Architecture Analysis (NNA) 133

8.3 Final remarks . 134

8.4 Future Outlook . 137

a reflections on research 1

x

[13th June 2024 at 16:43]

L I S T O F F I G U R E S

Figure 1.1 First computed visualisation of the Mandelbrot set [1]. 2

Figure 2.1 Venn diagram of Neuroevolution Trajectoty Networks
(NTNs) methodology formation. 7

Figure 2.2 An example of an optimal and suboptimal solution for
a small TSP instance. 10

Figure 2.3 Exemplification of a typical trajectory in an STN form-
ation. 13

Figure 2.4 Speciation in NEAT. Sourced from [2]. 17

Figure 2.5 The maze navigation problems used in Novelty Search [3]. 18

Figure 2.6 Explanation of Grammatical Evolution (Grammatical
Evolution (GE)) with a simple grammar. Sourced from [4]. 22

Figure 2.7 An example of the Context-Free Grammar (CFG) used
in the research detailed in Chapter 7. Sourced from [5]. 24

Figure 2.8 Diagram illustrating the workings of Fast-DENSER
with incremental development [6]. 26

Figure 4.1 The role of recombination in Neuroevolution of Aug-
menting Topologies (NEAT). Sourced from [2]. The
number at the top of each gene cell is the innova-
tion number. The arrows signify the edge component,
in the form outbound cell - inbound cell. 48

Figure 4.2 An illustration of the genotype-phenotype dichotomy.
Adapted from [2]. 50

Figure 4.3 Exemplification of the mapping process from gen-
otypes to unique signatures for the construction of
Search Trajectory Networks (STNs). Sourced from [7]. . 51

Figure 4.4 A simplified illustration of the 3 dimensional search
space partitioning into uniform hypercube dictated by
the PF. 54

Figure 4.5 An exemplification of the node-edge logs necessary to
compute the merged STNs structure for our multi-
variant experiment. 56

Figure 4.6 A demonstration of the tidier tree provided by the RT
layout. Illustration adapted from [8]. 57

xi

[13th June 2024 at 16:43]

Figure 4.7 Illustration of the Double Pole Balancing domain (Double
Pole Balancing with Velocities (DPV)). Figure adapted
from [9]. 59

Figure 4.8 Average best fitness with standard deviations across
generations for the two NEAT variants on the XOR
domain [7]. 64

Figure 4.9 Average best fitness with standard deviations across
generations for the two NEAT variants on the DPV
domain [7]. 65

Figure 4.10 Distribution (across 30 runs) of the number of eval-
uations to reach a solution (left plot) and the best
genomes fitness values at the middle of the run for the
two NEAT variants in both problem domains. 66

Figure 4.11 Merged STN for XOR. The nodes and edges visited
by the crossover variant are decorated in blue and
the no crossover variant are in red. Light grey nodes
indicate locations visited by both variants. Node sizes
are proportional to their incoming degree. The starts
of trajectories are represented in yellow and the nodes
achieving the fitness threshold (solutions) are shown
in dark grey, and both of slightly larger size. 68

Figure 4.12 Merged STN for DPV. The nodes and edges visited
by the crossover variant are decorated in blue and
the no crossover variant are in red. Light grey nodes
indicate locations visited by both variants. Node sizes
are proportional to their incoming degree. The starts
of trajectories are represented in yellow and the nodes
achieving the fitness threshold (solutions) are shown
in dark grey, and both of slightly larger size. 69

Figure 5.1 Illustration of the CSTNs technique for handling fitness
landscape neutrality [10]. 78

Figure 5.2 Illustration of the forces involved in the Force Directed
layout. 79

Figure 5.3 Physiognomy of the maze navigating agent. Illustration
adapted from [9], derived from [10]. 80

Figure 5.4 Convergence plots showing the averaged fitness per-
formance over 30 runs for all variants tested in both
maze domains. The convergence curves are shown
from generation 300 to highlight salient differences in
the Novelty Search strategy for the hard maze. 84

xii

[13th June 2024 at 16:43]

Figure 5.5 Navigation paths of the best genomes evolved by each
NEAT variants. 86

Figure 5.6 Distributions for best fitness values on the medium map
for all variants. Swarm plots overlaid to demonstrate
the individual data points for each variant. 88

Figure 5.7 Distributions of the generations needed for each vari-
ant to reach a solution on the hard map. Swarm plots
overlaid to show the individual data points for each
variant — those that lie above the dotted line represent
runs that failed to reach a solution. 88

Figure 5.8 Distributions for best fitness values on the medium map
for all variants. Swarm plots overlaid to demonstrate
the individual data points for each variant. 89

Figure 5.9 Distributions of the generations needed for each vari-
ant to reach a solution on the hard map. Swarm plots
overlaid to show the individual data points for each
variant — those that lie above the dotted line represent
runs that failed to reach a solution. 90

Figure 5.10 CSTNs for crossover and no-crossover variants of fitness
search for both medium and hard maze configurations. 92

Figure 5.11 CSTNs for crossover and no-crossover variants of Nov-
elty Search for both medium and hard maze configura-
tions. 93

Figure 6.1 Illustration of the Cartesian layout used in this research.100

Figure 6.2 Fitness distribution of all strategies for each domain
difficulty . 104

Figure 6.3 Evaluations distribution of alls strategies for each do-
main difficulty. 105

Figure 6.4 Topology complexity and behavioural diversity ana-
lysis of distributions for all variants in both maze con-
figurations. 106

Figure 6.5 single CNTNs for 10 selected runs, in terms of per-
formance for all strategies in both domain configur-
ations [11]. The colour of the nodes are based on a
gradient signifying normalised topological complexit-
ies, and the size is related to the incoming strength of
the connections. 108

Figure 6.6 Cartesian NTNs for the best runs in fitness perform-
ance terms, for all strategies in both mazes configura-
tion [11]. 110

xiii

[13th June 2024 at 16:43]

Figure 7.1 Illustration of the progression in NTNs analysis from shal-
low to deep neural networks. 114

Figure 7.2 Illustration of two example NTN signatures with and
without origins tags. 115

Figure 7.3 Illustration of the first attempt of revealing incremental
development on one run of the original F-DENSER.
Diagram sourced from [5]. 116

Figure 7.4 Exemplification of the NTNs visualisation for this com-
plex multidimensional space [6]. 118

Figure 7.5 Average classification accuracy for all variants on Fashion-
MNIST. Individual run values overlaid 121

Figure 7.6 Average trainable parameters for all variants on Fashion-
MNIST. Individual run values overlaid. 122

Figure 7.7 Average training time for all variants on Fashion-
MNIST. Individual run values overlaid. 123

Figure 7.8 Neuroevolution Trajectory Networks showing group 1
evo. filter for all variants of Fast-DENSER 125

Figure 7.9 Neuroevolution Trajectory Networks showing group 2
evo. filter for all variants of Fast-DENSER 126

Figure 7.10 Neuroevolution Trajectory Networks showing group 3
evo. filter for all variants of Fast-DENSER 128

Figure 8.1 A representation of the Feynmann diagrams. Sourced
from [12] . 135

xiv

[13th June 2024 at 16:43]

L I S T O F TA B L E S

Table 4.1 XOR input-outputs classification table. 59

Table 4.2 Parameter values used in for the DPV domain. 60

Table 4.3 Parameter values used in NEAT for each benchmark
domain. 61

Table 4.4 Significance testing for effectiveness and efficiency
between NEAT with and without recombination. . . . 64

Table 4.5 STN structural metrics. 70

Table 5.1 NEAT parameter values used. The k parameter (from
k-nearest neighbours) is relevant only for the novelty
search variants. 82

Table 5.2 Performance metrics of the best fitness and generations
average values with standard deviations in parenthesis.
Average generations are computed for the successful
runs only. S.R. = Success Rate, B.F. = Best Fitness and
G. = Generations. 86

Table 5.3 STNs metrics for all variants in both maze configurations. 91

Table 6.1 NTNs metrics. 107

Table 7.1 Performance metrics for Fashion-MNIST classification
problem. 123

xv

[13th June 2024 at 16:43]

L I S T O F A C R O N Y M S

ANNs Artificial Neural Networks iii

EAs Evolutionary Algorithms iii

EC Evolutionary Computation iii

DPV Double Pole Balancing with Velocities xii

NTNs Neuroevolution Trajectoty Networks xi

STNs Search Trajectory Networks xi

GE Grammatical Evolution . xi

NEAT Neuroevolution of Augmenting Topologies xi

CFG Context-Free Grammar . xi

CNNs Convolutional Neural Networks 3

DSGE Dynamic Sturctured Grammatical Evolution 3

DNN Deep Neural Networks . 3

LONs Local Optima Networks 4

BC Behaviour Characterisation 6

Fast-DENSER Fast-Deep Evolutionary Network Structured
Representation . 6

PSO Particle Swarm Optimisation 10

DE Differential Evolution . 10

TSP Travelling Salesman Problem 11

NAA Network Architecture Analysis 15

TWEANN Topology and Weight Evolving Artificial Neural Network 15

QD Quality Diversity . 20

DENSER Deep Evolutionary Network Structured Representation . 21

GP Genetic Programming . 21

SGE Structured Grammatical Evolution 22

ES Evolution Strategies . 24

DAG Directed Acyclic Graphs 25

xvi

[13th June 2024 at 16:43]

MNIST Modified National Institute of Standards and Technology
database . 26

SVHN Street View House Numbers dataset 26

CIFAR10 Canadian Institute For Advanced Research dataset . . . 26

Fashion-MNIST Fashion Mixed National Institute of Standards and
Technology . 26

GAN Generative Adversarial Networks 30

NSGA-II Non-dominated Sorting Genetic Algorithm II 30

NSLC Novelty Search with Local Competition 33

MAP-Elites Multidimensional Archive of Phenotypic Elites 33

CPPNs Compositional Pattern Producing Networks 35

HyperNEAT Hypercube-based NEAT 35

CPPFs Compositional Pattern Producing Functions 36

SGD Stochastic Gradient Descent 36

sGLA synaptic General Learning Abilities 38

sTLA synaptic Transitive Learning Abilities 38

LSTM Long Short-Term Memory 40

GA Genetic Algorithm . 46

PF Partition Factor . 54

XOR eXclusive OR . 58

RL Reinforcement Learning 60

CSTNs Compressed STNs . 77

NAS Neural Architecture Search 133

xvii

[13th June 2024 at 16:43]

1
C H A P T E R 1 — I N T R O D U C T I O N

1.1 overview

1.1.1 Modelling the world

It is in our human instinct to have the tendency to visualise and model
our world through various means; viewing it from different standpoints. In
science, as well as in our daily lives, we use specific methods of observations
to form the mental models of our understanding about the world that
surrounds us; might this be the physical world or abstract dimensions.
In cities, we have always developed panoramic viewpoints to grasp the
landscape that lies beneath us. Geology and cartography use contour plots
to model the terrain through the years. Meteorology uses radar mapping to
understand and predict weather events in the atmosphere. Visualisation also
happens in those very abstract domains that are invisible to the naked eye,
like the particles crashing in the Large Hadron Collider of CERN (Geneva),
reproduced by a 3-dimensional model.

Throughout history, we have seen this necessity of discovery through
observation manifesting in many occurrences. Like the first glimpse of the
Moon, Venus and the Sun with the invention of the telescope by Galileo
Galilei in 1609, or Robert Hooke’s discovery of biological cells in 1665 by
looking at a slice of cork wood through his own compound microscope.
More recently, in 1955, the first image of individual atoms by professor
Erwin W. Müller and Kanwar Bahadur; the first image of deep space by the
Hubble telescope in 2012; or the first glimpse of a distant black hole through
the huge Event Horizon Telescope Collaboration in 2019 [13].

All the above are clear evidence that visualisations have been a form of
scientific measurement tool, helping researchers since the beginning, even
in the most abstract realms. It must have been an astonishing feeling when
Benoit Mandelbrot was able to obtain the first high quality visualisation
of the Mandelbrot set while working at IBM’s Thomas J. Watson Research
Center in 1980 (Figure 1.1). Something that was present in his mind and
in mathematical formalism, actually took shape on paper, before his eyes,
enabling this set to slowly change the world, finding applications in many
fields [14, 15, 16].

1

[13th June 2024 at 16:43]

Figure 1.1: First computed visualisation of the Mandelbrot set [1].

In our research endeavours, the primary intentions have been to leverage
a specific type of visualisation to explore the complex, multidimensional
domain of neuroevolution. The exploration tool, which will be discussed in
details later, leverages complex networks [17]. Our exploration takes place in
the search space. The space of allowed and searchable solutions. Throughout
our exploration of the search space we have aimed at identifying salient char-
acteristics that distinguish specific neuroevolution algorithms. Furthermore,
our intent has been towards the methodical exploration of particular traits
of said neuroevolution algorithms, to further characterise our understanding
of such systems. Amongst others, the works of [18, 19] suggested that there
is a known difficulty in determining whether a given meta-heuristic (or
evolutionary algorithm in general) is truly original, simply from a perform-
ance analysis standpoint — that is, relying on a fitness metric. It is why
we argue that the visualisation technique, named NTNs [11], which we are
proposing as a novel contribution to knowledge, is useful and will be useful
in deciphering the complex domain of neuroevolution, through the lens of
the search space. The particular traits that have been successfully analysed
during this research follow a systematic flow of analysis. We progressed
from the examination of neuroevolution algorithms that develop shallow
artificial neural networks such as NEAT [2] and Novelty Search [3] to those
that aim at generating deep networks (i.e. CNNs) with layered-based neur-
oevolution such as DENSER [20] and Fast-DENSER [5, 21]. The traits that
have been examined during this research, using this technique include:
the role of recombination in neuroevolution, diversity of evolved solutions,
novelty search mechanisms, the topological complexity of ANNs and trans-

2

[13th June 2024 at 16:43]

ferring knowledge in the incremental development of Convolutional Neural
Networks (CNNs) [7, 10, 11, 22].

Two main fields of study had to be brought together to make this research
possible. The evolution of artificial neural networks and the analysis of the
search space.

1.1.2 The necessity to illuminate neuroevolution

Neuroevolution is the use of evolutionary algorithms to create ANNs; often
this class of algorithms will focus on optimising either the parameters, the
topologies, the learning rules or a mixture of these properties. Since its
inception, many algorithms focused on tackling single or multiple of the
aforementioned properties.

Neuroevolution was originally created as an efficient way to automatically
design neural networks, as doing this manually would require a lot of efforts,
through long trial and error processes. Initially, these artificial neural net-
works were devised mainly as solutions to reinforcement learning problems,
as this practice could be applied more widely than other algorithms which
require large sets of valid input-output pairs.

Most commonly, neuroevolution was originally used in domains such as
evolutionary robotics, artificial life, and games playing. Since then its applic-
ations have expanded, and the algorithms have evolved to incorporate more
established techniques from other disciplines, such as traditional machine
learning and deep reinforcement learning; to improve these practices and
hybridising variants. For instance, most neuroevolution algorithms have
been upgraded to include means of back-propagation/gradient descent tech-
niques to improve their training [23, 24]. This is considered fundamentally
different from the original approach, where evolution is seen as the only
optimisation engine that would provide the necessary learning rules.

A further development of evolving neural networks has been successfully
achieved using GE and Dynamic Sturctured Grammatical Evolution (DSGE)
to evolve Deep Neural Networks (DNN) layers and learning parameters
using human-readable Context-Free Grammar [20]. This method has shown
comparable and outperforming results to hand designed DNNs.

In neuroevolution, a variant of the NEAT algorithm, which employed
the Novelty Search strategy was introduced to overcome deceptive fitness
landscapes [3, 25, 26]. Another similar research strands emerged, inde-
pendent from NEAT, aimed at providing a highly diverse variety of best
performing neurocontrollers, which can be applied to dynamic tasks where

3

[13th June 2024 at 16:43]

seamless adaptation is required, these are known as Quality-Diversity al-
gorithms [26, 27, 28, 29].

Amongst other innovations, the neuroevolution paradigm has been further
developed, analogously to the evolution of learning, which occurred in bio-
logical brains [30, 31]. Through evolution, biological brains have developed
neuroplasticity, which is fundamental for meta-learning and adaptation.

Neuroevolution can be considered a promising field offering strong ana-
logies to how human intelligence was generated through evolution. It is
evident that a lot of effort has be placed into this field, developing al-
gorithmic variants in line with its principles. Particularly, NEAT has been
considered a successful and influential algorithm, which attracted attention
in the evolutionary computation community. This led to substantial contri-
butions, creating many alternative variations of this system, outlined in a
comprehensive review by [32].

Due the aforementioned complexity of NEAT and neuroevolution in gen-
eral, the increasing need was perceived to develop methods and techniques
that better examine the differences between variants, as well as the mechan-
ics of operators used. In light of this, the decision was made to begin our
research focus on TWEANNs, NEAT in particular and potential variations.

As described earlier, in this research we leveraged the successes of a com-
plex network modelling technique called STNs [19], which is closely related
and inspired by Local Optima Networks (LONs) [33, 34]. LONs is a modelling
technique that aims to visually represent the inherent characteristics of fitness
landscapes. Similarly, using these procedures STNs are capable of mapping
the optimisation process of a meta-heuristic algorithm and its trajectories
in the search space. This has shown evidence of being successful in many
domains [19, 35, 36].

Our evident contribution is the extension of this technique and its direct
application to the examination of neuroevolution dynamics. The develop-
ment of NTNs has demonstrated successful results. In particular, our analysis
of NEAT has highlighted inefficiencies concerned with the recombination
(crossover) operator [37]. Furthermore, the relationship between recombina-
tion and the novelty search strategy from the prospective of the solutions in
the search space was, for the first time, examined [10]. Additionally NTNs

were used to assess topological complexities and behavioural diversity in
novelty search compared to random and fitness search strategies; this was
achieved by illuminating the behavioural space, instead of the search space
of genotypic solutions [11]. Finally, NTNs have been fundamental in identify-
ing salient characteristics in the evolution of CNNs and highlight the transfer

4

[13th June 2024 at 16:43]

of knowledge occurring in the incremental development of DSGE powered
neuroevolution.

These research accomplishments have highlighted the necessity for neuroe-
volution to be more carefully examined and assessed using non-conventional
tools. Because from the perspective of performance, some of these algorithms
can appear to behave similarly, while others may behave differently, and
it is not a sufficient metric to establish accurate comparisons. We believe
the proposed visualisation instrument offers an effective way of examining
this domain and its dynamics, which helps to provide plausible — perhaps
not exhaustive — explanations into processes that otherwise would remain
hidden.

1.2 research hypothesis

Our formulated research hypothesis states that:

The application of STNs will result in a more detailed and informative
exploration of the highly-dimensional Search Space of Neuroevolution,

compared to traditional fitness performance methods.

1.3 contributions

This research has proposed three fundamental contributions to our field.

• Extended STNs to generate NTNs: a visualisation tool aimed at examin-
ing the intrinsic dynamics and peculiarities of neuroevolution

• Questioned the usefulness of the recombination operator in neuroe-
volution

• Confirmed that fitness performance metrics are not sufficient to char-
acterise the fitness landscape properties of evolutionary algorithms for
neural network development

1.4 thesis structure

In order to provide a structurally sound volume of work that can both be
read sequentially and used as reference material with the table of contents,
this thesis will be structured as follows:

• Chapter 1 — Introducing the area of research, the formulated research
hypothesis and the major contributions of this thesis.

5

[13th June 2024 at 16:43]

• Chapter 2 — An outline of the necessary preliminaries, which include
the background knowledge pertinent to the field of research.

• Chapter 3 — A review of the literature relative to the growth of
neuroevolution and advanced visualisation techniques.

• Chapter 4 — Detailing the use of STNs to study recombination in shallow
networks generation for control tasks, using NEAT.

• Chapter 5 — A further STNs exploration of the role of recombination
in NEAT for both novelty and fitness-based search, in deceptive maze
navigation domains.

• Chapter 6 — The formulation of the NTNs visualisation tool for the
study of Behaviour Characterisation (BC) for different divergent search
strategies.

• Chapter 7 — Using NTNs to study the transfer of knowledge in in-
crementally developed deep networks, neuroevolved using Fast-Deep
Evolutionary Network Structured Representation (Fast-DENSER).

• Chapter 8 — A research synopsis, overarching reflections, and future
directions.

6

[13th June 2024 at 16:43]

2
C H A P T E R 2 — P R E L I M I N A R I E S A N D B A C K G R O U N D
K N O W L E D G E

The following chapter will outline the fundamental preliminaries of this
research. These include notions and axioms necessary to appreciate the
contents of this thesis. As previously introduced, the research outlined in
this dissertation, is a result of two main areas of study coming together:
the illumination of the search space and fitness landscapes; and the gen-
eration of artificial neural networks through evolutionary computing. The
concepts described are illustrated in Figure 2.1. We explain them in a pro-
gressive manner; starting from the foundations and origins, all the way to
the proposed NTNs methodology.

NEUROEVOLUTIONVISUALISATION

NTNs

Local Optima Networks

Search Trajectory Networks

Network Theory

Complex Networks

Neuroevolution
of Augmenting
Topologies

Novelty Search

Behaviour Characterisation

Deep Evolutionary Network
Structured Representation

Figure 2.1: Venn diagram of NTNs methodology formation.

2.1 network theory

In mathematics and computer science, network theory belongs to the over-
arching discipline of graph theory. In a network graph, nodes are joined by
edges and each of these components possess attributes. Network theory
has many useful and diverse applications [38]. Networks lend themselves
well to modelling various natural and artificial phenomena, allowing to
form a simplified representation of the underlying structure of the modelled

7

[13th June 2024 at 16:43]

phenomena and propose a different perspective; which in turn may offer
the tool to better understand them.

Graph theory originated from Leonhard Euler’s paper on “Seven Bridges
of Königsberg” which was published in 1736. In this manuscript Euler
offers a solution to the Königsberg Bridge problem; a puzzle devised by the
locals in which the goal was to walk around the city, crossing each of the
seven bridges only once [39]. Although this was not strictly related to his
mathematical fields of interest, Euler deemed this problem to be related to a
topic that Gottfried Wilhelm Leibniz referred to as geometria situs: geometry
of position. This “geometry of position” is what came to be known as graph
theory, which Euler utilised for solving the problem.

The history of graph theory continued with the Hamiltonian cycles in
Platonic graphs studied by William R. Hamilton and Thomas P. Kirkman [40].
Further studies and application were proposed by Gustav Kirchhoff, with
the Kirchhoff’s matrix tree theorem, where graphs are used to calculate
spanning trees in electrical networks [41]. Graph theory has also been
seen in the realms of chemistry, where Arthur Cayley and James Sylvester
characterised chemical structures in mathematical terms by establishing
that an isomorphism exists between the structures of individual chemical
molecules, and mathematical graphs [42]. Worthy of mention is the work of
Francis Guthrie and Auguste DeMorgan on “the four-color theorem”, which
was particularly influential in the establishment of this field. The work states
that “given any separation of a plane into contiguous regions, the regions can be
coloured using at most four colours so that no two adjacent regions have the same
colour” [43].

Let us proceed to describe a graph. In mathematical formalism, a graph
object can be defined as a set of vertices and edges as presented in Eq. 2.1.

G := (V ,E, f) (2.1)

Where V is a set of nodes or vertices. E denotes a set of elements which
are known as edges or lines. While f is a function which maps the elements
of E to and unordered pair of vertices V .

complex networks Complex networks are data-driven instantiations
of graphs (networks) that present non-trivial structural features. These are
considered features that do not occur in simple graphs (i.e. lattices). Often
these are observable in networks that model real systems [17, 44]. Complex
networks are found to be successfully applied in many fields spanning from
biological, social and computer science.

8

[13th June 2024 at 16:43]

Complex network share many of the characteristics explained earlier about
graph theory. The elements used are nodes, defined as nodes pertaining a
network object, G(N), these are the vertices or points of the networks. Edges,
on the other hand, are defined as G(E) which are the lines or transitions
between two or more vertices. Networks can be classed as directed if there is
a flow, or orientation to the vertices, or otherwise undirected. Furthermore,
other attributes of complex networks can be that edges are weighted, signi-
fying the likelihood or occurrence of the connection. Vertices have similar
attributes indicating the strength of incoming connections displayed by the
proportional size of the nodes.

It is possible from the above definitions to appreciate how these generic
and abstract properties can make the technique successfully applicable
and utilisable for modelling various real-world and abstract systems, from
the fields previously mentioned. Hence, why they are at the core of our
proposed technique to illuminate neuroevolution.

One of the advantages of complex networks is that, aside from gener-
ating a visual illustration of a complex system or phenomena, which can
incentivise the formulation of concrete mental models, this area of research
has developed a multitude of metrics that can be used to generate a further
comprehensive picture of the system in analysis. [44] provides a extensive
taxonomy. During our research work, each line of investigation has utilised
various different metrics, some have also been proposed by us as novel ways
of analysing specific NTNs. These metrics will be discussed in details in each
of the chapters. Amongst the most commonly used we find the number of
nodes, the number of edges, and the edge-to-node ratio. The number of nodes
metric goes to indicate how vast a network may be; often in our research this
metric has been a powerful indicator of the diversity generated by a neuroe-
volution algorithm. The number of edges signify the degree of connectivity;
while the edges-to-node metric offers a ratio on how many connection nodes
may typically have. Another fundamental metric is the degree of nodes. The
degree of a node is the number of incident edges, that is the number of
connections that a node has to other nodes in the network. In a directed
network, which is a network that has a specific orientation, there is an
inbound (in-degree) or outbound (out-degree) nature to the edges of a node;
these are often defined by an average across the whole network [45].

2.1.1 Local Optima Networks

It is important in this thesis to briefly detail LONs, which although different
from STNs — the technique used to form NTNs — it is the predecessor of

9

[13th June 2024 at 16:43]

both of these techniques and a key piece of the foundations this research
area.

Local Optima Networks (LONs) were successfully put forward in [46]
where they were devised to study NK landscapes; a family of synthetic
fitness functions which can be set to range from totally smooth to completely
rugged. In their work, the authors found that through the perspective of LONs

the landscapes exhibited “small worlds” traits, as the mean lengths of the
network paths are seen to be short and scale logarithmically with the size of
the networks.

Hence, we can define LONs to be a tool for the analysis of fitness land-
scapes, which is primarily dedicated at the detection of local optima and
their connectivity patterns; this way formulating a visual model of the land-
scape. In the graph representing a LONs complex network, LON = {V ,E};
the V denotes the local optima. Local optima and surrounding basins of
attraction, are members that get transformed into the local optimum after
local search. The E signifies the connectivity patterns between the V .

2.1.2 Search Trajectory Networks

While LONs are a tool dedicated to the detection and analysis of fitness
landscapes and associated basins of attraction, STNs are devised to model
the search process of meta-heuristic algorithms, occurring in the search
space. STNs were initially proposed to model the optimisation search dy-
namics of population-based evolutionary algorithms such as Particle Swarm
Optimisation (PSO) and Differential Evolution (DE) [47].

B

A

D

C

E
A

B
C

D

E

2

5

7

2
2

B

A

D

C

E

2

2

7
8

6

A B E D C = 25
A sub-optimal tour

A B C D E = 18
An optimal tour

Figure 2.2: An example of an optimal and suboptimal solution for a small TSP
instance.

Optimisation: To solve an optimisation problem, meta-heuristics operate
by searching for objects in a large space of possibilities. These objects are

10

[13th June 2024 at 16:43]

referred to as candidate solutions, which are solutions that have the potential
of solving the problem and the space is known as the search space. To give
a concrete example, let us consider the Travelling Salesman Problem (TSP)
problem. This rather abstract domain is useful in computer science as it
has several practical applications (organising, routes planning, scheduling,
and timetabling) [48]. The problem works by having a set of cities and
the task is to find the shortest path (tour) to visit each city once. For an
instance of the problem there are three components: inputs (the cities), the
model (a formula) and outputs (the length of paths). In this case we are
trying to optimise the path, to have the shortest tour around these cities.
We want to search the space of possibilities (search space) to identify the
candidate solution (a set of inputs) that produce a desired output; which is
a sequence of cities with the optimal (minimal) path length. Therefore, this
can be conceptualised as a minimisation problem. Figure 2.2 illustrates this
problem well. We have a set of cities on the left, as our inputs, a suboptimal
tour solution in the centre that yields a score of 25 and an optimal solution,
which achieves a lower 18 tour length. The goal is therefore to identify the
optimal solution amongst the space of possibilities.

Search Space: These desirable solutions reside in an enormous space of
possibilities, which is known as the search space. Hence, problem-solving
in this realm is seen as a systematic search process through a potentially
vast space of plausible solutions. Mainly balancing between exploration
and exploitation. These problems are also known as search problems. The
definition of a search space provided by [49] is accurate and useful to
elucidate this.

“[...] the collection of all objects of interest including the solution we
are seeking.”

This collection of objects is what it is used in the STNs approach to model
the dynamics of an algorithm in analysis. Where vertices are the objects
in the search space collection and edges are the transitions from these
stages, forming the trajectories. Usually, if the algorithm in examination is a
population-based algorithm, we select the best object of the collection found
at each iteration, which is the best individual of the population at that stage
of the search process.

The following are the definitions that constitute STNs [47].

representative solution is a solution from the collection of objects
to the search problem, representing the status of the search algorithm. As

11

[13th June 2024 at 16:43]

discussed, population-based algorithms will have the best individual in the
population as the representative for each iteration.

location A subset of solutions that results from a predefined partition-
ing of the search space. Each solution in the search space is an element
of one and only one location. Each location is assigned a representative
objective value, that is often the reduction in decimal points precision by
an empirically chosen factor. The distinction between solutions and locations
is required because in continuous (and discrete domains) the number of
candidate solutions is, in principle, infinite. Therefore, we require a coarsen-
ing (partitioning) of the search space; essentially, clustering solutions to
locations.

search trajectory Given a sequence of representative solutions in
the order they are encountered during the search process, a search trajectory
is defined as a sequence of locations formed by replacing each solution with
its corresponding location. This location is the unique signature that is used
to construct the model.

node A location in a search trajectory of the search process being mod-
elled. The vertices of the networks. The set of nodes is denoted by N. Nodes
can be decorated based on specific attributes or computed metrics.

edges Edges are directed and connect two consecutive locations in the
search trajectory. Edges can also be weighted and decorated like nodes (i.e.
with the number of times a transition between two nodes occurred during
the process). The set of edges is denoted by E.

search trajectory network Given the notions specified above, an
STN is a directed graph defined as STN = G(N,E). The vertices are denoted
by set N, and edges by set E.

exemplification In the below illustration (Figure 2.3) we can see a
practical example of what trajectories in the STN typically look like.

In all STNs trajectories there are nodes which are identified as starting
locations; these coincide with the solution representative at the start of the
search. We identify these as starting nodes. These are decorated with a specific
colour (yellow in this case) and they are often represented by a different
shape.

12

[13th June 2024 at 16:43]

Starting Node
Intermediate
Solution Nodes

Local Optimum
(end of trajectory)

Weighted
Connection

Improving transitions =

Worsening transitions =

Global Optimum
(best solution)

Figure 2.3: Exemplification of a typical trajectory in an STN formation.

When a representative solution becomes a location of interest in which
the search process is, figuratively, “trapped”, this representative solution
of interest could coincide with a local optima. This is often decorated with
an enlargement of the vertex, proportional to the number of representative
solutions that have visited the same signature (location) during the search
process. Frequently, these are also found to be trajectories’ termination
points.

From the illustration, we can see that edges can be weighted depending on
the amount of transitions occurring from two locations (nodes). A further
decorator could be a hue, given to signify certain attributes of the transitions.
In this scenario, we see a colour is set for transitions that improve in score
(i.e. fitness of solution) and another for those that worsen.

Often, multiple subsequent trajectories are expected to outbound a point
of attraction, such as the case shown in the illustration. In other cases, (not
illustrated here) there can be loops. A loop is an outbound trajectory that
visits another location of the search space, only to return on the origin node.
This is a typical behaviour where a solution is recurrently good but does
not develop into a large trapping region — as defined previously.

Finally, in the illustration, (Figure 2.3) any nodes that are not part of
the above classification are deemed intermediary or standard nodes. New
standard nodes are recoded at every iteration of the algorithm, or at an
empirically defined interval. These are unique progression stages visited
during the algorithm’s traverse of the space. Furthermore, a node can be
decorated of a specific colour to signify an attribute of the location, like in
this case the red, which stands for a solution which meets the criteria of

13

[13th June 2024 at 16:43]

solving the problem, or reaching a satisfactory fitness threshold; in some
cases this can coincide with the global optimum.

2.1.3 Neuroevolution Trajectory Networks

As the name of this technique suggests, this approach, which is the novel
contribution proposed as the core of this thesis, is the union of two fields
of study. The application of Search Trajectory Networks to the discipline of
evolving artificial neural networks: Neuroevolution.

The definitions of this network modelling technique are largely unchanged
from the parent STNs approach. What is different is the encoding of the
representative solutions and the space from which solution are modelled.
Similarly to STNs, the formalisation of this technique can be expressed as
NTN = G(N,E). An NTN is formed by nodes N(G) which satisfy N ∈ nS

where nS is the neuroevolution search space. In essence, NTNs are graph
models formed only by elements found during search in the neuroevolution
spaces. These elements are modelled empirically, selecting the method that
best represents them. Differently from a canonical search space like that of
combinatorial optimisation, the representative solutions discovered from nS

require for a more sophisticated encoding to be applied. This is because the
solutions (genotypes) are primarily related to neural network formations
or derivations of such, and are not solely solutions formed with vectors of
real numbers. To effectively collapse an ANN representation to a unique
signature, used to form the vertex of NTN, it is not a generalisable approach;
as different neuroevolution algorithms have disparate characteristics and
encoding mechanisms. Nevertheless, the researcher utilising NTNs, thor-
ough preliminary knowledge about the algorithm under examination and
pertinent empirical tests, should be able to identify the correct approach to
encapsulate all fundamental information in the node-edge representation,
including the attributes.

The expected outcomes of a NTN study, on a given neuroevolution al-
gorithm, is successful if the following principals are satisfied:

• The fundamental neural network characteristics composing the solu-
tion should be universally captured and represented in a concise,
unique and reproducible signature. A differentiations of the solutions
should produce a new signature record.

• The high dimensionality related to the solution should be reduced in a
lossless manner.

14

[13th June 2024 at 16:43]

• Any information that are fundamental or worth for the purpose of the
investigation should be captured and mapped correctly, becoming key
attributes of the network models.

• Decorators, on N and E (and related emergent dynamics), must be used
effectively with these attributes, to highlight the neruroevolving nature
of the algorithm and what the investigation is aiming to highlight.

• A visualisation plot should directly convey a fundamental message
related to the presumed underlying neuroevolutionary mechanics.

In future chapters, it will become apparent how these rules have been
satisfied. How these helped to form the NTNs technique and the Network
Architecture Analysis (NAA) realm of investigation, which will be described
in the concluding remarks of Chapter 8.

2.2 algorithms and search strategies

The algorithms and notions of neuroevolution that were examined in this
research are detailed as follows. Outlined in a chronological progression,
from our first analysis to the last. This largely coincides with the logic of our
proposed publications outlined at the start if this dissertation.

2.2.1 NEAT

NEAT stands for NeuroEvolution of Augmenting Topologies, it is an es-
tablished algorithm, that was proposed in the early days of neuroevolu-
tion [2]. The focus of it is to evolve shallow (dense) neural networks, initially
for simple classification and control tasks. This algorithm was revolution-
ary at that time for certain innovative characteristics. First, it not only
evolved the structure (topologies) of the neural networks — this involves
the placements of neurons and connections — but was engineered to evolve
the weights of said neural networks, through evolution. Hence why the
algorithm falls under the Topology and Weight Evolving Artificial Neural
Network (TWEANN) categorisation. This means that weights are learned
without any form of gradient-descent or advanced learning paradigm. The
algorithm achieved this by deploying novel operators and functions which
we proceed to succinctly describe.

complexification This algorithm is engineered to produce solutions
starting from simple neural networks and increasing their complexity, as

15

[13th June 2024 at 16:43]

needed, based on the problem. The system will always select the minimum
optimal structure that can solve the problem amongst complexified ones
found. This incremental growth in complexity is beneficial as it prevents
complex solution from saturating the population/search in early genera-
tions.

permutation problem This is also described by authors of NEAT as
the competing conventions [2] problem. A known issue, when more than one
representation exists for expressing a solution with a neural network to
a weight optimisation problem [50]. Essentially, this refers to the issue in
which standard crossover of neural network solution may lead to offspring
that do not include all inherited genes. One of the biggest claim of NEAT
is that the algorithm can overcome this obstacle by encoding solution that
leverage historical markings. This is also referred to as a gene innovation
counter mechanisms, which helps to keep track of the evolved genes during
neuroevolution, informing what to select for neural networks recombination.

genetic encoding NEAT uses a genotype to phenotype direct encod-
ing framework. Nodes and connections are explicitly dictated in two levels
of the genotype. These genes carry additional information, useful for the
operators and the architecture of networks. These include the knowledge
about inbound and outbound connections. The node number and type, the
weight of connections, whether the connection is enabled or disabled, and
the innovation number.

historical markings This is the innovation number which is used by
the algorithm to establish how nodes and connections should be preserved
during the perturbations, especially while recombining solutions. These
historical markings are used to produce offspring that ensure the inclusion
of all the high performing information from the parents’ genotypes.

speciation Another feature that this neuroevolution algorithm intro-
duced is shown in Figure 2.4. In this we can observe how the population has
been effectively separated into niches. To do this the authors proposed to
leverage the historical markings to calculate the genotypic distance between
solutions in terms of their genetic material. In Eq. 2.2 we outline how this is
achieved.

δ =
c1E

N
+

c2D

N
+ c3 · W̄ (2.2)

16

[13th June 2024 at 16:43]

Figure 2.4: Speciation in NEAT. Sourced from [2].

The parameters c1, c2, c3 are used empirically to adjust the importance
of each factor in the equation: E, D, and W. These factors relate to the
amount matching genes, which are those that are shared between two geno-
types as per their innovation number. E denotes the excess genes. These are
found outside the range of a given genotype (based on historical markings),
therefore they are exceeding. On the other hand, D indicates those genes
which occur within the range of a given genotype (based on historical mark-
ings) and therefore are deemed to be disjoint. W is an average measure of
weight differences of matching genes; it is used to compute the final δ value
as per the defined Eq. 2.2.

This value is used to separate solutions into niches. It is done to allow
topologies of neural network to compete and survive long enough in their
species, giving them the chance to fill their potential and optimise, in or-
der to compete with stronger solutions. The authors engineered this, as
it was assumed that some topological solution could be resilient stepping
stones, which would lead to stronger and more optimised solutions, in
further generations. The intuition arose from the biological world, in which
diverse species tend to compete at different levels, hence allowing for inter-
esting solutions to be protected from being eliminated by non-interspecies
rivals [51].

17

[13th June 2024 at 16:43]

It is evident from the many features outlined above that this algorithm
has been packed with a multitude of operators and functions aimed at
generating a system highly analogous to biology. Despite the efforts, all of
these components will not work as cohesively and effectively as designed;
an extensive systematic review of such algorithm has been proposed in [32].
This helps to identify potential inefficiencies. Some of which have been focus
of this dissertation and that will be discussed in later sections.

2.2.2 Novelty Search vs Objective Search

(a) Medium map (b) Hard map

Figure 2.5: The maze navigation problems used in Novelty Search [3].

Novelty Search is a search strategy first proposed in [3], which seeks to
discover behaviours of the feature space that are novel and distant from
those previously found during evolution. This was tailored to produce
ANNs solutions that would be less prone to failing in deceptive fitness
landscapes. The idea was initially applied to a maze domain (Figure 2.5),
where a neuroevolved agent had to control its movements through the maze
from a range of sensors, to reach the exit point.

The Medium and Hard Maze Problem: This reinforcement learning
navigation domain has two types of mazes: a medium maze and a hard maze.
Figure 2.5a illustrates the configuration of the medium maze. This is of low
to intermediate difficulty as the map shows areas of low deception, which
can be circumvented by the agent without great difficulty. The journey from
the starting position (dark-grey dot) to the goal (yellow dot) is reasonably
linear with a low chance of the agent getting trapped.

The hard maze has a deceiving structure. This is illustrated in Figure 2.5b
where the map is visibly harder due the placement of the walls, which
generate trapping regions (red shaded circles), capable of blocking the

18

[13th June 2024 at 16:43]

search progress of agents traversing the maze. These areas of high deception
are what most challenge the neuroevolution search strategies.

objective search In this domain, the fitness function — also referred
to as the objective function — measures the quality of an agent. This is
calculated as its proximity to the goal at the end of the navigation task
evaluation. Typically, evolutionary algorithms use a fitness function to guide
the search. In [3] a variant of NEAT was guided by this fitness function. Let
us describe it and compare this to the pursuit of Novelty.

L =

√√√√ 2∑
i=1

(ai − bi)
2 (2.3)

Equation 2.3 measures the Euclidean distance between the agent’s final
location in the maze and the exit point (the objective). Hence, L is the root-
mean-squared error used for the evaluation. In the equation, a denotes the
position of an agent at the end of the simulation and b the location of the
goal — expressed as 2 dimensional spatial coordinates.

This is known as the objective search strategy. The objective is the sole driver
of the search and dictates the neuroevolutionary process.

novelty search This search strategy was proposed and discussed in
various works [3, 25, 52, 53]. It was created to point out the benefits of
abandoning objectives in the pursuit of novelty, specifically for deceiving
domains, where the fitness gradient is not directly aligned with the notion of
optimal performance. The idea behind this strategy is to adapt the objective
function to leverage the novelty of an agent as a metric of performance.
In NEAT — the neuroevolution engine used in this case — novelty can be
implied as behavioural novelty, used in the seminal research of [3] or structural
novelty, intended as the diversity of topological formations.

In Novelty Search, although it remains the goal of the maze, the intent is
no longer that of aiming directly at achieving the closest proximity to the
exit of the maze; it is swapped for the objective of having optimal agents
that are able to exhibit diverse explorative behaviours. The scope is for the
evolutionary process to reward those actions that yield agents’ journeys
to unexplored locations of the maze maps; to be capable of escaping the
trapping regions and to ultimately reach the goal (yellow dot).

dist(x,µ) =
1

n

n∑
j=n

∣∣xj − µj

∣∣ (2.4)

19

[13th June 2024 at 16:43]

To achieve this, the performance of the neurocontrollers (agents) is cal-
culated using a metric of sparseness. This is computed by the k-nearest
neighbours algorithm. The implementation used for our analysis (Eq. 2.4)
was derived from [9], which is faithful to the one deployed by [3].

Increased sparseness is therefore equivalent to higher Novelty. This is
obtained by neurocontrollers with exploratory behaviours that lead to unex-
plored locations of the maze (in terms of Cartesian coordinates). The distance
between the two trajectory vectors, one for each compared agent, is used to
compute the metric. To do these comparisons correctly, historical novelty
must be logged in a novelty archive. The items in the current population are
compared to the novelty archive. This evaluation allows for novelty to be
assessed, and subsequently introduced in said archive. A set of parameters
control the criteria for acceptance and inclusion of items in a novelty archive.

In the Eq. 2.4 dist(x,µ) is the novelty score achieved from evaluating the
behavioural difference between two agents. This is calculated as the absolute
distance between the two trajectory vectors x and µ. Trajectory vectors are
traced by agents; bi-dimensional maze coordinates of size n. xj and µj are
the values of the compared vectors (x and µ) at position j. In [11], to simplify
the calculation, only the agent’s trial end coordinates (j = n) were considered
as the coordinates of interest.

To sum up, Novelty Search is intended to generate behaviours that diverge
from the gradient of fitness. As shown in the hard maze of Figure 2.5b, the
regions of local optima highlighted in red would deceive the search process
of an agent using only fitness as the strategy. Novelty in this case is designed
to bypass this issue of deception, effectively circumventing these traps.

behaviour characterisation Behaviour characterisation will be
used in the discussion of Chapter 6. The chapter outlines our research
intentions to detect BCs and be able to appropriately evaluate these, based
on rigorous testing. Our particular attention was pointed to a topological
analysis. The complexity of a topology can often dictate the behaviour of an
evolved agent. Our research aimed at elucidating what roles topologies play
in BC and diversification.

In [54] we find a comprehensive review of Quality Diversity (QD) al-
gorithms which focus on behavioural characterisation. The authors define BC

to be the notion by which behaviours are classified. The classification are
found to be either aligned or unaligned to the notion of fitness quality, that is
determined by the assessment domain. In their research, nothing in between
these two characterisations is proposed. They additionally identified that not
all behaviours are equally important. A noteworthy finding that emerged

20

[13th June 2024 at 16:43]

from their study is that BCs which are aligned to the objective of the assess-
ment domain lead to favourable diversity and high exploitative qualities to
reach the domain goal.

Nevertheless, the counterargument [25, 26, 27] is that the evolution of
diversity should stem from BC which are not directly aligned to quality itself.
The non-directed explorations would in fact point towards divergent ways
of finding larger varieties of optimal behaviours capabilities [55]. Recent
works have also focused on allowing for an automated search and definition
of BCs — also more widely known as novelty descriptors. This ensure for
the algorithmic system to have an independent selection of the descriptors
often unrelated to agents’ behaviours [56].

2.2.3 DSGE-Powered Neuroevolution

Presented next are a new set of neuroevolution algorithms, integral to the
latest stages of this thesis investigation. We will outline two algorithms
which were developed in close succession: Deep Evolutionary Network
Structured Representation (DENSER) [57] and Fast-DENSER [21]. Both of these
leverage a form of Grammatical Evolution (GE) used to effectively evolve
ANNs.

Grammatical Evolution: GE is a type of evolutionary algorithm, specific-
ally a grammar based Genetic Programming (GP), first proposed by [58].
In [4] we find a succinct and accurate definition, which goes as follows.

In GE individuals are presented as a variable length string of integers. An
executable program is created by mapping the individual’s genotype (string
of integers) to a phenotype (program) through the production rules specified
by the CFG. A grammar can be formalised as a tuple G = (NT , T ,S,P). NT

and T denote the non-empty set of Non-Terminal (NT) and Terminal (T)

symbols. S is the starting symbol; an element of NT called the axiom. P
is the set of production rules, in the form A ::= α, with A ∈ NT and
α ∈ (NT ∪ T)∗. A language L(G) =

{
w : S

∗⇒ w,w ∈ T∗
}

is defined by each
grammar. The set of all sequences of T∗ derivable from the axiom.

In the genotype to phenotype mapping of the original GE, selecting a
derivation rule should replace the Non-Terminals. This is done by using the
modulo operator. Figure 2.6 helps to elucidate this concept. The genotype
comprises randomly generated values between 0 and 255. The process begins
at < start >. This case shows that the only possible derivation is < expr >.
The expansion possibilities of < expr > are 2. To expand this we select the
first value in the genotype, which is 54 and find the remainder of the division

21

[13th June 2024 at 16:43]

Figure 2.6: Explanation of Grammatical Evolution (GE) with a simple grammar.
Sourced from [4].

using the modulo operator. 54mod(2) = 0 is the result, which indicates that
the first choice is selected: < expr >< op >< expr >. This process continues
until all NT symbols are exhausted or there are no more integers in the
genotype. The latter will force a wrapping mechanism to be executed were
the genotype will be reused, until a valid phenotype is generated or the
maximum wraps parameter is reached. If this is reached the solution will be
declared invalid and a new genotype will be selected.

Dynamic Structured Grammatical Evolution: is a powerful subsequent
form of the original algorithm, which aims to solve the known problems
of low locality and high redundancy found in GE [59, 60]. Low locality,
meaning that when a genotype undergoes one mutation, several phenotypic
units are changed, resulting in great locality disruptions. High redundancy,
in the sense that several genotypes correspond to the same phenotype.

DSGE derives from Structured Grammatical Evolution (SGE) [61]. The aim
is to improve the genotypic representation, requiring no modulo operator to
dictate the expansion possibilities, hence avoiding the redundancy associated
with it. To achieve this, each gene is associated to a specific NT and an
integers list is used to select the expansion option. Creating the list requires
computing the maximum possible number of expansions of each Non-
Terminal (NT). The bounded list of possibilities limits the number of changes
that can occur at the phenotypic level.

The Dynamic SGE approach was devised mainly to address the criticism
of the recursion problem. To prevent runaway bloat resulting from excessive
tree size, the algorithm requires a maximum tree size of each Non-Terminals
to be specified a priori. In this version, the solution is that the intermediate
grammar derivation rules are created to mimic the recursion process. Ad-

22

[13th June 2024 at 16:43]

ditionally, this allows for the entirety of a genotype to be used, as this can
grow as needed, for just the number of required derivation. This is achieved
dynamically during evolution. Nonetheless, an upper limit has to be posed
on the genotype size for this not to grow indefinitely, this is in the form of a
maximum tree-depth parameter.

denser An initial neuroevolution proof was first approached in [62] and
then fully formalised in [57] with the inception of DENSER. This algorithm
specifically aims to evolve Deep Neural Networks, and it works by using
two evolutionary algorithms (EAs) simultaneously, at different levels. In
the outer-level we find a vanilla Genetics Algorithm (GA). While in the
inner-level is where DSGE is deployed. In DENSER, the GA level encodes
the macrostructure of the networks, which requires structures’ allowance
to be predefined. If we look at the development of CNNs, these require a
specific CFG to be defined in Backus-Naur form.

To give an example of the allowance for a CNN, consider the following.
An allowed GA structure would be:

[(features, 1, 10), (classification, 1, 2), (softmax, 1, 1), (learning, 1, 1)]
(2.5)

In the formalism of (2.5) each tuple is a valid starting symbols and the min-
imum and maximum number of times these can be used. Hence, if these
ranges are added up, it would result that the GA is allowed to generate
and search for structures of up to 10 convolutional/pooling layers (see
features), followed by up to 2 fully-connected layers (see classification),
and 1 classification layer (see softmax). Finally, the learning tuple is used
to specify parameters related to the training and optimisation of the network
in evolution.

On the other hand, the DSGE is leveraged to search the parameters
inherent to the layers evolved from the macrostructure apparatus. Parameters
and allowed values are preconfigured by the user in the grammar [21]. In
Chapter 7 this particular research will be discussed further. In Figure 2.7 an
example of the grammar used for the experiment is provided.

Using the GA, which encapsulates the genetic information for the layers,
makes it easy for the variation operators to be applied (mutation and recom-
bination). Most importantly, having the DSGE enables this technique to be
generalisable to other problem domains. That is, by altering the grammar
construct, one can explicitly redirect the search towards different network
types.

This multi-EAs combination showed remarkable results for neuroevolu-
tion, all based on a grammar encoding [57].

23

[13th June 2024 at 16:43]

<features> ::= <convolution> | <convolution> (1)

| <pooling> | <pooling> (2)

| <dropout> | <batch-norm> (3)

<convolution> ::= layer:conv [num-filters,int,1,32,256] [filter-shape,int,1,2,5] (4)

[stride,int,1,1,3] <padding> <activation> <bias> (5)

<batch-norm> ::=layer:batch-norm (6)

<pooling> ::= <pool-type> [kernel-size,int,1,2,5] (7)

[stride,int,1,1,3] <padding> (8)

<pool-type> ::= layer:pool-avg | layer:pool-max (9)

<padding> ::= padding:same | padding:valid (10)

<classification> ::= <fully-connected> | <dropout> (11)

<fully-connected> ::= layer:fc <activation> (12)

[num-units,int,1,128,2048 <bias> (13)

<dropout> ::=layer:dropput [rate,float,1,0,0.7] (14)

<activation> ::= act:linear | act:relu | act:sigmoid (15)

<bias> ::= bias:True | bias:False (16)

<softmax> ::= layer:fc act:softmax num-units:10 bias:True (17)

<learning> ::= <bp> <early-stop> [batch size,int,1,50,500] (18)

| <rmsprop> <early-stop> [batch size,int,1,50,500] (19)

| <adam> <early-stop> [batch size,int,1,50,500] (20)

<bp> ::= learning:gradient-descent [lr,float,1,0.0001,0.1] (21)

[momentum,float,1,0.68,0.99] (22)

[decay,float,1,0.000001,0.001] <nesterov> (23)

<nesterov> ::= nesterov:True | nesterov:False (24)

<adam> ::= learning:adam [lr,float,1,0.0001,0.1] [beta1,float,1,0.5,1] (25)

[beta2,float,1,0.5,1] [decay,float,1,0.000001,0.001] (26)

<rmsprop> ::= learning:rmsprop [lr,float,1,0.0001,0.1] (27)

[rho,float,1,0.5,1] [decay,float,1,0.000001,0.001] (28)

<early-stop> ::= [early stop,int,1,5,20] (29)

Fig. 1: CFG for the optimisation of the topology and learning strategy of CNNs.

current work layers or learning algorithms) are kept in the grammar, and can
be integer (e.g., the filter shape in line 4), float (e.g., the momentum in line
22) or closed choice (e.g., the bias in line 16). The integer and float parameters
are represented by a block with the format: [variable-name, variable-type, num-
values, min-value, max-value].

In addition to the CFG we need to define the macro-structure, that estab-
lishes the search space, and points directly to the grammar production rules. The
macro-structure sets the sequence of evolutionary units that the individuals are
allowed to use, and is encoded as a list of tuples, where each position indicates
the non-terminal symbol (that establishes a one-to-one mapping to the gram-
mar, and is used as starting symbol), and the minimum and maximum number
of expansions for that non-terminal symbol. For example, for CNNs, an example
of a macro-structure is [(features, 1, 10), (classification, 1, 2), (softmax, 1, 1),

Figure 2.7: An example of the CFG used in the research detailed in Chapter 7.
Sourced from [5].

fast-denser DENSER’s long evolution and training process, due to its
large population (100 individuals), made this technique unfeasible, despite
its successes. In response, the authors decided to devise Fast-DENSER [21];
a faster algorithm, which is comparable in fitness performance to DENSER.
This neuroevolution algorithm offered a 20x speed-up compared to its
predecessor.

To achieve this, a 1 + λ Evolution Strategies (ES) was introduced in place
of the GA. λ is set to generate four offspring from a single best parent at
each generation. Doing so, the population was effectively reduced by 95%
compared to DENSER. This drastic reduction corresponded to lower training
and evaluation times, less computational resources. The running time was
reduced to a fraction compared to DENSER.

Moreover, Fast-DENSER improves the flexibility of DENSER by allow-
ing skip connections; layers of the evolved networks can connect to any previ-

24

[13th June 2024 at 16:43]

ous layers. This is similar to the principle of Directed Acyclic Graphs (DAG).
It also introduced limits on the number of previous layers that can be used
as inputs (known as levels back constraint). This allows to avoid disjoint
graphs, which could arise if the rule is not specified that layers always have
to be connected to previous layers.

The initialisation of Fast-DENSER solutions is achieved in a gradual
manner. A lower upper bound on the maximum number of layers is enforced
(on the outer-level encapsulation) for the initial population. This ensures
that the network is initially simple, deepening further through generations.
This method, which is similarly used also in NEAT, is effective as it prevents
excessively deep architectures form saturating the training progress early
on.

In Fast-DENSER, several types of genetic operators are included; not-
ably recombination is not included in this version. This observation served
to form part of our analysis, which will be outlined in Chapter 6. The op-
erators used in the outer encapsulation level are: add evolutionary unit,
remove evolutionary unit, add connection, remove connection. The inner-
level mutation operators which are described in details in [57], alter real
values/integers related to the grammatical expansion possibilities, as it is
custom in grammatical evolution.

incremental development/transfer learning For our analysis
of Chapter 6 a specific variant was used known as incremental development,
which is conceived to facilitate the transfer of knowledge acquired by the
algorithm during neuroevolution. The concept of incremental development,
specific to Fast-DENSER was introduced in [5]. The initial goal behind
their research was to observe whether significant improvements could be
gained from transferring evolutionary knowledge between DNNs trained
on related classification problems. This was also aimed at reducing the
number of generations necessary to reach comparative fitness values as
those populations that were randomly initialised.

Furthermore, the authors were interested in examining if the knowledge
gained from previous datasets worked, not just at initialisation but during
other evolutionary stages. The consequent intention was demonstrating
that incrementally developed solutions could be more resilient and better
generalisers than solutions, which were not evolved incrementally on similar
classification problems.

In [5] — the work on which our research examination of Chapter 6 was
based on — the neuroevolution algorithm was configured with a specific

25

[13th June 2024 at 16:43]

grammar for the construction of CNNs; network architectures that have been
found to be highly successful in image classification/object detection [63].

This variant of Fast-DENSER works such that at the end of each run, the
best individual is selected from the final population, this is then used to
spawn the new population for a subsequent similar benchmark problem.
Four benchmarks for image classification/object detection were used in
the following order: MNIST [64], SVHN [65], CIFAR10 [66] and Fashion-
MNIST [67]. Modified National Institute of Standards and Technology data-
base (MNIST) is a dataset of handwritten digits, which has 10 different classes
of images (0-9), comprised of 60, 000 training samples and 10, 000 testing
ones. Street View House Numbers dataset (SVHN) is a real-world image
dataset of house numbers obtained from Google Street View, it incorpor-
ates over 600, 000 digit images of 10 different classes (0-9); 73, 257 digits for
training, 26, 032 for testing, and 531, 131 extra ones. Canadian Institute For
Advanced Research dataset (CIFAR10) consists of 60, 000 tiny colour images
split in 10 classes, with 6, 000 images for each class; 50, 000 are for training
and 10, 000 are for testing. Finally, The Fashion Mixed National Institute of
Standards and Technology (Fashion-MNIST) dataset is comprised of 10 classes
of greyscale images about fashion items, generated by the Zalando Research
team. It is comprised of 60, 000 training and 10, 000 testing samples. The
authors found that this incremental approach, where the knowledge about
network architectures could be reused in later datasets, was able to produce
faster convergence to the optimal fitness, due to this incorporation of prior
learnings.

Neuroevolution for
MNIST

Neuroevolution for
SVHN

Neuroevolution for
CIFAR10

Neuroevolution for
Fashion-MNIST

Evolved
population
containing best
model

Best model selected

20 Generations 30 Generations 50 Generations

Best model selected

Extracting NTNs
data and tagging
based on origin

Evolving population
spawned with best
solution from
previous task

Extracting NTNs
data and tagging
based on origin

Extracting NTNs
data and tagging
based on origin

Best model selected

Evolving population
spawned with best
solution from
previous tasks

Evolving population
spawned with best
solution from
previous tasks

Best model on final: more
resilient and better
generaliser

Final NTNs dataset
extracted and
tagged with origins
to be used for graph
visualistion

50 Generations
60000 (train) / 10000 (test) 73257 (train) / 26032 (test) 50000 (train) / 10000 (test) 60000 (train) / 10000 (test)

Figure 2.8: Diagram illustrating the workings of Fast-DENSER with incremental
development [6].

Figure 2.8 illustrates the Fast-DENSER workflow in details, a diagram
extracted from the published research [6].

26

[13th June 2024 at 16:43]

After a population is evolved through solving the first benchmark MNIST
(a simple classification task), Fast-DENSER begins a new evolutionary search
for a new domain SVHN. This new search is done by incorporating the best
found model in the previous dataset (MNIST); the process continues for
all datasets in the pipeline, until the final target dataset (Fashion-MNIST).
Knowledge is incorporated at population inception but also during the
intermediate search stages.

At inception, to generate individuals, the following four operations are
allowed:

(i) include all feature extraction layers but randomly generate the
classification layers

(ii) random generation of feature extraction layers but port classification
layers from previous best models

(iii) transfer knowledge of learning evolutionary units but generate all
other components from scratch

(iv) randomly initialise all evolutionary units at random, without
incorporating any previous knowledge.

Perturbing solutions via mutation can leverage previous knowledge too.
The operators are unchanged from those in [5], these are: addition, removal,
and/or duplication of any evolutionary unit. In incremental development,
this operator can also decide to adopt information of the best models from
previous datasets or simply discard it and use the knowledge present in the
evolution for the current dataset.

27

[13th June 2024 at 16:43]

3
C H A P T E R 3 — L I T E R AT U R E R E V I E W

Similarly to Chapter 2, the content of this chapter will be structured by first
reviewing the literature related to Neuroevolution, and a variety of the most
prominent related forms that have risen during the years. Then the focus
will shift to the literature relevant to the visualisation of fitness landscapes
and search processes.

3.1 early days of neuroevolution

The field of neuroevolution began to gain traction in the early 1980s where
groups of researchers in evolutionary computing began to question if arti-
ficial brains, abstractions of biological ones, could be effectively generated
through evolution, as occurs in nature [68, 69]. The motivation were bio-
inspired and emerged from the remarkable phenomenon of the evolved
human intelligence; alongside attempting to discover alternatives for canonic
back-propagation approaches.

One of the first examples of neuroevolution algorithms emerged in 1994

as a simple optimiser of network weights [69]. Following this, the atten-
tion quickly shifted to developments that were not only able to evolve
parameters but also the structure of these neural networks [70]. This was
soon followed by a progression towards encodings that would allow to
manipulate networks as graphs [71]. Other types of encodings were also
considered [72, 73, 74, 75], namely indirect encoding was a technique by
which a function expresses the network to be generated, rather then a direct
description of weights.

Transitioning away from just evolving fixed topology neural networks was
followed by novel requirements as well as challenges. Effectively crossing
over different topologies and preserving information was critical. Along-
side protecting neural network structures from extinction, long enough so
that the weights could get updated, expressing their maximum capabilities.
One of the early most successful approaches was NEAT [2]; an evolutionary
algorithm based on direct encoding that explicitly mapped genotypes to
phenotypes, labelling genes through historical markings and protecting
variation of solution using a speciation operator, hence solving the afore-
mentioned problems.

28

[13th June 2024 at 16:43]

Amongst the successes of this early algorithm we find: dynamically
evolving agents and content for video games [76, 77], generating com-
plex musical compositions [78], evolving reaction networks in synthetic
biochemical systems [79], prediction in geosciences [80], generating trad-
ing signals for financial markets [81]; even estimating the measurement of
the top quark from the Tevatron particle collider [82]. A comprehensive
and well-structured review of the advancement of NEAT-derived algorithm
was composed by [32], offering a meticulous categorisation and a detailed
comparison of each variant.

3.2 recombination in neat

Recombination has been a primary focus of the research outlined in this
thesis. Specifically, the recombination operator proposed by NEAT, which has
a particular characteristic that has often been deemed interesting and capable
of evolving increasingly complex topologies. Thanks to the introduction
of historical markings, the crossover operator generates valid offspring by
comparing identifiable regions of compatibility or incompatibility, much
like masking. All components and operators in NEAT were extensively
examined via ablation testing in [2] and each was deemed essential for
the performance of NEAT [83]. These tests generated ablated versions of
the original algorithm, a variant without complexification capabilities (no-
growth), another with no speciation, a further one that initialised genotypes
at random, and the one we paid attention to is the non-mating variant. From
these tests, the main insight was that this last version, without crossover,
was able to reach a solution and converge to a high fitness threshold value,
significantly quicker than other operators removed through the ablation
tests. Suggesting that recombination contributes comparatively less than
other operators to the performance of the algorithm as a whole.

The ablation tests were also reproduced on a derivative version of NEAT
known as odNEAT [84], which is a decentralised variant created for online
learning within groups of autonomous robots. These experiments showed
that deactivating crossover resulted in an insignificant reduction in the num-
ber of successful runs. Additionally, the average number of evaluations of
each robot increased by 18.9%. This finding was in support of recombination
for NEAT. In [85], further results derived from odNEAT, on crossover, have
shown that ablating this operator would have a worse impact than removing
speciation.

Further studies, compared NEAT to a neuroevolution system based on
reinforcement learning (EANT2) [86], where authors use neuroevolution to

29

[13th June 2024 at 16:43]

evolve and generate the structures of ANNs through reinforcement learning,
applying it to a specific visual surveying scenario. EANT2 is not directly de-
rived from NEAT, although the operators are inspired by it. In this research,
the authors were not capable of developing a successful variant of crossover
that would provide additional performance to the algorithm.

Another algorithm was proposed in [87] to evolve and optimise the ar-
chitectures of CNNs. The architecture of the CNNs are encoded as a graph
with each of the vertices representing a rank-3 tensor. Two of them are used
for the spatial coordinates of the underlying image, and the third for the
number of channels. Similarly as in [86] the operators are NEAT inspired. In
this system the types of mutations were proved to be highly successful, on
the other hand several variants of recombination were unable to improve it
and were since then abandoned.

Recently, NEAT was adapted to be used to evolve DNNs [88]. The pro-
posed algorithm (COEGAN) was derived from the NEAT extension known
as DeepNEAT [89]. This algorithm is generated from a combination of
neuroevolution and co-evolution for the training of Generative Adversarial
Networks (GAN). In the study the authors used both sexual and asexual
reproduction to generate valid offspring, and discovered that recombina-
tion led to an immediate saturation of the number of layers and premature
convergence. This result discouraged further use of this operator.

In [27] a variation of Non-dominated Sorting Genetic Algorithm II (NSGA-II)
[90] was proposed in which the direct encoding of NEAT is adapted for
evolving neural network topologies. The crossover operator was excluded
without any impact on performance, achieving instead state-of-the-art res-
ults. The extensive systematic review compiled by [32] on the progressions
and algorithmic variations derived from NEAT, highlighted the limited
benefits of certain operators such as crossover; the authors advocate revis-
iting those original ablation tests proposed in [83]. As observed there are
strong contrasting views on recombination for neuroevolution. Our novel
intuition is that the proposed thesis sheds light on this operator, offering
some plausible truth on its usefulness or not.

3.3 scaling up to deep learning

Since its inception, neuroevolution has greatly evolved due to the bene-
fits brought by improved hardware (parallelisation and GPU acceleration).
When largely the same principles created in those days are coupled with
the computational resources available now, we witness speed-ups, improved
accuracy and vast scaling possibilities, not just in neuroevolution but also

30

[13th June 2024 at 16:43]

other disciplines of the larger AI field [91]. Therefore, it was a logical con-
sequence for neuroevolution to benefit from this, by adapting the paradigms
to deal with scaling and benefiting from vast parallelisation. This transition
gives neuroevolution the chance to compete with DNNs for reinforcement
learning, as well as architecture search, as an alternative to gradient-descent,
or advanced learning optimisers. Neuroevolution is particularly suited to
reinforcement learning problems; domains where reward is infrequently
assigned, and the evolved agents have to progressively learn from sparse
feedback.

An evolutionary algorithm developed by [92] was in fact able to produce
comparative results as those of deep learning. This algorithm was able to
directly evolve the weights of a DNN of the same size as the one presented
in [93, 94]. The success of this evolutionary approach was remarkable due
to the high dimensional parameter spaces to be searched. Although in this
particular case, it was not conclusive to the argument that non-gradient
based evolutionary algorithm could compete at the DNN level, as this
algorithm does in fact follow a gradient, after estimating it.

Nonetheless, in [95] true deep neuroevolution had its early successes when
a simple genetic algorithm (gradient free) was deemed a competitive altern-
ative to deep reinforcement learning. Furthermore, this genetic algorithm
was progressed to even outperform Rainbow [96]; an experiment where
six extensions of the DQN algorithm were empirically studied alongside
their combination. This provided state-of-the-art results on the Atari 2600

reinforcement learning benchmark, in terms of data efficiency and final
performance. Ablation studies were also conducted to see which component
of the ensemble approach contributed the most to overall performance. As
the GAs developed in [92, 95] are population based, given enough com-
putational power, they are extensively parallelisable, offering far greater
performance in terms of speed to solution (in terms of wall clock).

Generating hybrid algorithms, by combining gradient based deep learning
and neuroevolution, gained interest as a viable source of high performing
models. An early example of this was presented in [97] where the authors
proposed safe mutations (through output gradients). An algorithm for deep
and recurrent neural networks based on the intuition that it is often ex-
pensive to run a simulation to evaluate a policy, either in a video game or
engineering/physics context; on the other hand, it is fairly simple to instead
evaluate the outputs of a neural network by performing propagations on
reference instances. In this approach, neuroevolution allows to perform
random mutations to the mapping from inputs to outputs of a DNN (policy).
These mutations can have either a huge or minimal effect to the behaviour

31

[13th June 2024 at 16:43]

produced. By keeping a state and behaviours referencing system of the
policies, safe mutations allows, through a gradient-based mechanism to
scale the magnitude of the mutations hence making meaningful changes to
the policy, towards the required direction.

Other successful forms of hybridisation include; executing variants of
gradient-based reinforcement learning for crossover and mutation operators,
used in a neuroevolution algorithm [98]. Furthermore, in [20, 21] the authors
demonstrated a novel neuroevolution method to evolve DNNs based on GE,
namely DSGE. In this approach the automated design is derived from a
multilevel representation, an outer level encodes the general structure of the
network (for instance the sequence of layers) and the inner level encodes
the parameters associated with each layer. Layers and hyper-parameters
range values are defined and expressed through a predefined human-readable
Context-Free Grammar. These hybrid techniques for architecture and para-
meter search have shown promising, comparative, as well as state-of-the-art
results on classification benchmarks such as MNIST, Fashion-MNIST, and
CIFAR-100 (described in Chapter 2.2.3). The authors were also able to extend
the Fast-DENSER algorithm to include transfer learning via an incremental
development method [5] (also described in Chapter 2.2.3).

3.4 the search for novelty and increased diversity

It is widely appreciated that diversity is a driver for spontaneous innova-
tion [91, 99, 100]. This could be the same innovation engine that allowed
human-level intelligence to arise from evolution. Relying on convergent
search strategies is often the cause of stifling diversity. Optimisation tends to
exclude sub-performing solutions in favour of following a gradient towards
the global best. Often global optima are hard to discover as the fitness land-
scape can be deceptively configured depending on the domain; in addition
to using a defective objective function.

The vast majority of neuroevolution algorithms are population-based,
this is an advantageous trait for diversity preservation. Operating on a
population of solutions makes this field innately predisposed to parallel
exploration of diverse solutions. Generally, techniques try to push the search
away from attraction basins; for instance in NEAT, explicit fitness sharing is
used to partition the population into species based on the genetic distance
but also to penalise the number of individuals belonging to the fitness
cluster [2]. This is known as the genetic space diversity or parameter space
diversity. Despite the efforts, the diversity generated by these operators is
often insufficient to produce vastly different behaviours. This is because

32

[13th June 2024 at 16:43]

there are multiple ways in which a neural network can be configured, which
would instantiate the same behaviours. This creates an issue where genetic
diversity is insufficient as certain problem domains are deceiving in their
fitness landscape and will require behavioural diversity [25, 27, 101]. Aside
from being successful in small evolved networks; it has been shown that
this approach is also well performing on high-dimensional reinforcement
learning problems [95, 102].

Due to this, a lot of attention has been placed to create algorithms cap-
able of evolving solutions producing high behavioural diversity. Several
desirable properties have emerged from these kind of search strategies.
Amongst some we find surprise search, evolvability search, intra-life and
across-training novelty [103, 104, 105]. This research further expands into
developing neuroevolution systems that strike a trade off between high
diversity and high fitness. These are known as quality-diversity algorithms.
This concept is inspired by the notion that evolution in biology is not an
optimiser that favours a particular solution or configuration but instead
provides high performing alternatives which possess their own characterist-
ics. One of the earlier exemplars, based on NEAT, was Novelty Search with
Local Competition (NSLC). This strategy leverages the Pareto front of the
multi-objective NSGAII algorithm to determine how to generate, via novelty
search [25], solutions that are both highly performing and highly diverse [26].
Similarly, another algorithm of this category is Multidimensional Archive
of Phenotypic Elites (MAP-Elites); this is a simple and powerful algorithm
which discretises the behaviour space and allocates the highest performing
solution to these niches. Competition can happen only within these niches,
whereas a perturbation in one niche can generate a new champion in an-
other niche. This principle shows that a high performing solution in one
discrete section of the behaviour space can be generated as a consequence of
the stepping stones in other niches of the space. This simple yet extremely
powerful diversity enforcing algorithm produced remarkable results on a
robot locomotion task, which required adaptation after being damaged,
making the cover of Nature journal [106].

Aside from these remarkable results, quality-diversity is a research topic
that continues to attract interest and where new discoveries are constantly
being made. For instance, encouraging modularity in both the genotype
and phenotype are an important step towards solving large-scale multi-
modal problems [107]. The Innovation Engine, which built on top of Novelty
Search replaces the human-dictated behavioural distances with a Deep
Neural Network capable of recognising interesting differences between
phenotypes [108]. Moreover, extending Novelty Search to run in parallel on

33

[13th June 2024 at 16:43]

multiple islands, enabling to scale the neuroevolution of diversity to much
larger populations and more diverse runs; doing so to harness much more
computing power [109]. Another work was inspired by the simple notion
of open-endedness in biology. This work investigates the extent to which
interactions between two co-evolving populations — subject to respective
constraints — is able to produce functional and diverse results, without any
behaviour characterisation nor novelty archive [110]. Furthermore, other
evidence of this is provided by the investigation which confirms that BCs
which are created from hand-designed features are limited by human ex-
pertise and cannot exploit domain nuances. The same work shows that this
can be addressed by recording generic behaviours on several evolutionary
training tasks, and that new BCs can be learned from that. This forces and
distils evolution towards successful behaviours on further tasks from similar
domains [55].

The research conducted by [111] offers interesting insights and critiques
of this discipline. The authors emphasise the significant challenge: evolving
topologies for Novelty Search may pose complexities disproportionate to
the achievable outcomes. Their studies followed the intuitive decision to
test whether evolving topologies, compared to fixed topologies, can help or
hinder the performance of this algorithm. These were tested on two bench-
marks: 2D mazes, akin to those discussed in Chapter 2.2.2, and 3D walkers.
Their result demonstrated that evolving topologies does not consistently
help. They concluded that this approach failed to facilitate search initialisa-
tion or identify the optimal topological structure efficiently. Ultimately, their
findings suggest that Novelty Search might not benefit significantly from
integration with neuroevolution.

3.5 the indirect encoding paradigm

A research theme in neuroevolution that has gained a lot of traction and
interest from the research community, concerns the mapping between geno-
types and phenotypes, known as encoding. As with most aspects of evolu-
tionary computing, indirect encoding is inspired by how information are
expressed in our DNA. With direct encoding each bit of information in
the genome expresses a specific individual characteristic in the resulting
phenotype (making it a one to one mapping). On the other hand, similarly
as it happens in our genetic code, indirect encoding allows for a piece of
information to be expressed in multiple ways, in the phenotype. In such way
offering a compressed and scalable method of determining placement, con-

34

[13th June 2024 at 16:43]

formation and parameters of evolved neural networks, in essence, reusing
information multiple times.

This notion is crucial, as a computational approach capable of evolving
and reaching solutions up to the magnitude of our biological brain, requires
an encoding mechanism that is efficient and computationally inexpens-
ive. Hence, information reusability may allow for exponential growth and
complexification from a simple encoding mechanism.

Indirect encoding not only fosters scalable ANN production through
compressed information, its inherent mechanisms is able to generate patterns
of regularity in the weights composition. Alan Turing was fascinated about
this concept, described as morphogenesis, in his work on reaction-diffusion
equations in patterns generation [112]. This technique allows for genes —
which are information parameters — to indirectly map to units of structures
in the final realised entity: the phenotype.

We see that this concept of regularities in ANNs and DNNs have been
successful, especially in the notion of convolution; this is the regular con-
nectivity pattern, where a detector of features is located in multiple areas
of the same layer. The concept of evolvable indirect encodings to promote
regularities has been studied profusely [113, 114, 115].

A successful indirect encoder was developed in [116]; this method uses
Compositional Pattern Producing Networks (CPPNs) and it is founded on
the morphogenesis principles mentioned before. These can be explained
as simple networks of function compositions, represented as graphs. Said
graphs are evolved, traditionally using NEAT [2], to form the Hypercube-
based NEAT (HyperNEAT) [117]. The simple NEAT algorithm evolved CPPNs
(encoders) that can vary in dimensions and complexity; these graphs are
comprised of functions yielding complex patters. The array of functions
used span from Gaussian for symmetric patterns, sigmoid for asymmetric
ones, and sine wave to produce periodical segmentation. Achieving complex
patterns of regularities is already possible by composing simple networks
comprised of these functions. In [118] it has been shown that this com-
pressed encoding mechanism can efficiently generate ANNs with massive
connectivity patterns from very minimal CPPNs encoders.

In HyperNEAT [118] the evolved CPPNs encoders are used to generate the
weights belonging to a fixed neural network. They do so by querying the
spatial coordinates of a substrate, which can represent the given task or the
structure of the agent for said task. This signifies that the output from CPPNs
inherently incorporates weight patters, geometrical information about the
problem domain. This inclusion is important in problems such as robot
locomotion, which requires strong affinities between inputs and outputs

35

[13th June 2024 at 16:43]

signals of the agent. The success of this has been shown in [119] where the
positioning of the sensors and actuators of a quadruped can be enhanced
by evolving regular gait patterns. Similarly, [120] shows the possibility of
developing ANNs of modular and repeated regular architectures.

In the work by [121] the utilisation of the HyperNEAT paradigm is seen
successfully deployed for evolutionary robotics. Based on evidence showing
that it is feasible to autonomously generate evolved designs in the physical
domain; the authors specifically highlight the challenges posed by autonom-
ous manufacturing and assembly processes, which introduce limits not
observed during simulation. They successfully apply the paradigm to create
repertoires of diverse and feasible robot designs.These serve as seeds within
evolutionary loops, facilitating the evolution of designs and controllers
capable of successfully solving maze-navigation tasks. Incorporating prior
knowledge of a diverse and manufacturable population in this search has
helped in faster convergence on specific tasks while ensuring the validity of
manufactured designs [122].

This technique has been studied at length and has produced successful
results; especially when used for image generation. It has been shown that
these creations, aside from being remarkable on an artistic level, they are able
to trick even highly accurate DNNs [123]. Furthermore, they have been used
in DNNs to improve some of the limitations of convolution, by providing
them with inputs from a space of coordinates [124]. Through evolution, they
helped to shape the research on understanding engines for innovation to
automate creativity [108].

A variant of this algorithm was proposed in [125] where the authors
demonstrate that Compositional Pattern Producing Functions (CPPFs) can
efficiently be evolved, instead of CPPNs, by a vanilla GP algorithm. The re-
search offers remarkable results that outperform those of CPPNs. HyperNEAT

has also been extended in [24] by an algorithm known as hypernetworks. In
this approach, the original algorithm that evolves CPPNs is adapted to train
the evolved weights by Stochastic Gradient Descent (SGD).

The increasing availability of high computing power is giving traction to
this field by enabling efficient encoding of highly complex, as well as deep ar-
chitectures. This include variants of HyperNEAT such as ES-HyperNEAT [126],
where the original algorithm is augmented to not only evolve CPPNs capable
of indirectly encoding patterns of weights but to also evolve the substrate
topologies. This eliminates the manual component of creating a substrate
structure and therefore, the possible human inference associated with it.
This algorithm despite evolving the location of every neuron, it can also con-

36

[13th June 2024 at 16:43]

stitute regions of varying density, increasing substrate resolution holistically
over iterations.

As it will be presented in the following section, most of these indirect
encoding algorithms involving CPPNs, have been adapted to encode similar
neuroplasticity rules, as seen in biological neural networks.

3.6 neuroplasticity and meta-learning

The study of plasticity rules encoding has its application primarily in the
pursuit of adaptable systems. These are resilient algorithms that attempt
to generalise to different domains, after minimal training instances. The
principal application witnessed in the literature up to this date is related to
controllers in robotics, such as robotic locomotion tasks.

The idea of meta-learning or “learning to learn” is seen as a natural
step towards Artificial General Intelligence. In biological neural system
the properties of plasticity are considered essential for the learning and
development of the forms of life we know. Adaptable ANNs are seen as
dynamic and have the potential generalisation qualities that allow their
application to span to a variety of domains. A recent survey by [31] offers
great details on this area of research.

Specifically, the following sources use CPPNs for indirect encoding. Ad-
aptive HyperNEAT [30] extends HyperNEAT, in which CPPNs are adapted to
include, not only spatial coordinates of the substrate, but also pre and post-
synaptic activity signals. Making it a system of plasticity patterns encoding.
In [30] the authors test indirect encoding of plasticity rules through an oper-
ant conditioning task. An agent has to navigate a T-shaped maze to find high
rewards located at either side of the maze. When the high reward switches
location, the neural network encoded with plasticity rules is expected to
adapt and explore the other side of the maze.

An extended version of this is Adaptive ES-HyperNEAT [127]. This al-
gorithmic system augments ES-HyperNEAT to include further information
during neural network encoding. It holistically evolves the topologies of
the substrate based on geometrical information derived from the substrates,
and it introduces regions of the neural network populated with standard
and neuromodulated synapses, (weights) dependent on the outputs derived
from the single instance queried CPPN. In the research of [127], the adaptive
behaviour gained by indirectly encoding plasticity rules, is extended by
using ES-HyperNEAT. A system that helps to encode the placement, density,
and connectivity of neurons. Neuromodulated plasticity is encoded using

37

[13th June 2024 at 16:43]

this algorithmic system and performance is once again tested on the same
navigation task, the T-maze domain [30].

The following research studies relate to further applications and al-
gorithms, formulated on the basis of neuroplasticity encoding. The early
work of [128, 129] investigated the possibility to evolve local learning rules,
so that the weights of connections in the ANN would be modulated by the
activation signals from both source and target nodes. This approach attempts
to mimic the properties of the Hebbian rule in biological brains [130].

In [131] we can witness the initial studies of indirect encoding through
NEON. A system which adopts NEAT to incrementally encode characteristics
of artificial ontogeny, at different phases of the evolutionary search pro-
cess. In this approach, the algorithm is tested against memory and control
benchmark domains.

The work of [132] attempts to further investigate the workings of the
aforementioned systems by isolating the adaptive component and testing the
effectiveness in simpler domains. This analysis helped to understand these
system better and the limitations they have in more complex environments.

The research of [133] explore how different plasticity encoding mechan-
isms are responsible for higher and more adaptable learning abilities. The
authors report that by offering mechanisms of regularity, developmental
(indirect) encoding is the reason for improved performance in simple oper-
ant conditioning tasks. The same authors in [134] highlight the importance
of evolving adaptable plastic neural networks. This research explores key
concepts necessary to understand synaptic General Learning Abilities (sGLA)
and synaptic Transitive Learning Abilities (sTLA). This work offers fun-
damental definitions and metrics for being able to assess generalisation
capabilities in evolved ANNs of replicated neuroplasticity.

Research efforts by [135] attempt to solve plasticity-stability problems
by implementing an external memory bank trained to preserve previ-
ously learned and newly acquired information. This approach introduces
Evolvable Neural Turing Machine, which makes it a simpler algorithm re-
ported to be a better generaliser, with minimal memory access required. This
is tested against the continue double T-Maze, proving that external memory
can offer greater adaptability. This research work, on continual and one-shot
learning, has been brought forward by [136], improving this algorithm by
introducing a new property to the ENTM, a default jump mechanism that
identifies portions of unused memory, which are then utilised to favour the
evolution of continuous adaptive learning.

Another similar research on memory-like mechanism, used for ANNs
adaptive properties, was conducted by [137]. In their approach, using a

38

[13th June 2024 at 16:43]

mechanism called adaptive synaptic delay has been identified to facilitate
stability in the network’s dynamics, achieving brain-like predictive functions.
This was used to solve a complex dynamic control task using a bespoke
sensorimotor controller.

The work of [138] shows that the approach of combining neuromodulation
with functional modularity in neural networks such as [139], helps to prevent
the overriding of previously acquired skills, known as catastrophic forgetting,
as different modules of the ANNs are used to solve different tasks.

Another successful approach on solving this problem was proposed
in [140], where the concept of diffusion-based neuromodulation was pro-
posed. This technique allowed for plasticity to increase or decrease in differ-
ent regions of the network, through evolution. Using this method enabled
to largely eliminate catastrophic forgetting in simple ANNs.

Research conducted by [141] has provided evidence that Spike-Timing-
Depended Plasticity can be evolved using NEAT. Neuroevolution has proven
to be better at selecting network parameters that result in the best accuracy,
depending on configurations. This resulted in networks more sensitive to
their input encoding parameters.

Other more current work include; multi-objective evolution of network
weight and topologies using NSGA-II and NEAT, augmented by the use
of neuromodulation. This approach tests neurocontrollers with conflicting
objectives. Interestingly, results of this research show that speciation is
not necessary for neuromodulation as this approach already preserves
innovation [142].

In [143] synaptic plasticity in the form of spiking controllers are deployed
when adapting simulation learned controllers to reality for Unmanned Aerial
Vehicles.

An aspect of neuroevolution which is closely related to meta-learning is
known as architecture search. Designing neural network is an important step
in the “learning to learn” approach. Deep neural networks are becoming
increasingly more difficult to conceive for human experts, hence the neces-
sity for neuroevolution to step in and offer interesting alternatives. Most
recent research has been focusing on developing large scale deep neural
networks [20, 89, 144, 145]. A lot of the methods that aim at complexifying
architectures, by adding layers instead of neurons, have proven successful in
image classification, detection and multitask learning.

Amongst these methods, highly successful approaches are found such
as [87] where, similarly as NEAT, DNNs are evolved from simple networks,
complexifying them through mutations that add entire layers. A further vari-
ation of this is proposed in [144], which achieved even greater performance

39

[13th June 2024 at 16:43]

by building modules of small neural networks that are used multiple times
in a larger hand-designed neural network composition. This was inspired by
the successes of stacking multiple layer modules to form DNNs [146, 147].

Another successful approach in architecture search can be found in [20,
148] where the authors develop DENSER, a neuroevolution algorithm for
multitask learning. In this approach the layers and parameters of the DNN
are evolved using DSGE. This was proven to be an extremely successful and
a novel approach for discovering counter-intuitive architectures that would
have not otherwise been designed.

Differently from the task of object detection and image recognition, which
are found in computer vision, where the most successful approaches are
based on CNNs, in language modelling and processing the most common
architecture is the Long Short-Term Memory (LSTM). In this area it was also
found that it is possible to generate successful designs automatically through
neuroevolution [89, 149].

3.7 the modern days of neuroevolution

Since its inception, evolutionary computation discipline has gained a lot of
interest and the progress made in later years is remarkable. For instance, in
modern days, neuroevolution has been successfully utilised for the develop-
ment of a fully automated approach to iterative game testing [150].

Another similar research is proposed by [151]. Here the authors highlight
that modern automated environments for GUI testing are unable to exhaust-
ively explore the entire state space of software, nor process the input space
of graphical user interfaces, as they are highly dimensional. In this study,
they propose a novel approach to address these issues. As neuroevolution
can offer a scalable alternative to deep reinforcement learning methods.
The method offers a higher robustness to parameter influences and a better
handling over sparse rewards. The evolved agents in this work are trained
to identify errors in software and are consequently rewarded for high test
coverage.

In [152] neuroevolution is parallelised to perform a complexity analysis
of the neural network and their performance, in terms of accuracy and time
taken, compared to back-propagation, in order to identify sustainable ways
of evolving competitive neural networks.

Further modern work [153] on transfer learning has provided an approach
to identify specific neurons that are necessary in a neural network composi-
tion, which should be consequently transferred. The Hot neural components

40

[13th June 2024 at 16:43]

are transferred from the source ANN, to assist the learning at of the target
ANN.

In [154] the authors highlighted the inefficiencies and disruptiveness of
crossover in neural networks, due to strong functional dependencies of
connection weights. They proposed a modularity-based linkage model at
the weight level, preserving the functionally dependent building blocks of
neural networks during crossover.

Additional evidence of successful neuroevolution work is presented
in [155] where the authors try to address an issues of Topology and Weight
Evolving ANNs, related to the design of genetic recombination, and the
exploration of huge search spaces; especially in large-scale problems, which
lead to impractical runtimes. In response, they develop a novel evolutionary
framework for the neuroevolution of ensemble learners, using a specialised
divide-and-conquer manner. Doing so, they address the problem of genetic
recombination, as the search space for this operator is restricted to suitable
solutions in the ensemble methods.

The work of [156] highlights a gap in the application of deep neuroe-
volution techniques to imitation learning. In this research they propose an
assessment of whether neuroevolution can successfully be deployed for
behaviour imitation on known simulation environments. A co-evolutionary
adversarial generation framework is engineered, and it is evaluated by
evolving standard deep recurrent networks, for the imitation of pre-trained
agents, on eight state-based control tasks from Gymnasium. The results
of these experiments indicate that in this realm neuroevolution can be a
significant addition to deep learning, to generate accurate emulation of
behavioural agents.

Furthermore, a recent remarkable work is seen in [157]. In this research
the authors propose a neuroevolution method that automatically gener-
ates lightweight You Only Look Once — a state-of-the-art computer vision
model, which is able to realise real-time white shrimp biomass assessment
in recirculating aquaculture system, used for their detection. The method
starts with an initialisation of a minimal YOLOs population, from a restric-
ted search space of available building blocks. A constructive evolutionary
search strategy is then employed to incrementally grow the YOLOs, adding
and modifying their modules throughout the run, until reaching a preset
performance threshold.

In the work of [158] the NEAE algorithm is developed, which is a neuroe-
volution system, specifically designed for classifying and predicting abnor-
malities in internet-based applications. In their approach, the system targets
multivariate anomalies using parallel dimension processing, to achieved a

41

[13th June 2024 at 16:43]

synchronised intelligence. This proposed method is assessed using a large
internet dataset on network traffic. Simulation results provide evidence
on the effectiveness of this approach in detecting abnormalities, based on
specific performance metrics.

Finally, a further interesting recent contribution in neuroevolution comes
from the work of [159]. In this research the authors remark on the compu-
tationally expensiveness of neural architecture search, often related to the
huge and intractable search spaces. In their work they propose the use of
local differentiable stochastic neural architecture search to generate a hybrid
neuroevolution algorithm, used in the fitness evaluation step. The results
of this work highlight the successfulness of this approach in effectively
selecting the correct recurrent neural network memory cells.

3.8 illuminating fitness landscapes and the search space

Search trajectory networks (STNs) are a data-driven, graph-based model of
search trajectories where nodes represent a given state of the search process
and edges represent search progression between consecutive states. STNs
were initially inspired by Local Optima Networks (LONs), created in [46]
for the study of NK Landscapes. LONs, on the other hand, were inspired
by network-based models of energy landscapes for computational chem-
istry [160]. This discipline made use of barriers trees [161] and disconnectiv-
ity graphs [162, 163] to study these phenomena, graph-based modelling
tools later applied to also study fitness landscapes of optimisation [164].
LONs as we defined in details above are a graph model of fitness landscapes
where nodes are local optima and edges are transitions amongst optima,
with a given search operator.

This technique has been recently successfully applied in many areas of
evolutionary computing research, which have produced many profound con-
tributions such as the recent outlook on randomness in LONs sampling [165],
or the fitness landscapes of channel configurations for CNNs, derived
through Neural Architecture Search [166]. Similar studies have been conduc-
ted on evolved CNNs to investigate their hyperparameter configurations,
and the effectiveness these have [167]. Furthermore, the tool was used to ana-
lyse the fitness landscapes of a popular tabular Neural Architecture Search
benchmark, to discover that by using the findings, to build a fitness-aware
Iterated Local Search can help to outperform popular evolution and rein-
forcement learning algorithms [168]. LONs have also been applied on real
world domains such as the investigation into assisted seismic history match-
ing, where the optimisation problem is to find the best subsurface reservoir

42

[13th June 2024 at 16:43]

model for prediction of field performance in the energy industry [169].
Moreover, the technique has been deployed to study the varying strength of
perturbation on fractal dimension for the Quadratic Assignment Problem of
the fitness landscapes generated by Iterated Local Search [170]. Further stud-
ies have used the local optima modelling technique to illuminate crossover
in fitness landscapes and discover that the operator can induce networks of
overlapping hypercube lattices, on the travelling salesman problem. Interest-
ingly, these network model can be used to infer the existence of local optima
not reached through the sampling process itself [171].

Further inspirations for these visualisation techniques were derived from in-
teraction networks [172] to study population-based algorithms. The inception
idea was to deploy graphs whose connections indicate the interaction of
individuals, where vertices are individuals activated by others, throughout
generations. Moreover, such strategies of modelling and visualisation were
deployed in the examination of differential evolution [173, 174] and particle
swarm optimisation [175, 176], to map the influence of individuals/particles
inside the swarm (population). Such studies offered the evidence that these
advanced tools can be useful to capture the exploration-exploitation dy-
namics of evolutionary algorithms. On the contrary, STNs, differ from the
aforementioned techniques as they do not aim to depict the interactions
between individuals but to trace the search path (trajectory) performed
throughout optimisation.

Amongst other successful techniques for evolutionary computing on
search-specific processes we find Gavel [177], an effective tool for modelling
and visualising the effects of crossover and mutation in the assembly of
solutions in genetic algorithms. In this study, the innovative tool has been
proven effective on three different problems: a timetabling problem, a job-
shop scheduling, and Goldberg and Horn’s long-path problem.

Furthermore, in multi-objective optimisation the work of [178], shows,
through dimensionality reduction, the progress of optimising and improv-
ing objective values. A similar line of enquiry involved trace generation
plots [179], where they depict the hypervolume values changes over itera-
tions. These differ from search trajectory approaches as they focus on the
illumination of objective spaces rather than the solutions themselves.

Moreover, other similar techniques are found, where to track search be-
haviours, multidimensional solutions are turned to lower dimensions. The
dimensionality reduction techniques found are principal component ana-
lysis [180], t-distributed stochastic neighbour embedding [181], and Sammon
mapping [182]. In this way the position of individuals and movement is

43

[13th June 2024 at 16:43]

visualised by running a sequence of 2-D frames [183] or stacking of these to
produce 3-D models [183].

STNs can be considered similar to the aforementioned approaches, but in
addition, this technique offers a clear insight into specific search dynamics,
as the paths through the search space are captured in the graph object. In
this approach, graph information can be analysed at different granularity
levels by changing the definition of a location.

STNs differ from LONs in that the nodes represent states of the search
process, not necessarily local optima, which generalises and extends the use
of this graph-based model of search dynamics. Once a system is modelled
as a graph (network) it can be visualised and analysed with the vast variety
of powerful analytical and visualisation tools provided by the science of
complex networks [17]. STNs were initially proposed to characterise Dif-
ferential Evolution and Particle Swarm Optimisation for several classical
continuous optimisation benchmark functions [47]. STN analysis was later
extended to cover not only population-based algorithms but also stochastic
local search methods, and both continuous and combinatorial optimisa-
tion problems [184]. More recently, the technique has been successfully
applied to the Cyclic Bandwidth Sum problem in [36], also in the field of
multi-objective optimisation in [185, 186, 187], to highlight phenotypes and
mutational transitions of linear genetic programming system as graph-based
models [188]. This further corroborates the usefulness of this modelling
technique and its applicability, and potential extensions to different realms.

3.9 conclusions

In summary, as discussed in the literature, we observe the significant growth
of the field of neuroevolution since its inception. The literature review
focused on assessing this realm, particularly the research concerned with the
visualisation of meta-heuristics through complex networks, namely Local
Optima Networks and Search Trajectory Networks.

The review of the literature presented various strands and facets of neur-
oevolution, including categories of algorithms and subfields aiming at the
bio-inspired evolution of neural networks. It became apparent that there is a
vast array of algorithmic developments, often pursuing similar objectives.
Additionally, assessments of the operators developed for these algorithms
provided contrasting views on their usefulness and efficiency, especially re-
combination. All of this poses a questions; how well can we understand the
mechanisms of these operators and how do we compare and contrast these
neuroevolution algorithms?

44

[13th June 2024 at 16:43]

The successes of LONs and STNs in meta-heuristics, as presented in the
literature, have inspired us to pursue this line of study further. Aiming to
offer a more advanced tool leveraging complex network visualisation to
understand and display the intrinsic mechanisms that operators and search
strategies in neuroevolution form. The literature has highlighted this gap.
The applicability of Search Trajectory Networks to neuroevolution and its
various facets has not yet been explored.

45

[13th June 2024 at 16:43]

4
C H A P T E R 4 — R E C O M B I N AT I O N I N N E AT: A S E A R C H
T R A J E C T O RY N E T W O R K S P E R S P E C T I V E

This chapter presents the research work published in [7]; reported in the
List of Publications table, at the start of this thesis. The reviewed literature
highlighted that the STNs network visualisation technique, initially proposed
in Ochoa (2021) [35], and inspired by its predecessor LONs [46], has not previ-
ously been used to study neuroevolution search spaces, nor the dynamics of
the NEAT algorithm. We aimed to fill this gap by applying Search Trajectory
Networks (STNs), for the first time, to the study of NEAT and its recombination
operator.

As discussed in Chapter 2.2.1, NeuroEvolution of Augmenting Topologies
(NEAT) is a Genetic Algorithm (GA) used for evolving dense neural network
topologies and the associated weights — without means of back-propagation.
It has been proven effective and adaptable at solving reinforcement learning
tasks. Nevertheless, earlier work [2, 32] highlighted the partial inefficiencies
related to the recombination operator in NEAT. We focus our attention on
crossover; in the original publication, the operator was deemed an import-
ant contribution to the known issues in neuroevolution [50], discussed in
Chapter 2.2.1.

The results of this discussion will demonstrate the success of this approach
in analysing whether this contested operator behaves as intended, from a
search space perspective. Furthermore, the technique used in this research
has helped to pave the way of illuminating neuroevolution search spaces;
offering an advanced tool, beyond the analysis of fitness performance, to
assess neuroevolution.

In this work, we offer a visual and statistical analysis to examine the
behaviours of NEAT, with and without the recombination operator (cros-
sover). The experiment follows two benchmark tasks found in the original
NEAT article [2]: XOR and Double-Pole Balancing. Results obtained from
inspecting the search space dynamics demonstrate that this operator does
not produce the intended results as proposed in [2, 115].

46

[13th June 2024 at 16:43]

4.1 key contributions and motivations

This is the first contribution chapter of this thesis. Outlined here is the
seminal work related to the novel application of STNs — a complex network
visualization technique used to observe search space trajectories — in the
realm of neuroevolution. This technique is adapted to model the search
dynamics of the NEAT algorithm. The key contributions of this chapter are
reported as follows.

• Adaptation of STNs to model incremental and variable length geno-
types such as those in NEAT

• Offer, for the first time, a network-based visual analysis of neuroevolu-
tion trajectories

• Explore reported inefficiencies and the role of crossover in neuroevolu-
tionary systems

4.2 historical markings in recombination

In this section we delve deeper into the workings of the NEAT recombin-
ation operator, how the operator uses an innovation numbering system to
crossover solutions, as well as how the approach was originally conceived
for solving the permutation problem [50].

As previously discussed in Section 2.2.1, historical markings are a way
of numbering the genes innovations that occur in a NEAT genotype. These
indicators are used in many operators of the algorithm, especially to perform
recombination between two high performing parents selected from the
population. This is known as a global innovation counter, which is incremented
and added to a new gene each time it appears. This is a chronology of every
gene that is encountered in the system during a run. Hence, it is easy to
imagine how this non-computationally demanding technique can help track
topological creations. Innovation numbers are unique IDs that do not change
during the same run, and they help to establish the inheritance of genes in
offspring. Let us explore the example used in [2] to outline the concept of
crossover and its role in addressing the competing conventions problem [50].

Figure 4.1 provides an illustration on how recombination occurs by lever-
aging the innovation numbering system. By stacking the genotypes of two
selected parents, we observe both matching and non-matching numbers in
one of the parents; similar to a masking exercise. These can either be disjoint
or excess genes. Disjoint genes occur within the genotype and excess are the

47

[13th June 2024 at 16:43]

Figure 4.1: The role of recombination in NEAT. Sourced from [2]. The number at the
top of each gene cell is the innovation number. The arrows signify the
edge component, in the form outbound cell - inbound cell.

ones that exceed the length of a genotype. It is worth noting that this is what
occurs for the topological information not the weights of genes. These are
in fact transferred from the highest performer of the two parents in excess
and disjoint genes; the matching genes, which are those genes that found in
both topologies, are picked randomly.

From this explanation we can perceive how this operator should intel-
ligently work to incorporate high quality information from both parents.
Although, it can also be deduced from its complexity, how this mechanism
might be prone to issues and not work as intended. In fact, as the authors
state, this operator would be ineffective without a speciation mechanism that
would separate topologies into different niches, allowing them to optimise
without being prematurely eliminated [2, 115]. This is due to smaller struc-
tures optimising faster than larger ones, as initially introducing nodes and
connections typically reduces fitness. Topologies that are recently augmen-
ted have a lesser chance of surviving without a mechanism of protection. As
mentioned earlier, some of these topologies may serve as crucial stepping
stones for solving the task in subsequent generations [115].

48

[13th June 2024 at 16:43]

Now that the recombination operator of NEAT has been explained, let
us elucidate how NEAT genotypes — which are network topologies and
weight solutions — were converted into flattened signature representation.
Forming the nodes of our STN visualisation models.

4.3 modelling neat architectures to stns signatures

This is an important step, as generating STNs signature from neuroevolution
genotypes was a fundamental hurdle that had to be overcome for STNs to
be successfully applied to the neuroevolution search space. When we think
of a node in an STN network, we can consider this as a signature that easily
represents salient aspects of a solution: a neural network. For instance, in
the paper that initially proposed STNs [19], combinatorial optimisation using
population-based algorithms is achieved for a single objective, static, bound-
constrained, multivariate minimization problem. This domain is defined
with the following formalism.

min f(x), f : Rn → R, x ∈ S ⊆ Rn, (4.1)

In the definition of 4.1, x is an n-dimensional vector representing a can-
didate solution. S denotes a feasible subregion of Rn as the domains of the
variables within x. S has boundary constraints, as all components of the
solution vector (shown in 4.2).

xmin ⩽ xi ⩽ xmax ∀x ∈ S, 1 ⩽ i ⩽ n (4.2)

Given the above definition, a solution in traditional STNs is a vector of real
numbers, bounded by the domain. Considering a function like Rana, used
in [19], a candidate solution would be comprised of real values in the range
expressed in 4.3.

xi ∈ [−512, 512] (4.3)

When neural networks are involved, things differ greatly, as candidate
solutions become increasingly more complex. A larger set of information
is encoded in the solution genotype, as the search space is vastly larger in
terms of parameters. For an accurate and effective Network Architecture
Analysis (NAA) — discussed in Chapter 8 — all these information are
essential and must be encoded and modelled in our visualisation approach.
The inherent characteristics to be mapped are presented as follows.

If we consider the NEAT genotype, this is composed of two levels as
outlined in Figure 4.2. One level takes care of encoding the node genes, while

49

[13th June 2024 at 16:43]

the other is responsible for representing the connections between these. The
node genes part of the genome includes a gene ID and a description of
whether the node is an input (sensor), hidden, or output node. On the other
hand, the connection genes of the genome include information such as the
direction of connections (from node to node), the weight assigned to the
connection, whether this gene is enabled (active) or disabled (inactive). In
this illustration there are no inactive genes. Finally, a crucial part of the
genes encoding, is the innovation number, used by the various operators
of NEAT. Every time a new gene is introduced (found by search), this
number is incremented; when genes are inherited, they maintain their
unique innovation number.

GENOTYPE

PHENOTYPE

1

5 7

2 3

Input

Output

Node Genes

Connections Genes

Node 1
Sensor

Node 2
Sensor

Node 3
Sensor

Node 4
Sensor

Node 5
Hidden

Node 7
Hidden

Node 6
Output

In 1
Out 5
Weight 0.5
Enabled
Innov. 1

In 2
Out 5
Weight 0.7
Enabled
Innov. 2

In 5
Out 6
Weight 0.3
Enabled
Innov. 3

In 3
Out 7
Weight -.2
Enabled
Innov. 4

In 7
Out 6
Weight 0.8
Enabled
Innov. 5

In 4
Out 6
Weight 0.6
Enabled
Innov. 6

Figure 4.2: An illustration of the genotype-phenotype dichotomy. Adapted from [2].

It is now possible to perceive the difficulty involved in incorporating
all this information into a STNs signature that was previously only used
to represent a simple vector of real numbers, as it is in the original STNs
approach [19].

In order to achieve this, an effective method was found, which would
linearly map, compress and encapsulate all the information into a unique
and reproducible signature encoding, for the nodes of our STN construct.
The proposed solution [7] was to leverage a simple function derived from
the native Pickle python library. This is called pickle.dumps and it is used
to form a serialisation of an object’s hierarchy [189]. Since the genotype
of a NEAT solution can be expressed as an object, and it represents the
architecture of a neural network in an orderly fashion, this function was
used to return the pickled representation of that object as a bytes object.

50

[13th June 2024 at 16:43]

Other more manual and bespoke approaches were considered but did not
add any improvement compared to the chosen method. An example of this
is presented in 4.4.

b′|x80|x03
]
q|x00K|x00K|x00

]
q|x01J|xf|xffK|x00|x86q|x02a|x87q|x03a. ′

(4.4)

The use of this function is important as it enabled the conversion of in-
formation from potentially large neural network architectures into more
concise and consistent string representations, which are unique and repro-
ducible. This was particularly necessary, due to the complexifying nature of
NEAT, where topologies may start small and then progress to more intricate
and larger architectures.

Given the above example, let us proceed to illustrate further how the
mapping process occurs from topology, to structural vector of real numbers,
to compressed signature achieved using the .dumps serialisation function
(shown in 4.4). Figure 4.3 shows the exemplification of this process, by using
as an example the extract — derived from an experimental run of this study —
of the results produced by the stable python implementation of NEAT [190].
The extract illustrated presents a candidate solution; genome_id: 412, which
has a fitness of ≈ 3.28.

hN:
56

bias: -0.6525

oN:
0

iN:
-1

iN:
-2

weight: -1.7652

weight: 0.3937

weight: 0.1971

bias: -0.2861

weight: 1.2544

Genotype Phenotype

Key

Inputs

Outputs

i
N

h
N

h
N

Input Node

Hidden Node

Output Node

Figure 4.3: Exemplification of the mapping process from genotypes to unique sig-
natures for the construction of STNs. Sourced from [7].

The extract, achieved by logging the best individual in the population — as
a genotype object — is a process which is custom in STNs analysis [19, 35].
The rationale behind this choice, is that the best individual in a population,

51

[13th June 2024 at 16:43]

is often a good representative of the search stage at a given point in the run.
This genotype object extract, gives us a precise and adequate inspection of
the details that comprise a representative solution. However, this extract is
not usable in its current state and needs to undergo a pre-processing stage,
which is described below.

Figure 4.3 offers a more comprehensive and detailed overview of the main
concepts introduced in Figure 4.2. This illustration portrays the genotype
nodes and connections. Nodes have identifying numbers. Note that the input
nodes (−2 and −1) are not listed, as they are pre-set in the configuration file
by the user. This is because each problem has different input requirements,
and these must be set a priori, based on what should be sensed from the
domain. Therefore, in this example, output node node: 0 and node: 56 are
the ones that have been evolved by the algorithm. Evolved nodes and con-
nections are the primary focus of this analysis, as the criteria of evolvability
is what needs to be captured and interpreted using this methodology.

Aside from the identification numbers, nodes carry a bias. This can be
considered a factor informing how positively, or negatively, information
flowing through the node, should be considered in the network. Therefore,
bias is an important component incorporated in our signature representation.
There is a limit to the amount of information we can include in a signature;
therefore, the other pieces of data illustrated in the nodes’ section are
not included. The reason is that, if we enlarge the information carried in
signature components, in essence, we explode the search space by shining
a light through its vastness — at different dimensional levels. We need
to compress our analysis to strictly essential components. After careful
consideration, based also on the literature surrounding NEAT [32], weight,
bias and node innovation number, were the three fundamental information
of interest to our visualisation analysis. This is also because they are the
fundamental components that constitute TWEANN algorithmic systems, such
as NEAT. The response, activation and type of aggregation were excluded
alongside genes that were not enabled by evolution.

In the connection section, there are other crucial components that must
be selected and incorporated. These can be, the direction of connections,
expressed as binary coordinates (from node to node), the weight of connec-
tions, which, similarly to the bias, give us an indication of the significance
that connections have, and the validity of these (through a Boolean expres-
sion). It is hard to single out how each of the connections weights work,
as these are supposed to operate as a conglomerate network apparatus;
therefore, all of these are incorporated in the signature. Finally, we have the
validity, whether a connection is valid and active or invalid and inactive.

52

[13th June 2024 at 16:43]

The validity is controlled by evolution. Similarly, as in the nodes section, to
avoid search space explosion, only the weights of those connections that are
valid (enabled) are incorporated in the signature. Direction coordinates will
be implicitly expressed as the topological structure of the signature itself.

Now that the genotype object has been detailed, we can progress to outline
the first step in the mapping process using the proposed technique [7].
When the pseudo-phenotypical vector representation structure is created
(NN Representation in Figure 4.3), the focus is on the flow of information from
nodes acted upon by other nodes. In the case of genome 412, we observe what
happens to node 56. Node 56 has a bias and two inputs that are outlined
in the connections portion of the genome. Connections come from both
input nodes (−1 and −2). Worthy of notice, is the numbers reported in
our pseudo-phenotypical NN vector representation do not coincide with
the ones shown in the genotype object discussed earlier. This is due to
search space partitioning, which is a conversion applied to real values in the
genotype. Let us explain and justify this process in the following section.

shining a light on the search space As discussed earlier, includ-
ing information components to a signature in STNs, is a fundamental choice
that can be derived empirically, with an extensive understanding about the
algorithm in analysis. This is analogous to having a torch and deciding
how bright and vast this torch should shine on the search space. Being too
detailed in the components of our information signature, is like narrowing
the torch to a laser beam. Doing so, might reach far into the search space
and pinpoint specific criteria, but the width of illumination would be rather
narrow, and possibly inconclusive. This may lead to a poor understanding of
the search space dynamics, related to the algorithm in analysis. Our intent,
is to offer an overarching visualisation model, of some critical components
of solutions in the search space; essentially tracking the algorithm’s traverse.
Fundamentally, it helps control the granularity of the visualised models.

Firstly, we must select the cardinal components to be included in the
signature, and secondly, partition the search space into discrete portions.
In simple terms, this involves reducing the decimal point precision of the
numerical values encoded in the signature. This will not only reduce the
granularity, and help to construct the overarching visualisation, clustering
similar solution to common location of the search space, which is then
expressed as a node in the network model.

As per the STNs definitions found in Section 2.1.2 of Chapter 2, a location
is a non-empty subset of solutions that results from a predefined partitioning
of the search space. This partitioning, together with the choice of elements to

53

[13th June 2024 at 16:43]

be included in the signature, is largely established by empirical choice, made
with some fundamental knowledge about the algorithm to be analysed.
When partitioning, the creation of aforementioned search space portions —
which can be described as hypercubes — is trialled by the use of a Partition
Factor (PF).

𝒮 = [−1, 1]

0.
01

0.01
0.01

Figure 4.4: A simplified illustration of the 3 dimensional search space partitioning
into uniform hypercube dictated by the PF.

Figure 4.4 shows the equivalent 10−2 hypercube, using a PF = −2. Thus, the
solutions are mapped to locations by rounding off the precision values to the
nearest 10PF, which defines the identity of the enclosing hypercube. The two
(red and orange) circled solutions, shown in the illustration, would both fall
into the same hypercube shown. This explanation follows the example given
in the seminal paper [35], where the problem is 3 dimensional, with a search
space domain equivalent to the solution range S = [−1, 1]. Setting the PF to
−2 would mean that our adjacent solution points would be discretised in a
hypercube of 0.01× 0.01× 0.01.

Now that the concept of search space partitioning has been clarified, let
us return to the final stages of the signature mapping creation, through byte
encoding. Figure 4.3 reports the solution vector with the values’ precision re-
duced by our empirically designated precision factor (PF) — a value discussed

54

[13th June 2024 at 16:43]

in the following parameters section. In this vector, denoted by the square
brackets ([∗, ∗, ∗]), we track the topology, starting from node 56, which has a
rounded bias of −1. Within this, we have a list of tuples that coincide with
input node -1 and -2, plus their respective weights. The same occurs for the
output node 0, which systematically represents the further components of
the topologies.

Finally, now that this vector has been assembled and partitioned according
to the method described above, the whole vector (a list of lists and tuples)
is passed to the .dumps function. This consistently hashes the vector to a
specific and unique byte string, highlighted by the box in Figure 4.3.

4.4 complex networks characterisation

One of the main objectives of this research, is to evaluate the recombination
operator using a visualisation technique, which aims at illuminating the
search space, using complex networks. The inspiration was obtained from
the ablations studies conducted in [2]. These aimed at isolating key properties
of NEAT, to assess whether removing algorithmic components/operators
had a significant impact in performance. Four ablations were studied in [2],
non-growth, random initialisation (instead of minimal initialisation), non-
speciation and non-mating, as the authors call it, which is the removal of
crossover.

The neat-python implementation found in [191] was used for our analysis.
With this version, we proceeded to create two variants and compared their
generated networks. One variant was left in its original form, as found in the
NEAT paper [2]; all parameters were left unchanged, to exactly reproduce the
experiment. The other variant is similar, except for the removal of crossover.

Let us proceed to describe how the complex networks visualisation ana-
lysis has been ideated and carried out.

4.4.1 Merged Search Trajectory Networks

STN models do not require any additional sampling methods. They are
built from data gathered while running the evolutionary, or meta-heuristic
algorithms under analysis. For each of the chosen problems, an STN is
constructed by aggregating all the unique nodes and edges encountered
across five independent runs of each NEAT variant. Five runs have been
empirically deemed an appropriate sample, capable of illustrating these
neuroevolution dynamics.

55

[13th June 2024 at 16:43]

This is achieved from an STN/NTN log, which is the extract of running
the variants on the problem domain and selecting the best individual in the
population. This is to be modelled as node-edge transition, which we define
as a trajectory. In Figure 4.5 an example of a node-edge log is presented;
used to generate the merged networks.

node-edge log (no crossover net) node-edge log (crossover net)

Figure 4.5: An exemplification of the node-edge logs necessary to compute the merged
STNs structure for our multi-variant experiment.

These logs are used to generate merged STN models for the two NEAT
variants: with and without crossover. The merged model is obtained by the
graph union of the two individual graphs for that domain.

Using the graph theory formalism, let STNX = G(NX,EX) and STNnX =

G(NnX,EnX) be the STNs of algorithm variants X and nX, for crossover
and no crossover, respectively. We construct STNmerged as the union of the
two graphs. Specifically, STNmerged = G(NX ∪NnX,EX ∪ EnX). The merged
network contains nodes and edges that are present in at least one of the
algorithm graphs. Decorators are crucial; they are utilised for nodes and
edges to indicate whether they were visited by both algorithms or only by
one of them.

4.4.2 The Reingold-Tilford tree layout

In this analysis, the Reingold-Tilford tree layout [8] was empirically selec-
ted as the graph layout of choice. This is a directed graph, which aims at
producing aesthetically pleasing and tidy trees, using minimum drawing
space. This graph has a root node that begins at the top of the plotting
plane, and develops to produce trees, following a given vertical progression.
The main characteristic of this specific layout is that nodes of the networks
and subtrees are closer together, producing a narrower graph. Figure 4.6,

56

[13th June 2024 at 16:43]

provides a simple demonstration of how this layout achieves the intended
outcome. In previous layout algorithms — such as the Wetherell and Shan-
non [192] — the position of the green node in Figure 4.6a, is programmed
to stay considerably far apart from the blue node. In Figure 4.6b we can
observe how the placement of the nodes in question is changed, to leave a
much narrower gap and to produce more compressed layouts. The algorithm
strives to organise the vertices into layers, based on their geodesic distance
(path length) from the root vertex. In our case, the root is set to be the start
of trajectories. Another benefit, is that this algorithm strives to minimise the
number of edge crossing.

ROOT

(a) Before RT layout

ROOT

(b) After RT layout map

Figure 4.6: A demonstration of the tidier tree provided by the RT layout. Illustration
adapted from [8].

The fundamental reason for this choice is that, in our analysis, we wanted
to produce and showcase merged STNs, for the non-crossover and the cros-
sover variant, in one visualisation plane. Upon generating the preliminary

57

[13th June 2024 at 16:43]

plots and conducting careful observations, it was noticed that when gener-
ated using the typical force-directed layout approach [193] — which is used
in [19, 35] — they did not provide a comprehensible depiction of the dynam-
ics of this system’s variants. A tidier approach was required, which could
deliver maximum information in one single image, hence the justification for
this type of tree layout. Furthermore, the modelling of this neuroevolution
search space, produced many data points, which translated into many nodes
and nodes transitions. Without such layout, it would have been hard to
distinguish the progression thorough this space and to compare the variants.

Ultimately, as a researcher in this area of study, our objective is to maxim-
ize the information delivery of a network artefact. Doing so, to effortlessly
convey and provide plausible explanations of what is occurring in highly
dimensional and abstract environments. This is done, while producing
mathematical graph objects that are aesthetically pleasing for the observer.

4.5 experimental settings

The two variants will be analysed on the two benchmark control problems,
used in the original NEAT paper [2]. XOR and DPV. These are outlined
as follows, together with the domain specific parameters, used for the
experiment. This ensures the possibility of reproducing the experiment in
the future.

xor eXclusive OR (XOR) is possibly the simplest of classification problems.
It is a Boolean logic, which compares two input bits and generates one
output bit — essentially a simple classification task. A trivial logic: if the
bits are the same, the result is 0. If the bits are different, the result is 1. It is
usually adopted to validate an algorithm’s ability to function, according to
its engineered principles. A sort of proof-of-concept testing domain.

This benchmark is intended to test for linear separability. Single Per-
ceptrons do not have the capability to solve XOR, as they lack hidden layers.
In essence, they are too shallow to learn the separation of all inputs, as
demonstrated by the classification Table 4.1.

The hidden layer, referred to as a feature vector, can increase its dimensions
and enhance linear separability by applying a non-linear transfer function.

The fitness function, used to calculate the classification, is based on Mean
Squared Error (MSE). This is 1−

∑
i(ei − ai)

2, where the expected output
(ei) is subtracted to the actual output (ai). Therefore, if the network can
produce the exact expected output, it will gain the full fitness score of 1

(100% accuracy). Otherwise, it will receive a value less than 1, depending

58

[13th June 2024 at 16:43]

Table 4.1: XOR input-outputs classification table.

Input 1 Input 2 Target Output

0 0 0

0 1 1

1 0 1

1 1 0

on the error, which decreases more rapidly, the further expected and actual
outputs differ.

double pole balancing This is a more complex domain compared
to XOR. It will also become evident by the result of this analysis, which
will be discussed in Section 4.7.2. This benchmark problem is a control task.
The dense neural network, produced by NEAT, are known to have good
neurocontrolling capabilities, hence they are particularly suited to problems
of this kind.

mcart

m1

FX

L1

L2
𝜃2

𝜃1

x

m2

Figure 4.7: Illustration of the Double Pole Balancing domain (DPV). Figure adapted
from [9].

The domain involves two poles, which are connected to a cart by a
hinge. The task is for the neurocontroller, which is a neuroevolved agent, to
maintain these poles balanced for a set time period. The neurocontroller has
to master this task, by maintaining the cart within a predefined length of

59

[13th June 2024 at 16:43]

track. It achieves this by receiving some key inputs from this environment.
Environment inputs and coefficient are explained in the Table 4.2.

Table 4.2: Parameter values used in for the DPV domain.

Symbol Description Value

X The position of the cart on the track ∈ [−2.4, 2.4]m

θi Angle of poles from vertical ∈ [−36, 36] degrees

Fx Control force applied to the cart ± 10N

Li Center of mass distance of poles to the pivot
L1 = 0.5 m

L2 = 0.05 m

M Mass of the cart 1.0 kg

mi Mass of the poles
M1 = 0.1 m

M2 = 0.01 m

µp Coefficient of friction of the poles pivot 0.000002

g Gravity acceleration −9.8 m/s2

Since this can be classed as a Reinforcement Learning (RL) problem, a RL
signal (rt) must be defined. It provides the neurocontroller with minimal
information about the system state after committing an action.

rt =

0 if − 0.63 radians < θti < 0.63 radians and − 2.4 m < xt < 2.4 m

1 otherwise

(4.5)

As shown in 4.5, this provides the system with a binary signal indicating
the control task’s status.To receive a 0, the angle of each pole is ±36degrees

or (0.63radians) from the vertical dotted line, depicted in Figure 4.7 and
the cart stays within the track bounds (see X in Table 4.2), else it will get 1.

The actions, that are available to the controller, are detailed in 4.6 below.
Where either a positive or negative force is applied to the cart, based on an
action signal a[t], received at time t.

Ft =

10N if a[t] = 1

−10 N if a[t] = 0

(4.6)

Lastly, the objective function for this domain is expressed as shown in
Eq. 4.7. This implies that to solve this domain, the control agent has to keep

60

[13th June 2024 at 16:43]

the poles balanced, for a maximum number of time-steps (tmax in Eq. 4.7).
To balance the poles, the parameter set to 100, 000 equates to 30 minutes of
simulated time. To calculate the fitness of a suboptimal solution, the loss is
subtracted to the maximum fitness score of 1. In this implementation [9],
the loss is calculated by subtracting the amount of evaluated time-steps
of the candidate solution (teval), to the maximum time-steps (tmax), and
normalising this by the given denominator. Additionally, as most trials are
found to fail in the first 100 steps, logarithmic scales are used here, to have a
better distribution of fitness scores, as we are testing against a large 100,000

steps.

F = 1.0−
log tmax − log teval

log tmax
(4.7)

Table 4.3 holds the main parameters used for the comparisons of these
two domains, from a neuroevolution search space perspective. Note the bias
and weight ranges, which determine the scale of our search space. Inputs and
output nodes are necessary for the construction of our network, these are
unchanged from the configurations and not evolved. Hence why, these are
omitted from the nodes signature, as we are only interested in the nodes and
connections that are evolved throughout trials and evolutions. The fitness
thresholds are established based on the available literature and empirical
tests. These are necessary to declare a solution optimal or not.

Table 4.3: Parameter values used in NEAT for each benchmark domain.

Parameter XOR DPV

Population size 150 1000

Total generations 100 1000

Fitness threshold 3.989 0.989

Bias range [-30, 30] [-30, 30]

Weight range [-30, 30] [-30, 30]

Input nodes 2 6

Output nodes 1 1

As discussed, all real values, such as the ranges we have just pointed out,
have to be reduced in precision, so that the search space can be visualised
in a meaningful way, following the fundamental principles outlined in [35].
To achieve this, we empirically selected the PF value, which dictates the

61

[13th June 2024 at 16:43]

granularity of our search space modelling. Several modelling and visualisa-
tion trials have enabled the selection of a suitable factor, for partitioning the
search space into hypercubes. This was achieved by rounding off the geno-
types real values to 1e− 0 and 1e− 4 for the fitness values. These settings
provide a comprehensively meaningful view of both XOR and DPV search
spaces, with sufficient details to perform an informative examination of the
algorithm variants’ dynamics.

4.6 analysis rationale

The search spaces examination has been achieved by producing 30 runs of
each variant, on each of the domains. Independent runs are initialised with
the same random seeds, for both compared variants. These were used to
form the statistical analysis, in terms of fitness performance. To produce
the STNs visualisation models of the search trajectories, a sample of 5

runs was selected for each variant. The selection criteria was to offer some
representative of the performance achieved. The 5 best performing runs in
terms of fitness achieved at the end of the run, were selected out of the
30. The reduced number of runs was to avoid an overcrowded model and
visualisation. This is particularly important in the DPV domain, as these
networks have substantially more nodes compared to XOR; mainly due to
the larger population and number of generations, which highly increases
the diversity and recorded data points.

Moreover, two statistical tests were conducted to determine the signi-
ficance between the distributions of the variants. Preliminary visual and
Shapiro-Wilk tests indicated non-normality. Hence, statistical tests were
produced using the non-parametric Mann-Whitney test, setting the p-value
to 0.05. The tests were conducted based on the following hypotheses:

• H0: NEAT without crossover has similar distributions as the system
with crossover.

• H1: The two NEAT variants have significantly different distributions.
Hence NEAT without crossover performs significantly better.

The distributions mentioned above relate to the effectiveness and efficiency
of the algorithm. The first is measured by how quickly the variant is able
to reach fitness threshold (see Table 4.3). Effectiveness, on the other hand,
pertains to the number of successful runs that reach the threshold compared
to those that fail. We performed test at two points of the generation ranges,
one at midpoint (test 1) which is equivalent to 50 generations in XOR and 500

62

[13th June 2024 at 16:43]

for DPV. Additionally, a secondary test (test 2) was conducted, equivalent
to 100 generations for XOR and 1000 for DPV. This was an a posteriori
decision, after having observed from the convergence plots (see Figure 4.8
and 4.9), that the average fitness performance, mostly began to diverge
between variants, halfway through the runs. For successful solution of the
domain, a fitness threshold was set, as suggested by the literature, together
with the empirical trials conducted. The specified threshold for each domain
is outlined in Table 4.3.

Beyond statistical tests, the analysis aims to identify whether differences
are easily discernible by visualising the behaviour of these algorithmic
variants within the neuroevolution search space. This assessment evaluates
the feasibility of applying this analysis type to neuroevolution. In its in-
ception, we witnessed the successes of STNs on general, population based
algorithms [19, 35] and later, also in other realms [36, 185, 186, 187, 188]. In
our case, the intent is to demonstrate the usefulness of STNs, by establishing
a beginning to the NTNs methodology.

From the network plot, we derive and compute well known metrics,
previously used for this technique, which are useful to further comprehend
and corroborate the findings portrayed by the visualisations. Amongst these
we find, the number of nodes, which corresponds to the amount of unique
locations visited by each variant; the number of edges, which corresponds to
the amount of unique search transitions between locations; the average path
length (with standard deviation) from start to solution nodes — the length
of a path is the number of edges it contains; the number of shared nodes in
the STN model, which corresponds to the locations visited by both NEAT
variants; and finally, the number of shared edges, which corresponds to the
total search transitions, traversed by both NEAT variants.

4.7 results and discussion

In this section, statistical and visualisation results achieved from this analysis,
are discussed in details. Starting from the statistical results, both in terms
of effectiveness and efficiency. Proceeding to the network visualisations,
looking for confirmations of the statistical results and tests performed.

4.7.1 Statistical performance results

Let us begin to discuss the statistical tests performed which have given us
the motivation to dispute this operator in NEAT.

63

[13th June 2024 at 16:43]

Table 4.4: Significance testing for effectiveness and efficiency between NEAT with
and without recombination.

XOR DPV

Effectiveness midpoint test p = 0.00178 p = 0.00502

Effectiveness endpoint test p = 0.32071 p = 0.00360

Efficiency test p = 0.03911 p = 0.00007

As can be seen in Table 4.4, the results of these tests indicate that most of
the variants’ distributions differ, showing a significant difference (p < 0.05);
in favour of H1. On the other hand, for XOR, we can observe no significant
difference, in the variants’ effectiveness at the end of generations. This
highlights that, although a noticeable difference is present halfway through
the generations, both algorithm variants achieve similar levels of fitness (on
average) at the end of the runs.

This is noticeable, especially by observing the convergence plots of the
two variants solving XOR. Figure 4.8 presents the average fitness, over the
30 runs, for the best individual in the population at every iteration.

0 20 40 60 80 100
Generation

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Fi
tn

es
s

Sc
or

e

Recombination
No Recombination
Fitness Threshold
Test 1
Test 2

Figure 4.8: Average best fitness with standard deviations across generations for the
two NEAT variants on the XOR domain [7].

The two algorithms start from similar levels of fitness, but soon, around
the 15th generation, these start to diverge further apart, which is where
the significant difference is captured. Then the algorithm variants begin

64

[13th June 2024 at 16:43]

to converge back to similar fitness scores, although the variant without
crossover achieves higher fitness on average.

0 200 400 600 800 1000
Generation

0.4

0.6

0.8

1.0

1.2

Fi
tn

es
s

Sc
or

e

Comparing Best Fitness (Mean and Standard Deviation)

Recombination
No Recombination
Fitness Threshold
Test 1
Test 2

Figure 4.9: Average best fitness with standard deviations across generations for the
two NEAT variants on the DPV domain [7].

When looking at the DPV domain (Figure 4.9), the performance character-
istic is somewhat analogous. The variants both start from similar levels of
fitness, then they rapidly progress to higher levels, maintaining a similar di-
vergence, with the non-crossover variant, clearly superior than the crossover
one; progressing all the way to the last iteration (1000 in total). Another
observation can be derived from the plots, this is related to the oscillating
nature of the best individual in the population. Throughout generations,
the search in both variants progresses erratically to higher and lower fitness
levels. This is due to elitism not being considered in our experiments. This
decision was driven by intuition of recording all genuine iterations occurring
in the population, both improvements and deteriorations, to offer a more
comprehensive visualisation of the algorithm’s evolutionary capabilities.
Furthermore, all variants in both domain present very high variance, which
is attributed to the inherent workings of this algorithm in general.

Figure 4.10 presents the distribution of average fitness values and number
of evaluation required to reach threshold, for both domains and variants.
Red is the variant without recombination and blue the one with active re-
combination. In the left-hand plots, we depict the distribution of the average

65

[13th June 2024 at 16:43]

Crossover No Crossover

2000

4000

6000

8000

10000

12000

14000

N
um

be
r o

f E
va

lu
at

io
ns

Crossover No Crossover

3.0

3.2

3.4

3.6

3.8

4.0

Fi
tn

es
s

Va
lu

es

(a) XOR Domain

Crossover No Crossover

0

200000

400000

600000

800000

N
um

be
r o

f E
va

lu
at

io
ns

Crossover No Crossover

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

es
s

Va
lu

es

(b) DPV Domain

Figure 4.10: Distribution (across 30 runs) of the number of evaluations to reach a
solution (left plot) and the best genomes fitness values at the middle of
the run for the two NEAT variants in both problem domains.

number of evaluations required to reach a solution (fitness threshold) for
each domain; meaning that a lower concentration of values, signifies a better
algorithm. This would mean that it required, on average, less evaluations
to find a strong solution that could solve the domain. We observe that no
crossover, in both cases, but especially in the DPV domain, is particularly
good at taking less time to find good network configurations that can solve
the task. Another aspect worth noticing, is that the spread of distributions
is narrower for the no crossover variant. The distribution of values in the
crossover variant, resembles its counterpart, but presents wider variance,
with greater upper and lower bounds.

The right-hand plots, on the other hand, illustrate the fitness values tested
at midpoint (halfway through the run). This is where the most significant
difference between the variants was observed. Here, a concentration of
values, higher on the vertical axis, indicates a better algorithm. Once again,
we observe that the no crossover variant, in both domains, can achieve better
average fitness values across the 30 runs. Spreads, between variants and
domains, are very similar. In XOR, the algorithm without crossover exhibits
a bimodal distribution, with a portion of values concentrating between 3.4

66

[13th June 2024 at 16:43]

and 3.5, similarly to the variant with recombination. Nevertheless, in no
crossover, greater density can be seen higher towards the upper whisker
(between 3.85 and 4.0). For DPV, in both cases, the distributions are bimodal;
this is less noticeable in the system without crossover. A higher density of
values that reside lower (between 0.5 and 0.7), can be seen in the crossover
variants. On the other hand, the concentration of values for the variant
without crossover is in the 0.85 to 1.0 range.

In [7], the values of distributions discussed above, are also presented in a
table, in numerical form. The reader can examine these further, though here,
in the interest of conciseness, we omit them.

4.7.2 Illumination of NEAT search space using STNs

This section presents the results achieved by visualising the solution of
NEAT neuroevolution search space, for both domains. These are produced
in accordance with the analysis premises outlined in earlier sections of this
chapter.

Visualising networks of moderate size can be a useful tool, which allows
us to perceive characteristics and features beyond the enquiry of network
metrics alone. The node-edge diagrams used in this analysis are one of the
most common visual representation of networks. They work by assigning
nodes to points on a 2-dimensional plane and connect these adjacent points,
forming the transitions. In directed graphs, the arrowheads are used to dictate
the direction. Alongside these, the type of tree layout chosen in this research
also gives a sense of direction, as the graph develops, and should be read
vertically, from top to bottom.

To reiterate the rationale of this analysis, both variants’ networks were
merged into one, and visualised in the same plot. This is to view the
interaction of both variants in each domain search space. We assign the
colour red for the no crossover variant and blue for the crossover variant, for
both nodes and edges. Locations that are visited by both variants (shared)
are depicted in grey. The starting nodes are yellow, and the best solutions
achieved are in dark grey, both are of slightly larger size, to ease reading.
All other nodes sizes are proportionally dictated by the incoming weighted
degree, which indicates how often nodes are revisited; thus attract the search
process.

The graph visualisations in this work [7] were produced with igraph of
the R programming language [194].

In the visualisation of Figure 4.11 and 4.12 we are able to observe that
trajectories commence from the same five yellow square starting nodes. This

67

[13th June 2024 at 16:43]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●● ● ●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

Start
Solution
Shared
Crossover
No−Crossover

Figure 4.11: Merged STN for XOR. The nodes and edges visited by the crossover
variant are decorated in blue and the no crossover variant are in red.
Light grey nodes indicate locations visited by both variants. Node sizes
are proportional to their incoming degree. The starts of trajectories are
represented in yellow and the nodes achieving the fitness threshold
(solutions) are shown in dark grey, and both of slightly larger size.

is due to having performed a selection of the same five runs based on
performance, for both variants in each domain, using fixed seeds for the
pseudo-randomness generator. Specifically, this occurs as in the fist iteration
of a run both variants using the same randomness seed will generate the
same solutions. From the next iteration onwards the differences of the
variants setups will begin to demonstrate through the different trajectories
dynamics, which is of key interest to this analysis. From there, the search
begins, and the best individual in the population is tracked at each iteration;
these are the representative solutions which are modelled as the networks’
nodes.

68

[13th June 2024 at 16:43]

●

●

●

●

●

●
●

●
●

●
●

●

●
●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●
●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●
●
●
●
●

Start
Solution
Shared
Crossover
No−Crossover

Figure 4.12: Merged STN for DPV. The nodes and edges visited by the crossover
variant are decorated in blue and the no crossover variant are in red.
Light grey nodes indicate locations visited by both variants. Node sizes
are proportional to their incoming degree. The starts of trajectories are
represented in yellow and the nodes achieving the fitness threshold
(solutions) are shown in dark grey, and both of slightly larger size.

One of the primary aspects that these visualisations convey, which is in
line with the statistical analysis results, is that the no crossover variant has
shorter trajectories, on average, compared to the original NEAT algorithm
(the variant with active crossover). This indicates that the search is more
efficient when crossover is disabled, proposing that recombination can
generate disruption in this neuroevolution algorithm. This finding is also
corroborated by the avg. path length metrics of Table 4.5. This is particularly
visible in Figure 4.12, where the blue trajectories, pertaining to the crossover
variant, are consistently much longer than the red ones. In this domain, the

69

[13th June 2024 at 16:43]

reader may be puzzled by the lack of edges in the representation. This is
not the case, and the edges are indeed present. Due to this domain having a
far greater population than XOR (see Table 4.3), this produces increasingly
more data points. Due to the limited available space of the plotting surface,
the algorithm [8] is forced to shrink the distance between nodes, effectively
partially hiding these edge components. It was assessed, for the purpose of
this analysis, that this does not have a negative impact on the visualisation.

Table 4.5: STN structural metrics.

XOR DPV

Crossover No Crossover Crossover No Crossover

Nodes 173 112 954 320

Edges 186 121 1018 345

Path length (avg) 34.0 20 137.38 44.34

Path length (std) 13.72 8.59 58.56 23.08

Shared nodes 27 12

Shared edges 7 5

Furthermore, it can be clearly appreciated from the graphs that, largely in
both domains, a lot of the highest performing solutions (dark grey nodes),
achieved by both variants, are different and do not converge to a single (or
few) accepted solution. This indicates that in the neuroevolution domain
various network topologies and weights compositions provide sufficiently
good solutions to this problem.

In Figure 4.11 a high convergence to the same accepted solution can
be observed, early in the search stages, a few iterations from the starting
locations. These are evident from the variants’ trajectories overlapping and
creating a multitude of larger light grey nodes. This finding is consistent
with the nature of this algorithm, were solutions (neural network topological
formations) begin simple and complexify over time. Hence, at early stages of
the search process, these solutions have a higher likelihood of being similar,
between runs and variants. As search stages progress, this interaction and
location convergence, slowly disappears.

From visualising the DPV domain (Figure 4.12), and confirmed by the
metrics, we witness a far reduced number of shared nodes. An explanation
for this is likely to be that the genotypes to solve this problem are much
larger, in this case, exploding the dimensionality to be modelled. This also

70

[13th June 2024 at 16:43]

interestingly shows how the STNs approach, applied to neuroevolution, can
be seen as a proxy for the complexity of a domain. Closely tied to the notion
that STNs can illuminate the intrinsic diversity of the system under analysis.

A further fascinating observation, can be derived from the merged network
of the DPV domain in Figure 4.12. A large, shared node (light grey node
in the top middle of the plot) can be observed, this node appears to be
visited by the 3rd no crossover (red) trajectory and traversed by other three
crossover (blue) trajectories. As the size of nodes is proportionally dictated
by the incoming degree, the derived hypothesis is that this shared node is an
interesting but sub-optimal neural network configuration that consistently
attracts the search process with crossover.

Finally, the plot highlights another compelling aspect of the behaviour
examined in our NEAT variants. When the algorithm comes close to finding
an acceptable solution, — one that is equal or greater than fitness threshold
— at times, two dark grey nodes are being produced. This highlights the fact
that, towards the evolution of high performing solutions, slight changes to
the network configurations, which result in different nodes, do not impact
the performance, and do not disrupt the solutions’ fitness. This could be
interpreted as good locality. That is, when a solution with high fitness
is achieved the evolutionary changes occurring in the network are not
disruptive to cause a decrease in this solution’s fitness; this intuition is
further supported by the fact that elitism is deactivated in this analysis.

Network metrics assist us to understand the visualisations further, by
complementing them; from these, we deduce the following conclusions. The
number of nodes is a good indicator of diversity; intended as the various
different network configurations visited in the search space during neuroe-
volution. Crossover, in both domains, has a larger number of unique nodes
(173 and 954), indicating increased diversity. Unfortunately this does not
translate to a more efficient neuroevolution algorithm. Instead, this operator
leads the search astray from threshold matching/exceeding solutions. In
both domains and variants, the number of edges is largely similar to the
amount of nodes. This translates to little trajectory overlap across runs.
Meaning that only few nodes are revisited by different runs. Moreover,
each trajectory follows mostly their own paths — after the early stages of
the search process — when most trajectories follow different successful
configuration, with fitness values above the domains’ threshold.

Regarding the shared nodes (those visited by both variants), visualisation
and metrics confirm that these are a relatively smaller proportion, com-
pared to the number of nodes. Specifically, in the harder pole balancing

71

[13th June 2024 at 16:43]

domain, which evolves larger genomes and more diverse topologies-weights
configurations.

The above insights allowed us to drill further into “why” and “how” cros-
sover is not an effective operator. This approach allowed us to illuminate
search trajectories that are not visible through fitness plots alone. Plots
depicting only fitness performance are useful and should be used in con-
junction to this technique, nevertheless they only offer a few dimensional
perspectives. This search trajectory technique applied to neuroevolution
can demonstrate the composition of a neural network structure, the conver-
gence of similar solutions during search, while demonstrating the fitness
performance on a universally statistical scale of the search space.

4.8 summary

In conclusion to this chapter, based on the results, it can be stated that the
exploration of NEAT neuroevolution search space, on the classic benchmark
domains, using Search Trajectory Network, has been possible and achieved
successfully. This has provided sufficient grounds for the inception of a
technique, which we will later define as NTNs. This is a novel contribution to
the evolutionary computing community that has not been achieved before.

In this research, we have been able to generate a non-mating variant
of NEAT, and analysed this against the original algorithm. Our exploration
was achieved by statistically testing the variants and examining their search
space behaviour via complex network modelling and visualisation. In our
assessments, we identified that the no crossover variant was statistically per-
forming better than its counterpart, in the two benchmark tests performed.
Statistical significance has also been found (p < 0.05).

By examining the search space trajectories, using STNs, we noticed that
in these specific testing domain, which are relatively trivial and small,
crossover variants produce greater diversity, although, this does not translate
into efficiency in finding high performing solutions. This NEAT operator,
deployed on specific benchmark domains, such as XOR and DPV, causes
disruption to the search process, which leads the trajectories astray. In other
vaster domains this diversity could result in improved performance and
efficiency, which would need to be tested further.

Another interesting finding, that rose from the examination, is that in
these tested neuroevolution search spaces, STNs are able to communicate
intrinsic characteristics of a benchmark domain related to the complexity of
evolvability requirements. Harder domains, engage evolutionary processes
to produce more diverse and increasingly complex solutions, which present

72

[13th June 2024 at 16:43]

lesser location convergence. This is measurable from the shared nodes
metrics, especially observable in the pole balancing domain.

In the next chapter, the proposed technique is applied to the study of
Novelty Search and the recombination operator in NEAT, for deceptive
domains. We will demonstrate how this technique is capable of scaling from
simple to harder and more deceiving fitness landscapes.

contributions acknowledgements I hereby declare that the sub-
stantial portion of the work detailed in this chapter, as documented in the
publication [37], is the result of my own efforts. However, it is important
to acknowledge the valuable contributions made by my co-author and su-
pervisor, Professor Gabriela Ochoa. Professor Ochoa provided significant
insights and guidance, particularly in refining the experimental design and
encoding of the signature. Additionally, her expertise in the broader concepts
underlying Search Trajectory Networks has greatly enriched the quality of
this research.

73

[13th June 2024 at 16:43]

5
C H A P T E R 5 — T H E R O L E O F R E C O M B I N AT I O N I N
T H E P U R S U I T O F B E H AV I O U R A L N O V E LT Y

This chapter outlines the research work published in [10]; this contribution
is also detailed in the List of Publications, at the start of this thesis. The
formative work [7], discussed in the previous chapter, highlighted that the
visualisation technique, used to assess recombination in NEAT, was tested on
domains that were perceived to be basic benchmarks. This work suggested
a favourable line of enquiry on the that recombination might play in more
challenging domains, from a search space standpoint. Among other remarks,
there was expressed interest in observing the dynamics of recombination
in a different domain setup, thereby making this novel NTNs technique
more generalisable and applicable to various realms of neuroevolution.
Therefore, the follow-up research intent was to extend previous work and
take the examination to a new frontier. The focused shifted to assessing
recombination for search strategies aimed at exploring behavioural diversity,
while comparing it to objective search. The choice was to select the maze
navigation domains, detailed in Section 2.2.2, comparing two maze maps
— one simple and linear, the other intricate and deceptive in structure.
Results provided insightful perspectives on the interplay between novelty
and recombination, highlighting the role of this operator in various search
strategies.

5.1 key contributions and motivations

This is the second contribution chapter of this thesis. It is aimed at extending
the work conducted in [7], to more complex and deceiving domains; high-
lighting the role that recombination plays in neuroevolution systems, aimed
at identifying Novelty in the form of behavioural characteristics. The key
contributions of this chapter are the following.

• Extend and generalise STNs to model and capture the intrinsic dynam-
ics of NEAT variants, on more complex domains. Strengthening the
case for the NTNs visualisation technique.

• Observe the interplay between recombination and Novelty, as mechan-
isms for exploration and diversity in neuroevolution.

74

[13th June 2024 at 16:43]

• Enhance our understanding of the role crossover has in neuroevolution
systems.

• Offer an STN/NTN network representation of compressed nodes for
managing neutrality in neuroevolution.

5.2 deceiving domains, recombination and diversity

In robotics and neurocontrolled navigation, studies have shown [3, 25, 27, 53]
that following a fitness gradient, through the use of objective search, can
be counterproductive, and in specific settings, it does not produce the in-
tended result. Those same studies, proposed an innovative search strategy
that aimed at producing neural networks (agents) capable of exhibiting
diverse and explorative behaviours: Novelty Search [3, 25]. The idea be-
hind it, is that the stepping stones required to reach a specific result are
often counter-intuitive, and do not always follow a logical and expected
progression of events. In the book “Greatness Cannot Be Planned” [195],
the authors manage to elucidate this idea in a clear and intuitive manner.
Often, specifically aiming at a particular outcome can lead nowhere near that
outcome. This is because indirect, intermediate progressions are necessary
to reach a particular solution or creation.

Consider the progression from a simple abacus to a modern digital com-
puter. A scientist inventing the first abacus might find this innovation inter-
esting and useful due to its improved computational abilities. The scientist
wants to improve it further, increasing its capabilities by many orders of mag-
nitude. They do not know that, possibly, what they are seeking to achieve,
is a computer. Following its objective, the scientist begins to include more
beads in the abacus, increasing it to a larger setting, but ultimately it will
get stuck. This is because the necessary milestones are not often ingrained
in the objective itself. To achieve his underlying intent, the scientist, in fact,
would have to work on basic science for years, understanding electricity and
electromagnetism, to then consider the invention of vacuum tubes; an im-
portant component, which will eventually lead to the intended achievement.
This would not be possible, just by selecting an objective and following an
intuitive path to it, as deception is ingrained in every solution and each
solution’s neighbourhood has its limitations.

This philosophy is intriguing, leading us to consider recombination and its
role in neuroevolution; specifically in the search for novelty. One can think of
recombination as the operator that disrupts the search progression. A more
powerful perturbation that can diverge the search, away from stagnation;

75

[13th June 2024 at 16:43]

those confinement regions of the search space. This has been demonstrated
in the research outlined in previous Chapter 4 [37]. Another accepted view is
that this operator helps high performing parent solutions to come together, to
form offspring that would surpass their parents’ performance [196]. It is still
unclear to which extent this is true and which of these two descriptions best
applies to neuroevolution. Therefore, the intent of our work is to propose
this network visualisation technique, to assess the interplay between novelty
and recombination. Determining, or at least, beginning to suggest, which is
the description that best fits crossover for this search strategy, in this realm.

The Novelty Search strategy, as described in Section 2.2.2, is aimed at
overcoming deception and achieve a more comprehensive exploration in the
space of possibilities. The corpus of study for this is a large one in EC. An
initial definition for deception was offered by Goldberg in [49, 197], which
relates to the “building blocks” hypothesis. This states that crossover is used
to insert small genetic building blocks, to form larger blocks, suggesting
that a problem can be defined deceptive, if this combination of lower-
order building blocks do not lead to an optimum solution. Determining the
hardness of a problem, without running an algorithm on a set of data for
that domain is unfeasible [198]. The work of [199] proposes that assessing
the extent to which the fitness heuristic aligns with the actual distance to the
goal provides a practical measure of a problem’s difficulty. This suggests that
problem’s difficulty often stems from an uninformative objective function.
As shown by [3], following the perceivable objective, does not translate
in a reasonable objective function. In this work we have considered the
deceptiveness (hardness) of a domain according to [3] where: “A deceptive
problem is one in which a reasonable EA will not reach the desired objective
in a reasonable amount of time.”. The authors further reinforce this by stating
that a population trajectory, equipped with an objective search strategy
would not be able to identify the objective in the search space. As the
authors express, other important factor are at play, and the intention is not
to simplify and diminish these, but to reinforce the notion that a deceptive
objective function is, in fact, a defective one that leads the search astray. A
fundamental philosophy, rising form these conjectures, is whether diversity
preservation, via crossover, can mitigate the effects of deception.

Delving deeper into the concept explained in Section 2.2.2, the funda-
mentals underlying this novelty search strategy are related to the notion of
sparsity. This type of search has to begin by characterising which is the type
of descriptors (i.e. behavioural attitudes) we intend to see diverge from the
neuroevolved agents controlling the robotic progressions through the maze.
These authors touch upon the importance of defining a metric that can

76

[13th June 2024 at 16:43]

conceptualise, in a rigorously mathematical manner, how novel a behaviour
might be. The approach uses behaviours collected in a novelty archive. These
reside in the behaviour space — one of unique behaviours. NEAT traverses
the search space to produce neurocontrollers, which in turn, generate said
behaviours. In order to calculate novelty of the archive and the population
of solutions, occurring during evolution, the authors propose a calculation
of sparseness. This is achieved using a clustering algorithm such as k-nearest
neighbour, the authors proposed to detect those behaviours that are clustered
together, to be less novel, and those that are distant from the clusters, high
in Novelty scores. Therefore, a current generation, together with the novelty
archive, should provide a comprehensive sample of where the search has
been, where it is , and how it should progress away from clustered regions
at each iteration. This is done through the novelty descriptor space perspect-
ive, which is a consequence of the NEAT search in the space of candidate
neurocontrollers. This, effectively swaps the search gradient towards that
which is new, rather than that which is objective-driven.

5.3 complex networks characterisation

In this specific analysis, the approach adopted for visualising the network
models was different than what was outlined in the previous chapter. In
this case, the complex networks are constructed using Merged Compressed
STNs (CSTNs). Another distinction lies in the generation of these networks,
utilising a specific version of the force-directed layout algorithm [193]. A form
of directed graph structure, which is not in a vertically directional tree-layout
format like in previous work [7]. This allows us to increase the number of
sampled runs from 5 to 9, generating a better representative sample of the
dynamics at play.

In this analysis, the intent remains, to depict the two variants — with
and without recombination — for the same search strategy in one visu-
alisation plot. Hence, the need for a network merging technique, which
also compresses the networks representations. Our aim here is to generate
visualisations categorised by problem’s fitness landscape deceptiveness. One
set of plots for the medium maze set up, and one for the hard maze set up
(shown in Figure 2.5 of Chapter 2).

5.3.1 Merged Compressed STNs

This compressed model variation was first proposed in [10], and was inspired
by the works on Local Optima Networks [34]. The attempt is to address

77

[13th June 2024 at 16:43]

the modelling of search spaces, which present large amounts of neutrality.
Meaning, adjacent portions of the search space that have the same fitness
scores. It is important to consider this factor in this analysis, as studies
have shown that in NEAT there are several ways of setting neural network
weights, which instantiate identical behaviours, primarily due to permuting
units or redundant mappings [72].

All definitions related to STNs, as described in Chapter 2, are applicable for
this approach. This section, introduces specifications related to CSTNs and
Merged CSTNs. A Compressed STN is a directed graph with the following
composition CSTN = (CN,CE), where CN denotes the compressed node,
and CE the compressed edges of the network construct.

(a) Pre-neutrality-compression

(b) Post-neutrality-compression

Figure 5.1: Illustration of the CSTNs technique for handling fitness landscape neut-
rality [10].

Figure 5.1 illustrates this concept with a simple example. Before compres-
sion, in Figure 5.1a, we observe that the trajectory presents some neutrality.
That is, adjacent nodes that have no fitness progressions, in essence, different
locations that produce no improvements. To deal with this, and effectively
compress the models, we reduce the 3 neutral nodes, which in Figure 5.1a
are depicted in blue, to a single node as shown in Figure 5.1b, outlined by a
dotted line.

This technique follows similar principles to merged STNs, as described
in Chapter 4. Once CSTNs models are constructed for variant/algorithm-
problem pairs, we merge these into a single network. Then, progress to
distinguish the visualisation planes based on the search strategy and hard-
ness of the problem. Merged graphs consist of nodes and edges from at least
one of the algorithm graphs. As in the work of the previous chapter, network
attributes are maintained for nodes and edges, indicating whether they were

78

[13th June 2024 at 16:43]

visited by both algorithmic variants, decorated as shared components, or
conversely, by only one of the variants. This will become evident once the
visualisation are discussed in the following sections.

5.3.2 Fruchterman-Reingold Force Directed layout

The chosen layout is the Fruchterman-Reingold [193], aiming to generate
data-driven graphs with aesthetically pleasing properties. This layout is
part of the igraph [194] library of R programming language. The idea is to
mimic the natural phenomenon of electrically charged particles, described
by Coulomb’s law. This type of layout works with three main forces: repul-
sion, springs and network energy. These are illustrated in 5.2, and work as
follows. In this model, nodes are analogous to charged particles producing
a repulsive force, pushing them away from each other. This force is inversely
proportional to the square of the distance, meaning that closer nodes repel
each other more strongly than distant ones (red arrow). The spring force
will pull nodes closer together. A tightness layout parameter controls the
natural length of the spring. A stretched spring means that the nodes are
pulled closer to the link end (black spring in illustration 5.2). On the other
hand, when the spring is loose, nodes are pushed further away from the link
end. Lastly, a general energy for the network (blue box) is a parameter added
to the system, where each node is given a random direction of movement.
This layout simulation iterates until the system finds a state of equilibrium.

Node a Node bRepulsion

Attraction

Random Network Energy

Figure 5.2: Illustration of the forces involved in the Force Directed layout.

5.4 experimental settings

The experiment is based on the maze navigation domain used in [3]. This
problem was previously explained in Section 2.2.2 and visually depicted in

79

[13th June 2024 at 16:43]

Figure 2.5. For completeness, we briefly reiterate how this domain works
and detail how the neurocontroller agents form.

Key

Rangefinder sensor

Agent’s orientation

Pie-slice
radar sensors

90

0

-90

-180

315.0 ~
 405.0

45.0 ~ 135.0

13
5.

0
~

 2
25

.0

225.0 ~ 315.0

Figure 5.3: Physiognomy of the maze navigating agent. Illustration adapted from [9],
derived from [10].

The task in this domain is to place the neuroevolved agents at the starting
point of the maze (dark-gray dot in Figure 2.5), letting these navigate the
maze, progressing until the exit point is found (yellow dot). As already
stated, the domain has two difficulty levels. The more linear maze presents
a low to medium level of difficulty in navigating to the exit. The harder and
more deceptive one, includes “culs-de-sacs” that create traps, complicating
the identification of the goal.

Figure 5.3 shows the agent physiognomy, featuring six rangefinder sensors
for obstacles detection and four pie-slice radar sensors, acting as a compass,
to detect the goal orientation. Pie-slice labels indicate the degree range of
the compass. Arrows show rangefinder sensors positions, both in reference
to the agent’s orientation.

This experiment explores two algorithmic variants: recombination and no-
recombination. Each of the variant is equipped with a fitness-based search
and a Novelty Search strategy. In this analysis we name them: Novelty_X,
Novelty_NoX, Fitness_X and Fitness_NoX. The function for these strategies are
explained as follows. The original NEAT algorithm is guided by a standard
objective function, which is used to assess genotypes. Equations 5.1 and 5.2
detail the loss and fitness functions, respectively. This experiment associates
the fitness to genotypes based on the behaviour these neurocontrollers
produce.

L =

√√√√ 2∑
i=1

(ai − bi)
2 (5.1)

80

[13th June 2024 at 16:43]

This Equation is used to calculate the Euclidean distance between the
agent’s simulated location with respect to the exit point of the maze (object-
ive). L represents the root-mean-squared error function used for proximity
evaluation, where a is the position of the agent at the end of simulation
and b the fixed maze exit location (expressed as 2-dimensional coordinates).
With the loss function described above, we can now detail the equation for
fitness.

F =

1.0 L <= Rexit

Fn otherwise
(5.2)

In Equation 5.2, Rexit represents the 0.05 radius of the exit circumference.
This is the solution threshold which is set to the fitness score of 0.95. This
means that any results falling within that threshold will be regarded as a
whole score of 1 (100%).
Fn is a necessary normalisation, which is calculated as follows: Fn = L−Dinit

Dinit
,

where Dinit denotes the agent’s initial distance to the maze goal.
For the novelty score calculation, this search strategy uses a variant of the

k-nearest neighbour as a metric of sparsity for the behaviour solutions. For
this, we redirect the reader to Eq. 2.4 presented in Chapter 2. We remind that
in our implementation, which is inspired by [9], to simplify the calculation,
behaviours vectors are comprised of just the agent’s trial end coordinates
(j = n). Instead of the entire movement trajectory.

Table 5.1 displays all parameters utilised for this experiment. All values
remain consistent with the standard parameters used in NEAT. They also
do not differ between maze difficulty, with the exception of solver time steps.
For the hard maze, the test done in our studies, using this specific imple-
mentation [9], had shown that 400 time steps were not a sufficient allowance
to reach the map’s goal. This was increased to 600. The k parameter is
exclusively utilised for the sparseness calculation, necessary for the Novelty
Search strategy setup.

5.5 analysis rationale

This analysis aligns with the rationale detailed in Chapter 4. The experiment
we carry out reproduced what was done in [25]. To achieve this, we leverage
the implementation of Novelty Search for the domain used [9]. The analysis
begins with the statistical test on the performance of variants, and then
moves to the complex networks modelling and visualisation using STNs.

81

[13th June 2024 at 16:43]

Table 5.1: NEAT parameter values used. The k parameter (from k-nearest neigh-
bours) is relevant only for the novelty search variants.

Parameter Value

Population size 250

Maximum generations 1,000

Solver time steps (medium maze) 400

Solver time steps (hard maze) 600

Solution fitness value 1.00

Fitness threshold 0.95

Bias range [-30, 30]

Weight range [-30, 30]

c1 1

c2 1

c3 3

Probability add link 0.1

Probability add node 0.005

k (k-nearest neighbours) 16

5.5.1 Statistical analysis

For the statistical tests, 30 runs were generated for each variant-search
strategy pair, on each of the problem difficulty levels. A neurocontroller that
achieves a fitness of 1.0 (100%) is deemed to have solved the maze problem,
as it successfully navigated the maze to reach its goal, or at least got close
enough to enter the threshold range. Algorithmic variant performance was
studied based on three criteria: (i) the success rate, which is the ratio of
runs reaching a solution, (ii) the best fitness achieved at the end of a run,
averaged over 30 runs, and (iii) the number of generations necessary to reach
a solution (for successful runs), averaged over the number of successful runs
for each variant. Furthermore, the analysis encompassed the study of the
best fitness values and the number of generations across all runs.

82

[13th June 2024 at 16:43]

5.5.2 Merged CSTNs analysis

For the Search Trajectory Network analysis, a sample of 9 (seed enumerated)
runs were selected from the ranked fitness performance of total runs ex-
ecuted. Three were taken form the best, three from the worst and three from
the intermediate ones. This selection ensured fairness and a comprehensive
representation of the data, while maintaining the visualisation manageable
and informative.

In complex network visualizations, there exists an empirical trade-off
between providing sufficient information and avoiding information over-
load. Cluttered visualizations, which incorporate numerous runs may offer
statistical robustness but often sacrifice the nuanced analytical insights
achievable with fewer runs, which can better communicate the dynamics of
neuroevolution variants.

Visualisations were created using the previously described Merged CSTNs
technique, displaying crossover and no-crossover variants in the same plot.
Plots were split based on search strategy and hardness of the problem
(maze).

After generating the networks, a further examination of their structural
characteristics was conducted by computing accepted metrics [35]. The
most common ones are the number of nodes (indication of diversity) and
edges. Other fundamental ones in this approach include the length of paths,
community structure, degree distribution, and centrality of nodes [17]. We
limit our examination to a simpler selection of six metrics, assessing the
structure of trajectories, bringing insight into the behaviour of studied search
variants. The total number of nodes, indicates the amount of search space
exploration. The solutions metric relates to those nodes that reach the target,
this indicates how many different locations solve the domain. A ratio of
compressed nodes to total number of nodes is computed. This reflects the
amount of neutrality in the explored search space, that is, the proportion of
adjacent solutions with the same fitness. A higher value for this indicates,
high neutrality. The variance of the neutrality metric is not calculated, which
could be an additional inclusion to explore in future work where neutrality
is calculated. This metric is computed as follows: c-ratio = 1.0− |CN|

|N|
. w-

edges refers to the number of worsening edges, which are those that link a
higher fitness node to a lower one. This indicates the amount of non-greedy
exploration during the search process. Lastly, the number (n-path) and length
(p-length) metrics signify the shortest paths from start nodes to solutions in
the CSTNs. These explain the reachability of solutions. The last two metrics
are not defined, if no solution is achieved.

83

[13th June 2024 at 16:43]

Decorators in STNs are crucial for enhancing the information delivery
within a complex network representation. Nodes and edges are crucial
components, decorated to emphasise relevant features. Compressed node
sizes are proportional to number of individual nodes (locations) they contain.
The start of trajectories are represented as dark-grey squares, the end nodes
reaching a solution as yellow circles, and suboptimal end nodes as dark-
grey triangles. Nodes visited by both X and No_X variants in the merged
CSTN are represented in light grey. Finally, bright green lines are used to
highlight worsening edges. These are relevant to appreciate the explorative
(non-greedy) dynamics of Novelty Search.

5.6 results and discussion

The discussion begins with a statistical performance analysis, followed by
CSTNs analysis involving visualisation and metrics.

The plots presented in Figure 5.4 provide a general overview of the
convergence behaviour of all the variants studied. Based on the plots and
performance metrics in Table 5.2, Novelty Search emerges as the strategy
with the highest success rate and average best fitness. This confirms the
findings presented in [3]. Our results differ from the original ones, as the
average best fitness for all variants remains substantially lower; despite all
parameters and algorithms being faithfully reproduced.

(a) Medium maze - all variants (b) Hard maze - all variants (magnified)
map

Figure 5.4: Convergence plots showing the averaged fitness performance over 30

runs for all variants tested in both maze domains. The convergence
curves are shown from generation 300 to highlight salient differences in
the Novelty Search strategy for the hard maze.

84

[13th June 2024 at 16:43]

The introduction of a no-crossover variant, in our experiments, allows
us to perceive the usefulness of crossover in different search strategies,
for deceiving domains. Similar success rates can be seen for the medium
map between Novelty_X and Novelty_NoX (left side of Table 5.2) nonetheless,
similarly to what was witnessed in the work of Chapter 4, the variant without
crossover reaches the solution with fewer evaluation on average. The non-
parametric Mann-Whitney statistical test revealed statistically significant
differences (p < 0.01) between the strategies. Indicating, once again, that
for the novelty search strategy, the use of crossover negatively impacts
performance. On the other hand, when looking at fitness-based search on
the medium map, we observe a higher success rate and best average fitness,
and lower number of evaluation to reach the goal, when the recombination
operator is active. Despite the fact that these distributions are not statistically
significant, this finding is interesting and unexpected, as it seems that
crossover, in this scenario helps to generate neurocontrollers with diverse
behaviours, capable of solving the maze better.

In the hard maze, both variants (X and NoX) of fitness-based search are
not capable of solving this domain. The success rate is nil, the best fitness
reached in all the trials is consistently 0.7629, indicating the search process
was trapped in a potential local optimum, and was not able to escape
such region. This is clearly visible in Figure 5.5, where the best evolved
neurocontrollers’ paths, for each of the NEAT variants, are depicted in the
hard maze domain.

In this case, the distributions difference for the number of generations,
each variant took to find this local optimum, is not statistically signific-
ant. This suggests that the positive effects derived from the inclusion of
recombination is minimal and possibly inconsequential, for the fitness-based
variant, in this maze setup. The result does not conclusively determine the
usefulness of this operator for fitness-based search.

One of the main takeaways, which can be derived from the convergence
plots shown in Figure 5.4 is that Novelty_NoX, the variant without recom-
bination, performs better than all other variants. Figure 5.4 offers a closer
look at the plot detailed in [10]. This is to highlight the differences between
the X and No_X Novelty Search variants, which approximately occur at
generation 400 of 1000. Novelty_NoX progresses steadily, increasing fitness
up to the 900th iteration, reaching 0.80 of 1.00, returning then to lower levels,
concluding approx. at 0.789 of 1.00. On the other hand, Novelty_X increases
slightly from the point of divergence to around 0.77, on which it remains
steadily until the end of run.

85

[13th June 2024 at 16:43]

Table 5.2: Performance metrics of the best fitness and generations average values
with standard deviations in parenthesis. Average generations are com-
puted for the successful runs only.
S.R. = Success Rate, B.F. = Best Fitness and G. = Generations.

Medium map Hard map

Crossover

Novelty_X Fitness_X Novelty_X Fitness_X

S.R. 86.67% (26 runs) 20.0% (6 runs) 3.33% (1 runs) 0.0% (0 runs)

B.F. 0.9842 (0.0422) 0.9264 (0.0387) 0.77 (0.0437) 0.7629 (0.0)

G. 422.54 (309.89) 417.67 (361.71) 623.0 (0.0) -

No Crossover

Novelty_NoX Fitness_NoX Novelty_NoX Fitness_NoX

S.R. 86.67% (26 runs) 6.67% (2 runs) 13.33% (4 runs) 0.0% (0 runs)

B.F. 0.9857 (0.0376) 0.9109 (0.0324) 0.7933 (0.0855) 0.7629 (0.0)

G. 265.38 (243.63) 583.0 (265.0) 719.75 (165.6) -

Figure 5.5: Navigation paths of the best genomes evolved by each NEAT variants.

86

[13th June 2024 at 16:43]

Figure 5.5 visualises exploratory paths in the hard maze, showcasing the
best-performing (fitness) neurocontrollers, produced for each variants out of
the 30 runs. This view of the Cartesian behavioural space was particularly
helpful for assessing the efficiency of variants, and to better comprehend the
navigation in local optima regions of the maze. Aside from the stagnating
behaviour of both fitness-based search variants, which was already pointed
out, we can visually contrast the behaviours differences of Novelty_NoX
(dark red) compared to Novelty_X (bright red). It appears that Novelty_NoX
is faster and more effective in identifying the left turn required to reach the
diagonal channel of the maze, which leads to discover the goal (maze exit
location).

In this experiment, the analysis was extended further, generating violin
plots to assess the performance of variants in each of the mazes. Visual-
isations in the following figures depict the best fitness at the end of the
run, and the number of generations needed to reach the maze solution. The
plots utilise split violins, visually distinguishing each search strategy and
its crossover and no-crossover variant. These visualisations are described
starting from the medium maze.

5.6.0.1 Medium maze

In Figure 5.6, Novelty Search is depicted on the left with two shades of red,
representing the variants with and without crossover. Fitness-based search is
shown on the right with two shades of blue. Additionally, black dots overlay
the 30 individual data points for each variant. Distributions confirm that
the final best fitness values for Novelty Search consistently surpass those
found in fitness-based search. The Novelty Search variants (X and NoX)
show similar distributions, with Novelty_ NoX slightly skewed towards
higher values, having also a tighter distribution. For fitness-based search, a
larger concentration resides nearer higher values for the crossover variant
(bright blue).

Figure 5.7 depicts the distribution of generations needed to reach a solu-
tion for all variants. The individual 30 data points for each variant are
represented as black dots. The domain has a maximum of 1000 generations,
if the solution is not reach in this time-frame, the black dots are represented
above the dotted line, signifying unsuccessfulness. Here, lower values indic-
ate better performance, as this means a more efficient algorithm. The plots
demonstrate a notably faster convergence of the novelty variants compared
to the fitness-based ones. For the novelty search strategy, the no crossover
variant (dark red, Figure 5.7) shows a tighter distribution towards lower
generation values than the variant with crossover (bright red). This insight

87

[13th June 2024 at 16:43]

Figure 5.6: Distributions for best fitness values on the medium map for all variants.
Swarm plots overlaid to demonstrate the individual data points for each
variant.

supports the hypothesis that recombination slows down the progress for
novelty search. The situation is reversed for the fitness-based variant. Here,
crossover (light blue), shows a tendency towards lower values. However,
most runs are unsuccessful for both fitness search variants, as indicated by
the majority of (black) data points above the dotted line. It appears that
crossover can be of some use for fitness-based search on this maze, although
this strategy is not competitive against Novelty Search.

Figure 5.7: Distributions of the generations needed for each variant to reach a
solution on the hard map. Swarm plots overlaid to show the individual
data points for each variant — those that lie above the dotted line
represent runs that failed to reach a solution.

88

[13th June 2024 at 16:43]

5.6.1 Hard maze

Figure 5.8 shows violin plots distributions of best fitness values for the
four NEAT variants. Once again, these distributions confirm that for this
map, the final best fitness values for Novelty Search are higher than those
found by objective led variants. However, for both search strategies, the
distribution concentration hovers around the local optimum, with a fitness
value of approximately 0.76 out of 1.00. Novelty Search has a few points
above (and below) this value, whereas for fitness-based search all the data
points reach a fixed fitness corresponding with the local optimum, which
has been found trapping the search process. Novelty_NoX exhibits a larger
number of successful runs for this map compared to the crossover variant.

Figure 5.8: Distributions for best fitness values on the medium map for all variants.
Swarm plots overlaid to demonstrate the individual data points for each
variant.

In terms of generations necessary to reach a solution, Figure 5.9 illustrates
these distributions for all NEAT variants executed on the hard maze. 30
independent runs are overlaid as black dots. We can observe that all runs
were unsuccessful for fitness-based search (right-hand plot), as all black dots
are above the segmented line (1000 generations). Only one run out of the
30 for Novelty_X was successful, while Novelty_NoX saw 4 runs out of 30
reaching a solution, with a number of generations that varied from over 550
to almost 1000. These results suggest that crossover can be detrimental for
the novelty search strategy.

5.6.2 STNs analysis of search strategies dynamics

The search trajectory analysis was carried out using the same principles
for signature and models generation outlined in the previous Chapter 4.

89

[13th June 2024 at 16:43]

Figure 5.9: Distributions of the generations needed for each variant to reach a
solution on the hard map. Swarm plots overlaid to show the individual
data points for each variant — those that lie above the dotted line
represent runs that failed to reach a solution.

A sample of 9 out of the 30 runs was selected for visualisation. These are
representatives of the performance distributions of successful runs. Three
run ranked from the best, three from the worst and three intermediate runs.

Table 5.3 presents the computed metrics deriving from the networks. These
choices, alongside the explanation of what they are, have been detailed in
section 5.5.2. Metrics are fundamental for network analysis, as they assist
the reading of visualisations and they help to further corroborate visual
assumptions. Based on these metrics, the following findings were derived.

The number of nodes is indicative of the exploration/diversity that an
algorithmic is able to produce. For Novelty Search this metric is always
consistently larger than for fitness-based search; meaning that this strategy
works and can produce a higher diversity compared to the canonical ap-
proach. Another confirming aspect of the superiority of this strategy is
the fact that it is able to reach more unique solutions than fitness search.
Furthermore, the number of worsening edges, which offers insight into
non-greedy explorative properties of an algorithm, is also larger for this
strategy. Regarding the variants within each search type, Novelty_NoX is the
sole variant achieving multiple solutions in both the hard and medium maze
setups. The number of paths to these solutions are more for this variant and
they are shorter on average, highlighting efficiency; challenging the notion
that crossover is useful for Novelty Search. In regard to fitness instead, in the
medium maze configuration, the variant with crossover produced more solu-
tions and paths than its No_X counterpart. This suggests that recombination
plays a role for exploration in fitness-based search. Further enquiries should
be conducted to examine these results, as the same could not be confirmed

90

[13th June 2024 at 16:43]

on the hard maze; fitness search failed to solve the most deceptive (hard)
domain. In the hard maze, the compressed ratio (c-ratio) is very large for
fitness search. This signifies that the algorithm traverses several individual
sub-optimal solutions with the same fitness (large neutrality). Contrastingly,
the c-ratio for Novelty Search is relatively low, indicating a wider exploration
of candidate solutions with greater diversity.

Table 5.3: STNs metrics for all variants in both maze configurations.

Medium Maze Hard Maze

Novelty Fitness Novelty Fitness

X NoX X NoX X NoX X NoX

nodes 322 798 185 190 1523 1065 138 146

solutions 48 520 39 2 1 12 0 0

c-ratio 0.20 0.66 0.48 0.50 0.09 0.09 0.81 0.77

w-edges 155 163 2 7 826 555 0 0

n-path 8 9 6 1 1 2 0 0

p-length 21.25 19.67 11.33 11.00 43 91 NA NA

In Figure 5.10, we observe the network plots related to the fitness search
strategy of both maze setups. Similarly, Figure 5.11 shows the variants for
Novelty Search. Note that these represent merged CSTNs, showcasing both
recombination variants in the same network plot with compressed fitness
neutrality.

In Figure 5.11a and 5.11b we can observe longer trajectories than fitness
search (in terms of nodes and edges). Novelty Search trajectories typically
feature higher counts of worsening (bright green) edges, denoting a broader,
non-greedy exploration approach. Additionally, these variants’ trajectories
(Figure 5.11a and 5.11b), are able to reach a larger number of yellow solution
nodes, which are of large size due to the incoming degree strength achieved
from these trajectories. In the CSTNs space, trajectories may overlap, forming
similar paths to solutions. This can create the visual impression of observing
a single trajectory entering larger yellow solution nodes.

Comparing variants within a strategy, let us observe that Novelty_NoX,
which are the dark-red trajectories visible in Figure 5.11a and 5.11b, reach a
greater number of solutions (yellow nodes), which are of larger size, com-
pared to the Novelty_X variant in bright red, which has recombination. The
opposite occurs in fitness search for the medium maze, seen in Figure 5.10a;

91

[13th June 2024 at 16:43]

Comp. GO

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

Start
End
Solution
Shared
Fitness_NoX
Fitness_X
Worsening

(a) Medium maze

KK

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

Start
End
Solution
Shared
Fitness_NoX
Fitness_X
Worsening

(b) Hard maze

Figure 5.10: CSTNs for crossover and no-crossover variants of fitness search for both
medium and hard maze configurations.

the crossover variant, depicted in bright blue, is able to reach a higher
number of solutions compared to its no-crossover counterpart.

The fitness search trajectories of the hard maze shown in Figure 5.10b are
much shorter than the other networks, featuring no edges to a few edges at
most. All trajectories tend to terminate in sub-optimal locations of the search
space, illustrated by the large size dark-grey triangles. This suggests that,
as seen in the metrics and statistical results, trajectories quickly reach local
optima, with several different neural networks configurations producing the
same sub-optimal fitness.

Another noteworthy observation can be derived from Figure 5.11b, in
this plot of the hard maze configuration the trajectories of Novelty_X and
Novelty_NoX appear to traverse separate paths in the solutions search space.
This is interesting, as this dynamic differs from the medium maze (Fig-
ure 5.11a) where trajectories intersect and share similar paths of the search
space. Similarly as in the DPV domain results of Chapter 5 this behaviour
could be attributed to the fact that STNs are capable of demonstrating the
intrinsic characteristics of evolvability requirements related to a search space
landscape. Little interaction between solutions and independent trajector-
ies may demonstrate the inherent hardness (deceptiveness) of a problem
domain.

92

[13th June 2024 at 16:43]

Comp. Gem

●

●

●

●

●●●

●

●
●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

Start
End
Solution
Shared
Novelty_NoX
Novelty_X
Worsening

(a) Medium maze

Comp. Gem

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●

●●
●

●●

●

● ●

●

●
●

●

●
●
● ●

●

● ●
●

●

● ●
●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●● ●● ●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●●●

●

●

●

●

●
●

●

●

●●

●
●●

●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

Start
End
Solution
Shared
Novelty_NoX
Novelty_X
Worsening

(b) Hard maze

Figure 5.11: CSTNs for crossover and no-crossover variants of Novelty Search for
both medium and hard maze configurations.

5.6.3 Results discussion

We continue from previous work to assess the role of recombination in neur-
oevolution algorithms, with specific attention to evolutionary dynamics that
leverage the generation of behavioural diversity, for search gradients driven
by novelty versus fitness. In the work outlined in the previous Chapter [7],
the problems examined were simple reinforcement learning task, where the
application of this visualisation technique helped to assess the search space
dynamics. In this case our interest progressed, to produce an assessment
on the applicability of STNs to different search strategies, inquiring the
usefulness of recombination in harder, and more deceptive domains. It is
due to this deceiving maze structure that the fitness gradient for this type
of search is provably insufficient, which requires the use of novelty-driven
fitness.

The added knowledge which is derived from the STNs analysis of neur-
oevolution can be used to inform any future variations of this algorithm;
by testing components in isolations, and deciphering whether operators
can be applicable in the search strategies for specific domains. Additional,
the structure of the search spaces and the trajectories quantity, length and
behaviour, can also inform if a certain search strategy is necessary or not
for a domain. Parameters tuning of novelty criteria could also be analyses
in-depth through this proposed technique.

The statistical analysis on fitness performance and the STN assessment
work presented in the previous chapter [7], complemented each other, and

93

[13th June 2024 at 16:43]

together offered comprehensive but also independent findings. These find-
ings suggest the technique’s applicability to NEAT and potentially broader
neuroevolution search spaces.

One of the outcomes identified from this work is that each of the analyses
is useful, and can be performed in isolation. Statistical analysis is key, as
it helps to form a comprehensive picture of the performance behaviours
for evaluated algorithmic systems, such as the four variants proposed in
this work. Performing only this type of examination could have erroneously
suggested that fundamentally different solutions were similar, simply be-
cause they achieved the same fitness results. Contrastingly, STNs assist us in
exploring further, by drilling into genomes’ characteristics, offering a virtu-
ally modelled picture, faithful to the inherent optimisation search processes;
which are often highly dimensional and not visible to the naked eye — such
aspects that would be otherwise missed from a statistical viewpoint.

Finally, performance analysis is indeed essential to highlight those al-
gorithm or variant that are capable of performing best in particular settings,
configurations or ablation of operators. The technique of STNs has proven
successful in neuroevolution, and NEAT in particular, deciphering whether
performance is in essence comparably equal, or not. STNs assist us further
in our examination, by identifying “why” a specific solution is different
(or similar), from the perspective of evolutionary search space dynamics.
For example, are transitions in the search space, present in shorter traject-
ory, converging and interacting with increasingly more nodes, reaching
the solution faster, as they explore niches of the optimal neural network
compositions (Figure 5.11a)? Are the simpler, isolated, successful trajectories
comparable to longer and more converging trajectories (Figure 5.11b)? What
is the recurrence of stalling trajectories failing to identifying the solution, can
the path length and trajectory shape inform us on the problematic nature of
the search strategy Figure 5.10b?

5.7 summary

In conclusion to this chapter, it is possible to confirm that applying Search
Trajectory Networks modelling and visualisations, to further understand
different search strategies, in hard and deceiving domain, was achieved
successfully.

This work focused primarely on the role of recombination. A statistical
comparative analysis was conducted to assess variants with and without
recombination operator. The assessment was made on two search strategies,
the canonical objective-driven method, solely dictated by a fitness score,

94

[13th June 2024 at 16:43]

versus a strategy that searches for behavioural novelty. A specific adaptation
to the standard STNs approach was generated, so that the technique could be
used to model complex neural genomes found in search spaces, that present
large neutrality regions; it is known that several ways exist to configure a
neural network which instantiate the same behaviour.

This analysis confirmed the superiority of Novelty Search, over an objective-
driven strategy, in evolving neurocontrollers capable of operating in decept-
ive maze structures, constituting hard problems. Amongst interesting finding
that surfaced from this work [10], it was found that crossover appears to
play a positive role in fitness-based search. On the other hand, it is less
clear to perceive the same when searching for novelty. On these specific
maze navigation domains, the results derived, suggest that Novelty_NoX,
the variant without recombination, is very effective at reaching many good
solutions. By deactivating crossover, a greater number of trajectories reach
successful neural network designs, able to generate thriving behaviours,
doing so with shorter trajectories overall. Nonetheless, recombination paths,
seem to conduct a more wide search space exploration, suggested by the
longer trajectories, confirmed also by the metrics. This insight, may lead to
consider the recombination operator as a catalyser of additional population
diversity, which can potentially be useful in yet more complex and deceiving
domains, where an objective function can struggle to represent the domain
state. The question that rises here, which could form the focal point of future
research, is whether extremely strong permutation can demonstrate, through
STNs, the same level of diversity and trajectory dynamics.

In evolutionary computation, there is a wide consensus that recombination
can be useful for merging high performing solutions together. If done
correctly, this can be the case, although this operator could also be seen
as a disruptor of good solutions, which may require smaller mutations to
optimise. In essence, an algorithmic component that splits high performing
solutions in a way that diverges the search gradients. This could in turn
produce diversity, which for deceiving problems, can be necessary. Novelty
Search is equipped with principles that assist in the discovery of novel
behaviours and high-performing solutions. Through this research results
have shown that the removal of crossover from the NEAT algorithm, did not
impact the performance of this search strategy, but improved it instead. For
fitness-driven search, there appears to be benefits of having crossover active
in the system, for neurocontrollers deployed to solve these maze navigation
tasks.

Furthermore, the STNs modelling and visualisation tool applied to these
neuroevolution search spaces allowed us to perceive the similar and contrast-

95

[13th June 2024 at 16:43]

ing behaviours of these strategies traversing domains of different levels of
deceptions. Particularly, the tool allowed us to observe further dimensions,
not observable in the fitness convergence plots. The simplicity of the traject-
ories, and length for the fitness strategy in the medium maze, compared
to the longer, more converging and interconnected trajectories, visible in
the hard maze. These, together with the neutrality assessment of the c-ratio
metric, offered a more detailed picture of the traversed search space and
neural network compositions. The trapping regions and lengths of the search
were universally visible in the STNs of fitness-based search for the hard
maze, which were in strong contrast with the more complex trajectories
taken by novelty search. Within this domain we have observed that the
novelty strategy, deprived of crossover, was identifying more solutions than
its counterpart while being more explorative, signalled by the increased path
lengths, which did not show increased levels of neutrality (c-ratio).

These observations lay the groundwork for further exploration of the
interplay between Novelty and recombination in evolutionary algorithms.
It highlighted some key intrinsic characteristics, which if further examined,
could tell us more about the search for diversity and high performing
solutions in the realm of neuroevolution.

contributions acknowledgements I hereby declare that the sub-
stantial portion of the work detailed in this chapter, as documented in the
publication [10], is the result of my own efforts. However, it is important
to acknowledge the valuable contributions made by my co-author and su-
pervisor, Professor Gabriela Ochoa. Professor Ochoa provided significant
insights and guidance, suggesting experimental settings. Additionally, her
expertise in the broader concepts underlying Search Trajectory Networks
has greatly enriched the quality of this research. They have additionally
contributed in refining and perfecting aspects of the STNs visualisations.
My co-author and second supervisor Dr. Jason Adair has also contributed to
this research, and has been a valuable source of assistance in the statistical
visualisations, related work section, and the overall proofreading.

96

[13th June 2024 at 16:43]

6
C H A P T E R 6 — T H E B E H AV I O U R S E A R C H S PA C E
U N D E R N E U R O E V O L U T I O N T R A J E C T O RY N E T W O R K S
O B S E RVAT I O N

This chapter outlines the research published in [11]. This significant contri-
bution is also listed in the List of Publications section at the beginning of
this thesis. Here we dwell on the work that led to the inception of Neur-
oevolution Trajectory Networks (NTNs), as an associated technique. This
work marks the first time we have recognised and established the notion
and definitions of this methodology. The main idea is that this technique is
specifically leveraged to assess neuroevolution search spaces. This approach
establishes the study of neuroevolution dynamics and characteristics from
the perspective of search space, diverging from stand-alone, performance-
driven analysis. However, the latter (performance-driven analysis) plays a
vital role in presenting a comprehensive view of algorithm performance.
When combined with our proposed technique, it offers a clearer picture of
the mechanisms within neuroevolution algorithms. Suggesting why certain
phenomena occur rather than simply highlighting these in therms of fitness
achievement. This work aims at providing explainability to the world of
neuroevolution.

6.1 key contributions and motivations

This is the third contribution chapter of this thesis. It is a fundamental one,
as it details the work that lead to the key notion of NTNs, the technique
that spawn from Search Trajectory Networks, being the principal theme
of this thesis. Here, we propose a break from the general STNs parent
technique, moving on to explore traits that are uniquely relevant to the
neuroevolution realm. As outlined in Section 2.1.3, the specialisation of
NTNs and its definition are related to the modelling and visualisation of
characteristics that are prevalent and solely found in Neuroevolution and
related search spaces. Specifically focusing on the notion of Behavioural
Characterisation (BC), diversity generation and exploration, in relation to
topological complexity of evolved neurocontrollers. The specific motivations
and contributions of this work are detailed as follows.

97

[13th June 2024 at 16:43]

• Offer, for the first time, NTNs as a network visualisation technique
that aims at modelling Neuroevolution search spaces and algorithm
mechanics.

• Use NTNs, as an advanced tool to examine divergent/explorative
search strategies and behavioural characterisation, in the evolution of
neurocontrollers.

• Assess the interplay between topological structure, behavioural di-
versity, and divergent search.

6.2 illuminating behavioural characterisations

This research has enabled an advanced exploration of Behavioural Charac-
terisations — as explained in Chapter 2. BC specifically catalysed the shift
to an NTN technique, as BC is a specific trait of Quality Diversity algorithms
and in this experiment it is specifically fuelled by neuroevolution. The search
for novelty in BC is integral to optimising divergence by seeking diverse fea-
tures. As it was seen in the previous chapter, there is a necessity to abandon
objectives and convergent search strategies, because in some domains these
are ineffective and possibly even defective. Often, this shift was inspired by
the phenomena observed in evolutionary biology [72], indicating that a high
diversity of unique niches leads to superior fitness and survival characterist-
ics. The BC concept was initially introduced by [54], focusing on a specific
set of evolutionary algorithms aimed at producing both high diversity and
fitness in solutions, thoroughly exploring the underlying search space. These
are known as quality/diversity algorithms [26, 29, 53, 200]. A seen in the previ-
ous chapter, the inception of this successful line of enquiry was given by the
work of Lehman and Stanley [3, 25], suggesting the exploitation of another
interesting phenomena known as open-endedness. A system aiming for a vari-
ety of diversified and performing solutions that can be achieved through no
inherent objective, nor a defined termination criteria. The specific algorithm
central to the study of BC in [54], is a successor and essentially first of the
QD algorithms: Novelty Search with Local Competition (NSLC) [26]. This is
a powerful algorithm, which incorporates multi-objective NSGA-II to exploit
trade-offs between high quality and behavioural diversity.

In the study mentioned above, the definitions of BC are given, as a method
of categorisation/classification. This is dictated by the notion of quality,
based on the problem domain, the BC can either be aligned or unaligned to
this, and no other intermediate categorisations are provided (see Section 2.2.2
in Chapter 2). The authors remark that closely aligned BCs can result in

98

[13th June 2024 at 16:43]

favourable diversity and demonstrate positive exploratory qualities. The
intent of this research is to offer our tool to assess the counterargument
in the literature [25, 26, 27], which predicates that unaligned BCs are not
directly related to the notion of quality that should be capable of offering
undirected explorations, leading to divergent ways of discovering a greater
variety of optimal capabilities [55]. Therefore, our NTN tool is deployed
to illuminate BCs, evaluating these with a focus on topological complexities.
This is due to the importance that a network’s topology and characteristic
has on the behaviour produced by a neurocontroller — which is what our
research is restricted to. The hope of this work is to see NTNs thrive, as
a tool to highlight the mechanics and underlying relationships that exist
between topological complexities for BC and explorative diversity. Particular
characteristics that can be discerned effectively only through a combination
of the NTNs modelling technique and canonical performance assessments.

In order to achieve this, we move away from illuminating the genotypic
search space, to replace it with the space of behaviours produced by the
neurocontrollers.

6.3 the inception of neuroevolution trajectory networks

The defining distinction of the NTN tool from its parent technique is the
realisation that exploring the dynamics of neuroevolution and its search
spaces constitutes a separate postulate In this work we see the clear example
of modelling behavioural diversity with a topological complexity focus.

This task was achieved by concentrating on the behaviour space derived
from the experiments outlined in Chapter 5. The behaviours are a result
of the evolved neurocontrollers from the medium and deceptive (hard)
maze. In addition to relying on traits and characteristics that are found
primarily in neuroevolution algorithms, part of the intuition here is that
behaviours produced by agents, integral components of our divergent search
algorithms, directly derive from the capabilities provided by the underlying
evolved neurocontrollers. The idea is to use these algorithmic derivations,
which reflect neuroevolution dynamics, to move away from the complic-
ated modelling of highly dimensional spaces; with the aim of deriving
a more meaningful appreciation of the algorithmic dynamics at play (i.e.
convergence of solutions).

This approach offers multiple benefits to our analysis. First, the com-
pressed signature only needs to incorporate the final x and y Cartesian
coordinates where the robotic agent lands in the maze upon trial termin-
ation, significantly simplifying the signature construction and mapping.

99

[13th June 2024 at 16:43]

Secondly, having a set of coordinates reduces the information captured in
the signature, thereby reducing its dimensionality. Modeling neurocontroller
derivations also aids in observing clustering areas, the convergence regions
that would otherwise be missed through a genotypical space representa-
tion. Convergence in network visualisation is a desired feature, serving as a
helpful indicator to comprehend the underlying workings of variants with
shared traits.

Finally, since the network nodes are formed by geometric coordinates
relative to the maze domains, rather than using the force-directed layouts
applied in previous chapters, we designate the layout as the Cartesian
plane itself. This allows for the network to be placed directly into the maze,
enabling to see the optimisation search dynamics of the best neuroevolved
controllers at each iteration. This approach, introduced as a novel component
to this research, was inspired by the work on STNs by Ochoa G., Malan
K., Blum C. [19]. This will be later demonstrated in Section 6.5. Figure 6.1
illustrates this concept briefly.

x,y x,y

x,y

x,y

x,y
x,y

x,y

x,y
x,y

x,y

86,113

Improving transitions =

Worsening transitions =

(a) Cartesian NTNs

x,y x,y

x,y

x,y

x,y
x,y

x,y

x,y
x,y

x,y

86,113

(b) Cartesian NTNs in domain

Figure 6.1: Illustration of the Cartesian layout used in this research.

100

[13th June 2024 at 16:43]

Figure 6.1a displays an illustrative NTN structure composed of Cartesian
coordinates. Each node is generated by a behaviour of the neurocontroller.
A larger node can be seen with an example signature, 86, 113 for the loca-
tion visited. All other nodes contain similar Cartesian values. Since in this
experiment, nodes’ signatures denote search transitions in the network and
correspond to physical locations in the maze, Figure 6.1b illustrates how
the same NTN can be represented in the problem domain. This approach is
limited to problems which entail forms of geographical coordinates, inherent
to the structure of the problem domain — for instance routing tasks.

6.4 analysis rationale

This experiment utilises settings similar to those in Chapter 5. Additionally,
a random search (RAND) is included as a form of control. Additionally,
based on findings from previous experiments highlighting the inefficiencies
of recombination in NEAT [7, 10], the decision was made to exclude this
operator and focus solely on variants without crossover.

Random search is the most basic amongst the strategies. It assigns con-
tinuous stochastic values derived from a pseudo-random number generator
as the evaluation score of the genomes. As a control, this strategy is used to
explore the effect of divergent search, and it is not expected to yield good
performance. All other strategies employ the same criteria and parameters
outlined in Chapter 5. This analysis will use Neuroevolution Trajectory
Networks for the behaviour space, with specific focus on divergent search
and topological complexities of the neurocontrollers generating behaviours.
The performance analysis covers statistical tests, in terms of evaluations
required to reach a solution (efficiency) — which tracks the success rate of
each strategy — and quality of solutions, once the evaluation cycle ends
(efficacy). Furthermore, this work offers a behavioural diversity analysis,
placing particular attention on their relation to topological structures and
complexity.
To accomplish this, 30 independent runs are executed. Out of these, 10 are
selected by ranking them based on performance. The top 3, worst 3, and 4

intermediate runs. The intention was to choose a representative sample of
the 30 runs, as visualising all runs would make the plots overly complex,
hindering the extraction of visually meaningful features. As discussed in pre-
vious chapters, this empirically dictated runs filtering, is strategic to strike
the balance between meaningful, informative networks which do not result
in complicated visualisations. Excessive data points in a complex network
visualisation as such do not always result in extra useful information about

101

[13th June 2024 at 16:43]

the underlying dynamic. This is a supporting motivation for the CSTNs
technique detailed in the previous chapter.

In this work we use the force-directed layout algorithm proposed by Ka-
mada and Kawai [201], using single (non-merged) Compressed NTNs. These
leverage the same definitions outlined in the previous chapter. This layout is
a variation, inspired by the same physics principles of [193]. Specifically, in
their approach, a virtual dynamic system is formed, in which two vertices
are connected by a “spring” of such desirable length. The optimal layout
of vertices is achieved when the system’s total spring energy is minimal. In
NTNs, layouts such as this play an important role in the communication
of the internal mechanics of an algorithm. The choice for a layout is often
empirically driven and lead by intuition and prior knowledge of the neuroe-
volution algorithm in analysis. In this experiment the specific variant of the
layout chosen helped us to convey important characteristics of topological
complexity and diversity, witnessed in the supplementary analyses and
distribution plots.

Additionally, two new metrics specific to this analysis are computed on top
of the canonical ones already used. A complexity metric, which is the average
topological complexity of the NTNs, in relation to divergent and convergent
searches respectively. Moreover, in-strength, the average strength of incoming
connections, indicating to what extent some nodes in the network attract
the search process (calculated as a normalised average). These two metrics
corroborate our behavioural diversity and topological complexity analysis,
and together with the statistical approach, offer a comprehensive view of
the neuroevolving system.

6.5 results and discussion

In this section we will present the results achieved in this study, starting from
the behavioural diversity analysis, progressing to the NTNs visualisations
and the associated metrics.

6.5.1 Behavioural diversity related to topological complexity

In the analysis of this section the objective is to begin by testing the known
differences between divergent search strategies such as novelty and random,
compared to the convergent strategy of objective search, in relation to the
topological complexities of the neurocontrollers evolved to solve the maze.
These preliminary assessment served as tests, and are the guiding force and
confirmation signals for the advanced NTNs analysis. These assessments are

102

[13th June 2024 at 16:43]

particularly important for the BC study mentioned in earlier sections, but also
because for these studies we are deploying variants of NEAT, which leverages
a complexification mechanism in its evolutive process. Complexification, as
described in Chapter 2.2.1 is a property of NEAT, a mechanism which is
intended to generate simple neural network composition and incrementally
increasing their complexity without exceeding or unreassuringly bloating
the solutions.

In the results, random search, despite being considered a divergent
strategy, it does not produce any successful results. The only variant suc-
ceeding in the hard (deceptive) maze, as witnessed in the previous chapter
is Novelty Search. Nevertheless, this examination does not focus on what
succeeds or works, but why something does not succeed and what are the
underlying effects generated. Highlighting what makes a strategy different,
both statistically and using NTNs.

In [54], the authors remark on the importance of identifying the correct
Behavioural Characterisation for a deceptive domain. It is fundamental for a
successful algorithm that explores solutions with the aim of diversifying. As
the name suggests, this approach is primarily intended for actions produced
by neurocontrollers. Novelty Search is aimed at diversification and explora-
tion of behaviours, but it can also be leveraged to identify topologies with
novel performing complexities. These results bring to light some interesting
insights into this potential search setup.

These results are studied from two particular standpoints, which we can
easily derive from the systems during evolution. We capture the topological
complexities information in terms of neurons and connection numbers. As
our study involves evolutionary dynamics, the focus is only on those neur-
ons and connections that are evolved and not preconfigured. Our metric
is calculated by summing these two components and then subtracting the
number of neurons that are preset by the configuration file. A fair comparat-
ive analysis involves a normalisation of this complexity metric to be in the
range (0− 1]. The choice for this specific approach was purely empirical, as
the literature did not suggest any alternative to this neurons and connections
aggregation metric. The behavioural diversity component is calculated based
on the ending x and y coordinates of the neurocontroller at trial termination,
for simplicity, as specified by our implementation [9]. For this statistical
outlook and the NTNs analysis, these values are reduced in precision by
rounding off decimal points and concatenated into the nodes signatures.
This way we discretise the space of possible behaviours, a custom practice
in STNs/NTNs techniques. To produce this analysis these are treated as
identifiers and only distinct behaviours are picked.

103

[13th June 2024 at 16:43]

From the statistical results related to the distributions of fitness values and
evaluations required to reach the threshold, in Figure 6.2 we observe that in
the medium maze (Figure 6.2a) both objective (OBJ) and Novelty Search (NS)
perform comparatively well, with all data points (runs) reaching the top
value of 1.0. Conversely, as expected the divergent random search method
(RAND) had most run reaching values around the 0.2 mark, proving that
this strategy, although divergent, is insufficient even in the simpler medium
maze.

OBJ RAND NS
Search Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

Fi
tn

es
s

Distribution of Fitness

(a) Fitness medium maze

OBJ RAND NS
Search Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

Fi
tn

es
s

Distribution of Fitness

(b) Fitness hard maze

Figure 6.2: Fitness distribution of all strategies for each domain difficulty

In Figure 6.2b, we observe that neither OBJ nor RAND are able to achieve
successful fitness values. On the other hand, the NS divergent search strategy
has 5 runs reaching/exceeding the threshold and succeeding in the hard
maze set up. It is noticeable how, similarly to RAND, this strategy does not
produce stagnated fitness values, as seen in the flat distribution line of OBJ
search.

Looking at the distribution of evaluations in Figure 6.3, it is observable
that, although both OBJ and NS are successful, the divergent NS strategy
achieves the optimal fitness threshold, in less iterations — around 100

on average — producing a narrower spread. Contrary to OBJ, which has
values of evaluations that exceed 100 iterations, confirming its negative
performance in this domain compared to the divergent strategies. Failing
runs are depicted above the dotted line, signifying that the runs exceed the
termination criteria of total iterations.

Figure 6.4a and 6.4c illustrate the distributions of normalised topological
complexities for neurocontrollers in the 30 runs executed. These values
are computed as an average of all the best topologies found from all the
iterations, in each of the runs. This proposes a planarisation, flattening the

104

[13th June 2024 at 16:43]

OBJ RAND NS
Search Algorithm

0

200

400

600

800

1000
Ev

al
ua

tio
ns

Distribution of Evaluations

(a) Evaluations medium maze

OBJ RAND NS
Search Algorithm

200

400

600

800

1000

Ev
al

ua
tio

ns

Distribution of Evaluations

(b) Evaluations hard maze domain

Figure 6.3: Evaluations distribution of alls strategies for each domain difficulty.

time dimension, to capture all topological complexities seen during the runs.
This practice, is effective as it mimics the same approach used in the NTNs
methodology. Figure 6.4b and 6.4d show the number of distinct behaviours
recorded for all search strategies in each of the 30 run for both maze setups.
These distributions help us to perceive the diversity of solutions found by
each strategy. We believe these give a sense of how divergent a variant can
be. The findings, identified through this analysis, are reported as follows
and will aid our understanding further in the NTNs analysis section.

The NS strategy has on average more complex topological structures of the
neurocontrollers than RAND and OBJ. The spread in RAND is rather narrow,
and topologies appear notably less complex, in both maze configurations.

Looking at RAND, high and consistent diversity values (narrow spread)
are visible. This points to the hypothesis that simpler topologies may be
capable of creating more diverse behaviours.

Due to its observed poor performance compared to other strategies, RAND
is deemed ineffective. Although, in terms of diversity, we argue that this
strategy produces more consistent results. These consistent results of di-
versity are achieved by topological structure that are on average less complex.

OBJ appears to show similar dynamics, with notably complex topologies
on average that do not produce highly distinctive behaviours compared to
the other variants. Corroborating the point expressed above, about complex-
ity not allowing an extensive behaviour space exploration.

The variance in distribution of distinct behaviours is high for NS, sig-
nalling an instability of this strategy, between low and high diversity gen-
eration. Indicating a less consistent exploration. A result which was not
suggested by [25].

105

[13th June 2024 at 16:43]

OBJ RAND NS
Search Algorithm

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0
N

or
m

al
is

ed
 T

op
ol

og
y

Average Topological Complexity

(a) Average topological complexities me-
dium maze

OBJ RAND NS
Search Algorithm

20

40

60

80

100

120

140

160

Be
ha

vi
ou

r (
di

st
in

ct
)

Distinct Behaviours

(b) Distinct behaviours medium maze

OBJ RAND NS
Search Algorithm

8

10

12

14

16

N
or

m
al

is
ed

 T
op

ol
og

y

Average Topological Complexity

(c) Average topological complexities hard
maze maze

OBJ RAND NS
Search Algorithm

0

50

100

150

200

250

Be
ha

vi
ou

r (
di

st
in

ct
)

Distinct Behaviours

(d) Distinct behaviours hard maze domain

Figure 6.4: Topology complexity and behavioural diversity analysis of distributions
for all variants in both maze configurations.

6.5.2 Visualising the behaviour search space with NTNs

Here we presents the results achieved through the NTNs analysis. As men-
tioned in Section 6.4 this examination leverages single CNTNs [10]. Ten runs
out of the 30 are selected and portrayed based on their success — based on
fitness performance; these individual plots are categorised by search strategy
and domain difficulty. Furthermore, as conducted in previous studies, spe-
cific network metrics are computed to corroborate the findings. Finally, a
further aim of this study is to witness the applicability of NTNs when
transferred into the problem domain, with a layout dictated by their x,y
coordinates.

106

[13th June 2024 at 16:43]

Figure 6.5 illustrates the NTNs generated, for each search strategies, on
each of the domains set up. These are comprised of 10 selected runs, the
starting points of these runs are marked by yellow squares, a grey triangle
signifies the end of a behaviours trajectory and the best solution in terms
of fitness found are depicted as red node. The colour gradient is used
to signify the normalised topological complexity of the neurocontrollers
producing behaviours. Dark red meaning highly complex and light blue
being extremely simple.

Table 6.1: NTNs metrics.

Medium Maze Hard Maze

OBJ RAND NS OBJ RAND NS

nodes 66 653 67 25 536 701

solutions 1 0 1 0 0 1

w-edges 0 0.460 0.293 0 0.421 0.456

n-path 10 0 10 0 0 9

p-length 5.7 N/A 5.9 N/A N/A 8.555

complexity 0.360 0.155 0.177 0.339 0.135 0.226

in-strength 0.015 0.015 0.016 0.070 0.022 0.004

The OBJ networks clearly highlight the greedy, convergent behaviour of
this search strategy — also represented by the worsening edges (w-edges)
metrics of Table 6.1, which reports a nil value. The global solution of the
medium maze (red node) is easily achieved by this strategy, with some
convergence to common behaviours observable by the larger nodes with
higher in-strength. In the hard maze configuration, the behaviour search
process of OBJ quickly gets attracted and trapped in a shared sub-optimal
behaviour. This illustrates that in very few search steps the strategy gets
trapped in a location, finding only one underperforming behaviour. In the
medium maze, a variety of simple to complex topological structures reach
the optimum. For the harder domain, all neurocontroller which are trapped
in the attraction regions (possible local optimum) present high topological
complexities (darker red).

In RAND, high levels of diversity are maintained for both domain config-
urations, with some commonly attracting behaviours. In both mazes, this
strategy appears to have large attracting behaviours, primarily occurring
at the end of trajectories. The large metric values of w-edges and in-strength
observable in Table 6.1 are visible in the NTNs of this strategy, manifesting

107

[13th June 2024 at 16:43]

KK Nodes: 61 Edges: 64 Comp: 1

Start
End
Best
Improve
Worse

0.0

0.5

1.0

(a) OBJ, medium maze

KK Nodes: 16 Edges: 15 Comp: 1

Start
End
Best
Improve
Worse

0.0

0.5

1.0

(b) OBJ, hard mazeKK Nodes: 547 Edges: 1508 Comp: 1

Start
End
Best
Improve
Worse

0.0

0.5

1.0

(c) RAND, medium maze

KK Nodes: 387 Edges: 1017 Comp: 1

Start
End
Best
Improve
Worse

0.0

0.5

1.0

(d) RAND, hard mazeKK Nodes: 66 Edges: 74 Comp: 1

Start
End
Best
Improve
Worse

0.0

0.5

1.0

(e) NS, medium maze

KK Nodes: 584 Edges: 1460 Comp: 1

Start
End
Best
Improve
Worse

0.0

0.5

1.0

(f) NS, hard maze

Figure 6.5: single CNTNs for 10 selected runs, in terms of performance for all
strategies in both domain configurations [11]. The colour of the nodes
are based on a gradient signifying normalised topological complexities,
and the size is related to the incoming strength of the connections.

108

[13th June 2024 at 16:43]

in an erratic and oscillating dynamic, between improving and worsening
behaviours (see edges). This encapsulates the random essence of this variant,
which is a diversification characteristic of this divergent search type. In these
NTNs, most nodes hue attributes (neurocontrollers’ complexities) appear
mid to low (blue/light-blue).

The NS network for the medium domain obtain similar node convergence
levels, meaning that the same behaviours are re-visited several times, in
close proximity. This dynamic produces a higher w-edges value. The average
length (p-length), related to the solutions paths, are similar to the objective-
driven strategy, but NS, being a divergent search, can produced increased
exploration. This points to the observation that NS can have similar levels of
topological complexities as random search.

From the NTNs depicted in Figure 6.5f it is possible to observe an interest-
ing feature that provides insight and support to our topological complexities
hypotheses. In the centre of the network visualisation, it is possible to
discern a distinctive circle comprised of nodes that have similar size (con-
vergence), we assume from this composition that these nodes inside this
circle (formed artefactually by the layout algorithm) present truths about
the underlying system related to lesser behavioural diversity (exploration).
This phenomenon is explained by the high convergence values, seen and
reported in the metric, while having topologies which appear more topolo-
gically complex — nodes with darker shades. The nodes outside this circle,
are visibly simpler, more diverse, capable of greater exploration, reaching
the solving behaviour (red node). These are strong intuitions and It is in the
intent of future research to test these further.

In our examination used NTNs to offer an explanation to this network
formation. It may signify a clear breakthrough from higher complexity
topologies, showing lower diversity nodes trapped by local minima regions,
to simpler neurocontrollers that lead to higher diversity and more successful
explorations.

Finally, our analysis concludes by considering a representative example of
the best runs based on fitness, identified out of the 30 executed for each of
the search strategies, and placing their respective NTN models inside the
domains. This is achieved using a simple layout dictated solely by binary
coordinates on the Cartesian plane.

Figure 6.6 illustrates this approach. The trajectories colours indicate the
strategy type and all other decorators are similar to previous plots, for the
exception of node size, which in this case is associated to the normalised to-
pological complexity metric. Meaning that larger node signify more complex
networks and vice versa.

109

[13th June 2024 at 16:43]

Start

Goal

NS

OBJ

RAND

(a) Medium Maze

Start

Goal

NS

OBJ

RAND

(b) Hard Maze

Figure 6.6: Cartesian NTNs for the best runs in fitness performance terms, for all
strategies in both mazes configuration [11].

110

[13th June 2024 at 16:43]

In these plots, by looking at the behaviours of random search and their
topologies, we can visibly corroborate our previous intuition that simpler
neurocontrollers offer greater explorative capabilities, due to their further
divergence from the starting point of the maze.

The breakthrough of Novelty Search described earlier, observable in the
NTN model of Figure 6.5f, resembles the changes in topological complex-
ities occurring in this plot, seen in the maze’s diagonal upward channel.
When topologies diverge from this deceptive region, they appear to become
topologically less complex. As if neuroevolution offers a simplification of
the neurocontrollers in order to achieve greater exploration.

We further support this intuition by suggesting that simpler networks
possess a stronger flow of signals between input and output nodes compared
to larger networks.

6.6 summary

This contribution chapter is where we first describe the inception of Neuro-
evolution Trajectory Networks. A visualisation method that solely focuses
on illuminating neuroevolution search spaces and the intrinsic dynamics of
algorithms and variants operating in this space. We propose differentiating
from the original STNs technique, to discriminate the study of neuroevolu-
tion from a standpoint that is not anchored on the use of fitness performance
alone.

The true novelty in this differentiated approach also lies in the intent to
move from signatures which encapsulate solution vectors, to specialised
neuroevolution ones that define network constructs and architecture, in
addition to behavioural characterisations and descriptors of novelty. To
further strengthen the NTN case, it is dutiful to declare that the use of
the Cartesian layout without the canonical complex network compositions
(primarily deployed through force directed and tree layouts) would not
support the overall analysis; losing the novelty and uniqueness of this
proposed approach.

In this chapter we outline how NTNs were leveraged to study Behavioural
Characterisation (BC) a thematic proposed in [54], concerning divergent
search strategies and exploration capabilities within deceptive domains. This
led our NTNs examination of search strategies dynamics to be corroborated
by a statistical analysis of topological complexities related to behavioural
diversity and exploration of these domains.

In the experiment outlined here, our proposed visual assessment of be-
havioural characterisation is achieved on three search strategies deployed

111

[13th June 2024 at 16:43]

in NEAT. Two divergent ones, novelty (NS) and random (RAND), and
a convergent one, objective-driven search(OBJ). These were tested in me-
dium to highly deceptive maze domains. Our findings highlighted some
important characteristics and relationship on the interplay between diversity,
exploration and topological complexity of the evolved neurocontrollers.

Amongst these observations, we discovered from both violin plots and
NTNs visualisation that topologically less complex neurocontrollers have
the tendency to create increasingly distinct and diverse behaviours, with
potentially high exploration capabilities. Capabilities which in the majority
of cases, eventually lead to successful solutions (the domain goal). The
phenomena were also visible through the visualisation of the best NTNs for
NS through a Cartesian-driven layout, placed in the domain.

On the notion of BC, detailed in [54], we recall from Chapter 2 that this
is the way by which behaviours are classified. The classification are found
to be either aligned or unaligned to the notion of quality (fitness) that is
determined by the assessment domain. Our work suggests that alternatives
between a closely aligned and non-aligned BC potentially exist. These may be
described as Transitive BC, indicating that divergent search strategies could
focus on BCs indirectly related to divergence and exploration, to achieve
appropriate quality-diversity (QD), which follows the open-endedness notion
of completely abandoning the objective [25, 195, 202, 203]. In the case of
this experiment, it could be framed on restricting the evolutions to low
topological complexities. As seen in these specific experimental setup, these
offer neurocontrollers that generate diverse, explorative behaviours. It is
in our future research intent to test these indirect search mechanism, the
identification of these could enhance the performance of divergent strategies.
A further suggested direction would be to compare and analyse these against
automatically defined novelty descriptors [56].

contributions acknowledgements I hereby declare that the sub-
stantial portion of the work detailed in this chapter, as documented in the
publication [11], is the result of my own efforts. However, it is important
to acknowledge the valuable contributions made by my co-author and su-
pervisor, Professor Gabriela Ochoa. Professor Ochoa provided insights and
guidance on the overall research approach and helped the structure of the
research narrative. They have additionally contributed in refining and per-
fecting the metrics of the NTNs visualisations. My co-author and second
supervisor Dr. Jason Adair has also contributed to this research through
general proofreading and sense checking of the overall research narrative.

112

[13th June 2024 at 16:43]

7
C H A P T E R 7 — R E V E A L I N G T H E PA S T O F
I N C R E M E N TA L LY N E U R O E V O LV E D C O N V O L U T I O N A L
N E U R A L N E T W O R K S

This chapter outlines the research work published in [22]; this contribution
is reported in the publication list of Section 1, at the start of this thesis.

This research advances the study from shallow networks to deep ones,
structured based on layers. The fundamental aim of this work is to enhance
NTNs by applying them to deep neuroevolution. Furthermore, we analyse a
class of algorithms which incorporates incremental development, which leads
to effective transfer learning properties. The class of algorithm that will be of
focus in this chapter are powered by a type of Grammatical Evolution (GE),
known as Dynamic Structured Grammatical Evolution (DSGE) [62]. The
specific algorithm used for this experiment is Fast-DENSER with incremental
development; both of these have been detailed extensively in Chapter 2,
Section 2.2.3 and 2.2.3.

7.1 key contributions and motivations

In this fourth and final contribution chapter of this thesis, we detail a fun-
damental research that solidified Neuroevolution Trajectory Networks as a
complex networks visualisation methodology. This work helped to highlight
the applicability of NTNs/STNs to various domains. In particular, we boot-
strapped this technique from its inception domain of shallow/dense ANNs,
to apply it in the world of DNNs. Furthermore, aside from corroborating to
supporting our argument that this technique has strong basis for explain-
ability in neuroevolution, the intention was to strengthen this further by
showing that it can indeed be used to highlight fundamental dynamics of
transfer learning related to image classification.
The principal contribution that this work has provided are as follows.

• Provide an assessment of incremental development/transfer learning
for Fast-DENSER variants that include recombination and local search.

• Provide an in-depth NTNs analysis of characteristics intrinsic to these
variants, when used for evolving CNNs tested on benchmark image
classification problems.

113

[13th June 2024 at 16:43]

• An augmentation of current NTNs technique, to signal knowledge
transferred during the incremental development of CNNs; in order to
globally assess the fundamental components selected by neuroevolu-
tion.

7.2 from shallow to layer-based neuroevolution

The progression of NTNs from the study of dense neural network which
are shallow, to the study of deep learning and DNNs has strengthened our
claim for the successfulness of NTNs technique in this realm. Aside from
further corroborating the applicability and usefulness of this approach, the
shift to study Deep Neural Network — which to this date is more actual
and relevant — has highlighted some interesting benefits. As shown in
Figure 7.1, we illustrate the dichotomy of modelling neuroevolution search
spaces, between shallow and deep neural networks.

Shallow/Dense ANNs Deep/Layered ANNs

Input nodes

Hidden nodes

Hidden nodes

Output nodes

Input layer

Hidden layer

Hidden layer

Output layer

• Individual nodes and weights
• Slow growth and high complexity
• Nurocontrol tasks – RL
• High encoded dimensionality

• Layer-based approach
• High growth and lower complexity
• Classification/detection/generation
• Low encoded dimensionality
• Higher information encapsulation

Figure 7.1: Illustration of the progression in NTNs analysis from shallow to deep
neural networks.

Dense ANNs evolution, used in our experiments until now (Chapters 4, 5, 6)
are characterised by a genotypic encoding of individual nodes and weights,
this carries with it a very slow evolution/ optimisation, which includes
diverse forms of encoding characterised by high complexities. On the other
hand, evolving DNNs, in this experiment, but also in the general context
could be defined more easily as more modular and dictated by a layer-based
approach. The evolutionary growth in this case is quicker, and less complex
from an encoding perspective, due to these building blocks being segmen-

114

[13th June 2024 at 16:43]

ted in larger definable chunks. It is known that evolving dense ANNs, as
in the case of our experiments thus far, has often been associated to the
reinforcement learning RL category of problems. As opposed to the more
recent DNNs which, aside from being applicable to RL, it is used extensively
for image classification, object detection and as generators [63, 204, 205].
Furthermore, one aspect specifically worth of consideration, between the
two architecture structure is that from an NTNs prospective, the encoding
and signature mapping can become far less complex in the deep networks,
due to this modular nature. It makes the dimensionality to be encoded
in our NTNs/STNs signature, lower than in the shallow approach. This
sounds counter-intuitive, but a layered based neuroevolution can reduce
dimensionality and narrow the search space scope. This is due to the fact
that we are not evolving individual nodes and connections, but a defined
set of allowed evolvable units and hyper-parameters. Finally, this neural
network category, improves the information encapsulation, meaning that
the genetic material is grouped in these layer-chunks, which can be tagged
and labelled, maximising the information inclusion within a NTN signature.

7.3 tracking the transfer of evolutionary units

convolution_mnist|convolution_mnist|convolution_cifar|convolution_svhn|dropout_mnist|batch-norm_fashion|fully-connected_mnist|

convolution_cifar|convolution_mnist|dropout_mnist|batch-norm_svhn|fully-connected_fashion|

convolutionconvolutionconvolutionconvolutiondropoutbatch-normfully-connected

convolutionconvolutiondropoutbatch-normfully-connected

Figure 7.2: Illustration of two example NTN signatures with and without origins
tags.

In this research, the intention was to place a particular focus on the trans-
fer of knowledge occurring due to the incremental development nature
of Fast-DENSER [21]. This investigation was inspired by preliminary work
conducted by the authors, which engineered the incremental development
neuroevolution algorithm [21]. In their publication [5], the authors propose
a visualisation of Fast-DENSER with incremental development. Their intent
was to visualise the transfer of genetic material occurring from generation
to generation, on a single run selected (shown in Figure 7.3). This was con-
sidered an initial attempt at showing that the transfer of knowledge does
work in this neuroevolution algorithm and genetic material encapsulated in

115

[13th June 2024 at 16:43]

layers can be ported based on the performance of best individuals. Moreover,
incremental development is seen to improve convergence on optimal solu-
tions faster than without the transfer of learning from previous domains;
a process which is detailed in the Background Knowledge at the end of
Chapter 2.

B C C C C B

B C C C P P P

B C B C C P P P

B C C B C B D BB C C B C B D B

B C C C C DB C C B BC

Gen. 1:

Gen. 25:

Gen. 50:

Gen. 75:

Gen. 100:

From SVHN From MNIST Mutation Unchanged

Fig. 5: Overview of the evolution on the incremental development setup MNIST
) SVHN) CIFAR-10. We provide a snapshot of the feature-layers of the best
individual on the 1st, 25th, 50th, 75th, and 100th generations. For space con-
straints we focus on the feature extraction layers: Convolutional (C), Pooling
(P), Batch-Normalization (B), and Dropout (D).

5.4 Experimental Results: Topology Analysis

To analyse the behaviour of incremental development from a structural point
of view we inspect the topology of the best networks as evolution proceeds.
Figure 5 shows the evolution of the structure of the networks on the setup
MNIST) SVHN) CIFAR-10. Because of space constraints we select the setup
where more generations were performed, and present the snapshots of the run
that generates the DANN with the median fitness value, i.e., we order the runs
according to the fitness of the best generated DANN and select the 6th run.
We choose the median run to avoid a biased selection over the worst or best
results. We focus only on the feature extraction layers. The figure’s goal is to
illustrate the exploration of knowledge incorporation, and thus the parameters
of the layers are omitted.

The figure makes it evident that the amount of layers that come from pre-
viously addressed tasks without any change diminishes as evolution proceeds.
That is the expected behaviour: in the initial generation the fittest DANN re-
uses all layers from the best network generated to address the SVHN, and across
generations these layers are adapted to tackle the CIFAR-10 (e.g., convolutional
in generation 75). During evolution new layers are also randomly created (e.g.,
batch-normalization in generation 50), and others removed (e.g., dropout in gen-
eration 100). Similarly to the the non-incremental approach, new random layers
can be added, but in addition, in the incremental development strategy we can
also add layers that come from the previously solved tasks (e.g., convolutional
layer that is transferred from the MNIST in generation 50).

The snapshots prove that incremental development is able to generate better
results based on the re-use of evolutionary units that aid solving previous prob-
lems. The evolutionary units are not only incorporated in the generation of the

Figure 7.3: Illustration of the first attempt of revealing incremental development on
one run of the original F-DENSER. Diagram sourced from [5].

Our process of signature mapping is based on origins tagging. An example
of two signatures for the NTN models created in this analysis is shown in
Figure 7.2. The process is simple; as CNNs evolve, they acquire evolutionary
units. In this analysis we use this genetic material encapsulation, used
for the deep networks encoding, to form the signatures. In this case, as
shown in the illustration, as this is a layer-based neuroevolution, the focus is
placed particularly on the layer which compose the networks. This research
is paramount for the establishment of the overarching NAA methodology,
which will be discussed in the conclusion Chapter 8. Furthermore, our
examination places attention on the learning optimisers that are ported from
previous learnings; this can be Adam, Gradient Descent or Rmsprop, as per the
predefined CFG.

As the evolutionary system progresses in the search for new solutions
through incremental development, these units are inherited. Our aim is
to shed light on this inheritance and the previous stages of this process.
Therefore, while this process occurs the origins tags — that is, from which
domain these were inherited via neuroevolution — are allocated to the
signature.

For instance, if we look at the second signature from the top of Figure 7.2,
we observe a sequence of two distinct units starting the DNN. Two convolu-

116

[13th June 2024 at 16:43]

tional layers, a fundamental component of CNNs. The first originated from
the CIFAR-10 and second form MNIST classification datasets. Meaning that
these encapsulated evolutionary units were inherited and introduced in the
solution genotype, through evolution and learning of those specific classi-
fication datasets. Following the arrow, we observe the unique signatures of
the nodes, stripped of these origin tags. This is to ensure that the tags are
used for the decoration of nodes and that the architectures of said CNNs
are the only one generating the NTNs nodes and edges interactions. These
origin decorators are then used to fill nodes with a hue, in the visualisation
models.

7.4 analysis rationale: ntns characterisation

Let us delve into the details of how the models were generated and how
these visualisation should be interpreted. Due to the high dimensionality
of this analysis, the exemplification that is provided in Figure 7.4 taken
from [6], will serve as a didactic medium to convey the concept.

These network models, constructed from a NTNs data log of node, edges
and attributes/decorators, is derived by the study of our proposed variants,
running these on the last benchmark classification dataset — Fashion-MNIST.
The NTNs are generated based on the 10 executed runs for each variant. As
outlined at the end of Chapter 2, the process works such that solutions are
developed on all classification datasets, starting from MNIST, progressing to
SVHN, then CIFAR-10, and finally, Fashion-MNIST. The analysis specifically
focuses on this last dataset, retrospectively looking into what occurred
through past evolutions. Therefore, our generated NTNs are based on 10

runs from the last classification dataset. This will allow us to detect what
evolution has favoured to carry over as fundamental components of the
CNNs architecture, to optimise for Fashion-MNIST classification.

The unique signatures generated represent evolved CNN structures, re-
flecting the permissible architecture of the networks discovered — from
feature extraction to classification. The usable structures for CNNs is well
known, and in this DSGE-powered approach, the allowed search space is
dictated by the CFG.

Each representative solution is associated to its fundamental attributes.
Aside from the layers origins we also track the learning units, in the same
way. Depth, thought of as the size of CNNs, is also recorded, in terms of
trainable parameters. With this log file generated, solutions are mapped to
locations, based on their origin, through a post-processing stage, which
models the network object using the canonical NTN/STN procedure.

117

[13th June 2024 at 16:43]

from MNIST from SVHN from CIFAR

Starting Node

Starting Node

Best Solution

Ending Node

Standard Node

Standard Node

Standard Node

node type fill type outline type

from current
FASHION MNIST

structure/task type

Origin of
evolutionary
units

All NTNs networks
constructed on

Fashion-MNIST
task

No layers
originated
from this
task

Dropout and Fully Connected
layers originated from this task

No learning
originated
from this
task

All 3 types of learning originated
from this task

Evo. units filter<GROUP1> ::= <fully-connected> | <dropout>

Figure 7.4: Exemplification of the NTNs visualisation for this complex multidimen-
sional space [6].

As stated, owing to the numerous components in this analysis, the decision
was made to compartmentalise the network visualisation into layer-groups
related to the CNNs specified in the grammar: features and classification.
Six layers types are defined in the grammar; they are the one that constitute
the standard CNN architecture type. Each category (see Evo. units filter in
Figure 7.4) highlights two layers at a time, producing three plots in total
for each of the variants. This approach helps to removes other architectural
components, leaving only the DNNs layers of interest for that visualisation.
The three filter group are the following.

• group 1 for fully-connected and dropout layers (used in our illustration)

• group 2 for pooling average and pooling max layers

• group 3 for batch normalisation and convolution layers

These groups have their associated colours as decorators, representing
them. Our three aforementioned learning optimisers (Adam, Rmsprop,
Gradient Descent) are also represented and carry the same colour throughout
the groups; these colours are used for the nodes outline.

The structure and layout of NTNs remain consistent across compartments
and dataset groups as the visualisations relate to the network constructed
using the representative solutions (architectures comprised by layer types)
for the final dataset, Fashion-MNIST. This was done to further enhance
the interpretability, reproducing the same visualisation, allowing to easily
compare the knowledge transferred between datasets. This was achieved by
fixing each seed of the force-directed layout [193].

The NTNs structures are then subdivided by classification problems. If
the category layers were not ported from one of these datasets, a pale
grey colour decorates the nodes (CNN solutions) to indicate their absence,
shown in the illustration above. Therefore, in Figure 7.4, each of the four

118

[13th June 2024 at 16:43]

dataset visualisation describes the contributions of that dataset classification
problem to the final network.

The shape nodes, as in previous work, help to represent the different stages
that are possible in a trajectory. The start of a trajectory which coincides
with the start of a run is depicted as a square. Standard nodes are circular.
The end of a trajectory (end of a run) is depicted as a triangle. While the best
solution found (best CNN architecture in terms of accuracy) is represented
by a diamond.

Similarly to the NTNs analysis proposed in Chapter 6, the size of these
shapes is proportional to the normalised metric of trainable parameters,
recorded for each CNN in the logs. This attribute is seen as a proxy of the
DNN depth, the more trainable parameters, the more layers and deeper is
the architecture. In Figure 7.4, the label “from SVHN”, helps us illustrate
how the node hue fill works. As discussed, this is dependent on whether
the specific layers of the filter group, originated from that dataset in which
the NTN is. The decorators for nodes’ outlines are illustrated in Figure 7.4
“from CIFAR”, consistent throughout groups, as the available optimisers are
the same in all categorisations.

7.5 experimental settings

This neuroevolution approach uses a ES algorithm as the evolutionary en-
gine for Fast-DENSER, coupled with DSGE core [5]. Two variants of these
algorithm were compared, aside from the original version. One with muta-
tion and a single-point crossover implemented for the ES. Another variant
is a simple local search where the starting solution is the best of five initial
solutions derived from the population inception. Our rationale behind ex-
perimenting with these specific settings is that the first variant tests our
hypothesis. Similarly to what was observed in previous neuroevolution
analyses [7, 10], using crossover as a means of optimisation does not pro-
duce any significant improvements to the algorithm as it originally is. The
Local Search variant, on the other hand, is inspired by the work that led to
the development of Fast-DENSER [21]. The objective of the authors was to
improve DENSER, to search for optimal solutions with limited resources, in
a much faster time frame, due to the highly reduced population (see end
of Chapter 2.2.3 for details). This led us to the creation of local search for
Fast-DENSER, further reducing testing and training times, while preventing
degradation of performance; an intuition offered by the notion that local
search being is a simple and powerful algorithm [49, 206].

119

[13th June 2024 at 16:43]

The variants are analysed primarily through our NTNs visualisation
technique, although, as done in previous studies, we also compare the
performance of incrementally developed solutions, statistically from the
Fashion-MNIST perspective. This is because the last dataset should incor-
porate knowledge gained from the previous three datasets. This preliminary
analysis is performed on 10 individual runs, the same ones used for the
NTN analysis.

In the preliminary analysis, the goal is to compare the three algorithmic
variants purely from a performance perspective on the basis of the defined
objectives derived through the characteristics of each variant. This assess-
ment is based on three aspects in particular. Primarily, we look into the
training and testing accuracies of classifications. Secondly, the size of evolved
DNNs, using the trainable parameters metric. This is to assess the depth of
CNNs each variant is able to evolve. Mainly because more parameters to
tune is likely to correspond in longer training; to achieve this, each variant’s
average time to train is assessed. The primary objective is to explore whether
reducing Fast-DENSER, from a five individuals population, to a single-point
local search, could speed up neuroevolution even further, without impairing
performance.

As this is an experiment reproduction, the parameters used in Fast-
DENSER are those used in [5, 21], except those variant-specific ones in-
troduced by this investigation. In the variant where we included recombin-
ation, the ES algorithm has a 50/50 chance of choosing between mutation
and single-point crossover. Local Search uses a single individual and the
algorithm has a (1, λ), where λ — the amount of offspring to be generated
from the parent — is equal to 1.

Finally, the NTNs visualisations are simplified, reducing data points by
decreasing the total number of generations for Fashion-MNIST from 100

to 50. This design choice was assessed empirically and deemed to improve
the visualisation with little to no loss of information. The studied variants
include elitism and retraining, which in [21] is a function that allows the
elite to have the same training time as the parent selected, for mutation or
crossover.

7.6 results

Figures 7.5, 7.6, 7.7, showcase the average evolutionary performance of
the variants on the last dataset, Fashion-MNIST. These are, classification
accuracy, amount of trainable parameters for the evolved DNNs — as a proxy
to how deep the networks are — and the training time required for learning.

120

[13th June 2024 at 16:43]

The assessment metrics were chosen as considered relevant for testing our
hypotheses. Averages in the plots are depicted by lines with markers as
the observation points of each generation. Then the runs individual values,
at each generation, are overlaid as scatter points — represented with the
same markers but hollow and smaller. Being this the last dataset problem,
all the incremental development occurred in previous classification tasks
will be incorporated in the information at this stage. The expectation is to
see the network produced having inherited learnings from past evolutionary
stages. The plots are complemented by the averages detailed in Table 7.1,
with standard deviation values in brackets.

0 10 20 30 40 50
Generations

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

A
cc

ur
ac

y

0 10 20 30 40 50
Generations

0

1

2

3

4

5

6

Tr
ai

na
bl

e
P

ar
am

et
er

s
(1

e7
)

1e7

0 10 20 30 40 50
Generations

0

2500

5000

7500

10000

12500

15000

17500

Tr
ai

ni
ng

 T
im

e

Crossover Crossover Mean Local Search Local Search Mean Original Original Mean

0 10 20 30 40 50
Generations

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

A
cc

ur
ac

y

0 10 20 30 40 50
Generations

0

1

2

3

4

5

6

Tr
ai

na
bl

e
P

ar
am

et
er

s
(1

e7
)

1e7

0 10 20 30 40 50
Generations

0

2500

5000

7500

10000

12500

15000

17500

Tr
ai

ni
ng

 T
im

e

Crossover Crossover Mean Local Search Local Search Mean Original Original Mean

Figure 7.5: Average classification accuracy for all variants on Fashion-MNIST. Indi-
vidual run values overlaid

The 7.5 plot and the results in Table 7.1 demonstrate that the performance
between Original Fast-DENSER (λ = 4) and our Local Search (λ = 1) variant
are comparable in classification accuracy performance. This shows that
reducing the population even further does not impact the algorithms ability
to classify images, which we assume is also a consequence of an effective
incremental development and the transfer of evolutionary units and learning.

In terms of trainable parameters, in Figure 7.6 we observe that Local
Search has a higher number of these, signifying deeper networks. The val-
ues seen in the average lines indicate that this system is also more stable,
generating consistently deep networks, regardless of the higher standard

121

[13th June 2024 at 16:43]

0 10 20 30 40 50
Generations

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

A
cc

ur
ac

y

0 10 20 30 40 50
Generations

0

1

2

3

4

5

6

Tr
ai

na
bl

e
P

ar
am

et
er

s
(1

e7
)

1e7

0 10 20 30 40 50
Generations

0

2500

5000

7500

10000

12500

15000

17500

Tr
ai

ni
ng

 T
im

e

Crossover Crossover Mean Local Search Local Search Mean Original Original Mean

0 10 20 30 40 50
Generations

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

A
cc

ur
ac

y

0 10 20 30 40 50
Generations

0

1

2

3

4

5

6

Tr
ai

na
bl

e
P

ar
am

et
er

s
(1

e7
)

1e7

0 10 20 30 40 50
Generations

0

2500

5000

7500

10000

12500

15000

17500

Tr
ai

ni
ng

 T
im

e
Crossover Crossover Mean Local Search Local Search Mean Original Original Mean

Figure 7.6: Average trainable parameters for all variants on Fashion-MNIST. Indi-
vidual run values overlaid.

deviation. This stability, seen in the plotted averages — is also present in the
classification accuracy, in contrast to the Original variant, which drastically
loses performance around the 8th generation.

Furthermore, Figure 7.7 shows that, despite Local Search having a higher
number of trainable parameters, this variant is able to train faster without
any significant loss in performance. Hence, to sum up, from the evolutionary
perspective Local Search appears to be superior in training time and com-
parable in performance to the original algorithm. Through the test results, it
is observed that this variant produces and average accuracy score of 92.73%
compared to a 93.27% achieved by the Original algorithm. Fast-DENSER
with crossover performed the worst, both in evolutionary and testing setups,
producing a 91.87% accuracy. Preliminary assessments through QQ-plots
and the Kolmogorov-Smirnov test suggested Gaussian distributions. There-
fore we proceeded to conduct a T-test, investigating whether there is any
significant difference in classification accuracy between the best performing
variants, using a significance level of p = 0.05. These tests highlighted that
both evolutionary (p = 0.478) and testing (p = 0.0736) accuracy are not sig-
nificantly different, corroborating to our initial hypothesis that a reduction in
population size would not negatively impact the classification performance.

122

[13th June 2024 at 16:43]

0 10 20 30 40 50
Generations

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

A
cc

ur
ac

y

0 10 20 30 40 50
Generations

0

1

2

3

4

5

6

Tr
ai

na
bl

e
P

ar
am

et
er

s
(1

e7
)

1e7

0 10 20 30 40 50
Generations

0

2500

5000

7500

10000

12500

15000

17500

Tr
ai

ni
ng

 T
im

e

Crossover Crossover Mean Local Search Local Search Mean Original Original Mean

0 10 20 30 40 50
Generations

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

A
cc

ur
ac

y

0 10 20 30 40 50
Generations

0

1

2

3

4

5

6

Tr
ai

na
bl

e
P

ar
am

et
er

s
(1

e7
)

1e7

0 10 20 30 40 50
Generations

0

2500

5000

7500

10000

12500

15000

17500
Tr

ai
ni

ng
 T

im
e

Crossover Crossover Mean Local Search Local Search Mean Original Original Mean

Figure 7.7: Average training time for all variants on Fashion-MNIST. Individual run
values overlaid.

Table 7.1: Performance metrics for Fashion-MNIST classification problem.

Train Test Time(sec.) Trainable Parameters

Local Search(std)
0.9316

(3.5e-3)
0.9273

(7.2e-3)
2236

(479)
1.996318e7

(8.048529e6)

Original(std)
0.9329

(2.6e-3)
0.9327

(5.2e-3)
5852

(1166)
1.406319e7

(1.703391e6)

Crossover(std)
0.9236

(3.6e-3)
0.9187

(1.46e-2)
3234

(412)
1.191039e7

(1.779603e6)

7.6.1 Revealing transfer learning through NTNs

The illustrations presented in Figures 7.8, 7.9, 7.10 depict the resulting NTNs
generated on the last benchmark classification problem: Fashion-MNIST.
They represent each of the three variants for each of the three evolutionary
filter groups; making nine visualisation in total. These NTNs are generated
from data gathered over 10 runs of 50 generations each. A variant produces
a different network, which includes various representative solutions. The
structure of NTNs in each group, for the same variant, remains unchanged
between datasets categories, to enable a clear comparison of the learning
that was transferred, based on the hue decorators used.

123

[13th June 2024 at 16:43]

Let us begin by remarking on the networks in general. The predominant
findings are that, although the sequence of layers specified by the CFG is
concise, all variants traverse this architectural search space in different ways,
finding many unique solution and without generating many convergence
points to shared solutions. Some nodes are revisited several times in the same
trajectory, this reiteration implies successful acceptance of CNN architectures
between generations.

As we have seen in the STNs case from previous chapters, NTNs can be
seen as a proxy indicator of diversity that an algorithm is able to produce.
Bearing this in mind, it is noticeable that although Original Fast-DENSER
only leverages the mutation operator at the ES level, it is able to generate
high diversity of solutions, both in layers and learning; demonstrated by
the computed NTNs metrics, with 84 nodes, 45 improving edges and 34

worsening ones. Confirming that in neuroevolution the absence of crossover
can be beneficial to diversity generation. However, the Fast-DENSER variant
with recombination does not exhibit a similar characteristic diversity. This
is evident from the reduced amount of nodes in the NTNs; 39 nodes, 22
improving edges and 12 worsening ones. Local Search presents the least
amount of diversity out of all, 22 nodes, 17 improving edges and 0 worsening
ones. In this variant, one of the trajectories shows a strong attraction point
of convergence, leading thereafter to multiple ending solutions. Worthy of
notice, this is a more resilient algorithm, as no worsening edges are produced
between representative solutions.

Accordingly with Figure 7.6, the NTNs show that the size of neuroevolved
CNNs — represented by the node size — are much greater throughout Local
Search than in the other variants. Specifically, via our visualisation approach,
it is possible to single those layers acquired through which of the datasets,
responsible for size inflation; primarily fully-connected and convolution layers.

Regarding the learning units that were ported, the vast majority have been
derived from the CIFAR-10 classification dataset, closely followed by the
current Fashion-MNIST. Gradient-descent appears to be the most transferred
learning optimiser, ported from almost every datasets, and present in nearly
every variant. This is known to be a powerful optimiser.

Finally, NTNs trajectories greatly vary in length, between variants. Ori-
ginal, being the most diverse, has the longest trajectories, indicating greater
architectural exploration, which may explain the longer training times. Cros-
sover trajectories are less explorative than the original Fast-DENSER, but
longer than Local Search, which has the shortest paths. This is explainable
by the intrinsic characteristics of this single individual variant.

124

[13th June 2024 at 16:43]

12 S. Sarti et al.

MNIST SVHN CIFAR FASHION

Layer Absent Dropout Fully Connected Learning Absent Adam Grad. Desc. Rmsprop Edges improving worsening Stage Best End Standard Start

(a) Group1: Original Fast-DENSER

MNIST SVHN CIFAR FASHION

Layer Absent Dropout Fully Connected Learning Absent Adam Grad. Desc. Rmsprop Edges improving worsening Stage Best End Standard Start

(b) Group1: Crossover Fast-DENSER

MNIST SVHN CIFAR FASHION

Layer Absent Dropout Fully Connected Learning Absent Adam Grad. Desc. Rmsprop Edges improving worsening Stage Best End Standard Start

(c) Group1: Local Search Fast-DENSER

MNIST SVHN CIFAR FASHION

Layer Absent Dropout Fully Connected Learning Absent Adam Grad. Desc. Rmsprop Edges improving worsening Stage Best End Standard Start

Fig. 4: In this visualisation we present the NTNs of group 1 for all the 3 analysed
variants.

a summarisation of the feature map from convolutional layers to reduce the
number of parameters to learn from. A useful component that this algorithm
and its variants do not view as indispensable.

– In particular in local search, Fig. 5c these layers are almost nonexistent.
Noteworthy, only one of the trajectories possesses these in the lower right
area.

– Generally, CIFAR and the current dataset (Fashion-MNIST) are the location
of origin of these. With the exception of the original variant (Fig.5a) which
transported these units since the very initial dataset (MNIST).

Figure 7.8: Neuroevolution Trajectory Networks showing group 1 evo. filter for all
variants of Fast-DENSER

group 1 From this evo. filter, presented in Figure 7.8 the following results
can be derived.

Both from Local Search and the Original variant we can observe that the
drop-out layer was correctly deemed by neuroevolution to be a fundamental
architectural component for CNNs. The vast majority of nodes include
this evolutionary unit. Conversely, the algorithm with recombination does
not show a high adoption of these units. This might explain the poor
performance seen in the statistical analysis section.

The Original variant successfully acquires fully-connected layers, evident
in almost all trajectories and evenly transferred from all past datasets. Cros-

125

[13th June 2024 at 16:43]

sover does not perform as well, having only a few of these units, ported
primarily from the last datasets, CIFAR-10 and Fashion-MNIST.

An interesting observation arises from Figure 7.8a: in the left corner of the
plot, a trajectory of this variant appears to have inherited and retained dropout
layers from all past classification learnings, except for the SVHN dataset
where all nodes present fully-connected units. Inheritance is signalled by the
colour of nodes retained throughout each dataset visualisation compartment.Under the Hood of Transfer Learning for Deep Neuroevolution 13

MNIST SVHN CIFAR FASHION

Layer Absent Pool. Avg. Pool. Max. Learning Absent Adam Grad. Desc. Rmsprop Edges improving worsening Stage Best End Standard Start

(a) Group2: Original Fast-DENSER

MNIST SVHN CIFAR FASHION

Layer Absent Pool. Avg. Pool. Max. Learning Absent Adam Grad. Desc. Rmsprop Edges improving worsening Stage Best End Standard Start

(b) Group2: Crossover Fast-DENSER

MNIST SVHN CIFAR FASHION

Layer Absent Pool. Avg. Pool. Max. Learning Absent Adam Grad. Desc. Rmsprop Edges improving worsening Stage Best End Standard Start

(c) Group2: Local Search Fast-DENSER

MNIST SVHN CIFAR FASHION

Layer Absent Pool. Avg. Pool. Max. Learning Absent Adam Grad. Desc. Rmsprop Edges improving worsening Stage Best End Standard Start

Fig. 5: In this visualisation we present the NTNs of group 2 for all the 3 analysed
variants.

Fast-DENSER Group 3: Batch Normalisation and Convolution layers
In Fig. 6 we can observe the following.

– The NTNs models confirm to di↵erent extents that these evolutionary units
are essential components of the CNNs architectures. In 6a it is visible that
such units have originated from all of the preceding datasets, highlighting
their importance. The original variant appears to be o↵ering a vast variety
of these.

– The convolutional units are predominant in all of the variants as these are
the essential building blocks for the creation of our networks of interest. In

Figure 7.9: Neuroevolution Trajectory Networks showing group 2 evo. filter for all
variants of Fast-DENSER

group 2 From this evo. filter, presented in Figure 7.9 the following results
can be derived.

126

[13th June 2024 at 16:43]

These evolutionary units appear to be lacking in the NTNs, for all variants.
This is noteworthy, although not an unforeseen phenomena, as this layer type
provides a summarisation — either through average or maximisation — of
the feature map of the convolutional layers. This is done in CNNs to reduce
the number of parameters to learn from. Although useful, neuroevolution
does not view these units as indispensable for successful classifications.

Particularly in Figure 7.9c these layers are almost entirely absent. In the
lower right area of the NTNs plots, only one trajectory uses these units in
the architectures. Generally these units are primarily found originating from
CIFAR-10 and the current dataset, Fashion-MNIST. The Original algorithm
in Figure 7.9a is an exception, the variant evolutionary process transferred
these units since the very initial MNIST dataset.

group 3 From this evo. filter, presented in Figure 7.10 the following
results can be derived.

In this analysis, NTNs assist us to confirm that these evolutionary units are
fundamental components of the CNNs architectures, as it was retrospectively
observable that evolution favoured these units over several iterations from
dataset to dataset inheritances. This is noticeable in Figure 7.10a as such
units originated from all the past datasets, highlighting their importance in
the DNN. Specifically, Original Fast-DENSER shows to have a multitude of
these throughout datasets.

The predominance of these evolutionary units demonstrates the import-
ance of these, as essential building blocks for our networks of interest. In
the Original Fast-DENSER, the vast majority of these units are transferred
from the last two datasets. Local Search, on the other hand, has these units
inherited further into past evolutions, since the first two datasets, shown
in Figure 7.10c.

The four trajectories converging to the attracting representative solution
in Local Search display batch normalisation layers originating from the first
dataset MNIST, and convolution ones from SVHN. Meanwhile, only two
solutions in a single trajectory have the batch-normalisation units deriving
from the current Fashion-MNIST problem; this strongly indicates that past
evolution learning are sufficient for the construction of successful CNNs for
the current dataset classification task. This finding would mean that incre-
mental development, which is learning from past training, can significantly
speed up convergence to optimal solutions.

127

[13th June 2024 at 16:43]

14 S. Sarti et al.

the original version, the majority of these appear to be originating in CIFAR
and the current dataset. Meanwhile, local search has these originating further
into the past, in the first two datasets (see Fig 6c).

– In local search the four trajectories that converge to a representative solution
have batch normalisation layers deriving from MNIST, and the convolution
ones originated from SVHN, the following dataset. Meanwhile, only two so-
lutions from a single trajectory have batch-normalisation coming from the
current problem, proving that past evolution is su�cient in the construction
of networks for the current dataset.

MNIST SVHN CIFAR FASHION

Layer Absent Batch Norm. Conv. Learning Absent Adam Grad. Desc. Rmsprop Edges improving worsening Stage Best End Standard Start

(a) Group3: Original Fast-DENSER

MNIST SVHN CIFAR FASHION

Layer Absent Batch Norm. Conv. Learning Absent Adam Grad. Desc. Rmsprop Edges improving worsening Stage Best End Standard Start

(b) Group3: Crossover Fast-DENSER

MNIST SVHN CIFAR FASHION

Layer Absent Batch Norm. Conv. Learning Absent Adam Grad. Desc. Rmsprop Edges improving worsening Stage Best End Standard Start

(c) Group3: Local Search Fast-DENSER

MNIST SVHN CIFAR FASHION

Layer Absent Batch Norm. Conv. Learning Absent Adam Grad. Desc. Rmsprop Edges improving worsening Stage Best End Standard Start

Fig. 6: In this visualisation we present the NTNs of group 3 for all the 3 analysed
variants.
Figure 7.10: Neuroevolution Trajectory Networks showing group 3 evo. filter for all

variants of Fast-DENSER

7.7 conclusions

The purpose of this work was to leverage NTNs in the study of transfer
learning in CNNs, for image classification. This demonstrates that NTNs are
a successful tool for in-depth studies of neuroevolution and could be further
enhanced for application in both shallow and deep neural networks. This
work strengthened the claim for an NAA practice, which will be discussed
in the next and concluding Chapter 8.

The work presented in this chapter focused on the creation of two variants
from the original Fast-DENSER algorithm with incremental development.

128

[13th June 2024 at 16:43]

One variant, equipped with a standard one-point crossover, while another,
based on local search principles, these two additional variants were a con-
tribution, as specifically developed for this research. Particularly the local
search variant entailed, a single individual selected as the best of five in
the initial population was used to spawn an offspring through mutation
for a subsequent generation. The motivations for this investigation were to
observe whether reducing the population to a single individual could help
find solutions faster without impacting accuracy, using fewer resources, and
reducing training times. The second intention was to test the usefulness
of crossover in this neuroevolution system, as previous studies have high-
lighted potential inefficiencies of this operator [7, 10]; our intuition is that
crossover at the ES level will not improve the system any more that mutation
alone. The results on incremental development in this research validated
these hypotheses; confirming local search to be a powerful algorithm and
that crossover struggles to improve neuroevolution of DNNs for image
classification.

The NTNs results were instrumental at identifying the different levels
of solutions (architectural) diversity produced by the variants algorithms
compared to original Fast-DENSER. Specifically, the models of Local Search
highlighted convergence and fewer nodes on average, indicating lower di-
versity. Additionally, this variant had the least negative exploration (worsen-
ing edges) and the average path lengths were notably shorter than those
of other variants. This lack of negative exploration could be considered a
positive outcome for tasks and domains as such, although it is still an open
question, as QD algorithms very much benefit from the increase exploration
rising from these learning stepping stones [195]. The original algorithm
presented the highest diversity and the most transfer of learning, which
often originated from all past datasets. Interesting observations were derived
from the general lack and transfer of the pooling layers, which evolutionary
processes of incremental development deemed superfluous to optimal CNN
architectures.

A further noteworthy trait, emerging from these NTNs, is that the models
were able to capture the successful and appropriate transfer of the convo-
lutional unit. This has indicated that NTNs are an advanced tool for the
assessment of salient and fundamental architectural components, and that
evolution has successfully deemed convolution as a principal component of
this network type.

This research claims to demonstrate the power of this analysis type and
tool in better understanding DNNs from both architectural and learning
perspectives. Information that can be useful to interpret the dynamics of

129

[13th June 2024 at 16:43]

neuroevolution for deep learning, but also in the practice of hand designed
networks.

acknowledgements This research is the result of the collaboration
with the Departamento de Engenharia Informática of the University of
Coimbra, Portugal; supported by the 2022 SPECIES scholarship. This work
is funded by the FCT - Foundation for Science and Technology, I.P./MCTES
through national funds (PIDDAC), within the scope of CISUC R&D Unit -
UIDB/00326/2020 or project code UIDP/00326/2020.

contributions acknowledgements I hereby declare that the sub-
stantial portion of the work detailed in this chapter, as documented in the
publications [22, 211], is the result of my own efforts. However, it is import-
ant to acknowledge the valuable contributions made by my co-authors in the
order of their involvement in this research. Professor Gabriela Ochoa and
Dr. Nuno Lourenço offered their strategic assistance towards the research
design and their knowledge about STNs and the examined neurovolution
algorithms respectively. In addition to offering valuable support in sense
checking and proofreading. Dr. Jason Adair and Penousal Machado offered
general scientific guidance, expertise in evolutionary computing, as well as
proofreading and sense checking.

130

[13th June 2024 at 16:43]

8
C H A P T E R 8 — R E S E A R C H S Y N O P S I S

This chapter provides a synopsis to the research presented in this thesis.
Here, we present a concluding summary, reiterating the key contributions
of our study on Neuroevolution Trajectory Networks (NTNs), and an answer
for the main research hypothesis — presented in Chapter 1. Furthermore,
throughout this thesis a discussion was promised concerning the fundament-
als of Network Architecture Analysis (NAA), a proposed course of study
induced by the principals of this research. Additionally, some concluding
remarks will be drawn at the end of this chapter, including a brief reflection
on the research journey taken since the start of this Ph.D. degree.
Finally, an outlook on future research is discussed, offering some foreseeable
directions that NTNs will likely assume in the future, suggesting longevity
to this complex network visualisation practice.

8.1 summary of contributions

All these work, from the inception of STNs applied to neuroevolution, has
been achieved through logical successions of intuitive lines of enquiry and
hypotheses that slowly made it possible to converge on the NTNs technique.

Let us walk through the various stages of this research, highlighting
once more, the fundamental contributions that this work offered to advance
knowledge in this specific field.

bringing complex networks to neuroevolution

During the initial stages of the work described in this thesis, the analysed
literature presented in Chapter 3 highlighted that such visualisation ap-
proaches were yet to be leveraged for understanding the complex dynamics
occurring in neuroevolution. This work, published in [7], was instrumental
in demonstrating the adaptability of STNs visualisations to this realm; mod-
elling through complex networks, the evolution of dense ANNs. The study
highlighted inefficiencies of the recombination operator in NEAT. This was
the first step towards NTNs. Providing a novel contribution, filling the
literature gap.

131

[13th June 2024 at 16:43]

ntns to study the role of recombination in novelty search

Once established that this tool brought novel and interesting findings re-
lated to the inner evolutionary dynamics of NEAT and its crossover operator,
the subsequent hypotheses and tentative of the research was to capture
the role that crossover plays in more deceiving domain, when a divergent
search strategy, that seeks diversity of solutions, is deployed. Also in this
scenario, the research work produced a successful publication [10], which
revealed salient aspects of the inner dynamics of Novelty Search and its
interplay with recombination. The study compared these inner mechanics
to a standard, objective-driven strategy and highlighted that, in deceiving
maze navigation domains, fitness search equipped with recombination can
offer greater diversity. While Novelty Search, stripped of it crossover oper-
ator, can perform better in diversity generation. This was another tangible
demonstration that NTNs are a useful contribution to the study of this EC
field, and that their flexible characteristic can render them applicable to
various aspects of neuroevolution.

offering a topological analysis of behavioural characterisa-
tions (bc)

This contribution work [11] is what clearly established a boundary between
NTNs and the parent STNs visualisation approach. This research allowed for
the technique outlined in this thesis to fully concretise, as in this particular
study, it is the first time that characteristics, which are solely unique to neur-
oevolution are modelled through complex networks. The study particularly
focused on BCs alignment to the notion of quality. In the experiment, our
analysis focused on a topological complexity assessment related to diversity
generation. The findings highlighted that topologies fundamentally dic-
tate how distinct behaviours are generated. Especially, shallower (simpler)
networks seem to be those able of generating more diversity, ultimately
reaching the goal of the reinforcement learning task. These findings led
us to propose a transitive Behaviour Characterisation, one that is neither
aligned or unaligned to the notion of quality, but relates to diversity of the
topological structures.

ntns to track transfer learning in deep neural networks

Another fundamental contribution, which strengthened the case for NTNs

132

[13th June 2024 at 16:43]

and solidified the discipline that will be discussed next, is when the applic-
ation of such technique shifted from the analysis of shallow/dense neural
networks, mainly used in neurocontrolling task, to modelling CNNs for
image classification. Additionally, in this research — successfully published
and subject of awards [6] — we were able to further augment NTNs to cap-
ture the dynamics of a neuroevolution system that incrementally develops
solutions. Doing so, to observe the transfer of evolutionary units (layers
and learning) from the evolution on past classification datasets. This, not
only proved the powers of this complex network modelling and visualisa-
tion instrument, but it enabled to confirm DNNs principles, and discover
new findings on how neuroevolution favours certain network characterist-
ics over others. Promising results which will be beneficial for the field of
Neuroevolution, but also for manually designed DNNs.

8.2 network architecture analysis (nna)

The slow and consistent establishment of the NTNs technique, due to the
foundation work on STNs [19, 35] not only allowed for a specialised ap-
proach of search trajectory visualisations for neural networks evolution; it
also catalysed the potential evidence for studies focusing primarily on the
analysis of principal architectural components, used in neural networks
evolution.

Neural Architecture Search (NAS) [207, 208, 209, 210] is the discipline
aimed at developing a wide variety of algorithms for the evolution of
structural neural networks components.

This could be the start of an important direction, which has the scope of
using visualisations and complex network metrics to demystify the underly-
ing workings and characteristics of architecture compositions. Essentially,
NAA can be defined as follows.

“The illumination of fundamental neural networks building blocks and
their determinative influential power on evolutionary search dynamics”

The definition above is intended to offer a direct scope for these types of
investigations, which can be classified as a branch of explainability. This arises
from a lack of literature surrounding the topic, and the work provided in
this thesis should be seen as a favourable starting point. One that focuses on
the analysis of neuroevolution, perfecting the already existing meta-heuristic
principles, rather than the constant creation of a plethora of algorithms,
which are essentially equal but change only in their name. The tools that
have been used throughout this research and the analysis provided, should

133

[13th June 2024 at 16:43]

incentivise the scientific community in neuroevolution to focus more on the
“why” of a phenomena producing fitness successfulness, rather than finding
more ways to achieve better performance, without fully understanding the
reasons for such evolved intelligence.

The work of this thesis, is put together in the hope that NAA may grow to
discover more advanced methods of examination and offer more plausible
explanations for neuroevolved AI. This could have the potential to also lead
towards the discovery of some fundamental principles behind the evolution
of intelligence in general. NAA should be seen as closely aligned to the
notion of open-endedness [91, 203]. Giving particular phenomena sufficient
time and freedom of coming to life, float to the surface and reveal the true
mechanics of power that are behind them.

In Section 1.2 of Chapter 1 we clearly defined the main hypothesis that this
research has tested. Successfully, we can state that the thesis presented so
far has favourably supported this claim.

The application of STNs will result in a more detailed and
informative exploration of the highly-dimensional Search Space
of Neuroevolution, compared to traditional fitness performance

methods.

8.3 final remarks

The intention of this section is to underline concluding takeaway remarks
that encapsulate the journey of this thesis, resonating its significance.

Visualisations are a critical medium for understanding our surrounding
world; both the directly visible and tangible, but also in the more abstract
and distant domains. As we have seen from the Introduction Chapter 1,
some historical examples were provided, where observation gathered via
visualisation tools, were fundamental in advancing our knowledge in many
different scientific fields.

We believe the work of this thesis on STNs [35] and NTNs [7, 10, 11,
22, 211], can be seen as novel advanced tools provided in the quest for
understanding search and optimisation algorithms. The ultimate intent is to
animate, and pictorially describe the unobservable, shining a light on the
evolution of intelligence, or at least set the origin for this.

Through famous cities, it is custom to see panoramic view points, to
elevate ourselves on higher grounds, getting vantage over the land below
us. We innately do this to understand what surrounds us, and get a better
perception of where we are. Sending satellites into space, to observe earth

134

[13th June 2024 at 16:43]

via spectral imaging, so that we can perceive our land, predict the weather
via meteorological models and comprehend our intrinsic differences and
similarities. Shooting probes through the vastness of our solar system, cap-
turing data to visualise the composition of other planets. On the ground, we
use altitude measurements to form contour maps for geological enquiries,
to model earths formations through time, and often reach the unperceivable
ocean abyss. In more abstract worlds, subatomic particles are accelerated,
colliding them together, to form mathematical models and visualisation of
their collisions [212].

obtained at the 95% credibility level. These measurements are combined with previously reported CDF
results obtained from events with an imbalance in total transverse momentum, jets identified as originating
from b quarks, and one identified lepton. The combined cross section is measured to be 3.02þ0.49

−0.48 pb and a
lower limit on jVtbj of 0.84 is obtained at the 95% credibility level.

DOI: 10.1103/PhysRevD.93.032011

The observation of single top quark production [1], first
achieved in proton-antiproton collisions, was remarkable,
given the small production cross section and the copious
backgrounds from processes containing heavy bosons.
Since the production amplitude is proportional to the
Wtb coupling, the measurement of the single top quark
production cross section offers a way to determine directly
the magnitude of the Cabibbo-Kobayashi-Maskawa (CKM)
[2] matrix element Vtb. This is the only way to measure Vtb
without assuming the unitarity of the CKM matrix.
Checking the unitarity of the CKM matrix is among the
most powerful approaches to test for the presence of broad
classes of particles or interactions not described by the
standard model (SM). These couplings have been the
subject of intense experimental activity in the past three
decades.
For single top quark production, a tb̄ pair is produced by

exchanging a virtual Wþ boson in either the s or the t
channel. The top quark subsequently decays to aWþ boson
and a b quark, and fragmentation and hadronization of the b
and b̄ quarks result in two jets that can be reconstructed in
the detector. For the t-channel process, jets tend to be more
boosted along the proton-antiproton beam axis than those
originating from the s-channel process. Thus, some of the
t-channel jets especially are emitted in regions that are not
instrumented and therefore escape the detector acceptance.
Examples of SM single top quark production processes
dominating at the Tevatron are shown in Fig. 1.
Excluding the contribution from the tW production

mode, which is expected to be negligible in the final state
considered in this paper [3], the SM prediction for the
combined s- and t-channel single top quark production
cross section σsþt

SM is 3.15" 0.36 pb, which has been
calculated including next-to-next-to-leading order correc-
tions [4,5]. The primary sensitivity to measuring this

quantity is usually obtained from events in which the W
boson from the t → Wþb process [6] decays leptonically to
a charged lepton l (where l represents either an electron e
or muon μ) and an antineutrino, with a pair of jets, one of
which is “b-tagged” or identified as likely containing one
or more weakly-decaying B hadrons. This sample of events
(hereafter the “lνbb̄ ” sample) provides a distinctive
signature against backgrounds produced by the strong
interaction (QCD multijet or “MJ” background) which
contain multiple jets, but no leptons.
A complementary approach consists of using final states

that contain two or three jets and significant imbalance in
the total transverse energy ET [7], and no reconstructed
lepton. This event topology occurs when the lepton from
the W boson decay is not identified due to acceptance or
reconstruction effects, and the unmeasured neutrino carries
a large transverse momentum. Although MJ events com-
prise the dominant background in this final state (hereafter
the “ETbb̄ ” analysis or sample), the requirement of
significant ET greatly suppresses such background. In
addition, this search has sensitivity to events in which
the W boson decays via W− → τ−ν̄τ, and the τ− decays
hadronically, resulting in a reconstructed jet signature.
The first measurement at the Collider Detector at

Fermilab (CDF) of single top quark production in the
ETbb̄ final state was performed with a proton-antiproton
collision data set corresponding to an integrated luminosity
of 2.1 fb−1 [8]. This paper presents an updated measure-
ment using the full CDF data set (9.5 fb−1). All the
techniques developed in the search for s-channel single
top quark production in the ETbb̄ sample [9] are exploited
in this update. Important aspects of the analysis method-
ology are described. The results of this analysis and those
of the most recent lνbb̄ analysis [10] are then combined to
obtain a more precise measurement of the single top quark
cross section and to place a lower limit on jVtbj.
The CDF II detector is a multipurpose particle detector

[11]. It is comprised of an inner silicon vertex detector, a
96-layer drift chamber spectrometer used for reconstructing
charged-particle trajectories (tracks), and a calorimeter that
is divided radially into electromagnetic and hadronic
compartments, which are constructed of projective towers
that cover pseudorapidities of up to jηj < 3.6 [12]. Drift
chambers located outside the hadronic calorimeter are used
for muon identification.
Jets are formed by clustering calorimeter energy

deposits within a cone which subtends ΔR≡ffi
ðΔηÞ2 þ ðΔϕÞ2

p
¼ 0.4. Lepton candidates with large

FIG. 1. Feynman diagrams for electroweak single top quark
production: (a) leading-order t-channel, (b) next-to-leading-order
t-channel, and (c) leading-order s-channel.

T. AALTONEN et al. PHYSICAL REVIEW D 93, 032011 (2016)

032011-4

Figure 8.1: A representation of the Feynmann diagrams. Sourced from [12]

There is no better way to further this point across, on modelling and visual
observation than the revolutionary work by Richard P. Feynman on the space-
time approach to quantum electrodynamics [213]. This work, generated
the famously known Feynman Diagrams of which examples are illustrated
in Figure 8.1. Another striking case where visualisation (in conjunction
with mathematics) have been able to guarantee a reliable tool to explain
the behaviours of subatomic particles, which are unobservable and can
otherwise only be imagined through complex equations.

Feynman diagrams were considered an ingenious idea to describe the
interactions of elementary particles. Introduced as an aid for visualising and
calculating the effects of electromagnetic interplay, between electrons and
photons. Feynman diagrams were later adopted to represent all kinds of
particles, and they do so with an astounding precision.

It is safe to say that Feynman developed a visualisation and calculation
tool that gave life to unobservable phenomena, with a spatial and temporal
component.

The intent here is not to directly compare NTNs to the Diagrams — that
would be overambitious — but to present a case that these types of explorat-
ive visualisations, and NAA could be the means to fuel further pioneering
ideas in the field of evolutionary computation for neural networks.

135

[13th June 2024 at 16:43]

advantages and limitations

Network visualisations, such as NTNs, in these realms demonstrate that,
as seen during the work of this dissertation, such a tool can be highly
malleable and dynamic. If the NTNs principles declared in Section 2.1.3 are
followed, and the signature used in the modelling is correctly conceptualised
based on the underlying principles of the neuroevolution algorithm, the
tool can be applied to a vast array of systems that are yet to be analysed.
The characteristic of universal applicability is a great benefit for this tool, as
the simple principles, strongly rooted in mathematical theory, allow it to be
generalisable and useful for many researchers. For example, the tool is well-
suited for understanding algorithms such as CPPNs [118] and derivations
such as HyperNEAT; as well as Adaptive HyperNEAT, which includes pattern
or local plasticity rules. Among other examples of the applicability of this
tool, it has been used in NAS, where some tests were conducted during this
research but not reported, as incomplete. Furthermore, the multidimensional
heat map of algorithms such as MAP-Elites and its derivations could be
contrasted and analysed further using NTNs.

Furthermore, a benefit of this technique, which emerged from this dis-
sertation, is the computed metrics derivable from the models. That is, if
complex networks like NTNs are too complex to visualise, as they include
too many data points and algorithmic runs, a simpler sub-selection of data
can be visualised — as it has been done in this thesis — while still offering
metrics of the NTNs for the full dataset, which includes all the available
runs/data.

Despite the reported successes of this technique in its application to
the Neuroevolution realm, several fundamental limitations exist, which, if
addressed by further extensions, may improve this approach. One of the
principal limitations highlighted by this research, which is yet to be fully
tested and confirmed, is whether this technique would break at the limit and
fail to provide consistent and useful analysis results. This limit is considered
to be the transition from what are perceived to be toy problems and simple
benchmarks to complex and real-world tasks and domains where novelty
descriptors and solutions are a lot harder to conceptualise, and domains are
vastly more highly dimensional.

Furthermore, although the networks supply us with useful statistical in-
formation on the evolutionary dynamics, depicted by trajectories of multiple
runs, including neutrality, convergence of solutions, and diversity; it is not
currently possible to drill into the finer details of what makes solutions dif-
ferent in terms of architectural or tunable components. The dimensionality

136

[13th June 2024 at 16:43]

is large, and displaying this granular level of detail is still an open issue,
which, if resolved, could enrich the visualisations even further.

Secondly, we have seen throughout this thesis that the signature choice is
highly dependent on the underlying neuroevolutionary system in analysis,
and it is heavily dictated by empirical processes. There are several choices
such as design, layout, and parameters related to the complex network’s
construction and visualisation, which are dictated by the researcher. It
would be a favourable step towards strengthening and standardising these
techniques if stricter postulates were established for specific research cases.

A further related limitation is that these controllable experimental settings
and design choices are not benefiting from automation or heuristic search.
If there were ways of conceptualising a fitness function based on the afore-
mentioned postulates and pre-defined rules, we could let evolution dictate
these choices and evolve the visualisations, reaching optimal and meaning-
ful constructs, depicting the true nature of the underlying neuroevolution
systems.

Finally, the trade-off between too little and too much information has been
discussed at several stages in this dissertation. Said delicate balance prevents
us from introducing a higher number of runs into the visualisations. This is
a limitation that, if solved, could introduce much greater statistical strength
to the NTNs. The point on evolution mentioned earlier could possibly help
to solve this problem through meta-heuristic search.

8.4 future outlook

A synopsis would not be complete without a view on the future. An out-
look on the opportunities and challenges that this research might witness
flourish. Some of the points for future work are expressed in each of the
publications [6, 7, 10, 11, 211]. Several of these lines of enquiry have already
been explored, some successfully, others without considerable results, and
meanwhile some are currently being investigated.

In favour of being concrete and concise, three main avenues of interest
could further enhance this research.
(i) Explore the possibility of increasing the amount of information that NTNs
can convey within a single plot. Intelligently, orchestrate a blend of decor-
ators, labels and metrics that would maximise the information delivery of
these complex networks.
(ii) Discover effective methods for integrating temporal information in the
plots, emphasising the importance of time/iteration components in the
search dynamics. Utilise the spatial coordinates of the plot (something that

137

[13th June 2024 at 16:43]

has not been used much in the layouts) to convey intrinsic information about
the evolution of neural network architectures.
(iii) Investigate the development of NTNs that evolve through co-evolutionary
means. A conceptual way of bringing evolutionary optimisation to NTNs.
The idea is to allow the layout, decorators and overall composition of NTNs
to evolve and optimise, generating visualisation networks that are increment-
ally constructed to include essential information, determining the underlying
structure of the search process. This would, in turn, generate artefacts which
include evolutionary dynamics, directly into the plots. Our hypothesis is
that this would generate more comprehensible visualisations, dictated by
what evolution selects to present.

138

[13th June 2024 at 16:43]

“We do not know what we are capable of, until we do it”

139

[13th June 2024 at 16:43]

B I B L I O G R A P H Y

[1] R. Brooks and J. P. Matelski, “The dynamics of 2-generator subgroups
of psl (2, c),” in Riemann surfaces and related topics: Proceedings of the
1978 Stony Brook Conference, Ann. of Math. Stud, vol. 97, 1981, pp. 65–71.

[2] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, pp.
99–127, 2002.

[3] J. Lehman and K. O. Stanley, “Abandoning objectives: Evolution
through the search for novelty alone,” Evolutionary Computation, vol. 19,
no. 2, pp. 189–222, 2011.

[4] J. Mégane, N. Lourenço, and P. Machado, “Probabilistic grammatical
evolution,” in Genetic Programming, T. Hu, N. Lourenço, and E. Medvet,
Eds. Cham: Springer International Publishing, 2021, pp. 198–213.

[5] F. Assunção, N. Lourenço, B. Ribeiro, and P. Machado, “Incremental
evolution and development of deep artificial neural networks,” in
Genetic Programming, T. Hu, N. Lourenço, E. Medvet, and F. Divina,
Eds. Cham: Springer International Publishing, 2020, pp. 35–51.

[6] S. Sarti, N. Laurenço, J. Adair, P. Machado, and G. Ochoa, “Under
the hood of transfer learning for deep neuroevolution,” in Interna-
tional Conference on the Applications of Evolutionary Computation (Part of
EvoStar). Springer, 2023, pp. 640–655.

[7] S. Sarti and G. Ochoa, “A NEAT Visualisation of Neuroevolution
Trajectories,” in Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 12694 LNCS, 2021, pp. 714–728.

[8] E. M. Reingold and J. S. Tilford, “Tidier Drawings of Trees,” IEEE
Transactions on Software Engineering, vol. SE-7, no. 2, pp. 223–228, 1981.

[9] I. Omelianenko, Hands-On Neuroevolution with Python. Packt Publish-
ing, Limited, 2019.

[10] S. Sarti, J. Adair, and G. Ochoa, “Recombination and novelty in neuro-
evolution: A visual analysis,” SN Computer Science, vol. 3, no. 3, p. 185,
Mar 2022.

i

[13th June 2024 at 16:43]

[11] ——, “Neuroevolution trajectory networks of the behaviour space,”
in Applications of Evolutionary Computation, J. L. Jiménez Laredo, J. I.
Hidalgo, and K. O. Babaagba, Eds. Cham: Springer International
Publishing, 2022, pp. 685–703.

[12] T. Aaltonen, S. Amerio, D. Amidei, and e. a. Anastassov, A., “Measure-
ment of the single top quark production cross section and |Vtb| in 1.96

tev pp collisions with missing transverse energy and jets and final cdf
combination,” Phys. Rev. D, vol. 93, p. 032011, Feb 2016.

[13] T. E. H. T. Collaboration, K. Akiyama, A. Alberdi, and e. a. Walter Alef,
“First m87 event horizon telescope results. i. the shadow of the super-
massive black hole,” The Astrophysical Journal Letters, vol. 875, no. 1,
p. L1, apr 2019.

[14] B. Mandelbrot and R. Hudson, The Misbehaviour of Markets: A Fractal
View of Risk, Ruin and Reward. Profile, 2004.

[15] D. Saupe and R. Hamzaoui, “A review of the fractal image compres-
sion literature,” SIGGRAPH Comput. Graph., vol. 28, no. 4, p. 268–276,
nov 1994.

[16] M. Barnsley, Fractals Everywhere, ser. Dover Books on Mathematics.
Dover Publications, 2012.

[17] M. E. J. Newman, Networks: an introduction. Oxford; New York: Oxford
University Press, 2010.

[18] K. Sörensen, “Metaheuristics - the metaphor exposed,” Int. Trans. Oper.
Res., vol. 22, pp. 3–18, 2015.

[19] G. Ochoa, K. M. Malan, and C. Blum, “Search Trajectory Networks of
Population-Based Algorithms in Continuous Spaces,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 12104 LNCS, pp. 70–85, 2020.

[20] F. Assunção, N. Lourenço, P. Machado, and B. Ribeiro, “DENSER: deep
evolutionary network structured representation,” Genetic Programming
and Evolvable Machines, vol. 20, no. 1, pp. 5–35, 2019.

[21] F. Assunção, N. Lourenço, P. Machado, and B. Ribeiro, “Fast denser:
Efficient deep neuroevolution,” in Genetic Programming, L. Sekanina,
T. Hu, N. Lourenço, H. Richter, and P. García-Sánchez, Eds. Cham:
Springer International Publishing, 2019, pp. 197–212.

ii

[13th June 2024 at 16:43]

[22] S. Sarti, N. Laurenço, J. Adair, P. Machado, and G. Ochoa, “Under
the hood of transfer learning for deep neuroevolution,” in Applications
of Evolutionary Computation, J. Correia, S. Smith, and R. Qaddoura, Eds.
Cham: Springer Nature Switzerland, 2023, pp. 640–655.

[23] D. Ha, “Neural network evolution playground with backprop neat,”
blog.otoro.net, 2016.

[24] D. Ha, A. Dai, and Q. V. Le, “Hypernetworks,” arXiv preprint
arXiv:1609.09106, 2016.

[25] J. Lehman, K. O. Stanley et al., Exploiting open-endedness to solve problems
through the search for novelty., 2008.

[26] J. Lehman and K. O. Stanley, “Evolving a diversity of virtual creatures
through novelty search and local comp,” no. Gecco, 2011, pp. 211–218.

[27] J.-B. Mouret and S. Doncieux, “Encouraging behavioral diversity in
evolutionary robotics: An empirical study,” Evolutionary computation,
vol. 20, no. 1, pp. 91–133, 2012.

[28] J.-B. Mouret and J. Clune, “Illuminating search spaces by mapping
elites,” pp. 1–15, 2015.

[29] K. Chatzilygeroudis, A. Cully, V. Vassiliades, and J.-B. Mouret,
“Quality-diversity optimization: a novel branch of stochastic optimiza-
tion,” in Black Box Optimization, Machine Learning, and No-Free Lunch
Theorems. Springer, 2021, pp. 109–135.

[30] S. Risi and K. O. Stanley, “Indirectly encoding neural plasticity as a pat-
tern of local rules,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 6226 LNAI, no. Sab, pp. 533–543, 2010.

[31] A. Soltoggio, K. O. Stanley, and S. Risi, “Born to learn: The inspiration,
progress, and future of evolved plastic artificial neural networks,”
Neural Networks, vol. 108, pp. 48–67, 2018.

[32] E. Papavasileiou, J. Cornelis, and B. Jansen, “A systematic literature re-
view of the successors of “neuroevolution of augmenting topologies”,”
Evolutionary Computation, vol. 29, no. 1, pp. 1–73, 2021.

[33] G. Ochoa, M. Tomassini, S. Verel, and C. Darabos, “A study of nk
landscapes’ basins and local optima networks,” pp. 555–562, 2008.

iii

[13th June 2024 at 16:43]

[34] G. Ochoa, N. Veerapen, F. Daolio, and M. Tomassini, “Understanding
phase transitions with local optima networks: Number partitioning as
a case study,” in Evolutionary Computation in Combinatorial Optimization,
EvoCOP, ser. Lecture Notes in Computer Science, vol. 10197, 2017, pp.
233–248.

[35] G. Ochoa, K. M. Malan, and C. Blum, “Search trajectory networks: A
tool for analysing and visualising the behaviour of metaheuristics,”
Applied Soft Computing, vol. 109, no. May, 2021.

[36] V. Narvaez-Teran, G. Ochoa, and E. Rodriguez-Tello, “Search Traject-
ory Networks Applied to the Cyclic Bandwidth Sum Problem,” IEEE
Access, vol. 9, pp. 1–1, 2021.

[37] S. Sarti and G. Ochoa, “A NEAT visualisation of neuroevolution traject-
ories,” in Applications of Evolutionary Computation, ser. Lecture Notes
in Computer Science, vol. 12694. Springer, 2021, pp. 714–728.

[38] T. Lewis, Network Science: Theory and Practice. Wiley, 2009.

[39] L. Euler, “Solutio problematis ad geometriam situs pertinentis,” Com-
mentarii academiae scientiarum Petropolitanae, pp. 128–140, 1741.

[40] N. L. Biggs, “T. p. kirkman, mathematician,” Bulletin of the London
Mathematical Society, vol. 13, no. 2, pp. 97–120, 1981.

[41] E. C. Kirby, R. B. Mallion, P. Pollak, and P. J. Skrzyński, “What kirchhoff
actually did concerning spanning trees in electrical networks and its
relationship to modern graph-theoretical work,” Croatica Chemica Acta,
vol. 89, no. 4, pp. 403–417, 2016.

[42] D. Rouvray, “The pioneering contributions of cayley and sylvester
to the mathematical description of chemical structure,” Journal of
Molecular Structure: THEOCHEM, vol. 185, pp. 1–14, 1989.

[43] W. Whewell, On the philosophy of discovery: chapters historical and critical.
JW Parker and son, 1860.

[44] M. E. J. Newman, “The structure and function of complex networks,”
SIAM Rev., vol. 45, pp. 167–256, 2003.

[45] S. L. Thomson, “Anatomy of the local optima level in combinatorial
optimisation,” 2020.

iv

[13th June 2024 at 16:43]

[46] G. Ochoa, M. Tomassini, S. Vérel, and C. Darabos, “A study of nk land-
scapes’ basins and local optima networks,” in Proceedings of the 10th
Annual Conference on Genetic and Evolutionary Computation, ser. GECCO
’08. New York, NY, USA: Association for Computing Machinery, 2008,
p. 555–562.

[47] G. Ochoa, K. M. Malan, and C. Blum, “Search trajectory networks of
population-based algorithms in continuous spaces,” in Applications
of Evolutionary Computation, EvoApps, ser. Lecture Notes in Computer
Science, vol. 12104. Springer, 2020, pp. 70–85.

[48] D. Davendra, Traveling salesman problem: Theory and applications. BoD–
Books on Demand, 2010.

[49] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing,
2nd ed. Springer Publishing Company, Incorporated, 2015.

[50] N. J. Radcliffe, “Genetic set recombination and its application to neural
network topology optimisation,” Neural Computing & Applications,
vol. 1, pp. 67–90, 1993.

[51] J. M. Sobel, G. F. Chen, L. R. Watt, and D. W. Schemske, “The biology
of speciation,” Evolution, vol. 64, no. 2, pp. 295–315, 2010.

[52] J. Lehman and K. O. Stanley, “Abandoning objectives: Evolution
through the search for novelty alone,” Evolutionary Computation, vol. 19,
no. 2, pp. 189–222, 2011.

[53] S. Doncieux, A. Laflaquière, and A. Coninx, “Novelty search: a the-
oretical perspective,” in Proceedings of the Genetic and Evolutionary
Computation Conference, 2019, pp. 99–106.

[54] J. K. Pugh, L. B. Soros, and K. O. Stanley, “Quality diversity: A new
frontier for evolutionary computation,” Frontiers Robotics AI, vol. 3, no.
JUL, pp. 1–17, 2016.

[55] E. Meyerson, J. Lehman, and R. Miikkulainen, “Learning behavior
characterizations for novelty search,” 2016, pp. 149–156.

[56] K. Xu, Y. Ma, and W. Li, “Dynamics-aware novelty search with
behavior repulsion,” in Proceedings of the Genetic and Evolutionary
Computation Conference, ser. GECCO ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 1112–1120. [Online].
Available: https://doi.org/10.1145/3512290.3528761

v

[13th June 2024 at 16:43]

https://doi.org/10.1145/3512290.3528761

[57] F. Assunção, N. Lourenço, P. Machado, and B. Ribeiro, “Denser: Deep
evolutionary network structured representation,” Genetic Programming
and Evolvable Machines, vol. 20, 03 2019.

[58] C. Ryan, J. Collins, and M. O. Neill, “Grammatical evolution: Evolving
programs for an arbitrary language,” in Genetic Programming, W. Ban-
zhaf, R. Poli, M. Schoenauer, and T. C. Fogarty, Eds. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1998, pp. 83–96.

[59] F. Rothlauf and M. Oetzel, “On the locality of grammatical evolution,”
in Genetic Programming, P. Collet, M. Tomassini, M. Ebner, S. Gustafson,
and A. Ekárt, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 320–330.

[60] P. Whigham, G. Dick, J. Maclaurin, and C. Owen, “Examining the
?best of both worlds? of grammatical evolution,” Proceedings of the
2015 Genetic and Evolutionary Computation, vol. 2015, pp. 1111–1118,
2015.

[61] N. Lourenço, F. B. Pereira, and E. Costa, “Sge: A structured represent-
ation for grammatical evolution,” in Artificial Evolution, S. Bonnevay,
P. Legrand, N. Monmarché, E. Lutton, and M. Schoenauer, Eds. Cham:
Springer International Publishing, 2016, pp. 136–148.

[62] N. Lourenço, F. Assunção, F. B. Pereira, E. Costa, and P. Machado,
Structured Grammatical Evolution: A Dynamic Approach. Cham: Springer
International Publishing, 2018, pp. 137–161.

[63] M. Valueva, N. Nagornov, P. Lyakhov, G. Valuev, and N. Chervyakov,
“Application of the residue number system to reduce hardware costs
of the convolutional neural network implementation,” Mathematics and
Computers in Simulation, vol. 177, pp. 232–243, 2020.

[64] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
141–142, 2012.

[65] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
in NIPS Workshop on Deep Learning and Unsupervised Feature Learning
2011, 2011.

[66] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

vi

[13th June 2024 at 16:43]

[67] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[68] X. Yao, “A Review of Evolutionary Arti cial Neural.”

[69] E. Ronald and M. Schoenauer, “Genetic lander: An experiment in
accurate neuro-genetic control,” Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 866 LNCS, pp. 452–461, 1994.

[70] F. Gruau and U. C. B.-l. I, “Thesis Neural Network Synthesis Using
Cellular Encoding and the Genetic Algorithm,” Synthesis, 1994.

[71] J. C. Figueira Pujol and R. Poli, “Evolving the Topology and the
Weights of Neural Networks Using a Dual Representation,” Applied
Intelligence, vol. 8, no. 1, pp. 73–84, 1998.

[72] K. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing
neural networks through neuroevolution,” Nature Machine Intelligence,
vol. 1, no. 1, pp. 24–35, 2019, cited By 77.

[73] G.-A. Vargas-Hákim, E. Mezura-Montes, and H.-G. Acosta-Mesa, “A
review on convolutional neural network encodings for neuroevolution,”
pp. 12–27, 2022.

[74] D. Floreano, P. Dürr, and C. Mattiussi, “Neuroevolution: from archi-
tectures to learning,” Evolutionary Intelligence, vol. 1, no. 1, p. 47–62,
Jan 2008.

[75] S. van Steenkiste, J. Koutník, K. Driessens, and J. Schmidhuber, “A
wavelet-based encoding for neuroevolution,” in Proceedings of the Ge-
netic and Evolutionary Computation Conference 2016, ser. GECCO ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
517–524.

[76] E. Hastings, R. Guha, and K. Stanley, “Automatic content generation in
the galactic arms race video game,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 1, no. 4, pp. 245–263, 2009.

[77] K. Stanley, B. Bryant, and R. Miikkulainen, “Real-time neuroevolution
in the nero video game,” IEEE Transactions on Evolutionary Computation,
vol. 9, no. 6, pp. 653–668, 2005.

vii

[13th June 2024 at 16:43]

[78] A. Hoover and K. Stanley, “Exploiting functional relationships in
musical composition,” Connection Science, vol. 21, no. 2-3, pp. 227–251,
2009.

[79] H. Dinh, N. Aubert, N. Noman, T. Fujii, Y. Rondelez, and H. Iba, “An
effective method for evolving reaction networks in synthetic biochem-
ical systems,” IEEE Transactions on Evolutionary Computation, vol. 19,
no. 3, pp. 374–386, 2015.

[80] G. Wang, G. Cheng, and T. Carr, “The application of improved neuro-
evolution of augmenting topologies neural network in marcellus shale
lithofacies prediction,” Computers and Geosciences, vol. 54, pp. 50–65,
2013.

[81] J. Nadkarni and R. Ferreira Neves, “Combining neuroevolution and
principal component analysis to trade in the financial markets,” Expert
Systems with Applications, vol. 103, pp. 184–195, 2018.

[82] T. Aaltonen, J. Adelman, T. Akimoto, and e. a. Albrow, “Measurement
of the top-quark mass with dilepton events selected using neuroe-
volution at CDF,” Physical Review Letters, vol. 102, no. 15, pp. 1–7,
2009.

[83] K. O. Stanley and R. Miikkulainen, “Competitive coevolution through
evolutionary complexification,” Journal of artificial intelligence research,
vol. 21, pp. 63–100, 2004.

[84] F. Silva, P. Urbano, L. Correia, and A. L. Christensen, “odneat: An
algorithm for decentralised online evolution of robotic controllers,”
Evolutionary Computation, vol. 23, no. 3, p. 421–449, Sep 2015.

[85] F. Silva, L. Correia, and A. L. Christensen, “Evolutionary online be-
haviour learning and adaptation in real robots,” Royal Society Open
Science, vol. 4, no. 7, p. 160938, Jul 2017.

[86] N. T. Siebel and G. Sommer, “Evolutionary reinforcement learning
of artificial neural networks,” International Journal of Hybrid Intelligent
Systems, vol. 4, no. 3, pp. 171–183, 2007.

[87] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V.
Le, and A. Kurakin, “Large-scale evolution of image classifiers,” in
International Conference on Machine Learning. PMLR, 2017, pp. 2902–
2911.

viii

[13th June 2024 at 16:43]

[88] V. Costa, N. Lourenço, and P. Machado, “Coevolution of generative
adversarial networks,” in International Conference on the Applications of
Evolutionary Computation (Part of EvoStar). Springer, 2019, pp. 473–487.

[89] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy et al., “Evolving deep
neural networks,” in Artificial intelligence in the age of neural networks
and brain computing. Elsevier, 2019, pp. 293–312.

[90] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elit-
ist multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[91] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing
neural networks through neuroevolution,” Nature Machine Intelligence,
vol. 2, pp. 24–35, 2019.

[92] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution
Strategies as a Scalable Alternative to Reinforcement Learning,” pp.
1–13, 2017.

[93] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[94] V. Mnih, A. P. Badia, L. Mirza, A. Graves, T. Harley, T. P. Lillicrap,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” 33rd International Conference on Machine Learning,
ICML 2016, vol. 4, pp. 2850–2869, 2016.

[95] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and
J. Clune, “Deep Neuroevolution: Genetic Algorithms Are a Competit-
ive Alternative for Training Deep Neural Networks for Reinforcement
Learning,” 2017.

[96] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dab-
ney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining
improvements in deep reinforcement learning,” 32nd AAAI Conference
on Artificial Intelligence, AAAI 2018, pp. 3215–3222, 2018.

ix

[13th June 2024 at 16:43]

[97] J. Lehman, J. Chen, J. Clune, and K. O. Stanley, “Safe mutations
for deep and recurrent neural networks through output gradients,”
GECCO 2018 - Proceedings of the 2018 Genetic and Evolutionary Computa-
tion Conference, pp. 117–124, 2018.

[98] T. Gangwani, C. Science, J. Peng, and C. Science, “Policy Optimisation
by Genetic Distillation,” 2018.

[99] D. S. Reilstad, “Cultivating diversity: a comparison of diversity object-
ives in neuroevolution,” Master’s thesis, 2023.

[100] J.-B. Mouret and S. Doncieux, “Using behavioral exploration objectives
to solve deceptive problems in neuro-evolution,” in Proceedings of the
11th Annual conference on Genetic and evolutionary computation, 2009, pp.
627–634.

[101] J. Lehman and K. O. Stanley, “Exploiting open-endedness to solve
problems through the search for novelty,” no. Alife Xi, 2008, pp. 329–
336.

[102] E. Conti, V. Madhavan, F. P. Such, J. Lehman, K. O. Stanley, and
J. Clune, “Improving exploration in evolution strategies for deep
reinforcement learning via a population of novelty-seeking agents,”
Advances in Neural Information Processing Systems, vol. 2018-December,
no. Nips, pp. 5027–5038, 2018.

[103] D. Gravina, A. Liapis, and G. N. Yannakakis, “Surprise search: Beyond
objectives and novelty,” GECCO 2016 - Proceedings of the 2016 Genetic
and Evolutionary Computation Conference, no. July, pp. 677–684, 2016.

[104] H. Mengistu, J. Lehman, and J. Clune, “Evolvability search: Directly
selecting for evolvability in order to study and produce it,” GECCO
2016 - Proceedings of the 2016 Genetic and Evolutionary Computation
Conference, no. July, pp. 141–148, 2016.

[105] C. Stanton and J. Clune, “Deep Curiosity Search: Intra-Life Explora-
tion Can Improve Performance on Challenging Deep Reinforcement
Learning Problems,” 2018.

[106] A. Cully, J. Clune, D. Tarapore, and J. B. Mouret, “Robots that can
adapt like animals,” Nature, vol. 521, no. 7553, pp. 503–507, 2015.

[107] J. Huizinga, J. B. Mouret, and J. Clune, “Does aligning phenotypic
and genotypic modularity improve the evolution of neural networks?”

x

[13th June 2024 at 16:43]

GECCO 2016 - Proceedings of the 2016 Genetic and Evolutionary Computa-
tion Conference, pp. 125–132, 2016.

[108] A. Nguyen, J. Yosinski, and J. Clune, “Understanding innovation
engines: Automated creativity and improved stochastic optimization
via deep learning,” Evolutionary Computation, vol. 24, no. 3, pp. 545–572,
2016.

[109] B. Hodjat, H. Shahrzad, and R. Miikkulainen, “Distributed age-layered
novelty search,” Proceedings of the Artificial Life Conference 2016, ALIFE
2016, 2016.

[110] J. C. Brant and K. O. Stanley, “Minimal criterion coevolution: A new
approach to open-ended search,” GECCO 2017 - Proceedings of the 2017
Genetic and Evolutionary Computation Conference, no. Gecco, pp. 67–74,
2017.

[111] L. K. Le Goff, E. Hart, A. Coninx, and S. Doncieux, “On pros and cons
of evolving topologies with novelty search,” The 2020 Conference on
Artificial Life, 2020.

[112] A. M. Turing, “The chemical basis of morphogenesis,” Bulletin of
Mathematical Biology, vol. 52, no. 1-2, pp. 153–197, 1990.

[113] J. C. Bongard and R. Pfeifer, “Repeated Structure and Dissociation of
Genotypic and Phenotypic Complexity in Artificial Ontogeny,” no.
1998, 2000.

[114] F. Gruau, “Automatic De nition of Modular Neural Networks Abstract
matic de ntion of sub-neural networks .” Writing, pp. 1–44, 1995.

[115] K. O. Stanley and R. Miikkulainen, “A taxonomy for artificial embryo-
geny,” Artificial Life, vol. 9, no. 2, pp. 93–130, 2003.

[116] K. O. Stanley, “Compositional pattern producing networks: A novel
abstraction of development.”

[117] J. Gauci and K. O. Stanley, “Autonomous evolution of topographic
regularities in artificial neural networks,” Neural Computation, vol. 22,
no. 7, pp. 1860–1898, 2010.

[118] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, “A hypercube-based en-
coding for evolving large-scale neural networks,” Artificial Life, vol. 15,
no. 2, pp. 185–212, 2009.

xi

[13th June 2024 at 16:43]

[119] J. Clune, K. O. Stanley, R. T. Pennock, and C. Ofria, “On the perform-
ance of indirect encoding across the continuum of regularity,” IEEE
Transactions on Evolutionary Computation, vol. 15, no. 3, pp. 346–367,
2011.

[120] J. Huizinga, J. B. Mouret, and J. Clune, “Evolving neural networks
that are both modular and regular: Hyperneat plus the connection
cost technique,” GECCO 2014 - Proceedings of the 2014 Genetic and
Evolutionary Computation Conference, no. July, pp. 697–704, 2014.

[121] E. Buchanan, L. K. Le Goff, W. Li, E. Hart, A. E. Eiben, M. De Carlo,
A. F. Winfield, M. F. Hale, R. Woolley, M. Angus, J. Timmis, and
A. M. Tyrrell, “Bootstrapping artificial evolution to design robots for
autonomous fabrication,” Robotics, vol. 9, no. 4, pp. 1–24, 2020.

[122] L. K. L. Goff, E. Buchanan, E. Hart, A. E. Eiben, W. Li, M. De Carlo,
A. F. Winfield, M. F. Hale, R. Woolley, M. Angus, J. Timmis, and A. M.
Tyrrell, “Morpho-evolution with learning using a controller archive as
an inheritance mechanism,” pp. 1–15, 2021.

[123] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images,”
Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, vol. 07-12-June-2015, pp. 427–436, 2015.

[124] F. Liu, Q. Song, G. Wen, J. Cao, and X. Yang, “Bipartite synchronization
in coupled delayed neural networks under pinning control,” Neural
Networks, vol. 108, pp. 146–154, 2018.

[125] F. Assunção, N. Lourenço, P. Machado, and B. Ribeiro, “Using GP Is
NEAT: Evolving compositional pattern production functions,” Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 10781 LNCS, no.
January, pp. 3–18, 2018.

[126] S. Risi and K. O. Stanley, “An Enhanced Hypercube-Based Encoding
for Evolving the Placement, Density, and Connectivity of Neurons,”
vol. 363, pp. 331–363, 2012.

[127] ——, “A unified approach to evolving plasticity and neural geometry,”
Proceedings of the International Joint Conference on Neural Networks, no.
Ijcnn, 2012.

[128] D. Floreano and F. Mondada, “Evolution of Plastic Neurocontrollers
for Situated Agents,” From Animals to Animats 4, no. May 2014, 1994.

xii

[13th June 2024 at 16:43]

[129] D. Floreano and J. Urzelai, “Evolutionary robots with on-line self-
organization and behavioral fitness,” Neural Networks, vol. 13, no. 4-5,
pp. 431–443, 2000.

[130] F. Attneave, M. B., and D. O. Hebb, “The Organization of Behavior;
A Neuropsychological Theory,” The American Journal of Psychology,
vol. 63, no. 4, p. 633, 1950.

[131] B. Inden, “Neuroevolution and complexifying genetic architectures
for memory and control tasks,” Theory in Biosciences, vol. 127, no. 2,
pp. 187–194, 2008, cited By 4.

[132] F. Gallego-Durán, R. Molina-Carmona, and F. Llorens-Largo, “Exper-
iments on neuroevolution and online weight adaptation in complex
environments,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 8109 LNAI, pp. 131–138, 2013, cited By 0.

[133] P. Tonelli and J. B. Mouret, “On the relationships between generative
encodings, regularity, and learning abilities when evolving plastic
artificial neural networks,” PLoS ONE, vol. 8, no. 11, 2013.

[134] J. B. Mouret and P. Tonelli, “Artificial evolution of plastic neural
networks: A few key concepts,” Studies in Computational Intelligence,
vol. 557, pp. 251–261, 2015.

[135] R. Greve, E. Jacobsen, and S. Risi, “Evolving neural turing machines
for reward-based learning,” F. T., Ed. Association for Computing
Machinery, Inc, 2016, pp. 117–124, cited By 14.

[136] B. Lüders, M. Schläger, A. Korach, and S. Risi, “Continual and one-shot
learning through neural networks with dynamic external memory,”
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10199

LNCS, pp. 886–901, 2017, cited By 6.

[137] K. Nguyen and Y. Choe, “Dynamic control using feedforward net-
works with adaptive delay and facilitating neural dynamics,” vol.
2017-May. Institute of Electrical and Electronics Engineers Inc., 2017,
pp. 2987–2994, cited By 1.

[138] K. Olav Ellefsen, J.-B. Mouret, and J. Clune, “Neural Modularity Helps
Organisms Evolve to Learn New Skills without Forgetting Old Skills,”
Comput Biol, vol. 11, no. 4, p. 1004128, 2015.

xiii

[13th June 2024 at 16:43]

[139] J. Clune, J. B. Mouret, and H. Lipson, “Summary of the evolutionary
origins of modularity,” GECCO 2013 - Proceedings of the 2013 Genetic
and Evolutionary Computation Conference Companion, p. 23, 2013.

[140] R. Velez and J. Clune, “Diffusion-based neuromodulation can eliminate
catastrophic forgetting in simple neural networks,” 2017.

[141] A. Sboev, A. Serenko, R. Rybka, D. Vlasov, and A. Filchenkov, “Es-
timation of the influence of spiking neural network parameters on
classification accuracy using a genetic algorithm,” S. A.V., Ed., vol. 145.
Elsevier B.V., 2018, pp. 488–494, cited By 3.

[142] I. Showalter and H. Schwartz, “Neuromodulated multiobjective evolu-
tionary neurocontrollers without speciation,” Evolutionary Intelligence,
2020, cited By 0.

[143] H. Qiu, M. Garratt, D. Howard, and S. Anavatti, “Towards crossing
the reality gap with evolved plastic neurocontrollers.” Association
for Computing Machinery, 2020, pp. 130–138, cited By 0.

[144] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolu-
tion for image classifier architecture search,” 33rd AAAI Conference on
Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artifi-
cial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2019, pp. 4780–4789,
2019.

[145] A. Rawal and R. Miikkulainen, “From Nodes to Networks: Evolving
Recurrent Neural Networks,” 2018.

[146] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” Proceedings - 30th IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR 2017, vol. 2017-
January, pp. 2261–2269, 2017.

[147] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-ResNet and the impact of residual connections on learning,”
31st AAAI Conference on Artificial Intelligence, AAAI 2017, pp. 4278–4284,
2017.

[148] F. Assunção, N. Lourenço, P. Machado, and B. Ribeiro, “Fast-denser++:
Evolving fully-trained deep artificial neural networks,” arXiv preprint
arXiv:1905.02969, 2019.

xiv

[13th June 2024 at 16:43]

[149] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” 5th International Conference on Learning Representations, ICLR
2017 - Conference Track Proceedings, pp. 1–16, 2017.

[150] P. Feldmeier, “Fully automated game testing via neuroevolution,” in
2023 IEEE Conference on Software Testing, Verification and Validation
(ICST), 2023, pp. 486–488.

[151] D. Zimmermann, P. Deubel, and A. Koziolek, “Evaluating the effect-
iveness of neuroevolution for automated gui-based software testing,”
in 2023 38th IEEE/ACM International Conference on Automated Software
Engineering Workshops (ASEW), 2023, pp. 119–126.

[152] E. Otović, J. Lerga, D. Kalafatovic, and G. Mauša, “Neuroevolution for
the sustainable evolution of neural networks,” in 2023 46th MIPRO
ICT and Electronics Convention (MIPRO), 2023, pp. 1045–1051.

[153] D. D. Kulkarni and S. B. Nair, “Transfer learning for embodied neur-
oevolution,” in Proceedings of the Companion Conference on Genetic and
Evolutionary Computation, ser. GECCO ’23 Companion. New York,
NY, USA: Association for Computing Machinery, 2023, p. 2128–2135.

[154] Y. Qiao and M. Gallagher, “Modularity based linkage model for neur-
oevolution,” in Proceedings of the Companion Conference on Genetic and
Evolutionary Computation, ser. GECCO ’23 Companion. New York,
NY, USA: Association for Computing Machinery, 2023, p. 675–678.

[155] M. Merten, R. Krauss, and R. Drechsler, “Scalable neuroevolution
of ensemble learners,” in Proceedings of the Companion Conference on
Genetic and Evolutionary Computation, ser. GECCO ’23 Companion.
New York, NY, USA: Association for Computing Machinery, 2023, p.
667–670.

[156] M. Le Clei and P. Bellec, “Generative adversarial neuroevolution for
control behaviour imitation,” in Proceedings of the Companion Conference
on Genetic and Evolutionary Computation, ser. GECCO ’23 Companion.
New York, NY, USA: Association for Computing Machinery, 2023, p.
663–666.

[157] Z. Shuai and F. Chen, “Automatic lightweight yolo construction
through neuroevolution for white shrimps detection,” in 2023 4th
International Conference on Information Science, Parallel and Distributed
Systems (ISPDS), 2023, pp. 675–682.

xv

[13th June 2024 at 16:43]

[158] A. J. Alburghaif, M. A. Balafar, and J. P. Tanha, “Neae: Neuroevolution
autoencoder for anomaly detection in internet traffic data,” The Journal
of Supercomputing, Oct 2023.

[159] J. Karns and T. Desell, “Local stochastic differentiable architecture
search for memetic neuroevolution algorithms,” in Proceedings of the
Companion Conference on Genetic and Evolutionary Computation, ser.
GECCO ’23 Companion. New York, NY, USA: Association for Com-
puting Machinery, 2023, p. 2123–2127.

[160] J. P. Doye, “Network topology of a potential energy landscape: A static
scale-free network,” Physical review letters, vol. 88, no. 23, p. 238701,
2002.

[161] C. Flamm, I. L. Hofacker, P. F. Stadler, and M. T. Wolfinger, “Barrier
trees of degenerate landscapes,” Zeitschrift für Physikalische Chemie, vol.
216, no. 2, Jan 2002.

[162] O. M. Becker and M. Karplus, “The topology of multidimensional
potential energy surfaces: Theory and application to peptide struc-
ture and kinetics,” The Journal of Chemical Physics, vol. 106, no. 4, p.
1495–1517, Jan 1997.

[163] J. P. K. Doye, M. A. Miller, and D. J. Wales, “The double-funnel energy
landscape of the 38-atom lennard-jones cluster,” The Journal of Chemical
Physics, vol. 110, no. 14, p. 6896–6906, Apr 1999.

[164] J. Hallam and A. Prugel-Bennett, “Large barrier trees for studying
search,” IEEE Transactions on Evolutionary Computation, vol. 9, no. 4, p.
385–397, Aug 2005.

[165] S. L. Thomson, N. Veerapen, G. Ochoa, and D. van den Berg, “Ran-
domness in local optima network sampling,” in GECCO’23 Companion:
Genetic and Evolutionary Computation Conference Companion, 2023.

[166] S. L. Thomson, G. Ochoa, N. Veerapen, and K. Michalak, “Channel
configuration for neural architecture: Insights from the search space,”
in GECCO’23: Genetic and Evolutionary Computation Conference, 2023.

[167] N. M. Rodrigues, K. M. Malan, G. Ochoa, L. Vanneschi, and S. Silva,
“Fitness landscape analysis of convolutional neural network archi-
tectures for image classification,” Information Sciences, vol. 609, pp.
711–726, 2022.

xvi

[13th June 2024 at 16:43]

[168] G. Ochoa and N. Veerapen, “Neural architecture search: A visual
analysis,” in Parallel Problem Solving from Nature–PPSN XVII: 17th
International Conference, PPSN 2022, Dortmund, Germany, September
10–14, 2022, Proceedings, Part I. Springer, 2022, pp. 603–615.

[169] P. Mitchell, G. Ochoa, Y. Lavinas, and R. Chassagne, “Local optima
networks for assisted seismic history matching problems,” in Interna-
tional Conference on the Applications of Evolutionary Computation (Part of
EvoStar). Springer, 2023, pp. 86–101.

[170] S. L. Thomson, G. Ochoa, and S. Verel, “Fractal dimension and per-
turbation strength: A local optima networks view,” in Parallel Problem
Solving from Nature–PPSN XVII: 17th International Conference, PPSN
2022, Dortmund, Germany, September 10–14, 2022, Proceedings, Part I.
Springer, 2022, pp. 562–574.

[171] D. Whitley and G. Ochoa, “Local optima organize into lattices under
recombination: an example using the traveling salesman problem,” in
Proceedings of the Genetic and Evolutionary Computation Conference, 2022,
pp. 757–765.

[172] I. Zelinka, D. Davendra, V. Snášel, R. Jašek, R. Šenkeřik, and
Z. Oplatková, “Preliminary investigation on relations between complex
networks and evolutionary algorithms dynamics,” in 2010 International
Conference on Computer Information Systems and Industrial Management
Applications (CISIM). IEEE, 2010, pp. 148–153.

[173] L. Skanderova, T. Fabian, and I. Zelinka, “Small-world hidden in dif-
ferential evolution,” in 2016 IEEE Congress on Evolutionary Computation
(CEC), 2016, pp. 3354–3361.

[174] P. Gajdo, P. Kromer, and I. Zelinka, “Network visualization of popula-
tion dynamics in the differential evolution,” in 2015 IEEE Symposium
Series on Computational Intelligence, 2015, pp. 1522–1528.

[175] L. Taw, N. Gurrapadi, M. Macedo, M. Oliveira, D. Pinheiro, C. Bastos-
Filho, and R. Menezes, “Characterizing the social interactions in the
artificial bee colony algorithm,” in 2019 IEEE Congress on Evolutionary
Computation (CEC). IEEE, 2019, pp. 1243–1250.

[176] M. Oliveira, C. J. Bastos-Filho, and R. Menezes, “Towards a network-
based approach to analyze particle swarm optimizers,” in 2014 IEEE
Symposium on Swarm Intelligence. IEEE, 2014, pp. 1–8.

xvii

[13th June 2024 at 16:43]

[177] E. Hart and P. Ross, “Gavel - a new tool for genetic algorithm visualiz-
ation,” IEEE Transactions on Evolutionary Computation, vol. 5, no. 4, pp.
335–348, 2001.

[178] T. Tusar and B. Filipic, “Visualization of pareto front approximations
in evolutionary multiobjective optimization: A critical review and the
prosection method,” IEEE Transactions on Evolutionary Computation,
vol. 19, no. 2, p. 225–245, Apr 2015.

[179] J. E. Fieldsend, T. Chugh, R. Allmendinger, and K. Miettinen, “A
feature rich distance-based many-objective visualisable test problem
generator,” in Proceedings of the Genetic and Evolutionary Computation
Conference, 2019, pp. 541–549.

[180] T. D. Collins, “Applying software visualization technology to support
the use of evolutionary algorithms,” Journal of Visual Languages and
Computing, vol. 14, no. 2, p. 123–150, Apr 2003.

[181] K. Michalak, “Low-dimensional euclidean embedding for visualization
of search spaces in combinatorial optimization,” IEEE Transactions on
Evolutionary Computation, vol. 23, no. 2, pp. 232–246, 2019.

[182] H. Pohlheim, “Multidimensional scaling for evolutionary al-
gorithms—visualization of the path through search space and solution
space using sammon mapping,” Artificial Life, vol. 12, no. 2, p. 203–209,
Mar 2006.

[183] A. De Lorenzo, E. Medvet, T. Tušar, and A. Bartoli, “An analysis of
dimensionality reduction techniques for visualizing evolution,” in
Proceedings of the Genetic and Evolutionary Computation Conference Com-
panion, 2019, pp. 1864–1872.

[184] G. Ochoa, K. M. Malan, and C. Blum, “Search trajectory networks: A
tool for analysing and visualising the behaviour of metaheuristics,”
Applied Soft Computing, vol. 109, p. 107492, 2021.

[185] Y. Lavinas, C. Aranha, and G. Ochoa, “Search trajectories networks of
multiobjective evolutionary algorithms,” in Applications of Evolutionary
Computation, J. L. Jiménez Laredo, J. I. Hidalgo, and K. O. Babaagba,
Eds. Cham: Springer International Publishing, 2022, pp. 223–238.

[186] Y. Lavinas, M. Ladeira, G. Ochoa, and C. Aranha, “Component-wise
analysis of automatically designed multiobjective algorithms on con-
strained problems,” in Proceedings of the Genetic and Evolutionary Com-

xviii

[13th June 2024 at 16:43]

putation Conference, ser. GECCO ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 538–546.

[187] G. Ochoa, A. Liefooghe, Y. Lavinas, and C. Aranha, “Decision/ob-
jective space trajectory networks for multi-objective combinatorial
optimisation,” in European Conference on Evolutionary Computation in
Combinatorial Optimization (Part of EvoStar). Springer, 2023, pp. 211–
226.

[188] T. Hu, G. Ochoa, and W. Banzhaf, “Phenotype search trajectory net-
works for linear genetic programming,” in European Conference on
Genetic Programming (Part of EvoStar). Springer, 2023, pp. 52–67.

[189] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace, 2009.

[190] A. McIntyre, M. Kallada, C. G. Miguel, and C. F. da Silva, “neat-
python,” https://github.com/CodeReclaimers/neat-python.

[191] ——, “neat-python,” https://github.com/CodeReclaimers/
neat-python.

[192] C. S. Wetherell and A. Shannon, “Tidy drawings of trees,” IEEE Trans-
actions on Software Engineering, vol. SE-5, pp. 514–520, 1979.

[193] T. M. J. Fruchterman and E. M. Reingold, “Graph drawing by force-
directed placement,” Softw. Pract. Exper., vol. 21, no. 11, pp. 1129–1164,
Nov. 1991.

[194] G. Csardi and T. Nepusz, “The igraph software package for complex
network research,” InterJournal, vol. Complex Systems, p. 1695, 2006.

[195] K. O. Stanley and J. Lehman, Why greatness cannot be planned : the myth
of the objective.

[196] R. Hinterding, “Representation, mutation and crossover issues in evol-
utionary computation,” in Proceedings of the 2000 Congress on Evolution-
ary Computation. CEC00 (Cat. No.00TH8512), vol. 2, 2000, pp. 916–923

vol.2.

[197] D. E. Goldberg, “Simple genetic algorithms and the minimal, deceptive
problem,” 1987.

[198] H. G. Rice, “Classes of recursively enumerable sets and their decision
problems,” Transactions of the American Mathematical Society, vol. 74,
no. 2, pp. 358–366, 1953.

xix

[13th June 2024 at 16:43]

https://github.com/CodeReclaimers/neat-python
https://github.com/CodeReclaimers/neat-python
https://github.com/CodeReclaimers/neat-python

[199] T. Jones and S. Forrest, “Fitness distance correlation as a measure of
problem difficulty for genetic algorithms,” in Proceedings of the 6th
International Conference on Genetic Algorithms. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1995, p. 184–192.

[200] A. Cully and Y. Demiris, “Quality and diversity optimization: A unify-
ing modular framework,” IEEE Transactions on Evolutionary Computa-
tion, vol. 22, no. 2, pp. 245–259, 2018.

[201] T. Kamada and S. Kawai, “An Algorithm for Drawing General Undir-
ected Graphs,” Information. Processing Letters, vol. 31, pp. 7–15, 1989.

[202] “Open-endedness: The last grand challenge you’ve never heard of –
O’Reilly.”

[203] J. Lehman and K. O. Stanley, “Beyond open-endedness: Quantifying
impressiveness,” in Artificial Life Conference Proceedings. MIT Press
One Rogers Street, Cambridge, MA 02142-1209, USA journals-info . . . ,
2012, pp. 75–82.

[204] I. H. Sarker, “Deep learning: A comprehensive overview on techniques,
taxonomy, applications and research directions,” SN Computer Science,
vol. 2, no. 6, Aug 2021.

[205] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-
Shamma, J. Santamaría, M. A. Fadhel, M. Al-Amidie, and L. Farhan,
“Review of deep learning: concepts, cnn architectures, challenges, ap-
plications, future directions,” Journal of Big Data, vol. 8, no. 1, Mar
2021.

[206] H. R. Lourenço, O. C. Martin, and T. Stützle, Iterated Local Search:
Framework and Applications. Cham: Springer International Publishing,
2019, pp. 129–168.

[207] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search:
A survey,” The Journal of Machine Learning Research, vol. 20, no. 1, pp.
1997–2017, 2019.

[208] P. Ren, Y. Xiao, X. Chang, P.-y. Huang, Z. Li, X. Chen, and X. Wang, “A
comprehensive survey of neural architecture search: Challenges and
solutions,” ACM Comput. Surv., vol. 54, no. 4, may 2021.

[209] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan, “A survey on
evolutionary neural architecture search,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 34, no. 2, pp. 550–570, 2023.

xx

[13th June 2024 at 16:43]

[210] M. Wistuba, A. Rawat, and T. Pedapati, “A survey on neural architec-
ture search,” arXiv preprint arXiv:1905.01392, 2019.

[211] S. Sarti, “Neuroevolution trajectory networks: Revealing the past of
incrementally neuroevolved cnns,” in Proceedings of the Companion
Conference on Genetic and Evolutionary Computation, ser. GECCO ’23

Companion. New York, NY, USA: Association for Computing Ma-
chinery, 2023, p. 41–42.

[212] A. D. Rosso, “Higgs: the beginning of the exploration. Étude du Higgs:
ce n’est que le début,” no. 47/2012, p. 3, 2012.

[213] R. P. Feynman, “Space-time approach to quantum electrodynamics,”
Physical Review, vol. 76, no. 6, p. 769–789, Sep 1949.

xxi

[13th June 2024 at 16:43]

A
R E F L E C T I O N S O N R E S E A R C H

The start of a long research project, such as a doctoral degree, is full of
ambitions and often slight overoptimism. At the beginning, there is the
expectation that shining a light towards darkness will reveal what you
aimed to find, but that confidence soon disappears, leaving you to find that
it takes more effort and resilience. This darkness is also filled with many
obstacles that are not immediately visible.

Nevertheless, it is through this challenging journey, with the help of
colleagues and extraordinary supervision, that you learn to grow and con-
stantly improve. As a researcher, a scientist, a friend and someone who is
willing to share the knowledge learned and land a hand to those needing it.

Throughout my Ph.D. research, I have learned some sound principles that
have helped me to this date, which I would like to share with you.

• Overcome the departure difficulty — starting a 4 year-long project can feel
like a daunting task, which might make you struggle to think how it
should be started. Similarly to a white page, generating the writer’s
block. The best way is to not hesitate, and start the work; a path will
reveal very quickly.

• Swiftly move on — recognise when a project or research avenue is not
fruitful, or it is not producing the intended results. When something
was overambitious, or if it is taking unfeasibly too long to accomplish.
If so, dynamically move on to a secondary plan. If that does not work
either, keep on moving, until things settle in the correct way.

• Being proud — Recognise when you have done a good job, be proud
of the accomplishments, even the small ones. These are the fuel neces-
sary to keep you going. The motivation to produce better and better
research, with the necessary enthusiasm.

• Breathing — The difficult times are always right around the corner.
Research can be stressful and it can make you spiral into confidence
problems and imposter syndrome issues. Face it, chin up. Breathing is
fundamental, might this be via physical activity, meditation or simply
walking. It can get you unstuck. Go outside and breathe.

1

[13th June 2024 at 16:43]

• Enjoy it all! — This is an excellent opportunity to make a significant
contribution to knowledge, and after all the hurdles you might have
had to overcome, you need to feel happy and enjoy the feeling of
reaching this stage. Appreciate the collaborations, conferences, the
riveting conversations, the friends and long-lasting relationships you
make along the way. Like an artist at the end of a painting, stand
back, admire your work and pat yourself on the back. Enjoy all those
moments.

2

[13th June 2024 at 16:43]

	Declaration
	Abstract
	Acknowledgments
	Publications
	Contents
	List of Figures
	List of Tables
	List of Acronyms

	1 Chapter 1 — Introduction
	1.1 Overview
	1.1.1 Modelling the world
	1.1.2 The necessity to illuminate neuroevolution

	1.2 Research hypothesis
	1.3 Contributions
	1.4 Thesis structure

	2 Chapter 2 — Preliminaries and Background Knowledge
	2.1 Network Theory
	2.1.1 Local Optima Networks
	2.1.2 Search Trajectory Networks
	2.1.3 Neuroevolution Trajectory Networks

	2.2 Algorithms and Search Strategies
	2.2.1 NEAT
	2.2.2 Novelty Search vs Objective Search
	2.2.3 DSGE-Powered Neuroevolution

	3 Chapter 3 — Literature Review
	3.1 Early days of Neuroevolution
	3.2 Recombination in NEAT
	3.3 Scaling up to Deep Learning
	3.4 The search for Novelty and increased diversity
	3.5 The indirect encoding paradigm
	3.6 Neuroplasticity and meta-learning
	3.7 The modern days of Neuroevolution
	3.8 Illuminating fitness landscapes and the search space
	3.9 Conclusions

	4 Chapter 4 — Recombination in NEAT: A Search Trajectory Networks perspective
	4.1 Key contributions and motivations
	4.2 Historical Markings in recombination
	4.3 Modelling NEAT architectures to STNs signatures
	4.4 Complex networks characterisation
	4.4.1 Merged Search Trajectory Networks
	4.4.2 The Reingold-Tilford tree layout

	4.5 Experimental settings
	4.6 Analysis rationale
	4.7 Results and discussion
	4.7.1 Statistical performance results
	4.7.2 Illumination of NEAT search space using STNs

	4.8 Summary

	5 Chapter 5 — The Role of Recombination in the Pursuit of Behavioural Novelty
	5.1 Key contributions and motivations
	5.2 Deceiving domains, recombination and diversity
	5.3 Complex networks characterisation
	5.3.1 Merged Compressed STNs
	5.3.2 Fruchterman-Reingold Force Directed layout

	5.4 Experimental settings
	5.5 Analysis rationale
	5.5.1 Statistical analysis
	5.5.2 Merged CSTNs analysis

	5.6 Results and discussion
	5.6.1 Hard maze
	5.6.2 STNs analysis of search strategies dynamics
	5.6.3 Results discussion

	5.7 Summary

	6 Chapter 6 — The Behaviour Search Space Under Neuroevolution Trajectory Networks Observation
	6.1 Key contributions and motivations
	6.2 Illuminating Behavioural Characterisations
	6.3 The Inception of Neuroevolution Trajectory Networks
	6.4 Analysis rationale
	6.5 Results and Discussion
	6.5.1 Behavioural diversity related to topological complexity
	6.5.2 Visualising the behaviour search space with NTNs

	6.6 Summary

	7 Chapter 7 — Revealing the Past of Incrementally Neuroevolved Convolutional Neural Networks
	7.1 Key contributions and motivations
	7.2 From shallow to layer-based Neuroevolution
	7.3 Tracking the transfer of evolutionary units
	7.4 Analysis rationale: NTNs characterisation
	7.5 Experimental settings
	7.6 Results
	7.6.1 Revealing transfer learning through NTNs

	7.7 Conclusions

	8 Chapter 8 — Research Synopsis
	8.1 Summary of contributions
	8.2 Network Architecture Analysis (NNA)
	8.3 Final remarks
	8.4 Future Outlook

	A Reflections on Research

