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Abstract

This research is motivated by the challenge of providing accurate and con-
textually relevant answers to natural language questions about visual scenes,
particularly in support of individuals with visual impairments. Neural-
Symbolic computing aims to unlock the potential of both the robust learning
capabilities found in neural networks and the reasoning and interpretability
of symbolic representation through their integration. This thesis introduces
a Neuro-Symbolic Incremental Learner designed specifically for the Visual
Question Answering Task. The system incrementally learns visual classes
and symbolic facts to answer natural language questions about visual scenes.
Using Deep Learning, a feature space is created from which visual classes
are learnt as independent probability distributions. This allows for the easy
addition of new classes even with limited data, mitigating the catastrophic
forgetting typical of traditional neural networks. The incorporation of clas-
sification by category allows visual classes to not be limited to just objects
but can also include other categories such as attributes. A knowledge graph
stores facts about regions of interest, detailing; objects, attributes, actions,
locations, and inter-relations, facilitating the incremental addition of knowl-
edge. This allows facts to be stored explicitly and added incrementally.
Leveraging a large language model, the system translates natural language
questions into knowledge graph queries, ensuring a fluid visual question-
answering experience.
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System Terminology

Unifying the Neural Net and Symbolic paradigms, also means their terminology must
be aligned. The following terms are used throughout this thesis.

Figure 1: System Terminology.

• ROI Image: The image found within a bounding box.

• Feature Space: Generated by deep learning algorithms designed to produce
a structured space suitable for encoding the features in an image by which it
can be classified.

• Feature Classes: These are the classes used to train the image encoder model
and are purely related to gaining a useful structure in the feature space.

• Image Encoder: The model that is trained on images that are/are not
annotated by feature classes, producing a latent feature space.

• Feature Encoding: The feature encodings are created at inference time,
through the selection of an embedding layer in the neural net.

• Categorical Classes: A Categorical class is a Class that belongs to a specific
Category. A category can be thought of as an independent classifier. Categories
are associated with ROIs and are used to group categorical classes.
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• ROI Concept: Describes a ’Region of Interest’ (ROI) which are the contents
of a bounding box. This is described in terms of many categorical classes.

• Context: The environment in which data is collected, including images of
scenes to be interpreted and human natural language questions.
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1
Introduction

1.1 Introduction

‘How do you put meaning to what you see in the visual world?’ or, in other words,
‘How do the Terms we use define the things we see ?’ This thesis delivers a potential
solution, called the Neuro-Symbolic Incremental Learner Model. The approach taken
is to build a safe AI system, rather than making an AI system and then having to
make that safe after the fact.

For most people, vision is a natural ability, which enables an effortless inter-
pretation of our surroundings. However, for individuals with visual impairments,
assistance is often required to bridge the gap between perception and understanding.
In such instances, an Assistant, when queried, provides insights into the environment
around them. When this Assistant takes the form of a computer, we then need to
break the task down and explicitly code the actions. Upon receiving a question,
the Digital Assistant must first capture and analyse an image of the relevant scene
before processing the inquiry and delivering an answer. This process is known as
the Visual Question Answering (VQA) task. The core contribution of this thesis is
the development of a Neuro-Symbolic Incremental Learner Model, which leverages
a Gaussian Mixture Model Incremental Learner. During this research, both mod-
els were developed, each with an accompanying published paper. This innovative
approach changes the way Terms are linked to the visual information that gives
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them meaning. This structure enables information to flow, enabling neural nets and
symbolic approaches to be utilised in a manner that they were both designed to excel
in.

Figure 1.1 illustrates the human-to-computer interface. Let’s take two scenarios:

1. In Scenario One, purely taking into account the blue box entitled human which
represents a human in their environment. The person processes incoming visual
information through their senses, forming beliefs and perceptions that guide
their outgoing actions.

2. In Scenario Two, we take into account both the human and a Digital Assistant.
The red cross indicates insufficient visual information, indicating a visually
impaired human. In this case, the human requires help. The human poses a
question to the Digital Assistant, shown by the action of the human sending
the question, ‘What’s in the image?’, which the Digital Assistant receives.
The Digital Assistant then obtains an image of a specific Region Of Interest
and following inference, it generates an ROI node in the Knowledge Graph.
Using this graph and explicit information the Digital Assistant has previously
learnt, the computer generates a response, to send to the human as an Answer,
in this case Apple. The human’s beliefs are amended and perceptions are
updated about the current environment based on this received information.
The design assumes a shared semantic ontology is in use, specific to this
current environment.

The Visual Question Answering (VQA) Task was formed to encapsulate the skills
needed to enable a computer to respond to a question about an image with an appli-
cable Answer. This question-and-answer mechanism is an ideal interface to connect
humans and computers effectively. Figure 1.2 shows a high-level overview of the flow
of data that has been developed during this research, which enhances the learning
abilities within this task. The structure also enables the Human-In-The-Loop to
continually learn new Categories and Terms within an Ontology, allowing the system
to dynamically evolve. This research proposes a mechanism to extract semantic and
contextual information from images, enabling natural language inquiries.

The Neuro-Symbolic Incremental Learner (NS-IL) Model is comprised of three
components; neural visual techniques within a classification system, a structured
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Figure 1.1: Visually impaired human receiving help from a Digital Assistant.

knowledge graph, and a large language model for smooth human-driven-natural-
language-graph interactions. Further details for these main components are:

1. An extensible Image Classification System comprised of two main components.

• A pre-trained Deep Neural Network (DNN) that maps pixel Images onto
a visual feature space, this model is an image encoder that carries out
Feature Extraction at inference time.

• Categorical Gaussian Mixture Models (GMM)s, which are probability
models to calculate an individual Terms likelihood of being seen. These
models can be learned individually from small data sets and added to the
system as needed.

2. A Knowledge Graph (KG) that stores Region Of Interests grounding informa-
tion in the nodes of the graph, including temporal and spatial information.
Other nodes hold categorical classes where explicit information is held, this
information is inherited by the generated ROI nodes at inference time. Facts
about relationships between categorical classes are stored in the KG edges
and are propagated between the ROI nodes. Each GMM is associated with a
categorical node in the KG. Questions are answered by traversing the graph
to access the relevant ROI nodes and associated data.

3. A Large Language Model (LLM) is used to translate a human’s question into
code to interrogate the KG. The results from the query together with the
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original question are then translated back by the LLM into an understandable
Answer for a human.

Figure 1.2: The Neuro-Symbolic Incremental Learner Data Flow for the Visual Question
Answering Task.

1.2 Hypothesis

The central hypothesis in this thesis is as follows:

The use of independent Gaussian Mixture Models as a mechanism to
link Neural Nets to a Symbolic memory, will lead to a more flexible
Visual Question Answering Task.

This hypothesis is challenged by addressing the following research questions.

1. In traditional Neural Networks what model modifications are necessary to
support independent visual class incremental learning?

2. How can Neural Networks effectively ground symbolic systems to enhance
downstream understanding and reasoning.
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1.3 Contributions

The presented complex Neuro-Symbolic System makes the following contributions
to the field:

1. Development of an enhanced Neural Architecture: Introduction of a neural
network architecture utilising GMMs for incremental visual class learning, over-
coming the constraints of traditional architectures, such as catastrophic forget-
ting and the requirement for a large training dataset.

2. Neuro-Symbolic Integration Insights: Insights into the bottom-up encoding of
information between neural nets, GMMs and symbolic reasoning, providing
insights into fusion techniques.

3. Development of a Neuro-Symbolic Architecture: Improving VQA’s contextual
understanding through the use of ROIs comprised of multiple visual categories
such as attributes and objects, together with the ability to apply commonsense
rules over them.

1.4 Structure

The thesis is organised as follows:

• In Chapter 1, an Introduction is given, together with the Hypothesis, asso-
ciated Research Questions, identified Contributions and how the thesis has
been structured.

• The Literature Review contextualises and informs the thesis in Chapter 2.
It starts with an overview of what is available for the visually impaired. It
then covers applicable AI technologies such as; the frameworks used, current
tasks and models, latent variable models, available types of computing memory,
NLP, and LLM models. The Visual Question and Answering Task is looked at,
together with current implementations. It concludes with what improvements
have been identified to improve the current State-Of-Art for the VQA Task.

• An overview of The Traditional VQA Model is given in Chapter 3.

• A description of how the traditional model’s limitations are overcome is de-
scribed in Chapter 4. This is in the form of the Gaussian Mixture Model
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Incremental Learner. This covers the research which resulted in the published
GMM-IL Model. The main contribution of which was its ability to learn
and add classes when needed using small data sizes.

• Chapter 5 forms the Planning a Neuro-Symbolic Incremental Learner
section. Conclusions are drawn from the work carried out during the GMM-IL
research, which are reflected upon and inform the research decisions for the
creation of the NS-IL model.

• The Neuro-Symbolic Incremental Learner is described in Chapter 6. This
covers the research carried out that resulted in the published NS-IL Model.
In essence, a VQA system created from compositional machine learning, inte-
grating neural nets, GMMs, a KG & a LLM.

• The overall Summary & Conclusions are formalised in Chapter 7.

• In Chapter 8, an evolved system is envisioned, detailing a Human Centric
Passive Assistant to aid humans and carry out Visual Dialogue.
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2
Literature Review
This literature review aims to offer a comprehensive understanding of this thesis’s re-
search field by exploring critical topics. It begins with an examination of applications
designed for the visually impaired, followed by an analysis of the AI technologies that
power these solutions. We discuss various frameworks available to developers, with a
focus on those tailored for computer vision. The review delves into recognised tasks
and models in the field, including Latent Variable Models, strategies for storing and
querying information, Natural Language Processing, Referring Expressions, Large
Language Models and Natural Language Question & Answers. A section on the no-
table VQA models, what benchmark datasets exist, and a detailed exploration of the
NS-VQA model that Joshua B. Tenenbaum from MIT was involved in. Concluding
with an overview of how the VQA Task could be enhanced.

2.1 The Visually Impaired

The Lancet Global Health document of 2017 [4] found, ‘Globally, of the 7.33 billion
people alive in 2015, an estimated 36.0 million (80% uncertainty interval [UI] 12.9-
65.4) were blind.’ This accounts for roughly 0.5% of the global population, and it
highlights the potential for non-invasive assistance to improve the lives of these
individuals. In the United Kingdom, the Royal National Institute of Blind People
(RNIB) states, ‘There are over 2 million people in the UK living with sight loss’
and anticipates this number will increase due to an aging population. This number
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includes those who are registered as blind or partially sighted, as well as those whose
vision is better than the levels that qualify for registration. The UK government’s
industrial strategy paper titled, ‘The Grand Challenges’, outlines key policy priorities
for the future, with the first challenge being an ‘Ageing society’, followed by ‘Artificial
Intelligence (AI)’. The strategy emphasis is on the importance of enabling older
citizens to lead independent and fulfilling lives while contributing to society.

2.2 Applications for the Visually Impaired

AI-powered assistive technologies for vision significantly enhance accessibility and
independence for individuals with visual impairments. These technologies utilise
advanced algorithms to interpret visual data, transforming images and text into
audible information. Applications such as text-to-speech readers can scan printed
material and read it aloud, while object recognition systems identify and describe
objects in the environment, facilitating navigation and interaction for the visually
impaired. Facial recognition software helps users identify acquaintances in social
settings, enhancing their social interaction and independence. Navigation apps specif-
ically designed for the visually impaired use AI to provide audio directions, warn
of obstacles, and offer route suggestions in real-time. The factual benefits of these
vision-focused AI technologies are profound, offering users not only assistance with
daily activities but also a greater sense of autonomy, safety, and inclusion in society.

BeMyEyes is a low tech app created in 2015 that connects visually impaired
people with sighted volunteers through live video calls. Users can ask for help with
anything that requires sight, like reading labels or finding items, and a volunteer
answers the call to assist them by looking through the user’s phone camera. This
product has evolved through a Microsoft partnership to incorporate extensions such
as specialised help, which helps users to connect to the right people such as colleagues
at work and specific customer support personnel. The tagline, ‘Seeing the world
together’, reflects how this app enables access to another pair of human eyes. The
fine-tuning of which human to pair with, based on what they know, highlights that
vision is not enough without the ability to interpret what is seen. BeMyEyes main
limitation is its dependence on an available human with the right domain knowledge.

Google Lookout is specifically engineered to process visual data autonomously,
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reducing the need for human assistance and enabling users to carry out daily tasks
more independently. It is designed to help people identify information about their
surroundings. It uses the phone’s camera and AI to recognize objects, text, and
people and then provides auditory feedback to the user. For example, it can read out
text from labels, documents, or signs, identify products by their labels, and describe
the environment, such as noting the presence of a chair or a door. It operates in
6 activity modes; Text, Document, Explore, Currency, Food Labels and the newly
added Images which is in beta and allows question-and-answer functionality on an
uploaded image. The latest feature allows users to simply point their camera, snap
a photo, and ask a question about the captured scene. They then receive detailed
information about the contents of the photo. The visually impaired person is deter-
mining the region of interest, by adjusting the zoom to either close in or pull back
enhancing the level of detail provided. This system is limited by the human ability to
point the camera in the right direction and is dependent on the system’s knowledge
and ability to reason. They ask a question and receive an answer much like the game,
Who am I? where the player tries to narrow down the possible answers to the true
answer.

OrCam MyEye is a camera that can be attached to glasses, imitating how hu-
mans capture visual information, through the natural movement of the head. The
camera is voice activated in a ‘Hey OrCam’ type way and reads aloud text from
books, screens, products, labels, street signs, identifies faces, products and currency.

Seeing AI is a Microsoft-developed app that assists users by supplying audio
description about the environment they are in, by utilising the camera on their
smartphone. The app uses AI to recognise and narrate the world around the user.
It has several channels; Short Text, Documents, Products, Scenes, People, Currency,
Colours, Handwriting, Light and Images from other apps. It uses audio to help guide
the user to capture a useful region of interest, such as a barcode or page of text. An
interesting human-to-computer interface is the functionality for a user to navigate the
scene using their finger and then explore it based on descriptive feedback. The level
of detail given can be adjusted and the user has question-and-answer functionality
on the content in the documents.

While all these apps aim to enhance independence for visually impaired people,
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the choice among them depends on the user’s preference for interaction (human vs.
automated), the type of assistance needed (environmental awareness, text reading
or social interaction), and the convenience of use (wearable vs. smartphone app).
Except for BeMyEyes, the ability of the application to deliver intelligent answers is
dependent on the accuracy of the underlying algorithms.

2.3 AI Technologies

Artificial Intelligence (AI) has experienced several phases of evolution. Initially, the
focus of AI was predominantly on Machine Learning (ML). At this stage, the main
concern was about the how, the methods and processes that enabled machines to
learn from data. This focus became stronger as the field developed various learning
algorithms, forming the basis for machines to make predictions or decisions without
them needing to explicitly program for a task.

As the field progressed, a more specialised branch known as Deep Learning (DL)
emerged. This wasn’t just an extension of traditional machine learning, it marked
a significant shift in focus. Instead of the broader mechanisms of learning, deep
learning homed in on the intricacies of features within data and the architecture of
the neural networks. These neural networks, especially deep ones, allowed for the
automatic extraction of intricate patterns and representations from vast amounts of
data, pushing the boundaries of what machines could recognise and comprehend.

Today, the landscape of AI is shifting once more. The trend is now on the
comprehensive functionalities that foundational models can offer. Instead of solely
focusing on the mechanics of learning or the intricacies of data features, the current
trend is to create adaptable models that can be fine-tuned for a broad array of tasks.
These foundational models act as foundations for developing and improving various
specific AI applications.

2.3.1 AI General Frameworks

There are several frameworks and libraries that provide developers with powerful
tools to quickly build and deploy machine learning applications across various fields
like text analysis, image recognition, and speech processing. They make cutting-edge
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AI accessible, allowing developers to use pre-trained models which saves time and
effort that would otherwise be spent on developing and training models from the
ground up. This is a list of some of them that are currently supported and innovated:

• Hugging Face: Is a comprehensive library for natural language processing
(NLP), it offers a wide range of pre-trained models for tasks like text classifica-
tion, translation, and question answering. Hugging Face want to become the
place with the largest collection of models and datasets to democratise AI for
all, through open-source (OS) code and technologies.

• Google Brain: The Tensorflow Model Garden provides a collection of models
and algorithms implemented in TensorFlow for a variety of machine learning
tasks, including vision, image classification, Object Detection and Segmenta-
tion, Video Classification, and Natural Language Processing.

• Facebook Artificial Intelligence Research (FAIR): Their TorchHub is a repos-
itory within PyTorch for sharing pre-trained models contributed by the com-
munity, covering image classification, object detection, and more. Governed
by Pytorch Foundation which is a subsidiary of the Linus Foundation.

• Intel: The OpenVINO is a cross-platform deep learning toolkit developed
by Intel. The name stands for ‘Open Visual Inference and Neural Network
Optimization’. Part of the OpenVINO toolkit, includes pre-trained models
optimized for performance on Intel hardware for tasks like face recognition and
object detection.

• Salesforce: The LAVIS repository is a one-stop Library for Language-Vision
Intelligence.

2.3.2 Computer Vision Frameworks

Libraries specifically for Computer Vision are:

• OpenCV (Open Source Computer Vision Library): While primarily a library
for computer vision, OpenCV also supports the use of deep learning models,
particularly for image and video analysis tasks. It includes functionalities for
processing and analysing images and videos, and it can be used to implement
and deploy computer vision and deep learning applications.
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• Facebook Artificial Intelligence Research (FAIR): Their Detectron2 is an ad-
vanced library that they say delivers ‘object detection, segmentation algorithms,
panoptic segmentation, Densepose, Cascade R-CNN, rotated bounding boxes,
PointRend, DeepLab, ViTDet, MViTv2’.

The DL Model landscape is complex due to the programming languages used, the
hardware requirements, ownership of hardware and software rights, and the quest
for market dominance. Comparing these models requires the definition of specific
tasks and benchmark datasets on which to quantify their accuracy.

2.3.3 Computer Vision Tasks and Models

Computer Vision encompasses a broad range of tasks aimed at enabling computers
to interpret and understand visual information from the world. The main recognised
tasks in Computer Vision include:

• Object Detection: Identifying objects within an image and drawing bounding
boxes around them.

• Image Classification: Assigning a label to an entire image based on its content.

• Semantic Segmentation: Classifying each pixel of an image into a predefined
category.

• Instance Segmentation: Similar to semantic segmentation, but it also differen-
tiates between instances of the same class.

• Edge Detection: Identifying the edges in an image to understand object bound-
aries.

• Face Recognition and Detection: Detecting and recognising human faces within
images.

• Optical Character Recognition (OCR): Converting text in images into machine-
encoded text.

• Pose Estimation: Determining the position and orientation of objects or human
figures.

• Depth Estimation: Estimating the distance between objects in an image and
the camera.
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• Image Generation: Creating new images or modifying existing ones (e.g.,
through Generative Adversarial Networks or GANs).

• Video Analysis: Understanding, interpreting, and manipulating video content.

• Action Recognition: Identifying actions or activities in videos.

• Object Tracking: Tracking the movement of objects across frames in videos.

• Scene Reconstruction: Creating a 3D model of a scene from images or video.

• Anomaly Detection: Identifying unusual patterns or outliers in visual data that
do not conform to expected behaviour.

From these basic building blocks more complex tasks are created. These tasks
often require understanding and processing visual information at a higher level,
integrating multiple techniques and methodologies. Here are some notable composite
computer vision tasks:

• Visual Question Answering (VQA): Given an image and a question in natural
language about the image, the task is to provide an accurate answer. This com-
bines elements of image understanding with natural language comprehension
and generation.

• Visual Relationship Detection: Involves identifying relationships between ob-
jects in an image, such as ‘person riding bicycle’ or ‘cat under table’. This task
combines object detection with the understanding of the interactions or spatial
relationships between detected objects.

• Scene Understanding: Encompasses a comprehensive analysis of an entire
scene, including object detection, segmentation, and recognition, as well as
understanding the spatial layout and the interactions between elements within
the scene.

• Image Captioning: Requires both the recognition of objects, attributes, and
actions in images and the ability to describe these visually perceived elements
in natural language. This task bridges the gap between computer vision and
natural language processing (NLP).
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• Panoptic Segmentation: Merges semantic segmentation (where the aim is to
classify each pixel into a category) with instance segmentation (which differen-
tiates between individual objects of the same category). This task provides a
comprehensive understanding of an image by labeling every pixel not just by
its class, but also distinguishing between different instances of the same class.

• 3D Object Reconstruction: Involves creating 3D models of objects from one
or more images. This task combines object detection, depth estimation, and
sometimes motion analysis to reconstruct the shape and appearance of objects
in three dimensions.

• Person Re-identification: The aim is to recognise individuals across different
scenes or camera angles, often combining object detection, facial recognition,
and feature matching techniques.

• Action Detection in Videos: Goes beyond action recognition by also localizing
the action temporally and spatially within a video. This requires analysing
sequences of frames to understand when an action starts and ends and where
it occurs in the scene.

• Multi-object Tracking: Tracks multiple objects as they move across frames in
a video. This task combines object detection with motion analysis to maintain
the identity of each object over time.

2.3.4 Latent Variable Models

Latent Variable Models (LVMs) are a class of statistical models used to describe
relationships in data by introducing latent (hidden) variables. These hidden variables
capture the underlying, unobserved processes that influence the observed data. LVMs
are particularly useful for dealing with complexities in data, such as when the data
has underlying patterns or structures that are not directly observable. Finding the
optimum combination of the following algorithms, in transforming an image into a
new orthogonal coordinate system, is the balance and effectiveness that AI aspires
to achieve.

• Optimally describes the variance in the training dataset.
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• Will generalise to new unseen and evolving tasks for out-of-distribution data.
What we mean by this is a desire to generalise from training to application
data and also from sample to population data.

. At its simplest these are the tools used to translate what the image shows into a
Term or Terms. Key characteristics and uses of Latent Variable Models include:

• Dimensionality Reduction: In AI, dimensionality reduction techniques are
invaluable for simplifying complex data, enhancing computational efficiency,
and improving model performance. These methods, ranging from linear ap-
proaches like Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA), which are adept at handling datasets with straightforward
linear relationships, to non-linear strategies such as; t-distributed Stochastic
Neighbour Embedding (t-SNE), Uniform Manifold Approximation and Projec-
tion (UMAP), and Autoencoders, which excel in dealing with intricate data
structures. Independent Component Analysis (ICA) excels in distilling multi-
variate signals into independent components, making it ideal for applications
requiring the separation of mixed signals. Factor Analysis dives into datasets
laden with variables to unearth latent dimensions, thereby simplifying data
interpretation in fields like psychology and market research. Isomaps preserve
the global geometry of data, adeptly handling non-linear relationships by main-
taining the intrinsic geometric structure, which is crucial for accurate modeling
in tasks like facial recognition. Multidimensional Scaling (MDS) visualises the
similarities or dissimilarities among data points as spatial distances, facilitating
pattern recognition and outlier detection. They not only reduce the computa-
tional load by minimising the number of features that models need to process
but also help in uncovering hidden patterns within the data, making it easier
to analyse and visualise. By distilling the essence of data while discarding
redundant or irrelevant information.

• Feature Extraction: By modeling hidden factors, LVMs can extract meaningful
features from the data that contribute to its generation or structure. This is
particularly useful in tasks like speech recognition or image processing.

• Handling Missing Data: LVMs can infer missing values in a dataset by estimat-
ing the latent variables that would likely result in the observed data, providing
a principled approach to impute missing data.
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• Clustering and Classification: Some LVMs, like Gaussian Mixture Models
(GMMs), can discover clusters within data, assigning data points to groups
based on the underlying latent variables.

• Generative Modeling: LVMs are often used to build generative models, which
can generate new data instances similar to the observed data. Examples in-
clude Variational Autoencoders (VAEs) and Generative Adversarial Networks
(GANs), though GANs are a more complex case involving game theory along-
side latent variables.

• Discovering Hidden Structures: In fields like natural language processing, LVMs
can uncover latent structures in text, such as topics in collections of documents
using models like Latent Dirichlet Allocation (LDA).

The approach to modeling with LVMs involves specifying a mathematical rela-
tionship between the observed variables, the latent variables, and the parameters of
the model. Inference in LVMs typically focuses on learning the model parameters
and estimating the hidden variables given observed data, often employing techniques
like Expectation-Maximisation (EM), Markov Chain Monte Carlo (MCMC) simula-
tions, or variational inference. Here are some of the techniques, although some have
already been mentioned, here they are defined from a mathematical point of view:

• Gaussian Mixture Models (GMMs): A probabilistic model that assumes all
the data points are generated from a mixture of several Gaussian distributions
with unknown parameters.

• Principal Component Analysis (PCA): A technique for dimensionality reduc-
tion that identifies the directions (principal components) that maximise the
variance in high-dimensional data.

• Latent Dirichlet Allocation (LDA): A generative statistical model that de-
scribes collections of discrete data such as text corpora by assuming a set of
topics that generate words in documents.

• Hidden Markov Models (HMMs): Used for temporal data, HMMs model the
observed data as a sequence of outputs generated by transitions between hidden
states according to certain probabilities.
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• Variational Autoencoders (VAEs): A generative model that learns to encode
input data into a condensed latent space and then reconstruct the input from
this space, useful for tasks like image generation and denoising.

2.3.5 Computing Memory Types

VQA systems analyse images to identify objects, attributes, and their relationships,
then they store this information in a structured format. This allows the VQA system
to reference the stored scene information when processing questions, ensuring that
it can accurately interpret the visual content and provide coherent answers based on
the combination of visual analysis and symbolic reasoning. Databases enable this
structured data to be efficiently retrieved and manipulated for answering questions
about visual content. Databases support the indexing of images, annotations, and
metadata, facilitating quick access to relevant information, an example of a graph
database is Neo4J. Databases also allow for the integration of additional knowledge
bases such as ConceptNet that can enrich the system’s understanding, enhancing its
ability to interpret images and generate accurate, contextually relevant answers.

Neo4J’s graph structure is designed around nodes, relationships, and properties.
Nodes represent entities or objects, while relationships provide the connections be-
tween these nodes, with direction and type that describe how nodes are related.
Properties are key-value pairs attached to both nodes and relationships, allowing for
the storage of additional information. This structure is highly flexible and efficient
for modeling complex networks of data, making it ideal for applications that require
the representation of intricate relationships, such as the interconnected data within
the VQA task. This graph structure naturally represents the interconnectedness
of scene elements, facilitating quick traversal and query execution. This allows for
dynamic reasoning over visual content and supports the integration of diverse data
sources for enriched context.

ConceptNet is a semantic network that provides an extensive knowledge base of
common sense, enabling systems to understand and interpret human language in a
more nuanced manner. By integrating ConceptNet into a VQA system, these systems
gain access to a rich set of relationships and properties across diverse concepts,
enhancing their ability to process and answer questions with enriched context. This
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integration allows VQA systems to leverage background knowledge and inferential
reasoning, improving their performance on tasks requiring understanding beyond
the visual information present in the image alone.

2.3.6 Natural Language Processing (NLP)

Natural Language Processing (NLP) is a field at the intersection of computer sci-
ence, artificial intelligence, and linguistics. It focuses on the interaction between
computers and humans through natural language. The goal is to enable computers
to understand, interpret, and generate human languages in a valuable way. NLP
encompasses a range of technologies for processing and analysing text and speech,
such as language translation, sentiment analysis, chatbots, and voice recognition
systems. It plays a crucial role in facilitating seamless communication between
humans and machines, driving advancements in search engines, digital assistants,
and automated customer service. Referring expressions in linguistics and natural
language processing (NLP) are phrases or words used to identify or describe entities
within a given context. They enable speakers or writers to refer to objects, people,
locations, or abstract concepts in communication.

In a VQA system, referring expressions are used to pinpoint and describe specific
parts of an image in response to a question. The system analyses the image and the
query, identifying relevant entities and their attributes. It then applies an under-
standing of referring expressions to generate accurate answers that correctly identify
and describe these entities within the visual context. This involves interpreting the
semantics of the query, mapping it to visual elements, and employing referring ex-
pressions to articulate the answer, enhancing the system’s ability to provide precise
and contextually appropriate responses.

2.3.7 Large Language Model (LLM)

Large Language Models (LLMs) in the context of natural language processing are
advanced AI systems trained on vast amounts of text data. These models, such
as Generative Pre-trained Transformer GPT[5] and Bidirectional Encoder Repre-
sentations from Transformers (BERT) [6], have a deep understanding of language
patterns, grammar, and context. They can generate coherent text, answer questions,
translate languages, and more, mimicking human-like language abilities. LLMs have
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transformed NLP applications, enabling more accurate and contextually aware ma-
chine understanding and generation of natural language. Over the last 2 years, IBM
has changed its focus from rule-based systems to LLMs as evidenced throughout
their Summer school. These methods required significant domain expertise and were
often task-specific using statistical methods like n-grams, analysis of word occurrence
frequencies for predicting text sequences. These previous systems lacked the com-
plexity to grasp language nuances fully, lacking the generalisability of the current
LLMs.

The Large Language Models, like T5 [7], BLOOM [8], and GPT-3 [5], have
been advancing rapidly and could be an ideal module to deliver the query answer-
ing functionality required by the VQA task. Among them, ChatGPT, based on
Instruct-GPT [9], stands out for its ability to maintain conversation contexts effec-
tively. Visual-ChatGPT, introduced by Wu et al. [10], combines ChatGPT with
Visual Foundational Models, enabling ChatGPT to handle complex visual tasks.

In communication, we often use brief language, expecting others to infer the
unsaid. This process involves guessing the extent and context of terms we use, which
isn’t immediately obvious to the listener. They must interpret the unspoken parts of
our message. Similarly, in developing larger language models, machine learning and
data-driven approaches aim to uncover the underlying meaning not directly visible in
the data, striving to decode the implicit content and fill in the gaps of understanding.

2.3.8 Natural Language Question and Answers

Integrating Large Language Models (LLMs) with Knowledge Graphs (KGs) enables
natural language question answering. This combination addresses two main areas;
logical reasoning with knowledge graphs and using prompts for reasoning in large
language models.

Adapted from Pan et al [1] Figure 2.1 offers a view of the research landscape
concerning the integration of LLMs and KGs. It presents different ways to com-
bine Knowledge Graphs (KGs) with Large Language Models (LLMs), including
KG-enhanced LLMs, KG-augmented LLMs, and LLMs working in synergy with
KGs. Our current research aligns with the areas highlighted in blue, though there is
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potential to expand into the other sectors.

Figure 2.1: Research categories in LLM-KG integration. NS-VQA requirements align
with blue areas. Image Credit [1].

LLMs are reshaping the landscape of knowledge representation and there’s a clear
trend towards blending explicit knowledge like KGs, with parametric knowledge from
LLMs. Large language models (LLMs) are considered one of the most remarkable
models in AI research, having an ability to harvest the internet artifact as an em-
bodiment of societal knowledge. However, the issue of hallucinations, sometimes
referred to as confabulations remains a significant hurdle before it can be trusted
and there is no current clear path towards resolution.

There is an ongoing need for a framework that incorporates encoded meaning.
A comprehensive understanding of the combined capabilities of Knowledge Graphs
and Large Language Models is discussed in-depth by Pan et al. [1]. There is a trend
towards Knowledge Computing, which expands reasoning across various knowledge
formats. Now, KGs, a standard for explicit knowledge, are being merged with
Transformer-based LLMs such as BERT [11], RoBERTa [12], GPT series [5], and
LLaMA [13]. Some research augments KGs with LLM for tasks like knowledge
extraction, while others leverage KGs to enhance LLMs for training or knowledge
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augmentation.

Knowledge graphs (KGs) offer an organised way to represent information, mak-
ing it easier for reasoning and inference. Some critics such as Bender et al [14]
argue that the knowledge in LLMs relies more on statistical patterns than genuine
comprehension. Advocates, such as those behind ChatGPT, underscore its abil-
ity in generalising from vast datasets, demonstrating extensive information capture
and impressive language comprehension. However, Zhang et al [15] discuss how
LLMs might produce plausible but incorrect responses, due to the absence of explicit
knowledge representation. Li et al [16] conclude that LLM become, ‘incompetent
directional entailment learners, in contrast to entailment graphs’. Building KGs can
be resource-intensive, and while training LLMs is costly, they offer immediate utility
for various applications.

There’s an emerging trend of using LLMs to distil knowledge for end users. Some
research focuses on harmonising KGs with prompts to amplify LLM effectiveness
and trustworthiness. Studies tap into KGs to refine prompt creation, achieving
enhanced volume, quality, and diversity over traditional methods. Knowledge graphs
are used in both single and multi-turn prompts, offering efficient traversal paths
with minimal authoring effort, and promoting meaningful learning patterns. LLMs
have also excelled in multi-step reasoning, various methods were used to achieve this.
Wei et al [17] in ’Chain-of-Thought’, allowed the model to breakdown problems into
intermediate steps, similar to human thought processes, which not only improved
their problem-solving capabilities but also provided transparency into how the model
arrived at it’s conclusions. Chowdhery et al PaLM model [18] used a combination of
model scaling and innovative prompting techniques, which suggested the emergence
of new capabilities as models reach sufficient size. and Ye et al propose InstructGLM
(Instruction-finetuned Graph Language Model) [19] which uses natural language to
describe the multi-scale geometric structure of graphs and then fine-tuning a LLM
accordingly. It adds flexibility, scalability, and compatibility to multi-step reasoning
in graph machine learning, allowing for efficient handling of complex graph tasks
without the need for specialised graph attention mechanisms or token representations.
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2.4 The Visual Question Answering Task

The Visual Question Answering (VQA) task is chosen as the task that this research
will focus on. Its selection was based on its functionality to help the visually impaired
by combining seeing and understanding images with answering questions in natural
language. This technology acts as an eyesight substitute, allowing visually impaired
users to ask questions and receive answers about their surroundings, making daily
activities more accessible. VQA offers real-time help, enabling users to understand
their environment instantly through smartphones or wearable tech. It’s versatile,
answering a wide range of questions from simple object identification to complex
scene descriptions. The technology can be customised for individual needs, improving
its relevance and effectiveness in personal scenarios. Other terms that are in use with
similar functionality are Vision Language Models (VLM) and when these models
use frozen image encoders as priors (pre learnt knowledge) they’re called Vision
Language Pretraining models (VLP).

2.4.1 Significance of Deep Learning

Deep learning has significantly impacted Visual Question Answering (VQA) by intro-
ducing end-to-end neural networks that utilise self-supervised Vision and Language
Pre-training (VLP). These networks excel at learning from vast image-text data but
often falter in logical reasoning task, as discussed in Malinowski et al [47]. Yu et al [
48], Chen et al [49], Zhang et al [50] and Zhou et al [51] discuss methods using visual
attention, this is a key component in many VQA tasks. Research suggests that when
a model learns to pay close attention to both images and text simultaneously, it
can enhance how it represents images and questions. This, in turn, leads to better
predictions when answering questions because the model can focus on crucial parts
of the visuals and important words in the text to improve its understanding. There’s
a growing trend towards using both image and textual data (rather than single la-
bels) for training, with models like Contrastive Language-Image Pre-Training (CLIP)
suggesting the potential of open-set challenges through linguistic domains.

2.4.2 Notable Models

GLIP [20] redefines object detection as a phrase grounding problem. Their method
merges phrase grounding and object detection. In this perspective, object detection
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becomes a specific type of phrase grounding, while phrase grounding is a context-
driven object detection, offering a new perspective on both tasks.

DeepMind’s Flamingo belongs to this class of models and is designed to process
visual data interleaved with text using Gated cross attention dense layers where
the keys and values come from the vision input. It generates free-form text as its
output. BLIP2 [21], which is short for Bootstrapping Language-Image Pre-training
with Frozen Image Encoders and Large Language Models is also an example of a VLM
and currently the top variant called BLIP-2 ViT-G Flan T5 XXL (Zero-shot) scores
65.2% on the VQA v2 test-dev dataset as recorded by the web site PapersWithCode.
This is a model that takes two frozen models; an image encoder and LLM, and then
trains a Querying-Transformer (Q-Transformer) in two passes to create a bridge
between them. Its focus is on aligning image features to questions rather than the
referent in the question. BLIP2 and Flamingo authors say that the freezing of the
image encoder stops catastrophic forgetting, which occurs when they trial fine-tuning
in ablation studies. All these models add a disclaimer stating they are limited when
using Foundational models, since their outputs could be unexpected, inaccurate or
even inappropriate.

LLaVa [22] short for Large Language and Vision Assistant that appeared in Arxiv
after our NS-IL had been accepted by IEEE, uses the LLM ability to align with
the users question to give an appropriate answer. It has a structure that links an
Image Encoder through a transformer to a LLM. PaLI [23] by Google Research is
straightforward and designed for scalability. It employs an encoder-decoder Trans-
former structure, incorporating a high-capacity Vision Transformer (ViT) element
for handling image data. It is currently (12/2/2024) ranking 1st on the VQA v2
Test-Dev dataset with 84.3% accuracy, The best BLIP model ranks 41st with a
65% accuracy and Flamingo ranks 48th with a 56% accuracy. Drilling into these
structures shows the accuracy is directly dependent on the usefulness of the image
encodings in relation to the task and dependent on the dataset. PaLI used a Vision
Transformer (ViT) architecture named ViT-e to create the image encoding. ViT-e
has the same architecture and used the same training recipe as the 1.8B parameter
ViT-G model [24]. OpenFlamingo, LLaVa and many more use a model called CLIP
[25] for image encodings.
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The CLIP model (Contrastive Language–Image Pre-training) by OpenAI lever-
ages a method centred on contrastive learning to effectively link visual and textual
data. By training on a vast dataset of image-text pairs, it uses separate encoders
to create embeddings for both modalities, learning to associate images with corre-
sponding texts by bringing correct pairs closer and pushing incorrect ones apart.
This foundational step allows for the dynamic creation of dataset classifiers directly
from textual labels, transforming class descriptions into embeddings that can be
compared against image representations. CLIP achieves zero-shot prediction capa-
bilities, enabling it to classify images into unseen categories by matching the image’s
embedding with the closest textual label embedding.

To use a frozen Large Language Model, aligning visual features with the tex-
tual space is necessary. Various approaches, such as the ‘Frozen’ [26] model and
the ‘Flamingo’ [27] model, have addressed this challenge differently. Downstream
activities to make these foundational models more relevant include:

• Fine Tuning image encoders - Image encoders, which transform visual inputs
into a feature-rich, machine-readable format, are crucial for enabling LLMs to
‘understand’ visual content. Fine-tuning these encoders ensures that the visual
features are more aligned with the text representations used by LLMs. This
fine-tuning process involves adjusting the encoder’s parameters specifically for
the task at hand, which could be identifying objects in an image, understanding
scenes, or answering visually grounded questions. The goal is to optimise the
encoder’s ability to generate representations that are both comprehensive and
compatible with the textual modality processed by the LLM.

• New Layers in the LLM - These new layers are designed to process and integrate
the feature vectors generated by the image encoders, effectively bridging the
gap between the visual and textual modalities. This could involve layers that
perform specific transformations on the input features, layers that facilitate
attention mechanisms between words and visual elements, or even layers that
enable more complex interactions between the different types of data.

Tiong et al [28] propose a zero-shot VQA State-of-the-art model which can quickly
adapt to new Visual Question Answering (VQA) tasks called Plug-and-Play VQA.
These models effectively incorporate external context, bridging vision and language
pre-trained models, handling multimodal inputs, and achieving zero-shot learning.
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Jin et al [29] explore prompt-based learning models to reduce dependence on VQA
training data while maintaining accuracy, making effective use of both image and
textual context. Recognising the limitations of Large Language Model-based rea-
soning, recent proposals have emerged to integrate language models with external
symbolic plug-ins such as Knowledge Graphs (KG) or toolkits.

2.4.3 Benchmarking Datasets

Datasets are vital in AI and ML, serving as the base for building and training mod-
els by providing examples to learn from. They are key for benchmarking, allowing
for the objective evaluation and comparison of AI models’ performances. High-
quality datasets ensure models can handle real-world scenarios effectively, making
AI solutions more robust and versatile. Diverse datasets drive innovation, pushing
researchers to solve a broad array of problems and develop new AI techniques. They
also play a crucial role in identifying and reducing biases, ensuring AI technologies
are fair and equitable. As a result of President Biden’s Executive Order 14110 in
October 2023, the National Artificial Intelligence Research Resource Pilot (NAIRR)
was formed with the aim to create resources that advance trustworthy AI, protects
privacy, civil rights, and civil liberties. A focus on independent datasets would en-
able a true comparison of domain models. What is in the dataset and what that
represents for society is a much bigger question to answer. It is a nuanced question as
to whether datasets should be open so learning can be assessed and stay transparent.
The importance of the dataset cannot be understated, whether it reflects what cur-
rently the world is or what we think the world ought to be and whose point of view
that ought was created from is the driving force behind many political discussions
in the pursuit of control.

Some of the VQA benchmarks are listed here, Figure 2.2 shows where the cross
overs are of these datasets. The year is shown to help understand the dataset
evolution.

• COCO [30]: The Microsoft COCO dataset provides 91 object types and ap-
proximately 2.5 million labeled instances in around 328,000 images. It focuses
on identifying objects, understanding their precise boundaries, and describing
images with text.
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Figure 2.2: Dataset synergies.

• VQA Dataset (2015) [31]: This is one of the foundational datasets introduced
for the VQA task. It contains open-ended questions about images, where the
answers can be a word or a phrase. The dataset is split into multiple versions,
with VQA v2 being a popular choice as it addresses some of the biases found in
the earlier version by including complementary pairs of images with questions
that have different answers.

• Visual7W (2016) [32]: This dataset extends the Visual Genome project by
adding question-answer pairs to the images, categorised into who, what, where,
when, why, and how questions, hence the name "7W." It provides both multiple-
choice and open-ended questions.

• Stanford & Facebook AI Research’s CLEVR dataset (2017) [33]: A dataset
designed to evaluate a model’s ability to understand complex reasoning about
objects. CLEVR contains synthetic images of 3D shapes where questions
require multi-step reasoning, making it significantly different from datasets
based on natural images.

• Stanford’s GQA Dataset (2019) [34]: GQA: Focused on real-world visual rea-
soning and compositional question answering, GQA offers a large number of
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visual questions that require understanding object properties, spatial relation-
ships, comparisons, and more. It is designed to support more detailed and
structured reasoning than other datasets.

• OK-VQA (2019) [35]: The Outside Knowledge VQA dataset, OK-VQA, is
designed to assess a model’s ability to use external knowledge (information not
present in the image) to answer questions. This dataset challenges models to
go beyond visual recognition to leverage broad world knowledge.

• VizWiz [36]: Unique among VQA datasets, VizWiz focuses on images taken by
visually impaired users. The questions are sourced from real-world scenarios,
making the dataset diverse and challenging due to the often poor quality of
images and the real-life nature of the questions.

As a new era emerges, benchmarks such as AgentBench [37] have been created
to evaluate Large Language Models (LLMs) acting as Agents in interactive envi-
ronments, beyond traditional NLP tasks. It features 8 environments for assessing
LLMs’ reasoning, decision-making, and open-ended generation abilities. Testing
across 27 API-based and open-source LLMs revealed significant performance differ-
ences, particularly highlighting commercial LLMs’ superior capabilities. Challenges
include poor long-term reasoning and instruction following. Enhancements in train-
ing, focusing on code and multi-turn alignment data, are suggested to improve LLM
Agent performance. AgentBench provides datasets, environments, and an evaluation
package for comprehensive analysis.

2.4.4 Examples: NS-VQA & NS-CL Model

The Neuro-Symbolic architectural approach separates reasoning from vision and
language understanding. They merge structured image representation with symbolic
programs from sentences, to reason and gain answers, integrating deep learning for
visual and language recognition, with symbolic execution for reasoning, examples
can be found in NS-VQA [38] and Cho et al [39]. The Neuro-Symbolic Concept
Learner (NS-CL) [40] is a model that shares similarities with the Neuro-Symbolic
Visual Question Answering (NS-VQA) architecture. NS-CL has a novel approach
that combines symbolic programming and neural network processing to tackle com-
plex tasks. It excels in breaking down questions into a series of programs, serving as
step-by-step instructions for finding answers. What sets NS-CL apart is its ability to
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execute these programs on object features, which contain crucial information about
the objects in the images. Vedantam et al [41] have introduced a novel approach to
visual question answering using probabilistic neural-symbolic models. These models
incorporate symbolic functional programs to represent how questions are answered
based on visual data. What makes them unique is the addition of a stochastic latent
variable, representing uncertainty in program generation and execution. During
training, the model learns how visual input, questions, and programs are related.
When confronted with new questions, it employs probabilistic methods to estimate
possible values for the latent variable, allowing for different program variations. This
flexibility enables the model to provide nuanced, probabilistic answers by generating
and choosing answers from various program interpretations.

The Neuro-Symbolic Visual Question Answering model NS-VQA [38] is an ex-
ample of combining the strengths of neural networks (excellent at processing raw,
unstructured data) with symbolic AI (superior at logical reasoning and handling
structured knowledge). This hybrid approach aims to improve AI’s understanding
and reasoning capabilities, allowing it to perform complex tasks that require both
processing vast amounts of data and applying precise, rule-based reasoning.

The NS-VQA disentangles reasoning from vision and language understanding. It
introduces a model that first interprets an image into a structured scene representa-
tion and then translates a question into a program trace, executing this program to
generate an answer. Despite achieving high accuracy (99%) on the CLEVR dataset
and showing promising results in scene understanding within Minecraft environments,
challenges remain. The system uses predefined rules and knowledge bases to preserve
logical consistency and relevance in the generated program or query, ensuring the
output aligns with the semantic content of both the image and the question. The
questions are not in natural language. The system has not been designed to carry
out incremental learning or to adapt to new information with minimal data. If new
segmentations are required, the scene parser needs to be retrained using the full
dataset.
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2.5 VQA Enhancements

This section introduces incremental learning in neural networks which addresses a
critical challenge. Traditional systems lack the design to learn incrementally or adapt
to new data with minimal resources. Often, to incorporate new classes, a complete
retraining from the full dataset is required, pointing to a significant need for more
flexible and efficient learning approaches. Incremental learning aims to solve these
issues by enabling neural networks to update their knowledge continuously without
the need for extensive retraining, making AI systems more adaptable and dynamic.

2.5.1 Incremental Learning

Catastrophic Forgetting (CF), as pinpointed by McCloskey and Cohen [42] over
three decades ago, occurs when new learning disrupts old learning, leading to de-
creased accuracy. Ideally, maintaining the stability of a neural network’s weights
helps retain previously learned tasks, but excessive stability hampers the model’s
ability to acquire new tasks. Kirkpatrick et al [43] discuss the core challenge of the
stability-plasticity dilemma, which lies in designing a balanced system that remains
responsive to new inputs without being excessively perturbed to enable incremental
learning.

Incremental Learning in Neural Nets involves gradually updating a trained model
as it learns new Classes without forgetting the previously learned ones, DeLange et
al [44] contrasts and evaluates multiple approaches. The Class Incremental Learning
Task is a subset of Incremental Learning, it imposes constraints such as a limited mem-
ory or the absence of previously learned samples during training. These constraints
artificially mirror the environment when there are practical considerations like stor-
age and computing limitations, which prevents the retraining of the entire model for
the addition of each new Class. It’s important to note that Incremental Learning
differs from Transfer Learning because it aims to maintain good performance in
both old and new tasks. Evaluating an Incremental Learner involves assessing its
classifier’s performance on past and present tasks to ensure its adaptability to future,
unseen Classes. Additionally, Lopez-Paz and Ranzato [45] introduced the concepts of
Backward Transfer (BWT) and Forward Transfer (FWT), which measure how learn-
ing a new task influences the performance of previous and future tasks, respectively.
Chaudhry et al [46] discuss these emerging metrics for forgetting and intransigence
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and try to strike a balance, between adaptability and retaining previously acquired
knowledge.

Standard Incremental Learner models are usually constructed using a neural
network framework, and this approach inherently brings about various challenges,
including CF, memory limitations, and concept drift. Reviews and ontologies in this
field, such as those found in Masana et al [47] categories the field into Regularisation,
Exemplar and Task-based, Parisi et al [48] categories into Regularisation, Dynamic
Architectures and Memory Replay and Complementary Learning Systems, Luo et
al [49] categorise into Architectural, Regularisation (further divided into Weight
Regularisation and Distillation), Rehearsal and Pseudo-Rehearsal. Additionally,
they mention other approaches meta-learning and reinforcement learning-inspired
methods. and De Lange et al [50] categorise as Replay, Regularisation and Parameter
isolation. Figure 2.3, has been adapted from Liu et al’s Taxonomy [2], which was
chosen for its structured categories and provides a framework to drill into. They
establish three primary categories to address challenges within DL Class Incremental
Learning. These are; (1) Parameter Regularisation, (2) Knowledge Distillation, and
(3) Dynamic Architecture. We’ll cover each of these next.

Figure 2.3: Ontology of Incremental Learners adapted from Liu et al [2]. The
models shown are the most cited according to Liu et al (*) or I have
mentioned it in the related work. Model’s names in Table 2.1.
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Description Model Name Cite
Learning Without Forgetting LwF [51]
Incremental classifier and representation learning iCaRL [52]
Memory Replay GANs MeRGAN [2]
Elastic Weight Consolidation EWC [53]
Memory Aware Synapses: Learning What (not) to forget. MAS [54]
Knowledge transfer in deep block-modular neural networks. B-MNN [55]
Progressive Neural Networks PNN [56]
Progress & Compress P&C [57]
Residual continual learning. ResCL [58]
Fearnet: Brain Inspired Model for Incremental Learning. FearNet [59]
Lifelong learning of spatiotemporal representations GDM [60]
with dual-memory recurrent self-organisation.

Table 2.1: Model Names for Figure 2.3

Methods based on Parameter Regularisation employ techniques like constraining
the modification of crucial parameters, implementing dropout, and applying early
stopping. These methods share a common goal, to preserve knowledge from previous
tasks. On the other hand, Knowledge Distillation techniques involve transferring
knowledge from an old model to the current one. This transfer can be achieved
through various approaches; (1) retaining old samples, as seen in the iCaRL model
[52], (2) without relying on old samples, or (3) generating new samples. Addition-
ally, dynamic architecture methods typically adapt the network structure flexibly to
accommodate new tasks as they are introduced.

Dynamic Architecture strategies encompass three main approaches: (1) expan-
sion, (2) progress and compress (P&C), and (3) dual memory (D-M) architectures.
In Black-Modular neural networks (B-MNN) [55] and Progressive neural networks
(PNN) [56], an additional neural network is incorporated alongside the existing one,
akin to a ’piggy-back’ neural net. This auxiliary network is trained for the new
task. It’s important to note that this differs from fine-tuning, which simply adds
one more layer to a frozen memory. A limitation of this model is that the number
of parameters grows exponentially for each new learned task.

Progress and Compress (P&C) architectures retain a constant number of param-
eters and are comprised of a knowledge base and an active column. During the
compression phase, knowledge acquired in previous expansion phases is extracted
to the knowledge base. The Elastic Weight Consolidation (EWC) strategy [53] is
employed to safeguard the previously acquired knowledge. In the expansion phase,
learning new tasks leverages the characteristics stored in the knowledge base through
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lateral connections. This training technique alternates to control the model’s growth
while preserving knowledge. However, these methods may face scalability limitations
in complex multi-task incremental learning scenarios.

Dual memory architectures are rooted in the concept of complementary learning
systems (CLS) theory [61], [62], drawing inspiration from the interplay between the
hippocampus and neocortex systems, which balance fast and slow learning processes.
This is a similar idea to Daniel Kahneman’s book entitled ‘Thinking Fast and Slow’
where he defines two systems; system 1 operates fast also intuitively and system 2
operates with intentionality, allocating attention for tasks. Typically, a D-M architec-
ture comprises of long and short-term memory components. The long term memory
is dedicated to storing previous learning experiences, while the latter is focused on
acquiring knowledge for current tasks. The ‘Growing Dual-Memory’ (GDM) [60]
takes into account the consequences of incremental learning.

Replay methods excel by reinforcing memory through data rehearsal but struggle
with high memory and computational costs. Regularisation techniques efficiently
maintain knowledge without additional data storage, yet they can be rigid, hampering
learning in complex scenarios. Parameter isolation effectively segregates knowledge,
preventing task interference, but faces scalability challenges as the number of tasks
increases. Self-supervised learning, while enhancing adaptability through unlabeled
data, depends on the task relevance, which may not always align with learning
objectives.
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3
The Traditional VQA Model

3.1 Introduction

In the Human Visual System (HVS), there are two crucial components: the eye and
our brain’s interpretation of what the eyes transmit. Actual ‘Seeing’ occurs only
after our brains process the signals from our eyes. These signals are quite basic,
primarily consisting of information about edges, shapes, and motion rather than
complete images. ‘Seeing’ is a complex function of the brain, and a significant part
of our brain, actually the largest part, is focused on identifying what’s in our field
of vision. Our brains construct images through pattern recognition.

In many traditional machine learning tasks, significant effort is expended on
feature engineering, the process of manually designing and selecting the appropriate
input features for a model. Representational learning aims to automate this process.
Instead of hand-crafting features, the model learns the most informative features
from the data itself. Representational learning is central to DL. Deep Neural Nets
(DNN), especially Convolution Neural Nets (CNN) and Autoencoders, are adept at
learning layered and hierarchical representations from raw data. Each layer of the
network learns increasingly abstracted features. For instance, in image recognition
tasks, the early layers might recognise edges and textures, while deeper layers might
recognise more complex structures like shapes or even entire objects.
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Once a good representation is learned, it can be useful for a variety of tasks. For
example, a Neural Net pre-trained on a large image dataset (e.g. ImageNet) can be
fine-tuned for a more specific task, benefiting from the representations learned during
pretraining. It reduces the need for labour-intensive feature engineering, making it
easier to apply machine learning to new domains. One of the main challenges is
ensuring that the learned representations are meaningful and interpretable.

While deep learning models are great at learning representations, visualising high-
dimensional feature spaces directly is impractical, so methods like PCA, t-SNE, and
UMAP are often employed to project these spaces into 2D or 3D for visualisation
and analysis. This gives the model designer visual feedback as to how well data
samples are been clustered in the feature space. Generally, the higher the number of
encoded features, the better the images are clustered or organised, enabling improved
classification accuracy.

3.2 The Deep Learning VQA Model

The main goal of the VQA Task is to train a function, which can predict an answer
for a given question about a given image. DL models designed for the VQA task,
integrate components for both visual perception to interpret the image, and, textual
understanding to interpret the question, and then fuse this information to generate
an answer. With reference to each of the elements shown in Figure 3.1 they carry
out the following function:

• Image Encoder - This focuses on the process of turning the raw image into a
fixed-sized feature vector that represents the image’s contents through encod-
ing.

• Question Encoder - The input question consists of a sequence of words, which
is transformed into a semantic vector. The question is tokenised, and each word
is represented using embeddings (like Word2Vec or GloVe) which is used as
the semantic representation of the question. Alternatively, Transformer-based
models like BERT or the ChatGPT family can be used to create embeddings.

• Fusion of Image and Question Feature Vectors - Once the vectors exist that
represent both the image and the question, the next step is to fuse them.
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• Answer Prediction - The fused vectors are then passed through one or more
fully connected (dense) layers to predict the Answer.

Figure 3.1: A Visual Question Answering Model.

A deep learning model is trained in a supervised, end-to-end fashion using datasets
that accurately reflect the configured intention for a system. Take for example visual
data collected and used, this could reflect what reality is like, or what reality ought
to be like. It is very dependent on how the sample data has been curated. The
dataset is of key importance because it determines what the model will learn and
therefore determines what the model predicts the answer to be.

The created model is then validated and tested against a held-out dataset with
performance measures based on accuracy scores. The confusion matrix shown in
Figure 3.2 shows the number of data samples that were correctly categorised, as well
as any errors and what they were actually categorised as. It can be seen here that
Class 5 is predicted most accurately with a score of 988 on the diagonal, and Class
6 is the least accurate with a score of 485. When doing multi classifications each
class’s recall and precision can be calculated as shown for Class 1 in the Figure 3.3.
The scores for True Positive Rate (TP), False Positive Rate (FP), True Negative
Rate (TN) and False Negative Rate (FN) are used to calculate the individual met-
rics. The recall measures the proportion of positives that are correctly identified as
such TP/(TP + FN) and the precision measures the proportion of positives that
correspond to the presence of the condition TP/(TP + FP ).
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Figure 3.2: A Confusion Matrix for the Fashion-MNIST dataset.

Figure 3.3: Metrics for Class 1 within a Classifier.
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The key driver when creating this model is to optimally create a function that
accurately predicts data samples at inference time that can be found within the data
distribution of the training dataset. Whenever a new class needs to be added, the
full network needs to be retrained. Reasoning is not possible over the structure and
no external knowledge can be integrated. Hence the motivation to create a model
that can incrementally learn.

3.2.1 A DL VQA Example

Structure

This example uses the following drop-in models which provide prior learning to the
VQA. The model structure can be seen in Figure 3.4

• Image Encoder - A CNN.

• Question Encoder - A transformer model called Electra small [63]. Which has
reduced resource demands and hence suited our processing capability.

• Fusion of Image and Question Feature Vectors -The encoded features were
concatenated to form a longer vector.

• Answer Prediction - The concatenated vector is then passed through connected
(dense) layers to predict the Answer.

Training Dataset

A publicly available dataset called Easy-VQA was used. It contains 2-Dimensional
images of different shapes, each with a different colour and position. The dataset
statistics can be seen in Table 3.1, example question and answer data can be seen
in Table 3.2 and example images can be seen in Figure 3.5. The dataset can be
downloaded at https://github.com/vzhou842/easy-VQA.
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Input Train Test
Image 4,000 1,000
Question 38,575 9,673
Binary Questions (Y/N) 27,407 7,136

Table 3.1: Statistics for the Easy_VQA Dataset.

Data Details
Answers triangle, rectangle, circle, blue, teal, black, yellow, brown, red, grey, green, no, yes
Question 1 - Shape what shape is in the image?
Question 2 - Shape what shape is present?
Question 3 - Shape what shape does the image contain?
Question 4 - Shape what is the color_name shape?
Question 1 - Color what color is the shape_name?
Question 2 - Color what is the color of the shape_name?
Question 3 - Color what color is the shape?
Question 4 - Color what is the color of the shape?
Question 1 - Yes/No is there a shape_name?
Question 2 - Yes/No is there a shape_name in the image?
Question 3 - Yes/No does the image contain a shape_name?
Question 4 - Yes/No is a shape_name present?
Question 5 - Yes/No is there not a shape_name?
Question 6 - Yes/No is there not a shape_name in the image?
Question 7 - Yes/No does the image not contain a shape_name?
Question 8 - Yes/No is no shape_name present?
Question 9 - Yes/No is there a color_name shape?
Question 10 - Yes/No is there a color_name shape in the image?
Question 11 - Yes/No does the image contain a color_name shape?
Question 12 - Yes/No is there not a color_name shape?
Question 13 - Yes/No is there not a color_name shape in the image?
Question 14 - Yes/No does the image not contain a color_name shape?
Question 15 - Yes/No is no color_name shape present?

Table 3.2: Example Data values from Easy_VQA Dataset.
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Figure 3.4: A Deep Learning VQA Model.
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Figure 3.5: Example images from Easy_VQA Dataset.

Inference Time - Feature Embedded Layer Selection

During inference, the TensorBoard Embedding Projector uses Principal Component
Analysis to graphically represent high-dimensional embeddings into 3D. This is
useful to understand the clustering achieved in different embedding layers. Looking
at Figure 3.6 which is a mid-feature embedding labeled by actual image, shows that
the 3 Principal components are managing to separate data by shape size and colour.
Figure 3.7 shows a later embedding layer from the neural net labeled by Answer, this
shows the structure in the feature space can be separated by Answer Type; Yes/No,
Shape, and colour. It is the structure of this feature space that enables a classifier
to classify.

Figure 3.6: A Deep Learning VQA model with a 3-D Projection of a mid-feature embed-
ding using the Easy_VQA dataset.



The Deep Learning VQA Model 41

Figure 3.7: A Deep Learning VQA Task with a 3-D Projection of a late feature embedding
using the Easy_VQA dataset.

Inference Time - Feature Number Selection

In these examples, the image encoder in the traditional VQA model has been
replaced by an Autoencoder and the Easy_VQA dataset is still used. Again,
using the Tensorflow projection and looking at the first three principal components
of the bottleneck embedding layer, labeled with the actual input images, we visually
assess the latent structure. Figure 3.8 shows when the bottleneck layer was set to 32
features and Figure 3.9 shows when the bottleneck layer was set to 200 features. It
can be seen that the more features used, enables a more informed latent structure
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to be formed and hence improved separation of data samples.

This structural latent space is called the Feature Space. As data progresses
through the CNN layers, it transforms, resulting in various representations at differ-
ent levels of abstraction. Each of these representations can be thought of as occupying
a specific point within a feature space. The key idea here is that the bottleneck layer
acts as a reduced-dimensional representation that captures the essential features
and variations in the data. This representation can be thought of as a manifold
embedded within the high-dimensional feature space. The concept behind altering
the data through multiple layers is to adapt the features for a specific task, like
classification.

Ideally, when data reaches the layer to be extracted as a feature vector from a
CNN, the multi-dimensional feature space (manifold) should be organised in a way
that makes it easy to distinguish data points from different classes, either by sepa-
rating them linearly or clustering them effectively. This is a form of manifold learning.
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Figure 3.8: Visualisation of the bottleneck embedding layer of a Traditional VQA when
the Image Encoding uses an Autoencoder with 32 features (Algo: t-SNE).
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Figure 3.9: Visualisation of the bottleneck embedding layer of a Traditional VQA when
the Image Encoding uses an Autoencoder with 200 features (Algo: t-SNE).
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4
GMM-IL: The Gaussian Mixture Model In-
cremental Learner

4.1 Introduction

Looking at the structure in the traditional deep learning VQA as seen in Figure 4.1,
the continuous unstructured image data is abstracted into discrete structured class
data.

Figure 4.1: Data Flow for the Traditional VQA.
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This is achieved by creating a function during the training of the neural net
that can take the inputs and transform them into the correct outputs. At the heart
of this thesis is the process of abstracting what we observe and translating it to a
descriptive Class (Term), essentially how to encode meaning. This encoding is done
through statistics.

The traditional VQA is a snapshot at a point in time when the current data in
the current environment has been sampled and the current class requirements have
been modeled. However, our reality is an evolving dynamic landscape and the need
exists for the models to be incremental class learners. This naturally leads to the
question, What happens when we want to add a new class ? As seen in Figure 4.2
we have a requirement over time to be able to grow an Ontology. That is, be able
to add and delete classes as and when required.

Figure 4.2: Growing an Ontology.

Incremental learning of new Classes without forgetting old Classes is essential for
real-world problems but is extremely challenging for modern DL methods. Current
incremental deep learners suffer from catastrophic forgetting when after learning
Class A, they are then required to learn Class B. The issue occurs due to the sharing
of a set number of weights in the neural network. These are optimised for Class A,
however, to learn Class B the weights must be altered, resulting in new knowledge
overwriting previous knowledge.
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4.2 A Design Decision

In order to overcome this catastrophic forgetting, a universal function approximator
is introduced, in the form of an independent GMM. This enables a separation of
tasks between, learning the principal visual features and learning the class definition.
The GMM also enables additional clustering and generative task functionality.

Figure 4.3 shows how during abstracting the data from the image, features are
selected. Then, how each GMM is trained in terms of those features. Each GMM
can then be grouped within a category that acts as an image classifier. It is very
important to note that here we replace the ability to accept multiple ques-
tions as inputs to having an implicit question which is, ‘What is in this
image ?’ In this chapter we drill into how to incrementally learn classes. The limita-
tion to the system that an implicit question introduces, will be addressed in chapter 6.

Figure 4.3: Class Incremental Learner.

4.3 The GMM-IL Model

4.3.1 Introduction

The GMM-IL Model was published under the title ‘GMM-IL: Image Classification
Using Incrementally Learnt, Independent Probabilistic Models for Small Sample
Sizes’. Taking our inspiration from humans, the proposed model creates a specific
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structure at four levels and each level is aligned with a human concept and supports
open-ended learning which combines the strengths of the symbolic approaches with
insights from machine learning. The analogies between humans and machines are
shown below for each of the four levels:

1. Human: Learns to see visual information.
Machine: Learns a feature space of visual features during Autoencoder training.

2. Human: After seeing an object, are taught a name to give it meaning.
Machine: After learning a prior feature space, train a probabilistic model to
represent a class which gives that group of training images a symbolic meaning.

3. Human: Learn a new object without needing to see previous objects at the
same time. Previously learnt objects can be imagined.
Machine: Train a new class in the form of a Gaussian Mixture model without
requiring access to previous training data. Previously learnt GMMs can be
sampled and the resulting feature embedding decoded back to images when an
Autoencoder is used.

4. Human: Identify objects they are paying attention to, in their field of view in
real-time.
Machine: Carry out Region Of Interest (ROI) classification for the contents of
an image at inference time.

4.4 Methodology

Our aim is to classify each visual Class using incremental learning, trained on small
sample sizes using a hybrid architecture as can be seen in Figure 4.4. The proposed
architecture is modular in nature, enabling drop-in replacements for the Autoencoder
and Gaussian Mixture Models. A description of the selection and training of these
models can be found in Section 4.5.

The four levels and their interactions from the bottom up, are:

1. An Autoencoder Model trained once on a large corpus of unlabelled images, to
learn a useful visual feature space from the image corpus. Detailed in Section
4.4.1.
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2. Independent Gaussian Mixture Models which form the class definition, inde-
pendently trained on a small number of visual features. Visual features are a
result of encoding the defining class images. Detailed in Section 4.4.2.

3. A Classifier comprised of a set of learnt GMMs which can be added to as new
classes become available. Detailed in Section 4.4.3.

4. Classification logic can be carried out across all the GMMs in a specific classifier
to evaluate the likelihood that at inference time, a specific image belongs to a
specific class. Detailed in Section 4.4.4.

Figure 4.4: GMM-IL: (1) Autoencoder Model,(2) Gaussian Mixture Model, (3) Category
Classifier, (4) Category Classification Logic.
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4.4.1 Autoencoder Model

The Autoencoder transforms an image from a high dimensional space to a lower
dimensional space for ease of manipulation. The main premise is that unsupervised
training initialises this encoder on a vast number of image samples in a high com-
pute environment. When encoding visual features, the interest is not only in the
autoencoder’s ability to reconstruct the input image, but also on encoding a useful
representation. By useful it means the representation is not task specific, is spread
throughout the feature space and contains visual isomorphisms at different scales.
These attributes will enable it to generalise well to unseen symbolic classes. An Au-
toencoder was selected since Chadebec et al [64] carried out a case study benchmark,
where they presented and compared 19 generative Autoencoder models. They found
that the Autoencoder which did not try to manipulate the latent space in end-to-end
training produced the highest classification accuracy.

4.4.2 Gaussian Mixture Models

When traditional DL networks are trained with backpropagation, the knowledge
acquired is stored through the weights and connections between neurons. These
weights control information storage. When training for a specific task, like image
recognition, weights change to capture data patterns and relationships, thereby en-
coding the knowledge for the whole task. Since the knowledge is infused throughout
the network, it is very hard to identify a discrete symbolic entity.

We chose a GMM to represent an entity in terms of the features within the neural
net. This GMM or Class in our system, trained on feature encodings, were chosen for
several reasons. GMMs offer flexibility, are capable of approximating a wide range of
data distributions by combining multiple Gaussian distributions, which makes them
suitable for complex data. They excel in clustering tasks, accommodating scenarios
where data points (feature encodings) within a Class may follow distinct Gaussian
distributions, which is particularly useful when Classes exhibit sub-populations or
multiple modes. GMMs also provide a measure of uncertainty, essential when data
points may belong to multiple clusters or when dealing with noisy data. As a gener-
ative model, they can simulate synthetic data resembling the observed distribution,
useful for data augmentation and further analysis. Additionally, GMMs are compu-
tationally efficient and scalable in high-dimensional feature spaces. These GMMs
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can be grouped into specific categories to act as an image classifier.

Once a visual feature space has been established, specific classes can be built
on top. Representative images are selected for a class to form a definition. First
images are translated to feature encodings using the Autoencoder, these feature
encodings are then used to train the GMMs [65]. The GMMs can act as a universal
function approximator given enough components, it can accurately approximate any
smooth function as shown by Maz’ya [66] enabling it to statistically capture the
visual features for an independent class.

The following sections cover; the Maximum Likelihood Estimation (MLE) algo-
rithm used to train the GMM, and the likelihood measure that quantifies the fit of
a GMM to the current ROI image.

GMM - Maximum Likelihood Expectation

The GMM is comprised of Gaussian distributions, each with its own parameters
for mean and covariance. The challenge is that for a given data point (a feature
encoding), we don’t know which Gaussian distribution or cluster it comes from.
The Expectation Maximisation (EM) algorithm shown in Algorithm 1 [67] helps
us solve this problem iteratively. In the E-step, using the current parameter esti-
mates, it calculates the expected probabilities or assignments for each data point
to belong to each Gaussian. Next, during the M-step, it adjusts the Gaussian pa-
rameters using these probabilities. This cycle repeats until the algorithm converges,
leading to a maximum likelihood estimate of the parameters, even when the data
contains missing values. Essentially, EM provides a structured method for iteratively
fine-tuning the parameters to maximise the likelihood of observing the provided data.

The EM algorithm has strengths and weaknesses. It’s reliable because it always
converges and can deal with complex constraints in optimisation. On the downside,
it can get stuck in local maximum points, not necessarily finding the best overall
solution. This problem occurs because the choice of starting parameters greatly
influences its convergence.
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Algorithm 1: Expectation Maximisation for Gaussian Mixture Models.

1 Input:
2 Dataset X = x1, x2, ..., xN where xi is a feature vector and N represents the total

number of data points.
3 Parameters:
4 k: Number of Gaussian mixtures.
5 πk : Prior probability of mixture k, initialised for each k.
6 µk : Mean of mixture k, initialised for each k.
7 Σk: Covariance matrix of mixture k, initialized for each k.
8 Output:
9 Updated parameters πk, µk, Σk for each mixture k.

10
11 1. Initialisation Take initial guesses for the parameters πk, µk, Σk for each Gaussian

mixture.
12
13 2. Expectation Step (E-step): Calculate the probabilities γ(znk)
14 γ(znk) = πkN (x|µk,Σk)∑K

j=1 πjN (x|µj ,Σj)
15
16 3. Maximisation Step (M-step): Using the estimated values of γ(znk), we estimate

the parameters πk, µk, Σk to maximize the likelihood. To do this, we first recalculate
the means using the following equations and then the updated values of µk to estimate
the values of Σk’s.

17
18 µnew

k = 1
Nk

∑N
i=1 γ(znk)xn

19
20 Updated covariances:
21 Σnew

k = 1
Nk

∑N
i=1 γ(znk)(xn − µnew

k )(xn − µnew
k )T

22
23 Updated mixing coefficients:
24 πnew

k = Nk
N

25
26 where Nk =

∑N
i=1 γ(znk)

27 where γ(znk) is given by equation in E-Step.
28 4. Iterate steps 2 and 3 until convergence is reached.

GMM Likelihood

The system is designed to ground a KG by processing visual data and generating
a likelihood metric for each given Class. This metric gauges how closely specific
Classes match the observed data statistically. With a GMM, we can assess during
inference how likely it is that a feature encoding belongs to a specific Class within a
provided category. Specifically, the GMMs are designed to maximize the likelihood
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of accurately modeling the training data.

We will use the notation: πi as the mixing coefficient, µi represents the mean,
Σi denotes the covariance matrix, and, λ encompasses the entire collection of com-
ponent parameters, i.e., λ = (πi, µi, Σi). Here, the weights, means, and covariance
matrices correspond to each Gaussian component.

Given observed feature encodings, as described in Equation (4.1), p(x|λ) provides
the estimated likelihood of a feature encoding x. This estimation is a combination
of Gaussian distributions, each characterised by its unique mean, covariance, and
mixing coefficient.

p(x|λ) =
M∑

i=1
πig(x|µi, Σi) (4.1)

In this context, x stands for a D-dimensional data encoding with continuous
values (representing visual features). The πi, i = 1, ..., M represent the weights for the
mixtures, and g(x|µi, Σi), i = 1, ..., M are the densities of the Gaussian components.
Each Gaussian component is a D-dimensional Gaussian function, defined as shown
in Equation 4.2:

f(x|µi, Σi) = 1
(2π)D

2 |Σi|
1
2
e− 1

2 (x−µi)T Σ−1
i

(x−µi) (4.2)

This function relies on a mean vector µi and covariance matrix Σi. The mixture
weights satisfy: ∑M

i=1 πi = 1. The entire Gaussian mixture model is defined by the
mean encoding, covariance matrices, and mixture weights associated with all its
Gaussian components. We collectively represent these parameters using:

λ = {πi, µi, Σi} i = 1, ..., M (4.3)

Different variations of the GMM can be found, as demonstrated in equation 4.3.
For example, the covariance matrices, Σi, can either have full rank or be restricted to
only diagonal elements. Parameters can also be shared or tied among the Gaussian
components.
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4.4.3 Classifier

Once the GMM for one class has been learnt, the next one can be incrementally
learnt by simply training it and adding it to our set of GMMs in the classifier. This
requires only the training data for the current class being learned and none of the
training data for previous classes. Also, for the classifier to forget a class, it is as
simple as removing a GMM from the classifier set.

4.4.4 Classification Logic

At inference time each GMM likelihood is calculated within a classifier and the class
with the maximum likelihood score is selected as the classification.

4.5 Experiment Setup and Configuration

4.5.1 Hardware and software

All deep learning-based models were implemented using TensorFlow [68] Version
2.7.0. The code was written in Jupyter notebooks with Python Version 3.7.3. and
CUDA version 11.2. All experiments conducted here were performed on a 64-bit
Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz workstation with 64 CPU cores and
768GB RAM. NVIDIA® GeForce (driver version 495.44) with 4*GTX1080Ti each
with 11GB RAM. Debian version 10.12 was used as the operating system. The
scikit-learn and pycm [69] library were used for Metrics.

4.5.2 Dataset

The performance of our models and the benchmark model are evaluated on the public
dataset Fashion-MNIST [70] which contains gray scale images of 10 clothing classes.
The official training dataset for each class was split into, 80% creating a new training
dataset for all classes of 48K and 20% creating a new validation dataset for all classes
of 12K. 100% of the official test dataset (10K) was used for our test set. Within
each dataset all classes contained the same number of images, where this changes in
our experiments it is noted in that experiments section. The same dataset is used
for 2 purposes:
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1. Purpose 1 - Autoencoder Model Training : To train the Autoencoder model to
create Visual Features. The premise is that the Autoencoder model will learn
through unsupervised training on the largest image dataset possible, using vast
computer power in a big data paradigm. That once carried out the resulting
encoder/decoder will then be used on all vision tasks without alteration (frozen
weights). However, for the experiments in this paper the dataset above is used
to investigate if the classifier can learn unseen classes without that class having
been used during the training of the Autoencoder.

2. Purpose 2 - GMM Training: To train the GMMs to create independent symbolic
class representations. It is this dataset that is manipulated to investigate the
impact on the classifier accuracy for; sample size, imbalanced classes and
incrementally learnt class definitions.

To aid intuition in Figure 4.5 the feature space is visualised for the Fashion-MNIST
dataset. Each image was encoded to a Feature Vector with 100 features and then
using the t-SNE (t-distributed Stochastic Neighbour Embedding) method [71] has
been projected to 2 visual features so that a 2D plot could be created. Note that
no feature classes were involved in the training of our feature space. This results in
a learnt representation of the most significant perceptual characteristics of images
which are not biased by any symbolic feature classes. This enables the selected
features to generalise well to future unseen classes. The plot also shows how well the
training images have been split up in the feature space purely based on their visual
features and the training dataset. Once an image has been encoded as a feature
vector, the decoder can then be used on those feature vectors to reconstruct the
original image.

4.5.3 Evaluation Metrics

Quantitative metrics of Accuracy score, weighted F1 score and Cohen Kappa are
reported. The predictive accuracy metric measures the difference between the im-
puted values and their corresponding actual values. The weighted F1 score is used
since class imbalance is investigated in an experiment. Since multi class classification
is carried out, Cohen’s kappa is used to measure the agreement between GMMs, a
GMM classifies N images into C mutually exclusive classes.
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Figure 4.5: t-SNE Plot of Feature Space created through unsupervised Autoencoder
training, on the full Fashion-MNIST dataset, coloured by ground truth class.
Original feature dimensions = 100.

4.5.4 Data Consistency

When an experiment contains a suite of increasing or decreasing sample sizes, a
dataset is managed to contain the same images as previously used to ensure ex-
perimental consistency. All reported test results are carried out using 100% of the
held-out test dataset unless otherwise stated in an experiment.

4.5.5 Model Setup

Autoencoder

An Autoencoder is a type of artificial neural network used for unsupervised learning
which is why it was initially selected. The Autoencoder compresses input data into
a compact latent-space representation and then reconstructs the original data from
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this compressed form. It consists of two primary components: an encoder, which
reduces the input into the latent space, and a decoder, which rebuilds the input from
this compressed representation. During training, the network aims to minimise the
difference between the input and its reconstruction, typically using a loss function
like mean squared error. Autoencoders are handy for reducing dimensionality, de-
tecting anomalies, and denoising data.

Experimenting using different filters and latent dimensions (bottleneck feature
encoding) within the autoencoder structure as seen in Figure 4.6, the Autoencoder
with the smallest final validation loss was selected. This was a convolutional neural
net with 32 filters doubling to 64, with a latent dimension size of 100.

Figure 4.6: Autoencoder structure exploration.

The full structure for the used Autoencoder can be seen in Figure 4.7, it has
two convolution layers with 3 × 3 filters (activated by ReLU activations [72] ), and
applied with a stride of 2 while maintaining the same size image through padding.
The number of filters doubles from one layer to the next, starting with 32. The
output of the last convolution layer just before the bottleneck, is flattened and then
passed through a customisable dense layer, which creates our 100-dimensional feature
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space. A feature representation was required that can be decoded into a good image
representation whilst still compressing the data to enable easier manipulation. The
decoder mirrors the encoder, using convolutional transpose operators [73]. If you take
a feature encoding and apply the matching decoder to the encoder used to create that
feature encoding, it will transform it back into an approximation of the original image.

To evidence this we generate 400 Samples from each class GMM Model, then
apply the decoder model from the Autoencoder. The first 10 reconstructed images
for each class are shown in Figure 4.8.

Figure 4.7: The Autoencoder, used to create a 100 Feature Vector, carried out with
unsupervised training. Also, the decoder which transforms a Feature Vector
back into an approximate image.

The autoencoder uses Adam [74] for optimisation. The learning rate is reduced
according to a cosine function [75]. Using a search approach as seen in Figure 4.9
the following hyper-parameters were selected, a base learning rate of 0.003, and a
final learning rate of 0.001, a maximum number of 20 updates, 5 warm up steps and
trained with 40 epochs. The batch size was set to 50. Training was carried out using
unannotated images using a binary cross entropy loss.
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Figure 4.8: Reconstructing an approximate image from a feature encoding using the
decoder from the Autoencoder.
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Figure 4.9: Autoencoder hyperparameter selection.

Gaussian Mixture Model

A GMM is a probabilistic model. Each GMM is trained on a dataset of images that
represents a class. The Maximum Likelihood Estimation (MLE) for normal mixtures
and Estimation Maximisation (EM) algorithm [76] (See Section 4.4.2) are used af-
ter setting the training hyperparameters. The GMM is initialised using K-Means
centroids for the first Estimation step. Using a grid search candidate GMMs are
created from which the model with the lowest Bayesian Information Criterion (BIC)
validation score (to prevent over-fitting) is selected to represent that class.

A GMM was created for each symbolic class using encoded training images (100%
dataset unless otherwise stated in each experiment). Each class GMM is comprised
of a number of components each with a mean and co-variance. The diagonal of the
co-variance gives the variance of the component and the rest of the matrix describes
the relationship between each of the features dependent on the component type. To
select a GMM for a class all the combinations of hyperparameters were evaluated.
The hyperparameters evaluated were; i) Number of mixture components: 1 to 5 in-
clusive, ii) Covariance type: Tied, Diagonal, Spherical & Full, and, iii) Non-negative
regularisation: 1.0e-2, 1.0e-3, 1.0e-4 and 1.0e-5. This resulted in 80 potential models
per class. A total of 800 for the 10 class dataset. During GMM creation, occasionally
when regularisation was low the MLE for normal mixtures did not converge due
to singularities or degeneracy. Any model that did not converge was automatically
eliminated from our potential selection. The selected GMM had the lowest validation
Bayesian Information Criterion (BIC) score as seen in Table 4.1.

Figure 4.10 shows a two-component GMM fitting a bivariate distribution, com-
plete with probability density distributions, for the Ankle Boot Class in our dataset.
The main window presents the feature space comprised of Visual Features 1 & 2.
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Every training image is represented in terms of these two features called a Feature
Encoding, marked on the figure as crosses. The GMM is then trained to find the
best number of components to use, by finding the lowest model BIC score. In Figure
4.10, each component is shown as an ellipse with a star located at its mean point.
Two further windows, one for each dimensional feature, shows the probability density
distributions belonging to each component.

Figure 4.10: Gaussian Mixture Model with 2 components fitting bivariate distribution,
with respective probability density distributions for the Ankle Boot Class.



62 GMM-IL: The Gaussian Mixture Model Incremental
Learner

GMM-IL Classifier

In creating a classifier with an ensemble of Gaussian Mixture Models (GMMs), the
choice of hyperparameters directly influences the model’s effectiveness in identifying
specific patterns in the data. This approach combines several GMMs, each configured
with specific hyperparameters. These hyperparameters are critical in customising
each GMM within the ensemble, ensuring the classifier not only accurately categorises
data but also generalises well to new, unseen data. The hyperparameters used in
the experiments can be found in Table 4.1.

Class Reg CoVar Comp. Num Comp. Shape BIC
0: T-Shirts 0.001 2 full 218599.8304
1: Trousers 0.00001 2 full 92074.9725
2: Pull Over 0.001 5 tied 215139.5721
3: Dress 0.01 5 tied 218177.7049
4: Coat 0.001 3 tied 209474.0943
5: Sandal 0.0001 2 full 271939.6885
6: Shirt 0.01 5 tied 225819.9335
7: Sneaker 0.001 2 tied 166274.3903
8: Bag 0.01 5 tied 293328.9243
9: Ankle Boot 0.01 3 tied 226256.1887

Table 4.1: Baseline GMM hyperparameters for a set of GMMs. Reg CoVar- Regularising
CoVariance, Comp Num-Component Number, Component Shape- (full=own
shape, tied=same shape

In order to help with the intuition of a classifier comprised of a set of GMMs
used for classification, using principal component analysis (t-SNE) 10 GMMs have
been built with a 2 feature encoding. This then enables the creation of a 2D visuali-
sation as shown in Figure 4.11. This map shows where individual GMM component
distributions are, in the form of their GMM component mean values (stars) and
co-variance contours (ellipses). Creating a grid across the map we generated 2500
feature encodings (Vector = [features 1,feature 2]) covering the map. Likelihood
scores were then calculated for the 10 GMMs and the class with the highest proba-
bility of the image belonging to it shown. Only ellipses belonging to seven of the ten
GMM classes are shown to aid visibility. Visually similar classes will have similar
GMMs, leading to reduced discriminatory power.

In the context of Gaussian Mixture Models (GMMs), each component of the
mixture can be seen as a Gaussian probability distribution when comparing two
GMMs or assessing their overlap or the similarity between their components.
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Figure 4.11: Map of the Predicted Classification using a 2 feature encoding, overlaid
with GMM means (stars) and covariance contours (ellipses for just 7 classes
to aid viewing) on the Fashion-MNIST dataset.

Figure 4.12 shows the calculated monte carlo distances between GMMs in the
top matrix and the associated confusion matrix based on the training data for the
same classifier below. It can be seen that where the GMMs are closest is where the
most errors are made.
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Figure 4.12: GMM Distances compared to a confusion matrix for GMM results.
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There are many distribution distances for discrete distributions, such as Kullbach-
Leibler (KL) Divergence and Jensen-Shannon (JS) Divergence. However, KL diver-
gence for GMMs has no analytically tractable formula and we need to resort to
approximation methods. Cui et al[77] carry out a comparison of seven KL diver-
gence approximation methods between two GMMs for satellite image retrieval. They
conclude that, ‘in principle, Monte Carlo method can achieve high accuracy provided
a large number of samples are available’.

Jensen- Shannon Divergence (JSD) is a way to gauge how similar two probability
distributions are. It’s a smoothed and symmetric version of the Kullback-Leibler
Divergence (KLD). JSD is calculated by taking the average of the KLD between
each distribution and the average of the two distributions.

When you have two probability distributions P and Q, you can compute the
Jensen-Shannon Divergence like this:

DJSD(P ||Q) = 1
2DKL(P ||M) + 1

2DKL(Q||M) (4.4)

For two discrete probability distributions, the KLD is given by: Specifically, it
measures the amount of information lost when M is used to approximate P or M is
used to approximate Q.

DKL(P ||Q) =
∑

i

P (i). log
(

P (i)
Q(i)

)
(4.5)

where:

• DKL(P ||Q) is the Kullback-Leibler Divergence from P to Q.

• DKL(P ||M) is the Kullback-Leibler Divergence from P to M.

• DKL(Q||M) is the Kullback-Leibler Divergence from Q to M.

• M is a mixed distribution = 1
2(P + Q).

It’s worth noting that DKL(P ||Q) is not symmetric, meaning DKL(P ||Q) ̸= DKL(Q||P ).

A pairwise GMM distance can be calculated which gives an indication of how
similar the GMM representations are, and hence the extent of the classifiers’ dis-
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criminatory power. This was tested by calculating a pairwise distance matrix for
the Fashion-MNIST dataset, using JSD.

The returned matrix was then correlated with the confusion matrix created using
the training data at inference time. The resulting Spearman correlation coefficient
was 0.78 which indicated that the similarity matrix could predict the level of classifier
errors to some extent.

As shown in Figure 4.13, we can drill into why a specific image has been cate-
gorised into the wrong class. We can see that the image of the shirt is most likely to
be categorised as a pullover since this GMM definition is the closest in distance. It
is least likely to be categorised as a sneaker since the GMMs are furthest apart. In
this way a visual encoding could be created to express an image in terms of other
images. Similar to how Glove works for words.

Figure 4.13: Distances between GMMs and likelihood for particular image instance.
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Benchmark Classifier (Softmax)

Our benchmark classifier (Softmax) is comprised of a deep learning network consisting
of the same frozen encoder model, plus a dense layer with a Softmax activation. The
hyperparameters were set to the same as described for the Autoencoder.

4.6 Results and Analysis

These experiments investigate the difference in performance between a multiple
independent GMM heads (GMMs) and the benchmark method of a single Softmax
head (Softmax). Both classifiers use the same encoder with frozen weights trained
on ten classes for all experiments except Experiment 4.6.4 where it was trained
on six classes. The first Experiment 4.6.1 establishes a reference baseline. The
next experiment evaluates the classifiers accuracy when using; small sample sizes
during training (Experiment 4.6.2) and when the sample size is imbalanced across
classes (Experiment 4.6.3). Experiment 4.6.4 reports the classifiers results when
incrementally learning pairwise unseen classes.

4.6.1 Classifier Baseline

See Table 4.2 for this classifier’s accuracy results (Validation score was used to reduce
overfitting).

The two classifiers were tested after building the models as described in Section
4.5.5. The results for training, validation and testing are shown in Table 4.2. Softmax
outperforms GMMs when 100% of each dataset is used and all classes are balanced.

Data Classifier Acc % F1 CK
Train GMM 86.82 0.86 0.89
Valid GMM 84.71 0.84 0.87
Test GMM 85.57 0.85 0.87
Train Softmax 97.97 0.98 0.98
Valid Softmax 90.39 0.90 0.92
Test Softmax 90.37 0.90 0.91

Table 4.2: Classifier Accuracy for balanced classes using 100% Train-
ing, Validation and Testing datasets. Acc: Accuracy, F1:
Weighted F1 Score, CK: Cohen Kappa.
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4.6.2 Small Sample Sizes

Focusing on small sample sizes a range of 5 to 20 (inclusive) samples are used.
Stepping through each sample size all GMM models for both classifiers are retrained
using the initial hyperparameter settings. As can be seen in Figure 4.14 the GMMs
perform with a higher accuracy than the corresponding Softmax for sample sizes
smaller than 12.

Figure 4.14: Classifier test accuracy for a training sample size of 5 to
20 inclusive.

4.6.3 Imbalanced Classes

As Krawczyk discusses [78], in classification problems, class imbalance occurs when
there is a significant disparity in the number of samples for different classes. Typically,
the minority classes are the ones of primary interest, either because they represent
rare occurrences or because collecting data for these classes is expensive.

In this work three imbalanced ratio profiles are created and the classifiers weighted
F1 Scores are reported. The range 5 to 15 is selected, as in the ‘Small Sample Sizes’
experiment it was shown to be a range of interest. Using 5 as low and 15 as high
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3 imbalanced class datasets were created. Imbalances that were covered are; (1)
Extreme ratio difference of 1 class high and 9 classes low. (2) A 50:50 ratio difference
of 5 classes high, 5 classes low and, (3) A stepped profile, classes start at 5 samples
and increment 1 sample until 14 samples.

Taking Exp_1 as an example in Figure 4.15 when training the classes, Trial 1 has
15 samples for C1 and 5 samples for all the others. In the next trial the samples are
rotated once so now C2 has the 15 samples and the rest 5 samples. This continues
10 times, then the mean accuracy is taken from across all 10 trials for a class.

Figure 4.15: An example of class trials in Exp_1,
where Sample sizes rotate through each
class and then the mean for each class
is calculated.

Both classifiers were retrained using the initial hyperparameters, GMM models
where then fitted to new sample sizes based on the imbalanced experiment profile.
Each Experiment was repeated 10 times with the class numbers rotating through
the experiment profile. Figure 4.16 shows the mean accuracy and 95% confidence
intervals per experiment and classifier type. Experiment 1, 2 and 3 had p values of
0.000, 0.001 and 0.018 respectively. In all three experiments the GMM outperformed
the Softmax when trained on sample sizes under 15.
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Figure 4.16: Classifier Weighted F1 Score for 3 Imbalanced Training
Dataset Profiles. (Exp_1 : 1 class n15 & 9 classes n5),
(Exp_2 : 5 classes n15 & 5 classes n15), (Exp_3 : Classes
start at 5 samples and increment to 14 samples.), Classes
rotated 10 times. Mean and 95% confidence intervals
shown.

4.6.4 Class Incremental Learning

Softmax classifiers learn all classes at once using all the training data. They do not
perform as accurately when they are required to learn classes over time and have no
access to previous training data.

Following the benchmark method taken from Krichmar et al [79], and Kolouri
et al [80] who used the Split MNIST dataset to learn consecutive pairs. For our
dataset this is pairs of clothes e.g., Pair 1: T-Shirt, Trousers, Pair 2: PullOver,
Dress, Pair 3: Coat, Sandal, Pair 4: Shirt, Sneaker, Pair 5: Bag, Ankle Boot. The
following adjustments are then made, combining the first 3 pairs, which makes 6
classes trained in Task 1. The Autoencoder model is trained first using these 6 classes
and the resulting encoder is frozen. Then, the 6 GMM Models are trained using
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their encoded images. This frozen encoder is then used for further tasks with just
the GMM Models been trained. Pair 4 are used for Task 2 and Pair 5 used for Task
3. The reason Tasks contain 2 classes is to enable the Softmax to classify without
having access to prior training data. For clarification the 3 Tasks were configured
as follows:

1. Task_1 established the accuracy when the encoder was trained on 6 classes,
the classifier heads (GMM and Softmax) were tested on 6 classes using 100%
datasets. The classification was assigned to the class with the greatest proba-
bility/likelihood.

2. Task_2 established the accuracy when the classifiers were trained as per Task_1
with 2 further classes, the classifier heads (GMM and Softmax) were tested
on 8 classes using 100% datasets. The classification was assigned to the class
with the greatest probability/likelihood.

3. Task_3 established the accuracy when the classifiers were trained as per Task_2
with 2 further classes, the classifier heads (GMM and Softmax) were tested on
all 10 classes using 100% datasets. The classification was assigned to the class
with the greatest probability/likelihood.

Task_1, Task_2 and Task_3 were repeated 10 times as the classes were rotated,
and the mean and 95% confidence values were calculated across all 10 combinations
per classifier type.

From the results shown in Figure 4.17 it can be seen that initially the Softmax is
more accurate than the GMMs. However, after each Incremental Task, the Softmax
accuracy decreases significantly more than the GMM. This shows the GMMs have
a greater ability to retain class definitions than the Softmax.
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Figure 4.17: Classifiers Incrementally Learning Three Tasks.
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4.7 Discussion

An architecture was created that enables transferred visual learning and the incre-
mental addition of class definitions in the form of GMM models. The visual learning
carried out used a smaller sample size than would ultimately be used to enable us
to control the content of the visual features and verify that unseen classes could be
learnt.
This classifier’s accuracy could be improved by making the following amendments.

• Autoencoder - Our main premise is that this model’s accuracy is dependent on
the quality of the feature space created by the autoencoder, by using a state
of the art autoencoder the granularity and quality of the visual features will
be improved and hence the discriminatory power of the classifier increased.

• Gaussian Mixture Models - Amendola et al [81] state that there is the pos-
sibility of more modes than means when Gaussians are combined. Further
investigation needs to be carried out to optimise the accuracy of the GMM
likelihood landscape for a set of GMMs.
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5
Planning a Neuro-Symbolic Incremental Learner

5.1 Introduction

The GMM-IL model simplifies class learning by focusing solely on the implicit ques-
tion, ‘What’s in the image?’ and removing the ability to ask varied questions. This
chapter presents the intermediate research that informed the decisions taken for
NS-IL model, detailed in Chapter 6. Unlike the GMM-IL, the NS-IL model rein-
troduces the capacity to handle multiple questions through the integration of the
Image Classifier, KGs, and LLMs to allow users to pose diverse, complex questions
and receive precise, contextually rich answers.

Figure 5.1 shows the different properties of the Neural Nets (NN) and Sym-
bolic paradigms. NN use induction in the form of statistical methods to infer
general rules. Symbolic AI uses deduction to understand and reason about a situ-
ation. Neuro-Symbolic Combiners integrate abduction and induction enabling two
important functions, inductive learning to acquire accurate abductive theories and,
abductive reasoning to inductively revise the existing KG to improve its accuracy.
Architectures that contain Neuro-Symbolic Combiners are termed as Neuro-Symbolic
Hybrid Systems.



76 Planning a Neuro-Symbolic Incremental Learner

Figure 5.1: Combining Neural Networks and Symbolic Paradigms.

5.2 Addition of a Knowledge Graph

The Gaussian Mixture Model (GMM) excels in clustering and classifying visual fea-
tures, while the knowledge graph excels in mapping out relationships and structured
data. The GMM offers a probabilistic analysis of visual elements, and the knowledge
graph embeds this analysis in a network of interrelated concepts. To effectively store
and query image classification data for Regions of Interest (ROIs), we’ve adopted a
graph database known for handling complex, interconnected relationships between
nodes. This approach not only allows for intricate and nuanced queries but also
supports flexible schema evolution, a key component for incremental learning.

In the GMM-IL framework, we created a classifier for each category, each clas-
sifier being a composition of various Gaussian Mixture Models (GMMs). Now, to
enrich the model’s capability to understand and process questions about the stored
images. KGs add a layer of structured knowledge and reasoning. The data flow and
interaction mechanism for this enhanced model are depicted in Figure 5.2.
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Figure 5.2: GMM-IL integrated to a KG.

To illustrate the capabilities of the system, consider a scenario with two cate-
gories: Animal and Pattern. Each category is defined by numerous Gaussian Mixture
Models (GMMs). Suppose an ROI Node is assigned both categories. We establish a
commonsense rule: If the Animal category identifies a horse and the Pattern category
recognises stripes, the system updates the identified Animal to ‘Zebra’. In this way
the system infers a Zebra even though it has never been trained on Zebra data, demon-
strating the application of Neuro-Symbolic data, this data is shown within Figure 5.2.

5.2.1 The ROI Node

All models are simplifications; they’re useful but not fully representative of reality.
This concept is applied in our research, where we draw boundaries known as bound-
ary boxes around objects, assign them classes, and treat them as stable ’Regions of



78 Planning a Neuro-Symbolic Incremental Learner

Interest’ nodes. However, it’s crucial to remember that these models, while helpful
for analysis and understanding, are simplifications and don’t capture the full com-
plexity and dynamic nature of the real world. The binding problem describes how
we select and integrate distinct features into the right combinations, referring to
the cognitive process of identifying and combining various visual features from the
environment, such as shapes, colours, and textures, to recognise meaningful concepts.
Figure 5.3, illustrates how reality has been abstracted into the system entities to
represent human cognition.

Figure 5.3: The ROI Node.

The aim of the thesis is to encode visually grounded concepts. Figure 5.3 shows
the schema for how this is achieved for a concept modeled as a Region Of Interest
KG Node. A concept is an internal mental construct created by a human. It is
formed through many observations, here we show the visual aspects as bounded
Regions Of Interest. Also, a bounded Region Of Interest can be associated with
many concepts. The concept has many GMM classes associated with it, selected at
inference time through the use of categories. The GMM Classes have a number of
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training images associated with them and hence a concept is delineated by those
images. The Concept remains private to an individual, whilst the definition held
in images, reflects a common consensus of what is meant by the GMM Class. The
GMM-IL classes were each trained using 20 representative images. An ROI has
many associated categories and a category has many constitute GMM classes.

Implementing our schema in the NS-IL system is a strategic decision that offers
numerous benefits. It simplifies the processing of complex information by follow-
ing an Ontological structure of Categories and Terms, breaking it down for easier
interpretation and quicker decision-making. This structure enhances the accuracy
and efficient processing of visual information. The configuration of the mechanism
means it can evolve, accommodating new types of sensory data such as, ‘sound’ to
expand the utility of the system. The data that is held, provides traceable and
explainable results through clear visual definitions which is crucial for transparency
and accountability, especially in sectors where these factors are mandatory. Using
our schema for a KG Node ensures that responses are grounded consistently, which
improves user interaction and satisfaction. The schema enables an enhancement of
the ‘Term’ to define the next level of associated sub-symbolic data.
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5.3 Integrating GMMs with a KG

With a view to benchmarking our NS-IL against the NS-VQA paper [38] these steps
are carried out to process a scene image:

1. Train the following GMM classes using the GMM-IL Autoencoder and group
them into categories to form a classifier, as shown in Figure 5.4.

Figure 5.4: The Ontology for a ROI.

2. Initially a neo4j database is created on the server after which the following
code is run to connect to it, a graph object is created which is used in future
interactions. Initialisation is carried out by first deleting all previous data, this
could be changed if we wanted to process more than one image at a time.

from py2neo import Graph

graph = Graph("neo4j://<ServerPath>:7687", auth=("<username>", "<

password>"))

graph.delete_all()

3. The nodes are created for the generic concepts. This shows an example of a
shiny class.
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Attr_Shiny= Node("AttributePrototype", name=’shiny’)

graph.create(Attr_Shiny)

4. A scene node is created.

New_Scene_Name = "Scene"

#New_Scene_Name = "Scene_" + str(New_Number) #for more than 1 scene

New_Scene_Name_Str = "’" + New_Scene_Name + "’"

Scene_Image_Filename = "’" + str(Filename) + "’"

New_Scene_Name_Hand = Node("SceneFile", name=New_Scene_Name, File=

Scene_Image_Filename)

graph.create(New_Scene_Name_Hand)

5. Using an object detector (Inception_Resnet) bounding boxes are identified and
listed. A new ROI node is created for each bounding box on the list, logging
the time and location within the scene to which it is linked.

New_BBox_Name = "ROI_" + str(New_Number)

New_BBox_Name_Str = "’" + New_BBox_Name + "’"

Timestamp = datetime.datetime.now()

Time_Now_Str = "’" + str(Timestamp) + "’"

New_BBox_Name_Hand = Node("ROI", name=New_BBox_Name, Object_Name

= "Unknown",xmin= str(xmin),xmax= str(xmax),ymin= str(ymin),

ymax= str(ymax))

graph.create(New_BBox_Name_Hand)

6. The likelihood for each GMM is calculated for each ROI node. The GMM
offering the highest likelihood within a category assigns its classification to that
category. This classification gets recorded within the ROI Node. Additionally,
the likelihood value is kept in the edge between the ROI node and the generic
class. This setup allows every class instance to access its related metadata
through the corresponding generic class, so data only has to be stored once.

Figure 5.5 shows the results when the KG is queried. It shows two ROI Nodes;
BBox_3 & BBox_4 for one object. this is a problem with the object detector which
is not classed as a problem for our research. As long as our results match whatever is
found in the list of bounding boxes we treat the results as correct. Therefore, it was
checked against the received list of bounding boxes and the positioning information



82 Planning a Neuro-Symbolic Incremental Learner

at the ROI nodes and relative information between the ROI nodes was found to be
correct. Checking the ROI nodes it was found that the classification information
was only 38.89% correct.

Figure 5.5: Creating a Knowledge Graph for the CLEVR database.

The Autoencoder trained in an unsupervised way, failed to extract meaningful
features for our specific image recognition task. Consequently, we switched to an
Autoencoder trained on the ImageNet dataset, aligning it with scene images con-
taining ImageNet classes. Despite this adjustment, the issue persisted. After several
trial and error iterations, a functional system was found that used an image encoder
(VGG19 model), trained on the ImageNet dataset using supervised learning. Section
5.3.1 delves deeper into the efforts to capture useful features for the feature encodings
on a task. These challenges explain the selection and creation of the NS-IL dataset
and what prompted the shift from an Autoencoder used in the GMM-IL
model to the VGG19 used in the NS-IL model.

5.3.1 Feature Encoding Discussion

To visualise high-dimensional data, during the creation of the GMM-IL model we used
t-SNE for dimensionality reduction, during this period the TensorBoard projector
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was also used, which supports both t-SNE and UMAP. Initially, t-SNE was chosen
for its ability to reveal clusters within the data. However, t-SNE was computationally
demanding and its results could vary due to its sensitivity to hyperparameters, com-
plicating consistent analysis. For NS-IL it was decide to use UMAP which processed
data faster, had reproducible outcomes and maintained both the local and global
data structures, offering a fuller understanding of the data relationships.

The use of an image encoder ensures that raw visual data is transformed into
a compact and useful feature space. This encoding becomes foundational as these
features are then processed by the GMM. Various image encoders were experimented
with, which seemed to indicate the following generalisations:

• Encoders such as VGG19, utilising ImageNet weights produced a multimodal
space with useful structure to which GMM classes could be modeled. The
feature space and category were aligned.

• VGG16 Autoencoder - unsupervised training produced a feature space which
didn’t capture enough ’useful’ structure to differentiate between different GMM
classes.

• Variational Autoencoder (VAE) - These are not useful since they create a
unimodal space N (0, 1) space, which means you can’t use GMMs because the
entire data manifold is one huge normal distribution and doesn’t have the
modes to support more than one gaussian for the GMM to fit to.

• Encoder from Segment anything [82], which employs a minimally adapted
Vision Transformer (ViT). The features of a ViT consist of a grid of 16×16
with each grid "slot" having a 4096 dimensional vector, which when flattened
gives you 1048576 features and would need billions of data points to fit. Used
as an encoder it doesn’t inherently structure the feature space in a way that
would be conducive to distinguishing between different categories or classes
when using GMM. There’s nothing regularising the embedding space towards
needing similar cluster structures.

Hence, we selected the VGG19 encoder trained on ImageNet as a category appropriate
encoder to use in Chapter 6. The resulting feature space enabled the GMMs to have
enough spread to differentiate between classes. The GMMs, being probabilistic,
handles the inherent uncertainties and variations in visual data, ensuring robustness
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in the system’s visual understanding.
Every class has a definition shaped by a distribution of ’useful’ features from a learned
feature space. The essence of this system lies in identifying these ’useful’ features in
the feature space specific to each category of classes to be trained. For instance, in the
context of the Object Category, ’useful’ might refer to distinguishing characteristics
like ’pointy,’ ’corner,’ or ’circle.’ The challenge is to determine the optimal method for
training the image encoder, whether through targeted images/classes or employing
an Autoencoder.

5.4 Integrating KG with a Large Language Model

The addition of a Large Language Model (LLM) into our system puts the explicit
questioning ability back into the model by using advanced natural language pro-
cessing capabilities, enabling it to understand and generate human-like responses.
This bridges the gap between the system’s structured, symbolic knowledge base and
the complexities of human language. LLMs, a recent innovation in AI, efficiently
translate user queries into forms compatible with the Knowledge Graph (KG) and
then convert the KG’s outputs into intelligible answers. This provides our system
with the last component to provide the functionality required for a Neuro-Symbolic
Incremental Learner (NS-IL) Visual Question Answering (VQA) system, as shown
in Figure 5.6.
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Figure 5.6: Proposed architecture for the NS-IL.
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6
NS-IL: The Neuro-Symbolic Incremental
Learner Model

6.1 Introduction

In the main introduction the VQA Task was outlined. In Figure 6.1 the three
components are identified by the green, blue and orange areas. Each area is now
expanded :

1. Image Classification System (Green): In Section 6.2, Steps 1, 2, 3 and 4
describe a system that can infer the class from a set of objects in an image.

2. Knowledge Graph (Blue): In Section 6.3, Step 5 describes the stored classes
and relationships. Step 6 creates ROIs nodes from identified Classes and Step
7 adjusts those Nodes by applying Commonsense rules.

3. Human Curiosity & Large Language Models (Orange): In Section 6.4, trans-
lating human natural language questions into machine executable queries is
explained in Steps 8 and 9. Step 10 translates the returned results back into a
natural language answer.
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Figure 6.1: The 3 Components of the NS-VQA Task: 1 - Classification System,
2 - Knowledge Graph, & 3 - Question to Answer.

Each component and its associated steps will be covered in further detail in the next
sections. Section 6.5 shows the individual model selections for the steps, together
with their setups and configurations.

6.2 Methodology: Image Classification

Each step in the Image Classification system shown in Figure 6.1 is assigned a specific
task. Step 1 identifies the ROI (bounding boxes) in the scene, Step 2 encodes each
ROI image into a feature space prior to the addition of meaning in the form of a class
(format category:class) through learnt categorical GMM Classes. Step 4 associates
the category:class to the appropriate ROI node in the KG.

6.2.1 Step 1: ROI Image Identification

The scene image is what represents truth and enables us to ground the inferred ROIs
with visual reality within the VQA task. The scene is split into several single-concept
ROI images. Each bounding box marks a region from which category:class(es) will
be classified. Additional context information is also retained for later use: the
timestamp when the bounding box entry was created (useful for tracking objects in
temporal activities if more than one image is shown); the position of the bounding box
within the context image (helpful for generalisations over known object proximity’s
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to enhance inference activities); and the file location of the scene image, providing
the source for all the bounding box regions in the image. These additional details
are used in Step 6 when the ROI Node is generated to optimise inference capabilities
later.

6.2.2 Step 2: Feature Encoding

Each identified ROI bounding box is handled individually. The procedure involves
capturing the pixel contents of the bounding box and encoding them for Step 3 of
the pipeline. Converting the ROI image into a feature encoding offers benefits such
as data compression, feature extraction, and noise reduction.

6.2.3 Step 3: Gaussian Mixture Models

A Gaussian Mixture Model was selected to define a class in terms of a set of fea-
tures. A GMM approach was taken since features can have complex, multi-modal
distributions rather than simple, single-mode distributions. This architectural choice
mitigates three major weaknesses of neural nets: their susceptibility to ’catastrophic
forgetting’, the extended retraining duration required, and the substantial sample
sizes needed to train a new class. With independent GMMs, our architecture permits
the flexible addition or removal of classes, even with limited sample size.

6.2.4 Step 4: Categories

The feature encoding of the ROI image is fed into each of our pre-trained GMMs
to generate a class specific likelihood. This likelihood signifies the class conditional
probability given the feature encoding. The likelihoods are used in Step 6.
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6.3 Methodology: Knowledge Graph

Within a Context, the ROI Nodes are more intricate and evolving than fixed Classes.
An ROI Node embodies one or many Categories, each category containing many
possible classes. For example for a ROI node representing a kettle, the visual
information would return Object:kettle and Attribute:Shiny, taken together these
categories of information build a richer definition for the ‘kettle’ Concept. This
kettle concept can then be linked to other concepts such as; afforded an Action
like ‘pour water’ and be located in a particular Location such as ‘kitchen’. Helping
individuals to understand how that Concept operates in reality.

6.3.1 Step 5: Classes & Relationships

In Step 5 the knowledge graph was initialised with classes and relationships. These
represent the classes and relationships a human has learnt during their interaction
with the environment and, whilst they may be adapted over time, generally they are
stable and not subject to change.

6.3.2 Step 6: ROIs

The use of ROI nodes enables many visual classes of information to be held. The ROI
node contains many categorical classifications by associating specific GMM classes
with each category. This process allows us to calculate for a given classifier, the most
probably ’seen’ class. In Step 6, when the system identifies a new ROI in the given
image, an individual node is generated for each ROI listed. The process flow for node
and edge generation in the KG is shown in Figure 6.2. For each generated ROI node
the ROI’s coordinates are saved and the timestamp of when it was created. The
object’s class is ascertained, and the relevant information associated for that class,
such as its usual room location and associated actions generate edges. Additionally,
any visual attribute classes are also listed against that ROI.

6.3.3 Step 7: Commonsense Rules

After the ROI class information has been synthesised into an ROI Node in the
knowledge graph, commonsense rules can be applied to the node information. For
instance, consider a scenario where you’re unfamiliar with a zebra but someone tells
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you that a zebra resembles a striped horse. In such a case, upon encountering a ROI
with an object class of ’horse’ together with an attribute class ‘striped’, you could
amend the object class to ‘Zebra’ without ever seeing an actual zebra in reality.

Figure 6.2: Knowledge Graph: Synthesising Grounding Information & Commonsense.

6.4 Methodology: Human Curiosity & Large Language
Models

Large language models, such as the ChatGPT family, are advanced neural net-
works, specifically transformers, designed to understand and generate human-like
text. They’re trained on massive amounts of text data, enabling them to perform
various natural language processing tasks, from basic grammar correction to complex
tasks like answering questions and creative writing. The ‘large’ in their name signifies
the immense number of parameters they possess, often in the billions. The LLM can
produce coherent, contextually relevant, and almost human-like text.

Knowledge graphs (KG) and large language models (LLM), can complement each
other effectively. KGs provide structured facts, domain-specific knowledge, and sym-
bolic reasoning, while LLMs offer general language processing and broad knowledge.
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Together, they create a capacity to comprehend and interact with the world.

The contents of the given image have been transformed into structured semantic
data within the KG. Our focus now shifts from the vision domain to the language
domain.

6.4.1 Step 8: Question to Query Code

The KG is now made useful through the direction of a human. The human forms
a question with an associated intent. This is best shown by the difference between
these two questions, What are you doing ? and What are you trying to do ? The
first question will give an answer about the actions that are being carried out, the
second will give an answer about why you are trying to do those actions. To a certain
extent, it is the responsibility of the human to provide a clear question using terms
and provide a context.

6.4.2 Step 9: Query Code to Results

This process turns complex language into machine-readable queries, the ideal being
to solely use the terms held in the KG. Using the given question a prompt is
automatically engineered to direct the LLM effectively. The prompt includes the
question, the KG schema, and some programming language examples. We send this
prompt to the LLM, and it replies with a graph query statement using terms from
our KG. A LLM is used since they can consider context in their responses. Given a
well-phrased context or preamble, they can produce answers that are relevant to the
specific situation described, making interactions feel more intuitive for the user.

6.4.3 Step 10: Results to Answer

The results received from the KG are included in a new engineered prompt, which
also incorporates the initial question together with instructions. These elements are
sent to the LLM which returns a contextualised Answer that the user can understand.
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6.5 Experiment Setup and Configuration

This section describes the selection, configuration and training processes for each
model employed throughout the different steps of our pipeline. To provide clarity
at the boundaries of the steps, the step inputs and outputs are documented in each
subsection, which also underscores the responsibilities of each model.

6.5.1 Hardware and software

All deep learning-based models were implemented using TensorFlow [68] Version
2.13.0. The code was written in Python Version 3.9.2, Neo4j Version 5.9.0 and
CUDA Version 11.8. All experiments conducted here were performed on a 64GB
Intel i9-9900K workstation with 16 CPU cores at 3.6GHz and an NVIDIA GeForce
RTX 4090 with 24.5GB RAM using NVIDIA driver version 535.54.03. Debian version
11.7 was used as the operating system.

6.5.2 Image Classification System

Step 1: Regions of Interest Identification

Input: Context Image.
Output: A list of ROI (bounding boxes) in the image.
Our model takes single concept bounding boxes as input. We generate this input list
using an object detector model, specifically a pre-trained Inception-ResNet-v2, which
is a variant of Faster R-CNN with ResNet V2. This model is available at: https:
//tfhub.dev/google/faster_rcnn/openimages_v4/inception_resnet_v2/1.
Trained on the Open Images V7 dataset, which is a dataset comprising approximately
of 9M images, annotated with image-level classes, object bounding boxes, object
segmentation masks, visual relationships, and localised narratives. It produces a list
of bounding boxes, which we then filter by requiring a class probability thresholds
greater than that found in Table 6.1. We also regulate the number of instances using
a hyperparameter, capping it at 40. Generally if it’s a class of interest the threshold
is set to a low value, if it’s a class the object detector has found but not of interest
to us the threshold is set high.
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Class Value Class Value Class Value
Kitchen appliance 0.9 Carnivore 0.9 Animal 0.9
Sword 0.9 Antelope 0.9 Plant 0.9
Sculpture 0.9 Office supplies 0.9 Drink 0.9
Knife 0.8 Pear 0.9 House 0.9
Coffee cup 0.8 Countertop 0.9 Pitcher 0.9
Wine 0.6 Tap 0.9 Cutting board 0.9
Horse 0.6 Kitchen utensil 0.9 Tree 0.9
Banana 0.53 Cattle 0.9 Mule 0.9
washbasin 0.5 Building 0.9 Bathroom accessory 0.9
stove 0.5 Food 0.9 Desk 0.9
Fork 0.5 Spatula 0.9 Table 0.9
Mug 0.4 Beer 0.9 Plumbing fixture 0.9
Teapot 0.4 Jug 0.9 Giraffe 0.9
Bottle 0.1 Rhinoceros 0.9 Bull 0.9
fryingP an 0.1 Mango 0.9 Fruit 0.9
Spoon 0.1 Vegetable 0.9 Zebra 0.9
Wine glass 0.1 table 0.9 Dagger 0.9
Screwdriver 0.0 Coffee Tool 0.9 Kettle 0.9
teaspoon 0.0 Tableware 0.9 Mammal 0.9
Kitchen knife 0.0 Door handle 0.9 - -

Table 6.1: Class Filter for object detector.

Step 2: Feature Encoding

Input: List of ROI images given by bounding boxes.
Output: Feature Encoding for ROI image(s).

The VGG-19 Image Encoder is utilised, as detailed in Simonyan and Zisserman
[3], sourced from tensorflow.keras.applications.vgg19. This encoder, pre-
trained on the ImageNet dataset’s 1000 classes, utilised the corresponding weights.
By omitting the top layer, we generated a 25088-dimensional visual feature encoding
for each ROI image. These encodings were then processed by the GMMs for analysis.

VGG-19 is a well-known CNN model, it has been effectively used in image classi-
fication, pattern recognition, and speech recognition. It is characterised by its depth
and simplicity, the model comprises 19 weight-bearing layers, including 16 convolu-
tional layers, which are followed by three fully connected layers. Utilising consistent
3x3 filters and max-pooling operations, VGG-19 excels in extracting hierarchical spa-
tial features from images, ranging from basic edges to intricate patterns. Pre-trained
on a massive dataset such as ImageNet, VGG-19 has not only achieved competitive
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performance in classification tasks but has also become a foundational encoder in
various computer vision applications, from object detection to content-based image
retrieval, owing to its robust feature extraction capabilities.

Figure 6.3: The VGG-19 Neural Net [3], used to create a 25088 Feature Vector, trained
with supervised training on Dataset: ImageNet.

Step 3: Gaussian Mixture Models - Training

Fourteen GMMs were trained. Each GMM model was trained on 20 representative
images. The training images were obtained by using the class name as a search
term in Google, 20 of the returned images were selected and centrally cropped and
encoded. Figure 6.4 & Figure 6.5 show example sets of images used to train the
Object category class Banana and the Attribute category class Striped. This means
you can train an object class for "spoon" and train multiple attribute classes for ma-
terials like wood, plastic, or metal. Importantly, to encode the category there must
be an image encoder capable of identifying the desired features in all the example
class images. For instance, visually distinguishing between china and plastic can be
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challenging.

Figure 6.4: Banana Class Training Images.

Figure 6.5: Striped Class Training Images.
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The 20 images were encoded by the image encoder producing 20 x 25088 dimen-
sional feature encodings, which a GMM was then fitted to. The GMM hyperpa-
rameters were investigated by testing the accuracy for all classes using a component
number of 1 through to 5 and also a trial with each class being picked by its lowest
bic score which we term Automatic and index as 0 in the Table. Figure 6.6 shows the
results for 100% of the training and validation dataset. Taking the validation values
to avoid overfitting the model, we select component number 3, since this is a good
balance between complexity and accuracy. Therefore the hyperparameters to train
the GMMs are : i) Number of mixture components: 3, ii) Covariance type: Diagonal,
and iii) non-negative regularisation: 1.0e-2. 10 GMM models with these hyperpa-

Figure 6.6: GMM Component Number Investigation.

rameters were then created. The model that achieved the lowest BIC score was
retained for subsequent use. Figure 6.7 illustrates the range of BIC scores achieved
per GMM Model (Creating the Object classifier) when trained, Table 6.2 shows a list
of the retained minimum BIC scores after 10 trials per GMM class. In subsequent
testing, GMMs are tested on a test dataset consisting of five images per class. The
‘Objects’ classifier, reported an accuracy of 92.31%, an F1 score of 92.04%, and a
Cohen’s Kappa score of 93.63% .
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Figure 6.7: GMM Class Models: Distribution of Bayesian Information Criterion score.

Class Reg CoVar Comp. Num Comp. Shape BIC
0: plate 1e2 3 diag 32048.9749858462
1: teaspoon 1e2 3 diag 84015.02517372137
2: knife 1e2 3 diag 369096.505543082
3: can_opener 1e2 3 diag 437297.0493718943
4: banana 1e2 3 diag 468663.6017532455
5: teapot 1e2 3 diag 211324.83007161587
6: wooden_spoon 1e2 3 diag 39630.36155217671
7: frying_pan 1e2 3 diag 34081.78180753725
8: kettle 1e2 3 diag 489804.4885691839
9: cup 1e2 3 diag 223413.239309614
10: washbasin 1e2 3 diag 547889.2854903314
11: corkscrew 1e2 3 diag 383366.8048321256
12: screwdriver 1e2 3 diag 286082.7113044384

Table 6.2: GMM Class Models: Configuration of best models.
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In order to help the readers’ intuition the 25088 dimensions are reduced to 2
dimensions through the use of UMAP [83] so they can be visually plotted as shown
in Figure 6.8, where the data points (encoded image) can be seen as crosses and then
coloured according to the three GMM Components fitted to them for the banana
class. Two additional panels show the probability density distributions for each
component according to the visual feature dimension.

Figure 6.8: Class feature encodings fitted to a 3 component Gaussian Mixture Model.
Class shown: Banana
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Step 3: Gaussian Mixture Models - Inference

Input: Feature Encoding for an ROI Image(s).
Output: A list of class likelihoods.

This is the stage in the pipeline where information is abstracted from a
neural net to a symbolic representation. Listing 6.1 finds the GMM likelihood
and creates a dictionary for use during the KG generation.

Likelihood_Array = []
GMM_Array = []
GMM_Array = os.listdir(GMM_Images_Object_Dir)
GMM_Array.remove(’.ipynb_checkpoints’)
GMM_Number = len(GMM_Array)
print(GMM_Array)

for counter in range(0,GMM_Number):
GMM_Filename = GMM_Models_Object_Dir + ’GMM_’+ GMM_Array[counter] +’.pkl’
with open(GMM_Filename, ’rb’) as f: # Load GMM Class Model

Model = pickle.load(f)
Label_Likelihood = Model.score_samples(image_latent_embedding)
Likelihood_Array.append(Label_Likelihood[0])

GMM_Dict = defaultdict(list)
for counter in range (0, GMM_Number):

GMM_Dict[GMM_Array[counter]].append(float(Likelihood_Array[counter]))
print(GMM_Dict)

Listing 6.1: Creation of GMM Likelihood Dictionary.

Step 4: Categories.

In Figure 6.9, we specify the ROI nodes, categories and classes used in the NS-IL
model. The Ontology for the NS-IL was designed to create a very small closed world.
This was intentional so that the focus is kept on the model mechanism.

Two categories were selected of Object and Attribute. These categories determine
the classifier boundaries i.e. which GMMs are compared together. Object GMM
Classes were selected based on those that existed both in the ImageNet dataset and
in kitchen reality. Additional classes of horse, wine_glass, and wine_bottle were
added for specific experiments to be carried out. Attribute Classes were added to
trial the generation and use of multiple categories. The image at inference time is
encoded and then presented to each GMM within a classifier, the GMM with the
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Figure 6.9: Ontology: Showing ROI Node, Category & GMM Classes.

highest likelihood is noted. It is this class that determines the classification for a
category.

6.5.3 Knowledge Graph

KGs encapsulate structured representations of information through nodes and rela-
tionships. In our system, they enhance computer vision tasks by offering a deeper
semantic understanding, surpassing mere object recognition to contextualise rela-
tionships within captured scenes. During reasoning, these graphs aid in relationship
detection and scene comprehension, providing contextual understanding, relationship
analysis, and additional information vital for tasks like zero-shot learning, image
retrieval, and visual question answering.

The Knowledge Graph (KG) leverages the Ontology as a Schema to structure
its nodes. The configuration determines how rich the semantic space is, based on
what subsymbolic information is specified. This forms the basis of the KG’s nodes
generation. The presence of the Ontology simplifies detailed queries by the LLM,
facilitates knowledge inference, and ensures consistency and accuracy in information
representation.

The Knowledge Graph is implemented in Neo4J, a high performance NoSQL
database designed for handling nodes and relationships [84]. The Cypher language is
used to operate and manage this graph database. Utilising Py2neo, a client library



102 NS-IL: The Neuro-Symbolic Incremental Learner Model

and toolkit, to interface with Neo4j from within our Python application. This allows
the execution of Cypher code via a Python wrapper.

The NS-IL system initialises and then generates a KG for an image. Using the
Image in Figure 6.10 to process. Steps 5 to 7 break this process down into it’s
constitute parts

ROI Object Name Correct?
ROI_0 Banana Y
ROI_1 Wine Bottle Y
ROI_2 Teaspoon Y
ROI_3 Kettle N (cup)
ROI_4 Wine Glass Y
ROI_5 Knife Y
ROI_6 Teaspoon Y
ROI_7 Knife Y

Figure 6.10: An Image and its Object Classifications at inference time.

Step 5: Classes & Relationships

Table 6.3 shows the items treated as metadata and used to initialise the KG. Figure
6.11 is a screenshot of the resulting KG when the image in Figure 6.10 is processed.
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Item Description
Scene Node The scene node holds the directory location of
(Red) the image that has been processed. The node holds the

directory information of where the image is located.
Object Node horse, plate, teaspoon, knife, can_opener, banana, teapot,
(Orange) wine_glass, wooden spoon, frying pan, kettle, cup, washbasin,

wine_bottle, corkscrew, screwdriver
Attribute Node striped
(Green) Use to test multiple categories for an ROI Node.
Location outside, kitchen, shed
(Light Blue)
Action cut, eat, drink from
(Purple)
Relationship Object_Class AFFORDS Action.

Assigned when a specific object class has an affordance.
e.g. a banana affords ’eat’, a cup affords
’drink from’, and a knife affords ’cut’.

Relationship Object_Class FOUND_AT Location.
Assigned when an Object is normally located somewhere.

Table 6.3: The Items generated in the KG as Metadata.
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Figure 6.11: Populating the KG - Graphic.
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Step 6: ROIs

In Step 4, the Region of Interest (ROI) nodes received assignments of Object and
Attribute categories. This assignment enables the identification of the maximum
likelihood class for each category upon node generation. There are no errors identified,
only the most likely class seen, the inference made is dependent on the available
classes in the system. The knowledge graph generation process calculates these class
likelihoods at creation time as depicted in Figure 6.2. Each edge between an ROI
Node and its associated class holds the grounding likelihood or certainty that that
class was ‘seen’.

Table 6.4 shows the items that are generated at Image inference time.

Item Description
ROI A Region of Interest identifier to provide individual

segments of an image to be held with associated information.
Relationship ROI_X FOUND_AT Scene

The ROIs within the given image.
Relationship ROI_X LIKELIHOOD_FOR Attribute_X.

The likelihood that ROI_X has this attribute.
Relationship ROI_X LIKELIHOOD_FOR Object_Class.

The likelihood that ROI_X belongs to this Class .
Relationship Source Relativity to Target Relativity

Table 6.4: The Items generated in the KG at inference.

Step 7: Commonsense Rules

After the new ROIs are generated in the knowledge graph, Commonsense rules can
be applied to classes and relationships in order to hold the best-perceived world
model. The Commonsense rules that are applied are outlined in Table 6.5.

Given the lack of depth information, certain assumptions are made about the
bounding boxes in the 2D image. Although these simplifications might lead to inac-
curate inferences about an objects’ relative size and position, they are instrumental
in demonstrating possibilities for our proof of concept NS-IL model. Note the origin
is the top left of an image.
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Item Description
Relationship Source Object Relativity to Target Relativity

LEFT: A relationship is established between a source
object and a target object when the xmax of the
source object is less than the xmin of the target object.

RIGHT: A relationship exists between a source object
and a target object when the xmin of the source
object exceeds the xmax of the target object.

INFRONT: A relationship is defined between a source
object and a target object if the ymin of the source
object is greater than the ymax of the target object.

BEHIND: A relationship forms between a source object
and a target object when the ymax of the source
object is less than the ymin of the target object.

Object_Name For a category object labeled as ’horse’
Update with a category Attribute labeled as ‘Striped’

amend object name to ‘Zebra’.

Table 6.5: The Commonsense Rules applied to the KG after inference.
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6.5.4 Large Language Model

The LLM is utilised through OpenAI’s Application Programming Interface (API) of
‘gpt-4’. The KG node and edge semantics are aligned based on suggestions from the
LLM, gained by prompting it with our schema and asking it, "Suggest improvements
in the naming of nodes and relationships in the given schema." The Schema is shown
Listing 6.2.

Node properties: [[’output’], [{’labels’: ’ObjectPrototype’, ’properties’: [’name’]}], [{’labels’: ’
↪→ActionPrototype’, ’properties’: [’name’]}], [{’labels’: ’AttributePrototype’, ’properties’:
↪→[’name’]}], [{’labels’: ’RoomPrototype’, ’properties’: [’name’]}], [{’labels’: ’SceneFile’, ’
↪→properties’: [’File’, ’name’]}],

[{’labels’: ’ROI’, ’properties’: [’Action’, ’Attribute’, ’Time_Seen’, ’ymax’, ’xmax’, ’name’, ’xmin
↪→’, ’ymin’, ’Object_Name’]}]]

Relationship Properties:[[’output’], [{’properties’: [’Time_Seen’, ’ymin’, ’xmin’, ’ymax’, ’xmax’],
↪→’type’: ’FOUND_AT’}], [{’properties’: [’Value’], ’type’: ’SPATIAL_RELATIONSHIP’}], [{’
↪→properties’: [’Likelihood_Value’], ’type’: ’LIKELIHOOD_FOR’}]]

Relationships: [[’output’], [{’relationship’: ’AFFORDS’, ’source’: ’ObjectPrototype’, ’target’: [’
↪→ActionPrototype’]}], [{’relationship’: ’FOUND_AT’, ’source’: ’ObjectPrototype’, ’target’: [’
↪→RoomPrototype’]}], [{’relationship’: ’SPATIAL_RELATIONSHIP’, ’source’: ’ROI’, ’target’: [’ROI
↪→’]}], [{’relationship’: ’FOUND_AT’, ’source’: ’ROI’, ’target’: [’SceneFile’]}], [{’
↪→relationship’: ’LIKELIHOOD_FOR’, ’source’: ’ROI’, ’target’: [’AttributePrototype’, ’
↪→ObjectPrototype’]}]]

Listing 6.2: The Neo4j Schema.

Listing 6.3 is an example of what ChatGPT replies to this request. Slight amend-
ments were made however since the suggestions change each time the actual Terms
used were selected by a human.

The schema you’ve shared outlines a structure for a knowledge database focusing on objects, actions,
↪→ attributes, rooms, scene files, and regions of interest (ROIs), along with their
↪→relationships. The naming conventions used in the schema are crucial for clarity, consistency,
↪→ and ease of understanding. Here are some suggestions for improvements in the naming of nodes
↪→ and relationships:

Improvements in Node Naming
ObjectPrototype could be renamed to Object if it’s meant to represent instances of objects in scenes

↪→ rather than a prototype design. If it truly is a template for objects, then ObjectTemplate
↪→might be clearer.

ActionPrototype similarly could be Action or ActionType if it represents types of actions that can
↪→be performed, clarifying that it’s a category rather than an instance of an action.

AttributePrototype might be better named as Attribute or AttributeType, depending on whether it’s
↪→meant to categorize attributes or represent individual instances.
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RoomPrototype could be renamed to RoomType if it represents categories of rooms, or simply Room if
↪→it’s meant to represent individual rooms.

SceneFile is quite clear, but to ensure it’s understood as representing digital files, you might
↪→consider SceneDataFile or SceneAsset.

ROI (Region of Interest) is a technical term that might not be immediately clear to all users.
↪→Consider renaming it to InterestRegion or SceneRegion for clarity.

Improvements in Relationship Naming
AFFORDS relationship between ObjectPrototype and ActionPrototype is well named, indicating what

↪→actions an object enables. No change suggested here unless clarity is needed for non-
↪→technical users, in which case ENABLES_ACTION could be more descriptive.

FOUND_AT relationship is clear but could be more descriptive. For the relationship between
↪→ObjectPrototype and RoomPrototype, consider LOCATED_IN. For the relationship between ROI and
↪→SceneFile, DETECTED_IN_SCENE might provide more context.

SPATIAL_RELATIONSHIP between ROIs could be more specific depending on the nature of the spatial
↪→relationship. If it’s about proximity, consider NEARBY or ADJACENT_TO. If it’s hierarchical,
↪→WITHIN or CONTAINS might be better.

LIKELIHOOD_FOR relationship indicating the probability of an ROI being associated with an
↪→AttributePrototype or ObjectPrototype could be renamed to PREDICTED_AS or
↪→HAS_ATTRIBUTE_LIKELIHOOD to clarify that it’s about prediction or classification confidence.

General Suggestions
Consistency in Naming: Ensure that all node and relationship names follow a consistent naming

↪→convention, either using CamelCase, snake_case, or another standard, and stick to it
↪→throughout the schema.

Verbosity vs. Clarity: While shorter names are neater, sometimes a bit more verbosity can add
↪→clarity, especially for users who might not be familiar with the domain or technical terms.

Domain-specific Terms: If the database is intended for users deeply familiar with the domain, using
↪→domain-specific terminology might be more appropriate. However, if it’s meant for a broader
↪→audience, simpler terms could be more accessible.

Adapting these suggestions can enhance the understandability and usability of your knowledge
↪→database schema by making it more intuitive and aligned with the expectations of its intended
↪→ users.

Listing 6.3: ChatGPTs reply on been asked for suggestions.

Step 8: Question to Code

The integration between ChatGPT and the KG follows the guidelines from the Neo4j
blog by Tomaz Bratanic’s, detailed at https://neo4j.com/developer-blog/gene
rating-cypher-queries-with-chatgpt-4-on-any-graph-schema/. The prompt
is created by concatenating three pieces of text:

1. The Task: We state that as a Natural Language Query Generator (NLQG)

https://neo4j.com/developer-blog/generating-cypher-queries-with-chatgpt-4-on-any-graph-schema/
https://neo4j.com/developer-blog/generating-cypher-queries-with-chatgpt-4-on-any-graph-schema/
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of Cypher queries, its task is to generate a Cypher query for a Neo4j graph
database based on the provided schema definition.

2. The Instructions: The KG schema is generated and the LLM told to only use
this. It is specified that if the generated code says Object Name this should
be translated to Object_Name since this is hard coded in our Neo4j structure.
We tell the LLM to remove any empty results fields.

3. The Translation Examples:
Listing 6.4 shows the Cypher statements used to create a meaning function by
pairing natural language with corresponding code examples. This approach
leverages the capacity of Large Language Models (LLMs) to quickly learn from
a limited set of examples. By presenting the model with Cypher statement
examples, it acquires the ability to generate similar Cypher statements through
imitation.

Examples:
# What can I drink from ?
MATCH (q:ROI{Action:’drink from’}) RETURN q.Object_Name
# What can I cut ?

MATCH (q:ROI{Action:’cut’}) RETURN q.Object_Name
# What affords drink from ?
MATCH (q:ROI{Action:’drink from’})return q.Object_Name
# What can I eat ?
MATCH (q:ROI{Action:’eat’})return q.Object_Name
# Where is a cup ?
MATCH (q:ROI{Object_Name:’cup’})-[r]->(o:ROI) return q.Object_Name,r.Value,o.Object_Name
# What can be found in the kitchen ?
MATCH (o:RoomPrototype{name:"kitchen"})-[r:FOUND_AT]->(p) RETURN p.name
# Where is the 1st Object in relation to the 2nd object ?
MATCH (k:ROI{Object_Name:’knife’})-[r]->(b:ROI{Object_Name:’banana’}) RETURN k.

↪→Object_Name,k.name, r.Value, b.Object_Name,b.name
"""

Listing 6.4: LLM Prompt Engineering - Training through Examples.

Step 9: Code to Results

The Cypher prompt is then executed on the KG and a response is received containing
a list of results. An example is shown in Listing 6.5. Each results array is comprised
of a [source, value] relation, and [target, value] tuple.
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Step 10: Results to Answer

The Results string from Step 9 is taken and merged with a new task and instructions
before being submitted to the Large Language Model (LLM) for the Answer.

• The Task: This uses the original Question and the Results, a sentence is
constructed that communicates the Answer to the user who posed the Question.

• The Instructions: to focus on the provided Question and Results details. Also,
that the response shouldn’t include any explanations or apologies.

The prompt is sent via the API to the LLM and the user receives their Answer.
Listing 6.5 shows a worked example, the Question the user asks, the question the

LLM translates into Cypher Code, the Cypher Code executed on the KG with the
Results, and then the Results translated into a natural language Answer by the LLM.

Question:
Where is the knife in relation to banana?

Cypher:
MATCH (k:ROI{Object_Name:’knife’})-[r]->(b:ROI{Object_Name:’banana’}) RETURN k.Object_Name,k.name, r.

↪→Value, b.Object_Name,b.name

Results:
[[’k.Object_Name’, ’k.name’, ’r.Value’, ’b.Object_Name’, ’b.name’], [’knife’, ’ROI_7’, ’BEHIND’, ’

↪→banana’, ’ROI_0’], [’knife’, ’ROI_5’, ’BEHIND’, ’banana’, ’ROI_0’]]

Answer:
The knife is located behind the banana.

Listing 6.5: A worked example of Question to Answer
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6.6 Results and Analysis

This section introduces our experimental setup, focusing on how we examine and
validate the capabilities of the NS-IL system. Initially, the feature space is explored
to understand the classification mechanisms in place. The system’s adaptability is
then demonstrated by showing that introducing new terms does not compromise the
integrity of existing ones. Our experiments also highlight the process of transform-
ing visual information from images into structured knowledge within the knowledge
graph (KG), emphasising the synthesis of meaning. A key part of our investigation
validates the theoretical framework that combines symbolic and neural information
to deduce new concepts, illustrated through the example of identifying a Zebra. Fi-
nally, the system’s question-answering performance is evaluated by analyses of its
effectiveness in navigating and extracting information from the knowledge graph.

6.6.1 Created Dataset

A dataset of five images was created, each image depicting a photo of everyday
objects that matched the selected ontological terms of items found in a kitchen. To
reduce image noise, which was causing issues, we covered the textured tiles with
paper. The GMM classes, trained on web images, had not ‘seen’ these specific item
instances before.

6.6.2 Step 2 & 3 - Feature Encoding & Classification

This method allows us to visually interpret the classification boundaries and the
effectiveness of the feature space in distinguishing between classes. To improve un-
derstanding and enable a visualisation, UMAP [83] is applied to compress the 25088
dimensional feature encoding to 2 features, which can be seen in Figure 6.12. The
figure shows Gaussian Means by ‘stars’ and the Gaussian Covariance Contours by
‘ellipses’ for each GMM. This highlights the predicting feature space regions for each
class. In figure 6.13 the original 260 training images (20 images/class) are displayed
and the respective regions with the highest prediction likelihood.
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Figure 6.12: Classification boundaries for with GMMs.
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Figure 6.13: Likelihood boundaries with training data overlaid.
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6.6.3 Step 5 - Addition of GMM Classes

Using the Image seen in Figure 6.14 with the initial set of GMMs we noted NS-ILs
classification together with each GMMs likelihood. Then we add two new classes
for Wine_Bottle and again note the NS-ILs classification together with each GMMs
likelihood. The outcome of Before and After the new class addition can be seen in
Table 6.6. The Likelihoods for ROI_1 the wine bottle can be seen in Figure 6.15
and 6.16, the likelihoods for ROI_4 the Wine Glass can be seen in Figure 6.17 and
6.18.

Figure 6.14: The Image used for Before and After New Classes added.
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ROI Name Class Before Outcome Before Class After Outcome After
ROI_0 banana Y banana Y
ROI_1 washbasin N (Bottle) Wine_bottle Y
ROI_2 teaspoon Y teaspoon Y
ROI_3 Kettle N(cup) Kettle N (cup)
ROI_4 knife N(Glass) Wine_glass Y
ROI_5 knife Y knife Y
ROI_6 screwdriver N(Teaspoon) screwdriver N(Teaspoon)
ROI_7 knife Y knife Y

Table 6.6: ROI Classifications for Image: Before and After Addition of Wine Glass and
Wine Bottle.

Figure 6.15: GMM Negative likelihood for ROI_1:Wine_Bottle, Before Addition of New
Classes
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Figure 6.16: GMM Negative likelihood for ROI_1:Wine_Bottle, After Addition of New
Classes

Figure 6.17: GMM Negative likelihood for ROI_4:Wine_Glass, Before Addition of New
Classes
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Figure 6.18: GMM Negative likelihood for ROI_4:Wine_Glass, After Addition of New
Classes
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It can be seen that the new class for Wine Bottle which the Image Encoder has
never seen before successfully identifies the Wine Bottle. In a similar manner the
Wine Glass Class has successfully enabled the wine glass to be classified. The order
of Likelihoods of all the other Classes has not altered. For ROI_3 which is classified
as a kettle incorrectly even though the kettle and cup classes are not close to each
other. We hypothesis that the sweeping line of the snowdrop design is similar to a
teapots handle. For ROI_6 it can be seen that screwdriver and teaspoon are next
to each other in the projected space seen in Figure 6.19.

Figure 6.19: The UMAP Projection of the Classification Space.
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6.6.4 Step 6 - Creating ROIs

The vision pipeline is evaluated using GMMs detailed in Table 6.2. To verify the
accuracy of image interpretations, we queried the knowledge graph (KG). Figure
6.20 displays the tested image, and Table 6.7 provides details on each ROI, includ-
ing object classes with their associated affordances and bounding box coordinates.
Figures 6.21 to 6.28 illustrate the likelihood of each GMM class for each ROI. The
results successfully identified all details, though the distribution of likelihood values
indicated that certain classes were more easily recognised than others.

Figure 6.20: KG Synthesis of Information Image.
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Name Object Affordance xmin xmax ymin ymax
ROI_0 teapot None 1216 1981 467 1085
ROI_1 teaspoon None 669 900 1042 1243
ROI_2 cup drink from 121 582 747 1177
ROI_3 banana eat 1011 1506 1088 1480
ROI_4 knife cut 615 747 94 849
ROI_5 banana eat 1158 1794 1082 1348
ROI_6 knife cut 926 1088 93 882
ROI_7 knife cut 784 912 113 846

Table 6.7: ROI Classification for Figure 6.20

Figure 6.21: GMM Negative likelihood for ROI_0: teapot

Figure 6.22: GMM Negative likelihood for ROI_1: teaspoon
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Figure 6.23: GMM Negative likelihood for ROI_2:cup

Figure 6.24: GMM Negative likelihood for ROI_3:banana

Figure 6.25: GMM Negative likelihood for ROI_4:knife
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Figure 6.26: GMM Negative likelihood for ROI_5:banana

Figure 6.27: GMM Negative likelihood for ROI_6:knife

Figure 6.28: GMM Negative likelihood for ROI_7:knife
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6.6.5 Step 7 - Applying Commonsense Rules

We introduced two new classes, horse and striped, by training on 20 random images
for each. A threshold was set for the striped attribute classifier to determine when
something was indeed striped. We established a rule, "If an object is classified as
horse and simultaneously identified with the striped attribute, it is to be reclassified as
Zebra. This methodology enables the creation of new Terms through the combination
of existing object and attribute classes. Initial tests identified two horses, as depicted
in Figures 6.30 & 6.31. However, one bounding box labeled with the ’striped’
attribute was correctly relabeled as ’Zebra’, as detailed in Table 6.8. This experiment
demonstrates our system’s capability to conceptualise a ’Zebra’ without directly
training on the visual data of the animal.

Figure 6.29: Term creation using Commonsense rules image.

Name Object Attr. xmin xmax ymin ymax
ROI_0 zebra striped 232 649 76 366
ROI_1 horse None 34 447 66 324

Table 6.8: Labeling Information for Figure 6.29.
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Figure 6.30: Ground truth for Figure 6.29, ROI_0

Figure 6.31: Ground truth for Figure 6.29, ROI_1
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6.6.6 Steps 8 to 10 - Question to Answer

An experiment was conducted to evaluate the full NS-IL pipeline’s efficiency using a
test set of five context images. These images included objects in different numbers,
positions, and frequencies. Five questions were posed for each image. The created
prompt, coding statement and results from executing the statement are recorded.
Figure 6.32 summarises the accurate classifications (76.9%), while Figures 6.33 to
6.37 offer detailed results for each test image.

Figure 6.32: VQA Task - Summarised Results for 5 images.
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Figure 6.33: VQA Task for Image_A. Identified Object, Generated Query and Answer.



Results and Analysis 127

Figure 6.34: VQA Task for Image_B. Identified Object, Generated Query and Answer.
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Figure 6.35: VQA Task for Image_C. Identified Object, Generated Query and Answer.
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Figure 6.36: VQA Task for Image_D. Identified Object, Generated Query and Answer.
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Figure 6.37: VQA Task for Image_E. Identified Object, Generated Query and Answer.
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6.6.7 NS-IL: Disambiguation Proficiency

Focussing specifically on the NS-ILs proficiency in translating varied phrasing of
similar questions into consistent and accurate graph traversal paths. The dataset is
formed from:

• The image seen in Figure 6.38.

• The five questions taken from Figure 6.33, are repeated in Table 6.9 to 6.13.
For each Main Question shown, ChatGPT-4 creates five linguistic variations.

This creates a test dataset of 25 questions which probe the linguistic ambigui-
ties between the KG and LLM. Each set of five variations is presented to NS-IL
in a distinct session, ensuring the model starts afresh, without any residual influ-
ence from prior interactions. The answers generated can be seen in Tables 6.9 to 6.13.

Figure 6.38: NS-IL Disambiguation for Image.
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No. Question & Answer
Main_Question_A:
Based on just the image, what affordance does the knife have?

A1 Q: What’s the knife’s main affordance in the image?
A: The affordance that a knife has is to cut.

A2 Q: In the image, what affordance is evident for the knife?
A: The affordance evident for the knife in the image is to cut.

A3 Q: From the image, what’s the primary affordance of the knife?
A: The primary affordance of the knife from the image is not provided.

A4 Q: Observing the image, what affordance can you associate with the knife?
A: The affordance you can associate with the knife, as observed in the image, is to
‘cut’.

A5 Q: What affordance can be deduced for the knife in the image?
A: The affordance that can be deduced for the knife in the image is that it can be
used to cut.

Table 6.9: Questions A: Comparison of the Answer generated by NS-IL of 5 randomly
generated questions with the same sense.

No. Question & Answer
Main_Question_B:
Based on just the image, what can I eat?

A1 Q: From the image, what’s edible?
A: From the image, the edible item is a banana.

A2 Q: What does the image suggest I can eat?
A: The image suggests that you can eat a banana.

A3 Q: Observing the image, what appears ready to eat?
A: The image shows that what appears ready to eat.

A4 Q: In the image, what can be consumed?
A: The image shows items that can be consumed.

A5 Q: Based on the image, what seems suitable to eat?
A: It seems that a banana would be suitable to eat.

Table 6.10: Questions B: Comparison of the Answer generated by NS-IL of 5 randomly
generated questions with the same sense.
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No. Question & Answer
Main_Question_C:
Based on just the image, what can I cut?

A1 Q: Observing the image, what’s cuttable?
A: Based on the image you observed, the item that is cuttable is a knife.

A2 Q: What does the image indicate can be cut?
A: The image indicates that a knife can be cut.

A3 Q: In the provided image, what seems ready for cutting?
A: The image indicates that it’s ready for cutting.

A4 Q: What in the image appears to be sliceable with a knife?
A: The bread.

A5 Q: From the image, what looks like it can be cut?
A: From the image, it appears that a knife can be cut.

Table 6.11: Questions C: Comparison of the Answer generated by NS-IL of 5 randomly
generated questions with the same sense.

No. Question & Answer
Main_Question_D:
Based on just the image, what is the relationship between the cup and teapot?

A1 Q: How does the image portray the cup in relation to the teapot?
A: The image portrays the cup, identified as ROI_2, to the left of the teapot,
identified as ROI_0.

A2 Q: In the image, how is the cup associated with the teapot?
A: In the image, the cup is positioned to the left of the teapot.

A3 Q: Observing the image, what connection is evident between the cup and teapot?
A: The connection evident between the cup and the teapot in the image is that the
cup is to the left of the teapot.

A4 Q: What’s the depicted relationship of the cup and teapot in the image?
A: In the image, the cup is depicted to the left of the teapot.

A5 Q: Based on the image, how do the cup and teapot interact?
A: The cup is positioned to the left of the teapot based on the image.

Table 6.12: Questions D: Comparison of the Answer generated by NS-IL of 5 randomly
generated questions with the same sense.
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No. Question & Answer
Main_Question_E:
Based on just the image, how many knives are there?

A1 Q: How many knives does the image show?
A: The image shows 3 knives.

A2 Q: Counting in the image, how many knives can you see?
A: In the image, you can see three knives.

A3 Q: Observing the image, how many knives are depicted?
A: The image depicts three knives.

A4 Q: From the image, how many knives are visible?
A: From the image, you can see that there are 3 knives visible.

A5 Q: In the provided image, how many instances of knives can be found?
A: In the provided image, there are 3 instances of knives.

Table 6.13: Questions E: Comparison of the Answer generated by NS-IL of 5 randomly
generated questions with the same sense.
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For most variations, the answers are consistent across the five different phras-
ings. For instance, in Set B, the consistent answer is that a banana is edible. Such
consistency indicates that the model understands the core intent of the question, ir-
respective of its phrasing. In Set C, there’s an inconsistency. The main question and
its variations are asking what in the image can be cut, but several answers indicate
that a knife itself can be cut which is a misinterpretation. In Set A, the model re-
turned non-specific answers like "not specified" or "not provided" for some variations.
This could indicate that certain phrasings caused ambiguity or that the image did
not provide a clear context for the knife’s main affordance. Looking at the cypher
code it shows that instead of using the term ‘Action’, the use of ‘Main_Affordance’
and ‘Primary_Affordance’ caused no results to be returned from the KG. In Set D,
all five variations aim to understand the spatial relationship between the cup and
teapot. The model consistently identified the cup as being to the "left" of the teapot,
indicating a strong semantic understanding of spatial relationships in the image. For
Set E, the model consistently identified "3 knives," indicating reliable count-based
object detection across varied phrasings. In some cases, like in Set C, the change in
phrasing led the model to provide syntactically correct but semantically incorrect
answers. For instance, saying "a knife can be cut" is a syntactically correct sentence
but doesn’t make semantic sense in most contexts.

Whilst A4 in Set C showed that ChatGPT-4 hallucinations have not been elim-
inated. As when asked, "What appears sliceable with a knife?" it answers "The
bread" which is not an object in the image, however sliceable was also not in the
ontology, showing how important the terminology used is. The answer showing the
most potential was A1 in Set D which provided specific details like "identified as
ROI_2" and "identified as ROI_0," which suggests the model can identify and tag
different regions of interest in the image. To investigate if we could reuse this prompt,
we submitted Image_C with the question "1. How does the image portray the cup
in relation to the teaspoon?" to which the Answer was, "The image portrays the
cup in the ‘ROI_1’ position to the left of the teaspoon in the ‘ROI_7’ and ‘ROI_5’
positions". Checking the KG created these, they were indeed the tags allocated to
these objects.
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6.6.8 NS-IL: Benchmarked against ChatGPT4-V

In these experiments, we aim to assess the efficacy of two distinct models in an
image driven, question and answer context. First, we have our Neuro-Symbolic
model, denoted as NS-IL which employs ChatGPT-4 as a Q&A interface for users
and derives its answers from a knowledge graph. In contrast, we have ChatGPT4-V,
an iteration of ChatGPT-4 specifically trained to interpret an image alongside a
query and generate an answer independently, without the assistance of any external
knowledge graphs or databases. NS-IL and ChatGTP4-V are discussed qualitatively
and also quantitatively. The dataset we use is Figure 6.38 again, together with 5
questions shown in Table 6.14.

Qualitative comparison

The Image alongside the questions are presented to both models. To maintain
consistency, ChatGPT4-V was initialised in a separate chat session for each question
set, ensuring that no prior chat history influenced the outcome. The directive given
to ChatGPT4-V was to solely utilise the associated image for each query. We then
evaluated the accuracy of the responses based on human interpretation. Through a
qualitative assessment, we analysed the quality and relevance of the answers to gain
a deeper understanding of the pros and cons of each model.
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No. Question & Answer
1 Q1: Based on just the image, what affordance does the knife have?

ChatGPT_V_A1: The knife has the affordance of cutting or slicing.
NS_IL_A1: The affordance that a knife has is to cut.

2 Q2: Based on just the image, what can I eat?
ChatGPT_V_A2: You can eat the bananas.
NS_IL_A2: You can eat a banana.

3 Q3: Based on just the image, what can I cut?
ChatGPT_V_A3: You can cut the bananas with the knife.
NS_IL_A3: You can cut with a knife.

4 Q4. Based on just the image, what is the relationship between the
cup and teapot?
ChatGPT_V_A4: The relationship between the cup and teapot is
that the teapot can be used to pour a beverage, likely tea, into the
cup.
NS_IL_A4: The relationship between a cup and a teapot is that
the cup is to the left of the teapot.

5 Q5: Based on just the image, how many knives are there?
ChatGPT_V_A5: There are five knives in the image.
NS_IL_A5: There are 3 knives.

Table 6.14: Using the Image in Figure 6.38, Comparing Question & Answers for two
models NS-IL (with KG) & ChatGPT4-V (without KG).
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Table 6.14 shows the Answers from both models. Note that the NS-IL system
will only know about objects in the identified bounding box which can be seen in
Figure 6.38. ChatGPTs prior of common sense can be seen to be advantages in the
information used to know in Q3, that knives cut bananas, and in Q4, that teapots are
used to pour beverages. It can also be said that NS-IL has only used the information
held in the knowledge graph and therefore in Q4 has used the relationship based
on location. It should also be noted that NS-IL also knows the exact pixel location
where an object is placed in the image and what time it was seen, together with the
ability to identify each object individually. All answers were acceptable.

Quantitative Comparison

In this experiment, we conduct a comparative analysis between NS-IL and ChatGPT4-
V. The experiment involves assessing the answers generated by these models for the
set of five images and associated questions found in Section 6.6.6. We quantitatively
evaluated the generated answers in terms of the following categories:

• Factual Correctness, as determined by human judgment,

• Factual Incorrectness, as determined by human judgment.

• The correct incorporation of commonsense knowledge in addition to the visual
content of the image.

• The inappropriate use of commonsense knowledge about the image.

The results are presented in Figure 6.39, showing answer accuracy and their associ-
ated 95% confidence interval. The results indicate NS-IL outperformed ChatGPT4-V
in terms of factual correctness, indicating that NS-IL generated responses that were
more factually accurate as deemed by a human assessor. Conversely, NS-IL also exhib-
ited a higher rate of factual incorrectness compared to ChatGPT4-V. ChatGPT4-V
consistently demonstrated the application of commonsense knowledge alongside the
image content, while neither model displayed instances of incorrect commonsense
usage. It is worth noting that NS-IL exhibited lower variance in confidence levels
across its responses when compared to ChatGPT4-V.
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Figure 6.39: Answer Analysis for NS-IL & ChatGPT4-V using a dataset of 25 questions
and 5 images.
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6.7 Limitations

The system was created using a small dataset of classes, further research needs to
be carried out to test its capacity to scale and handle a more comprehensive and
dynamically changing knowledge space. Automated Object and Attribute class cre-
ation, could be achieved by utilising an existing VQA dataset such as Visual Genome
(101,174 images from MSCoco with 1.7 million QA pairs).

6.8 Discussion

We create a structure of ‘Things’ that humans internally think about, they are
bounded as regions of interest, identified and classified within a world model that
holds the What and Where information. Through Questions and Answers about
their immediate environment, humans are helped to decide their next actions in
the world. The AI representations are strategically aligned with human concepts to
enable a useful communication tool. By externalising the independent training of
new classes using limited sample sizes from the NN, the proposed system effectively
addresses the issue of catastrophic forgetting inherent in neural networks. While
unsupervised learning in the creation of the feature space is possible using Autoen-
coders, our study acknowledges that achieving a conceptually valuable feature space
necessitates supervised learning. One potential improvement is to investigate the
formation of the feature space, training the image encoder on a dataset that contains
classes such as ‘pointy,’ ‘corner, ‘straight,’ and ‘circle’ to enable an improved feature
set.
Setting specific likelihood thresholds for each GMM class could enhance classification
accuracy, with classifications only made if the likelihood surpasses its designated
threshold. Such tweaks could bolster our architecture’s performance and adaptability
across various tasks.

In question-answering systems, foundational models such as large language mod-
els(LLM) present distinct advantages, such as no training needed. However, when it
comes to precision, consistency, and structured data management, KGs undoubtedly
take the lead. These graphs offer a structured data format that ensures a high level
of data integrity and reliability, with explicitly mapped-out relationships between
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entities. This structure aids the precise delivery of answers to complex relational
queries. On the other hand, while LLMs exhibit adaptability to diverse and un-
structured queries and can process multimodal inputs, they lack the inherent data
organisation and domain-specific tailoring that KGs can offer. KGs’ scalability and
auditability set them apart, making them an optimal choice for contexts requiring
systematic data retrieval and transparency of decision-making.
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7
Summary and Conclusions

7.1 Summary

This research investigated the development of a Neuro-Symbolic Incremental Learner
(NS-IL) tailored for Visual Question Answering (VQA), with the aim of aiding indi-
viduals with visual impairments. The NS-IL model, devised as a solution, utilised
Gaussian Mixture Models (GMMs) and neural networks to incrementally acquire vi-
sual definitions for terms. These GMMs are integrated into a Knowledge Graph (KG),
establishing grounded memory and enabling natural language querying through a
Large Language Model (LLM).

An ontology is employed to align terms used across the system, enhancing organ-
isation and retrieval processes through structured key:value storage. This alignment
ensures precise granularity of each term throughout the system.

The effectiveness of the system relies on understanding the context of posed ques-
tions, a challenge currently being tackled through various LLM prompt engineering
and fine-tuning methods. It’s crucial to ensure that retrieved values are stored within
their original context.

Central to system accuracy is the quality and utility of the visual Feature Space,
which must effectively categorise images into associated terms. Achieving this in-
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volves careful collection of training images implicitly implying the class, or explicit
annotation of images with the class. Further research is needed to understand the vi-
sual features and categories humans use to describe the world, facilitating alignment
in language use and enabling meaningful communication with Digital Assistants.

7.2 Conclusion

Our initial hypothesis was that, ’the use of independent Gaussian Mixture Models as
a mechanism to link Neural Nets to a Symbolic memory, will lead to a more flexible
Visual Question Answering Task’. Reflecting upon our research questions, these are
our findings:

• To support independent GMM incremental learning specific to visual classes
in traditional neural networks, several architectural modifications are required.
As demonstrated in Chapter 4, our approach is to separate the task into two
distinct parts: learning the principal visual features and learning the class
definition. This separation of tasks allows the system to effectively learn new
classes without any catastrophic forgetting issues, which is a notable
advantage over standard neural network architectures. Once the principal visual
features are learned, they can be reused for new classes without retraining
the image encoder. The experiments highlighted that a GMM consistently
outperformed the Softmax function for sample sizes smaller than 12.
In fact, based on three class imbalance experiments, the GMM demonstrated
superior performance compared to the Softmax when trained on sample sizes
under 15.

• Through the addition of a KG (Memory), a flexible question-and-answer
functionality was achieved. The GMMs were essential to the grounding of
the KG through there linkage to the Neural Nets. The LLM enabled natural
language Q&A which was found to be more consistent that ChatGPT-V.
The system learns visual representations neurally and makes them
available symbolically, thereby facilitating logical reasoning capabilities.
A schema defines how Meaning is attributed to Terms from visual
regions of interest.

The research intent is to abstract visual meaning from training images and assign a
Term. This Term should be one that the wider population has reached a consensus
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for. This then affords us the ability to use language to discuss and query a reality we
don’t physically have to be present in. Our compositional ML model, called NS-IL
combines an Image Encoder, Gaussian Mixture Models, a Knowledge Graph, and a
Large Language Model, creating a novel end-to-end VQA system.

In conclusion, the proposed NS-IL architecture represents a holistic approach
to cognitive AI tasks, combining the strengths of neural networks and symbolic
AI. With the ability to incrementally learn classes, the system can evolve with the
environment. While challenges remain, the potential benefits in terms of adaptability
and versatility make it a compelling direction for future research and application.
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8
Future Possibilities

8.1 A Passive Agent for the Visual Impaired

The NS-IL architecture was a first step towards creating a passive AI Assistant
to help those that need it. Taking inspiration from the blog available at https:
//blog.dileeplearning.com/p/ingredients-of-understanding, Figure 8.1
illustrates how the Neuro-Symbolic Incremental Learner model can be conceptu-
alised as a passive Agent designed for interaction with humans or other Agents. The
question, answering ability is adapted to enable dialogue / message passing and
the image functionality extends into video. The current system is based purely on
semantic knowledge and images, this could be extended with additional multi-modal
signals to build a Sensorimotor world model as an engine to simulations. Which
enables counterfactual reasoning through hyperparameter searches attuned to identi-
fied human goals. The Visual Dialogue Task, allows the Assistant to pose questions
and on receiving answers adjust the contents of its knowledge graph (configuration
state) to match both the environment and the user’s context. It is worth noting that
whilst the human has a fixed capability the AI Assistant has a scalable capability,
but could also potentially message with other Agents to access ‘others’ knowledge
and teach each other through continual learning mechanisms. Ethics should be key
to any implementation such as this, together with how the patient’s questions and
answers are stored. As AI shifts towards personalisation, the context of terms/-
words will play a pivotal role. The capability to tailor systems to individual needs

https://blog.dileeplearning.com/p/ingredients-of-understanding
https://blog.dileeplearning.com/p/ingredients-of-understanding
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Figure 8.1: Visual dialogue between an AI Assistant and Human.

will highlight what structure they contain and the depth of the concepts held. As
LLM and Language Vision Model (LVM) research advances, clearer strategies for
connecting sentence structures, categories, terms, as well as prompt engineering, will
mature and become clearer. This will also guide efforts to mitigate model generated
misconceptions or "hallucinations". Leveraging a question-answer framework can be
beneficial for both enhancing machine learning and providing valuable information
to a system. A natural progression will be to include additional datasets and allow
seeing users to augment their vision with location and topic specific knowledge that
they currently do not have.

8.2 Next Steps

With the benefit of hindsight, the adjustments that could be made and the identified
improvements are :

• To research the internal structure of the base feature space and how to align
it with the dependent downstream categorical classes. An example would be
a dataset containing images and associated feature classes such as ’pointy,’
’corner,’ ’straight,’ and ’circle’ and evaluate if visually similar images cluster
together in the feature space, then test to see if GMM classification accuracy
is higher.

• Setting specific likelihood thresholds for each GMM class could enhance classi-
fication accuracy, with classifications only made if the likelihood surpasses its
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designated threshold. Such tweaks could help our architecture’s performance
and adaptability across various tasks.

• The inferred concepts within the KG hold a seen likelihood, further research is
needed to investigate how to incorporate these likelihoods into logical inferences
to aid logical reasoning.

• This thesis describes the creation of symbolic definitions for regions of interest.
The process through which the world is abstracted into classes and categories
should be investigated to improve the principled creation of Ontologies and
hence alignment with humans to reduce misunderstandings.
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