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ABSTRACT

Two of the most researched domains in the hippocampus are the oscillatory activity and
encoding and retrieval of patterns in the hippocampal CA1 and CA3 regions. They are, how-
ever, not studied together; and hence, the objective of our work is to study the cross-frequency
coupling of theta-coupled gamma oscillations in CA1 and CA3 regions of the hippocampus
while encoding and retrieving information. We have studied the cross-frequency coupling
of theta-coupled gamma oscillations both individually and in our newly-proposed integrated
model of CA1-CA3 to analyze the effects of Schaffer collaterals and CA1 back-projection
cells on CA1 and CA3 regions of the hippocampus. Due to lack of literary evidence, we have
also contributed our hypotheses about the effects of CA1 back-projection cells on CA1 and
CA3 cell-types. Moreover, we have developed a deterministic rule-based cellular automata
library to study cross-frequency coupling in single-neuron level and population neuronal net-
works at the same time. The discrete model is theta-oscillations-aware and hence encoding
and retrieving of patterns takes place during the half-cycles of theta oscillations.

We have extended the septo-hippocampal population firing rate model proposed by Den-
ham and Borisyuk (2000) to study (i) the influence of inhibitory interneurons, specifically
PV-containing basket cells (BCs) and bistratified cells (BSCs) on theta and theta-coupled
gamma oscillations in both CA1 and CA3 hippocampal networks; (ii) to study Schaffer col-
laterals from CA3 to CA1 and the influence of back-projection cells in CA1 on CA3; (iii) to
analyze and compare the phases of cross-frequency coupling of theta-coupled gamma oscil-
lations among the different cell types in CA1 and CA3 regions; (iv) to study the influence of
external inputs on CA1 and CA3.

In our simulations, with constant external inputs, we identify the parameter regions that
generate theta oscillations and that BCs and BSCs in CA1 are in anti-phase, as seen experi-
mentally by Klausberger et. al (2008). Slow-gamma oscillations are generated due to the ac-
tivity of BSCs and BCs in CA1 and CA3, and they are propagated from CA3 to CA1 through
the Schaffer collaterals, as seen in Klausberger et. al (2008) where BSCs were observed to
synchronize PC activity during theta-coupled gamma oscillations in CA1. In CA3, increas-
ing excitation of CA3 pyramidal cells results in theta oscillations without the slow-gamma
coupling. Increasing excitatory input to CA1 pyramidal cells results in steady state and de-
creasing the excitatory input, results in reduced oscillatory activity in both CA1 and CA3 due
to Schaffer collaterals and the feedback projections from CA1 to CA3. This demonstrates
that changes in input excitation can move the networks from oscillatory to non-oscillatory
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states, comparable to the differences seen in animals between exploratory and resting state.

Further, Mizuseki et. al (2009) observed experimentally that CA1, CA3 and EC are out-
of-theta-phase with each other and that the phase observed in CA1 pyramidal cells are not a
result of a simple integration of phases from CA3, EC or the medial septum. We have thus,
simulated theta-frequency sine-wave inputs from CA3 and EC of relative phases in the model
and observed the same results in our CA1 individual and CA1-CA3 integrated model.

To study encoding and retrieval of patterns in an oscillating model, we took an engineer-
ing approach by developing a discrete modeling system using cellular automata (CA) derived
from the models of Pytte et. al (1991) and Claverol et. al (2002). The aim of this model is
to (i) replicate the oscillatory and phasic results obtained using the continuous modeling ap-
proach and (ii) extend the same model to study storage and recall of patterns in CA1 taking a
theta-oscillations-aware approach.

Encoding and retrieval happen at different half-cycles of theta where information pro-
cessing takes places in the sub-cycles of the slow-gamma oscillations in each half-cycle of
theta oscillation (Cutsuridis et. al, 2010, Hasselmo et. al, 1996). A set of rules is developed
to replicate this for the CA model of CA1. The encoding and retrieval half-cycles are identi-
fied using the basket cell activity, and hence synaptic learning is enabled during the encoding
half-cycle of theta, and is disabled during the recall half-cycle of theta oscillations. This is
also a biologically realistic enhancement for studying learning and recall in theta-coupled
gamma oscillations using a discrete cellular automata approach.
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1 INTRODUCTION

Mundane activities, some involuntary and some repetitive ones, such as breathing, blink-
ing, locomotory activities, mastication, learning, memory, etc. are all related to the rhythmic
oscillations in the brain. Rhythmic tremors observed in certain conditions such as epilepsy,
Parkinson’s, various sleep disorders [4, 5] are all related to various impairments to different
oscillations. Brain oscillations are generated as a result of interactions between neurons or
due to intrinsic activities in a neuron due to changes in membrane potential or evoking action
potentials. The diversity of neuronal connections found in the brain has been widely stud-
ied and modeled. Neurons, the basic brain cells, communicate with each other, fire action
potentials thus generating oscillations [6]. These oscillations can be regular or irregular, and
yet have a well defined functionality. Due to an external stimulus, these oscillations can be
perturbed, but they then return back to their initial cycle, perhaps with a phase difference [4].
The type of neurons interacting with each other determines the type of oscillatory activity.
The high level question that we are trying to understand in this thesis is how these oscillations
relate to encoding and retrieval of memories.

Oscillations are believed to coordinate the working of the different regions of the brain.
In this work, we have considered the hippocampal region of the brain to study neuronal oscil-
lations in encoding and retrieval. Physiologically, the hippocampus consists of CA1 to CA4
regions, subiculum and the dentate gyrus (DG), with major inputs coming from the entorhinal
cortex (EC) and the medial septum. The projections from the EC to DG forms the perforant
pathway, DG to CA3 forms the mossy fiber pathway, and from CA3 to CA1 forms the Schaf-
fer collaterals, collectively called the trisynaptic loop, as shown in figure 1, and as explained
in simple terms in figure 2. The CA3 region of the hippocampus has a recurrent neuronal
structure wherein the excitatory pyramidal cells project onto themselves extensively. Such
recurrent projections can be seen sparsely in CA1 as well. The interactions between neu-
rons can be either from excitatory to inhibitory, inhibitory to excitatory or recurrent within
the same population of neurons as shown in figure 3. When neurons in a population project
onto themselves, recurrent collaterals are formed which can be either excitatory or inhibitory
depending on the type of neurons involved. These recurrent collaterals aid in learning, mem-
ory and also provide computational capabilities [7]. Associative memories behave as
such due to their large basin of attraction about each memory array in every region [8, 9].
In 1949, Donald Hebb proposed the “Hebb rule”, which states that “when an axon of cell

A is near enough to excite cell B or repeatedly or persistently takes part in firing it, some
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Figure 1: Drawing of the hippocampus with the different pathways by Drawing of the hippocam-
pal regions by Santiago Ramón y Cajal, 1911, Histologie du Système nerveux de l’Homme et des
Vertébrés, Paris

growth process or metabolic change takes place in one or both cells such that A’s efficiency,

as one of the cells firing B, is increased” [10]. Three implementations of the Hebb rule are
explained by Sejnowski et al. [11] for the implementation of synaptic plasticity —(i) A di-
rect connection between two neurons A and B having a modifiable synaptic connection; (ii)
a feedback connection from neuron B to A wherein the strength of the modifiable synaptic
connection between them increases in proportion to the firing rates of the two neurons; and
(iii) an intermediate neuron called the interneuron, I, which modifies the threshold needed for
action potential generation, as the threshold decreases in proportion to the firing rate of the
two neurons A and B as shown in figure 4.

These three implementations are found in the brain, wherein types (ii) and (iii) have re-
current collaterals. In type (ii), the recurrent excitation comes from the postsynaptic site
projecting onto the projection from neuron A to neuron B, whereas in type (iii), the feedback
comes from neuron B onto the intermediate inhibitory interneuron altering the threshold for
further potentiation. We are more interested in the behaviour of neuronal networks where
neurons in a population, either excitatory or inhibitory, project onto themselves, thus increas-
ing either excitation or inhibition. Such projections in neuronal networks require an opposite
force to regulate the behaviour of neurons in such circuits.

Functionally, the hippocampus plays an important role in memory consolidation of long-
term memories or episodic memories stored in the neocortex [12]. Hippocampus is also a
cognitive map wherein the primary cells of the hippocampus record the location of the sub-
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Figure 2: The different regions and the trisynaptic loop of the hippocampus

ject as the subject moves around [13, 14]. Hebb proposed that the synaptic connectivity
between cells become stronger if they are active at the same time, which is termed as the
“coincidence-detection rule” [10]. Modifiable synapses allow action potentials to persist for
a longer duration and are required for remembering data that are learnt [15]. This is called
long term potentiation (LTP) wherein a sustained increase in synaptic strength is observed
following a high-frequency stimulus [16]. Whereas when the pre-synaptic neuron is not ac-
tive but the post-synaptic neuron is active, it is called long term depression (LTD), and the
corresponding projection strength decreases. The brain oscillations exhibited during such
phenomenon are observed to be between 30-50Hz which is superposed on a 4-10Hz carrier.

Theta oscillations are rhythmic brain oscillations in the frequency range of 4-10Hz. The
supra-mammilliary bodies (SUM) via the medial septum-diagonal band of Broca (ms-dbB)
propagate the rhythmic theta oscillations to the hippocampus [17]. Memory consolidation
from the hippocampus to the neocortex is known to occur during rapid eye movement (REM)
sleep [18]. Theta oscillations are known to be prominent during learning and recall of new
location states, and during REM sleep in the hippocampus and neocortex [19]. Slow gamma
oscillations are the rhythmic brain oscillations in the frequency range of 30-50Hz. These
have been observed to process and encode data in subcycles encompassed in a single theta
half cycle [20, 21]. It has been observed that the phase of theta oscillations decide the type
of activity taking place between the pre- and post-synaptic neurons, whether it is an LTP or
LTD [19].

Due to the recurrent collaterals in CA3, an autoassociative memory is formed, and due
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Figure 3: An E-I-E and E-E network of recurrent collaterals

Figure 4: Different types of synaptic plasticity
taken from Sejnowski et. al. (1989)

to the feedforward connectivity in CA1, a heteroassociative network is formed [22]. Active
neurons representing learnt patterns are retrieved, and encoding of novel environments as
new patterns occur in specific gamma cycles in different half cycles of theta oscillations, thus
encoding and retrieval are temporally separated [22]. A brief explanation about oscillations
is given in chapter 2.

The CA3 recurrent collaterals also behaves as a continuous point attractor network [23]
having a large basin of attraction resulting in a pattern completion framework, given a part
of the required pattern, due to the association of related memory segments in space and time.
However, the relevance of memory segments in space and time can be determined from the
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phase of oscillations [23]. The authors in [23] also show that the convergence to a particular
pattern of space when small changes were introduced in the environment occurs in CA3 re-
current collaterals in the theta-phase firing of the CA3 pyramidal cells.

This thesis is an attempt to understand the role of oscillations and recurrent collaterals

in encoding and retrieval of information. Taking inspiration from a continuous population
model with a network of four coupled differential equations, known as the septo-hippocampal
pacemaker circuit proposed by Denham et. al [2], we extended the model to incorporate ad-
ditional neuronal populations in CA1. Inspired by this CA1 model, we developed a similar
model for CA3 region by deriving structural information from biological results in the litera-
ture. We have also combined the models to propose the first CA1-CA3 integrated continuous
model to understand the effects of the CA3 to CA1 Schaffer collateral projections, and to
understand the inhibitory feedback received by CA3 from CA1. This also enables us to ana-
lyze the differences between basket and bistratified cells and the other inhibitory interneurons
which are present in both CA3 and CA1.

We were able to reproduce results observed in several biological experiments including
the phase differences between different cell types in CA1 and CA3, phase of CA1 pyramidal
cells with respect to EC and CA3, the propagation of slow gamma oscillations from CA3
to CA1, effects of septal-pacemaker circuit. This validates both our model and the obser-
vations/contributions that come out of our simulations. Detailed explanations reproducing
biological results are given in chapter 4.

With the results of the continuous population model as a baseline, we move on to study the
mechanisms of encoding and retrieval in CA1 region of the hippocampus using the discrete
cellular automata approach. With the cellular automata approach, we can also understand
brain oscillations from a single neuron level. It is possible to model thousands of such single
neurons and to encode and retrieve data during oscillatory activity. We study the recall of
information learnt in the individual-based model of CA1 using the information encoded in
single subcycles of gamma superposed in a half theta cycle carrier.

We have shown that a discrete modeling approach such as the cellular automata can be
used to simulate neuronal models reproducing results from the continuous models, which
enables us to study both single neurons and population networks at the same time. We have
obtained the phase synchrony of different populations in the hippocampal CA1 region as in
literature. In addition, an enhancement over the Cutsuridis et. al [24] model is that the recall
of patterns in each of the gamma subcycle in each theta half cycle during our simulation times
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are theta-oscillations-aware due to the activity of basket cells.

This thesis is organized to explain first about the importance of studying neuronal oscilla-
tions in chapter 2, followed by the various types of models present in chapter 3, and the ones
which we have adopted in our study. This is followed by the modeling of population models
in chapter 4, which is then followed by the cellular automata implementation in chapter 5,
lastly followed by conclusion. Discussion of results from each model is also presented in the
respective sections.
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2 WHY STUDY OSCILLATIONS?

Oscillations can simply be defined as a periodic wave having an amplitude, frequency and
phase recurring within a specified duration of time [25]. When neurons communicate with
each other, or due to membrane potential changes, oscillations are generated and propagated
across different regions of the brain. Oscillations can be short range, communicating with dif-
ferent neurons in the same region or long range, communicating with different regions of the
brain. Multiple functionalities are associated with each oscillation frequency. Superposition
of multiple frequency oscillations result in brain responses attributing to specific functional
responses [25, 26] as shown in figure 5.

2.1 BEHAVIOURAL STATES OF OSCILLATIONS

Neuronal oscillations are a functionally essential part of the brain system for proper syn-
chronization and coordination of different neuronal circuits. From synaptic plasticity to the
communication of different neuronal assemblies to temporal ordering of encoding and re-
trieval of both short term and consolidated long term memories, are all facilitated by neuronal
oscillations [27]. Frequency of brain oscillations can range from 0.5Hz to 500Hz depending
on the region and context [27].

Different oscillatory ranges are associated with different behavioural states.

Figure 5: Different frequency bands of the neural rhythmic oscillations explained

1. Alpha band frequency (8-13Hz) is observed during sensory functions from the sensory
areas, processing high cognitive loads in the frontal cortex, resting states from the
occipital cortex, attention and alertness [26, 28, 29].

2. Gamma band frequency (30-150Hz) is attributed to perception, attention, memory and
learning, and information processing [26, 29]. Depending on the temporal sequence
of where it occurs, slow gamma (30 - 50Hz) oscillations are actively observed during
both encoding and retrieval of information [30].
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3. Delta band frequency (1-4Hz) is found when there is slow wave sleep and absence in
motor activity [31, 32].

4. Theta band frequency (4-10Hz) is attributed to cognition, encoding and retrieval of
information, memory formation and spatial navigation [33, 28, 29]. Theta frequency
is also found during REM sleep when episodes from previous awake experiences are
replayed for consolidation in the neocortex [29].

5. Beta band frequency (12-30Hz) is observed during awake conscious state just after
sleep, in active concentrations, anxious moments, rewarding moments, awareness, pro-
cessing novel information [34, 35].

6. Sharp wave ripples (140-200Hz) is observed in the hippocampal region during eating,
drinking activities, and during memory consolidation to neocortex from the hippocam-
pus. It is also hypothesized to be responsible for memory erasure due to its synchro-
nized activity across CA3 to CA1-subicular-entorhinal complex [25].

7. Sleep spindles are found during stage 2 of the sleep cycle when both the cortical and
thalamocortical neurons are active [25].

Cross-frequency coupling of oscillations occurs due to overlapping temporal dynamics which
facilitates synchrony between different regions. Theta oscillations are said to be a global os-
cillator synchronizing and coordinating functionalities across different brain regions. Theta
frequency oscillations are found to be coupled with fast gamma oscillations in the auditory
cortex [36]. During different behavioural tasks fast gamma oscillations are coupled with
higher theta amplitudes in the neocortex [37]. Alpha frequency oscillations are coupled with
fast gamma oscillations during visual processing [38]. Alpha-beta frequency oscillations
desynchronize during the formation of episodic memories in the neocortex, while the syn-
chronization of hippocampal fast and slow gamma oscillations aid retrieval of information
[39].

Theta-gamma cross frequency coupling occurs during short-term memory encoding and
retrieval in the hippocampus. CA3 is observed to propagate slow gamma oscillations to CA1
via the Schaffer collaterals, while CA3 has local theta and gamma generating oscillators and
also receives inputs from EC via the perforant pathway [40]. It is also hypothesized by Lis-
man and Idiart [20] that gamma subcycles are found superposed in theta oscillations, wherein
seven gamma subcycles are found in each theta half cycle, and each gamma subcycle repre-
sents sequential memory items with each memory being triggered in each gamma subcycle
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[21, 20, 36]. The intensity of theta-coupled gamma oscillations was found to be more strong
during learning and recall mechanisms in the LFP of rats while studying the importance of
theta-gamma coupling in the CA3 region of the hippocampus [41]. Theta rhythms were
found to regulate learning in neurons, while gamma rhythms were found to bind events from
memories, and lastly, the fast oscillatory sharp wave ripples were found to be stronger during
consolidation process in the neocortex [42].

In this work, we are interested in studying the hippocampal theta coupled with slow
gamma oscillatory activity which is observed during encoding and retrieval of memories
between the CA1 and CA3 regions. It has been observed that the phase of theta oscillations
decides the type of learning activity taking place between the pre- and post-synaptic neurons,
whether it is strengthening or weakening of synaptic connections [19]. Information about the
current position of the subject in space is stored in each theta phase [43]. The relationship
between spatial exploration information and path integration information are linked together
by theta waves [44]. Theta oscillations are used for communication and flow of information
across different areas of the hippocampus. Theta acts as a global synchronizer organizing
activity in each hippocampal region [45]. Synaptic potentiation is due to the inputs arriving
in the positive phase of theta in the dendritic layer and synaptic depression is due to the inputs
arriving in the negative phase of theta [46]. It can be said that theta oscillations are a periodic
clock timing the spikes of the hippocampus [46].

2.2 ROLE OF HIPPOCAMPUS IN LEARNING AND MEMORY

In graph theory, there is the concept of centrality algorithms [47] describing the impor-
tance of a node in a network by various means such as, the number of incoming and outgoing
projections from a node, if a node connects different populations in a network [48], if the
node has the highest eigenvalue [49], etc. The importance of the presence of a node is felt by
the network when the node is inactive or deleted or removed, depending on the context. In
this context, removal of the hippocampus resulted in understanding its functionality.

The medial temporal lobe of a few patients was removed either partially or bilaterally to
reduce symptoms of epileptic seizures, schizophrenia, etc [50] as shown in figure 6. Post-
operative status was considered to be better than the patients’ pre-operative state, resulting
in considerable reduction in seizure medications that usually left the patients lethargic and
confused. There was also no noticeable intellectual impairments, and patients showed no
changes in personality [50]; however, there was an abrupt gap in the patients’ memory time-
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Figure 6: Comparison of a fully functional brain v/s the brain of a patient where hippocampal regions
are surgically removed bilaterally. Courtesy: with permission: Rochelle Schwartz-Bloom, Duke Uni-
versity: http://sites.duke.edu/apep

line. In patients where the hippocampus and the surrounding areas was bilaterally removed
( about 8cm each on both the sides of the brain), memory about recent events seemed to be
forgotten, although the patients could state almost accurately the events of their early life.
The patients could not remember recent events in their life [50] which suggests loss of work-
ing memory or short term memory, to which the hippocampus is attributed. The patients
also could not recall the map of their current environment [50] which also suggests loss of
spatial navigation for which the hippocampus is held responsible. Since short-term memory
is affected, none of the recent/current events could be stored for long-term recall, affecting
memory encoding and memory consolidation.

Thus, hippocampus plays an important role in memory consolidation of short-term mem-
ories into long-term memories, or episodic memories which are stored in the neocortex [12].
Hippocampus also serves as a cognitive map wherein the primary cells of the hippocampus
known as place cells, record the location of the subject as the subject moves around [13, 14].
Place cells are found to fire when the subject is in a particular environment or as the subject
traverses a known environment. The afferents of the hippocampal CA1 area to EC contain
information about patterns having relative facts that form the chain of elements of particu-
lar memories. Inputs from EC to CA1 has sensory information, inputs from CA3 to CA1
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has conceptual information about a specific node, both of which converge in CA1 forming
contextual memories. Firing of neurons in an associative manner retrieves memories from
partial cues due to LTP, thus strengthening connections between neurons that fire consecu-
tively [12, 51]. Many experiments including mazes, objects etc., are conducted on rats, cats,
monkeys, rabbits, etc., to ascertain these observations [13].

Experiments are also conducted to analyze brain oscillations in order to understand more
about encoding and retrieval processes. The types of oscillations generated or sustained dur-
ing various activities of the subject is critical for the understanding of encoding and retrieval
of information, which in our case are the theta and slow gamma oscillations in the hippocam-
pus for learning and retrieving hippocampal dependent memories [52, 53, 54].

2.2.1 PLACE CELL FORMATION

It is a well-known observation that the hippocampus is responsible for spatial navigation.
The patterns formed by the neurons in the hippocampus form a place field that is in fact over-
lapping for multiple patterns; i.e., the firing activity that occurs in the hippocampus while
traversing environments is not a distinct non-intersecting set of neurons for every specific
pattern. From various experiments involving attempts to study the firing patterns for recall
of particular environments, it is found that while traversing specific areas in an environment,
there is a transformation from a non-spiking neuronal cluster to a 100Hz spiking cluster in-
dicating a strong existence of encoded patterns for those specific environments [13].

It is also observed that intersecting sets of neuronal clusters can represent the same envi-
ronment encoded several times, each for a different scenario when the subject has traversed
the same area [13]. Spatial maps inherit the characteristics of an attractor model wherein
recurrent LTP in a particular set of neuronal trajectories get strengthened over time, and form
a basin of attraction called a place field. Place cells in this place field converge to the same
trajectory every time there is a partial spatial cue related to this firing pattern, thus following
the Hebbian rule for associativity [13].

Events happening during a spatial navigation task to learn a specific map also includes
many features such as the direction to take to reach the destination, the speed at which to
traverse the map, the kind of reward that can be expected at the destination, etc. Each of
these features are specific events which form a sequence of events for a particular navigation
task. Each such sequence is unique when viewed as individual occurrences. When several
such sequences have overlapping features, transitively the sequence map follows these nodal
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properties which is also inferential learning. Thus when the nodal properties for certain in-
puts are activated, the sequences for more than a single chain of events can be seen to be
activated owing to the inferential property of spatial representations. This shows that encod-
ing of events represents conceptual and contextual associations between neuronal clusters
converging towards an inferred state [13, 55].

Before proceeding further, it is worth mentioning that the memory unit of the brain in-
cludes neocortex, parahippocampal regions and the hippocampus which is the most signifi-
cant region of the memory unit. While the hippocampus serves as a window for learning and
creating novel pathways, the rest of the memory unit is busy consolidating the learnings of
the hippocampus, which lowers the dependence on the hippocampus for such consolidated
memories for retrieval [13].

The hippocampus functions as a working memory unit, to hold memories of events for
a short period of time. How short depends on how frequently the memory is accessed, how
frequently the same set of neurons in a cluster is activated which strengthens the pathways
for specific sequences. Since the creation of such conceptual associations, they remain with
the hippocampus for a short period of time, which is then propagated to the parahippocampal
region in parallel while learning of new sequences still happens in the hippocampus [13].
The final step in memory consolidation is to propagate the consolidated memories from the
parahippocampal cortex to the neocortex where memories are stored for a longer period, also
known as the long-term memory, again depending on the retrieval frequency. Every event, the
chain of events forming sequences and the nodal properties of such sequences are replayed
in the same temporal order to get stored in the neocortex ultimately [13, 56, 57].

2.2.2 ENCODING AND RETRIEVAL OF MEMORIES FROM THE HIPPOCAMPUS AND NEO-
CORTEX

The pathways present in the hippocampus play different roles in encoding and retrieval
of memories. Considering the afferents to CA3, the perforant pathway (PP) coming from
EC brings in multi-sensory information, while the mossy fiber (MF) pathway from the DG
brings in novel information to encode [58]. Various experiments, mostly involving trials of
learning, retrieval, reward sequences are conducted to test activation of pathways for encod-
ing (PP) and retrieval (Schaffer collaterals). For example, the Hebb-Williams maze where
the subject is trained (encoding of new spatial navigation information) to navigate through a
maze from a starting point to a goal point to achieve rewards, or the T maze task or the radial
maze task where all the paths lead to the center, and the reward can be present in the center
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or the subject has to traverse the center to reach the reward location [51, 58, 59, 1, 60].

When it comes to CA1, as shown in figure 7, encoding of novel feed-forward multi-
sensory input from EC takes place when the excitation from CA3 is inhibited, in the trough
of theta cycle; whereas retrieval of information takes place when acetylcholine-mediated CA3
excitation propagates to CA1 in the peak of theta cycle [1, 61, 24].

Figure 7: Encoding and retrieval cycle proposed by Hasselmo et. al [1]

The PP and MF pathways to the CA3 and CA1 regions of the hippocampus help en-
code sensory and spatial information forming episodic memories in the working memory.
This information is then consolidated in the neocortex for long term retrieval of informa-
tion through the hippocampo-neocortical and neocortico-hippocampal pathways respectively
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[62, 63]. The hippocampo-neocortical pathway is excited by sharp wave bursts to store mem-
ories from CA3 to CA1 to EC to the neocortex during behaviours such as slow wave sleep. It
is observed that the information learnt during wakeful behaviour of the subject in the theta-
coupled gamma subcycles is compressed and replayed faster, during slow wave sleep ex-
hibiting sharp wave bursts propagating information for consolidation to the neocortex [64].
Memories consolidated in the neocortex are independent of the hippocampus [64].

2.2.3 HEBBIAN LEARNING AND ASSOCIATIVE MEMORY

Hebb proposed that the synaptic connectivity between cells become stronger if they are
active at the same time, which is termed as the “coincidence-detection rule” [10]. Modifi-
able synapses that persist action potentials for a longer duration are required for remembering
data that are learnt [15]. This is called long-term potentiation (LTP) wherein a high-frequency
stimulus is followed by a sustained increase in synaptic strength [16]. LTP is described by its
cooperativity, associativity and input-specificity as defined below. A weak stimulus cannot
cause LTP, rather a weak input in the presence of a strong impulse converges to evoke an
action potential [16]. These synapses which display LTP activity are associative or Hebbian
since post-synaptic depolarization and corresponding pre-synaptic activity strengthens the
synaptic connectivity between the pre- and post-synaptic neurons [12]. This type of behavior
is exhibited by neuronal networks which are responsible for learning and memory, such as
the hippocampus [65].

Cooperativity is when the induction of an action potential in a set of synapses is a con-
sistently increasing integrated function of a number of active synaptic afferents. Hence, a
function that results in a weaker synaptic response fails to induce an LTP and that which
results in a stronger synaptic response succeeds in inducing an LTP [66].

Associativity is when the induction of an action potential in a single neuron or in a neu-
ronal cluster depends on both weak and strong synaptic inputs, where one influences the other
quickly, strongly, persistently, conditionally and temporally. Such a form of associative LTP
is observed in the Schaffer collaterals/commissural inputs to CA1 pyramidal cells [66].

From the experiments conducted by Barrionuevo et. al, associative LTP was experimen-
tally induced in two excitatory monosynaptic inputs that shared a pathway in a hippocampal
CA1 slice. One was given a weak electrical input and another a strong input to receive a weak
and strong response respectively. When the synapses were individually stimulated, there was
no noticeable effect in the weaker input, however, when both the synapses were stimulated
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simultaneously, there was a long term synaptic response in the weaker input, thus exhibiting
associative LTP [67].

The Hebb rule is temporal and is localized to specific cluster of neurons. A simple asso-
ciative learning rule that follows the Hebb postulate is where the output is proportional to the
integrated sum of synaptic strengths of inputs, as given in equation 1.

y j =
N

∑
i=1

w ji ∗ xi (1)

where y j is the rate of activity of the output neurons, xi is the rate of activity of the ith input
neuron, w ji is the weight between the input neuron i to output neuron j and N is the total
number of neurons.

The Hopfield learning algorithm is a simplistic example of Hebbian learning. Hopfield
learning algorithm represents auto-associative memory structures that reach the local min-
imum of its Lyapunov function. The binary Hopfield learning algorithm is stated by the
following equation

xi(t +1) = ∑
j ̸=i

wi j ∗ x j(t) (2)

where xi(t) is ±1 depending on the state of the neuron, wi j is the weight matrix [68, 69].
When the learning rule is applied and the weight matrix is calculated for the network, the
algorithm works such that given noisy input, the network will evolve to reach the stored
patterns as represented by the learnt weight matrix.

Further enhancements can be made to the basic Hebb algorithm by having the integrated
sum of synaptic inputs to be non-linear [70].

2.2.4 ENCODING AND RETRIEVAL OF MEMORIES BASED ON HEBBIAN LEARNING

Many experiments have confirmed that the associative recall functionality of the hip-
pocampus follows the Hebbian rule of synaptic plasticity. As mentioned before, the MF
pathways are found to encode novel memories and the PP pathways are found to recall learnt
memories[58, 59, 71]. The Schaffer collaterals from CA3 to CA1 are observed to be impor-
tant for retrieving contextual information when presented with a partial context [71]. Block-
ing the acetylcholine neuromodulator affects encoding of new memories [71].

Simple experiments are conducted to enforce repetitive learning such as the Hebb-William
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maze tasks for rats wherein the rats are trained repetitively to memorize the map of the maze
they traverse to find the reward. This experiment works because of the recurrent excitation of
the same place cells resulting in the same basin of attraction [58]. Immediate retrieval tasks
to recall lists of words or numbers that are presented repeatedly to the participants is another
classic example of Hebbian learning [72, 73].

Complex experiments involve a distraction between the learning experiments, wherein
learnt lists must then be recalled from the long term memory, called covert retrieval [72].
The Hebbian recall depends on how fast-paced the distractions are in the available time, and
how much of the time is required for processing the distraction. If the distractions are slowly
paced, then only a small percentage of the available time is needed to process the distraction;
but if the distractions are fast paced, then all of the time is required to process the distraction
thus placing heavy loads on the participant’s attention [72]. In such scenarios, retrieval of the
actual lists is poor due to the distractions [72]. It is also observed that if the distractions are
during recall and not during learning, the recall quality is better as the lists are all already
learnt [72].

Such experiments establish the existence of Hebbian rule for the working memory phe-
nomenon. However, the actual communication amongst the working memory neuronal cir-
cuits to encode or recall memories, to convert data from the working memory to long term
memory, and retrieval of the same back to working memory again, are facilitated by the
propagation of neuronal oscillations, which will be looked into in the next sections.

2.3 THETA AND GAMMA OSCILLATIONS IN THE HIPPOCAMPUS

Among the different factors that are responsible for memory encoding and retrieval,
rhythmic oscillations in the brain are a major factor. In the hippocampus, frequencies in the
range 4-10 Hz (theta oscillations), 30-50 Hz (slow gamma oscillations) and 80-120 Hz (fast
gamma oscillations) are observed to be responsible for memory encoding and retrieval. Hip-
pocampal oscillations also synchronize and coordinate functionalities across different regions
of the brain. Formation of memories in terms of maps of cell assemblies that get activated
periodically during a repetitive task follows the 4-10 Hz rhythm of theta oscillations [74].
Theta oscillations have low frequency and high amplitude, and hence being able to reach far-
ther regions of the brain [19].

During active behaviours such as exploring places or learning repetitive tasks, theta fre-
quency oscillations can be observed; however, 30-60 Hz slow gamma frequency oscillations

29



were also observed [53]. Slow gamma oscillations have a relatively higher frequency and
smaller amplitudes. Due to a higher frequency range, gamma oscillations contribute to pro-
cessing information on a temporal basis, such as learning or encoding information and re-
trieval of information in a localized area. Slow or fast gamma oscillations are found in the
hippocampal CA1 and CA3 regions due to the external inputs from EC, and also due to the
recurrent collaterals of pyramidal cells present in CA3 region that act as local gamma oscil-
lators. We can see this in literature in both biological studies [53] and reviews [54]. We aim
to replicate these observations in our simulations of both continuous and discrete models of
CA1 and CA3.

2.3.1 INFLUENCE OF HIPPOCAMPAL THETA OSCILLATIONS ON OTHER BRAIN REGIONS

Theta frequency oscillations act as a time-based carrier for other frequencies such as fast
and slow gamma oscillations [36]. Each cycle of slow gamma oscillations is said to process
an information element, repeatedly getting activated in each theta cycle [20]. Aside from
influencing the hippocampal regions locally, hippocampal theta frequency oscillations influ-
ences many different brain regions such as the piriform cortex [75], striatum in the basal
ganglia [76], neocortex [77], cerebellar purkinje cells [78], lateral geniculate nucleus [79],
the sub-cortical central pattern generators [80], etc. These regions have a lot of other pa-
rameters in common, although they are present in very different regions of the brain. For
example, recurrent collaterals are found in the CA3 region of the hippocampus, which also
happens to oscillate in theta frequency. Such recurrent collaterals that also oscillate in theta
frequency and have attractor dynamics are found in the inhibitory cerebellar purkinje cells
[78], aspiny cholinergic interneurons in the striatum in the basal ganglia [76], the recurrent
excitatory stellate cells network in layer IV of the neocortex [81], the fast and slow relay cells
in the lateral geniculate nucleus (LGN) [82, 83], Renshaw cells in the motor network of the
spinal cord [84, 85, 86], etc.

Another commonality found in these regions other than the presence of recurrent col-
laterals and the influence of hippocampal theta rhythms on their activity, is the presence of
acetylcholine (ACh) neuromodulator. ACh alters the excitatory or inhibitory actions of neu-
rons, affecting the release of the neurotransmitter in the region which is also described as
changing the state of the neuron, synchronizing the firing of neuronal groups in different re-
gions of the brain as stated by Picciotto et al [87]. From their work, such cholinergic networks
are known to be found throughout the brain either as projection neurons or local interneurons.
They have also indicated that ACh plays a vital role in synaptic plasticity which depends on
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the timing of release of ACh. ACh has been found to be important for encoding new data,
strengthening feedback inputs and its contribution to neuronal oscillations in the range of
4-10Hz [88]. Loss of acetylcholine in neurons results in symptoms of dementia [89]. It is
interesting to observe the presence of such common features in the different regions of the
brain and hence, a summary of these commonalities is presented in table 1.

Table 1: Comparison of recurrent collaterals of different regions of the brain

Region of the
brain

Associated brain
wave

Attractor type Presence of ACh
as a neurmodu-
lator

Hippocampal
CA3 region

Theta Continuous point
attractor

Yes

Piriform cortex Theta, gamma Fixed point at-
tractor

Yes

Striatum in basal
ganglia

Theta, gamma,
beta

Saddle-node and
stable node

Yes

Neocortex Theta, gamma Continuous point
attractor

Yes

Cerebellar Purk-
inje cells

Theta Saddle node &
saddle homo-
clinic

Yes

LGN Theta Spike time attrac-
tor

Yes

Renshaw cells Gamma Fixed point at-
tractor

Yes

Sub-cortical
CPGs

Theta Ring attractor Yes

Here, we are more interested in the cross-frequency coupling of the theta and slow gamma
oscillation types as these are more prominent during encoding and retrieval tasks in the hip-
pocampus, and hence this is the focus of our study.

2.3.2 EXTERNAL INPUTS AND MECHANISMS OF THE HIPPOCAMPAL CIRCUIT

The hippocampus in general receives several external inputs namely, from EC during
storage of memories causing fast gamma oscillations; from medial septum diagonal band of
Broca (ms-dbB) which is known to propagate hippocampal theta oscillations affecting the
amplitude of hippocampal theta oscillations; from supra-mammilliary nucleus (SUM) in the
hypothalamus that affects the frequency of hippocampal theta oscillations through ms-dbB;
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from the nucleus reuniens (RE) of midline thalamus that helps in transferring information
from medial pre-frontal cortex (mPFC) to the hippocampus aiding in functionalities that re-
quires both mPFC and hippocampus [90].

It is found that if the ms-dbB is removed, then theta oscillations are absent in the hip-
pocampus. If there are no theta oscillations, then encoding of new information does not
happen in the hippocampus [90]. Fast gamma oscillations are propagated from EC to DG,
and slow gamma oscillations are present in the CA3 region, both of which are then prop-
agated to CA1. Synchronization of slow gamma oscillations from CA3 to CA1 with theta
oscillations from ms-dbB is crucial for the successful retrieval of memories [54].

In the hippocampus, the CA3 region receives input from DG mossy fibers to retrieve in-
formation, and from EC to encode novel information. CA1 receives input from CA3 Schaffer
collaterals for both encoding and retrieval, and from EC for information storage and retrieval
[91, 92]. CA3 also receives back projection from CA1, the purpose of which is not fully
known yet [17, 93].

2.3.3 COMPARISON OF CA1 AND CA3

Both CA1 and CA3 are involved in encoding and retrieval of memories. They both have
almost the same kind of neuronal populations. Physiologically, the projections between the
internal populations present in both CA1 and CA3 differ. CA3 has an extensive excitatory
recurrent collateral formation which is only sparsely found in CA1. While CA3 to CA1
feedforward input is excitatory, the feedback from CA1 to CA3 is inhibitory from the back-
projection cells. However, the external inputs to both differ as CA3 also receives input from
DG to encode novel information [17]; and the only pathway present to communicate with the
neocortex for long term consolidation of memories is through CA1 [60].

The kind of input afferents coming into CA1 and CA3 are different and, the purpose for
the efferents from CA1 and CA3 is also different. While CA3 has compact place fields for
different information, there are no contextual or sensory information associated with the place
fields. This information is brought forward and sent to EC by CA1 neurons that perform the
triangulation of various memories propagated by CA3, depending on the temporal context
during retrieval tasks [60, 62] as mentioned in the previous section.
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2.3.4 ROLE OF OSCILLATIONS IN THE ENCODING AND RETRIEVAL OF MEMORIES

As mentioned previously, theta oscillations from ms-dbB to CA1 and CA3 act as a carrier
wave due to their low frequency and high amplitude nature, reaching different regions of the
brain thus facilitating coordination and synchronization of processes across brain regions.
Both slow and fast gamma oscillations from CA3 and EC are superposed in the hippocampal
theta oscillations at different phases to converge sensory inputs and the temporal memories
to retrieve the right contextual memory in CA1 [54].

Place cells in each place field of a map are activated successively as the subject traverses
an already learnt environment, consecutively firing according to the theta cycle, wherein
recently visited locations fire at early phases of theta, and places to be learnt firing at late
phases of the theta cycle [57].

The phases of theta oscillations are more relevant in encoding spatial location information
and much less relevant in encoding direction, temporal characteristics, etc., of an event [94].
Phase separation for encoding and retrieval is important so that retrieval doesn’t get encoded
again [1].

Nevertheless, when once the short term memories in the hippocampus are consolidated
in the neocortex, those memories are independent of the hippocampal theta oscillations [74].

2.4 SUMMARY

So far we have explained the role of oscillations and how they affect encoding and re-
trieval of information in the hippocampus based on literature. In the next chapters, we can
see from our simulations with both continuous and discrete modeling techniques how theta
oscillations act as carrier for slow gamma oscillations to encode and retrieve information.
We have integrated CA3 and CA1 models to have continuous input from CA3 to CA1 and
vice-versa instead of having constant inputs from these external populations. This gives a
better idea of how gamma oscillations are propagated from CA3 to CA1, and how basket and
bistratified cells are required to oscillate in slow gamma frequency, that helps in information
processing. With the inhibitory back-projection cells from CA1 to CA3, there is also a regu-
lation of excitation and inhibition in CA3 from CA1.

In the next chapter, we look at the different ways of modeling neuronal networks that
reproduce the biological results discussed in this chapter and more, and the models we have
considered for our research with relevant explanations.
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3 INTRODUCTION TO VARIOUS TYPES OF MODELS

A model is a simple way to represent a system that we have observed in nature. Sci-
entific modeling can be categorized into two ways namely (i) descriptive modeling where
researchers try to specify the system state at a particular point in time, and (ii) rule-based
modeling where researchers try to come up with dynamical rules that would explain the ob-
served phenomenon [95]. Descriptive modeling analyzes the external aspects of the system
while rule-based modeling analyzes the behaviour of the system. An example of rule-based
modeling is designing neuronal networks with its various properties, studying different oscil-
lations and their interactions exhibited by these networks, etc.

In this chapter, we aim to provide a brief description of each of the modeling techniques,
a couple of which we build upon with relevant explanations, so as to explain why we chose
a particular model, what limitations we observed in them, and how we overcame those lim-
itations. In the end, we explain the different kinds of dynamical states these models tend to
settle in.

Modeling neurons can involve different methodologies depending on the aim of the re-
search. To analyze individual neurons at a biologically-comparable level, we need to consider
the different biological dimensions such as time constants, conductances, membrane poten-
tials, representation of the various currents found in the different ion channels, etc. This
results in a very complex model such as the Hodgkin-Huxley axon model [96, 97].

To reduce the complexity of such models and yet retain biological relevance, we have to
reduce the dimensions considered, which results in a less-complicated solution such as the
Morris-Lecar model or the Fitzhugh-Nagumo model, by considering the membrane potential
of the neuron and a slow recovery variable that integrates over the activity of the membrane
potential of the neuron.

An even simpler approach that reduces the complexities involved in the single neuron
models is the spiking neuron models such as the linear integrate-and-fire neuron models or
the time-dependent spike response models which depend on the previous output. It is possible
to approximate out the results from a large number of identical neurons to study oscillatory
properties of a model such as in population models.

Neurons having similar properties are clustered together forming a homogeneous pop-
ulation. The rate of firing activity of neurons in these population are averaged, rather than
studying properties of every single neuron from the same homogeneous population. Such
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population models are derived from the Wilson-Cowan model [98].

Another simplified computer science approach to modeling single neurons and popula-
tions simultaneously is the discrete method of cellular automata. Using messages or events
at each time step, neurons are either activated or deactivated based on the comparison with
the summed inputs of each neuron. Activation here could represent a binary state of on or
off, a single action potential or a burst of action potentials. A random spike train input to
the external inputs which in turn project to the populations initiate and sustain propagation of
messages or events between neurons in different or same populations.

Some models generate action potentials or spikes based on a threshold value above which
we consider the neuron to generate an action potential; some other models generate bursts
of activity [99]. We can study models based on their spiking or bursting behaviour or based
on their membrane potential changes. In our research, we have used continuous popula-
tion model for studying oscillatory activity in CA1 and CA3 regions of the hippocampus,
and spiking neuron models through a discrete state-based approach to study encoding and
retrieval of memories in an oscillatory context. Our motive is to study oscillations in the
hippocampus from a single neuron perspective in a homogeneous population model, while
learning and recalling patterns, which fall in two superposing frequencies i.e., 4-7 Hz theta
oscillations and 30-50 Hz slow gamma oscillations. To achieve this, we have used both
continuous population models to study oscillatory properties of the hippocampus, and the
discrete cellular automata approach in which we can model both single neuronal properties
and population properties.

3.1 SINGLE-NEURON MODELS

3.1.1 HODGKIN-HUXLEY (HH) MODEL

The membranes of neurons have different types of currents that get activated and inacti-
vated based on different mechanisms. In 1952, the Hodgkin and Huxley model was proposed
for the sodium, potassium and leak chloride currents based on experiments conducted on the
giant axon of a squid. The model consists of four non-linear differential equations as given
in the set of equations 3a to 3k, wherein three equations represent the mechanism for the
activation variables for the 3 different currents considered (3c to 3e), and the fourth equation
represents the rate of change of membrane potential in the neuron (3a/b).

C
dV
dt

= Iext− IK+− INa+− IL (3a)
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wherein, the currents can be expanded as,

C
dV
dt

= Iext−gKn4(V −EK)−gNam3h(V −ENa)−gL(V −EL) (3b)

dn
dt

= αn(V )(1−n)−βn(V )n (3c)

dm
dt

= αm(V )(1−m)−βm(V )m (3d)

dh
dt

= αh(V )(1−h)−βh(V )h (3e)

where,

αn(V ) = 0.01
10−V

e
(

10−V

10
)
−1

(3f)

βn(V ) = 0.125 e
(
−V

80
)

(3g)

αm(V ) = 0.1
25−V

e
(

25−V

10
)
−1

(3h)

βm(V ) = 4 e
(
−V

18
)

(3i)

αh(V ) = 0.07 e
(
−V

20
)

(3j)

βh(V ) =
1

e
(

20−V

10
)
+1

(3k)

The parameters are explained in table 2. The n4, m3 and h represents the four activation
gates for K+, three activation gates for Na+ and one inactivation gate for Na+ respectively.

Applying an electric pulse to the neuronal membrane which is sufficient to increase the
activation gates, m for the sodium current, INa+ , results in depolarization of the membrane
by increasing the sodium current, INa+ . This creates a change in the membrane potential,
V, leading to the generation of an action potential or a spike. As the membrane potential V

increases, the activation gates for the potassium current, n, increase the potassium current,
IK+ , and the inactivation gates h, for the sodium current, INa+ decreases. The IK+ and the leak
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Table 2: Parameters used in Hodgkin-Huxley model

Parameter Explanation
V Membrane potential
Iext , IK+ , INa+ , IL Currents - external(ext), potassium(K), sodium(Na)

and leak(L)
EK , ENa Nernst potentials for potassium (K) and sodium (Na)
gK , gNa, gL Conductances - potassium (K), sodium (Na), leak (L)
n activation gates for potassium
m activation gates for sodium
h inactivation gates for sodium

current IL stabilize the membrane back to the resting membrane potential, Vrest .

The membrane time constants have a high value, and are sensitive to membrane potential
changes, and hence, the K+ current continues to activate even beyond Vrest , called membrane
afterhyperpolarization. During the time when the INa+ inactivates, the membrane cannot fire
another action potential. This duration when the membrane cannot generate an action poten-
tial while the Na+ gates inactivate is called the refractory period.

The increase in INa+ causes the increase in the membrane potential, V, and the IK+ and
the leak current IL can be seen as the recovery variables or the inhibition currents that get the
membrane back to equilibrium, called repolarization. The concept of recovery variables can
be understood in more detail in the following sections which discuss a couple of models that
simplify the HH model.

The H-H model enables us to understand the ionic movements in the axonal section of a
neuron. It has been applied to study thermally sensitive neurons [100], various phenomena
in the squid nerve by altering the calcium and potassium ionic concentrations and tempera-
tures [101]. The HH equations were further extended to understand and analyze the effects
of sodium, calcium and potassium ionic channels in the cardiac tissues which led to the mod-
eling of the pacemaker activity [102, 103].

Many models that are computationally simpler has emerged based on the Hodgkin-Huxley
model. Undoubtedly the Hodgkin-Huxley model forms the basis for neuronal modeling, and
is present in these simpler models since the fundamental concept on which the simpler models
are derived is the activation of currents in low voltages [104, 105, 106].
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3.1.2 FITZHUGH-NAGUMO MODEL

Let us consider the Fitzhugh-Nagumo model which is the simplified form of the Hodgkin-
Huxley model by reducing the dimensions from 4 to 2. The model generated sharp peaks
mimicking action potentials. It is defined by the 2 differential equations given in equations
4a and 4b, that generate oscillatory peaks, exhibiting limit cycles to converging spirals, as
shown in figure 8. There are 2 differential equations, one for the membrane potential, u and
another for a regulatory membrane potential w which controls u. Iext is the external current
and R is the resistance. The membrane potential V and potassium activation gate n from
the HH model are combined and represented by u and the sodium activation gates, m, and
inactivation gates, h, are combined and represented by w. tau is the membrane time constant,
b0 and b1 are the constants.

F(u,w) = u− 1
3

u3−w+R∗ Iext (4a)

G(u,w) =
(b0 +b1u−w)

τ
(4b)

Many applications of the FN model exist including its applications in simulating action
potentials in the cardiac tissues [107]. An extended FN model is used to model cortisol
secretion in the hypothalamic-pituitary adrenal axis [108].

3.1.3 KÁLI & DAYAN HIPPOCAMPAL CA3 MODEL

An attractor model of the CA3 recurrent neuronal network to analyze the formation of
place fields is proposed by Káli & Dayan in [109]. The model represents a system of coupled
differential equations for the membrane potential u of neuron i as given in equations 5a and
5b.

τ u̇i =−ui +∑
j

Ji jgu(u j)−hgv(v)ui + IPP
i + IMF

i (5a)

τ
′
v̇ =−v+w∑

j
gu(u j) (5b)

As seen previously in the Fitzhugh-Nagumo model, the model has v as a slow recovery
variable that integrates over the activity of u, the membrane potential, τ and τ

′
is the mem-

brane time constant of the excitatory and inhibitory cells, Ji j is the connection strength or
weight from neuron j to i. IPP

i and IMF
i are the inputs from perforant path and mossy fibers

from the dentate gyrus. The function gu(u) is the threshold linear activation function defined
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Figure 8: Fitzhugh-Nagumo model (left) activity dynamics when b0 = 0.1 and b1 = 2, Iext = 0.5. (right)
damping activity dynamics that converges representing a stable spiral as shown in the bifurcation plot
& (bottom) phase plane when b0 = 49.5 and b1 = 50, Iext = 0.5 showing a converging stable spiral.

as β [u−µ]+ where, the function evaluates to zero for values less than or equal to zero; gv(v)

is defined as γ[v−ν ]+.

The recovery variable acts as a global inhibitory neuron here, which can be clearly deter-
mined from the activity of the model as given in figure 9, wherein the activity of the neuron
and the activity of the recovery variable are clearly out of phase.

The activity dynamics shown also depicts that the model can generate oscillations and
converge to a point representing a stable spiral. The initial conditions used for simulating this
model is 0mV which is why the activity dynamics reaches a membrane potential of +35mV.
This model follows the Wilson-Cowan model [98], but is interpreted at a single neuron level,
rather than at a population level and it represents the average membrane potential of a neuron.
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Figure 9: (left) Activity dynamics of the Káli & Dayan hippocampal CA3 model that converges to
steady state [109] (right) damping oscillatory activity & (bottom) phase plot showing a converging
stable spiral.

3.1.4 LEAKY INTEGRATE-AND-FIRE MODEL

Next, we consider the leaky integrate-and-fire neurons, or the LIF neurons, to study spik-
ing neuron models [110]. Here, the neuron is considered to be an electrical circuit with
resistance and capacitance, described by the first order linear differential equation given by
equation 6.

τm
du
dt

=−(u−El)+Rm ∗ I(t) (6)

where τm is the membrane time constant which is the product of membrane resistance Rm and
membrane capacitance Cm, and I(t) is the current flowing into the neuron.

Depending on if the neuron is excitatory or inhibitory, the projection between excitatory
and inhibitory neurons is positive or negative. There is a membrane time constant which de-
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Figure 10: Activity dynamics of a simple LIF neuron with refractory period = 50ms, membrane time
constant = 15ms and a random external current.

termines the rate of change to input currents below the action potential threshold. Once the
spiking threshold is reached, the neuron fires an action potential and the membrane potential
is instantly returned to its equilibrium (rest) potential.

The LIF neurons are easy to implement as defined in equation 6 and the activity dynamics
is as shown in figure 10, implemented using the forward-Euler method. A refractory period
during which the neuron does not emit an action potential can be added to the model, if re-
quired, as an exponential function of time.

Populations of such LIF neurons can be used to study individual neuron and population
dynamics. For example, one such population modeling that uses integrate and fire neurons
was applied for studying orientation tuning in the visual cortex [111].

The activity dynamics includes the rate of change of membrane potential of a single neu-
ron with a membrane time constant defined by τm which determines the gap between the
action potentials as given in the activity plot 10. Adding a recovery variable that regulates
the firing of the actual neuron will generate results similar to the Káli & Dayan hippocampal
CA3 model explained previously. The membrane potential of the neuron is the fast variable
u which represents the potassium activation current K+ and the recovery variable is the slow
variable which represents the sodium inactivation current Na+.

The LIF neurons have binary states; the neurons either fire or do not fire based on the
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spiking threshold, exhibiting class I neural excitability which has a direct relation between the
external input current and the generated membrane potential or spiking frequency [112, 113].

Another linear extension of the LIF model is the resonant and fire model which has com-
plex values as states variables and acts as a resonator. The model requires an input close to
the resonant frequency which is close to the eigen value frequency of the neuron to generate
an action potential. The resonators are the simplest model to produce damped oscillations
[114].

3.1.5 NON-LINEAR INTEGRATE AND FIRE MODEL

The simple leaky integrate and fire model is said to have an action potential if the inte-
grated input is greater than the threshold. The model has no spike-generating mechanism as
such and hence is not a truly spiking neuron model. The non-linear integrate and fire models
integrate each input pulse until they reach the threshold value to generate an action potential.
This is the major difference between the linear integrate and fire models and non-linear inte-
grate and fire models.

To account for the slow recovery variable representing the sodium activation dynamics,
a nonlinear model extending the linear integrate and fire model is proposed [115]. There are
two popular models in this category: quadratic integrate and fire model [116] and exponential
integrate and fire model [117].

Quadratic integrate and fire model has the following equation form wherein u is replaced
with u2.

τm
du
dt

= a0(u−urest)(u−uc)+R∗ I (7)

where a0 > 0 and uc > urest . uc is set to +∞ or a large finite value for simulation purposes.
The model has a saddle node bifurcation on an invariant circle. The spiked action potential
approaches the resting state, merges and gets canceled out leaving behind a limit cycle. It
is class I excitable and is the closest simplified model of Hodgkin-Huxley model [118, 112].
The system is the most suitable for large scale simulations both for the biological relevance
and cost.

Exponential integrate and fire model has the following equation form

τm
du
dt

=−(u−urest)+∆T exp(
u−Θrh

∆T
)+R∗ I (8)
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where ∆T is the slope factor and Θrh is the threshold. The second term introduces the ex-
ponential or non-linear factor in the equation, while the first term is the passive membrane
potential leak as in the previous equation. The system is expensive to simulate and is not used
for large scale simulations [118].

3.1.6 CELLULAR AUTOMATA APPROACH FOR SINGLE NEURON MODELS

The cellular automata approach is a simplified way of representing the various parame-
ters present in a differential equation describing the characteristics of a neuron by building a
deterministic state machine. Every neuron has certain properties that have to be described,
and every projection between two neurons has certain properties that have to be described
separately. Although the projections between the populations are stochastically determined,
the model follows a deterministic approach thereafter.

The properties to be described for a neuron include the refractory period, duration of an
action potential, duration of synaptic delay, the synaptic duration for an impulse to reach an-
other neuron, and the threshold for comparing the integrated sum of inputs to determine if an
action potential occurred or not. The connection weight has to be specified for the projections
between two neurons.

CA further simplifies the LIF approach by using simple square-wave summing of inputs,
instead of integrating ODEs. Also that CAs are very flexible in terms of the rules that can be
used to represent neural activity such as single APs, bursts of APs or just on/off activity.

An example of a simple excitatory-inhibitory(E-I) network, with 100 neurons in each
population, simulated using the cellular automata approach is as shown in figure 11. The
working of a CA model can be designed differently based on the requirement of the model
or the research question. We found a lot of models using cellular automata approach in liter-
ature, which were used to establish the fact that such modeling technique exists and can be
used to model large scale neuronal networks. However, we couldn’t find a lot of models that
actually simulates regions of the brain for different purposes. Hence, we have taken inspi-
ration from two models that have actually implemeted regions of the brain such as the CA3
model of the hippocampus implemented by Pytte et.al [119] and the piriform cortex model
implemented by Claverol et. al [3].

In the model proposed by Pytte et. al for the CA3 region of the hippocampus, the authors
have considered three types of neurons, excitatory, slow inhibitory and fast inhibitory. The
projections between neurons are made randomly and there is a time delay for the signal to
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propagate from one neuron type to the other. Excitatory neurons fire spontaneously every
(τs +1) time units after the last burst. All neurons receive inputs which are summed up and
compared against a threshold to determine if a neuron should fire or not, which is called the
stimulated firing of neurons. An activated neuron remains as such for a specified duration.
Since this is a CA3 model, the excitatory neurons also have self-projections.

The Claverol et. al model of the piriform cortex is an event-driven message based ap-
proach that has four blocks of processing. The messages consist of the time to reach the
destination neuron, the type of message and another additional field for extra information to
be passed from one neuron to another. The different blocks in the model are the synapse
block, threshold block, oscillator block and the burst-generator block.

The synapse block receives a message to activate a specific neuron at time t which is
broadcast to the threshold block. The synapses are activated after a delay of tdel and are de-
activated after t + tdel + tdur where t + tdur is the active time duration of the synapse.

The threshold block computes the weighted sum of inputs, compares the sum against exci-
tatory and inhibitory threshold, and if the sum exceeds the excitatory threshold, an activation
message is sent to the burst generator block; if the sum exceeds the inhibitory threshold, a
deactivation message is sent to the burst generator block.

The oscillator block sends an activation message every tosc time units to the burst genera-
tor block to generate oscillatory rhythms in the population of neurons.

The burst generator block activates a neuron if the neuron is off, changes the state of the
neuron to refractory after tap time units for the neuron, and deactivates the neuron after tre f

time units.

An extension of these two CA models is what we have developed which is explained in
chapter 5.
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Figure 11: (left) Activity plot of a 10 excitatory and 10 inhibitory neurons; (right) Raster plot of the
excitatory population over time that shows the neurons that are active at a specific time step.
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3.2 CONTINUOUS POPULATION MODELS

When a stimulus approaches the regions of the brain, a considerable patch of neuronal
network gets affected, not just a single neuron. Averaging the result of a spatially localized
cell assembly of a region provides a chance to study the brain as a large scale network and is
computationally efficient. Many different models have been proposed to study cell assemblies
or populations of neuronal networks such as Beurle [120], Wilson-Cowan [98], Griffith [121],
etc. The models that considered only the excitatory population of neurons displayed unstable
dynamics. As such, inhibitory population of neurons were introduced in the network to
regulate the firing of the excitatory neurons [121]. Hence, the Wilson-Cowan model operates
based on the initial fundamental assumption that any neuronal processing is dependent on the
communication between excitatory-inhibitory populations.

For an excitatory population E(t) and inhibitory population I(t), with a refractory period
α(t), the average activity at time t is,

∫ t

−∞

α(t− t
′
)[c1 E(t

′
)− c2 I(t

′
)+P(t

′
)]dt

′
(9)

where c1 and c2 are the number of synapses per neuron and P(t
′
) is the external input. If the

number of neurons in refractory period, r is
∫ t

t−r E(t
′
)dt

′
, then the number of neurons that

can be activated is 1 −
∫ t

t−r E(t
′
)dt

′
. At any given time, the sub-population of neurons that

will be active is given by Se(x) for excitatory population and Si(x) for inhibitory population,
which are sigmoidal. Thus, the activity dynamics of the neuronal populations are given by,

E(t + τ) = [1 −
∫ t

t−r
E(t

′
)dt

′
].se{

∫ t

−∞

α(t− t
′
)[c1 E(t

′
)− c2 I(t

′
)+P(t

′
)]dt

′
} (10)

for excitatory populations. For inhibitory populations,

I(t + τ
′
) = [1 −

∫ t

t−r
I(t
′
)dt

′
].si{

∫ t

−∞

α(t− t
′
)[c3 E(t

′
)− c4 I(t

′
)+Q(t

′
)]dt

′
} (11)

The Káli & Dayan model [109] seen in the previous sections, the septal pace-maker circuit
we shall discuss in the chapter 4 are derived from the Wilson-Cowan model described here.

The neurobiological models we have seen so far are non-linear systems, wherein the
output is not directly proportional to the input, instead they can be described by a set of
non-linear differential equations. Usually such systems tend to settle in in multiple states
depending on the initial state of the system. A brief explanation of the states non-linear
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systems can exhibit is given in the next section.

3.3 BIFURCATION ANALYSIS OF NON-LINEAR SYSTEMS

Bifurcation is defined as “a qualitative, topological change of a system’s phase space that

occurs when some parameters are slightly varied across their critical thresholds” [95]. Bi-
furcations are exhibited by non-linear systems such as a spring-mass system, or oscillations
of a pendulum, etc. Different bifurcation methods exist depending on the nature of stability
of the dynamical non-linear system. It is important to understand the different effects the
variable parameter space can exhibit in a dynamical system, which is explained by bifurca-
tion analysis. In this section, we discuss some of the bifurcations exhibited by the non-linear
models such as the neuronal models we have discussed in the previous subsections.

In this section, we will use the popular Fitzhugh-Nagumo (FN) model which we discussed
in section 3.1.2 to illustrate the different bifurcations in dynamical systems of neuronal net-
works. The model exhibits different bifurcations according to the external input.

The variable for membrane potential u allows for self-excitation and the regulatory mem-
brane potential variable or the recovery variable w allows for a slower inhibitory feedback.
This coupled dynamical system demonstrates bifurcations such as Hopf bifurcation, saddle-
node and saddle-homoclinic bifurcations [122].

When the system is stable, it exhibits a closed trajectory path called a limit cycle. The
system remains in a limit cycle when the external input is in the range [-3, 3]. Any values out-
side this range transforms the system to a stable spiral according to Hopf bifurcation. Hence,
the system begins from a stable spiral, transforms to an unstable homoclinic bifurcation, to a
saddle node, then to a limit cycle, and again to a stable spiral, as the external input increases
as shown in figure 12.

In simple terms, saddle node bifurcations exhibit instability where some trajectories con-
verge towards the equilibrium, while others diverge from the equilibrium. Stable nodes are
those where all trajectories converge towards the equilibrium point. Unstable nodes are those
where all trajectories diverge from the equilibrium point. A neutral center or a limit cycle is
a periodic trajectory which revolves around the equilibrium point, until one of the trajectories
converge towards the equilibrium. Andronov-Hopf bifurcation is an asymptotically stable or
unstable spiral trajectory that either converges or diverges from the equilibrium, respectively.

These stability properties are described by the eigenvalues of the dynamical system.
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Whether the eigenvalues are real or complex, the stability of a system is determined by the
real part of the eigenvalues. If the eigenvalues are negative, the system exhibits stability; if
the eigenvalues are positive, the system exhibits instability. Saddle node is case where the
system has both positive and negative eigenvalues. The system exhibits a limit cycle when
the real part of the eigenvalues become zero as explained in the case in table 3.

3.4 CONCLUSION

One way to model the brain is using non-linear dynamics, with a system of continuous
differential equations describing neural activity at the individual neuron and population lev-
els, wherein the rate of change of firing activity or the membrane potential depends on more
than a single parameter at the same time step, such as the opening of different ionic channels
or gates, the time constants, integrated sum of inputs from different sources, etc. Such a
model is the Hodgkin-Huxley model [97] which with just four differential equations where
the working of ionic gates in a single compartment of the giant axon of a squid is analyzed
[97], and it is still complicated to work with four variables, and a number of constants.

Simpler models from thereon emerged, such as the Morris-Lecar model, Fitzgugh-Nagumo
model, and lastly, the integrate and fire model, which is widely used to model single neurons,
called the LIF or leaky integrate and fire neuronal model. While models built using the LIF
neurons are continuous, cellular automata models are discrete trying to achieve the same
goals using a deterministic finite automata approach.

The type of model chosen depends on the research question, and the feasibility of com-
putational time and efficiency, availability of resources and simulating a biologically realis-
tic model that adheres to the findings in literature, as proposed by Izhikevich in [99]. The
Hodgkin-Huxley model is a more biologically plausible model but is not computationally
efficient. An integrate-and-fire model is computationally very efficient, but is not a biologi-
cally plausible model in terms of the number of features that can be adopted [99]. Continuous
population models are good to analyze oscillatory states as they average the activity of neu-
rons in each population. The CA model is better to study encoding and retrieval since every
neuron activity is needed to study encoding and retrieval of patterns. The CA model is a sim-
ple message based deterministic approach to model populations of single neurons to analyze
oscillatory states and to study encoding and retrieval of patterns in our research.

Accordingly, we have investigated our research goals in each of the single neuron models,
population models and discrete modeling approaches. With continuous population models
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Figure 12: Bifurcation stages as the external input increases in the Fitzhugh-Nagumo model. Each
figure comprises of the activity dynamics of the rate of change of membrane potential and its corre-
sponding phase plot below. The parameters are b0 = 0.1, b1 = 5, R = 1, τ = 12.5 and the external input,
Iext = [-5, 5]
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Table 3: Types of bifurcations explained

Explanation
Type of

bifurcation
Description

Real eigen values with Re(λ )< 0 Stable point

Real eigen values with Re(λ ) = 0 Neutral point

Real eigen values with Re(λ )> 0 Unstable point

Complex conjugate eigen values
with Re(λ )< 0

Stable point

Complex conjugate eigen values
with Re(λ ) = 0

Neutral point

Complex conjugate eigen values
with Re(λ )> 0

Unstable point
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we could study oscillatory behaviour of CA1 and CA3 regions of the hippocampus. With
the results of the continuous population models as a baseline for oscillatory behaviour, we
chose the discrete cellular automata model to study encoding and retrieval of patterns in an
oscillatory model.

In chapter 5 we have developed an oscillatory model for encoding and retrieval of pat-
terns using the discrete cellular automata approach. As pattern storage and recall relates to
the activity of a specific subset of neurons in a population, we analyze the activity of single
neurons in a population network, study oscillatory states and recall quality after learning a
pattern using the cellular automata approach. With a cellular automata approach, we have
attempted to find a balance between biological plausibility and computational efficiency.
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4 THETA-COUPLED GAMMA OSCILLATORY MODEL OF THE

CA1-CA3 REGIONS OF THE HIPPOCAMPUS

4.1 INTRODUCTION

In this chapter, we look into the individual and integrated models of CA1 and CA3 re-
gions of the hippocampus to analyze and understand the effects of oscillatory behaviour of
different population of excitatory and inhibitory neurons on one another. The network dy-
namics of pyramidal cells in CA1 and CA3 regions of the hippocampus are well-studied [60]
concluding that there exist stable place fields in CA3 than in CA1, with more distinct phase
precession than in CA1. The synchrony between hippocampal theta oscillations and other
regions of the brain is necessary to prevent formation of incorrect synaptic projections in
functional neuronal networks. Even small changes in inputs to interneurons in CA1 and CA3
can lead to variations in gamma oscillatory patterns which result in the formation of incorrect
synaptic projections [123]. Different temporal sequences of patterns are assembled together
in the correct order in different gamma cycles aggregated in a single theta cycle [123].

In this chapter, we have used population modeling approach to study oscillatory behaviour
and the phase synchronization of different populations in CA1 and CA3 by extending the
septo-hippocampal model proposed by Denham et. al [2] which is in turn derived from the
Wilson-Cowan model [98]. The CA1 microcircuit is a combination of both Denham et. al [2]
model and the model proposed by Cutsuridis et. al [24] and, the CA3 model is derived from
the observations of several biological experiments producing a concise microcircuit (which
is explained in section 4.2) as shown in figure 13.

Our objective in this chapter is to find the differences between CA1 and CA3 inhibitory
interneurons, specifically PV-containing basket cells and bistratified cells, and to study the
emergence of theta and theta-coupled gamma oscillations in both CA1 and CA3 networks.
Interneurons involved in these regions are well-studied only in CA1 region and lack proper
data for CA3 region. The phase relationships of the neurons considered in this model are
by the afferent and efferent connections of PV-containing basket and bistratified cells in both
CA1 and CA3 as described by Belluscio et. al [124].

We also contribute a new combined model of CA1 and CA3 regions, as shown in figure
13, which helps explain the propagation of signals from CA3 to CA1 via the Schaffer collat-
erals and from CA1 to CA3 through the back-projections cells. From the simulation results
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Figure 13: CA1-CA3 integrated microcircuit

and their correlation with experimental results, we intend to shed some light on the possible
CA1 back-projection cell afferents on CA3 interneurons, the effects of external inputs in both
the regions as explained in section 4.3.

Initially, we discuss the structural properties and time constants, the computational model
and the analysis methods we have used, in section 4.2. Following which we will then discuss
the effects of external inputs on the individual models, the simulation results of the individual
and integrated model, analyze the results with bifurcation analysis, and consider the effects
of various structural projections considered in the model in section 4.3. Lastly, we have a dis-
cussion section where we compare the CA1 and CA3 regions with each other and conclude
with the comparison of the experimental results observed in literature in section 4.4. We do
not simulate encoding or retrieval of patterns in this model; however, this model serves as
the basis for the encoding and retrieval of patterns using the discrete cellular automata model
discussed in the next chapter. Hence, the neuron populations chosen in the CA1 and CA3
regions relate to this in the big picture.

4.2 MODELING CA1-CA3 INTEGRATED MICROCIRCUIT

The different layers in EC from I to V are afferents to different regions of the hippocam-
pus, and to different layers in the hippocampal pyramidal cell. EC stellate cells in layer
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II projects to dentate gyrus and CA3, and EC layer III projects to CA1 [125], and in both
CA3 and CA1, they project in the stratum-lacunosum moleculare layer of the pyramidal cells
[126]. EC lies in-between the hippocampus and other cortical regions, where sensory inputs
converge on the superficial layers of EC and which is propagated to the different regions of
the hippocampus such as the dentate gyrus, CA3, CA2, CA1 and subiculum, and the pro-
cessed outputs from the hippocampal CA1 region project onto EC layer V [127].

The internal connections in CA3 and CA1, the projections from CA3 to CA1 via the
Schaffer collaterals and the CA1 to CA3 projections are all depicted in the CA1-CA3 in-
tegrated microcircuit as given in figure 13. We have considered PV-containing basket cells
and bistratified cells as the major inhibitory interneurons in CA1 and CA3 regions, mainly
to analyze the phase shifts between them and the pyramidal cells in CA1 and CA3 regions.
Also, a single population of inhibitory septal input is received by both CA1 and CA3 regions
in this model.

The septo-hippocampal loop as shown in figure 14 projects from excitatory pyramidal
cells to septum via the calbindin-containing hippocampo-septal projection cells, and back to
pyramidal cells via the GABAergic inhibitory interneurons. The proposal for this loop in

Figure 14: Septo-hippocampal theta oscillation pacemaker circuit as proposed by Denham et. al with
the different populations of neuronal afferents and efferents to and from CA1 regions of the hippocam-
pus with the external inputs [2]

CA1 is modeled by Denham et. al [2] which has been investigated for anatomical evidence
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by Sans-Dublanc in [128]. For CA3, similar anatomical data is summarized by Witter [129].

Figure 15: Projections to CA1 and CA3 pyramidal cell

Pyramidal cells (PCs): In CA1 and CA3, PCs are the major source of excitatory inputs
to other interneurons and project onto themselves sparsely in CA1 and densely in CA3 [130].
The sparse recurrent excitatory connections in CA1 is not considered in our model, but we
consider the dense recurrent excitatory connections in CA3. In CA1, PCs receive excitatory
input from EC and CA3 PCs; while in CA3, they receive excitatory inputs from themselves,
DG and EC. PCs in CA1 receive inhibitory inputs from CA1 BCs, CA1 BSCs, and other CA1
inhibitory interneurons; in CA3, PCS receive inhibitory inputs from BCs, BSCs, CA1 BPs
and other CA3 inhibitory interneurons [130, 24, 71, 91]. The projections to CA1 and CA3
pyramidal cells are as shown in figure 15.

Basket cells (BCs): PV-containing BCs are present in both CA1 and CA3 regions which are
responsible for generating gamma oscillations coupled with theta oscillations. BCs activity
is noticed to occur while learning patterns in both CA1 and CA3 regions in Cutsuridis et. al
[24] and Hasselmo et. al [71] simulation models respectively. In addition, BCs in CA1 also
receive EC input [24], however evidence for such an external input for both CA1 and CA3
BSCs is absent in literature. BCs in CA1 receive excitatory inputs from CA1 PCs, CA3 PCs
and EC [24, 130, 91, 131] and inhibitory inputs from CA1 BSCs [130, 91, 131] and septum
[24, 131]; whereas CA3 BCs receive excitatory input from CA3 PCs [71, 130] and DG [130]
and inhibitory input from CA3 BSCs and septum [71] and CA1 BPs [93]. The projections to
CA1 and CA3 basket cells are as shown in figure 16.
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Figure 16: Projections to CA1 and CA3 basket cell

Bistratified cells (BSCs): PV-containing BSCs are present in both CA1 and CA3 regions.
In CA1, they are observed to suppress unwanted PCs activity, excited by CA3 excitatory
projections, during recall of patterns in Cutsuridis et. al [24] simulation model. O-LM cells
are also active during recall of patterns to suppress unwanted pyramidal cell activity excited
by EC projections as explained in Cutsuridis et. al model [24]. We have considered BSCs
here instead of O-LM cells as we are modeling CA3 and have EC as a constant external input
to both CA1 and CA3. In CA1, BSCs receive excitatory input from CA3 PCs [24], CA1 PCs
and inhibitory input from BCs and septum [24, 130, 91, 131], while in CA3, BSCs receive
excitatory input from CA3 PCs and inhibitory input from CA1 BPs [93]. Other external
connections as seen in CA1 BSCs are not found in CA3 BSCs as we could not find evidence
for such projections in literature. The projections to CA1 and CA3 bistratified cells are as
shown in figure 17.

Figure 17: Projections to CA1 and CA3 bistratified cell

Other inhibitory interneuron population: There are many other inhibitory interneurons
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in CA1 and CA3 such as the O-LM cells, axo-axonic cells, CA3 granule cells, etc., which we
have not considered individually in our model. Instead, we consider all the other inhibitory
interneurons as a single population of inhibitory interneurons, both in CA1 and CA3. Collec-
tively, in CA1, we have considered excitatory inputs from CA1 PCs, CA3 PCs and EC; and
inhibitory inputs from CA1 BCs, CA1 BSCs [132] and septum [24, 130, 91, 131]. In CA3,
we have considered excitatory inputs from CA3 PCs [71], DG and EC [130, 91, 131]; and
inhibitory inputs from septum [129] and CA1 BPs [93]. The projections to CA1 and CA3
other inhibitory interneurons are as shown in figure 18.

Figure 18: Projections to CA1 and CA3 other inhibitory interneurons

CA1 back-projection cells (BPs): We understand from Sik. et. al [93] about the pro-
jections from CA1 to CA3 interneurons. The CA1 back-projection cells receive excitatory
projections from CA1 pyramidal cells and synapse on CA3 pyramidal cells and interneurons,
and the hilar region in the DG. The CA1 back-projections cells are observed to terminate in
the stratum-oriens (SO) and stratum-radiatum (SR) where pyramidal, basket, bistratified and
other interneurons also have projections. However, there is not much information about the
effects of CA1 back-projection cells on CA3 interneurons and hence, we have modeled pro-
jections from CA1 back-projection cells to CA3 pyramidal cells and inhibitory interneurons.

This completes the septo-hippocampal loop in CA1 and CA3 to propagate theta oscil-
lations from the septum, the hippocampal loop between CA3 and CA1 propagating feed-
forward information through Schaffer collaterals, and feedback information from CA1 to
CA3 from the back-projection cells in CA1.
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4.2.1 BASIC THETA OSCILLATION CIRCUIT

We take a population activity approach to modeling the microcircuit shown in figure 13.
As mentioned before, we have extended the septo-hippocampal pacemaker circuit proposed
by Denham et. al [2] which explains the propagation of theta frequency oscillation from sep-
tum to the CA1 region of the hippocampus. We found anatomical evidence for the existence
of the septo-hippocampal loop in CA1 as described by Denham et. al, and we found that the
same septo-hippocampal loop is present in CA3 as well as explained in the previous section.

The purpose of using the Denham et. al model is to simulate CA1 and CA3 regions us-
ing the septal input for which, the model serves as a basic foundation to build upon to study
cross-frequency coupling of other frequency oscillations with theta frequency oscillations,
with other populations of neurons.

We have thus, extended the same model to CA3 and have integrated both CA1 and CA3
regions, with time constants for each type of neuron chosen as close to the anatomical data
available.

The basic model from Denham et. al primarily focuses on the GABAergic calbindin (CB)-
containing hippocampo-septal projections in CA1, GABAergic projections from septum to
CA1 and GABAergic CB-containing cells in CA1, as shown in figure 14. The defining equa-
tions of this model are as follows.

τECA1

dECA1

dt
=−ECA1(t)+(ke−ECA1(t)).

Ze(−wECA1←ICA1I ICA1I(t)+PCA3(t))
(12a)

τICA1P

dICA1P

dt
=−ICA1P(t)+(ki− ICA1P(t)).

Zi((−wICA1P←ECA1ECA1(t)))
(12b)

τICA1I

dICA1I

dt
=−ICA1I(t)+(ki− ICA1I(t)).

Zi((−wICA1I←ISIS(t))+PCA3(t))
(12c)

τISEPT

dIS

dt
=−IS(t)+(ki− IS(t)).

Zi((−wIS←ICA1PICA1P(t))+PS(t))
(12d)

where ECA1(t), ICA1P(t), ICA1I(t) and IS(t) are the average activity of CA1 pyramidal cell pop-
ulation, average activity of CA1 hippocampo-septal projections, average activity of CA1 in-
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Figure 19: Activity dynamics of the hippocampal-septal pacemaker
circuit proposed by Denham et. al [2] which is recreated here.

terneuron population and average activity of ms-dbB septo-hippocampal projections respec-
tively. wX←Y are the strength of connections from Y population to X population cells. PCA3(t)

is the constant activity of pyramidal cells of CA3 and PS(t) is the constant inputs from poste-
rior hypothalamus and supra-mammillary nucleus (SUM). The response functions, Zp(x) are
sigmoidal, which represent the fraction of active population for a given value x, described by,

Zp(x) =
1

(1+ exp(−bp(x−θp)))
− 1

1+ exp(bpθp)

where, p ∈ e, i bp and θ p are constants, and kp = 1
Zp(∞) . The logistic function is chosen as

given by the Wilson-Cowan model [98] such that the function Zp(0) = 0. The parameters bp

and θp provide the position and value of the maximum slope of the model respectively. The
activity is as given in figure 19. The external inputs are constants in the model.

In the model extended in this work, the inhibitory interneuron equation ICA1I is dissected
to include PV-containing basket cells, bistratified cells and back-projection cells in the CA1
region. Hence, ICA1I equation will later represent the population of inhibitory interneurons
which are not explicitly included in the equations such as the axo-axonic cells, O-LM cells,
ivy cells, neurogliaform cells, etc.
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Table 4: CA1 connectivity matrix. Pyr: Pyramidal cells; BC: Basket cells; BSC: Bistratified cells;
ICAI: Other inhibitory interneurons; ICAP: CB-containing hippocampo-septal projections; BP: CA1

back-projection cells; EC: Entorhinal cortex. ✓specifies that a projection exists between the two
populations.

From

To
PC BC BSC ICAI ICAP BP Septum

PC ✓[91] ✓[131] ✓[131, 133] ✓[128] ✓[131, 128]

BC ✓[131] ✓[131, 91] ✓[132]

BSC ✓[131] ✓[131, 91] ✓[132]

ICAI ✓[131, 128]

ICAP ✓[128]

BP ✓[93, 131]

CA3: Pyr ✓[91] ✓[131] ✓[131, 133] ✓[131]

Septum ✓[131] ✓[131] ✓[131, 128]

EC ✓[130] ✓[131] ✓[131]

4.2.2 MICROCIRCUIT OF CA1-CA3 REGION OF THE HIPPOCAMPUS

The inputs from perforant path propagates from EC layer III to the distal dendrites of
CA1 pyramidal cells while the inputs from EC layer II propagates to CA3 pyramidal cells
via mossy fibers in DG and to the proximal dendrites of CA1 pyramidal cells via the Schaffer
collaterals. The timing of inputs from EC layer II and layer III are important since the order
of arrival of signals to the soma of the CA1 pyramidal cells determines the order of input to be
integrated for meaningful information processing [134]. It is also estimated that the perforant
path input comes before Schaffer collateral input to CA1 pyramidal cells in order for the
signal to reach soma from the distal dendritic synapse [134] since the information present
has to be processed in the hippocampus within the gamma cycle duration. On the other side,
experimentally the existence of feedback signals propagating from CA1 to the interneurons
in CA3 and hilar region is found [93, 17] to synapse in stratum radiatum. Taking these inputs
into account, the microcircuit in figure 13 is proposed. The model equations for CA1 are as

60



Table 5: CA3 connectivity matrix. Pyr: Pyramidal cells; BC: Basket cells; BSC: Bistratified cells;
ICAI: Other inhibitory interneurons; ICAP: CB-containing hippocampo-septal projections; EC:
Entorhinal cortex; DG: Dentate gyrus; BP: CA1 back-projection cells. The black dots (•) for the
projections from CA1 BP to BC, BSC and ICAI in CA3 is due of the inconclusive proof for the

existence of such projections which we have included in our model to explore their effects on these
populations. ✓specifies that a projection exists between the two populations.

From

To
PC BC BSC ICAI ICAP Septum

PC ✓[131, 91] ✓[131, 91] ✓[93] ✓[131] ✓[129]

BC ✓[131, 91]

BSC ✓[131, 91] ✓[131, 91]

ICAI ✓[131, 129]

ICAP ✓[129]

CA1: BP ✓[131, 93] •[131, 93] •[131, 93] •[131, 93]

Septum ✓[131] ✓[129]

EC ✓[131, 129] ✓[131]

DG ✓[131] ✓[130] ✓[91]
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Table 6: Symbols definition

Symbols Definition Symbols Definition
ECA1(t) Excitatory CA1 pyramidal cells ECA3(t) Excitatory CA3 pyramidal cells
ICA1I(t) Inhibitory CA1 interneurons ICA3I(t) Inhibitory CA3 interneurons
IB(t) PV-containing basket cells IS(t) Septo-hippocampal input
IBS(t) Bistratified cells PEC(t) Entorhinal cortex external input
ICA1P(t) CA1 Hippocampo-septal input wx←y Weight from cell type y to cell type x

IBP(t)
CA1 back-projection inhibitory

interneuron cells PDG
Constant excitatory input

from dentate gyrus

PS
Constant excitatory input from

posterior hypothalamus and SUM

follows: Excitatory pyramidal cells

τECA1

dECA1

dt
=−ECA1(t)+(ke−ECA1(t)).

Ze(−wECA1←ICA1I ICA1I(t)

−wECA1←IBIB(t)

−wECA1←IBSIBS(t)

+wECA1←ECA3ECA3(t)

+PEC(t))

(13a)

PV-containing basket cells

τIB

dIB

dt
=−IB(t)+(ki− IB(t)).

Zi((wIB←ECA1ECA1(t))

−wIB←ISIS(t)

−wIB←IBSIBS(t)

+wIB←ECA3ECA3(t)

+PEC(t))

(13b)
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Bistratified cells
τIBS

dIBS

dt
=−IBS(t)+(ki− IBS(t)).

Zi((wIBS←ECA1ECA1(t))

−wIBS←IBIB(t)

−wIBS←ISIS(t)

+wIBS←ECA3ECA3(t))

(13c)

Back-projection cells

τIBP

dIBP

dt
=−IBP(t)+(ki− IBP(t)).

Zi((wIBP←ECA1ECA1(t))
(13d)

Hippocampo-Septal projections

τICA1P

dICA1P

dt
=−ICA1P(t)+(ki− ICA1P(t)).

Zi((wICA1P←ECA1ECA1(t)))
(13e)

All other inhibitory interneurons in CA1

τICA1I

dICA1I

dt
=−ICA1I(t)+(ki− ICA1I(t)).

Zi((−wICA1I←ISIS(t)

−wICA1I←IBIB(t)

−wICA1I←IBSIBS(t)

+wICA1I←ECA1ECA1(t)

+wICA1I←ECA3ECA3(t))

+PEC(t))

(13f)
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From the microcircuit of CA3, the following oscillatory model is derived as follows: Exci-
tatory pyramidal cells

τECA3

dECA3

dt
=−ECA3(t)+(ke−ECA3(t)).

Ze(wECA3←ECA3ECA3(t)

−wECA3←ICA3I ICA3I(t)

−wECA3←IBIB(t)

−wECA3←IBSIBS(t)

−wECA3←IBPIBP(t)

+PEC(t)+PDG(t))

(14a)

PV-containing basket cells

τIB

dIB

dt
=−IB(t)+(ki− IB(t)).

Zi((wIB←ECA3ECA3(t))

−wIB←IBSIBS(t)

−wIB←ISIS(t)

−wIB←IBPIBP(t)

+PDG(t))

(14b)

Bistratified cells
τIBS

dIBS

dt
=−IBS(t)+(ki− IBS(t)).

Zi((wIBS←ECA3ECA3(t))

−wIBS←IBPIBP(t))

(14c)

Septo-hippocampal input

τS
dIS

dt
=−IS(t)+(ki− IS(t)).

Zi((−wIS←ICA3I ICAI(t))

+PS)

(14d)
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All other inhibitory interneurons in CA3

τICA3I

dICA3I

dt
=−ICA3I(t)+(ki− ICA3I(t)).

Zi((wICA3I←ECA3ECA3(t)

−wICA3I←IBPIBP(t)

−wICA3I←ISIS(t))

+PEC(t)+PDG(t))

(14e)

The common input from septum to both CA1 and CA3 is given as follows.

τS
dIS

dt
=−IS(t)+(ki− IS(t)).

Zi((−wIS←ICA3PICA3P(t)

−wIS←ICA1PICA1P(t))

+PS(t))

(15a)

The model equations are defined according to the microcircuit given in figure 13. For
easier reference, we have also provided the connectivity matrix in tables 4 and 5, which
explains CA1 to CA3 projections via the back-projection cells and from CA3 to CA1 via the
Schaffer collaterals from CA3 pyramidal cells to CA1. Now that we have the framework, we
can consider time constants in the next section in table 7. Symbol definitions are as given in
table 6. Parameter values for the variables in the individual model simulations are given in
section 4.3 in tables 8 and 9, and parameter values for the variables in the integrated model
simulations are given in tables 10 and 11 about which we will be discussing more in the later
sections of this chapter.

4.2.3 TIME CONSTANTS OF NEURONAL POPULATIONS

Membrane time constants for each cell type is chosen from literature. Pyramidal cells
in CA1 are anatomically observed to have a membrane time constant between 16.5− 39ms

from various sources [130], and we consider a slightly minimum value of 16ms [135] to have
enough time to obtain theta and theta-coupled gamma oscillations. Whereas CA3 pyramidal
cells have a membrane time constant between 12− 61ms, and we consider 12ms [136], to
have enough recovery time after an action potential and still obtain theta and theta-coupled
gamma oscillations.
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Basket cells in CA1 and CA3 are observed to have a membrane time constant of 11−
13ms, and we have considered 11ms for both CA1 [137] and CA3 [138].

Table 7: Time constants of cells in
CA1 and CA3 taken as close as

possible from literature, and hence
is the same for all the models, both
individual and integrated models.

The time constants are used as
given in equations 13, 14 and 15.

Cell type Time (ms)
τECA1 16

τECA3 12

τIB 11

τIBS 18

τIBP 10

τICA1P 11

τICA1I 11

τISEPT 30

Bistratified cells are modeled with a 18ms time con-
stant for CA3 [138], and since there is lack of evidence
of patch-clamp recordings for the time constant of CA1
bistratified cells, we have adopted the same, 18ms, as the
membrane time constant for CA1 bistratified cells also.

The membrane time constant for septum is deduced to
be 30ms, as there is no proper evidence in literature for
the latency of propagation of signals from the medial sep-
tum to CA1 pyramidal cells and hence, we retained the
same value chosen by Denham et. al [2] the the septal-
pacemaker circuit.

The populations of calbindin-containing hippocampo-
septal neurons and other inhibitory interneurons are cat-
egorized into GABAergic bistratified populations which
have a membrane time constant of 18.6± 8.1ms in CA1
[139]. Since such data is not available for CA3, we con-
sider 11ms for both of these populations in CA1 and CA3,
to obtain oscillations having ≥ 7Hz frequency.

Membrane time constant for CA1 back-projection cells is not present in literature and
hence, we consider 10ms, a minimum value for an inhibitory interneuron considering the
ranges of other inhibitory interneurons.

4.2.4 METHODS OF ANALYSIS

We have used numpy, scipy, scipy FFTpack and matplotlib packages from python 3.6.9
version to simulate our population model of CA1 and CA3. The differential equations are
solved using the scipy.integrate.odeint function.

One of the important factors to analyze in the simulation results is the frequency of os-
cillations obtained in each region for each neuron type. The frequency of oscillations of the
different populations is dependent on the weights of many projections. Activity dynamics of
the model simulated result in two frequencies superposed on one another. The base frequency
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oscillation acts as a carrier for the second frequency oscillation and the latter is seen in the
crest of the former (only on the positive axes in our simulations).

The purpose of analyzing the frequencies of the oscillatory dynamics here is to deter-
mine the presence or absence of bifurcation points in the model. In the model proposed by
Denham et. al [2], the frequencies seen were the 4-10Hz theta frequency oscillations alone,
and the model did exhibit bifurcations which is explained by Denham et. al. To determine if
there is another bifurcation that occurs when the model transits from theta frequency oscillat-
ing mode to theta-coupled gamma frequency oscillating mode, bifurcation analysis using the
AUTO functionality of XPPAUT software was used. However, no such bifurcations could be
found. To ascertain this, a parameter scope exploration is performed.

To calculate the frequencies, we have used two methods. One is a simple method im-
plemented, where we calculate the frequencies manually by comparing every point in the
neuronal activity with a threshold and increment peaks by one when the points in the activity
increase beyond a pre-set threshold. The thresholds for theta and slow gamma frequencies
are different and is necessary to avoid counting noisy peaks in the activity if present. This is
explained in figure 20.

Whenever the activity dynamics descends, we can note the start of the inter-spike interval.
Whenever the activity dynamics ascends beyond the threshold, we can increment the number
of peaks by one, and note the beginning of a peak as the end of the inter-spike interval. Since
we are dealing with periodic oscillations here, the inter-spike interval for 7-10Hz oscillations
is the same between peaks for the whole duration of the simulation, and similarly the inter-
spike interval for the 30-50Hz oscillations is also the same between peaks. The number of
such inter-spike intervals in the whole simulation duration gives us the frequency of oscilla-
tions.

The second method is to use the FFT of the neuronal activity. The FFTs for CA1 pyrami-
dal cells have frequencies in the range of 7-15Hz and 20-60Hz which confirms the frequencies
present in the activity as theta and slow-gamma oscillations.

It is worth mentioning that both the methods lead to the same results as the frequency
determines the kind of oscillations being generated by the system. However, since FFT is the
established standard to determine frequencies, we will be using this going forward.

By selecting certain points including the boundary points of the model for different con-
nection weights and external inputs, and simulating the model for these points, we analyzed
the frequency from the results of each simulation.
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Figure 20: (left) As the activity rises, (x−1) < x, the number of peak count is incremented, and as
the activity decreases, (x−1) > x the inter-spike interval count gets incremented. The same is

observed for the secondary oscillations superposed on top of the carrier wave. (right) FFT of CA1
pyramidal cells.

Let the total frequency of oscillations be γ , and the frequency of the carrier wave be θ .
If γ = 0Hz, and θ = 0Hz, the system is in steady state.
If 30Hz < γ < 60Hz, the system is oscillating with slow gamma frequency, with no

7Hz theta oscillations.
If γ > 80Hz, the system is oscillating with fast gamma frequency, with no 7Hz theta

oscillations.
If 4Hz < θ < 13Hz, the system is oscillating with theta frequency, with no 30-50Hz

slow gamma oscillations.
If 4Hz < θ < 13Hz, and if 30Hz < γ < 60Hz, the system is oscillating with theta-

coupled slow gamma frequency.

Using the simple technique or FFT to calculate the frequency of the results obtained dur-
ing each simulation for each value of the parameters under examination, we can determine
the type of oscillations present in the resultant activity. The results of these simulations is
given and explained in section 4.3.3.

In the simulations of CA1 and CA3 regions, we found many possible connection weights
that result in different dynamics. However, increasing the connection weight of bistratified
cells to pyramidal cells even further gives rise to theta frequency oscillations and increasing
it even further, gives rise to theta-coupled gamma oscillations. This is found to be true in
both the individual model and the integrated model. Running through different values of
external weights, and varying the connection weight from bistratified to pyramidal cells, the
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non-linear dynamical system of CA1 and CA3 ends up in one of the cases of oscillating sys-
tem as described above. A detailed analysis of the results obtained through this method is
discussed in sections 4.3 and 4.4.

4.3 RESULTS

4.3.1 CA1 MODEL WITH CONSTANT EXTERNAL INPUTS

The model equations for the CA1 microcircuit are as explained in section 4.2. It is to be
noted that all results in this section have CA3 as a constant external input.

According to the cell-theta-phase relationships recorded by Klausberger et. al [140, 133],

Figure 21: CA1 microcircuit where CA3 and EC are constant inputs.

CA1 pyramidal cells are in-phase with CA1 bistratified cells and are out-of-phase with CA1
basket cells. We start the simulations by establishing parameter values that result in combined
theta-coupled gamma oscillations in CA1 pyramidal cells, with the cell-theta-phase relation-
ships as observed by Klausberger et. al. In CA1 region, increasing excitation of inhibitory
bistratified cells from pyramidal cells produces slow gamma rhythms coupled with theta os-
cillation, while decreasing excitation of inhibitory basket cells from pyramidal cells produces
theta oscillations. The result is given in figure 22, with values of parameters as given in table
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8 and time constants for each cell type in table 7 in the previous section.

When the excitation of basket cells from pyramidal cells is low, inhibition of bistratified
cells from basket cells is also low and hence, the oscillations of pyramidal cells and bistrati-
fied cells synchronize. As the excitation of basket cells increases, pyramidal cells and basket
cells synchronize. However, due to the recurrent inhibition between bistratified and basket
cells, these two populations remain out-of-sync. However, by increasing excitation of bistrat-
ified cells from pyramidal cells, and decreasing basket cell excitation from pyramidal cells,
pyramidal and bistratified cells are synchronized as shown in figure 23.

Figure 22: CA1 (top-left) 6Hz theta and (top-right) 24Hz theta-coupled slow gamma oscillations;
(bottom) phases of pyramidal, basket and bistratified cells for the theta-coupled gamma oscillatory
activity to show the phase synchronization between pyramidal and bistratified cells, and the phase-
difference between pyramidal and basket cells.
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Table 8: Weights and external input values for CA1. The values of external inputs PCA3, PEC and Ps

are excitatory constant inputs to the individual model.

From
To

PC BC BSC ICAI ICAP BP Septum

PC 1 10 10 50 50
BC 1 10 5
BSC 10(θ );20(γ) 10 5
ICAI 150
ICAP 150
BP 10
CA3: Pyr 8 8 8 8
Septum 100 1 50
EC 3 3 3
Ps 8

Septal input to the inhibitory interneurons in CA1 is the main source of theta rhythm propaga-
tion. From the simulation results shown in figure 22, the septal theta oscillations are in phase
with CA1 pyramidal cells and bistratified cells and that the oscillations of 6Hz frequency
when the weight from CA1 bistratified cells to pyramidal cells is low, and 8Hz theta-coupled
with three gamma cycles in each theta half cycle when the weight from CA1 bistratified cells
to pyramidal cells is increased.
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Figure 23: CA1 pyramidal, basket and bistratified cells are in-sync

4.3.2 CA3 MODEL WITH CONSTANT EXTERNAL INPUTS

CA3 region has the recurrent connections formed by the excitatory pyramidal cells which
are also known to be intrahippocampal theta oscillators [17]. CA3 pyramidal cells receives
its input from the CA3 pyramidal cells via the recurrent collaterals, EC via the perforant path,
from DG via the mossy fibers, projection from ms-dbB and inhibitory projections from back-
projection cells in CA1 to the interneurons, and the inhibitory interneurons to pyramidal cells
in the region. The inhibitory interneurons receive GABAergic excitation from the septum.
The CA3 microcircuit along with its different compartments namely, stratum lacunosum-
moleculare (SLM), stratum radiatum (SR), stratum lucidum (SL), stratum pyramidale (SP)
and stratum oriens (SO) is as shown in figure 24. The basic model from Denham et. al is
modified to include excitatory recurrent connections and distinct computational equations for
some of the inhibitory interneurons, which are given in the previous section 4.2. All results
in this section have the CA1 back-projection cell input as a constant inhibitory external input.

From the simulation results, we can observe oscillations of 7Hz frequency when the
weight from CA3 pyramidal cells to basket cells is low, and 8.5Hz theta-coupled with 5
gamma cycles in each theta half cycle or 40Hz slow-gamma oscillations when the weight
from CA3 pyramidal to basket cells is increased. The result is given in figure 25, with values
of parameters as given in table 9 and time constants for each cell type in table 7.
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Figure 24: CA3 microcircuit where CA1, EC and DG are constant inputs.

Figure 25: CA3 (left) 7Hz theta and (right) 50Hz theta-coupled slow gamma oscillations.

As the weight of the CA3 recurrent excitation, the frequency of gamma oscillations decreases
and disappears, but theta oscillations are sustained for high values of the weight owing to the
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Table 9: Weights and external input values for CA3. The values of external inputs PEC, PDG and Ps

are excitatory constant inputs to the individual model. PCA1 is the constant external inhibitory input
coming from CA1 to CA3.

From
To

PC BC BSC ICAI ICAP CA1:BP Septum

PC 5 100 50 100
BC 1(θ );50(γ)
BSC 1 5
ICAI 150
ICAP 150
DG 1 1 1
CA1: BP 4 4 4 4
Septum 50 50
EC 12 12
Ps 8

presence of the septal pacemaker circuit. However, too high values results in steady state as
shown in figure 26.
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Figure 26: Effects on CA3 neuronal network as recurrent pyramidal excitation increases.

When pyramidal cells get excited, they excite more basket and bistratified cells. Bistratified
cells, on excitation, reduce gamma oscillatory activity whereas, basket cells show a subtle in-
crease in gamma oscillatory activity. However, the excited bistratified cells also inhibit basket
cell excitation thus reducing gamma oscillatory activity. And hence, pyramidal, basket and
bistratified cells exhibit only theta oscillations when the recurrent excitation increases.

Increasing inhibition to pyramidal cells from other inhibitory interneuron population, and
increasing inhibition to septum, decreases the frequency of oscillations. Increasing CA1 in-
hibition introduces slow gamma oscillations in bistratified cells as shown in figure 27.
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Figure 27: Effects on CA3 neuronal network as recurrent pyramidal excitation increases.

DG input is projected directly to pyramidal and basket cells in CA3, which forms a part of
the trisynaptic pathway. As DG input increases, the frequency of oscillations also increases,
as expected. However, the slow gamma oscillatory activity disappears in all the cell types.

When DG input increases, frequency of oscillations increases in pyramidal cells. As EC,
CA1 and DG inputs increase, pyramidal, basket and bistratified cells converge to a steady
state. Theta frequency oscillations are maintained as septal input increases until a certain
threshold which is explained in the next section 4.3.3. However, when septal input crosses
the threshold, all cell types stop oscillating reaching steady state activity.
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4.3.3 CA1-CA3 INTEGRATED MODEL

The CA1 and CA3 regions are integrated to analyze and understand the impacts of the
two major pathways, namely, the Schaffer collateral projection from CA3 to CA1 and the
back-projection cells from CA1 to CA3 interneurons. Also, this study attempts to reveal the
differences between PV-containing basket and bistratified cells found in both the regions. The
connection strengths of the integrated microcircuit is given in tables 10 and 11 for CA1 and
CA3 respectively. The simulation results is as shown in figure 28.

CA1 results - When the connection strength of CA1 bistratified cells to CA1 pyramidal
cells is less than 60, CA1 pyramidal cells display theta oscillations; for connection strength
greater than 80, theta-coupled gamma oscillations can be seen; however, when the connection
strength increases to greater than 250, the frequency of theta oscillations increases and slow

gamma oscillatory activity decreases from 40 Hz to 20Hz in CA1, as shown in figure 29. CA1
pyramidal cells are in-phase with CA1 bistratified cells and CA1 basket cells are out-of-phase
with CA1 pyramidal cells. This phase synchronization is as observed in [141, 140]. The state
of CA3 governs the state of CA1 when they are combined. We also show here that the slow
gamma oscillations are propagated to CA1 from the CA3 pyramidal cells. CA1 also sustains
oscillations without CA3 which is a different question discussed later.

Slow gamma oscillations in the range of 30-50Hz coupled with theta oscillations are seen
in the integrated model by projecting CA3 synapses onto CA1 populations as observed in
literature [142]. In our simulations, CA3 pyramidal cells project onto CA1 pyramidal, bas-
ket and bistratified cells which oscillate with slow gamma frequency. Although EC input
is constant in our model, we can observe from the activity plots in figures 31 and 32 that
large values of EC projecting to inhibitory interneurons and pyramidal cells in CA1 and CA3
causes steady state and that only a small range of external input values can sustain the 4-13Hz
oscillations coupled with 30-50Hz slow gamma oscillations, in both CA1 and CA3.

When the connection strength between CA3 pyramidal cells to CA1 pyramidal cells in-
creases to greater than 20, the beginning of gamma oscillations in theta oscillations can
clearly be seen in CA1 pyramidal and CA1 bistratified cells. Theta-coupled gamma oscil-
latory activity disappears with the increase in connection strength between CA3 pyramidal
cells to CA1 basket cells to greater than 50.
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Figure 28: CA1-CA3 theta and theta-coupled gamma oscillations. (top) CA1 (left) 6Hz theta and
(right) 32Hz theta-coupled slow gamma oscillations. (bottom) CA3 (left) 7Hz theta and (right) 50Hz

theta-coupled slow gamma oscillations.
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Figure 29: Effect on CA1 pyramidal cells for different connection strength values. (top-left) CA1
bistratified to CA1 pyramidal cell connection strength changes from theta oscillations to

theta-coupled gamma oscillations to back again to theta oscillations from 50 to 90 to 250. (top-right)
Theta oscillations to theta-coupled gamma oscillations when connection strength from CA3

pyramidal cells to CA1 pyramidal cells increases from 15 to 50 to 150. (bottom-left) Theta-coupled
gamma oscillations disappears as connection strength between CA3 pyramidal cells to CA1 basket
cells increases from 5 to 50 to 80. (bottom-right) Theta-coupled gamma oscillations disappears as

connection strength between CA3 pyramidal cells to CA1 bistratified cells increases from 5 to 50 to
80.

As the connection strength between CA3 pyramidal cells and CA1 bistratified cells increases,
theta-coupled gamma oscillations decreases. These results are as shown in figure 29. This
implies that as excitation of CA1 pyramidal cells increases, gamma oscillatory activity per-
sists, and as inhibitory activity from CA1 basket and bistratified cells increases, slow-gamma
oscillatory activity coupled with theta oscillations decreases.

Figure 30: (left) Pyramidal, basket and bistratified cells are in-sync with each other. (right) Larger
connection strength from EC, Ps and CA3 to CA1 pyramidal cells results in steady state activity.

Inhibition from septum and inhibition of bistratified cells from basket cells forces CA1 bis-
tratified cells to synchronize with CA1 pyramidal cells; whereas, the phase synchronization
of pyramidal cells, basket cells and bistratified cells occurs when the connection strength of
pyramidal cells to basket cells increases from 1 to 100, and the connection strength from bis-
tratified to pyramidal cells decreases from 50 to 1. In other words, decreasing the inhibition
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Table 10: Weights & external input values for CA1 integrated model. The values of external inputs
PEC and PS are excitatory constant inputs to the integrated model of CA1. Excitatory inputs from

CA3 is a continuous input to the neuronal populations in CA1.

From
To

PC BC BSC ICAI ICAP BP Septum

PC 1 50 10 100 50
BC 5 50
BSC 50(θ );100(γ) 10
ICAI 50
ICAP 50
BP 1
CA3: Pyr 50 5 50 5
Septum 50 50
EC 4 4 4
Ps 8

of pyramidal cells synchronizes the activity of pyramidal cells with bistratified and basket
cells as shown in figure 30.

Figure 31: As the connection strength between CA1 bistratified cells and CA1 pyramidal cells
changes for different values of EC, Ps and CA3 pyramidal cells to CA1 pyramidal cells, different

activity states are observed in CA1 pyramidal cells.

As EC and CA3 inputs are increased, CA1 pyramidal cell activity reaches steady state as
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Table 11: Weights & external input values for CA3 integrated model. The values of external inputs
PEC, PDG and PS are excitatory constant inputs to the integrated model of CA3. Inhibitory inputs from

CA1 is a continuous input to the neuronal populations in CA3.

From
To

PC BC BSC ICAI ICAP CA1:BP Septum

PC 10 100 50 10 100
BC 10(θ );50(γ)
BSC 1 5
ICAI 50
ICAP 50
DG 2 2 2
CA1: BP 1 1 1 50
Septum 50 50
EC 12 12
Ps 8

shown in figure 30. The activity plots for CA1 pyramidal cells with respect to the EC and the
external input to septum is as shown in figure 31. From the activity plots obtained from the
FFT of the activity dynamics of CA1 in the integrated model, we can see the types of frequen-
cies and states the model oscillates/settles in, and that the theta-coupled gamma oscillations
occur for a very narrow range of values of external inputs. CA3 results - The inhibition of
pyramidal cells or excitation of basket cells in CA3 affects the frequency of oscillations by
introducing slow-gamma oscillations in the theta oscillatory network. For connection weights
less than 20 from basket cells to pyramidal cells, we get theta oscillations due to the presence
of the septal pacemaker circuit. As this connection weight increases to a value greater than
20, we observe 2 small oscillatory peaks in each theta half-cycle which increases to 8 small
oscillatory peaks summing to 64Hz slow gamma oscillatory frequency coupled with 8 Hz
theta oscillations gradually when the value is further increased to 50.

The activity plots for CA3 pyramidal cells for different values of external inputs is as
given in figure 32. A high value of PS gradually converts 7-13Hz oscillations to fast oscilla-
tions with a frequency greater than 70Hz, reaching steady state. This is true even when there
is no input from CA1 to CA3 and vice-versa.
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Figure 32: As the connection strength between CA3 basket cells and CA3 pyramidal cells changes
for different values of EC, DG, Ps and CA1 backprojection cells to CA3 pyramidal cells, different

activity states are observed in CA3 pyramidal cells.

Septo-hippocampal loop - Theta oscillations are produced both due to the recurrent excita-
tion present in the network, and due to the presence of septo-hippocampal feedback loop. The
septo-hippocampal input is required to regulate the oscillations generated in the CA3 region.
When verifying if the septo-hippocampal loop indeed propagates theta frequency rhythms to
the hippocampal CA1 and CA3 regions, we found that the septo-hippocampal loop is neces-
sary to maintain theta frequency oscillations not only in CA1, but also in CA3, as given in
table 12. We found oscillations in CA3 even when the septo-hippocampal loop was disrupted
in CA3 because of septally-connected interneurons, which are observed to be aligned across
the septotemporal axis in CA3 [143], and because of EC input that generate theta frequency
oscillations in CA3, which are also propagated to CA1. By removing the septum projections
to basket and other inhibitory interneurons, the septal feedback loop is broken, resulting in
steady state as shown in figure 33. However, even without the septal loop, CA3 and CA1
display 7.5Hz oscillations due to the presence of an E-I circuit in the model. These are the
intrinsic theta oscillators which are responsible for generating the 7Hz hippocampal theta os-
cillations which are only noticed when the septal loop is absent in the model, as shown in
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figure 33. However, we can also observe that when the septal loop is broken in CA1, CA3
still has with 14Hz oscillations but oscillations are absent in CA1, as shown in figure 33.

However, when the septo-hippocampal loop is disrupted in CA3 and inhibition from other
inhibitory interneurons to pyramidal cells is decreased, we can observe a transient oscillatory
period of different frequencies from fast gamma oscillations to 8Hz oscillations, ending up
in steady state. With reference to the table 12, we can also see the corresponding figures in
figure 34.

CA1 sustains theta oscillations from the feed-forward excitation of CA3 pyramidal cells
without septal input. Disrupting the CA1 septo-hippocampal loop by removing the septal
to CA1 interneurons link in the CA1 model, results in producing no oscillations in CA1.
However, increasing the weight from CA3 pyramidal cells to CA1 pyramidal cells produces
theta-coupled gamma oscillations in both pyramidal and basket cells in CA1 and CA3 in the
descending phase as present in literature [31, 141]. This shows that CA1 can oscillate in
slow-gamma coupled with theta oscillations frequency without septal input, and these theta-
coupled gamma oscillations are propagated from CA3 to CA1.

4.3.4 CONNECTION WEIGHTS ANALYSIS

Calbindin(CB)-containing hippocampo-septal projections complete the feedback loop from
hippocampus to the septum, propagating theta oscillations. This input is seen to be significant
for both CA1[2] and CA3 to sustain septally propagated theta oscillations. Septal projections
to CA1 and CA3 via GABAergic inhibitory interneurons exert high inhibition on pyramidal
cells, which in turn drive major feedback projections to PV-containing GABAergic septal
population via calbindin-containing hippocampo-septal projections [131]. This is observed
both in the individual and integrated model of CA1 and CA3 regions.

In CA3, the CB-containing hippocampo-septal feedback loop combined with excitation of
basket cells generates theta-gamma coupling by inhibiting the recurrent excitation of pyrami-
dal cells. By inhibiting CA3 pyramidal cells, it is possible to induce slow gamma oscillations
in CA3.

In CA1, the CB-containing hippocampo-septal feedback loop combined with excitation
of bistratified cells is required to introduce slow gamma frequency coupling. Without CA3
input to CA1, slow-gamma oscillations disappear. It is known that gamma oscillations are
propagated to the hippocampus from EC, and in the absence of EC, CA3 region is known to
propagate gamma frequency oscillations [53]. These gamma oscillations propagated to CA1
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Figure 33: Simulations when (top) the septal loop is broken ; (middle) the septum input is removed
from CA3 basket cells and CA3 other inhibitory interneurons; (bottom) septal input is removed from

CA1 other inhibitory interneuron population. The left column represents CA1 and right column
represents CA3 results.
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Figure 34: Effect of the septo-hippocampal loop, Schaffer collaterals and CA1 back-projection cells,
on CA1 and CA3 regions, which is explained in table 12.
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Table 12: Effect of septo-hippocampal loop on CA1 and CA3 as shown in figure 34

Projection type Type of oscillation Reasoning
(i) Hippocampo-septal projec-

tions from CA1 and CA3 =
0

No oscillations Expected

(ii) Hippocampo-septal projec-
tions from CA1 = 0 or CA3
= 0

Oscillations are ob-
served in both CA1
and CA3

If either one of them =
0, that region would still
get oscillatory activity from
septum as septum receives
activity input from the other
region.

(iii) Septo-hippocampal projec-
tions from CA1 and CA3 =
0

No oscillations Expected

(iv) Septo-hippocampal projec-
tions from CA1 = 0

Oscillations in CA1 are
observed when inhibi-
tion to pyramidal cells
is decreased, but 12Hz
oscillations in CA3 is
observed

Oscillations occur due to
projections from CA3 to
CA1

(v) Septo-hippocampal projec-
tions from CA3 = 0

Oscillations in CA1
and CA3 are observed
when inhibition to
CA3 pyramidal cells is
decreased

Oscillations occur in CA3
due to septo-interneuron
projections which are
propagated to CA1

(vi) Projections from CA1
back-projection cells
to CA3 = 0 and septo-
hippocampal projections
from CA1 = 0

No oscillations in CA1
pyramidal and basket
cells, but 13Hz oscilla-
tions in CA3

Now that there are no
projections from CA1 to
CA3, disrupting septo-
hippocampal loop in CA1
disrupts oscillations in the
CA1.

(vii) Projections from CA1
back-projection cells
to CA3 = 0 and septo-
hippocampal projections
from CA3 = 0

No oscillations in CA3
and CA1, but oscilla-
tions can be introduced
in CA1 by increasing
EC input

Now that there are no
projections from CA1 to
CA3, disrupting septo-
hippocampal loop in CA3
disrupts oscillations in
CA3, in turn disrupting
oscillations in CA1 also.

(viii) Septo-hippocampal projec-
tions from CA1 = 0 and re-
moving CA3 input to CA1

No oscillations in CA1
and 13Hz oscillations
in CA3

Expected as Schaffer col-
lateral input from CA3 to
CA1 is disrupted and the
septo-hippocampal loop is
disrupted
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from CA3 are due to the fast-spiking PV containing interneurons such as the basket and bis-
tratified cells, which, as also seen in our simulations, when excited more by pyramidal cells,
produce gamma frequency oscillations in the half cycles of theta oscillations [144, 54]. In-
creasing CA1 bistratified cell excitation, increasing CA1 pyramidal cell inhibition, and CA1
basket to CA1 bistratified cells inhibition, contribute to slow gamma oscillations in the CA1
model. Thus, increasing excitatory drive from external EC and CA3 is required for inducing
slow gamma oscillations in CA1. Slow gamma oscillations in CA1 are disrupted when there
is no CA3 input to CA1 in the integrated model, although there are theta-coupled gamma
oscillations in CA3, as seen in experiments [40, 53, 124]. To sustain theta-coupled gamma
oscillations, low inhibition is given to CA1 basket cells which in turn inhibits CA1 bistratified
cells.

In the simulations, it was difficult to get theta oscillations in CA3 due to the densely-
populated excitatory recurrent connections amongst CA3 pyramidal cells, and hence, they
require high inhibition from other inhibitory interneurons, low excitation of pyramidal cells
from other CA3 pyramidal cells.

4.3.5 OSCILLATORY MODES AND BIFURCATION ANALYSIS

Different oscillatory modes for different ranges of external inputs was noticed while
working on the model ranging from low frequency oscillations to fast oscillations to steady
state. The parameter ranges for the different kinds of oscillations for both CA1 and CA3 is
given in the previous section.

In CA3, for low values of EC and an increasing value of connection weight from pyrami-
dal to basket cells gives rise to intermediary oscillatory states which belong neither to theta
frequency nor slow-gamma frequency, which on increasing the connection weight does not
converge to a steady state. This is shown in figure 35.

The non-linear behaviour of the model starts off from a steady state, and bifurcates with an
unstable homoclinic bifurcation, into an unstable limit cycle with complex conjugate eigen
values, which displays Andronov-Hopf bifurcation. For even higher external currents, the
system settles in a steady state. When all external inputs are low, the system remains in
steady state. As the external inputs start increasing, in combination with connection weights
from bistratified cells to pyramidal cells in CA1 and basket cells to pyramidal cells in CA3,
the steady state of the system changes to a single limit cycle when theta oscillations appear.
When the weights increase even more, this limit cycle changes to encompass another limit
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Figure 35: Intermediate states when EC is low and connection weights of CA3 pyramidal to CA3
basket cells increases. (left) CA1 pyramidal cell activity (right) CA3 pyramidal cell activity.

cycle representing theta oscillations encompassing the 30-50Hz gamma subcycles in each
theta half cycle, as shown in the phase plot in figure 36.

Figure 36: Phase plots of (left) CA1 pyramidal and CA1 bistratified cells; (right) CA3 pyramidal
and CA3 basket cells.

The activity mode plots, as shown in figures 31 and 32 captures the change from steady
state to oscillatory state and back from oscillatory state to steady state. The intermediate
states other than the 7-10Hz oscillatory state such as 7-10Hz oscillations coupled with 30-
50Hz oscillations, >13Hz oscillations and fast oscillations are not bifurcations but a gradual
change from one type of oscillatory mode to another. All of these oscillatory states happen in

88



between the two Hopf bifurcation points where an unstable limit cycle is present. To capture
all of these activity states shown in figures 31 and 32, we used our custom tool with only a
few points for connection weights from bistratified cells to pyramidal cells and a few points
for external inputs in both CA1 and CA3 regions. The analysis methods using our custom
tools and techniques are as explained in the analysis section in section 4.2.4. It is observed
that the range of values for which theta-coupled gamma oscillations is observed is small as
compared to the range of values for which the system converges to a steady state or oscillates
in other frequencies.

4.3.6 EFFECTS OF CA3 RECURRENT CONNECTIONS ON CA1-CA3 NEURONAL NET-
WORK

CA3 pyramidal cells synapse onto other pyramidal cells in CA3 region, inhibitory in-
terneurons in CA3 and CA1 region, and also the pyramidal cells in CA1 region. As the con-
nection strength of the recurrent collaterals increases, gamma oscillatory activity decreases
in both CA1 and CA3 pyramidal and basket cells. However, if there is no sufficient excita-
tion of basket cells, there is no gamma oscillatory activity even if the excitation of recurrent
collaterals in CA3 is high as shown in figure 37. The behaviour of pyramidal, basket and bis-
tratified cells is governed by the recurrent excitation from pyramidal cells and the inhibitory
input from basket and bistratified cells to pyramidal cells.
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Figure 37: Effects of CA3 recurrent excitation on the activity of CA1 pyramidal cells (top-left), CA3
pyramidal cells (top-right), CA3 basket cells (bottom-left) and CA3 bistratified cells (bottom-right).

As the connection strength value increases from 1 to 50, the activity also changes from theta or
theta-coupled gamma oscillations to just theta oscillations. As excitation increases, the effects of

inhibition lowers, reducing slow gamma oscillations.

4.3.7 EFFECTS OF CA1 BACK-PROJECTION CELLS ON CA1-CA3 NEURONAL CIRCUIT

The CA1 back-projection cells are recently discovered, with limited knowledge about
their connections to CA3 and their functionality. From the simulation of these back-projection
cells on CA3, an increase in the back-projection cell input to CA3 disrupts the oscillatory
state. The back-projection cells synapse on CA3 interneurons driven by the CA1 pyramidal
cells to propagate feedback back to CA3 [131]. The CA1 back-projection cells could also be
projecting to other inhibitory interneurons in the stratum radiatum in CA3[131]. From this
literature, we have projections from CA1 back-projection cells to CA3 pyramidal, basket,
bistratified and other inhibitory interneurons in our simulation model.

In the individual CA1 model, when the weight of CA1 pyramidal to back-projection cells
is low, amplitude of CA1 back-projection cells is low; but the back-projection cells still os-
cillate in-sync with pyramidal cells, which is expected as CA1 pyramidal cells are the sole
excitatory input to CA1 back-projection cells in our model. However, as the weight increases,
amplitude of CA1 back-projection cells increases. In the combined model, when the weight
of CA1 pyramidal cells to CA1 back-projection cells is low, it disrupts theta and theta-coupled
gamma oscillating frequency. As the excitation of back-projection cells from CA1 pyramidal
cells increases to values greater than 10, 8Hz theta oscillations coupled with 52Hz gamma
oscillations are seen in CA3 pyramidal & basket cells, and 64Hz gamma oscillations are seen
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coupled with 8Hz theta oscillations in CA1 pyramidal & basket cells. This implies, changes
to the strength of CA1 back-projection cells affects population of neurons in CA3 and in-turn
affects population of neurons in CA1, as shown in figure 38.
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Figure 38: Effects of varying connection weight of CA1 pyramidal cells to CA1 back-projection
cells on CA1 pyramidal cells (top-left), CA1 basket cells (top-right) and CA1 bistratified cells
(middle-left), and CA3 pyramidal cells (middle-right), CA3 basket cells (bottom-left) and CA3

bistratified cells (bottom-right), where the connection weight is increased gradually from 1 to 150.

The effect of CA1 back-projection cells on CA3 is also analyzed here for the first time in the
simulation of the combined model. To ascertain the synaptic targets in CA3 from the CA1
back-projection cells, various simulations were conducted. In the theta-coupled gamma oscil-
latory mode, when the CA1 back-projection cell synapses were applied to CA3 basket cells,
increasing the connection strength to a value greater than 50, reduced the gamma oscillatory
activity in CA3 as shown in figure 39.

Figure 39: Effects of varying connection weight of CA1 back-projection cells to CA3 basket cells on
CA1 pyramidal cells (left), CA3 pyramidal cells (middle) and CA3 basket cells (right).

When the CA1 back-projection cell synapses were applied to CA3 bistratified cells, theta-
coupled gamma oscillatory activity remained unaltered, however, the activity of CA3 bistrat-
ified cells declined as the inhibitory projection strength increased as shown in figure 40.
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Figure 40: Effects of varying connection weight of CA1 back-projection cells to CA3 bistratified
cells on CA1 pyramidal cells (left), CA3 pyramidal cells (middle) and CA3 bistratified cells (right).

When the CA1 back-projection cell synapses were applied to CA3 pyramidal cells, theta-
coupled slow-gamma oscillations got reduced to 10-12Hz theta oscillations as shown in figure
41.
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Figure 41: Effects of varying connection weight of CA1 back-projection cells to CA3 pyramidal
cells on CA1 pyramidal cells (left) and CA3 pyramidal cells (right).

Lastly, when the CA1 back-projection input was applied to other inhibitory interneurons in
CA3, for values less than 10, there were 12Hz oscillations, for values greater than 10, we
started to observe smaller peaks of slow gamma oscillations in CA3 pyramidal cells which
were sustained for high values of the projection strength as shown in figure 42.
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Figure 42: Effects of varying connection weight of CA1 back-projection cells to CA3 other
inhibitory interneurons cells on CA1 pyramidal cells (left), CA3 pyramidal cells (middle) and CA3

other inhibitory interneurons (right).

4.3.8 CA1-CA3 PHASE DIFFERENCES

Let’s consider the individual CA1 model again, with theta-oscillating sine-wave inputs
from CA3 and EC layer III rather than having constant inputs. It is observed by Mizuseki et.
al [145] that the phase of CA1 pyramidal cells do not synchronize with the phases of either
CA3 or EC although the CA1 pyramidal cells receive their inputs from CA3 and EC. The
phase of EC layer III is observed to be between −30◦ and −60◦, and the phase of CA3 is
observed to be between 60◦ and 90◦. With these phase inputs, the observed phase of CA1
pyramidal cells is 180◦. The axonal conduction delays from EC or CA3 to CA1 pyramidal
cells alone are not enough to explain the phase-shift or temporal delay observed in CA1 pyra-
midal cells.

To accommodate these phase differences as seen in literature for EC-CA3-CA1 entorhinal-
hippocampal loop [145], instead of having constant inputs from EC and CA3, we generate
a sinusoidal input that matches the theta frequency in CA1 pyramidal cells generated by the
septal pacemaker circuit, which is 9Hz in our simulations. We simulated the sinusoidal inputs
for a specific time duration in the middle of the simulation and have constant EC and CA3
inputs before and after this time duration. The phases of theta oscillation in both CA1 and
CA3 is approximately 90◦ out-of-phase, and EC is out-of-phase with CA1 pyramidal cells
[145]. CA3 phase is set to 0◦ and EC phase is set to 90◦. Amplitude of CA3 is 3 and EC is
set to 1. Phase of −90◦ for EC makes the phases of EC, CA3 and CA1 out-of-sync as seen
in figure 43. The observed phase of CA1 pyramidal cells from this simulation is about 108◦.
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Figure 43: Simulation of CA1 pyramidal cells with CA3 and EC sinusoidal input with CA3 phase =
0◦, EC phase = 90◦. The sinusoidal waves are generated with a 9Hz frequency. The red line on the

CA1 pyramidal activity is a fit to determine the phase of CA1 activity.

Figure 44: Simulation of CA1 and CA3 pyramidal cells using the integrated CA1-CA3 circuit with
EC sinusoidal input with EC layer II input to CA3 having phase = 150◦, and EC layer III input to

CA1 having phase = 90◦. The sinusoidal waves are generated with a 8Hz frequency. The red line on
the CA1 pyramidal activity is a fit to determine the phase of CA1 activity.

In both the individual CA1 and integrated CA1-CA3 simulations here, the external input to
the septum is kept constant. The phase differences with respect to CA1, CA3 and EC are
observed in the integrated model as shown in figure 44. CA1 receives the activity of CA3
as input instead of a constant or a generated sinusoid. EC is a constant input before 0.5
seconds and after 1.5 seconds, and during the middle of the simulation, EC is a sinusoidal
input. Different EC sinusoidal inputs with different phases as mentioned in the Misuzeki et.
al observations [145] are given to CA1 and CA3. The observed phase of CA1 pyramidal
cells from this simulation is about 90◦, and for CA3 pyramidal cells is about −11.45◦. In
the individual model, CA3 phase can be controlled by the model as opposed to the integrated
model, which results in different phases for CA3 and CA1. We have confirmed that (i) it
is possible to obtain phase differences between CA1, CA3 and EC layer II and III; and, (ii)
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we can confirm that the phase observed in CA1 pyramidal cells do not result from simple
integration of phases of its afferent inputs from CA3 or EC or the medial septum, although
we haven’t been able to replicate the exact phases observed by Mizuseki et. al through our
simulations.

4.4 DISCUSSION

4.4.1 COMPARISON OF CA1 AND CA3 MODELS

Structurally, there are certain major differences between CA1 and CA3 microcircuitry
presented in this chapter. The extensive recurrent excitation amongst pyramidal cells is
present in CA3 which is sparsely found in CA1; bistratified cells in CA3 do not receive
inhibitory input from basket cells; bistratified cells do not receive septal input in CA3. CA1
basket cells receive EC, CA3 and septal input, bistratified cells receives CA3 input. In CA3,
basket cells receives DG and septal input, bistratified cells receive no external input except
from the hypothesized CA1 back-projection. We observe feed-forward excitation from CA3
to CA1 in Schaffer collaterals and feedback inhibition from CA1 to CA3 through CA1 back-
projection cells. CA1 receives external input EC, CA3 and ms-dbB; whereas CA3 receives
external input from CA1, EC, DG and ms-dbB. The output from hippocampus is propagated
to EC from CA1.

CA3 neurons form conceptual auto-associative memory structures due to the extensive re-
current collaterals network, whereas CA1 neurons form contextual hetero-associative mem-
ory structures due to the sparse recurrent collaterals network.

CA1 and CA3 receive septal input from ms-dbB which propagates theta frequency os-
cillations to the hippocampal structures. CA1 receives slow-gamma oscillations from CA3,
whereas CA3 generates slow-gamma oscillations to which the input is propagated from DG.
It is also observed that CA1 sustains theta oscillations when the CA1 septal-loop is broken
due to the inputs from CA3, which is explained later.

Increasing basket cell excitation from pyramidal cells in both CA1 and CA3 results in
theta-coupled gamma oscillations; however, when pyramidal cells are inhibited by bistrat-
ified cells in both CA1 and CA3, theta-coupled gamma oscillations are observed. When
gamma oscillations couple with theta oscillations, peak amplitude of bistratified cells is ob-
served to reduce to 0.15 while the peak amplitude of basket cells remain stable at 0.45
in CA1, whereas in CA3, the amplitude of basket cells is 0.2 and bistratified cells is 0.4.
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Amplitude in this population model refers to the fraction of active neurons at each time step.

Table 13: Comparison of amplitudes (fraction of active neurons in each population) of theta-coupled
gamma oscillations between individual models of CA1 & CA3, and the integrated model

Cell type Individual model Integrated model
CA1 pyramidal cells 0.3 0.2
CA1 basket cells 0.5 0.45
CA1 bistratified cells 0.3 0.15
CA3 pyramidal cells 0.3 0.2
CA3 basket cells 0.2 0.2
CA3 bistratified cells 0.4 0.4

Amplitude of theta oscillations is bigger than the amplitude of theta-coupled gamma oscilla-
tions due to inhibition, which can be overcome by increasing the excitatory input from CA3
pyramidal cells to CA1 pyramidal cells as shown in table 13 in the later section 4.4.

In terms of the various neuronal networks activity, pyramidal-bistratified cells are in-sync
in CA1 while pyramidal and bistratified cells are out-of-sync with basket cells in CA1. In
CA3, pyramidal-basket-bistratified cells are in-sync with each other. Pyramidal and bistrati-
fied cells are in-sync with septal activity in both CA1 and CA3 regions. CA3 basket cells are
also in-sync with septal activity.

Frequency of slow-gamma oscillations is noticed to be higher in CA3 than in CA1. In-
creasing recurrent excitation in CA3 reduces slow-gamma frequency oscillations in CA3 and
CA1. Increasing CA3 excitation to CA1 pyramidal cells maintains slow-gamma oscillations
in CA1, but increasing CA3 excitation to CA1 basket and bistratified cells reduces theta-
coupled gamma oscillations to theta frequency oscillations. However, this is not observed in
the individual CA1 model. In the individual model, when CA3 constant input is increased to
CA1 pyramidal cells, steady state activity is reached. When CA3 constant input is increased
to CA1 basket and bistratified cells, theta coupled gamma oscillations reduces to theta oscil-
lations.

4.4.2 COMPARISON WITH EXPERIMENTS

The simulation results are in accordance with several facts noted in literature. Experimen-
tally in [60], the bursting activity of CA3 pyramidal cells is longer than CA1 pyramidal cells.
Our simulations agree with the experimental observations wherein CA3 pyramidal cell oscil-
latory activity is longer than CA1 pyramidal cells having higher frequency of slow-gamma
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oscillations than CA1 pyramidal cells. PV-containing basket cells fire preferentially in the de-
scending phase of theta cycle and are found to produce more oscillations [141, 146]. Basket
cells discharge when pyramidal and bistratified cells are inactive in the theta oscillatory mode;
when theta-coupled gamma oscillations are noticed, both pyramidal and bistratified cells fire
in the descending phase of theta in our CA1 simulations. The phases of CA1 pyramidal,
basket and bistratified cells are in sync with the experimental results as found in [145, 24].

Figure 45: Theta-coupled gamma oscillations
in CA1 in the absence of CA3 input.

Klausberger [147] presents arguments that CA1 and CA3 pyramidal cells introduce gamma
oscillatory activity in CA1 bistratified cells. In our simulations, we have noticed that, apart
from the pyramidal cell excitation, inhibition from basket cells and septum also plays a role
in inducing slow-gamma oscillations in bistratified cells.

Goutagny et. al in [143] observed that CA1 theta oscillations are independent of external
inputs and it is also noticed to generate theta oscillations from multiple independent theta
oscillators in the hippocampus. Accordingly, CA1 theta is independent of septal input and
this is true as, when there is no septal and CA3 input to CA1, we still observe 4-10Hz fre-
quency oscillations generated due to the presence of intrinsic oscillators. We can notice this
in CA3 as well, as shown in figure 33 in the previous section. In contrast, the simulations
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show that for pyramidal cells to oscillate, minimal inhibition is necessary since when there
is no inhibition, oscillatory activity from pyramidal cells is absent. The differences between
intrinsic hippocampal theta oscillations both in CA1 and CA3, and septally-propagated theta
oscillations to the hippocampal CA1 and CA3 still remains an unexplored area, and is not the
focus of this research.

In CA3, the average peak amplitude of pyramidal cells is noticed to be broader than other
inhibitory interneurons and also, pyramidal cells lead the firing activity before basket cells
or bistratified cells fire [148]. Experimentally, it is found that CA3 region generates gamma
oscillations independent of other hippocampal regions and that this gamma activity regu-
lates the temporal coordination between CA3 and CA1. This gamma oscillatory activity in
CA3 is generated due to the pyramidal and basket cell communication [52] which is prop-
agated to CA1. From the individual model of CA3 and the integrated model, we can see
that temporally the activity of CA3 pyramidal cells lead the firing of cells in CA1 and CA3
regions. According to our simulation, if the septo-hippocampal loop is disrupted, then the
theta-coupled gamma oscillations do not exist.

When there is no CA3 input to CA1, CA1 is still able to maintain theta and theta-coupled
gamma oscillations though the rhythmic pattern changes considerably requiring to increase
excitation of CA1 bistratified cells. This is also observed by Theodore et. al [149] and Roman
et. al [150] as shown in figure 45.

4.5 CONCLUSION

So far we have developed and analyzed the CA1 and CA3 individual and integrated mod-
els, studied the feed-forward and feedback pathways from CA1 to CA3 and vice-versa and
their effects on the different cell-types present in these regions. The phase differences of
basket and bistratified cells in CA1 and CA3 are clearly shown in our simulation results.
We have also studied the cross-frequency coupling of theta-coupled gamma oscillations in
both CA1 and CA3 regions, the effects of Schaffer collaterals from CA3 to CA1, and the in-
hibitory feedback from CA1 to CA3 on theta-coupled gamma oscillations exhibited by CA1
and CA3 pyramidal, basket and bistratified cells, the results of which are validated with the
relevant biological references. The effects of external inputs, the parameter space and their
bifurcation analysis is also presented here. We have also presented our hypotheses about the
possible projections from CA1 back-projection cells to CA3 inhibitory interneurons. Lastly,
we have also studied the phases of pyramidal cells in CA1 and CA3 regions, apart from the
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phase differences between the excitatory and inhibitory cell-types present in both CA1 and
CA3 regions.

The cross-frequency coupling of theta and slow-gamma oscillations in hippocampal CA1
and CA3 regions are studied using the continuous population model. With these results as
the baseline, we now move on to the discrete rule-based cellular automata approach to fo-
cus on encoding and retrieval of patterns in a cross-frequency coupled oscillatory network of
hippocampal CA1 region.
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5 CELLULAR AUTOMATA MODEL

As described in the previous sections, the cellular automata approach is a discrete mod-
eling technique that simplifies complex biological processes into simple rules that can be
evaluated easily and quickly. Using the discrete modeling technique allows us to analyze the
oscillatory behaviour of the model and study encoding and retrieval of patterns. In the cel-
lular automata approach, the logical operation of neurons and their network is simplified as
much as possible to derive a “state machine" that mimics the operation of the brain regions.

The main objective of the cellular automata approach here is to reproduce the results from
the continuous model for CA1 having theta and theta-coupled gamma oscillations, and then
proceed to study encoding and retrieval of patterns in CA1. The model built for CA1 using
cellular automata approach follows the microcircuit given in chapter 4.

The cellular automata model implemented here is derived from Pytte et. al model of CA3
[119] and Claverol et. al model of the piriform cortex [3]. We took inspiration from both
the models to develop our model which is used here to simulate the CA1 and CA3 regions
of the hippocampus to study encoding and retrieval of patterns. The implemented model is
message-based and has information about neurons that need to be activated at each time step.
Based on this, the neuron’s refractory period, the time step at which the neuron should be
returned to its resting state, when the synapses should be fired based on the synaptic delay,
how long should the synapses be active based on the synaptic duration are computed. As
inputs, the connection weight and the number of projections between populations has to be
specified. The properties to be described for a population include the number of neurons in
a population, type of neurons in the populations i.e., excitatory or inhibitory, whether it is
an external pseudo neuron population, and the learning rate. The architecture and the model
design is explained in detail in the next sections.

5.1 ARCHITECTURE OF THE CELLULAR AUTOMATA MODEL

For our use-case of developing the model for neuronal networks, we have kept the design
as simple as possible, with both deterministic and non-deterministic stages of simulation. The
model has pre-defined inputs that gets processed according to the projection matrix which is
essentially a weight matrix, and gives the result as the number of neurons active at any point
in time of the simulation. Consequently, the design of such a model involves the interaction
between neurons of the same homogeneous population or amongst different heterogeneous
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populations which follows non-linear firing dynamics.

The events occuring in this model are at a neuronal level namely, a neuron firing in re-
sponse to its integrated sum of inputs exceeding the threshold value, a neuron going into
refractory period, and a neuron going to an off state. The model begins with stochasticity as
the projection matrix of the whole neuronal network is chosen randomly at the beginning of
the simulation. However, the model becomes deterministic after this stage as the projection
matrix does not change until learning using STDP is introduced. So the plasticity involved
in the model purely depends on if the neuron receives enough inputs through its dendrites to
exceed the threshold set for the population and generate an action potential.

5.1.1 ELEMENTS IN A CELLULAR AUTOMATA MODEL

The premise of the design of the cellular automata model is as follows. There are multiple
neuronal populations; each population has many neurons. The different populations interact
with each other depending on the existence of a proven projection, derived from literature.

The different types of neurons can be classified as either excitatory or inibitory. Excita-
tory neurons project positive weights, while inhibitory neurons project negative weights. All
neurons are at their resting stable state in the beginning, t0. When sufficient input is given,
i.e., if the input exceeds the threshold, then the neuron fires. An action potential in a cellu-
lar automata model implies a spike, and it lasts for a millisecond, which means the neuron
fires at t0 lasting for t0 + tap milliseconds. After firing, the neuron is in the refractory period,
tre f during which time the neuron cannot fire. The neuron reaches its resting state after the
refractory period, which is t0 + tap + tre f . Biologically, the whole sequence of a neuron fir-
ing, entering the refractory period is referred to as an action potential. In a cellular automata
model, however, we need to specify the time durations for each of these processes separately.
The refractory period differs for every neuron type and is also a characteristic feature defining
a neuron.

Many post-synapses form inputs to a neuron. Synapses are activated if the pre-synaptic
neuron fires an action potential. The neurons that these synapses project onto get the input
after a synaptic delay tdel , and the synapse is active for tdur. The afferent neuron gets excited
if the integrated sum of inputs exceeds the threshold.

The model has biological parameters such as refractory period τre f , projection weights k,
number of projections from neuronal population A to neuronal population B which is denoted
as z, number of neurons in a population N, learning rate, if the neuron is excitatory, inhibitory

103



Figure 46: Neuronal network in a cellular automata model, with many excitatory and inhibitory
populations (denoted by grey circles and arrows starting with dots), and external pseudo-neuron
populations, each having many neurons. Each neuron has a pre-synaptic terminal to propagate

signals to other neurons, and post-synaptic terminals to receive signals from other neurons.

or an external pseudo-neuron, the threshold for the neurons in a population, the synaptic de-
lay tdel and synaptic duration tdur. The explanation for the working of a neuron in a cellular
automata model is as depicted in figures 46 and 47. The threshold of a neuron is the same as
the threshold of the population since the populations in the model are all homogeneous.

We have implemented a class of neurons called pseudo-neurons which are external in-
puts to the populations. The external pseudo-neuron populations are always active, without
a refractory period or a synaptic delay. These neurons do not learn but stimulate the ac-
tual population to fire and strengthen projections. These neurons can be either excitatory or
inhibitory, which means their projection weights are either positive or negative.

5.1.2 STAGES IN A CELLULAR AUTOMATA MODEL

In our cellular automata model, there are two stages, or blocks, where the neuron acti-
vation processes take place. Firstly, at each time step, the synaptic block deactivates any
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Figure 47: Working of a cellular automata model derived from the work of Claverol et. al [3]. The
different stages or blocks of processing messages from neurons align with the working of a biological

neuron.

synapses that are not to be active at that time step; sends in a message to the threshold block
to activate the input neuron at the current time step; activates synapses that ought to be active
after the synaptic delay at that time step.

The second is the threshold block which computes the integrated sum of inputs to fire a
neuron, and sets the synapses that ought to be active or not, and sets the refractory period for
the neuron to be deactivated after the refractory period. These are as depicted in figure 47.

Projections between populations are weighted. The number of projections between pop-
ulations is chosen stochastically during the beginning of the simulation. Recurrent neuronal
projections are also possible. Random number of external pseudo-neurons are activated at
each time step. These random external pseudo-neurons project onto an actual excitatory or
inhibitory population. Random neurons from a population are chosen to project onto ran-
dom neurons chosen from another population that share a known pathway. This is the initial
step to build the neuronal network between different populations. The next step would be to
choose a random number of external pseudo-neurons to fire at each time step which would
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Figure 48: Architecture of the cellular automata model

activate the actual population.

When the inputs from the external pseudo-neuron population arrives at a neuron in an
excitatory or inhibitory population, the neuron fires if the integrated sum of inputs is greater
than the threshold of the population; otherwise it does not. The fired action potential is for a
single millisecond duration, after which the neuron enters its refractory period. The synapses
of the fired neuron are activated after the synaptic delay. When these synapses fire, the re-
spective receiving post-synaptic neurons get activated. The activation depends on whether the
integrated sum of inputs is greater than the threshold of that population. The cycle continues.

With this architecture, as depicted in the sequence diagram in figure 48, we have obtained
the theta-coupled gamma oscillatory activity derived from the septal pacemaker circuit that
was previously simulated using the continuous population model as explained in chapter 4.
The results of these simulations are given in the next section. With these initial results simu-
lated, we then proceed to store and recall patterns.

5.1.3 INPUTS AND OUTPUTS OF THE MODEL

Inputs to the model are given through JSON files. Each JSON file can either be a neuronal
population or a projection between two neuronal populations as shown in table 14. There is
currently no restriction on the number of cell-types that can be added to the model, and the
number of projections. Since the properties of a neuron are the same as its population, they
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are stored as population properties. Each neuron is a row in the weight matrix that represents
the synapses a neuron has with other populations in the network. The time durations specified
should be less than the simulation time as given in the time.json file. The step size in the time
file is the difference between consecutive time steps, which in this case is 1ms. The bin size
is to plot the activity of neurons in the number of bins specified after the simulation ends.
Parameters related to time such as simulation duration, action potential duration, refractory
period, synaptic duration, synaptic delay etc., are all in milliseconds.

If enable_learning is disabled, then the rest of the values need not be filled and can just
be set to zero.

The networks.dat file has the names of all the projection files, which indicate the neurons
present in the neuronal network, and the population of neurons having connectivity between
them. As said before, the projections can be bidirectional and hence, a single entry in the net-

works.dat file represents the two neuronal populations, and the projection file tells the model
if there are any projections between the two populations along with the weight of the projec-
tions. If the projections between two populations are unidirectional, the k and z parameters
for the non-existent projections will be zero in the projection file. As such, any values that do
not apply for a particular model is indicated as zero in the concerned input file.

Other than these parameters, we have introduced a few more boolean parameters to distin-
guish between populations as propagating either sensory input (sensory_input) during learn-
ing or cueing input (cueing_input) during recall, such as EC and CA3 respectively; and if the
populations induce learning inhibition (learning_inhibition) by inhibiting other populations
to enable learning or if the inhibition from populations aid in recall (recall_inhibition), such
as basket and bistratified cells respectively.

Unlike the continuous neuronal models where the simulations, the membrane potential
variables represent membrane potentials in millivolts (mV), in a discrete model such as the
cellular automata model, the parameters simulated represent the fraction of neurons that are
active, refractory or inactive at any given time step. The number of neurons active, refractory
or inactive is represented in the simulation plots as activity dynamics of the whole population
which does not have any unit. Which implies the only parameters having any units in a dis-
crete model such as the cellular automata model are parameters representing time durations.
Therefore, a spike in a cellular automata model is an actual spike when the neuron fires an
action potential unlike a linear integrate-and-fire neuron because a neuron in a cellular au-
tomata model fires an action potential when the integrated sum of weighted inputs exceeds
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ex.json ex_bas.json

{ {
"ex": 101.0, "ex_bas": 214.0,
"type" : 0.0, "ksd" : 5.0,
"N" : 100.0, "zsd" : 1.0,
"k" : 0.0, "kds" : -5.0,
"threshold" : 15.0, "zds" : 5.0
"z" : 0.0, }

"ap" : 1, time.json
"ref" : 16.0, "time": 1000.0,
"del" : 15.0, "step": 1.0,
"dur" : 5.0, "binsize": 20.0,

"enable_learning": 1.0, networks.dat
"learning_rate": 5.0, pyramidal ca3
"unlearning_rate": 10.0, interneurons ca3
"p_rand_neurons": 20.0, septum ps

"no_of_patterns": 5, pyramidal hippocamposeptal
"intersecting_patterns": 1.0 hippocamposeptal septum

septum interneurons
yramidal interneurons

}

Table 14: Example of a JSON input file for (left) an excitatory pyramidal neuron population and
(right) projection file between excitatory pyramidal and inhibitory basket cell populations. ex is name
of the neuron and ex_bas is the projection between excitatory and basket cell populations. These are
also the filenames; 101.0, 214.0 is any numerical identifier that uniquely identifies the population; type
can be 0 for excitatory, 1 for inhibitory, 2 for external pseudo-neuron; N is the number of neurons; k
is the weight of any self projections; z is the number of self projections; threshold is for the integrated
sum of inputs to generate an action potential; ap is the time duration of a single action potential; ref
is the refractory period; del is the synaptic delay; dur is the synaptic duration; enable_learning is to
enable STDP, the values are 1 for enabling learning and 0 if not; learning_rate is the value added
to the weights of the selected projections; unlearning_rate is the value subtracted from the weights
of projections not selected in the pattern; p_rand_neurons is the number of neurons in each pattern;
no_of_patterns is the number of patterns to be selected; intersecting_patterns is to select if the patterns
are unique or not; ksd is the projection weight from source to destination, in this case from pyramidal
to basket cells, and vice-versa is kds; zsd is the number of projections from source to destination, in this
case from pyramidal to basket cells and vice-versa is zds. The time.json file represents the simulation
time and is integral in the current implementation. The networks.dat file contains the names of the
projection files which also represent the neuron types present in the simulation. More about learning
rates is explained in section 5.4.
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the threshold (which is, biologically, the exact moment when the change in membrane po-
tential exceeds the threshold to fire an action potential in an neuron). Number of such active
neurons at a given time step form the activity dynamics of the population.

This is not a new concept as the continuous population model that we have considered
in the previous chapter also represents the fraction of neurons active at each time step. Such
modeling concepts exist not only in discrete modeling techniques, but also in continuous
modeling techniques.

5.2 THETA AND GAMMA OSCILLATIONS IN CA NETWORK MODELS

Once the architecture as described above was implemented, the next step was to design
and simulate different models of different regions of the brain, according to the research
question we are trying to answer. Here, we experimented with a simple E-I network, with one
external pseudo-neuron population which is excitatory, and projections between the external
pseudo-neuron population to excitatory population, and E-I projections. This was followed
by the implementation of the septal pacemaker circuit to generate theta oscillations, and
then theta-coupled gamma oscillations. We then attempted to reproduce the results from
the continuous model in chapter 4 in the cellular automata model for the individual model of
CA1.

Like in the continuous septal-pacemaker circuit seen in the previous chapter, the external
inputs to CA1 are excitatory inputs from EC and CA3, and an inhibitory external pseudo
neuron input to the septum coming from the posterior hypothalamus and supramammillary
nucleus (SUM).

5.2.1 SIMULATION OF E-I MODEL

In the simple E-I model, there are three populations, excitatory (E), inhibitory (I) and
external pseudo-neuron population (Ext), with 100 neurons each as shown in figure 49. The
projections are between E-I, I-E, and Ext-E populations. The simulation results here show
periodic oscillations as shown in figure 50.

All the populations have 100 neurons each, except the external pseudo-neuron popula-
tion which projects to the excitatory population which has 10 neurons to maintain the ratio of
neurons between the populations. The populations have variable projections between them
and these projections are chosen randomly before the beginning of the simulation, although
the number of such projections is input through the projection file of the two populations.
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Figure 49: Neuronal network in a cellular automata model, with one excitatory and one inhibitory
population (denoted by grey circles and arrows starting with dots), and one external pseudo-neuron
population that projects to the excitatory population. The excitatory and inhibitory populations have

projections to each other.
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Figure 50: Cellular automata model simulation results for E-I network model

The simulation of E-I model started with just the excitatory and external pseudo-neuron
population with each external pseudo-neuron having 10% projections to the excitatory neu-
rons which did result in fast oscillations. Adding the inhibitory interneuron population to
the neuronal network without inhibitory feedback to excitatory population resulted in both
the excitatory and inhibitory populations in-sync with each other. With 5% inhibitory projec-
tions to excitatory population and vice-versa, and increasing inhibitory feedback to excitatory
population, we noticed a phase-difference between the two populations.

The results of the E-I model exhibits 14Hz oscillations with a phase-difference between
the E-I population activities. The frequency of oscillations are governed by the connection
strengths and the number of projections between neuronal populations, along with the re-
fractory period of the neurons. Understanding the influence of excitation and inhibition on
populations also plays a role in deciding which parameters of which populations affects the
frequency or phase of neuronal activities of a specific population. For example, in this case
of E-I model, it is possible to introduce phase shifts between excitatory and inhibitory popu-
lations by varying the strength of inhibition; and needless to say, if an excitatory population
projects onto an inhibitory population, and if this inhibitory population does not inhibit the
excitatory population, then their activities should be synchronized; otherwise, if the inhibi-
tion is strong enough to overcome the excitatory connection strength, their activities should
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be 180◦ out of phase; if not, the populations would exhibit a phase-shift in their activities.
Here, the excitatory and inhibitory populations have a phase-difference since the inhibition is
strong enough to suppress the activity of the excitatory neurons.

The simulation of an E-I model using the cellular automata approach produces results
similar to the continuous model as the effects of increasing inhibition or increasing excitation
are the same in both the models. The external inputs are constant in the continuous model or
are regulated by a system of equations representing the activity of each neuronal population.
In the cellular automata model, an external input is represented by an external pseudo-neuron
population, a subset of which is active at every time step introducing noisy inputs in the model
to achieve variations in activity timings between individual neurons. The product of the num-
ber of projections and the strength of each projection between the populations determines the
strength of an incoming signal to generate an action potential.

5.2.2 SIMULATION OF CA1 INDIVIDUAL MODEL

Results from the simulation have oscillations of different frequencies superposed together
that are fit with a sine wave to emphasize the phase-shifts between the different popula-
tions. The frequencies present in the results are plotted with an FFT to ascertain the presence
of theta and slow gamma frequency oscillations. Also, from the Hilbert-transformed low-
bandpass filtered signal, as shown in figure 53, we can derive and compare the phases of
pyramidal, basket and bistratified cells, as shown in figure 52.

The CA1 individual model follows the design of the CA1 microcircuit presented in chap-
ter 4. The simulation results are as shown in figure 51. As depicted in the CA1 microcircuit in
the previous chapter, the external inputs come from CA3 and EC to CA1, and P_S to septum.

By balancing the excitation and inhibition of populations, the phase synchronization be-
tween pyramidal and bistratified cells, and the out-of-sync behaviour of pyramidal and basket
cells, and basket and bistratified cells, that was simulated using the continuous model is also
observed in this discrete approach.

When more basket cells receive excitation from pyramidal cells, their phases begin to
sync up with pyramidal cells as expected as shown in figure 54. Hence, the number of pro-
jections from pyramidal to basket cells is 1/5th of the number of projections from pyramidal
to bistratified cells.

Similarly, the projection strength from bistratified to pyramidal cells is 1/5th of the pro-
jection strength from basket to pyramidal cells, and there is equal inhibition between basket
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Figure 51: Cellular automata model simulation results for CA1 network model, with the FFT at the
bottom showing 7Hz theta frequency and 30-70Hz slow-gamma frequency oscillations. The green

line is fit to the actual activity of neurons.
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Figure 52: Phases of pyramidal(E), basket(B) and bistratified(BS) populations in cellular automata
model simulation results for CA1 network model. The phase-shifts of pyramidal, basket and

bistratified populations are comparable to the CA1 theta-coupled gamma oscillatory activity in the
continuous model as shown in figure 22.

and bistratified cells, if not the phases of bistratified and basket cells begin to sync up, as
shown in figure 54. Without septal input to basket cells, there is no discernible pattern in
basket cell activity, as shown in figure 54. With no clear theta frequency oscillations in the
basket cell activity, learning and recall does not happen.

When there is less/no inhibition from other inhibitory interneurons (I), there is fast spiking
in the pyramidal cell population (E) irrespective of the presence of basket (B) or bistratified
cell (BS) populations, due to the interruption in the septal pacemaker circuit. The septal pace-
maker circuit gets inhibitory inputs from the septum which are propagated to E from I which
helps to maintain theta oscillations. B and BS are not involved in the pacemaker circuit and
do not affect theta oscillatory patterns. B and BS affect slow gamma spiking which is coupled
with theta oscillations [144, 21].

5.3 LARGE-SCALE SIMULATIONS

One of the purposes of choosing a cellular automata approach is also to simulate large-
scale neuronal networks. With 1000 pyramidal neurons, and 100 neurons in each of the
other populations, there are totally 1900 neurons in the neuronal network, with 132200 total
number of projections. Since all the CA3 external pseudo-neurons are connected to all the
pyramidal cells, with a large number of neurons, excitation of pyramidal cells increases and
results in fast oscillations. To retain the 7Hz theta oscillations, more inhibition from other
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Figure 53: Theta and slow gamma frequency bands in pyramidal, basket and bistratified cell
simulation
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Figure 54: (left) Number of projections from excitatory pyramidal cells to basket cells is increased
and hence, pyramidal and basket cell activities have a phase-shift and are not 180◦ out-of-phase;

(right) By increasing basket and bistratified cell excitation from pyramidal cells, and inhibition from
both basket and bistratified cells to pyramidal cells, the three populations sync up; (bottom) Removal

of septal input to basket cells, we can see that there is no clear pattern in basket cell activity.
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inhibitory interneurons is required since the other inhibitory interneuron population forms
the septal-pacemaker circuit that propagates 7Hz theta oscillations to CA1 pyramidal cells.
Increasing inhibition from basket or bistratified cells to generate 7Hz theta oscillations results
in lower or no activity in pyramidal cells.

Without learning, figure 55 shows theta-coupled gamma oscillating model of CA1 with
such a big neuronal network. The simulation time for this network without learning took
24mins, while smaller neuronal networks with a 100 neurons in each populations take 6mins
to complete the whole simulation including learning and recall.

5.4 MECHANISM OF PATTERN LEARNING AND RECALL IN CELLULAR AU-

TOMATA MODEL

Following the Hebb rule, if a post-synaptic spike occurs after a pre-synaptic spike, the
projection weight between the pre- and post-synaptic neurons is increased leading to Long
Term Potentiation (LTP). Following the same principle for the converse statement, when a
post-synaptic neuron does not spike after a presynaptic spike, the projection weight between
the pre- and post-synaptic neurons is decreased, also called Long Term Depression (LTD), so
much that they cannot exceed the threshold to spike.

By decreasing the projection weights between neurons that do not spike in a temporal
sequence, we weaken the spiking probability of spurious neurons that are not part of the
learning pattern. Hence the patterns intended to be learnt end up having higher projection
weights. When these neurons are fired, they tend to have a greater integrated sum of inputs
than the threshold, thus firing an action potential, resulting in a recall of a specific learnt pat-
tern. This implies that these neurons are part of learning or recalling particular patterns. This
is the spike timing dependent plasticity (STDP) learning rule as explained in table 15.

In the cellular automata model we have developed, the learning rate parameter mentioned
in the input JSON file for the neuron defines the weight by which the projection weight has to
be incremented according to the LTP mechanism, and the unlearning rate defines the weight
by which the projection weight has to be decremented constituting the LTD mechanism. The
rates are chosen from a minimum value and increased depending on the recall quality for the
five patterns we are trying to learn and recall.

We have simulated 3 cases in our study (i) without LTP or LTD as shown in figure 57
which is without the implementation of any learning rule (ii) without LTD as shown in figure
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Figure 55: Large-scale simulation results for CA1 network model with the FFT at the bottom
showing both theta and slow gamma frequency oscillations. The green line is fit to the actual activity

of neurons.
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58 which is recall without suppressing noisy neuron activity, and then (iii) with both LTP and
LTD, as shown in figure 59 which is with STDP learning rule implemented. This results in
very noisy recall in (i) and (ii) cases, and a less noisy recall in case of (iii) because of LTD.
The figures are explained later in section 5.5.

Patterns to be learnt are a subset of neurons that are selected randomly during the be-
ginning of the simulation based on the parameters enable_learning, p_rand_neurons and
no_of_patterns in the JSON input files for neurons. When learning is enabled for a popu-
lation of neurons, the model looks for how many patterns to create and how many neurons
should each pattern have. Unlike many other artificial neuronal networks simulations, pat-
terns in our simulation model are not a depiction of an image or alphabet or digit, etc.

Let us consider an example to understand what patterns in a cellular automata model
mean. When the hippocampus receives sensory stimulus from EC such as a location that is
new, a few place cells fire to form new patterns that will be stored later. When the same place
cells fire upon receiving the same location information as sensory stimulus, the newly formed
patterns get strengthened. As this process repeats, the neurons that fired up for the location
information are now learnt due to LTP. Other neurons that would have fired during this learn-
ing process will not fire again once the pattern of neurons for a particular location is learnt
or encoded due to LTD. The pattern of neurons that we select randomly during the beginning
of our cellular automata simulation represents these neurons that need to strengthen the new
connections over time. The other projections that exist represents spurious firing while recall-
ing the encoded information which will be suppressed due to LTD over time. During recall,
the neurons firing are compared against the patterns learnt to verify if the learnt patterns are
indeed recalled.

It is observed in literature [1, 24] that learning and recall occur during different half cycles
in a theta cycle, as shown in figure 56. In our simulations, learning takes place when bas-
ket cells are active and recall takes place when basket cells are inactive in accordance with
literature [151]. Neuronal activity plots in a cellular automata model indicate the number of
neurons active in a population at each time step. Based on this information for basket cell
population, if the number of basket cells active at each time step exceeds a certain threshold
(which is observed from prior simulations that pyramidal and basket cell activities comple-
ment each other), then the simulation is in the learning phase of the theta cycle, else, in the
recall phase.

We have simulated learning of five patterns. Learning and recall happen throughout the
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Figure 56: Learning and recall take place at different half cycles of theta wave. When basket cells
are active, learning takes place and when basket cells are inactive, pyramidal cells are active and

recall takes place.

duration of the simulation of theta cycles. The number of EC and CA3 external pseudo-
neurons to fire at each time step is picked randomly from the total number of neurons, and
the neurons to fire at each time step, which in our case are the excitatory pyramidal cells are
also picked randomly during the beginning of the simulation. The external pseudo-neurons
having projections to the five patterns that are learnt are each added as a cue to be recalled,
one at every 20ms duration throughout the 1000ms simulation duration. This implies that the
time step when both EC and CA3 cells that have projections with pyramidal cells which are
in the pattern to be learnt are entirely random.

In our simulations, all the neurons forming a part of the external pseudo-neuron popula-
tion for CA3 region have projections with all the pyramidal neurons. A fraction of EC input
arrives at pyramidal cells with sensory information and all of the CA3 input arrives at pyrami-
dal cells with conceptual information. When EC and CA3 input to pyramidal cells coincide,
it induces STDP in pyramidal cells increasing the projection strength leading to encoding
new patterns. Due to inhibition from inhibitory interneurons and basket cells, pyramidal cells
do not fire an action potential. Pyramidal cells having projections with CA3 neurons that are
not receiving EC input are not strengthened to be encoded. During the encoding cycle, basket
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cells fire, inhibiting both pyramidal and bistratified neurons. When basket cells are inactive,
both pyramidal and bistratified cells fire, recalling the learnt pattern of neurons. Spurious
neuron activity during recall occurs due to active EC input to pyramidal cells which are sup-
pressed by bistratified neurons and other inhibitory interneurons.

Basket cells are active when septum is inactive since basket cells receive inhibition from
septum, and septum induces theta oscillations through the hippocampo-septal loop. This im-
plies pyramidal cells learn during the trough of the theta cycle when basket cells are active.
Hence, encoding and retrieval cycle is theta-aware, regulated by the activity of basket cells.
The learning algorithm influenced by basket cell populations is given in table 16.

5.4.1 RECALL QUALITY METRIC CALCULATION

Quality of recall is obtained by calculating the correlation between the recalled pattern
and the actual pattern, by taking the normalized dot product of the neurons recalled P and the
actual pattern P′ learnt, thus calculating the distance between them [24].

Recall quality % =
P.P′(

∑
N
i=0 P×∑

N
i=0 P′

)1/2 (16)

The recall metric is calculated over a sliding time window equal to 20ms which is approxi-
mately equal to the time duration of a single gamma cycle in a single theta cycle. Program-
matically, this is implemented by forming a binary vector of length N in which 1s correspond
to those neurons that fire in the time window. In our simulations, since we have more than a
single pattern to be learnt and recall is associative, we have been able to obtain a correlation
or recall quality of 0.7 - 0.8 or 70% - 80%. This implies that the recalled patterns either have
spurious activity or certain neurons from the pattern weren’t recalled or both. A recall quality
of less than 50% denotes that there is a lot of spurious activity and that most of the neurons
from the pattern weren’t recalled.

5.5 SIMULATIONS INVOLVING LEARNING AND RECALL OF MULTIPLE IN-

TERSECTING PATTERNS

Here, the patterns are not unique and have neurons common to several patterns to be
learnt. Learning rate and unlearning rate is as given in the table 17. Since we are simulating
neuronal populations in the CA1 region, the primary neuronal population considered is the
pyramidal cell population. The excitatory pyramidal cell population receives its main source
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- Let M, N be the total number of neurons in the external pseudo-neuron population and
the neuron population of interest ( in our case, excitatory pyramidal cell population)
respectively

- Let x be the number of neurons chosen randomly from the neuron population of inter-
est, (x < N)

- Let y be the number of neurons chosen randomly from the external pseudo-neuron
population, (y < M)

- Let p be the number of patterns to be learnt, with (x < N) number of neurons in each
pattern (this produces intersecting patterns)

- When a neuron b ∈ N in the excitatory neuron population receives an "ON" message:

- Let neuron a ∈M

- If ∃a→ b and both neurons a and b are in the pattern:

- If integrated sum of inputs to b > threshold:
- If a is "ON":

- Activate neuron b
- Activate synapses of neuron b with synaptic delay
- Increase the projection weight between neurons a → b by a learning

rate
- else:

- Decrease the projection weight between neurons a→ b by an unlearning
rate

- Let neuron c ∈ N

- When neuron c, not from the pattern in the excitatory neuron population gets an acti-
vation message:

- If ∃a→ c and either one of the neurons a and c are not in the pattern :

- Decrease the projection weight between neurons a→ c by an unlearning rate

Table 15: Our implementation of the STDP learning algorithm
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- If number of basket cells active at ti > threshold for active half cycle of theta:

- For each pyramidal cell pi having projection from active EC neuron eci:

- If pi has a projection with active CA3 neuron ca3i: implement STDP learning
rule as per table 15

- return without firing the pyramidal cell pi

- else call threshold block(ti, pi) (recall cycle)

Table 16: Our implementation of the STDP learning algorithm when basket cells are active.

of external input from both EC and CA3. However, it receives input from CA3 while recalling
information. Hence, the populations for which learning and recall need to be set in the input
JSON files are the pyramidal and external pseudo-neuron CA3 populations. The projections
from CA3 to CA1 pyramidal cells are unidirectional in our model. Hence, learning and un-
learning rates are set only to the excitatory pyramidal cell population since (i) the projection
strength between external pseudo-neuron CA3 and CA1 pyramidal cell population needs to
be either strengthened or weakened, and (ii) pyramidal cells are the actual populations that
we consider for studying our results (the external inputs are pseudo-neuron populations as
mentioned before).

Recall quality of such patterns will not be high as the projection weights increased as per
the learning rate represent more than a single pattern. However, due to LTD, only the patterns
learnt will be recalled, thus reducing noisy neuronal activity. Parameters for this simulation
are given in table 17.

The case where there is no LTP or LTD, spurious neuron activity is 30%. But then, there
is no LTP or LTD, therefore no learning takes place, and hence recall of only the neurons
present in the pattern is also not possible. The patterns are not learnt here and hence, all the
neurons are activated with the same probability. The results are as shown in figure 57.

In the case where there is only LTP but no LTD, there is still 30% spurious neuron ac-
tivity. There is only learning, but no LTD to decrease the weights of other projections which
are not relevant to the pattern, and hence, there will be some spurious neuronal activity. The
results are as shown in figure 58.

In the last case where there is both LTP and LTD, only the neurons in the patterns are
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activated and very less spurious neurons are active as there is both LTP and LTD. The results
are as shown in figure 59.

When the basket cell inhibition is removed from the network, pyramidal and bistrat-

#Neurons τap (ms) τref (ms) τdel (ms) τdur (ms) Threshold L.R U.R
Pyr 100 1 16 15 5 15 1 5
Bas 100 1 10 5 15 5
Bis 100 1 10 5 15 5

Inh. In 100 1 10 5 15 5
Hipp. Sep 100 1 10 8 50 1

Septum 100 1 30 8 50 1
EC 100 1 0 0 5 5

CA3 100 1 0 0 5 1
Ps 100 1 0 0 5 1

Pyr Bas Bis Inh.In Hipp. Sep Septum EC CA3 Ps
Pyr 5 5 5 5
Bas -1 -1
Bis -1 -1

Inh. In -10
Hipp. Sep -5

Septum -5 -1 -20
EC 5 1 1

CA3 5 1 1 1
Ps 1

Pyr Bas Bis Inh.In Hipp. Sep Septum EC CA3 Ps
Pyr 1 5 5 5
Bas 1 1
Bis 5 1

Inh. In 50
Hipp. Sep 5

Septum 5 5 5
EC 50 10 10

CA3 100 5 1 10
Ps 8

Table 17: (top) Parameters of population neurons where #Neurons are the number of neurons in the
population, L.R is the learning rate, U.R is the unlearning rate; (middle) weight matrix; (bottom)

projection matrix for intersecting patterns.

ified cell populations are in sync as expected. However, since learning takes place when
basket cells are active, learning and recall does not happen in the absence of basket cells and
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Figure 57: Simulation results for 5 intersecting patterns with no LTP or LTD. (top) shows the
neuronal activity of all populations. The bottom row shows the raster plot, FFT and recall quality.

Red dots indicate spurious neuron recall, while all other colors indicate activity of neurons in pattern
learnt.
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Figure 58: Simulation results for 5 intersecting patterns with no LTD which implies there is no
suppression of spurious neuronal activity resulting in noisy recall. (top) shows the neuronal activity
of all populations. The bottom row shows the raster plot, FFT and recall quality. Red dots indicate

spurious neuron activity, while all other colors indicate activity of neurons in pattern learnt.
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Figure 59: Simulation results for 5 intersecting patterns with LTP and LTD which implies there is
learning and hence, we can expect good quality recall with minimal spurious neuronal activity. (top)
shows the neuronal activity of all populations. The bottom row shows the raster plot, FFT and recall
quality. Red dots indicate spurious neuron recall, while all other colors indicate activity of neurons in

pattern learnt.
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hence the noisy pyramidal cell activity. When bistratified cell inhibition is removed from the
network, pyramidal and basket cell populations are out of sync. However, bistratified cells
inhibit spurious neuron activity and since bistratified cells are not present, noisy activity is
seen in pyramidal cells. When the inhibition from other inhibitory interneurons is removed
from the network, the septal pace-maker circuit is interrupted and hence, a disruption in the
theta oscillations is expected as shown in figures 60, 61, 62. However, since basket cells are
present, learning and recall takes place with LTP and LTD. This implies there is less noise in
the activity of pyramidal cells. However, since there are no theta-coupled gamma oscillations
present in the activity as seen in the FFT, the significance of such recall is questionable.

5.6 DISCUSSION

Based on the simulations we have seen to learn and recall patterns using the STDP learn-
ing rule, we can now analyze the differences between the continuous and discrete approaches
to generate theta-coupled gamma oscillations.

The response functions in the septal-pacemaker circuit are the fraction of neurons firing
for an input. They do not directly correspond to the number of projections between popula-
tions. In the cellular automata model, we have the parameters for each projection between
populations.

Due to continuous external pseudo-neuron input, the model produces a lot of noise. Even
without basket and bistratified populations, the activity of the septal-pacemaker circuit results
in a noisy 7Hz theta oscillations. As such, it is difficult to identify the frequencies of slow
gamma oscillations superposed on theta oscillations without the FFT.

The 7Hz theta oscillations are generated due to the refractory period of pyramidal cells
and due to the inhibition from other inhibitory interneurons. Some fraction of pyramidal
cells that are not in the refractory period are always active due to the external pseudo-neuron
inputs. This activity is inhibited when the inhibitory interneurons are active. In both the
continuous and cellular automata models, we can clearly notice that, modifying the inhibi-
tion strength from basket and bistratified cells directly affects the slow gamma oscillations,
whereas modifying the inhibitory interneuron inhibition strength directly affects theta oscil-
lations.

The learning and recall simulations of the CA1 here are based on the simulations con-
ducted by Cutsuridis et. al [24] with some variations. Physiologically, our model has the
septal-pacemaker circuit to generate theta oscillations and basket and bistratified cells to in-
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Figure 60: Effect on the population activity of pyramidal cells when basket cell population is
completely removed from the network
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Figure 61: Effect on the population activity when bistratified cell population is completely removed
from the network
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Figure 62: Effect on the population activity when other inhibitory interneuron cell population is
completely removed from the network
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duce slow gamma oscillations. All other inhibitory interneurons including axo-axonic cells
and OLM cells are represented by the inhibitory interneuron population. In the Cutsuridis
et. al model, learning occurs during a fixed time window when CA3 and EC firing coincides
with basket cell inhibition. In our model, learning occurs on the basis of basket cell activity
defining the learning phase of the theta cycle. During recall, average spiking activity over a
20ms window over the last 100ms of the simulation is considered to get the recall quality.

5.7 CONCLUSION

In conclusion, we are able to replicate most of the results we obtained in the continuous
theta model using the discrete cellular automata model. We have also implemented learning
and recall using the STDP algorithm. The influence of the inhibitory interneuron populations
on pyramidal cell population and the effects of the septal pacemaker circuit on the CA1 region
are clearly illustrated. We have incorporated biological parameters in the simulations here.
Further, due to the flexbility offered by the cellular automata approach to neuronal modeling,
we designed the model to accept different inputs representing different regions of the brain
or different neuronal populations with different parameters. Hence, it is possible to build
different microcircuits of any region of the brain.
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6 CONCLUSION AND FUTURE WORK

The reason for building simulation models is to hypothesize how real biology works, to
explore newer areas or problematic questions for more justifications. In this sense, it should
be plausible to build a newer model that addresses specific concerns, expand any computa-
tional model to incorporate newer functionalities and adopt newer research discoveries.

During this doctoral period, we have developed computational models, both continuous
and discrete, to understand theta-coupled gamma oscillations in the CA1 and CA3 regions of
the hippocampus. Further, we have also simulated encoding and retrieval mechanisms using
cellular automata model in the CA1 region. We have listed out our conclusions from our
simulations in the next section, and have also listed out the possible future work that can be
undertaken.

6.1 MAIN CONTRIBUTIONS

1. We have proposed the first integrated CA1-CA3 model to study the effects of Schaffer
collaterals and CA1 back-projection cells on CA1 and CA3 regions of the hippocam-
pus.

2. We have hypothesized the effects of CA1 back-projection cells on CA1 and CA3 based
on our simulations. Since there is not much literature available here to validate our
results, our simulation results opens doors to future biological confirmations.

3. The results simulated in our model and the effects of varying different parameters in
our model are also observed in literature thus validating our results. Specific results are
given below.

4. We have developed a discrete rule-based computational model using the cellular au-
tomata approach to study neuronal networks from a single-neuron level and from a
population level, and also to study encoding and retrieval mechanisms.

5. We have also made our model theta-aware using the activity of basket cells in CA1
so that encoding patterns takes place during the encoding cycle of theta automatically
instead of hard-coding specific neurons to fire at a specific time-step.

Trying to understand encoding and retrieval of patterns during cross-frequency coupled
theta and slow gamma oscillations from both a single-neuron and population neuronal net-
work level is the motive of our research. To understand the cross-frequency coupling between
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theta and slow gamma oscillations in a population neuronal network level in both CA1 and
CA3 regions of the hippocampus, we have used the septal-pacemaker circuit as a base to build
an integrated CA1-CA3 model. The CA1 and CA3 regions are involved in learning and recall
of patterns which has to be studied at a single-neuron level. To achieve this, we developed a
simple rule-based cellular automata model. The thus developed cellular automata model not
only reproduces the behaviour of the continuous population model, but also uses the activity
of inhibitory basket cells to determine when CA1 pyramidal cells should learn and recall in
the theta cycle. These contributions are explained briefly along with a few more results from
our simulations in this chapter.

6.2 OSCILLATIONS

1. We have used a continuous population model to explore phasic relationships between
different inhibitory cell types and pyramidal cells in CA1 and CA3 regions of the hip-
pocampus during theta frequency oscillations. It was possible to match the Klausberger
et. al [141, 133] data for CA1 with pyramidal cells in-sync with bistratified cells and
out-of-sync with basket cells.

2. The phase shifts seen in CA1 with respect to pyramidal and basket cell populations are
not seen in CA3 due to the missing septal input to bistratified cells and unidirectional
inhibition from bistratified to basket cells in CA3, as expected.

3. It was possible to match the data observed from Mizuseki et. al [145] that CA3 and
CA1 pyramidal cells are phase-shifted; and that the phase observed in CA1 pyramidal
cells are not a result of a simple integration of phases from CA3, EC or the medial
septum.

4. We have used basket and bistratified cells to superpose slow-gamma frequency os-
cillations in theta frequency oscillations in both CA1 and CA3 as seen in literature
[20, 144, 147].

5. It was possible to observe the propagation of slow-gamma oscillations through the
Schaffer collaterals with our CA1-CA3 model which is the first integrated model pro-
posed to observe cross-frequency coupling in CA1-CA3 regions of the hippocampus.

6. We could observe that there is no bifurcation while transiting from theta to theta-
coupled gamma oscillations in both CA1 and CA3 regions. The transition is gradual
and is not a sudden change in firing activity.
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7. The effects of external inputs on CA1 and CA3 regions is explained in both the contin-
uous and discrete models.

(a) The continuous population model of CA1 and CA3 exhibits different oscillatory
states depending on the external inputs. High values of EC or DG inputs result
in steady states, whereas high values of septum or posterior-hypothalamus inputs
results in fast oscillations.

(b) Increasing CA1 back-projection input to CA3 pyramidal cells results in oscilla-
tions with frequencies greater than 12Hz.

8. Results simulated using the continuous population model are also obtained using the
discrete cellular automata approach.

(a) Theta oscillations are generated by implementing the hippocampo-septal loop.
Since in our model all the CA3 neurons are connected to pyramidal cells, it is easy
to produce oscillations of frequency greater than 50Hz. To reduce the frequency to
7-10H theta oscillations, an increased inhibition from the inhibitory interneurons
is input to pyramidal cells.

(b) We were able to reproduce the phasic differences between the different cell types
as per Klausberger et. al data [141, 133] as simulated in the continuous population
model.

(c) Disruptions to the septal-pacemaker circuit causes oscillations of frequency greater
than 50Hz in pyramidal cells due to the E-I loops between pyramidal and basket
and bistratified cells.

6.3 ENCODING AND RETRIEVAL OF MEMORIES

1. The cellular automata model is a deterministic message-based approach to build com-
plex models using simple rules. The library is a public git repository at: https://
github.com/Esash382/Cellular_Automata_New. The cellular automata
library written in C++ can be used to design models of different regions of the brain
using the JSON input files.

2. Encoding and retrieval of patterns using spike-timing dependent plasticity (STDP) al-
gorithms were implemented.
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3. Using a rule-based approach such as the cellular automata, we have simulated the CA1
cell-types that exhibit the complementary phasic nature of learning and recall where
learning and recall take place in the opposite phases of a theta cycle.

4. Learning during basket cell activity and recalling during bistratified cell activity is re-
produced in the CA1 model simulations making the model oscillations-aware. This
differs from the Cutsuridis et. al (2010) simulation model and is more realistic by gen-
erating theta frequency oscillations through the hippocampo-septal loop and detecting
the encoding and recall phases through the presence/absence of basket cell activity
automatically.

5. Without basket cells, encoding and retrieval cycle is disrupted as the model is not theta
oscillations-aware without basket cell activity.

We have now simulation models that

1. integrates both hippocampal CA1 and CA3 regions and analyzes the effects in the
context of cross-frequency coupling of theta and slow gamma oscillations.

2. reproduces the results found in literature for the encoding and retrieval of information
in theta sub-cycles [20] which is regulated by the activity of inhibitory basket cells
[141, 140].

6.4 FUTURE WORK

With the current design of the continuous and/or discrete model, taking inspiration from
the E-I, CA1, CA3 neuronal network, neurons from different regions of the brain can be mod-
eled. Each population is a homogeneous cluster of neurons that propagates signals to neurons
from other populations. Hence, adding more cell types or removing cell types or projections
can be studied easily. Removal of neurons or projections, also called lesions can be studied
using the continuous or discrete simulations.

In the discrete cellular automata approach, removal of neurons can be done by removing
the concerned projections from the networks.dat file in which case, the simulations will be
unaware of the removed neuron types. To reduce the number of projections between two pop-
ulations, the z parameter between the concerned populations can be reduced in the projection
file of the two populations. This enables us to easily study the effects of removal/absence of
projections. Examples of studies that can be undertaken by removal of neurons or projections
include:
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1. Decreased neuronal density in CA1 region and altered mossy fiber pathways to CA3 is
observed in Alzheimer’s [152, 153].

2. CA1 and CA3 regions of the hippocampus receive dopaminergic inputs from the per-
forant path projecting from EC. The direct perforant path carries sensory information
to both CA1 and CA3 which is necessary for proper convergence to information stored
in memory. Improper convergence leads to delusions responsible for causing paranoid
schizophrenia as discussed in [154, 155].

Similarly, addition/growth of newer projections on neuronal populations can also be eas-
ily studied by adding more cell types for the CA1 and CA3 regions of the hippocampus. This
simply involves adding the respective neuron definition file and the projection files defining
its projections with other cell types as inputs to the model. By adding the projection file to
networks.dat file, we tell the model to include the two populations as part of the neuronal
network that is being built. To study increased connectivity between two populations, again
the z parameter between the concerned populations can be increased in the projection file of
the two populations. For example, many more inhibitory interneurons present in CA1 and
CA3 can be included to provide a complete framework of the CA1 and CA3 regions to in
turn study the effects of these interneurons on the activity dynamics, encoding and retrieval
mechanisms in the hippocampus.

Currently, the activation function is an integrated sum of inputs. Newer implementations
will be required for different activation functions. Other brain regions can also be imple-
mented in a similar way having populations of homogeneous neurons having projections
with one another. The main difference between the different types of neurons are the char-
acteristics defining each neuron type, which are the definitions given in the neuron definition
file. The whole model is basically neurons talking to each other, and hence as long as the
definition of neurons, parameters defining the talking mechanism, and the mechanism for
processing inputs is defined, any model having similar rules can be modeled using the cellu-
lar automata approach.

Both the continuous and discrete models are a good foundation to build upon for more
in-depth research to answer the effects of excitatory and inhibitory signals and oscillations
on the different regions on the brain. The models developed here are a step closer towards
building a biologically realistic model of the regions of the brain, as the primary reason for
building computational models for simulation is also to hypothesize and not just reproduce
how the real biology works. We propose the following future work that can be undertaken to
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enhance the biological plausibility of the model in the cellular automata approach.

1. When an action potential fires and neurotransmitter is released from the synaptic vesi-
cle, the post-synaptic neurons are in the vicinity of the pre-synaptic neuron for asso-
ciative LTP to occur [67]. The randomness of choosing the post-synaptic neuron can
be reduced if the distance between the neurons is also taken into account in the cellular
automata model.

2. A neuron has many dendritic compartments, each of which are post-synaptic sites for
signals from other neurons from different regions of the brain. Implementing the den-
dritic compartments would also modularize and segregate the signals coming from dif-
ferent populations to a neuron making the cellular automata approach more distinct
and expandable to include various other parameters of the brain. Such an implemen-
tation would be a realistic approach to modeling a neuron that can include dendritic
parameters such as the capacity, length, resistance, etc [118].

3. Continuing from the previous point, population models of neurons using a cellular
automata approach composed of multiple dendritic compartments need to be imple-
mented to study distance-related propagation delays of action potentials and dendritic
integration and interaction of synaptic inputs. For example, CA3 and EC inputs to CA1
pyramidal cells arrive at SR and SLM regions, and the strength of the inputs decrease
as they propagate towards the soma of the cell. The projection strengths are either
constants or get incremented/decremented by a constant value in our simulations until
recall, whereas in reality, the projection strengths decrease over the distance traveled
which can also be a scope for further implementation.

In this research, the goal was to study the cross-frequency coupling of theta and slow
gamma oscillations in CA1 and CA3 regions of the hippocampus while encoding and re-
trieving information. To do this, we built the continuous population model to study and
understand the cross-frequency coupling in both CA1 and CA3 regions of the hippocampus.
By establishing the results from the continuous population model as a baseline, we built the
cellular automata model for encoding and retrieval of patterns while the model is oscillating
with both theta and slow gamma frequency oscillations. The cellular automata model thus
lies in the middle between simple biologically implausible models to complex biologically
plausible models, and can be seen as a building block along the way to a fully functional
biologically realistic neuronal model.
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