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Thesis abstract 

 

Amid the Earth’s 6th mass extinction, conservation of the remaining biodiversity is more 

urgent than ever. But conservation faces the many challenges associated with the 

management of ecosystems, including the different sources of uncertainty around their 

joint social and ecological dynamics. Moreover, mismanagement can have detrimental 

consequences for both conservation and people’s livelihood. To help managers design 

efficient and equitable policies in such complex situations, the use of simulation models as 

virtual laboratories to evaluate management scenarios have become widespread. Yet, most 

of these models are mathematical models, which can be limited in conservation problems. 

Indeed, the latter are rather small-scale, often spatially explicit, and unexpected responses 

often stem from local interactions between the parts of the system. These features are key 

assets of agent-based modelling (ABM), which should therefore be more appropriate but is 

still scarcely applied in management strategy evaluation. In this thesis, I further develop the 

use of ABM in conservation by designing agent-based tools to evaluate alternative 

management strategies in two complex conservation problems: the management of 

conservation conflicts between species protection and agriculture, and the management of 

species endangered by apparent competition.  

First, I address the timing of management intervention in a conservation conflict between 

a manager aiming to conserve an animal population and farmers aiming to maximize yield 

by protecting their crop from consumption by the animal population. Building upon the 

agent-based software GMSE, which simulates the budget-constrained adaptive 

management of conservation conflicts, I propose a novel management strategy that 

dynamically alternates between intervention and waiting based on the monitoring of the 

distance between the population density and manager’s target. The evaluation shows that 

my strategy can produce at least as efficient and equitable results as unconditional 

intervention while allowing critical budget savings. This strategy is now available in the 

GMSE package to be evaluated in other cases of conservation conflicts and my method 

proposes a way to do so in a more equitable way. 

Then, I introduce an ABM of trophic interactions between several species in several trophic 

layers in which apparent competition can emerge. I validate it in its essential version 

according to the ABM framework and discuss its adequacy with apparent competition 

theory. Overall, my model behaves as theory and empirical cases predict, with some 

interesting contradictions challenging predictions of previous mathematical models. The 
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model is now fit for the addition of more complex features needing further understanding 

in apparent competition theory and conservation. 

Finally, I demonstrate how my model can be used to evaluate removal strategies to conserve 

a prey species endangered by apparent competition with an alternate prey species 

mediated by a shared predator. Predator removal only, alternate prey removal only, and 

simultaneous removal of the predator and alternate prey all successfully prevented the 

extinction of the endangered population, but the simultaneous removal strategy was the 

most efficient in conserving the endangered population while also ensuring more stable 

dynamics and higher densities of the other species. Any combinations of these removal 

strategies are now available in my model for evaluation by researchers or managers in 

other cases, and my method proposes to conserve the endangered population while also 

ensuring the persistence of the other species in the system.  

Across these chapters, I demonstrate how the agent-based approach can efficiently 

integrate the complexity of conservation problems to produce informative tools for 

biodiversity management strategy evaluation. Notably through human individual decision-

making, complex individual behaviour, and spatially explicit modelling along with the 

simulation of different sources of uncertainty. I have shown, with general examples, how to 

use the modelling tools I provide, with methods enlarging the scope of conservation 

objectives: a better consideration of the equity of management measures between 

conservation and land-users’ livelihood in conservation conflicts, and a better inclusion of 

management consequences on other species in interaction with the population of 

conservation interest. Through my models’ development and validation, I have questioned 

and enhanced the theory of conservation conflicts' adaptive management and of apparent 

competition’s underlying mechanisms and management.  
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Résumé de la thèse 

 

Face à cette sixième extinction de masse, préserver la biodiversité qu’il nous reste est plus 

urgent que jamais. Mais conserver la biodiversité implique de surmonter les défis inhérents 

à la gestion des systèmes socio-écologiques complexes que sont les écosystèmes, et 

notamment les différentes sources d’incertitude qu’ils comportent. D’autant plus que des 

erreurs de gestion peuvent être délétères pour la biodiversité comme pour la vie des 

personnes impliquées. Pour assister les gestionnaires de biodiversité dans l’élaboration de 

politiques efficaces et équitables, il est désormais commun d’utiliser des modèles de 

simulation pour tester des scenarios de gestion. Cependant, la plupart de ces modèles sont 

dit ‘mathématiques’ ; une approche par équations qui peut montrer ses limites quant aux 

problèmes de conservation. Ces derniers étant plutôt à petite échelle, ayant des 

implications spatiales bien précises et dont les comportements inattendus proviennent 

souvent des interactions locales entre les parties qui les composent. Les modèles individu-

centrés, plus mécanistiques, sont plus indiqués pour simuler ces aspects, mais cette 

approche est encore peu appliquée dans l’évaluation de stratégies de gestion en 

conservation. Avec cette thèse, je participe à la démocratisation de l’approche individu-

centrée en conservation en proposant de nouveaux outils de modélisation pour évaluer des 

scenarios de gestion dans deux problèmes complexes de conservation : la gestion de conflits 

de conservation et la préservation d’espèces impliquées dans des interactions de 

‘compétition apparente’. 

D’abord, je traite du timing d’intervention des gestionnaires dans un conflit entre la 

conservation d’une population animale et des agriculteurs voulant en minimiser l’impact 

sur leurs cultures pour garantir la rentabilité de leur exploitation. Sous la forme d’une 

nouvelle option dans le logiciel GMSE, qui simule la gestion adaptative de conflits de 

conservation sous contraintes budgétaires, je propose plusieurs stratégies basées sur le 

monitoring pour déterminer si une intervention est nécessaire ou si attendre est préférable. 

L’évaluation montre qu’une de mes stratégies donne des résultats au moins aussi 

satisfaisants qu’une intervention inconditionnelle, tout en permettant d’importantes 

économies de budget. Cette stratégie est désormais disponible dans le package GMSE pour 

une évaluation dans d’autres situations et ma méthode défend une évaluation équitable 

entre conservation et intérêts humains. 

Ensuite, je présente le premier modèle individu-centré simulant les interactions de 

compétition apparente entre plusieurs espèces reparties sur plusieurs niveaux trophiques. 
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Je valide ce modèle dans sa version la plus essentielle dans le cadre de travail individu-

centré avant de discuter de son adéquation avec la théorie en dynamique des populations 

et de réels cas de compétition apparente. Globalement, mon modèle se comporte comme 

attendu par la théorie et les études empiriques, avec quelques contradictions intéressantes 

qui mettent en perspective les prédictions des modèles mathématiques usuels. Le modèle 

est maintenant prêt à incorporer des mécaniques plus complexes pour répondre aux 

questions encore en suspens dans le domaine de la compétition apparente, ainsi que pour 

anticiper leur impact sur le succès des programmes de conservation.  

Enfin, je démontre comment mon modèle peut être utilisé pour tester des scenarios de 

gestion pour la préservation d’une population de proie en danger d’extinction à cause 

d’interactions de compétition apparente avec une autre espèce de proie par le biais d’un 

prédateur commun. Les trois stratégies testées, (i) réduction de la population de 

prédateurs, (ii) réduction de la population de la proie alternative et (iii) réduction 

simultanée des populations de prédateur et de proie alternative, ont bien empêché la 

disparition de l’espèce en danger, mais la stratégie (iii) a montré de meilleurs résultats dans 

la préservation de cette dernière, tout en assurant la stabilité du système et une densité de 

population plus satisfaisante pour les autres espèces du système. Toutes les combinaisons 

de ces trois stratégies sont disponibles publiquement dans mon modèle pour évaluation 

dans d’autres cas de compétition apparente, et ma méthode assure la prise en compte de 

toutes les espèces impliquées.  
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1. General introduction 

1.1. The urgency to conserve biodiversity 

Biodiversity, or the living part of nature, is one of the nine planetary boundaries, defining 

the environmental limits within which humanity can thrive safely as a species (Steffen et 

al., 2015). Indeed, the higher the functional, specific, genetic diversity in living being 

populations, the stabler and more resilient the ecosystem they belong to (Allesina and Tang, 

2012; Hautier et al., 2015). We need healthy ecosystems because humanity’s survival 

crucially depends on the services they provide, such as pollination, soil enrichment, water 

treatment, carbon dioxide fixation, among many more (Costanza et al., 1997; Bennett et al., 

2015). However, ever-growing human activities poses a major threat to biodiversity, to 

such an extent that the current proportion of declining species in certain species groups is 

comparable to Earth’s previous mass extinction episodes (Ceballos, Ehrlich and Dirzo, 

2017). Conjointly with addressing the very sources of this noxious impact, the conservation 

of the remaining biodiversity is more urgent than ever. 

1.2. The challenging complexity of biodiversity conservation 

Biodiversity conservation faces many challenges. Ecosystems form densely interconnected 

systems involving multiple interactions between its parts and include properties such as 

feedback loops or non-linearity. Such complexity makes it very difficult to anticipate the 

entirety of the consequences of human intervention on natural populations and/or 

landscapes (Keith et al., 2011; Redpath et al., 2013; Game et al., 2014; Mason, Pollard, et al., 

2018). Additionally, the total area used for human activities is increasing and often overlaps 

with the ranges of species of conservation interest, and intervention therefore also has an 

impact on human livelihood. Factors increasing the difficulty of decision-making in 

conservation include the uncertainty surrounding the mechanisms at stake in the 

populations (model uncertainty), how the environment influences their dynamics (process 

uncertainty), the accuracy of the measures/observations realised on the field (observation 

uncertainty), the response of population and people to a conservation policy, and even the 

extent to which it will actually be applied (implementation uncertainty) (Williams, Johnson 

and Wilkins, 1996; Bunnefeld, Hoshino and Milner-Gulland, 2011; Keith et al., 2011; Nuno, 

Bunnefeld and Milner-Gulland, 2013; Nicol et al., 2019). Also, there is a large variety of 

conservation methods, should they be indirect, such as legislation (e.g., species protection, 

restrictions on harvest), establishment of restricted access areas (van Wilgen and Biggs, 

2011; Nuno, Bunnefeld and Milner-Gulland, 2013; Ng’weno et al., 2019), impact offsetting 

(Gordon et al., 2011), species reintroduction (DeCesare et al., 2010; Krofel and Jerina, 2016; 
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Behr, Ozgul and Cozzi, 2017); and direct, such as species removal (Roemer et al., 2001; 

Roemer, Donlan and Courchamp, 2002), distribution of culling licences (Courchamp, 

Langlais and Sugihara, 1999; Mason, Keane, et al., 2018), or offspring control (Pollard, 

2018). Finally, mismanagement can have unexpected detrimental, sometimes irreversible 

consequences, including population extinction, dysfunctional ecosystem services, loss of 

income for land-users, or impact on food security (Kaswamila, Russell and McGibbon, 2007; 

Redpath et al., 2013, 2015). Consequently, how do conservation managers make decisions 

on the best intervention to protect biodiversity facing such challenges? How can they 

choose the most adapted, effective, safest measure, or combination thereof, avoiding 

adverse consequences for ecosystems and their human component while embracing 

uncertainty? Which action should be prioritised? There are two widespread tools to 

overcome such challenges. On the one hand, there is adaptive management, warranting the 

implementation of policies that are updated and improved iteratively by learning from its 

outcomes through regular monitoring (Williams, Johnson and Wilkins, 1996; Keith et al., 

2011; van Wilgen and Biggs, 2011). On the other hand, there is the use of simulation models 

to improve predictions on a policy outcome before its implementation or update. 

1.3. Models as decision-helping tools 

The use of simulation models in ecology was often disregarded before the 90s because of a 

supposed opposition and/or scientific inferiority to empirical experimentation, but it is 

now more widely acknowledged that both approaches participate, sometimes in an 

intertwined manner, to ecological knowledge (Caswell, 1988), and these models have 

become widespread in natural sciences (Judson, 1994; Grimm, 1999; Bousquet and Le Page, 

2004; Heinonen and Travis, 2015; Holt and Bonsall, 2017). Simulation models predict the 

evolution of a given system over time based on specific sets of assumptions and hypotheses 

that are modulated by parameters. In conservation science, these models usefully simulate 

most of the processes causing the challenges presented in the section 1.2. Population 

dynamics can be simulated over time as the combination of life events such as birth, death, 

alimentation, predation, migration (Holt, 1977; Abrams, Holt and Roth, 1998; Chesson, 

2000). Environment variability can also be modelled, along with its effect on population 

dynamics (Holt and Barfield, 2003; Barraquand et al., 2015). Uncertainty can be simulated 

in models by introducing stochasticity, i.e., randomness, in the processes modelled, through 

the use of probabilistic processes, allowing parameter values to vary randomly, or replicate 

stochastic simulations a number of times to explore different possible outcomes (Roemer, 

Donlan and Courchamp, 2002; Bunnefeld, Hoshino and Milner-Gulland, 2011; Glynatsi, 

Knight and Lee, 2018; Nilsson et al., 2021). Monitoring uncertainty can also be simulated by 
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models (Nuno, Bunnefeld and Milner-Gulland, 2013; Duthie et al., 2018), and significant 

progress has been made in simulating the behaviour of human stakeholders in conservation 

problems using game theory (Colyvan, Justus and Regan, 2011; Tilman, Watson and Levin, 

2017) and, more recently, artificial intelligence (Duthie et al., 2018; Kamra et al., 2018; 

Cusack et al., 2020; Nilsson et al., 2021). Combining these with the simulation of 

conservation policies or scenarios, one can evaluate the efficiency of management in a 

particular situation given a conservation goal and provide arguments for policy making, this 

method is known as Management Strategy Evaluation, or MSE (Smith, Sainsbury and 

Stevens, 1999; Bunnefeld, Hoshino and Milner-Gulland, 2011; Milner-Gulland, 2011; 

Bunnefeld et al., 2013). 

1.4. Usual modelling approaches: advantages and shortcomings 

1.4.1. Population dynamics 

The usual, historical way to simulate population dynamics is with Ordinary Differential 

Equation (ODE) systems. An ODE is a mathematical equation modelling change in 

population density (often denoted dX, X being the population density at a given time) over 

a short period of time (often denoted dt) according to the life events assumed to affect 

population change. Most of the time, the life events are modelled as functions of X 

modulated by parameters in a way that reflects density-dependence. By having one ODE 

per species present in the system, life events can also be functions of the densities of other 

species within the broader community, thus simulating species interactions. By solving 

such an ODE system, it is possible to predict the density of each species at a given time for 

a given set of parameter values and density in a preceding time.  The most widespread 

version of an ODE system for directly interacting species is the Lotka-Volterra population 

model (Lotka, 1920; Volterra, 1926), connecting 𝑑𝑋
𝑑𝑡⁄  to births and deaths functions. By 

shaping these functions and setting the associated parameter values, one can adapt this 

model to a wide range of direct interaction systems, especially trophic dynamics (Holt, 

1977; Chesson, 2000). This model was later generalised to direct and indirect interactions 

by McArthur and Rosenzweig (Rosenzweig and MacArthur, 1963), also known as Lotka-

Volterra competition model, making it more practical for modelling several types of 

interaction in multi-species communities (Chesson and Kuang, 2008; Serrouya et al., 2015; 

McPeek, 2019). 

One shortcoming of this model is that it cannot easily account for population structure, in 

the sense of different dynamics according to the age, or developmental stage of an 

individual or subgroups within a species. For problems with population structure, matrix 
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models are more appropriate; Leslie model (1945) being the most usual. In such models, a 

population is defined by a vector in which elements are the densities of individuals in each 

life stage. To compute the densities at a given time, the population vector is multiplied by a 

squared matrix of the same size as the vector, in which elements are transition coefficients 

from one stage to another or among a same stage (Bunnefeld et al., 2013; Wam et al., 2016).  

This approach is particularly useful in invertebrate ecology, where animals have very 

different dynamics according to their developmental stages (Mouquet et al., 2005).  

One advantage of these kinds of models is that mathematics facilitates the analysis of 

stability, at least with only two to three species in the system. This analysis predicts the 

behaviour of the system in the long term in absence of perturbation, i.e., at equilibrium, 

according to the parameter values (Volterra, 1926; Holt, 1977; Holt, Grover and Tilman, 

1994). Indeed, these models are deterministic, meaning that the same set of initial 

conditions and parameters will always result in the same prediction, even in the long term. 

This can appear as a shortcoming in conservation science because actual population 

dynamics are far from deterministic; they are subject to different levels of inter-individual 

variability and to a myriad of external perturbations from their environment. In fact, the 

existence of equilibrium states in populations dynamics are dependent on very specific 

assumptions, which are seldom verified in the field (Grimm, 1999; Chesson, 2000; 

DeAngelis and Grimm, 2014; Stillman et al., 2015).    

With these approaches, uncertainties can only be accounted for in an extrinsic manner, in 

the sense that one must change the model somehow and compare to include uncertainty. In 

theory, in ODE systems, the model uncertainty, or the uncertainty surrounding the 

understanding of the mechanisms at stake in the population, can be assessed by changing 

the shape of the life event functions and assess the impact on the densities predicted. With 

a given choice of model, model uncertainty also lies in the values estimated for parameters, 

which can be assessed by varying these values by a certain amount and then compare the 

impact on the densities predicted. For example, in a derivation of a Lotka-Volterra model 

simulating the golden eagle-mediated apparent competition between the endangered 

island fox and introduced feral pig populations on Californian islands, Roemer, Donlan and 

Courchamp (2002) estimated which parameter was the most impactful by independently 

varying the parameter values by ±10% and measured the change in the predictions. This 

determined which parameter values had to be the most accurately measured or estimated, 

while uncertainty around the other values might have less impact on predictions. The 

observation uncertainty, or the uncertainty around the accuracy of measurements carried 

out on the field, can be assessed using a similar method: varying the initial population 
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densities provided to the model by a certain amount and measuring the impact on the 

prediction. In principle, the model and observation uncertainties could be accounted for by 

allowing the parameter values and densities to vary at random within a certain range, the 

size of which corresponding to the level of uncertainty, and repeat simulations to have a 

range of possible outcomes (Bunnefeld et al., 2013). This is a way to make predictions while 

embracing uncertainties and draw conclusions even if the parameters or the densities are 

not set to their ‘true’ values, but it is still rarely applied in conservation. This shows how the 

traditional mathematical models for population dynamics are not best suited to account for 

the uncertainty at stake in conservation problems. 

The top-down approach of these mathematical models is theoretically better suited to 

general, large-scale questions where the impact of individual-levels interactions can be 

safely ignored, which is increasingly unlikely as conservation problems get more complex 

than mere population dynamics. Another shortcoming is that the models presented in this 

section are spatially implicit by nature; all life events happen at the same time at a global 

level, leaving few options to include spatial or temporal variability. This prevents the 

simulation of several geographical conservation measures such as fencing (Kaswamila, 

Russell and McGibbon, 2007; Nyhus, 2016; Pooley et al., 2017), providing shelter (Jensen, 

Wisz and Madsen, 2008; Rakotonarivo, Jones, et al., 2021), or installing supplementary 

feeding sites (Krofel and Jerina, 2016). The fact that all life events happen at the same time 

also makes questions about the timing of intervention of biodiversity managers more 

complicated to model. 

1.4.2. Environmental variability 

Simulating environmental variability is a way to account for process uncertainty in 

predictions. It is usually simulated by a change in model parameter values that are 

independent of population dynamics or conservation actions. By allowing changes in the 

parameters linked to mechanisms that can be influenced by environmental variations, 

predictions can be made considering these potential perturbations. For example, Holt and 

Barfield (2003) modelled environmental variability in a three-species Lotka-Volterra 

system of apparent competition by changing the parameter values according to a sinusoidal 

function oscillating around a fixed value. The frequency of the sinusoid represented how 

often variations are observed and the amplitude represented the intensity of fluctuation in 

the parameter values. The study showed that strong fluctuations affected species 

persistence in their apparent competition model, with different impacts according to which 

parameter value varied. Another example is in RangeShifter, an agent-based model 

simulating population range expansion according to genetics, population dynamics and 
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landscape characteristics on landscape maps  (Bocedi et al., 2014, 2021). In this model, the 

authors simulated environmental variability by allowing some landscape cell 

characteristics to change stochastically in two ways. First, the authors introduced a small 

probability of a cell’s population extinction, thus modelling unexpected perturbations or 

interventions resulting in the local extirpation of the population. Second, they allowed the 

carrying capacity of the landscape cells (the maximum number of animals that the 

landscape resources can sustain) to vary seasonally to account for the variability in 

resource availability between winters and summers. The simulation of such variability 

makes predictions more robust to uncertainty around the likelihood of environmental 

perturbations that could hinder conservation. 

1.4.3. Stakeholders’ decision making 

Game Theory (GT), introduced by Von Neumann and Morgenstern in 1944, has been the 

leading framework for decision-making modelling historically. Myerson (1991) described 

GT as follows: “the study of mathematical models of conflict and cooperation between 

intelligent rational decision makers [which strategies] affect one another’s welfare”. In these 

games, the players act in order to maximise the expected value of their outcome from the 

game, the so-called utility. Utility is not necessarily quantified as a monetary pay-off; it can 

be seen in many ways, e.g., time, effort saved, well-being, happiness, etc, or a mix of them. A 

game theoretical perspective can provide insights about “the strategies different 

stakeholders will likely adopt given their objectives, […] the range of possible outcomes, […] 

and whether an optimal or satisfactory solution for all stakeholders can be reached 

simultaneously” (Colyvan, Justus and Regan, 2011). It was first used in biology in the 

landmark paper “The Logic of Animal Conflict” by Maynard-Smith and Price (1973), which 

modelled the dynamics of strategies in animal conspecific fights. Animal players were 

choosing between run-away, intimidating, and aggressive behaviours according to an 

opponent’s behaviour in attempt to maximize their individual evolutionary pay-off. By 

solving game-theoretical systems as a pay-off optimisation problem, numerous studies 

investigated the evolution of the proportion of co-operators and defectors in common-pool 

resource games (exploitation of a resource, out of which each player wants to make the best 

pay-off). A co-operator's strategy is usually to share their pay-off to exploit less resources 

for a reasonable utility per capita, while a defector’s strategy is usually to exploit the 

resource as much as possible to maximize a pay-off they do not share. In these studies, 

solving this game showed that the proportion of defectors and co-operators in a group of 

exploiters is very sensitive to different aspects like the size of the group or sub-groups 

(Hauert, Holmes and Doebeli, 2006), how fast the resource depletes (Hilbe et al., 2018), or 
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which type of sanction is applied to defectors (Tilman, Watson and Levin, 2017). More 

specifically for conservation, Colyvan, Justus and Regan (2011) applied the four main types 

of games in GT (simple, chicken, stag, and prisoner games) to adaptive management of a 

resource under protection, but its actual implementation in conservation problem is fairly 

novel. Recently, Glynatsi, Knight and Lee (2018) used GT to model a conflict over rhinos 

protection and illegal poaching of ivory as a common-pool resource problem. According to 

poachers being unconditional or selective killers, they assessed which proportion of rhinos 

should be de-horned to minimize their killing. These GT models do not generally account 

for implementation uncertainty, but I could see it simulated by allowing the proportion of 

players using each strategy to vary stochastically, modelling some suboptimal choices in the 

population, although I am not aware of any example of such incorporation of uncertainty in 

GT models of conservation. The Game Theory framework is useful to simulate decision-

making, but it can have limitations when applied to complex conservation problems.  

Indeed, in GT, the behaviour rules guiding decision-making are fixed, with finite sets of 

actions (e.g., cooperate or defect, rock-paper-scissors) and the players are assumed 

perfectly rational and aware of the best options for them (Myerson, 1991). Human decision-

making is not perfectly rational, and the lack of dynamic stakeholder behaviour modelling 

has been identified as a major cause of failure in conservation (Schlüter et al., 2012). In 

conservation, the panel of options is usually larger than tractable by game theoretical 

problems, and agents must often make a choice over a continuum of possible actions 

(Duthie et al., 2018; Kamra et al., 2018; Cusack et al., 2020). In a more flexible way, decision-

making can be simulated by computing the utility of a given strategy according to different 

criteria. In Termansen et al. (2019), the authors used a random utility approach to simulate 

farmers’ decision-making in a problem of land allocation to sheep grazing or heather 

burning for grouse keeping in the UK. Farmers decision was simulated by a probability to 

choose a strategy among the ones that a management policy allowed, by maximising utility 

according to the value each farmer gave to sheep stock and heather diversity, to expected 

environmental change and to expected changes in policy, modulated by a stochastic error 

term to simulate variability in decision making. But people do not always make the best 

choices (even according to their values), and they often cannot consider all the possible 

outcomes or solutions to a problem. Artificial intelligence offers another angle to simulate 

human decision-making by mimicking errors and learning from past mistakes but is still 

quite scarcely applied to modelling human decision-making in conservation science. 

Among the few examples in literature, the software GMSE (Duthie et al., 2018) and 

subsequent works using it (Cusack et al., 2020; Nilsson et al., 2021; Bach et al., 2022) 
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features an evolutionary algorithm (Hamblin, 2013), a form of artificial intelligence 

simulating manager’s and land-user's decision-making. Combined with an individual-based 

approach, it models decision-making independently for each stakeholder with the 

possibility for sub-optimal choices along a continuous set of possible actions. But this 

algorithm cannot learn by construction. 

Use of  Machine learning to predict decision-making in conservation problems is even rarer, 

but Kamra et al. (2018) presented a continuous strategy game, in which strategies are 

defined by values on different continuous action scales and players could optimise their 

strategies through machine learning. The game consisted in forest defenders protecting a 

forest from lumberjacks wanting to log it. The forest was a circular map with trees randomly 

distributed from a forest centre, and players policies were sets of coordinates for each agent 

to place on the map. For a given randomly generated forest, they simulated the situation a 

thousand times and selected the policies that resulted in the best pay off for each player 

after ten rounds as the ‘best response’. This was repeated for several different forest maps, 

hence generating a data set of forest maps with associated best response. Then, the authors 

designed a convolutional neural network taking a forest map as an input and outputting a 

mean and a standard deviation for defenders and lumberjacks, from which the agents’ 

coordinates should be sampled from. The network was trained on a part of the data set to 

be able to predict policies as closely as possible to the ‘best response’. The rest of the data 

set was used to test the neural network on forest maps it had never been presented to 

before and evaluate the accuracy of the prediction against the ‘best response’. 

This approach could be transferred to land-use decisions. A neural network could take a 

landscape as input, in a shape of a 3D matrix (like RGB images), the first layer being the 

land-use information, the second the prevalence of resources and the third an information 

on the policy. The output could be a layer with each argument being the action undertaken 

by the users on each of its land cells. Or, more complicated, a set of parameters for a given 

distribution in which users could draw a value (for example a number of animals to remove 

or scare) for their strategy. This network could be trained on the actions the stakeholders 

undertake in real-world cases. The good thing is that this training set would not necessarily 

be the most optimal policies given the situation, so the neural network would still be able 

to replicate the fact that humans do not always make the best choice (implementation 

uncertainty). Yet, the tractability of such a solution is arguable. The main problem being the 

size of the training data set; neural networks need a very large number of examples of one 

specific situation to reach maximum capacity (convention is at least 10000 examples for the 

training set in image recognition). This will be a problem in conservation because, with such 
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complex situations, it is already complicated to find several examples of an exact same 

situation. A solution, already implemented by Rakotonarivo, Bell, et al. (2021) and 

Rakotonarivo, Jones, et al. (2021) would be to design a specific behavioural game  

structured in a way that could be learnt by a Neural Network and have as many stakeholders 

playing it to obtain a training data set. But even so, the games might need to be simulated, 

like in Kamra et al. (2018), to generate enough uncorrelated examples.  

In conclusion, simulating decision-making along with its sources of uncertainty allows to 

predict management outcomes even if managers do not always make the most efficient 

policies and if stakeholders do not always behave as they are expected to. 

1.4.4. Monitoring 

The monitoring of the system under management is critical in conservation, and even more 

in adaptive management, because the decisions are made based on information measured 

on the field (Williams, Johnson and Wilkins, 1996; Keith et al., 2011; Game et al., 2014), on 

both the managed population and the people involved (Milner-Gulland, 2011). Therefore, 

the uncertainty associated with these measures can have a great impact on the efficiency of 

conservation policies and each monitoring methods has its own uncertainties associated. 

Here too, modelling can help in several ways. 

Simulation modelling can help assess the uncertainty associated with a monitoring method. 

For example, Nuno, Bunnefeld and Milner-Gulland (2013) estimated the uncertainty 

associated with systematic reconnaissance flight surveys (an aerial, photographic, transect-

like method used in the Serengeti reserve in Kenya) of wildebeest and impala populations 

according to sampling effort, species aggregation and observer error. The authors 

simulated the population distribution on a spatially explicit lattice as the ‘true’ population 

size, with both juveniles and adults. Then, the sampling method was simulated according to 

different population aggregation parameters, different distances between flight transects 

and different photograph frequencies. The simulated sampling was then compared to the 

true population size for each combination, thus providing an estimation of the best 

accuracy-to-sampling-effort ratios. 

When modelling the conservation process with decision making, the uncertainty associated 

with monitoring, and therefore its impact on manager decisions, can then be simulated. In 

a study of budget-constrained conservation of protected fish against illegal fishing, Milner-

Gulland (2011) explored the trade-off between the monitoring of a managed population 

size and the monitoring of illegal fishing for law enforcement, according to the level of the 

financial penalty for defection. The ‘true’ population was modelled with an ODE of logistic 
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growth, and fishers chose between complying or poaching according to an effort-to-risk 

trade-off. The observation accuracy varied according to the budget allocated to monitoring. 

This ‘virtual ecologist’ study showed that monitoring accuracy of the fish population should 

be favoured when the fine is high, and the fishers’ monitoring accuracy should be favoured 

when the fine is low, thus increasing conservation value before policy implementation. In 

the conservation-conflict simulation software GMSE (Duthie et al., 2018), the monitoring 

accuracy of several sampling methods (including transect sampling, mark and recapture, or 

positional observation) can be parameterised, allowing managers to test and include the 

impact of the level of observation uncertainty on conservation outcomes.  

Monitoring uncertainty can have an important impact on decision making, and therefore on 

management efficiency, and it can represent an important budget investment according to 

the method and accuracy needed to effectively monitor. Modelling is of great help to target 

the most efficient sampling method and dimension the sampling effort according to the 

conservation case, and therefore can avoid a long, expensive, and potentially harmful trial 

and error process on the actual populations. 

1.4.5. Management scenarios 

Following model development for the population dynamics, human stakeholders’ 

behaviour, observation methods, and environmental variability, management scenarios are 

then simulated to evaluate their efficiency. 

Conservation policies can be simulated in a fixed fashion to simulate real-world 

management strategies, i.e., once the policy is applied, it does not change over the 

evaluation period (Milner-Gulland, 2011; Glynatsi, Knight and Lee, 2018). Courchamp, 

Woodroffe and Roemer (2003) simulated, in a derived Lotka-Volterra ODE system, the 

management of the endangered island fox preyed upon by the protected golden eagle and 

involved in apparent competition with the introduced feral pig population. The authors 

simulated different removal policies of the eagle and pig populations by adding a density 

independent mortality in their equations, modulated by a removal rate parameter 

controlling the intensity of the removal policy for each species. By varying these parameters 

and assessing the fox population final density, the authors could provide guidance for policy 

making. Conversely, in a model for the protection of the Kenyan mountain Nyala antelope 

from poaching (Bunnefeld et al., 2013), the managers set a harvesting quota that hunters 

should not exceed to keep the Nyala population to a level guarantying persistence. There 

were three alternative harvest quotas modelled: a fixed quota, a proportional quota (as in 

the previous example) and an adaptive version with a quota varying according to the 
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change in the Nyala population between two monitoring instances. By subtracting this 

quota to the densities simulated in the Leslie population model, including a variable level of 

poaching by non-compliers, the authors could recommend an optimal harvest quota 

according to the level of poaching and model uncertainty. This common type of control 

strategy is often referred to as harvest control rules and sets removal quotas for human 

harvesters and/or financial penalties for non-compliers (Kell et al., 2007; Milner-Gulland, 

2011). Both are simulated in the software FLR (Kell et al., 2007) where the interaction 

between fishing equipment’s harvest quotas and the fine for over-fishing influence the fish 

stock in a defined maritime area. The quota and fine can then be optimised to ensure that 

the fish stock stays over a critical value. This idea can be applied to the distribution of 

human activities on a natural area, as in Wam et al. (2016) with the simulation of the 

management of a boreal forest generating value from logging, hunting and grazing areas. 

The authors posed this situation as an optimisation problem and tested several strategies 

to make the most out of the boreal forest, including maximising the utility of logging, of 

hunting, of grazing, or optimise the combination of them. By calculating the utility of each 

strategy based on the market prices of each activity, the authors presented an optimal 

repartition of the activities on the areas, controlling for the potential conflicts between land-

user stakeholders (see also Chapman et al. (2009)). Yet, the methods presented here do not 

always fit in the adaptive management framework, where the policy is supposed to be 

updated and improved iteratively through regular monitoring of the outcomes. 

Conservation strategies can be simulated in a more adaptive way according to monitoring. 

Already mentioned in the previous paragraph, the harvesting quotas can vary according to 

change in the managed population (Bunnefeld et al., 2013). Nilsson et al. (2021) used the 

agent-based software GMSE (Duthie et al., 2018) to model the management of the 

conservation conflict between agriculture and the protection of the crop-grazing common 

cranes in Sweden. Here, management strategy was modelled as a cost that farmers ‘pay’ to 

cull or scare cranes on their land. According to the distance between the monitored crane 

density and a target density chosen to ensure the population persistence, the manager sets 

these costs in the hope of influencing farmers behaviour towards cranes. Through 

simulations, the authors found the levels of subsidies that maximised both crane population 

size and farmer income. 

These are all examples of how the simulation management scenarios helped assessing the 

efficiency of alternative strategies in a virtual environment and inform policy making. Now 

that modelling of population dynamics, monitoring, decision-making, and management 
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strategies have been reviewed, how can models simulate the interaction of these features 

to assess the impact of conservation on a natural system? 

1.4.6. Management strategy evaluation software 

The MSE method warrants the investigation of the interaction between the natural, 

observational, human, and managerial components of a conservation problem to 

understand and anticipate its consequences on biodiversity and human livelihood. As we 

have seen in the previous section, modelling is a powerful tool to simulate all these aspects 

of social-ecological systems. Yet, building a model from scratch, for each new conservation 

problem, and, furthermore, make models of different aspects of conservation communicate 

to be used simultaneously, might be very costly in time and research investment, especially 

under the urgency to act and the increasing number of conservation problems that we will 

face. That is why some researchers in conservation and modelling have developed software 

combining sub models of these different aspects in a way that they can match a variety of 

cases when parameterised accordingly, without having to code new models all over.  The 

software ISIS-fish (Mahévas and Pelletier, 2004) simulates the interaction between fish 

stock variations with complex population structure and temporality (Leslie matrix), fishing 

effort according to different types of fishing fleet, and management in the form of fishing 

quotas by fleet type, on a lattice map that can be filled to resemble a given maritime area. 

By testing and evaluating different management scenarios according to fishing effort and 

population dynamics, ISIS-fish can inform policy makers to implement the quota that will 

best trade-off fish stocks and fishing income. In a similar spirit, FLR (Kell et al., 2007) 

simulates the same dynamics but includes the option for financial penalties in case of 

overfishing, and an observation model that can simulate monitoring error and uncertainty 

according to the different methods. To date only applied to terrestrial cases of conservation 

conflicts (Cusack et al., 2020; Nilsson et al., 2021; Bach et al., 2022), the software GMSE 

(Duthie et al., 2018) simulates the interaction of agent-based sub models of a population 

dynamics, monitoring with error and uncertainty, manager decision making and land users 

adaptive decision making along continuous set of possibilities for several different actions, 

all informing each other on the same agricultural landscape. The software allows its users 

to track the population density, the manager and land users’ budgets and land users’ income 

(see Chapter 2 for a detailed description). This model thus evaluates alternative adaptive 

management strategies while controlling for the equitable repartition of the costs and 

benefits of conservation between managers and land users in situations of conservation 

conflicts. 
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Importantly, the combination of models of ecological processes, human decision-making, 

and management strategies, that are already independently intricate, increases the overall 

complexity of the MSE software. It requires more parameters to calibrate, which makes the 

parameterisation of the model more challenging. More mechanisms also mean a more 

difficult communication of the model rationale and results to stakeholders. This can 

potentially hinder stakeholders’ trust in the model and, ultimately, their will to engage with 

the model. That is why MSE software must find trade-offs between complexity, flexibility, 

and decision-helping potential for conservation. 

A few notable examples aside, the overwhelming majority of models in conservation apply 

mathematical rather than agent-based approaches. Nevertheless, mathematical models can 

show their limits as the complexity of the problems increases while the agent-based 

approach might be theoretically more appropriate. I develop this argument and discuss 

agent-based modelling for conservation in more detail in section 1.5. 

1.5. The agent-based approach 

1.5.1. Switching point of view 

Agent-Based Models, or ABMs, are also referred to as Individual-Based Models (Stillman et 

al., 2015), Multi-Agent Simulation (Bousquet and Le Page, 2004), or Individual-Oriented 

Models (Uchmański and Grimm, 1996) in the ecology literature. This approach models a 

given phenomenon as a consequence of the interactions between its lower-level elements 

rather than describing the phenomenon as a whole using mathematical functions. Focusing 

on the lower-level elements allows a higher degree of complexity and a larger variety in 

interactions than usual mathematical models (MMs). ABMs can be seen as applying a 

bottom-up philosophy as opposed to top-down in MMs (Grimm, 1999). In this section, I 

argue about how this approach can better suit complex conservation problems. 

In population dynamics, the focus changes from the population density fluctuations to the 

life history of individual animals themselves. In ABMs, the density is not modelled explicitly, 

it is simply the sum of the living animals. Instead, the life events (birth, death, feeding, 

moving, reproduction, etc.) are modelled explicitly for each animal independently. In MMs, 

the state variables (or the physical values that describe a phenomenon) are described as 

the results of the dynamics of an average individual population, in proportions. During a 

timestep, a fixed proportion of such population will die, a fixed proportion will be attacked, 

a fixed proportion will be transformed into offspring, and so on to obtain a proportional 

change in density according to the preceding timestep (the growth rate). This change of 

focus is reflected in the nature of the model’s parameters, that switch from population-level 



29 
 

proportions and rates in MMs, to probabilities and values for individual traits in ABMs. For 

example, the reproduction probability can be the same for a whole population, but the 

realisation of reproduction will depend on individual animal trials. With such probabilities, 

it is impossible to predict if a given animal will reproduce or not, if it will survive or not, or 

how far it will move. This offers a more mechanistic, more realistic way of modelling that 

naturally generates inter-individual variability in population dynamics, therefore 

intrinsically simulating the ‘model uncertainty’. In a review of advances in ABMs in ecology, 

DeAngelis and Grimm (2014) provide a good illustration of the fundamental difference in 

modelling animals’ as individuals instead of modelling densities explicitly: “one single 

population size may represent completely different distributions of individuals’ attributes 

which will surely have enormous consequences for population dynamics ”. 

Importantly, switching focus towards animals also allows the modelling of a higher level of 

complexity in species life cycles. By modelling each animal explicitly, individuals can have 

their own ‘age’ and life events can be made dependent of it. Indeed, as explained by 

Uchmański and Grimm (1996), the dynamics in different life stages of a given species are 

sometimes more distinct than the same life stages of two separate species. MMs such as 

matrix population models can simulate different dynamics for different life stages (Leslie, 

1945; Mouquet et al., 2005; Bunnefeld et al., 2013), but the focus is still on density as a 

whole and the parameters are still rates. This is of particular importance, for example, for 

fisheries management where the fish stock heavily depends on the very distinct dynamics 

at the juvenile stage, notably predation and interaction with other species in the nurseries 

(Mahévas and Pelletier, 2004; Kell et al., 2007; Bouchoucha, 2016; Bouchoucha et al., 2016). 

Uchmański and Grimm (1996) and DeAngelis and Grimm (2014) argue that the explicit 

modelling of resource availability is also a key feature that characterises the ABM approach. 

Modelling the dynamics of a primary resource is possible with ODE systems (Holt, 1977; 

Holt, Grover and Tilman, 1994), but the specificity of ABMs allows each animal to differ from 

its conspecific in resource acquisition (due to inherent difference in foraging efficiency or 

to stochasticity in resource quality or abundance) hence generating intrinsic interspecific 

competition. Interspecific competition can also be simulated in ODE systems with Lotka-

Volterra equations, usually by using a logistic growth equation for the non-predator species 

and modulating the value of carrying capacity to represent self-limited growth rate. In a 

more explicit way, the Lotka-Volterra competitive model simulates interspecific 

competition in the form of a reduction of the growth rate according to a fixed coefficient 

and to the population density (Abrams, 1980; Chesson and Kuang, 2008; Orrock, Holt and 

Baskett, 2010; Serrouya et al., 2015; McPeek, 2019). Again, the focus is global and there is 
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no acknowledgement of the inter-individual differences in foraging efficiency, nor of the 

complexity of the relationship between resource abundance heterogeneity and 

intraspecific competition. By modelling resource dynamics explicitly as a currency, the 

impact of environmental perturbations on population dynamics can be predicted more 

accurately through the alteration of resource availability or foraging behaviour (Stillman, 

2008; Bocedi et al., 2014, 2021; Railsback, Ayllón and Harvey, 2021). 

1.5.2. Complex behaviours  

ABMs expand the possibilities for modelling animal behaviour, notably foraging strategies. 

Modelling animals independently allows the simulation of active foraging behaviour by 

making animals drawn to areas of higher concentration of their resources, or to potential 

mates, and affect the distribution and aggregation of animals on a landscape (developed in 

more details in section 1.5.4). This can have strong implications for predator-prey dynamics 

as local aggregation can increase predation pressure (Schmitz and Booth, 1997; Ng’weno et 

al., 2019), but also in conservation conflicts because having more animals on a stakeholder’s 

area than another can affect the equity of conservation policies (Rakotonarivo, Bell, et al., 

2021; Rakotonarivo, Jones, et al., 2021).  

Reproductive behaviour such as sexual reproduction can also be more realistically 

modelled with ABMs. Indeed, animals might have to actually encounter one another to 

reproduce, which can greatly affect population growth at low densities. Allee effects (1931) 

predict that a sexually reproducing population’s growth rate can turn negative at low 

densities due to increasing difficulty to find mating partners, which greatly increases 

extinction probability; an effect that might be stronger in actual systems than mathematical 

theory predicts (Stephens and Sutherland, 1999; Berec, Angulo and Courchamp, 2007). A 

more mechanistic modelling of sexual reproduction can make better predictions of the 

impact of Allee effects on population dynamics.  

Regarding decision-making modelling, switching the focus from proportion of players 

applying a given strategy like in GT, towards the individual choices of players according to 

the information they possess, allows several progresses in the simulation of stakeholders’ 

behaviour. By having each agent make their own choice, inter-individual variability is 

generated. For example, in Kamra et al. (2018), each agent position in the forest defence 

game are sampled at random for the distribution generated by the neural network. In GMSE 

(Duthie et al., 2018) the ABM approach is twofold. First, each land-user chooses their 

strategy – allocation of budget to the different actions available – independently. And 

second, the genetic algorithm simulating decision making is itself an ABM. It is based on the 

assumption that humans usually cannot scan for every single possibility to choose the 
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optimal one but are rather good at choosing the best option that they can conceive. The 

genetic algorithm consists of generating a population of random strategies and letting them 

evolve on their own timeline according to natural selection-inspired processes (mutation, 

crossover, translocation) until a strategy comes out as the fittest in the population 

(Hamblin, 2013). In both cases, each agent chooses its own strategy, generating inter-

individual variability and the strategy selection process allows for suboptimal choices. This 

efficiently simulates implementation uncertainty because it accounts for the fact that all 

agents will not always behave as expected. 

1.5.3. Spatial and temporal scale 

With this switch in point of view comes a change in the spatial and temporal scales of 

models’ application. The explanatory power of ABMs will be maximised for small, countable 

populations while MMs are better suited to very large populations, where the averaging of 

inter-individual variability in the lower-level components can be safely ignored (e.g., 

country demographics, chemistry, fluids mechanics, etc …) (DeAngelis and Grimm, 2014). 

This is why the global densities switch from real numbers in MMs to integers in ABMs 

(Uchmański and Grimm, 1996; Grimm, 1999). Such a change of spatial scale is more adapted 

to conservation problems, as management is usually undertaken at the scale of a region or 

of a reserve and managed populations rarely exceed tens of thousands. Even more when 

the managed population is endangered, as population size can be reduced to only a few 

individuals. 

In ODE systems, all life events happen at once between two timesteps, so animals are born, 

reproduce, are consumed, and die in proportions in a single timestep. In ABMs, the time 

between each individual life event can be modulated and the probabilistic approach of their 

realisation makes it impossible to predict which animal will do what at a given timestep, 

thus allowing agents to accomplish a variety of actions during their lifetime (Uchmański 

and Grimm, 1996). This is more in accordance with real-world systems where different life 

events or different decision-making sequences happen at different time of the year, and that 

their individual realisation is not a certainty. Allocating this time between different life 

events also allows for the inter-individual variability to fully express its potential on 

population dynamics or decision-making. Once again, this allows for a better accounting of 

process and implementation uncertainties. 

1.5.4. Spatially explicit modelling 

This leads to another key asset of ABMs: spatially explicit modelling (DeAngelis and Yurek, 

2017). ABMs often feature a landscape in the shape of a lattice grid in which cells 

characteristics can vary. As independent entities, individuals in ABMs can have coordinates 
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describing a position on this landscape. The rules  governing the changes in these 

coordinates can be very diverse; from random to oriented towards the most resourceful 

areas (Schmitz and Booth, 1997). These rules generate spatial heterogeneity in animals’ 

density on the landscape, thereby accounting for another aspect of process uncertainty. 

Similarly, resources availability can vary from one area to another, either because of an 

implemented stochasticity, or because resource consumption was more important on one 

area than another due to heterogeneity in the consumer density on the landscape. The 

heterogeneity in both animal density and resources availability is of key importance in 

ABMs because it can generate variability in the number of interactions between animals 

across the landscape, which is common in real-world systems and can have a strong impact 

on management policies efficiency but is hardly simulated by ODEs or matrix models.  

Note that modelling resource heterogeneity does not necessarily requires an agent-based 

approach (see DeAngelis and Yurek (2017) for a review). In a model of moor land 

management, Chapman et al. (2009) modelled the landscape as a lattice grid in which each 

cell has a given distribution of heather and graminoid, according to which a density of sheep 

is computed. The distribution of vegetation cover then changes according to the level of 

sheep grazing and the heather burning strategy applied. This example also shows that a 

spatially-explicit approach allows for land-users to make decision given the situation on 

their own piece of land (Duthie et al., 2018; Termansen et al., 2019; Nilsson et al., 2021), 

instead of based on the overall situation like in GT problems, also generating inter-agent 

variability in decision-making. 

A spatially explicit landscape is also of great help to model monitoring techniques (Nuno, 

Bunnefeld and Milner-Gulland, 2013) because  agents can be placed on the landscape to 

simulate the observation. Therefore, their estimation of the density on the landscape will 

depend on the actual distribution of animals in the areas where the observations have been 

simulated (Zurell et al., 2010; Duthie et al., 2018). Once again, spatial heterogeneity in 

animals position plays an important role here, and observation uncertainty is more 

accurately accounted for. 

In conclusion, the spatially explicit feature of ABMs allows for a better modelling of the 

spatial heterogeneity in resources distribution, animals density and human decision-

making and for a better accounting of the process, model, observation, and implementation 

uncertainty. 
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1.5.5. Non-equilibrium ecology 

Uchmański and Grimm (1996) argued that MMs usually rely on the assumption that natural 

systems are inherently stable, only to be disturbed by environmental perturbations. They 

would be either at equilibrium or in the process of returning to equilibrium. The existence 

of equilibrium states (where the growth rate is persistently null) is an important 

assumption to solve ODE systems, but its soundness is debated in the literature (Abrams, 

1980; Uchmański and Grimm, 1996; Grimm, 1999; Chesson, 2000). An interesting feature 

of ABMs is that this assumption is relaxed, and ABMs can be analysed regardless of the 

existence of equilibrium states. ABMs also acknowledge that perturbation in the system do 

not only come from environmental changes but also from variability in animals’ 

interactions due to their intrinsic differences. A mechanism that should be accounted for 

when evaluating management strategies.  

1.5.6. Critiques 

It has often been said that ABMs are harder to develop, harder to communicate and harder 

to analyse (Uchmański and Grimm, 1996; DeAngelis and Grimm, 2014). Indeed, ABMs 

require more complex coding, which would makes them potentially more prone to bugs or 

imperfect design, which can cause distrust as programs were not communicated in research 

outputs (Grimm, 1999). To act on this and on the problem of model communication, the 

Overview, Designs and Detail protocol have been proposed (Grimm et al., 2006, 2010, 

2020). This is a standard protocol to communicate ABMs in research, offering different 

levels of details about the conception of the model. Readers with different levels in 

modelling can therefore get the information needed to fully understand and estimate their 

confidence in the model conception. The ‘Details’ section presents the algorithms of the sub 

models involved in the simulation process (the inclusion of flowcharts is encouraged) in a 

more precise way, allowing modelling-advanced readers to consolidate their belief in the 

soundness of the coding. Coupled with the recent democratisation of open-source code and 

public online repositories, any doubtful reader will be able to check the lines of code directly 

and potentially collaborate to improve it. 

Another criticism is  that ABMs would lack the structured methods of analysis that many 

mathematical models possess, such as solving methods, stability analysis, phase diagrams 

(Grimm, 1999). Indeed, the agent-based approach often comes with a larger number of 

parameters, more tipping points and more nonlinear relationships but ABMs do have their 

own analysis framework now, notably with adapted methods of parameter exploration, 

calibration and sensitivity analyses (Thiele, Kurth and Grimm, 2014; ten Broeke, van Voorn 

and Ligtenberg, 2016). Yet, it is fair to say that they are indeed more complex, and that the 
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validation of an ABM requires more steps, than the usual modelling frameworks (Stillman 

et al., 2015). 

Another caveat might be the accessibility of the coding language that are optimised for 

ABMs. Indeed, object-oriented programming languages such as C++ require quite advance 

coding skills (compiled language, memory management). But ABMs coding is increasingly 

seen as building blocks to be connected to one another to create a given process of research 

interest (DeAngelis and Grimm, 2014), and simplified coding languages and platforms have 

been developed in that sense. For example, NetLogo (Wilensky, 1999) is a platform to create 

all sorts of ABMs from blocks and the validation process is greatly simplified thanks to a 

cross-platform with R (Thiele, 2014). 

All of these challenges led to the widespread concern about researchers putting more effort 

into the production of the model than in the analyses (Grimm, 1999; DeAngelis and Grimm, 

2014), and there is indeed an important compromise to be addressed between complexity 

and value of information for conservation. The different aspects of agent-based research 

might require more effort than other modelling approaches, therefore demanding more 

diverse, larger research groups to efficiently distribute skills and make sure that all the 

aspects of the research receive the same level of attention.   

1.6. Knowledge gap and thesis outline 

The previous section showed how ABMs can improve management strategy evaluation in 

complex conservation problems, but applications are still scarce. Besides GMSE and 

RangeShifter, which I have already presented from different angles, an early application was 

the SIMSPAR agent-based model of the Cape Sable seaside sparrow population dynamics. 

With a spatially explicit topography, this model was meant to predict the effects of water 

management strategies on the sparrow nesting success (DeAngelis and Grimm, 2014). 

Another example is inSTREAM (Railsback, Ayllón and Harvey, 2021), which predicts the 

response of trout populations downstream of hydroelectric dams to the impact of different 

dam management strategies on the alternative flow and temperature of the river, thus 

informing dams administration.  

In this thesis, I take advantage of ABM assets to propose new modelling tools in the hope of 

improving management strategies evaluation in two complex conservation problems: the 

management of conservation conflicts and the management of species endangered by 

apparent competition. 
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1.6.1. Complex problem 1: Conservation conflicts 

Conservation conflicts (CCs) are situations of clashing interests between conservation and 

human livelihood. CCs form complex socio-ecological situations where population 

dynamics, managers’ policy making and land-users’ decision making interact in various 

ways to impact conservation success and the social equity of conservation measures. In 

Chapter 2, I take advantage of the level of complexity that ABMs can simulate to question 

an understudied aspect of adaptive management of conservation conflicts: the timing of 

managers’ intervention. I propose and test a new strategy for managers to time their 

intervention more efficiently, that I build as a new functionality in the software GMSE. I also 

present a novel method to evaluate the efficiency and social equity of different strategies 

and apply it to my timing strategy in a general case of CC. This example shows how to 

estimate if my strategy is relevant in each case and the kind of information that can be 

obtained from it.  

1.6.2. Complex problem 2: Apparent competition 

In predator-prey systems, apparent competition (AC) is an indirect negative interaction 

between prey species that share one or more common predators. When species involved in 

such indirect interactions are of conservation interest, their management can easily 

produce unexpected adverse effects on one another. Yet, the impact of spatial heterogeneity 

in resource distribution or in habitat suitability, of foraging behaviours on AC dynamics, 

and of how management affects them, are still poorly understood. These questions call for 

several assets of the ABM approach, but there are no existing ABM of apparent competition 

yet. In Chapter 3, I introduce and validate a novel multi-species, multi-layer, time and 

spatially explicit ABM of trophic interactions in which apparent competition can emerge 

from individual interactions. I designed the model to ease the inclusion of the mechanisms 

evoked earlier. In Chapter 4,  I add a management option to my model, and demonstrate 

how it should be used to evaluate management strategies for the conservation of a species 

endangered by apparent competition. Through the validation and the use of my model, I 

confront its outcomes to the largely mathematical model-based AC theory, fleshing out how 

ABMs can contribute to improve our understanding of apparent competition and provide 

new insights for better conservation of apparent competition systems. 
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2. Intervene or wait? A model evaluating the timing of 

intervention in conservation conflicts adaptive 

management under uncertainty 

 

This chapter was published in Ecology and Society, available online at this link. I led the 

research, programming, simulation, analysis, writing and my supervisory team – Jeroen 

Minderman, Nils Bunnefeld, Aileen Mill, A. Bradley Duthie – contributed. 

Abstract 

The timing of biodiversity managers’ interventions can be critical to the success of 

conservation, especially in situations of conflict between conservation objectives and 

human livelihood, i.e., conservation conflicts. Given the uncertainty associated with 

complex social-ecological systems and the potentially irreversible consequences of delayed 

action for biodiversity and livelihoods, managers tend to simply intervene as soon as 

possible by precaution. However, refraining from intervening when the situation allows can 

be beneficial, notably by saving critical management resources. We introduce a strategy for 

managers to decide, based on monitoring, whether intervention is required or if waiting is 

possible. This study evaluates the performance of this waiting strategy compared to a 

strategy of unconditional intervention at every opportunity. We built an individual-based 

model of conservation conflict between a manager aiming to conserve an animal population 

and farmers aiming to maximize yield by protecting their crop from wildlife damage. We 

then simulated a budget-constrained adaptive management over time applying each 

strategy, while accounting for uncertainty around population dynamics and around 

decision making of managers and farmers. Our results showed that when the decision for 

the manager to intervene was based on a prediction of population trajectory, the waiting 

strategy performed at least as well as unconditional intervention while also allowing 

managers to save resources by avoiding unnecessary interventions. Under difficult 

budgetary constraints on managers, this waiting strategy ensured as high yields as 

unconditional intervention while significantly improving conservation outcomes by 

compensating managers’ lack of resources with the benefits accrued over waiting periods. 

This suggests that waiting strategies are worth considering in conservation conflicts 

because they can facilitate equitable management with a more efficient use of management 

resources, which are often limiting in biodiversity conservation.   

https://ecologyandsociety.org/vol27/iss3/art3/
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Résumé 

Le timing d'intervention des gestionnaires de biodiversité peut être déterminant dans le 

succès d'un programme de conservation, tout particulièrement quand leurs objectifs sont 

incompatibles avec des activités humaines (conflits de conservation). Mais l'incertitude 

associée aux systèmes socio-écologiques, ainsi que l'irréversibilité potentielle des 

conséquences d'un retard d'action peut pousser les gestionnaires à simplement intervenir 

dès que possible. Pourtant, y renoncer quand la situation le permet peut être bénéfique, 

notamment en mettant efficacement à profit les ressources non-utilisées. Nous proposons 

ici une stratégie basée sur le monitoring pour choisir si une intervention est nécessaire ou 

si attendre est préférable. Cette étude évalue la capacité de cette stratégie à satisfaire à la 

fois les objectifs de conservation et ceux des activités humaines en comparaison avec une 

stratégie d'intervention systématique et inconditionnelle. Pour ce faire, nous avons 

développé un modèle individu-centré de conflit de conservation entre des gestionnaires 

cherchant à conserver une population animale et des agriculteurs cherchant à en minimiser 

l'impact sur leurs cultures. Nous avons ensuite simulé une gestion adaptative du conflit sous 

contrainte budgétaire pour chaque stratégie, tout en prenant en compte l'incertitude 

associée à la dynamique de la population et à la prise de décision des parties prenantes. 

Quand la décision était basée sur une prédiction de la trajectoire de la taille de la population, 

notre stratégie était au moins aussi performante qu'une intervention inconditionnelle et 

permettait aux gestionnaires d'économiser des ressources en évitant des interventions non 

nécessaires. Lorsqu'un budget trop faible rendait la gestion difficile, notre stratégie a 

considérablement amélioré les résultats relatifs à la conservation en compensant le 

manque de ressources par les bénéfices accumulés au cours des périodes sans intervention. 

Ces résultats montrent que notre stratégie devrait être envisagée car elle peut assurer une 

gestion équitable du conflit tout en permettant une utilisation plus efficace des ressources 

de gestion, souvent limitantes en conservation de la biodiversité. 
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2.1. Introduction 

With an ever-growing industrial and agricultural demand in certain parts of the world, the 

amount of the Earth’s surface used for human activities is increasingly large and often 

overlaps with the ranges of species of conservation concern. A conservation conflict can 

arise when such a species is strictly protected but also impacts human livelihood, 

potentially leading to a clash of interests over management decisions (Redpath et al., 2013, 

2015). Diverging objectives can lead land-users to defect from policies by ignoring or 

subverting them and engage in illegal activities often hindering conservation objectives 

(Bunnefeld, Hoshino and Milner-Gulland, 2011; Bainbridge, 2017; Glynatsi, Knight and Lee, 

2018; Rakotonarivo et al., 2021). These conflicts are especially serious when conservation 

and protection interferes with essential livelihood activities such as agriculture (Behr, 

Ozgul and Cozzi, 2017; Mason et al., 2018). Conservation policies must therefore be in line 

with land-users’ interests to ensure compliance and maximize conservation success while 

minimizing the impact on food security and/or farmers’ income. Moreover, because 

conservation conflicts form complex systems with multiple biological, environmental, 

geographical, and social components, the response to change in these interlinked social-

ecological systems is difficult to anticipate (van Wilgen and Biggs, 2011; Glynatsi, Knight 

and Lee, 2018; Mason et al., 2018). To avoid unforeseen perturbations that might jeopardize 

biodiversity conservation or human livelihood, management should also embrace the 

uncertainty around ecological processes and human behaviour (Fryxell et al., 2010; 

Bunnefeld, Hoshino and Milner-Gulland, 2011; Schlüter et al., 2012; Cusack et al., 2020). 

A practical way to deal with uncertainty challenges and complex systems is adaptive 

management, a technique seeking to improve management iteratively by learning from its 

outcomes (Williams, Johnson and Wilkins, 1996; Hicks et al., 2009; Keith et al., 2011). It is 

particularly well adapted to conservation conflicts management because regular 

monitoring and policy updates enhance the ability to trade-off between opposing interests 

(Redpath et al., 2013; Wam et al., 2016; Mason et al., 2018; Richardson et al., 2020). 

Adaptive management thus tailors the conservation policy as closely as possible to the 

system’s variations, but when and why to update the policy can be key to better 

management of social-ecological systems and conservation conflicts (Pérez, Ruiz-Herrera 

and San Luis, 2020). Because the consequences of mismanagement can be detrimental and 

even sometimes irreversible (e.g., crop losses and/or animal population extinction; 

Kaswamila, Russell and McGibbon (2007)), conventional wisdom might suggest that 

conservation success will be maximized by reacting as often as possible with updated 

policy. But waiting can ultimately lead to better management results when well-planned, 
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because it can bring a variety of benefits, including enhancing knowledge through 

monitoring or research (Walters, 1986; Gregory, Ohlson and Arvai, 2006; Nicol et al., 2019). 

For example, Sims and Finnoff (2013) modelled the progression of the slow and predicable 

spread of an invasive species and showed that, due to the knowledge acquired during the 

period of waiting, a delayed time of first intervention was more efficient in reducing both 

the spread and damages on the focal ecosystem than intervention immediately after 

detection of the invasion. In contrast, a delayed intervention when the invasion was fast and 

erratic caused a loss of control over the species progression, eventually leading to a state 

where any intervention became pointless. In an adaptive management context, Iacona, 

Possingham and Bode (2017) modelled a national parks’ bird diversity protection scheme 

and showed that waiting and saving conservation funds to accrue interest before spending 

it progressively on protection achieved a higher number of protected species and a quicker 

recovery of the extinction debt than front-load spending. Because financial and human 

resources for management are often limited (Hughey, Cullen and Moran, 2003; McDonald-

Madden, Baxter and Possingham, 2008), intervening when the benefits of waiting outweigh 

the risks can be unnecessary spending, if constraints on conservation funding allocation 

allows it (Wam et al., 2016; Wu et al., 2021). This trade-off between instances of 

intervention and waiting in an adaptive management process has not yet, to our knowledge, 

been explored in the context of conservation conflicts. We hypothesize that by refraining 

from intervening when conflicting stakeholder interests are already aligned, managers 

could save resources and use them to enhance impact when intervention will be most 

needed to deliver conservation and/or land-users' objectives. We predict that it is likely to 

be especially relevant in situations where a manager’s lack of resources could be 

compensated for by benefits accumulated over a period of waiting. 

To investigate the effect of the timing of intervention on management quality while 

accounting for the different sources of uncertainty associated with conservation conflicts, 

we used the generalized management strategy evaluation framework (GMSE, Duthie et al. 

(2018)). GMSE builds on the management strategy evaluation (MSE) framework, which 

aims to explore the possible outcomes of alternative management scenarios in order to 

assess their adequacy to managers’ objectives (Smith, Sainsbury and Stevens, 1999). MSE, 

first developed in fisheries and later for terrestrial species, decomposes the process of 

natural resources adaptive management over time with sub-models of population 

dynamics, monitoring, management decision-making and harvesting activities, which 

inform and influence each other. This structure helps to isolate different components of 

uncertainty associated with each process when evaluating a scenario (Bunnefeld, Hoshino 

and Milner-Gulland, 2011). GMSE uses an individual-based approach for all four sub-
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models, simulating uncertainty intrinsically (Grimm, 1999; DeAngelis and Grimm, 2014), 

and includes a decision-making sub-model for manager and farmer agents that simulates 

goal-oriented behaviour with the possibility of sub-optimal choices. Furthermore, by 

generating differences between agents, individual-based models (IBMs) can model another 

potential source of conflict: the inequitable distribution of costs and benefits among 

stakeholders. Rakotonarivo et al. (2021a; 2021b) showed that a higher perceived equity in 

conservation measures among farmers increased the propensity to choose pro-

conservation options. Among-user equity is thus important to model and monitor during 

conservation conflicts management. Knowing this, we further develop and apply GMSE to 

evaluate the efficiency of alternative management timing strategies against unconditional 

intervention and determine whether and how a profitable timing trade-off can be found for 

conservation conflict management under uncertainty. 

We modelled a budget-constrained adaptive management of a conservation conflict in 

which a wildlife animal population of conservation concern negatively impacts agricultural 

activities, and farmers can respond by culling to minimize yield loss. We propose two novel 

timing strategies for the manager to determine whether the situation warrants intervention 

when the resources saved by waiting generate long term benefits. Through simulations 

with GMSE, we assessed how each timing strategy affected the quality of management 

regarding the conflict between biodiversity conservation and agricultural production 

objectives. We thereby determined for which conditions our alternative strategies resulted 

in better management than intervening at every opportunity. 

2.2. Methods 

2.2.1. Model overview 

2.2.1.1. Model case 

To simulate conservation conflict management over time, we develop an individual-based 

model with a population of wildlife animals (referred to as ‘population’), farmers, and a 

manager all interacting on an agricultural landscape. The landscape is divided into discrete 

cells, each of which produces an agricultural yield and can hold any number of animals. Each 

farmer owns a contiguous block of cells that forms their ‘land’, and the sum of its cells’ 

productivity determines the farmer’s yield. Animals consume agricultural resources from 

landscape cells to survive and reproduce, which consequently reduces the farmers’ yield. 

Farmers can cull animals that are on their own land to reduce yield loss. The manager 

attempts to avoid extinction by maintaining the population around a predefined target size 

(TN), as previously done in, e.g., the management of conflict between mountain nyala 
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antelope conservation and trophy hunting in Ethiopia (Bunnefeld, Hoshino and Milner-

Gulland, 2011), or between farming and migrating birds’ protection in Scotland or Sweden 

(Bainbridge, 2017; Mason et al., 2018; Nilsson et al., 2021). This target was chosen to be 

high enough to prevent extinction, but low enough to ensure a satisfactory yield to farmers. 

The manager’s method is to implement a policy incentivizing or disincentivizing culling as 

appropriate to get the population size closer to TN. Hence, following an adaptive 

management process, the manager updates this policy according to the monitoring of the 

population size (Nt) at each timestep t.  

2.2.1.2. Manager policymaking   

The manager receives a fixed, non-cumulative budget BM at the beginning of each timestep, 

which we interpret to reflect the total time, energy, or money available to the manager to 

implement a change of policy and enforce culling restrictions. The policy is modelled as a 

cost that farmers must pay to cull an animal on their land. The manager can draw into BM to 

raise this cost to discourage farmers from culling and favour population growth and can 

decrease it to facilitate culling and favour a population decrease. To model the budget 

needed to enforce a restricting policy, every increase of 1 in the culling cost requires an 

investment of 10 b.u. from the manager. Conversely, as the manager does not need to 

incentivize farmers to remove animals when the policy allows high culling rates, they do 

not need to spend budget to decrease the cost. The amount by which the manager changes 

the culling cost is computed by GMSE’s evolutionary algorithm according to their goal that 

was modelled as minimizing the distance between Nt and TN. 

2.2.1.3. Timing strategies 

We explored three timing strategies that determine whether a manager intervenes and 

updates the policy or waits and leaves it as is. The Control strategy (CTL) was the null model 

in this study. It corresponds to unconditional intervention at every opportunity and was 

modelled as the manager updating the policy at every timestep. With the Adaptive Timing 

of Intervention strategy (ATI), we define a permissive range PT around TN in the form of TN 

± PT. Within this range, the manager considers Nt close enough to TN, and consequently, that 

the current policy results in a sustainable culling rate for the population. Hence, the 

manager will update the policy if and only if the population is monitored outside TN ± PT. 

The Trajectory (TRJ) strategy is the same as the ATI strategy, except that when Nt is inside 

TN ± PT, the manager makes a prediction on next timestep’s population size in the form of a 

linear extrapolation based on the current and preceding monitoring results. If this 

prediction falls inside TN ± PT, the manager leaves the policy unchanged; otherwise, they 

update it. In both ATI and TRJ strategies, after a timestep without updating the policy, the 
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manager receives an additional proportion Bb of their initial budget to model the benefits 

associated with waiting. This bonus can be accumulated over several consecutive timesteps 

of waiting but is lost as soon as the manager draws into their budget to raise the level of 

restrictions again (modelling details in Appendix A1). 

2.2.1.4. Farmers action planning 

At the beginning of each timestep, each farmer receives a fixed, non-cumulative budget BF, 

which they allocate to culling a certain number of animals on the land that they own at the 

cost set by the manager’s policy. A minimum cost of 10 b.u. models the baseline budget 

needed for a farmer to cull an animal. The number of animals culled is independently 

computed for each farmer using GMSE’s evolutionary algorithm, meaning that each farmer 

makes an independent decision for how to act according to their goal: maximizing their own 

yield. 

2.2.2. Simulations with GMSE 

To simulate conservation conflict adaptive management with different timing strategies 

under uncertainty, we used the R package ‘GMSE’ (Duthie et al., 2018). See Appendix A1 for 

further details on modelling, parameter choices and simulations. 

2.2.2.1. Initial parameters 

We modelled the landscape as a grid of 40 equally sized rectangular pieces of land, each 

individually owned by a farmer. We model a population that is stable in absence of culling, 

but under the threat of extinction for a high culling rate. We defined the population 

dynamics model parameters such that population density stabilised quickly and steadily. 

The farmers were provided with an initial budget high enough to cull up to the expected 

number of animals on their land when the population is at equilibrium (BF = 1000 b.u), so 

the population went extinct if the conflict was left unmanaged. At first, the manager’s initial 

budget was set equal to the farmers’ one (BM = BF = 1000 b.u) and manager’s target was set 

at half the equilibrium size (TN = 2000 animals). The initial population size was set at N0 = 

1000 animals, which is sufficiently low for the population to be under immediate threat of 

extinction and justify the initial involvement of a manager. We chose these parameters for 

the Control strategy to produce adequate management while also leaving room for 

improvement and determine the extent to which alternative strategies can generate better 

results. 

2.2.2.2. Population dynamics sub-model 

GMSE’s population dynamics model features a population of N animals, each of which has 

an age and a position on the landscape. In each timestep, each animal moves from its current 
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cell to a random cell within a defined range. Upon arrival, the animal consumes a proportion 

of 0.5 of the cell’s remaining yield. All animals move 12 times during a single timestep in a 

random order. After all movement and feeding, animals asexually produce one offspring for 

every 5 resource units consumed, which are added to the population as new individuals. 

Next, animals that have consumed over 4.75 resource units and have an age ≤ 5 timesteps 

survive, the others are removed from the population. This consumption criteria leads to 

density-dependent intra-specific competition for resources, and modelling life events 

discretely generates inter-individual variability, as well as geographical and demographic 

stochasticity, therefore accounting for several sources of uncertainty around population 

dynamics. 

2.2.2.3. Monitoring sub-model 

We assumed that the manager makes no errors during monitoring, thus Nt represents the 

exact population size at each timestep. This assumption avoided modelled stochastic 

monitoring errors that would have challenged a full understanding of management 

dynamics. 

2.2.2.4. Decision-making sub-model 

In each timestep, manager and farmer decision-making are independently modelled using 

evolutionary algorithms, allowing the emergence of a conflict when agents’ goals are 

opposed. This approach computes practical but not necessarily optimal decisions, 

recognizing that most people cannot think of every single possibility to choose the optimal 

one, but can choose the best option among those they could conceive (Hamblin, 2013; 

Duthie et al., 2018 [SI1]), generating uncertainty around stakeholders’ individual decision-

making. 

2.2.3. Experimental plan 

2.2.3.1. Systematic parameter exploration 

To assess management quality of ATI and TRJ in terms of population dynamics and farmers 

yield, we varied the permissiveness PT and budget bonus Bb across a range of values for each 

strategy and compared the outcomes with those of CTL. PT ranged from 0% of the manager’s 

target TN (unconditional update at every timestep, i.e., CTL) to 100% of TN (update only in 

the extreme situations where the population is extinct or close to natural equilibrium size) 

by 10% increments. Bb ranged from 0% of the manager’s initial budget BM (no bonus 

following a timestep of waiting) to 100% of BM by 10% increments. For each unique 

combination of PT and Bb, we ran 100 independent simulation replicates of management 

over a period of 20 timesteps under identical initial conditions. 
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2.2.3.2. Management outcomes 

We defined the most desirable outcomes as when management prevents the population 

from going extinct (1), while keeping it as close as possible to target (2) and ensuring the 

highest yield to farmers (3) with the lowest inequity among them (4). For a particular 

combination of parameters, extinction risk (1) was assessed as the frequency of extinction 

events over all replicates, denoted fext. We measured how close to target the population was 

(2) with the difference between the population size (Nt) and the manager’s target (TN) 

weighted by TN at the end of a simulation averaged over all replicates, denoted dT, in % of 

TN. Farmers’ total yield (3) was calculated as the ratio of the sum of all cell’s yield at the end 

of a simulation over the maximum yield the landscape can provide in the absence of animal 

consumption (40000 yield units) averaged over all replicates and denoted Yend in % of the 

landscape’s maximum productivity. The among-farmer inequity (4) was measured as the 

difference between the lowest and highest farmer’s yields weighted by the highest yield at 

the end of a simulation, averaged over all replicates, denoted Yineq, in % of the highest yield. 

Finally, we computed the proportion of timesteps without manager’s intervention over the 

time length of a simulation and averaged it over all replicates, denoted tw (1-tw is thus the 

proportion of policy updates). We computed 95% bootstrapped confidence interval around 

each average (Manly 2007). The equity between stakeholder groups was assessed by 

systematically confronting the conservation and the agricultural outcomes to detect 

unbalanced repartition of costs and benefits. 

2.2.3.3. Sensitivity to manager’s budget 

We hypothesized that the effect of the budget bonus amount (Bb) on management quality 

would be stronger in situations of higher budget constraint on the manager. To test for this, 

we selected the permissiveness of 50%, in which outcomes with TRJ were not different from 

CTL but with a weak Bb effect (see section 2.3.2). We decreased the manager’s initial budget 

(BM) from 1000 to 500 b.u. by 100 b.u. increments. For each BM, we varied Bb from 0 to 100% 

of BM by 10% increments in 100 replicates, and measured the same outcome proxies as the 

previous section to investigate the effect of Bb amount on management quality according to 

BM. We also simulated management with CTL for each BM value to check how well the 

waiting strategies performed in comparison. This sums up to 60 different combinations of 

BM and Bb, for an additional 6000 independent simulations. 
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2.3. Results 

2.3.1. Adaptive Timing of Intervention strategy 

2.3.1.1. Conservation outcome 

When applying the Adaptive Timing of Intervention (ATI) strategy, increasing the 

permissiveness value caused the extinction risk to increase, and the final population size to 

decrease below target with no marked effect of the budget bonus Bb (Figure 1 and A2.1). No 

combination of permissiveness and bonus amount resulted in equivalent or lower 

extinction risk than CTL strategy (fext = 0.15 with [0.08 ; 0.22] 95% confidence interval). No 

parameter combination of ATI strategy resulted in the population being closer nor equally 

close to target as CTL strategy (dT = -24.90% [-33.78 ; -16.26]) either, which is not surprising 

given that extinction was almost certain for most combinations (fext > 0.9 for PT > 20%). 

2.3.1.2. Agricultural outcome 

Increasing permissiveness caused the farmers’ final yield to increase, and among-farmer 

yield inequity to decrease with no effect of the budget bonus amount (Figures A2.2 and 

A2.3). Farmers’ final yield was >90% of the maximum for all ATI parameter combinations, 

which was slightly more than CTL (Yend = 89.64% [88.04 ; 90.90]). The among-farmer 

inequity was slightly lower than CTL results (Yineq = 5.68% [4.97 ; 6.34]). Indeed, as 

permissiveness increased, there were fewer animals feeding on farmers’ land so the impact 

on yield was lower, and the farmers’ yield got closer to maximum. Also, the highest yields 

attained the maximum value while the lowest kept increasing, which reduced inequity.  

2.3.1.3. Mechanisms underlying the outcomes 

With ATI, most extinction events occurred when the population was monitored to exceed 

the permissive range, and in response, the manager lowered the level of culling restrictions 

to favour population decrease down to target. A problem arose when, in the following 

timestep, the population was monitored inside the permissive range because it caused the 

manager to leave the policy unchanged. Farmers then continued to cull at a low cost, driving 

the population to extinction at the next timestep (Figure 2, ATI panel). Consequently, the 

larger the permissive range around target, the more likely this was to happen, thereby 

explaining why the extinction frequency and deviation from target increased with 

permissiveness values. This misinterpretation from the manager regularly occurred in the 

ATI parameter areas with very high extinction frequency (Figure 1), in which the 

population deviation from target at the timestep preceding extinction was within the 

manager’s permissive range (Fig. A2.4). Hence, the most effective strategy for avoiding 
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population extinction here was to intervene unconditionally in every timestep, at the 

expense of slightly decreasing farmers’ final yield. 

2.3.2. Trajectory strategy 

2.3.2.1. Conservation outcome 

When applying TRJ, the extinction frequency and deviation from target were at least as 

close to 0 as CTL for permissiveness values up to 80%, without the manager intervening up 

to 40% of the time (Figure 1, A3.1 and A3.2). The budget bonus value had either no effect 

or a weak effect on the outcomes. Several combinations resulted in an extinction frequency 

under 0.1, even 0 sometimes, while fext = 0.15 [0.08 ; 0.22] with CTL. The effect of bonus 

amount was slightly stronger in the 40 and 50% permissiveness range (Fig. A3.2), where 

bonus values between 20 and 50% resulted in the population being closer to target than 

CTL (dT = -24.90% [-33,78 ; -16.26]). We chose the 50% parameter area for the experiment 

on sensitivity to manager’s initial budget to test whether this weak effect could amplify 

when applying stronger budget constraints on the manager. 

2.3.2.2. Agricultural outcome 

With TRJ, the farmers’ final yield was as close to maximum, and the among-farmer yield 

inequity was similarly low as the CTL strategy regardless of the permissiveness and budget 

bonus value (Figures A3.3 and A3.4).  

2.3.2.3. Mechanisms underlying the outcomes 

The rare extinction events with CTL seem to have occurred when population was over 

target and the manager decreased the level of restrictions by too much, or when farmers 

happened to cull more than expected, which caused the population to decrease beyond 

reparation (Figure 2, CTL panel). TRJ strategy may have avoided this imprecision by 

offering managers the possibility not to intervene at these moments where the population 

is in the upper permissive range and keep the population closer to target (Figure 2, TRJ 

panel). The absence of effect from the budget bonus amount was most likely caused by the 

manager initial budget alone often being enough to efficiently ensure both population 

maintenance and farmers’ yield given our initial parameter values, leaving no room for 

improvement due to a bonus. Thus, TRJ achieved similarly good management outcomes to 

CTL without managers having to intervene at every timestep, and regardless of the amount 

of benefit obtained from waiting periods. 
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Figure 1. Extinction frequency (fext) according to the permissiveness (PT) and budget bonus 

(Bb) combinations in an individual-based model simulating the management of a population 

under conditions of conservation conflict. The greener, the lower the risk of extinction. The 

band formed by PT = 0 and the corresponding Bb values are the fext obtained with the control 

strategy (CTL). With adaptive timing of intervention strategy (ATI; left panel), there was no 

combination of PT and Bb parameters resulting in as low a fext as control strategy (CTL; 0.15 

[0.08; 0.22] 95% CI), and population extinction was almost certain in most cases, with a weak 

positive effect of Bb regardless of the permissive range size. With the trajectory strategy (TRJ; 

right panel), most areas are as green as or greener than CTL’s fext value, meaning TRJ 

performed at least as well as CTL regarding extinction risk. The effect of Bb on fext was weak to 

absent. 
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Figure 2. Average population size over time of 10 simulation replicates with an individual-

based model simulating the adaptive management of a population under conditions of 

conservation conflict. Upper left: manager intervenes unconditionally (control strategy, CTL). 

Extinctions happened when the population got too far below target size (TN) between two 

consecutive timesteps for the manager to be able to rectify by increasing restrictions. Upper 

right: manager applies the adaptive timing of intervention strategy (ATI; permissiveness (PT) 

= 30%, Budget bonus (Bb) = 10%). Most extinctions happened when population size was over 

the permissive range, then was monitored into it the following timestep. Thus, the manager 

did not update the policy, allowing farmers to continue culling at a low cost, frequently driving 

the population to extinction at the following timestep. Note: in the replicate that did not result 

in extinction, the population was never monitored into the permissive range during a 

decrease, causing the manager to update the costs and control the situation with better 

timing. Lower left: manager applies the trajectory strategy (TRJ; TN = 30%, Bb = 0%). The TRJ 

strategy avoided some extinction events. 
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2.3.3. Sensitivity to manager’s initial budget 

2.3.3.1. Conservation outcome 

The extinction frequency increased, and the final population size decreased below target, 

with decreasing the manager’s initial budget (Figure 3). But for BM = 800 b.u., the extinction 

frequency steadily decreased from 0.71 [0.61 ; 0.80] without budget bonus to 0.07 [0.02 ; 

0.12] for a bonus of 30% of BM (Figure 3), which is significantly closer to zero than CTL for 

the same initial budget (fext = 0.76 [0.67 ; 0.83]). At higher bonuses, the extinction frequency 

increased again between 0.3-0.6, which is lower than CTL, although still a high extinction 

risk. The same trend was observed in the distance to target, which rose from –78.4% of TN 

[-84.9 ; -70.9] without budget bonus, to –11.4% [-21.4 ; -2.1] for the same bonus of 30% of 

BM (Figure A4.1); CTL being –83.7% [-88.7 ; -78.0] (Figure A4.1).  

2.3.3.2. Agricultural outcome 

The farmers’ final yield increased, and the among-farmer inequity decreased with 

decreasing manager’s initial budget (BM) because of the positive effect on extinction risk 

and the negative effect on population size (Figures A4.3 and A4.4). In the BM = 800 b.u. area, 

the farmers’ final yield was between 85% and 100% (for the highest extinction frequency) 

without varying markedly with the bonus amount. With the bonus of 30% that critically 

improved conservation outcomes, the final yield was 89.20% [87.47 ; 90.76] instead of 

97.18% [96.14 ; 99] with the CTL strategy for the same manager’s budget (at the expense 

of a very high extinction risk). The inequity was 5.94% [5.23 ; 6.68] instead of 2.11% [1.65 

; 2.6] with CTL, which is still relatively low.  

2.3.3.3. Mechanisms underlying the outcomes 

For the manager’s initial budget value that maximized the budget bonus’ negative effect on 

extinction risk and positive effect on population size (BM = 800 b.u.), if the manager 

intervened at every timestep or used TRJ but without getting any benefit from the waiting 

periods, extinctions occurred when the population fell to too low a population size. It was 

then challenging for the manager to rectify the population trajectory with only their initial 

budget as the culling cost was always too low to efficiently reduce farmers' culling rate 

(Figure 4, CTL). If, in this situation, the manager accumulated budget bonus from previous 

waiting period(s), they had enough power to enforce higher restrictions on farmers as soon 

as the population did, or was predicted to, fall under the manager’s permissive range. 

Intermediate bonus amounts ensured that, when the latter happened, the population could 

increase closer to the manager’s target (Figure 4, TRJ). TRJ thus appeared to be more 

efficient than CTL in situations of stronger budget constraint on the manager. In such 

situations, the role of the budget bonus was critical in decreasing the extinction risk, while 
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maintaining a high and equitable yield to farmers and allowing the manager to save 20 to 

30% of their interventions (Figure A4.2). 

 

Figure 3. Extinction frequency when applying the trajectory strategy (TRJ); permissiveness 

(PT) = 50%, according to manager’s initial budget (BM) and budget bonus amount (Bb) in an 

individual-based model simulating the adaptive management of a population under 

conditions of conservation conflict. The greener, the lower the extinction frequency. For BM = 

800 b.u. (violet square, detail on the right panel), a pit forms along increasing Bb values, 

meaning that low to intermediate values for Bb markedly lowered the extinction risk. Error 

bars show 95% bootstrapped confidence intervals. The black line is the fext with control 

strategy for the same initial budget and the grey shaded area the 95% confidence interval 

around it. 
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Figure 4. Population size over time averaged over 50 replicates (thick black line, error bars 

being the 95% confidence intervals) plotted on 10 replicates (thin grey lines) with an 

individual-based model simulating the adaptive management of a population under 

conditions of conservation conflict and an initial budget of 800 b.u. The green dotted line 

shows manager’s target (TN), and the green area represents the permissive range TN ± PT. Left 

panel: manager applies the control strategy (CTL). Extinctions happened when the population 

got too far below the manager’s target (green dotted line) between two consecutive timesteps 

for the manager to be able to rectify with their initial budget only. Right panel: manager 

applies the trajectory strategy (TRJ; PT = 50%, Bb = 30%). Thanks to the benefits accumulated 

over waiting periods, the manager was able to raise the culling cost high enough to maintain 

farmers’ culling rate at a sustainable value. The replicate that resulted in extinction was 

caused by a strong misprediction of timestep 10’s population size, causing the manager to 

wait while intervention was needed.  

 

2.4. Discussion 

2.4.1. Summary of the study 

When adaptively managing a conservation conflict in a social-ecological system, our 

modelling of strategies dynamically alternating between intervention and waiting found 

that management outcomes were better when the decision to intervene was made based on 

a prediction of the system’s response than when based on the latest monitoring results 

alone. With prediction-based decisions, conservation and agricultural outcomes were at 

least as good as intervening unconditionally, while allowing the manager to save 

management resources and avoid unnecessary, potentially harmful interventions. When a 

low budget limited a manager's ability to effectively manage the conservation conflict, the 

benefits accrued during waiting periods were applied when intervention was most critical 

and greatly improved conservation outcomes with only a weak impact on farmers’ yields 

and equity. Naturally, the main risk with waiting strategies is to decide to wait when 

intervention is needed, or to intervene when waiting is preferable. Basing intervention only 

on current monitoring should be avoided because when population density is monitored 

inside the permissive range during a sharp increase or decrease, managers can mistakenly 

conclude that the policy is adequate when, in fact, keeping the same policy running again 

can lead to extinction or critical yield loss. Basing intervention on population trajectory 

instead also includes a risk of inaccurately predicting the population density to be within 

the permissive range, encouraging the managers to wait while the policy is inadequate to 

align conservation and agricultural objectives. Nevertheless, the consequences for yield loss 

or population decline were reversible when using an adequate permissive range.  



53 
 

2.4.2. Importance of budget and monitoring in waiting strategy’s 

efficiency 

The superiority of our Trajectory strategy over unconditional intervention depended on the 

manager’s budget. When the budget was high enough to manage the situation efficiently 

with the Control strategy, the outcomes with the Trajectory strategy were at least as good 

as unconditional updates regardless of the budget bonus amount. This suggests that 

interventions when the population was monitored within the permissive range and 

predicted to stay in it (i.e., oscillating close to target) were less useful. Since the initial 

budget was sufficient for satisfactory management, the benefits reaped during waiting 

periods with the Trajectory strategy could not further improve the management outcomes. 

This is relevant because human, financial and time resources are limited in conservation 

and there is a constant competition for their allocation to cases (Hughey, Cullen and Moran, 

2003; McDonald-Madden, Baxter and Possingham, 2008; Jachowski and Kesler, 2009; Ruiz-

Miranda, Vilchis and Swaisgood, 2020). It is also increasingly recognized that different 

species can impact human livelihood in different ways and at different times within the 

same geographical area, which should be considered in management (Pozo et al., 2021a, 

2021b). Intervention in one conflict could thus be a priority for a time, and then 

deprioritized when another requires intervention more urgently. Therefore, resources 

unused during periods of waiting in a well-funded case could instead be allocated to other, 

potentially less well-funded and/or more pressing cases and improve overall conservation 

benefits (Wu et al., 2021). Our Trajectory strategy can thus help a dynamic allocation of 

management resources to cases that need them the most at a given instance.  

When a limited budget made management more challenging, the resources saved when not 

intervening using the Trajectory strategy could generate enough benefits to compensate for 

the lack of resources. We emphasize that the prediction based on population trajectory is a 

means for managers to reduce the risk of misjudging the timing of intervention; what 

improved management here was better access to the benefits accumulated over waiting 

periods. This result supports previous modelling results in Iacona, Possingham and Bode 

(2017), where national park managers did not have enough budget to put every endangered 

bird species under protection at once but could maximize success by waiting and saving 

their funds to gradually enhance their monetary power. Importantly, this is only possible if 

unused management resources are not revoked or reallocated when less needed. A review 

of exit-strategies in conservation by Ruiz-Miranda, Vilchis and Swaisgood (2020) shows 

that withdrawing funds when objectives are attained is very uncommon in adaptive 

management (but should be more considered and carefully planned). The present study 
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suggests that the budget saved during waiting periods should be reallocated if the 

management resources are not limiting but invested in improving future interventions if 

they are. 

To isolate the effect of various timing strategies on management quality, we assumed that 

the manager had perfect knowledge of population size. But real-world monitoring involves 

uncertainty that plays an important role in the success of conservation (Bunnefeld, Hoshino 

and Milner-Gulland, 2011; Nuno, Bunnefeld and Milner-Gulland, 2013). Monitoring 

uncertainty will cause errors in estimating population density, and therefore errors in 

deciding if the situation requires intervention. This will decrease the efficiency of both 

unconditional intervention and Trajectory strategies, but the latter might be more impacted 

because errors will influence both monitoring and trajectory prediction, therefore 

mitigating the advantage over unconditional intervention. Indeed, the efficacy of Trajectory 

strategy might rely on more regular and accurate monitoring, which might not always be 

possible or affordable. Testing the effect of observation accuracy or cost on management 

quality is beyond the scope of this study, but it is an important aspect to consider when 

applying timing strategies (McDonald-Madden, Baxter and Possingham, 2008; Milner-

Gulland, 2011; Wu et al., 2021). 

Since our focus is on management strategy and not on control measures, we limited 

farmers’ options to culling for the sake of simplicity and ease of model interpretation. We 

did not model indirect measures such as fencing, widespread in the management of 

conservation conflicts over land-use (Nyhus, 2016; Pooley et al., 2017), as these measures 

are rather permanent constructions that are not always fitted to the regular changes and 

updates of our adaptive management process. Nevertheless, future modelling might 

usefully consider a range of alternative options for population management. 

2.4.3. Modelling novelties for adaptive management 

The ongoing 6th mass extinction under a rapidly changing climate (Ceballos, Ehrlich and 

Dirzo, 2017) and the consequences of land-use conflicts between agriculture and wildlife 

protection on food security often put conservation managers under urgency (Du Toit, 

2010). Our results suggest that the urgency to act should not mean systematic, 

unconditional intervention and stress the importance of acquiring information to choose 

wisely how and when to intervene. As with software such as ISIS-fish (Mahévas and 

Pelletier, 2004) or FLR (Kell et al., 2007) in fisheries management, the method developed 

here can inform managers’ policymaking. Parameterizing GMSE with empirical data from a 

conflict between farming and common cranes in Sweden has previously permitted the 

evaluation of subsidy levels that best balanced culling and scaring for the maintain of both 
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population and farmers’ income (Nilsson et al., 2021). Likewise, targeted parameterization 

of our model can give managers information to decide how permissive they should be and 

how much gain they should expect from waiting periods for our strategy to be useful 

regarding conservation, land-users' objectives, and management resources allocation 

efficiency.  

The individual-based nature of our model and the modularity of the GMSE framework 

accounts for several sources of uncertainty around population dynamics and stakeholders’ 

individual decision making. Our mechanistic model simulates population dynamics with 

intrinsic demographical uncertainty (inter-individual variability in the realization of life 

events) and geographical uncertainty (animals’ movement is stochastic; Uchmański and 

Grimm (1996), Stillman et al. (2015)). Future work could also include explicit modelling of 

environmental uncertainty, potentially in the form of stochastic extreme events impacting 

both population dynamics and farmers’ yields. Currently, our results are robust even if 

population dynamics are uncertain and if spatial distribution can induce inequity by having 

the animals sometimes being more numerous on one farmer’s land than another. Yet, 

Rakotonarivo et al. (2021a; 2021b) showed that the perceived equity in the balance of costs 

and benefits of conservation actions between and among stakeholders' groups plays an 

important role in land-users' propensity to choose pro-conservation strategies. However, 

the aspect of equity in conservation conflicts has scarcely been incorporated in modelling 

results. For example, Wam et al. (2016) used a measure of monetary equity between 

different stakeholder groups in their management model balancing logging, livestock 

grazing and game hunting activities in a boreal forest. Our method also controls between-

stakeholder equity by systematically confronting the population dynamics and the farmers’ 

yield. In addition, we used a new indicator for among-stakeholder equity by measuring the 

success of our strategies against the difference between the lowest and highest farmers’ 

yields. Among-stakeholder equity, to our knowledge, has not been modelled before in 

conservation conflicts, and modelling stakeholders individually like the present study offers 

a direct measure of equity among members of the same group, thus allowing its monitoring 

as an important outcome of management. 

The lack of dynamic stakeholder behaviour modelling has been identified as a major cause 

of failure in conservation (Schlüter et al., 2012). Previous studies have addressed this by 

modelling decision-making using game theory (Colyvan, Justus and Regan, 2011; Glynatsi, 

Knight and Lee, 2018). Nevertheless, a game-theoretic framework can have limitations 

when applied to management decision-making, including fixed behaviour rules, finite sets 

of actions (e.g., cooperate or defect) and the assumption that players are perfectly rational 
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and aware of the best options for them (Myerson, 1991). In this model, we use evolutionary 

algorithms, a form of artificial intelligence, for managers and farmers to make decisions, 

which we show here offers a heuristic to find practical solutions when the panel of options 

is too large for game theoretic problems (Hamblin, 2013). We combined the evolutionary 

algorithms with an individual-based approach and model decision-making independently 

for each stakeholder with the possibility for sub-optimal choices along a continuum of 

possible actions (see also Kamra et al. (2018), Cusack et al. (2020), Nilsson et al. (2021)). 

Simulating these different sources of uncertainty in our experiments allowed to conclude 

that the strategy we proposed is relevant even if managers do not always make the most 

efficient policies and if farmers do not always behave as they were expected to.  

2.5. Conclusion 

We use an uncertainty-robust modelling tool to compare the management quality of waiting 

strategies against unconditional intervention regarding conservation and agricultural 

objectives and discuss which strategy to prefer according to cases of conservation conflicts. 

We propose a strategy for managers to dynamically alternate between intervening and 

waiting informed by population monitoring. When the decision to intervene or wait is based 

on a prediction of population trajectory, our strategy can result in a better, more equitable 

management of conservation conflicts, especially in situations of limiting budget. By saving 

time, energy and/or money when intervention is not necessary, it can also ensure a more 

efficient use of management resources. 
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3. Introducing an agent-based model for apparent 
competition systems’ management 

 

Abstract 

Apparent competition is an indirect negative interaction between prey species mediated by 

a shared predator. Its intensity varies with asymmetry in predation, prey characteristics, or 

spatial-temporal structure. Species of conservation interest are often involved in such 

interactions, which complicates predictions of indirect consequences of management on 

other species in the system. This is especially true when conservation measures impact 

spatial heterogeneity in resource distribution or habitat suitability, and when managed 

species have structured life cycles or exhibit complex individual behaviours. Agent-based 

modelling approaches handle such complexities especially well but, to date, management 

strategy evaluation in apparent competition systems have used classical mathematical 

models. In this chapter, I introduce a spatially explicit multi-species, multi-layer agent-

based model of trophic interactions in which apparent competition can emerge, integrating 

the aforementioned mechanisms simultaneously with a better simulation of uncertainty. I 

validate the model in its essential version with a sensitivity analysis by measuring the 

strength of apparent competition when varying different sources of asymmetry. My model 

was particularly sensitive to asymmetry in preys’ resource availability, prey resource 

consumption, and prey quality for predators. It was less sensitive to asymmetry in preys’ 

catch probability and fertility. Overall, the model behaves as theory and empirical cases 

predict, with some interesting exceptions that challenge results from mathematical models. 

Notably, apparent competition intensified with increasing asymmetry in preys’ resource 

availability, which was not predicted by the usual P* rule, indicating the need for more 

careful consideration of management measures influencing this factor (e.g., supplementary 

feeding) than existing theory advises. Also, the emergent shapes of predator’s functional 

and numerical responses differed from the usual shapes in mathematical models. By 

relaxing this key assumption, ABMs can simulate particular cases more accurately and, 

therefore, better inform managers. My results also showed that, unlike theory predicts, 

oscillations in population densities might not necessarily induce weaker apparent 

competition. These results enrich understanding of apparent competition and underscore 

the utility of the agent-based framework for addressing complex conservation challenges. 

My model is fit for purpose and ready to integrate more complex spatial structures and 

individual behaviours.  
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Résumé 

 
La compétition apparente est une interaction négative indirecte entre une ou plusieurs 

espèces proies par le biais d’un prédateur commun. Son intensité varie en fonction de 

l'asymétrie dans la prédation, dans les caractéristiques intrinsèques des proies ou de la 

structure spatio-temporelle. Des espèces préservées sont souvent impliquées dans ce type 

d’interaction, ce qui complique l’anticipation des conséquences indirectes des programmes 

de conservation sur les autres espèces du système. Particulièrement lorsque ces 

programmes impactent l'hétérogénéité de la distribution des ressources ou de l'habitat, et 

lorsque les espèces concernées ont des cycles de vie complexes ou présentent des 

comportements particuliers. L’approche individu-centrée gère particulièrement bien cette 

complexité mais, jusqu'à présent, l'évaluation des stratégies de gestion dans les systèmes 

de compétition apparente utilise des modèles mathématiques plus classiques. Dans ce 

chapitre, je présente le premier modèle de compétition apparente individu-centré, qui peut 

intégrer les mécanismes susmentionnés tout en permettant une meilleure simulation de 

l'incertitude associée. Je valide le modèle dans sa version la plus essentielle via une analyse 

de sensibilité mesurant l’intensité de la compétition apparente en réponse aux variations 

des différentes sources d'asymétrie. Mon modèle est particulièrement sensible à 

l'asymétrie dans la disponibilité des ressources des proies, dans le niveau de consommation 

de ressources des proies et dans la qualité des proies pour les prédateurs. Il était moins 

sensible à l'asymétrie dans la probabilité de capture et la fertilité des proies. Dans 

l'ensemble, le modèle se comporte comme attendu par la théorie et les études empiriques, 

à quelques exceptions intéressantes près qui remettent en question les prédictions des 

modèles mathématiques usuels. Notamment en ce qui concerne l'impact de la disponibilité 

des ressources, de l'amplitude des cycles et de l'absence d'hypothèse sur la réponse 

fonctionnelle du prédateur, sur l'issue de la compétition apparente. Mon modèle est 

maintenant prêt à incorporer des structures spatiales et des comportements individuels 

plus complexes. 
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3.1. Introduction 

3.1.1. Definition 

In population dynamics, apparent competition (AC) is an indirect negative interaction 

between individuals, populations, species, or entire functional groups, mediated through 

the action of one or more species of shared natural enemies (Holt, 1977; Holt and Bonsall, 

2017). More specifically, in predator-prey systems, AC is an indirect interaction between 

several prey species mediated by a shared predator. A perturbation in species dynamics or 

behaviour can thus have an impact on the other species through the change induced in 

predation pressure. For example, following a particularly mild winter in North America, a 

great increase in the population densities of deer and moose in caribou foraging range led 

to a higher density of predator, which resulted in a concerning decline in the caribou 

population (Serrouya et al., 2015). Thus, even if there is no direct competition for resources, 

an increase in moose and deer densities can still have a negative impact on Caribous density 

mediated by predation. Because conservation can directly impact a population’s dynamics, 

indirect effects of population changes on other species are important for predicting the 

consequences of management strategies. I introduce an agent-based model simulating 

apparent competition in trophic systems to help anticipate these consequences and inform 

decision making in conservation policies. 

3.1.2. Drivers 

First, where does AC come from? In a review of theoretical and empirical studies of AC, 

DeCesare et al. (2010) suggest that two species having a shared predator (or predation 

niche overlap) is sufficient for a system to exhibit apparent competition, and asymmetric 

predation is often added as another necessary condition (Wittmer, Sinclair and McLellan, 

2005; Holt and Bonsall, 2017). If predation is symmetric in absence of competition for 

resources, apparent competition is at its lowest level because both preys undergo predation 

to the same extent. Both prey species should stabilise at lower densities in the presence of 

the other prey species than they would be in the absence of the other prey species, but this 

negative predation-mediated effect is the same for both preys (Holt, 1977; Bonsall and 

Hassell, 1997). Asymmetry in predation would induce a difference in the strength of this 

negative effect according to the prey species. 

Asymmetric predation can come from predators exhibiting different behaviours towards 

different preys. The predator must first be capable of feeding on multiple prey species 

(DeCesare et al., 2010) and have different functional response (relationship between catch 

rate and prey density) and numerical response (relationship between prey and predator 



61 
 

densities) that differ according to prey species (Wittmer et al., 2013; Barraquand et al., 

2015). For example, different handling time (time and energy spent capturing, consuming, 

and digesting a catch) between preys can impact apparent competition outcomes. The prey 

that has a longer handling time will keep predator occupied and satiated for longer (lower 

catch rate, weaker functional response), relieving predation on other preys, but a prey that 

has a shorter handling (higher catch rate, stronger functional response) will leave more 

time for predation on the other preys. This is illustrated in Sundararaj et al. (2012), in which 

they hypothesised that populations of local endangered ungulates could benefit from a 

predation relief because lions spent more time handling catches from livestock prey 

populations. 

Differences between prey in resource exploitation efficiency, fertility, and the ability to 

withstand predation are other potential sources of asymmetric predation (Holt, 1977). 

Indeed, in situations of apparent competition, generalist predators often subsist on an 

abundant primary prey species that has high fitness to predation, but occasionally feed on 

a less abundant, less predation-resistant, secondary prey species (Sinclair et al., 1998). An 

example can be found in Roemer, Donlan and Courchamp (2002), in which the proliferation 

of introduced feral pigs on an island, which had a high fertility rate and vulnerability to 

predation, increased the density of golden eagles and consequently intensified predation 

on endemic foxes, which were less abundant and less fertile than feral pigs. 

Another source of asymmetry in predation can come from the spatial features of the trophic 

system. For example, the reduction of suitable habitat drove moose to forage on caribou 

wolf hunting area, which subsequently increased wolf numbers and predation on protected 

caribous (Wittmer, Sinclair and McLellan, 2005). Environmental patchiness can lead to 

apparent competition between prey species (Bonsall and Hassell, 1997).  Indeed, if either 

prey species gets spatially clustered in a shared patch and attracts predators, there might 

be a negative impact on the other prey species locally, but also a predation relief at a global 

scale because of the predators’ aggregation around one patch. Another example is refuge-

mediated apparent competition, in which a landscape feature, or a species, provides 

something attractive to another species (e.g., shelter, shade, humidity) that intensifies 

consumption or predation on other species locally (Orrock, Holt and Baskett, 2010). An 

interesting example was studied by Mouquet et al. (2005) in a case of plant-mediated 

apparent competition between ant colonies and one of their parasites. The presence of a 

particular plant species of gentian provides refuge from predation to the parasite larvae, 

making contact between parasites and ants more likely, which therefore increases the 

negative effect on ant colonies. 
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There are other sources of apparent competition, such as the so-called mesopredator 

release effect; an increase in predation by intermediate predators when removing an apex 

predator. Courchamp, Langlais and Sugihara (1999), showed that, in an island community 

that includes birds and rodents with a shared cat predator, a sudden removal of cats would 

be extremely detrimental for birds because the rodent population has a much higher 

growth rate than the birds, which would greatly increase rodent predation on them in 

absence of rodent control by cats. Another source can be a time lag in a predators’ response 

to a decline in prey densities, which temporarily maintains a high density of predators over 

a low density of preys (Serrouya et al., 2015). Thus, the spatial or temporal features of the 

system can also have a strong impact on the outcomes of AC (Holt and Lawton, 1993; Morris, 

Lewis and Godfray, 2005; Wittmer, Sinclair and McLellan, 2005; Oliver, Luque-Larena and 

Lambin, 2009; DeAngelis and Yurek, 2017). Any combination of all the aforementioned 

sources, and of course, any human intervention that would impact them, could potentially 

severely influence the intensity of AC in the system. This is why spatial and temporal 

dimensions must be taken into account alongside the more typically studied characteristics 

of the animal populations to anticipate the consequences of apparent competition following 

the implementation of a conservation policy. 

I identified the asymmetry in prey species growth rates, carrying capacities, predator 

functional and numerical response as the intrinsic drivers for asymmetrical apparent 

competition.  

3.1.3. Detection 

The way AC is measured, and the indicators of AC, vary a lot in the literature but are mostly 

based on the fluctuations in population densities following the perturbation of a predator - 

prey system. The change in predator density is referred to as the AC response, and the 

relative change in preys’ densities that follows is the AC effect (Abrams, 1998; Hart, 

Freckleton and Levine, 2018). For Holt (1977), if there is a shared predator in a system, the 

densities of prey populations are lower in the presence than they are in absence of the other 

prey, and the competitor that experiences less AC is the one that can both sustain and 

withstand the highest number of predators when at equilibrium, or the ‘P* rule’ (Holt, 

Grover and Tilman, 1994). More precisely, the winning prey is expected to be the one with 

the highest growth-rate-to-attack-rate ratio. Besides, Serrouya et al. (2015) applied an ODE 

model to a population of caribou impacted by predator-mediated apparent competition and 

notably showed that an increase in the carrying capacity of the primary prey resulted in a 

lower equilibrium density of the secondary prey. In a review of the role of apparent 

competition in conservation, DeCesare et al. (2010) also identified asymmetry in relative 
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attack rates as evidence of apparent competition; that is, the number of predator attacks on 

one prey were lower in absence than in presence of other preys. This review also mention 

a decrease in the relative fitness of prey following a perturbation (Chesson and Kuang, 

2008), as well as shifts in predator functional response as potential markers of AC. 

Predators can exhibit a switch from regulatory predation to depensatory predation of the 

secondary prey (citing Forrester and Steele (2004)). Most of the time in AC, the primary 

prey will exhibit regulatory predation while the secondary prey will exhibit depensatory 

predation (Sinclair et al., 1998). 

In a case particularly relevant to conservation, Ng’weno et al. (2019) demonstrate that a 

concerning decrease in hartebeest population density was caused by apparent competition 

with zebras mediated by lions. The study showed on site that (i) zebras were lions’ primary 

prey, as they were most often consumed by lions with only a weak effect on zebra 

population’s growth rate. (ii) Hartebeest exhibited a predator mediated Allee effect, 

because in presence of a predator population, hartebeest growth rate became negative at 

low densities. (iii) Hartebeest were preferably selected by lions when present (negative 

Jacob index of selectivity, Jacobs (1974)). There was a predation niche overlap 

demonstrated by (iv) a higher hartebeest mortality zones with high concentration of zebra 

and (v) a hartebeest survival twice as high in zones where fewer zebras occurred. 

To measure AC intensity, it might be possible to use preys’ interspecific competition 

coefficients, as in Lotka-Volterra competitive equations of preys competing for resources 

(Abrams, 1980). But initial explorations suggest that such coefficients are less well adapted 

for situations where competition is mediated by predation. Indeed, this approach would 

require a prey intraspecific competition coefficient that includes the negative effect of 

predation on the prey’s growth rate in absence of other preys. In other words, the per-capita 

effect of a prey on the prey population growth rate would be decomposed into a coefficient 

of intra specific competition for resources and a coefficient for intra specific competition 

through the sustaining of the predator population. First, it would imply a fixed and known 

numerical response from the predator.  Second, that the competition coefficients are 

constant regardless of the presence, absence and density of other preys (which is true under 

very specific assumptions seldom verifying in nature; Abrams (1980)). Even if these 

assumptions were safe to make, the intensity of AC is only linked to the change in predator 

population density, so if prey species do not compete for resources, then the inter specific 

competition coefficient between preys will most likely be null anyways because all the AC 

effect will be attributable to the change in predator density. Similarly, preliminary 

exploration ruled out the mutual invasion criterion as a measure of AC, which is less suited 
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to study across-trophic-levels coexistence, systems with important Allee effect and more 

largely to predator-prey systems. Moreover, the impact of demographic stochasticity on the 

invasion criterion is still an open question (Chesson, 2000; Grainger, Levine and Gilbert, 

2019). Consequently, I identified the densities, the catch rates, and the extinction rates, 

before and after the perturbation, as the important variables to follow to inform decision 

making in conservation of AC systems. 

3.1.4. Importance for conservation 

Conservation measures and/or biodiversity management can induce a rapid change in the 

dynamics and behaviours of species within a trophic community. Intervention on one 

species of conservation interest can thus indirectly impact other species in the food chain 

through predation, unexpectedly increasing the density of a population that managers or 

land-users want to be low or decrease the density of a population that they want to be high. 

The human-mediated introduction of a previously absent species, either by accident (e.g., 

the introduction of ship rats on islands), for human livelihood (e.g., cats for rodent control; 

Courchamp, Langlais and Sugihara (1999)), or for conservation purposes (e.g., 

reintroduction of golden eagle on islands; Roemer et al. (2001); Roemer, Donlan and 

Courchamp (2002); Courchamp, Woodroffe and Roemer (2003)) perturbs the population 

dynamics over a very short time window (see DeCesare et al. (2010) for a comprehensive 

review). A classic case is the introduction of rabbits on islands that are intended for human 

consumption, which subsequently increase the population size of introduced cats that 

intensify total predation on local endangered birds species (Courchamp, Langlais and 

Sugihara, 2000). 

Unexpected consequences of apparent competition can also lead to conservation conflicts. 

A good example is human management of the game hunted red grouse in the UK, which is 

predated upon by hen harriers (Thirgood et al., 2000; Redpath and Thirgood, 2009). 

Because the raptor is protected by The Wildlife and Countryside Act 1981, grouse keepers 

are not allowed to use destructive methods to prevent hen harrier predation on grouse, so 

some have introduced diversionary prey (voles). But it caused the total density of hen 

harriers to increase, thereby having the opposite effect and ultimately intensifying 

predation on grouse. This unintended consequence of diversionary prey introduction led 

grouse keepers to use destructive control methods on hen harriers, resulting in a 

conservation conflict between raptor conservationists and game keepers and hunters. More 

complex modelling that incorporates apparent competition could potentially anticipate 

such conflicts and help in their avoidance or mitigation. 
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3.1.5. Modelling 

To better predict the unintended indirect consequences of species dynamics under 

apparent competition and ultimately avoid mismanagement, the use of population 

dynamics models to simulate conservation scenarios in silico is an important tool for 

improving decision-making. Most models use a system of ordinary differential equations 

(ODE) to model apparent competition, with each ODE describing the change of a species’ 

density. The most common ODE systems are derived from the Lotka-Volterra (LV) 

population model (Holt, 1977; Holt, Grover and Tilman, 1994; Courchamp, Langlais and 

Sugihara, 1999, 2000; Roemer, Donlan and Courchamp, 2002; Courchamp, Woodroffe and 

Roemer, 2003), and less often from MacArthur-Rosenzweig’s population model, a 

derivation of the LV population model better integrating indirect interactions (Serrouya et 

al., 2015). Some studies use models such as Leslie’s matrices (Mouquet et al., 2005), 

coupled-lattice model (CML, in which several patches can inform each other in terms of 

inputs for their internal mathematical model; Bonsall and Hassell, (2000)). Beside this 

variety of mathematical, deterministic models (which outcome is always the same with a 

given parameter set), agent-based approaches remain under used. 

Although uncertainty is increasingly recognized as a key aspect for conservation and 

biodiversity management (Bunnefeld, Hoshino and Milner-Gulland, 2011; Keith et al., 2011; 

Nicol et al., 2019), deterministic models are less adapted to simulate uncertainty 

(Uchmański and Grimm, 1996; DeAngelis and Grimm, 2014). Indeed, models are expected 

to inform on which aspect of the system needs research, how to dimension monitoring, 

knowing the room for manoeuvres and margin of error (Williams, Johnson and Wilkins, 

1996; Nuno, Bunnefeld and Milner-Gulland, 2013). Examples of studies incorporating 

uncertainty in apparent competition dynamics are rare, but Roemer, Donlan and 

Courchamp (2002) did assess uncertainty around their modelling results by varying their 

parameter values by a few percents and estimated the impact on their focal species density 

at the end of simulation. Conservation in AC systems could thus benefit from a modelling 

framework that better integrate uncertainty. 

3.1.6. Knowledge gaps 

The review on apparent competition by Holt and Bonsall (2017) identified several open 

questions in apparent competition theory. Specifically, the effect of spatial heterogeneity on 

the outcomes of apparent competition is of primary interest, and a limited number of 

studies have explored some aspect of it (Morris, Lewis and Godfray, 2005). For example, 

Bonsall and Hassell (2000) used a coupled lattice model of dispersal to investigate the effect 

of environment patchiness on AC. The investigation of the impact of more complex 
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population structures on apparent competition dynamics is also still in progress. For 

example, different age classes and the time spent in each developmental stage can influence 

the outcomes of AC (Bonsall and Hassell, 1997). Mouquet et al. (2005) demonstrated the 

effect of population structure on AC using an age structured Leslie matrices model. Foraging 

behaviours are also expected to greatly impact AC, as explored by Courchamp, Langlais and 

Sugihara (1999), Roemer, Donlan and Courchamp (2002), Courchamp, Woodroffe and 

Roemer (2003) with a Lotka-Volterra model that simulated predator preferences through 

biases in predator’s diet and prey catch rates. It is also increasingly recognised that the 

existence of equilibrium states in populations dynamics are dependent on very specific 

assumptions (Abrams, Holt and Roth, 1998), which are seldom verified in the field 

(DeAngelis and Grimm, 2014; Stillman et al., 2015). Indeed, temporal variability such as 

seasonality or different phenology, as shown in Holt and Barfield (2003) or Smith and Hall 

(2016) with models coupling Lotka-Volterra equations and time series analysis, can greatly 

impact the assumption of equilibrium. All these avenues for progress in AC theory could 

benefit from a more flexible and versatile modelling framework. 

3.1.7. Relevance of agent-based approach 

Although much theoretical progress concerning apparent competition has been made using 

mathematical models and the diversity of their respective assets, the assumptions of these 

models can also limit the kinds of theoretical inferences that can be made. Agent-based 

models (ABMs) provide an alternative, more flexible framework to incorporate multiple 

complex features of biological systems. Indeed, mathematical models are perhaps better 

suited to general, large-scale questions where the impact of specific and local complexities 

can be safely ignored. Nevertheless, apparent competition conservation problems are most 

likely to have a specific and local focus (e.g., with implications at the scale of a region, a 

reserve, or a protected area), are often spatially explicit by nature (e.g., land-use change, 

connectivity changes or refuge-mediated AC), and unexpected responses often stem from 

local interactions between animals and between animals and their environment. The 

bottom-up approach of agent-based modelling is therefore theoretically more appropriate 

for addressing questions at this scale (Schmitz & Booth 1997), as finite and small 

populations, non-equilibrium dynamics, and flexibility in individual behaviours are 

amongst the key advantages of agent-based modelling (Uchmański and Grimm, 1996; 

DeAngelis and Grimm, 2014; Stillman et al., 2015). Moreover, for very large food webs, ODE 

systems stability analysis can become very complicated, perhaps even intractable. In 

contrast, ABMs can more easily handle a large number of different populations. 
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Despite that, the agent-based approach is not widespread in conservation, even if it has 

been demonstrated to be very useful in ecology (Stillman et al., 2015). For example, The 

Gecko agent-based framework (Schmitz and Booth, 1997) showed the importance of active 

foraging behaviour on the persistence of a tuft-grasshopper-spider trophic system. The 

MORPH model (Stillman, 2008) can predict the consequences of environmental change on 

foraging populations, and its fish-MORPH adaptation to salmonids to predict their responses 

to loss of flow in rivers according to dam management policies (Phang et al. 2016). 

RangeShifter 2.0 (Bocedi et al., 2014, 2021) is one of the most versatile examples of agent-

based models used in conservation. It simulates a species’ population dynamics and 

dispersal on a changing, spatially explicit landscape over time, and the parameters 

governing movement, reproduction, survival, settlement, and dispersal are changing 

according to evolutionary processes. RangeShifter was used to evaluate alternative 

strategies in a large diversity of biodiversity management in cases including improving 

landscape connectivity, species reintroduction, or the spread of invasive species. Yet, there 

is, to my knowledge, no existing ABM simulating apparent competition in predator-prey 

dynamics, nor the management of such cases. 

I introduce an agent-based model of trophic interaction between primary resources, 

herbivores, and predators in which apparent competition can happen as an emergent 

feature. In this model, animals occur on a spatially explicit landscape on which resources 

distribution can be heterogeneous and/or exhibit patterns, animals can have different age 

classes, different foraging rules, and different phenology. I believe it can be an interesting 

virtual lab to explore the influence of these characteristics (and their combinations) on 

trophic systems, especially to test management scenarios and inform decision making in 

biodiversity conservation. This chapter presents the details of the model in its most basic 

version, testing its outcomes against apparent competition theory and exploring the 

relative impacts of the parameters underlying the rules of trophic interactions. 
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3.2. Model 

The model description follows the ODD (Overview, Design concepts, Details) protocol 

(Grimm et al., 2006, 2010, 2020). 

3.2.1. Overview 

3.2.1.1. Purpose 

The purpose of the model is to simulate the trophic interactions between several 

populations of primary producers, primary consumers, and predators to predict the 

emergence and intensity of apparent competition for research and conservation purposes. 

The ABM approach makes it possible for this model to account for important aspects of 

population dynamics that cannot be included simultaneously in deterministic models, such 

as spatial heterogeneity, complex population structures, complex individual behaviours, 

intrinsic uncertainty, or non-equilibrium dynamics. This work aims to present the details 

of this model in its simplest version with two prey populations using different resources 

and a predator population feeding on both prey species. Along with the model’s calibration 

and sensitivity analysis, the outcomes will be compared to AC theory as a proof of concept.  

3.2.1.2. Entities, state variables and scales 

Landscape 

All animals are simulated on a square grid lattice landscape of size S x S cells. Each cell is 

characterised by an x and a y location, a reference number unique to the cell, a certain 

amount of resources of two different kinds present on the cell, a maximum amount of 

resources that the cell can hold, the density of each animal present, and the counts of 

catches of each prey types during a timestep. 

Animals 

Animals move and interact on the landscape and with resources and other animals on 

landscape cells. They are characterised by an x and y position on the grid, a type (here prey 

1, prey 2 and predator), a dead or alive status, an age, a resource stock, and a number of 

offspring produced. The movement range (in fraction of S), satiation level, resource cost for 

maintenance and for reproduction (all in resource units), diet, fertility or average expected 

number of offspring produced during reproduction trial, and time of introduction depend 

on the population they belong to. For coding purposes, each animal population is attributed 

a specific tag of 3 digits. Resource type tag first digit is a 1, 2 for prey, 3 for predators, and 

the two other digits are a number for the population (up to 99). E.g., prey 2 type tag is 202. 
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Animals – preys 

Prey entities are modelled as a specific type of animal, distinct in the way that they harvest 

resources directly from the landscape cells. Each prey population have specific values for 

their animal characteristics and feed on its own resource (no competition for resources 

between prey populations). 

Animals – predators 

Predators are modelled as a specific type of animal entities, distinct in the way they acquire 

resources from capturing preys. They have additional characteristics that distinguish them 

from other animal entities. These characteristics are a conversion rate of a catch into 

resources for each prey type, and a probability of catch for each prey type. Predators feed 

on both prey species. 

3.2.1.3. Spatial and temporal scales 

Timesteps and spatial scale are abstract in the model, but in this study, a single timestep 

could be conceptualised as the equivalent of a month and a single grid cell could be 

conceptualised as equivalent to one square hectare. 

3.2.1.4. Process overview and scheduling 

In all the following processes involving animals in a timestep, prey populations act first, in 

order of tags, followed by the predator population, provided that the current timestep is 

passed their respective introduction time. A timestep begins with animals moving, which 

updates the position of each animal on the landscape and of each animal type’s densities on 

the cells. Next, preys feed and predators hunt, which updates the animals’ individual 

resource stock, preys’ status (dead or alive) and prey type’s densities on cells. With a 

defined frequency, the following processes occur: animals undergo a survival trial to update 

their dead or alive status; survivors undergo the reproduction trial to update the animals’ 

number of offspring produced. The animal tables are updated, accounting deaths, 

increasing survivors age by 1, introducing offspring as new individuals and resetting 

offspring counters to zero. Lastly, the animal type’s density is updated accordingly at the 

end of the timestep. A timestep then finishes by saving the density of resources, preys, 

catches and predators on the landscape at this instant (as a new line of a results table), 

before saving a spatial snapshot of the cells’ information. Finally, the densities and catch 

counts of each animal population in the landscape table are reset to 0 to start the next 

timestep anew. At a defined frequency, the landscape cells resources are replenished to 

their maximum.  
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Figure 5. General flowchart of a timestep in the model. Boxes finishing with a '?' are realised 

only if the timestep is superior to the time of introduction of the given species. Boxes finishing 

with a '??' are realised only if, in addition, the timestep is a multiple of fsurv.  
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3.2.2. Design concepts 

3.2.2.1. Basic principles 

The model tracks the dynamics of two prey populations and one predator population 

involved in trophic relationship according to their interactions with a spatially explicit 

landscape. The two prey populations subsist on distinct resources, and there are no direct 

interactions between prey species. Therefore, the only source of inter specific competition 

between prey populations is apparent competition mediated by the predator. 

3.2.2.2. Emergence 

Non-emergent processes 

The way landscape resources on which prey feed are replenished to their maximum (after 

a sequence of moving, feeding, survival and reproduction trials) at a given frequency is 

imposed and independent of the animals’ characteristics.  The number of resources that 

predators gain from a catch of a prey type is fixed. 

Emergent features 

The emergent result of the model are the population densities on the landscape. They 

emerge from each animal’s position and resource stock, which depends on their 

characteristics (movement, feeding, survival, reproduction), on their interaction rules and 

on their relative position on the landscape. By extension, the predator’s functional response 

(change in predator catch rate following a change in prey density) and numerical response 

(change in predator density following a change in prey density) also emerges from the 

animals’ individual behaviour.  

3.2.2.3. Objectives 

There are no adaptive traits or evolutionary objectives in this version of the model. Feeding 

is modelled as an automated, unmotivated process and conditions reproduction and 

survival. It means that a prey automatically feeds on the cell it landed after the random 

moving sequence and is not drawn to a cell by any mechanism. Idem for predators that 

hunts preys that happen to be on the cell it landed after the random moving sequence and 

is not drawn to a cell by any mechanism. The question here strictly ecological and the focus 

is population dynamics at spatial, temporal scales, end effective population sizes too small 

for evolutionary processes to be relevant. 

3.2.2.4. Interactions 

The focus is on trophic interactions: prey directly consume resources from the landscape, 

and predator get resources by consuming prey. Prey’s resources are made distinct to make 

sure that the only interactions between prey populations are mediated by their shared 
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enemy. The diets and preferences of each population are specified in a separate table (Table 

1). If an animal has a diet composed of several species, an order of preference can be 

specified in the table (1, 2, 3 etc).  

Table 1. Structure of a diet table in the model. The values shown here were the one used in 

the simulations. 

 “Consumes” 

Resource 

type 1 

Resource 

type 2 

Prey 

type 1 

Prey 

type 2 

Predator  

“Is 

consumed 

by” 

Resource type 1 0 0 1 0 0 

Resource type 2 0 0 0 1 0 

Prey type 1 0 0 0 0 1 

Prey type 2 0 0 0 0 2 

Predator  0 0 0 0 0 

 

3.2.2.5. Stochasticity 

Movement 

Animal initial positions on the landscape are generated at random by drawing their 

coordinates from a uniform distribution between 0 and the side size S of the landscape. 

When moving, an animal’s next position is computed by adding to its current x and y 

position two values drawn from a uniform distribution between minus and plus its 

movement range in x and y directions. It accounts for the fact that animal movement is 

hardly predictable and can be impeded or inhibited by factors that are not yet simulated in 

this model. Plus, Brownian motion is the least assumption in most ABMs (Bocedi et al., 

2014; Duthie et al., 2018). 

Feeding 

The amount of resources taken from a cell by a feeding prey is drawn from a uniform 

distribution between 0 and the prey’s satiation level. It accounts for the fact that foraging 

efficiency depends on many other factors that are not simulated in this model. Preys feed in 

random order to avoid the same preys always feeding first. 

Hunting 

In this study, the predators are generalist, with no prey species preference simulated. 

Available preys on the cell the predator is located are randomized for each hunting predator 
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to model a random first seen, first hunted behaviour. Predators hunt in random order to 

avoid the same predator always hunting first. Predators successfully catch a prey with a 

certain probability (according to prey’s type). The trial is made by drawing a number from 

a uniform distribution between 0 and 1, and if this number is lesser than the catch 

probability, the catch is effective. It models the variability in preys’ ability to escape and/or 

in predator’s hunting efficiency. If the catch is successful (details in section 3.2.3.2), 

predator take in a fixed amount of resources according to the prey’s population 

characteristics, assuming that they consume the whole prey caught. 

It was not the case in this work, but this amount can also be drawn from a uniform 

distribution between 0 and the prey’s max resources per catch to generate more 

stochasticity. It could simulate predators that do not consume their catch entirely, by 

behaviour or because of disturbances (scavengers, enemy approaching, kleptoparasitism, 

etc…) (Krofel and Jerina, 2016) or that the quality of the catch varies for reasons not 

explicitly modelled here.  

Survival 

Survival is probabilistic and dependent upon the animal’s resource stock size, or the 

amount of resources it has accumulated between two consecutive survival trials. By default, 

if the animal has less resources in stock than the maintenance cost, its survival probability 

is 0; otherwise, it is 1. The trial is made by drawing a number from a uniform distribution 

between 0 and 1. 

It was not the case in this work but the relationship between survival probability and 

resource stock size can be set to continuous, smoother functions, including linear, negative 

exponential, positive exponential and logistic.  

Reproduction 

Reproduction is asexual, probabilistic, and dependent upon the animal’s resource stock 

size. By default, if the animal has less resources in stock than the reproduction cost, it 

reproduces with a probability of 0; otherwise with a probability of 1. The trial is made by 

drawing a number from a uniform distribution between 0 and 1; if this number is less than 

the reproduction probability, the animal reproduces at this timestep. The number of 

offspring generated is drawn from a Poisson distribution parameterized on the animals’ 

population average offspring number (fertility). It simulates the variability in animals’ 

clutch sizes within their population. 
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It was not the case in this work but the relationship between reproduction probability and 

resource stock size can be set to continuous, smoother functions, including linear, negative 

exponential, positive exponential and logistic.  

Observation 

The observed variables are the density of each population on the landscape and the number 

of successful predators catches in each prey population. In this study, these variables are 

measured assuming no monitoring error, after each survival and reproduction trial but the 

frequency of observation can be set independently. For this study, the focus is on global 

population dynamics, but these variables are spatially explicit and measured on each cell. 

They make it possible to compute other measures such as population growth rate, catch 

rate, extinction rate (over several replicate simulations), and intensity of apparent 

competition. 

3.2.3. Details 

3.2.3.1. Initialisation  

At initialisation, two tables to store simulation results are independently constructed, one 

containing the characteristics of each cell (a snapshot of the landscape) and the other 

containing animal population densities and catch count. Resources are set to their 

respective maximum on each cell and animals’ positions are distributed at random with an 

empty resource stock, alive status, 0 offspring and age 0. Timestep 0 is for setting up the 

structures; the life events processes start on the next timestep. Each population can have a 

different time of introduction: for a given population, the processes will only take place once 

the number of simulated timesteps have exceeded this value. 

3.2.3.2. Sub models 

Animals’ movement 

For each animal in the population table, a value drawn from a discrete uniform distribution 

between plus and minus the animal’s movement range is added to their current x and y 

values before applying a correction for reflective boundaries. (If new coordinate > S, 

subtract S; if < 0, add S). The movement range is implemented as a fraction of the landscape 

size.  

Animals’ survival trial 

For each animal in the population table, if its status is ‘alive’, a survival probability is 

computed. By default, this probability is conditional: if the animal’s resource stock contains 

more than its maintenance cost, its survival probability is 1 and 0 otherwise. A value is then 

drawn from a uniform distribution between 0 and 1. If it is under the survival probability, 
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the animal survives to the next timestep and the maintenance cost is subtracted from its 

resource stock (Figure 7).  

Animals’ reproduction trial 

For each animal in the population table, if its status is ‘alive’, a reproduction probability is 

computed. By default, this probability is conditional: if the animal’s resource stock contains 

more than its reproduction cost, its reproduction probability is 1 and 0 otherwise. If 

reproduction is successful, the number of offspring produced is drawn from a Poisson 

distribution with a rate parameter that is the animal’s population fertility. That way, some 

animals might end up not reproducing even if they have the resources for it, simulating the 

possibility of unsuccessful mating, miscarriage, or external causes preventing reproduction. 

If the offspring number is greater than 0, the reproduction cost is subtracted from the 

animal’s resource stock (Figure 8). 

Functions linking resource pool and survival/reproduction probability 

It was not used in this study, but to give a chance to animals that could not get enough 

resources to meet the maintenance (reproduction) cost to pass the trials, as well as making 

survival (reproduction) less certain when meeting the cost, I implemented several other, 

smoother functions for the relationship between an animal’s resource pool and its survival 

(reproduction) probability. These smoother functions could also model the uncertainty and 

context dependence of different environmental conditions, e.g., climate/seasons, which 

might cause variation in the amount of resources required to survive (reproduce). I wanted 

the probability to get closer to 1 when the animal’s resources exceeded the maintenance 

cost mc and closer to certain death when the animal had few resources. I set a minimal 

survival probability of 0.1 when the animal had 0 resources in stock (p0), and a survival 

probability of 0.9 when the animal had reached exactly the maintenance cost (pmc). I tested 

several functions positive and increasing on R+ and able to plateau at a value of 1 (Figure 

6).  

Exponential negative 

𝑝(𝑥) = 1 − 𝑏 ∗  𝑒−𝑎∗𝑥 

With x = animal’s resource stock. 

Solving for 𝑝(𝑥 = 0) we get  𝑝0 = 1 − 𝑏  or  𝑏 = 1 − 𝑝0 . 

Solving for 𝑝(𝑥 = 𝑚𝑐) we get   𝑝𝑚𝑐 = 1 − 𝑏 ∗ 𝑒−𝑎∗𝑚𝑐     or    𝑎 = −
ln(

1− 𝑝𝑚𝑐
𝑏

)

𝑚𝑐
 . 
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Linear on [0 ; mc] – exponential negative on ]mc ; +∞[ 

𝑝(𝑥) = 𝑎 𝑥 + 𝑏 

With x in [0 ; mc]. 

Solving for 𝑝(𝑥 = 0), we get  𝑝0 = 𝑏 . 

Solving for 𝑝(𝑥 = 𝑚𝑐), we get   𝑝𝑚𝑐 = 𝑎 ∗ 𝑚𝑐 + 𝑏   or   𝑎 =
𝑝𝑚𝑐−𝑏

𝑚𝑐
 . 

 

Exponential positive on [0 ; mc] - exponential negative on ]mc ; +∞[ 

𝑝(𝑥) = 𝑏 ∗ 𝑒𝑎∗𝑥  

With x in [0 ; mc]. 

Solving for 𝑝(𝑥 = 0) we get  𝑝0 = 𝑏 . 

Solving for 𝑝(𝑥 = 𝑚𝑐) we get   𝑝𝑚𝑐 = 𝑏 ∗ 𝑒𝑎∗𝑚𝑐   or   𝑎 =
ln(

𝑝𝑚𝑐
𝑏

)

𝑚𝑐
 . 

 

Logistic 

𝑝(𝑥) =
1

1 + 𝑒−𝑎(𝑥−𝑏)
 

Solving for 𝑝(𝑥 = 0) we get  𝑝0 =
1

1+𝑒𝑎∗𝑏    or 𝑎 ∗ 𝑏 = ln (
1

𝑝0
− 1). 

Solving for 𝑝(𝑥 = 𝑚𝑐) we get   𝑝𝑚𝑐 =
1

1+𝑒−𝑎(𝑚𝑐−𝑏)    or  𝑎 =
1

𝑚𝑐
(𝑎 ∗ 𝑏 − ln (

1

𝑝𝑚𝑐
− 1)) 

Replacing 𝑎 ∗ 𝑏 ,  𝑎 =  
1

𝑚𝑐
(ln (

1

𝑝0
− 1) − ln (

1

𝑝𝑚𝑐
− 1)) . 

And finally, 𝑏 =
1

𝑎
ln (

1

𝑝0
− 1) 
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Figure 6. Different functions linking the survival or reproduction probabilities with the 

resource stock size of an animal. p0 = 0.1, pmc = 0.9, maintenance cost = 300 resource units. 

 

Preys’ feeding 

At the start of prey feeding, a vector containing the preys’ row indexes in their population 

table is created and shuffled to avoid having the same animals systematically feeding first. 

Then, for each prey in the table following the order of the shuffled indexes, the amount of 

resources available on the cell it is standing on is obtained by correspondence with the 

landscape table, and the prey transfers resources from the cell to its resource stock. If there 

are enough resources on the cell to match the prey’s maximal consumption, the amount of 

resources taken is drawn from a uniform distribution between 0 and prey’s maximal 

consumption; otherwise, it is between 0 and what is left on the cell (Figure 9). This models 

that resources might be harder to find when scarce and/or that most herbivores are usually 

able to modulate their intake according to resource availability. 

Predators’ hunting 

At the start of predator hunting, a vector containing the predators’ row indexes in their 

population table is created and shuffled to avoid having the same animals systematically 

feeding first. Then, the number and type of prey present on the cell is obtained by 

correspondence with the landscape table. A vector containing each prey present on the cell 

coded by its type (prey 1 or 2) is constructed, and the order of the prey depends on the 

predator’s behaviour. In this study, the predator is generalist so the preys’ position in the 
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vector is shuffled randomly without bias. If there are prey present on the cell and the 

predator has not yet reached its satiation level, the predator parses the preys’ vector, and a 

catching trial is realised for each prey. A number is drawn from a uniform distribution 

between 0 and 1, and if this number is lower than the focal prey type’s catch probability, 

the catch is successful. The predator then gains the resources corresponding to this prey 

type’s conversion rate in its resource stock, and the catch count and density of this prey 

type on this cell is updated (Figure 10).  

If the predator has a strong preference for one of the prey types, the available prey vector 

is ranked by order of preference (Table 1). If the predator always hunts the best prey 

present, the available preys’ vector is ranked by descending order of resources per catch. 

Animals’ population table update 

After the survival and reproduction trials, all animal population tables are updated. A new 

table, of row dimension equal to the current population size plus the total number of 

offspring produced and subtracted the number of deaths, is constructed. Parsing the old 

population table, the characteristics of the animals with status “alive” are copied into the 

new table, their offspring number is reset to 0 and their age is incremented. If this individual 

reproduced during this timestep, then the corresponding number of offspring are added as 

new individuals (0 resource stock, 0 offspring, age 0) on the landscape cell of their parent 

(Figure 11). 

Links between parameters 

In this study, I set the reproduction cost to the same value as the maintenance cost, 

assuming that is similarly costly to survive and reproduce for animals. It can also be 

interpretated as an individual struggling to survive will be less likely to reproduce. Prey i‘s 

maintenance cost µi is computed such that an animal that has eaten to max consumption at 

every timesteps between two survival trials would be able to maintain, reproduce and keep 

stock for the next sequence, following the formula: 

𝜇𝑖 = 𝑐𝑒𝑖𝑙 (
𝜎𝑖∗𝑓𝑠𝑢𝑟𝑣

3
) 

Predator satiation σP is computed such that an animal that has eaten to satiation between 

two survival trials would be able to maintain, reproduce and keep stock for the next 

sequence, following the formula: 

𝜎𝑃 = 𝑐𝑒𝑖𝑙 (
3 ∗ 𝜇𝑃

𝑓𝑠𝑢𝑟𝑣
) 

These links are choices of mine for this experiment, they can be set independently 

otherwise. 
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3.2.3.3. Parameters table 

Table 2. Parameters table. The values noted 'Variable' were modified directly or indirectly 

during the experiments. 

Class Object Name Symbol Value  Unit 

Landscape Size of the landscape grid S 25 Cells 

Max resources of type 1 K1 100 Resource units 

Max resources of type 2 K2 Variable Resource units 

Animal 

 

Prey 1 initial density N0
1 100 Nb of ind. 

move range  0.1 Fraction of S 

max consumption σ1 10 Resource units 

maintenance cost µ1 34 Resource units 

reproduction cost ρ1 34 Resource units 

fertility λ1 1 Nb of ind. 

time of introduction t1 0 timesteps 

Prey 2 initial density N02 100 Nb of ind. 

move range  0.1 Fraction of S 

max consumption σ2 Variable Resource units 

maintenance cost µ1 Variable Resource units 

reproduction cost ρ2 Variable Resource units 

fertility λ2 Variable Nb of ind. 

time of introduction t2 0 timesteps 

Predator initial density P0 100 Nb of ind. 

move range  0.1 Fraction of S 

satiation σP Variable Resource units 

maintenance cost µp Variable Resource units 

reproduction cost ρP Variable Resource units 

fertility λp 0.5 Nb of ind. 

time of introduction tP 200 timesteps 

catch probability of prey 1 pcatch1 0.1 - 

conversion rate of prey 1 ϒ1 100 Resource units 

catch probability of prey 2 pcatch2 Variable - 

conversion rate of prey 2 ϒ2 Variable Resource units 

Other Simulation time tmax 1000 Timesteps 

Frequency of survival trials fsurv 10 Timesteps 

Freq. of reproduction trials frepr 10 Timesteps 

Frequency of landscape refill ffill 10 Timesteps 
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Figure 7. Flowchart of the animal survival trial sub model. Rectangular boxes indicate internal 

processes. Oblique boxes indicate processes with input or output. Diamond boxes indicate 

conditional processes. 'DoA' = dead or alive. 



81 
 

 

Figure 8. Flowchart of the animal reproduction trial sub model. 
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Figure 9. Flowchart of the prey feeding sub model. 
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Figure 10. Flowchart of the predator hunting function. Online pdf version here. 

https://stir-my.sharepoint.com/:b:/g/personal/adb3_stir_ac_uk/EQ2I94EbTVVBnPDEAVFjqwQBy8gqZUWtJIHoaIMledlr0w?e=qjOfXh
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Figure 11. Flowchart of the sub model updating the animal population tables. 
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3.2.4. Programming/coding 

The model was coded in C++. This object-oriented language was well suited to this work, 

notably thank to classes and derived classes. Each class (landscape and animal population) 

set common characteristics and functions that are shared with derived classes. Then, it is 

easier to add a new kind of entity (prey, predator, or another layer of landscape) as a 

derived class, with the same characteristics as the parent class but with additional 

characteristics or functions. For example, predator and prey are derived classes of the 

animal class, their share the basic characteristics and functions of any animal in the model 

(movement, reproduction, survival, building functions, etc) but differ by their resource 

absorption functions (feeding for prey and hunting for predator) and some additional 

characteristics (predator have a number of resources per catch and a catch probability for 

each prey type). Creating another trophic layer of animals with different feeding behaviour 

then consisted in adding the functions and characteristics that make it different from prey 

and predator, as they would inherit all the animal basic functions of the animal class, as well 

as a new entry in the diet table. Creating objects of each derived class was more 

straightforward, as they share the same parameters and functions and differ by the 

parameter values and functions arguments. For example, prey 1 and prey 2 share the exact 

same parameters and functions but only differ by the parameter values (e.g., prey 1 has a 

higher fertility than prey 2, prey 2 relationship between resource stock and survival 

probability is logistic and prey 1 is exponential negative). C++ is also optimised to iterate 

through loops over different objects of the same class (different populations of prey) to 

apply the same function(s). For example, make all prey population move iteratively, then 

feed iteratively, etc… 

Using this type of optimised structure, coupled with allocating population tables 

information to neighbouring locations in the memory, made computation faster. Simulating 

around 4000 animals interacting on 625 cells during 1000 timesteps (100 generations) 

took 7 to 12 seconds on average (excluding extinctions) according to population dynamics 

parameter values on an Intel® Core™ i5-7500 CPU @ 3.40GHz. The parameter that most 

strongly influenced computing time was the size of the landscape (the value of 25 was a 

good trade-off between landscape size and computing time) and the frequency of append 

to the results files. 

The model was run from the Linux command line using a bash script that sets the parameter 

values, compiles, and runs multiple simulations in for loops, setting the seed to a different 

value at random at each call of the model. A text file is created for each set of simulation 

replicates to save the parameter values, appending the seed and the simulation time at each 
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call. Re-running a simulation with the same parameter values and the same seed will give 

the exact same results, which can be handy for problem-solving. 

The history of model versions, with the commented code of the model and associated 

simulation-launching scripts can be found on my GitHub 

(https://github.com/AdrianBach/abmClean.git). 

  

https://github.com/AdrianBach/abmClean.git
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3.3. Methods 

To verify the reliability of the model, I calibrated the model’s parameters to find a stable 

case of trophic interactions between two prey populations with similar characteristics, a 

predator population, and symmetrical predation to have a baseline level of apparent 

competition, both prey populations undertaking predation to the same extent. Then I 

generated asymmetry in predation by varying the characteristics hypothesised to induce 

apparent competition in prey 2 while keeping these characteristics fixed for prey 1. I 

measured the changes in prey 1 dynamics to evaluate the relative change in the apparent 

competition effect. In addition to testing the model against the mathematical theory 

underpinning apparent competition, it also demonstrates the relative impact of a multitude 

of parameters on the intensity of apparent competition in my model.  

3.3.1. Simulations 

All simulations were run over 100 generations (1 generation = fsurv = 10 timesteps). 

Predators were introduced after 20 generations to allow a period of burn-in time for prey 

to stabilise around pseudo-carrying capacity. 30 replicates were simulated for each 

parameter set to show the range of the outcomes. Each population’s density at each 

generation was averaged over the replicates and a boot-strapped 95% confidence interval 

was computed around them. This allowed to plot the evolution of the populations mean 

density and confidence intervals over generations for each set of replicates. All simulations 

were run with the model version v0.5.9, available for consultation at this link. The analyses 

were run on R (v4.2.1; R core team (2022)).  

3.3.2. Calibration 

Preliminary model exploration revealed that prey characteristics were less critical for 

affecting stability than the predator ones. I chose a value of 100 for parameters in resource 

units or number of individuals to be able to easily interpret parameter values as fractions 

of one another. With the prey 1 parameters in Table 2 applied to both preys, the simulations 

resulted in a carrying capacity of 1,654 [1,642 ; 1,665] (bootstrapped 95% confidence 

interval) preys 1 and 1,647 [1,637 ; 1,656] preys 2 in absence of predators. This might be 

conceptualised, e.g., as two similar populations of herbivores in a protected area. Then I ran 

a full factorial design (as in Thiele, Kurth and Grimm (2014)) to explore several ranges of 

values for the predator characteristics while keeping the prey resources per catch ϒi to 100 

units. First, I spanned very large ranges of predator maintenance cost µp, prey catch 

probability pcatch
i and predator fertility λP to eliminate unlikely scenarios and narrow the 

ranges. Finally, µp varied from 100 (survival and reproduction largely assured by one catch 

each timestep) to 1,000 (one catch per timestep only guaranties survival) by 100 units 

https://github.com/AdrianBach/abmClean/blob/3e90b766cf442ce1535f64572a18714d255bc7a2/v0.5.9/chapter2ibm-v0.5.9.cpp
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increments. pcatchi ranged from 0.1 (relatively difficult for predators to reach satiation) to 

0.5 (very easy for predators to reach satiation) by 0.1 increment. Predators’ λP was fixed to 

0.5. With 10 replicates per parameter set, the narrowed calibration experiment was 300 

simulations. The most suitable parameter set was chosen by plotting the dynamics of 

predators and prey and choosing the parameter values that produced the most stable 

populations with the highest final density of predators. This parameter set was the baseline 

scenario for the sensitivity analysis.  

3.3.3. Sensitivity Analysis 

Prey 1 parameters were fixed to the values in Table 2, while prey 2 parameters varied 

across a range of plausible values following a one-factor-at-a-time approach (as in ten 

Broeke, van Voorn and Ligtenberg (2016)). I varied population-level parameters that would 

induce asymmetry in predation and therefore apparent competition, by varying the 

asymmetry between prey population growth rates, prey population carrying capacities, 

predator population numerical and functional response according to prey species (Table 

3). 

3.3.3.1. Fertility 

Changing the fertility (λi) can be interpreted as introducing a competing prey (prey 2) that 

reproduces in a larger quantity, or managers helping prey 2 to get more or less offspring, 

than the focal prey (prey 1). The fertility parameter is expected to impact the competing 

prey’s growth rate. Prey 2 fertility was varied across the values 0.1, 0.5, and from 1 to 10 by 

increments of 1. A λ2 of 1 being the same as prey 1; the baseline scenario. A prey 2 with 

lower fertility than prey 1 (λ2 < λ1), is expected to produce fewer offspring, decreasing prey 

2 final density, thus sustaining fewer predators, which in turn should alleviate predation on 

prey 1 and increase its final density. With a λ2 > λ1, all the opposite is expected. 

3.3.3.2. Maximum consumption 

Changes in the maximum consumption value can be interpreted as introducing a prey 2 that 

exploits its unique non-overlapping resource more or less efficiently than prey 1 

population. Prey 2 maximum consumption was varied from 5 to 30 by increments of 5, plus 

the extreme value of 50, the baseline scenario value being 10 resource units. A prey 2 with 

σ2 < σ1 is expected to have a higher pseudo-carrying-capacity, as more animals can be 

maintained with the same amount of resources, thus increasing prey 2 final density, thereby 

sustaining more predators, which in turn should increase predation on prey 1 and decrease 

its final density. With a σ2 > σ1, all the opposite is expected.  
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3.3.3.3. Resource abundance 

Varying this parameter of maximum resource abundance can be interpreted as a loss or 

gain of resources for prey 2 but not prey 1 due to environmental reasons, or to managers 

providing supplementary feeding or suppressing part of the food source. Prey 2 maximum 

consumption was varied from 50 to 200 by increments of 50, plus the extreme values of 

300 and 500, the baseline scenario value being 100 resource units. This is another way to 

influence prey 2’s carrying capacity, so we expect the same outcome as the maximum 

consumption experiment.  

3.3.3.4. Catch probability 

Varying the catch probability parameter could be interpreted as providing shelter to prey 

2 but not prey 1, introducing a prey 2 that is more easily caught by predators than prey 1 

(e.g., introduction of a naïve prey or setting traps) or, more generally, introducing a 

predator with a stronger or weaker functional response for prey 2 than for prey 1. Prey 2 

catch probability varied from 0.1 to 0.5 in 0.1 increments, 0.1 being the baseline value. A 

prey 2 with pcatch2 > pcatch1 will be caught more often, making it easier for predators to reach 

satiation, but at the same time, will be more likely to be depleted by over predation, thereby 

decreasing the number of available preys. So, if pcatch2 is too high, predator population 

density and predation pressure on prey 1 would decrease, resulting in an increase in prey 

1 final density.  

3.3.3.5. Resources per catch 

Changes in the resources per catch parameter can be interpreted as introducing a prey 2 

that is more or less nourishing to predators than prey 1, or for which the predator needs to 

spend more or less energy handling than prey 1. It is also equivalent to introducing a 

predator with a stronger or weaker numerical response for prey 2 than for prey 1. The 

amount of resource that predator gets from catching a prey 2 varied from 50 to 300 by 

increments of 50, plus the extreme value of 500, the baseline scenario value being 100 

resource units. A ϒ2 < ϒ1 will increase the number of catches needed for predator to 

maintain but since the catch probabilities stay the same, it should reduce the final density 

of predators and increase both preys’ final density.  

Table 3. Parameter ranges chosen for the sensitivity analysis. 

Parameter Baseline Min Max Increment Extreme values 

λ2 1 1 10 1 0.1 ; 0.5 

σ2 10 5 30 5 50 

K2 100 50 300 50 500 

pcatch
2 0.1 0.1 0.5 0.1 - 
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ϒ2 100 50 300 50 500 

 

3.3.3.6. Measures 

As an overview of the changes in predator and prey population dynamics, I have measured 

the mean final density of each population N*i as the density over the last 25 generations 

averaged across the replicates. I have also measured the mean amplitude of the oscillations 

as the difference between the maximum and minimum density over the last 25 generations 

averaged across the replicates. In presence of oscillations in densities, this approach 

avoided the artifact of measuring the final density when the last 25 generations do not 

exactly cover a full multiple of a complete cycle. Indeed, interpreting an average final 

density as an equilibrium point without considering the shape and size of oscillations can 

be misleading (Abrams, Holt and Roth, 1998).  

To assess the change in apparent competition intensity on populations, I measured the 

population’s mean final density deviation from its value in the baseline scenario (e.g., 𝑑𝑁1
∗, 

in fraction of N*1 in the baseline scenario for prey 1) excluding the replicates that resulted 

in an extinction.  

e.g.,  𝑑𝑁1
∗ =  

𝑁1
∗−𝑁1,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

∗

𝑁1,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
∗  

I also measured the change in the amplitude of density oscillations in each case as the 

deviation from the amplitude of oscillations in the baseline scenario (𝑑𝐴1
∗ , in fraction of A*1 

in the baseline scenario), excluding the replicates that resulted in an extinction. 

e.g.,  𝐴1
∗ =  max (𝑁1

∗) − min (𝑁1
∗) 

e.g.,  𝑑𝐴1
∗ =  

𝐴1
∗ −𝐴1,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

∗

𝐴1,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
∗  

The extinction frequency was also computed, as the number of extinction events over the 

replicates. To link the apparent competition effect to predation, I have estimated the mean 

catch rate CRi of each prey population i as the number of catches during the timestep of the 

survival and reproduction trials over the density after survival and reproduction trials, 

averaged over the replicates.  

𝐶𝑅𝑖(𝑡𝑠𝑢𝑟𝑣) = 〈 
𝑐𝑎𝑡𝑐ℎ𝑒𝑠𝑖(𝑡𝑠𝑢𝑟𝑣)

𝑁𝑖(𝑡𝑠𝑢𝑟𝑣)
〉 

The growth rate of each population was estimated as the difference between the density 

after trials and the density after the previous trials over the density after the previous trials. 

e.g.,  𝑟1(𝑡𝑠𝑢𝑟𝑣) =  
𝑁1(𝑡𝑠𝑢𝑟𝑣)−𝑁1(𝑡𝑠𝑢𝑟𝑣−𝑓𝑠𝑢𝑟𝑣)

𝑁1(𝑡𝑠𝑢𝑟𝑣−𝑓𝑠𝑢𝑟𝑣)
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3.3.4. Predator functional and numerical responses 

To follow the shape of the predator functional and numerical responses, I plotted the 

predator realised growth rate and the prey populations catch rate against the prey 

populations realised growth rate in relevant cases. 

3.4. Results 

3.4.1. Calibration 

3.4.1.1. Large exploration 

Regardless of predator maintenance cost µP and catch probability pcatch, increasing 

predator’s average number of offspring (fertility) λP slightly increased the predators’ final 

density P* but also generated oscillations in predator population dynamics, which caused 

predators extinctions in some cases. Oscillations happened because, as predators produced 

more offspring, predation pressure increased and drove the prey populations to too low of 

a density to maintain the predator population. Predator population density declined 

through starvation because preys were too scarce. Because of the low number of predators, 

prey population densities increased again, which allowed more predators to catch enough 

prey to reproduce. Predator population increased, and the cycle repeated itself. A fertility 

value of λP = 0.5 resulted in the most stable predator-prey population dynamics (predators 

produce half as many offspring as preys). This is consistent with ecological theory, which 

predicts that dynamics are more stable when preys reproduce faster than the predators 

(Barraquand et al., 2015; Serrouya et al., 2015). 

A pcatch ≥ 0.5 caused too fast of a prey population decline and systematically drove predator 

and prey populations to extinction. I narrowed the pcatch range to [0.1 ; 0.5]. A predator’s 

maintenance cost µP ≤ 100 resource units made it too easy for predators to survive and 

reproduce, consequently increasing their population too rapidly for preys to sustain. The 

increased predation pressure systematically caused prey populations decline and drove the 

predator population to extinction. A µP up to 1,000 units produced stable cases when the 

catch probability was high enough to compensate for the difficulty to survive and reproduce 

for predator. Nevertheless, P* was low for high µP, the predator population was hardly 

maintaining itself at the density at introduction. The µP = 300 units were the most promising 

results, I narrowed the µP range to [200 ; 700] units. 

3.4.1.2. Narrow exploration 

Like the previous section, a pcatch
i > 0.2 drastically increased the frequency of extinctions. 

For low µP values, for which survival and reproduction trials were easier to pass, predators 

depleted the prey to extinction before going extinct themselves. For higher µP values 
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(challenging survival and reproduction), the predator would drive the prey populations to 

very low values unable to sustain predators and went extinct. After that, the remaining prey 

populations settled back to carrying capacity due to the absence of predation. In some cases 

(e.g., µP = 200 / pcatch = {0.2 ; 0.3} or µP = 300 / pcatch = {0.3 ; 0.4}), the two prey populations 

end up at a different final densities N*
i while they were expected to endure predation to the 

same extent. This happened when prey populations were depleted to very low numbers 

and, by chance, either one of the preys was driven extinct while the other persisted and 

grew back to carrying capacity. The prey that persisted by chance hence had a higher mean 

N*i over the replicates. Likewise, as µP value increased, it was more difficult for predators to 

survive and reproduce. When the pcatchi value was high enough to compensate for a high µP 

by making easier to catch prey and low enough not to deplete them, increasing µP decreased 

P*, otherwise predator population went extinct. The µP = 300 and pcatch = 0.1 parameter set 

was the most stable for the highest P*. I chose it as the baseline parameter set for the next 

experiment (Figure 12). 

 

Figure 12. Results of the narrowed parameter exploration. (A) evolution of the prey 1, prey 2 

and predator population mean densities along timesteps according to the prey catch 

probability in x and maintenance cost in y. (B) Detail of the chosen parameter set for the 

baseline scenario. The coloured ribbons are the bootstrapped 95% confidence intervals. The 

grey shaded areas cover the time preceding predator introduction. 

3.4.2. Sensitivity analysis 

3.4.2.1. Fertility λ2 

As expected, increased asymmetry in the preys’ fertility resulted in an asymmetry in the 

preys’ growth rate when densities increased from rare, or intrinsic growth rate. For 
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example, when prey 1 intrinsic growth rate at generation 3 was 0.42 with a [0.39 ; 0.44] 

bootstrapped 95% confidence interval, prey 2’s was 0.69 [0.65 ; 0.72] for λ2=3 and 0.26 

[0.26 ; 0.29] for λ2=0.5. It also generated a slight asymmetry in prey’s carrying capacities 

when prey 2 was more fertile than prey 1 (λ2 > λ1); prey 1 density had stabilised to 1,644.87 

[1,634 ; 1,654.97] before predator introduction while prey 2’s had stabilized at 1,739.5 

[1,723.97 ; 1,754.53] for λ2=3. 

The only extinctions observed were in the predator population, and these happened for a 

prey 2 with a very low fertility λ2=0.1 with a frequency of 0.07 (i.e., 2 predator population 

extinction events out of 30 replicates). These extinctions were caused by the decline in the 

prey 2 population density (down to -39.23% [-40.53 ; -37.92]) that could not produce 

enough offspring to compensate for predation. As the prey 2 population declined, the 

predators were short on prey for consumption and started also declining until eventual 

extinction.  

When λ2 < λ1, the prey 2 population endured the same predation pressure as prey 1 (Figure 

13 panel B) but recovered more slowly as it produced fewer offspring. The decline of prey 

2 caused prey scarcity for predators, and predator population size consequently decreased, 

alleviating predation pressure on prey 1, the density of which thus increased (Figure 13 

panel A). Moreover, the increase in prey 1 density due to predation relief was lower than 

the decline in prey 2. For example, in λ2 = 0.1, the density deviation from baseline scenario 

was +21.21% [20.89 ; 21.54] for prey 1 and -39.23% [-40.53 ; -37.92] for prey 2, and +4.74% 

[4.34 ; 5.11] for prey 1 and -14.19% [-14.61 ; -13.77] for prey 2 in λ2 = 0.5. Thus, the overall 

number of prey available was lower than the baseline scenario, hence a lower predator final 

density. There was no notable change in the amplitude of oscillations compared to the 

baseline scenario. 

When λ2 > λ1, prey 2 population recovered more efficiently from predation than prey 1 as it 

produced more offspring. Indeed, prey 2 stabilised at a higher density than prey 1. This 

higher density sustained more predators, which in turn decreased the prey 1 population 

final density due to a higher predation pressure than baseline scenario (Figure 13).  The 

total amount of available prey for the predator was slightly superior than baseline scenario 

at every increase of λ2 (the highest gap being with the extreme value of λ2=10 and was -

29.86% [-30.81 ; -28.97] for prey 1 and +36.18% [35.7 ; 36.7] for prey 2, which is much 

closer than for the λ2 < λ1 case). Combined to the higher fertility of prey 2, this positive gap 

resulted in the predator density to plateau at a higher P* (from 164 [161 ; 168] animals on 

average in baseline scenario to 231 [219 ; 241] with the extreme value of λ2=10, or an 

increase of 41.23% [39.84 ; 42.7]). This increase resulted in a significant drop in prey 1 
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population final density; from -11.4% [-11.83 ; -10.99] for λ2 = 2 to -30.53% [-31.25 ; -29.86] 

for λ2 = 9. The oscillation amplitude in prey 1 density increased but population density 

stayed very low: between 860 and 914 animals on average at maximum (λ2=9). 

 

Figure 13. Model sensitivity to asymmetry in prey populations fertility (average number of 

offspring produced) excluding the replicates that ended in extinction. A prey 2 fertility of 1 is 

the baseline scenario, symmetrical apparent competition is shown by the grey dotted line. 

Asymmetry increases as prey 2 fertility differs from the baseline scenario value. (A) Change 

in population mean densities at the end of the simulation time compared to the baseline 

scenario (in fraction). (B) Change in the population mean catch rates at the end of the 

simulation time compared to the baseline scenario (in fraction). The error bars are the 

bootstrapped 95% confidence interval. 

3.4.2.2. Maximum consumption σ2 

Predator population extinctions were increasingly frequent given a prey 2 with a high 

consumption rate (σ2 ≥ 25 resource units); from 20% of the replicates with σ2 = 25 units, to 

100% with the extreme value of σ2 = 50 units. Indeed, as σ2 increased, the landscape 

resource pool for prey 2 could maintain fewer of its members, causing their carrying 

capacity to be at a lower density. Their scarcity made fewer available prey for predators, 

meaning that predator density subsequently decreased, eventually to extinction. Even if the 

predation relief on the prey 1 population increased their final density N*1 (up to +27.81% 

[27.53 ; 28.08] for σ2 = 50), they could not compensate for the lower N*2 (down to -61.04% 

[-60.8 ; -64.43] for σ2 = 50). It is most likely because the increase in prey 1 population 

density was capped by the landscape carrying capacity. This made the overall number of 

available preys lower as σ2 value increased, because the drop in prey 2 final density was 

superior to the increase of prey 1’s in absolute values (Figure 14). The impact on the 

amplitude of the oscillations in density was very weak. 
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Given a prey 2 consuming less of its resource per timestep than prey 1 (σ2 < σ1), prey 2 

carrying capacity (3,376 [3,365 ; 3,388] animals on average) was much higher than prey 1’s 

(1,636 [1,626 ; 1,646] animals on average), making the overall number of prey available 

much higher than the baseline scenario. This generated strong oscillations (6.96 [6.87 ; 

7.04] times larger than baseline for prey 1 and 14.61 [14.49 ; 14.74] times larger for prey 

2]). The large number of available preys sustained a high density of predators, which 

subsequently resulted in over predation, decreasing the densities of both prey populations. 

Predator numbers subsequently followed, and the low σ2 allowed prey 2 population to 

recover faster and the cycle started again (Figure 14). Note that, while the average final 

predator density P* was overlapping with that of the baseline scenario, the predator 

population oscillated strongly and very close to extinction here (Figure 15). For prey 1, 

apparent competition with prey 2 drove N*1 down by -26.72% [-28.28 ; -25.12].  

Something that might be misleading here is that, for σ2 = 5 units, P* and the final catch rate 

of the preys overlapped with those of the baseline scenario but prey population average 

final density still dropped by -26.72% [-28.28 ; -25.12]. The important change at this σ2 

value was the amplitude of the oscillations in densities (Figure 14 and Figure 15). Cycling 

between 491.37 and 1,474.36 members of prey population 1 on average caused the final 

N*1 to be lower than the baseline scenario. 

 

Figure 14. Model sensitivity to asymmetry in prey populations maximum consumption 

parameter, excluding the replicates that ended in extinction. The value of 10 resource units 

is the baseline scenario, which result is shown by the grey dotted line. Asymmetry in 

maximum consumption increases as prey 2 maximum consumption differs from the baseline 

scenario value. (A) Change in population mean densities at the end of the simulation time 

compared to the baseline scenario (in fraction). (B) Change in the population mean catch 
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rates at the end of the simulation time compared to the baseline scenario (in fraction). The 

error bars are the bootstrapped 95% confidence interval. 

 

Figure 15. Evolution of the populations mean density along simulation timesteps for a prey 2 

max consumption of 5 resource units (higher carrying capacity for prey 2 than prey 1). The 

colour shaded areas are the bootstrapped 95% confidence intervals around the means. The 

grey shaded area covers the timesteps preceding predator introduction. 

3.4.2.3. Resource abundance K2 

Predator population extinction was consistent for the two extreme values of K2 = {300 ; 

500}, for which prey 2’s carrying capacity was very high (around 5,000 and over 8,000 

animals for  K2 = 300 and K2 =  500, respectively). High prey 2 carrying capacity provided 

too many preys for predators to consume, which depleted the prey immediately after their 

introduction (even to extinction for prey 1 population in one third of the replicates with K2 

= 500), leading to a rapid crash of the predator population.  

When prey 2 had less abundant resources than prey 1 (K2 < K1), the final population density 

of both prey populations quickly plateaued at their respective pseudo-carrying capacities 

(N*2 = 727 [721 ; 734] animals, N*1 = 1,562 [1,549 ; 1,576] animals), which adds up to less 

than the baseline scenario’s overall number of available preys. Predator density thus 

stabilised at a lower P* than their density at introduction (47 [43 ; 50] animals). This very 

stable situation might be due to prey populations being very close to carrying capacity and 

undertaking a very low and constant predation pressure. Apparent competition thus 

increased N*1 by 21.95% [21.53 ; 22.4] (Figure 16). 

When prey 2 had more resources available than prey 1 (K2 > K1), a higher prey 2 pseudo-

carrying capacity allowed a higher density of prey 2, which therefore sustained a higher 

number of predators, intensifying predation on prey 1 and decreasing N*1 by up to -29.74% 
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[-31.29 ; -28.14] for K2 = 200. Higher prey 2 carrying capacities also generated stronger 

oscillations (up to 6.94 [6.83 ; 7.05] times larger for prey 1 in K2 = 200) for the same reasons 

as the case of σ2 = 5 units in the previous results section. Similarly, the strong increase in 

the density oscillations amplitude at K2 = 200 resource units, made predator population 

cycle very close to extinction, thereby decreasing P* (Figure 16).  

 

Figure 16. Model sensitivity to asymmetry in prey populations resource abundance, excluding 

the replicates that ended in extinction. The value of 100 resource units is the baseline 

scenario, which result is shown by the grey dotted line. Asymmetry in resource abundance 

increases as prey 2 resource abundance differs from the baseline scenario value. (A) Change 

in population mean densities at the end of the simulation time compared to the baseline 

scenario (in fraction). (B) Change in the amplitude of density oscillations at the end of the 

simulation time compared to the baseline scenario (in fraction). The error bars are the 

bootstrapped 95% confidence interval. 

 

3.4.2.4. Catch probability pcatch2 

Predator population extinctions were increasingly frequent when pcatch2 ≥ 0.3; from 43% of 

the replicates with pcatch2 = 0.3 to 100% with pcatch2 = 0.5. In these cases, the predators 

depleted prey 2 population very quickly (even to extinction of prey 2 in 23% of the 

replicates for pcatch2 = 0.5) and then could not sustain on prey 1 only. 

Increasing pcatch
2 increased the catch rate on prey 2, which led to N*2 decreasing by up to -

53.89% [-57.71 ; -50.53], thus sustaining fewer predators and resulted in an increase of up 

to +11.71% [10.84 ; 12.61] in N*1 for pcatch2 = 0.3. Additionally, the increased catch rate on 

prey 2 greatly reduced the catch rate on prey 1. For example, with pcatch
2 = 0.2, the 10.91% 

[5.97 ; 15.51] increase in prey 2 catch rate, resulted in an drop of -38.46% [-41.08 ; -35.81] 

in prey 1 catch rate compared to the baseline scenario (Figure 17). 
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Increasing pcatch2 also increased the amplitude of oscillations (by up to 3.23 [3.07 ; 3.38] 

times in N*1 for pcatch2 = 0.3). For the values that did not end up in extinction, the rapid 

depletion of prey 2 population abated before the extinction of either the predator or prey 

2, allowing the prey populations to recover and rise the predator number again, generating 

cycles.  

 

Figure 17. Model sensitivity to asymmetry in prey populations catch probability, excluding 

the replicates that ended in extinction. The value of 0.1 is the baseline scenario, which result 

is shown by the grey dotted line. (A) Change in population mean densities at the end of the 

simulation time compared to the baseline scenario (in fraction). (B) Change in the population 

mean catch rates at the end of the simulation time compared to the baseline scenario (in 

fraction). The error bars are the bootstrapped 95% confidence interval. 

3.4.2.5. Resources per catch ϒ2 

Predator population extinctions were increasingly frequent given a prey 2 highly 

resourceful as a catch (ϒ2 ≥ 250 resource units); from 40% of the replicates with ϒ2 = 250 

units, to 100% with the extreme values of ϒ2 = {300; 500} units. In these cases, prey 2 

sustained too large of a predation population by facilitating their survival and reproduction, 

which caused depletion of both prey populations until predators’ extinction. 

For a prey 2 less resourceful for predator than prey 1 (ϒ2 < ϒ1), prey 2 sustained a lower 

density of predators for the same number of catches, so predator population decreased, 

alleviating predation on both preys, which increased N*1 by 16.55% [16.2 ; 16.92] and N*2 

by 18.65% [18.31 ; 19] compared to the baseline scenario (Figure 18).  

For a prey 2 more resourceful for predator than prey 1 (ϒ2 > ϒ1) and ϒ2 up to 200 resources 

per catch, prey 2 sustained a higher number of predators for the same number of catches. 

The predation pressure increased on both preys, which decreased N*1 by 29.62% [-31.13 ; 
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-28.15] and N*2 by 29.47% [-30.59 ; -28.37] for ϒ2 = 200. The oscillation amplitude also 

increased by up to 6.91 [6.83 ; 7] times for prey 1 and 6.81 [6.7 ; 6.91] times for prey 2 with 

ϒ2 = 200. When prey 2 population depletion drove predator population down slowly 

enough to have predation alleviation with no risk of extinction for the predator, both prey 

populations had time to recover before predation pressure increased again, which 

generated cycles (Figure 18). In this experiment, increasing ϒ2 makes predators’ survival 

and reproduction easier for the same amount of prey 2 catches, so both prey populations 

endured the increased predation pressure the same way (Figure 19). Except at ϒ2 = 150 

units, where the catch rate for prey 1 is higher than prey 2’s with non-overlapping intervals. 

This is most likely an artifact of averaging over cycles, as Figure 19 shows that the catch 

rate of both prey populations oscillated in similar ranges at this value for ϒ2. 

 

Figure 18. Model sensitivity to asymmetry in prey populations resources per catch, excluding 

the replicates that ended in extinction. The value of 100 is the baseline scenario, which result 

is shown by the grey dotted line. (A) Change in population mean densities at the end of the 

simulation time compared to the baseline scenario (in fraction). (B) Change in the amplitude 

of density oscillations at the end of the simulation time compared to the baseline scenario (in 

fraction). The error bars are the bootstrapped 95% confidence interval.  



100 
 

 

Figure 19. Model sensitivity to asymmetry in prey populations resources per catch, excluding 

the replicates that ended in extinction. The value of 100 is the baseline scenario, the absence 

of asymmetry is shown by the grey dotted line. Change in the population mean catch rates at 

the end of the simulation time compared to the baseline scenario (in fraction). The error bars 

are the bootstrapped 95% confidence interval. The bars are the amplitude of oscillations, 

showing the minimum and maximum values reach over the interval in which the final density 

was computed. 

 

3.4.2.6. Sensitivity 

In this section, I compare the intensity of variation in prey 1’s extinction frequency, final 

density, and amplitude of density fluctuations for the same input parameter change 

(doubling or halving), to determine which input parameter was the focal prey population 

most sensitive to.  

3.4.2.6.1. Effect on prey 1 extinction frequency 

Overall, there were very few events of prey 1 population extinction through apparent 

competition with prey 2 population in the sensitivity analysis experiment (only in 33% of 

the replicates with the extreme value of K2=500 resource units). Even if the population was 

driven to very low densities in some extreme cases, the simulations more frequently end up 

in predators’ extinction first and prey population densities would recover. Hence, in the 

general case chosen here prey 1 extinction probability frequency to the input parameters 

variation was low.  

3.4.2.6.2. Effect on prey 1 final density 

Excluding the parameter value combinations that resulted in an extinction, the fastest and 

strongest negative effect of asymmetrical apparent competition on prey 1 was the 

asymmetry between prey populations’ maximal resource consumption σ2. Given a prey 2 
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consuming its resources twice as slower as prey 1; changing σ2 from 10 to 5 resource units 

resulted in a -26.72% [-28.28 ; -25.12] drop in N*1 (Figure 14). The resource abundance K2 

followed, which, when prey 2 had twice as many resources at disposal as prey 1 (from 100 

to 200 resource units) resulted in a -29.74% [-31.29 ; -28.14] drop in N*1 (Figure 16). Then 

came the resource per catch, a prey 2 twice as much resourceful to predator than prey 1 (ϒ2 

from 100 to 200) had a strong negative effect through symmetrical apparent competition, 

with a -29.62% [-31.13 ; -28.15] drop in N*1 (Figure 1618). The slowest and lowest negative 

effect of asymmetrical apparent competition was when doubling the prey 2 fertility λ2 from 

1 to 2 with a -11.4% [-11.83 ; -10.99] drop in N*1 (Figure 1313). 

The fastest and strongest positive effect of asymmetrical apparent competition was when 

prey 2 resource were twice as less abundant as prey 1 (K2 from 100 to 50 resource units) 

with a 21.94% [21.53 ; 22.4] increase in N*1 (Figure 18). Again, the slowest and lowest 

positive effect of asymmetrical apparent competition was when prey 2 was twice as less 

fertile (λ2 from 1 to 0.5), which resulted in a +4.74% [4.35 ; 5.12] increase in N*1 (Figure 

13). 

The parameters directly influencing the difference between prey 2 and prey 1 carrying 

capacities appeared to have the strongest impact on apparent competition intensity on prey 

1, while the parameter influencing the difference between the preys’ growth rate appeared 

to have the weakest impact on apparent competition. This is most likely because prey 

fertility’s impact on the overall number of available preys was rather weak (e.g., for λ2 = 

3*λ1, prey 2 carrying capacity was 1,738.91 [1,731.97; 1,746.03] animals and prey 1’s was 

1,650.82 [1,641.27 ; 1,660.67]), while σ2 and K2 impacted it more directly and more 

strongly. The difference between preys’ resources per catch had the strongest symmetrical 

apparent competition effect by increased predation pressure on both preys without 

affecting their pseudo-carrying capacities. The impact of the difference in preys’ catch 

probabilities on N*1 was significant but less important. 

3.4.2.6.3. Effect on oscillations 

The difference between the preys fertility had a very low impact on the amplitude of prey 1 

density oscillations (0.74 [0.54 ; 0.93] times larger at maximum for λ2 = 10 offspring on 

average). The strongest and fastest impact on oscillations amplitude were again the 

difference in resources per catches ϒ2, doubling from 100 to 200 units made the amplitude 

of prey 1 oscillations 6.91 [6.83 ; 7] times larger (Figure 18). Then, a prey 2 consuming twice 

as less resources as prey 1 (σ2 from 100 to 50 units) made the oscillations in prey 1 density 

6.96 [6.87 ; 7.04] times larger, and a prey 2 with twice as abundant resources than prey 1 
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(K2 from 100 to 200 units) made the amplitude of prey 1 oscillations 6.94 [6.83 ; 7.05] times 

larger. The impact of catch probability on the amplitude of oscillations was less important.  

3.4.2.6.4. Shape of relationship between output deviation and input 

parameter change 

When the changes in the parameter values induced an increase in N*i compared to the 

baseline, it was limited by carrying capacity and plateaued, which can explain the nonlinear 

relationship. As in the experiment with catch probability where N*1 plateaus to carrying 

capacity, or in the fertility experiment where N*2 does the same. For parameters influencing 

prey 2 carrying capacity directly, there was a break between when prey 2 parameter values 

were under or over prey 1’s values, showing what might be tipping points. Prey resources 

per catch effect on N*1 looks quite linear until the value for which predator extinctions 

started happening.  

Table 4. Summary of the sensitivity analysis. 

  dev. in N*1 Shape of  
relationship 

dev. in amplitude Shape of  
relationship Parameter min max min max 

λ2 0.212 -0.298 nonlinear -0.052 0.74 linear? 
σ2 -0.267 0.278 nonlinear 6.963 -0.382 tipping point 
K2 0.219 -0.297 nonlinear? -0.254 6.941 tipping point 
pcatch2 0 0.211 tipping point 0 3.327 nonlinear 
ϒ2 0.165 -0.167 tipping point -0.157 7.93 nonlinear 

 

3.4.3.  Shape of the predator’s numerical and functional responses 

The examination of the predator's functional and numerical responses shape revealed 

interesting properties in the model. When plotting the predator growth rate and the preys 

catch rates as a function of prey densities in the parameter sets that did not exhibit 

oscillations, the relationship seemed linear, although the densities in stable dynamics 

varied across a very short spectrum. However, when the system exhibited cycles, the shape 

of the relationship differed between when prey densities are decreasing (seemingly linear) 

and when they are increasing (seemingly logarithmical) (Figure 20). 
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Figure 20. Predator numerical and functional responses in 2 cases of asymmetrical apparent 

competition. (a) Evolution of the populations mean density along simulation timesteps for a 

prey 2 catch probability of 0.2 (pcatch1 = 0.1) and the associated numerical (b) and functional 

(c) responses. (d) Evolution of the populations mean density along simulation timesteps for a 

prey 2 fertility of 0.3 (λ1 = 1) and the associated numerical (b) and functional (c) responses. 

The coloured arrows indicate the direction of variation of the population densities. The 

colour shaded areas are the bootstrapped 95% confidence intervals around the means. The 

grey shaded areas cover the timesteps preceding predator introduction. 
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3.5. Discussion 

I introduced an agent-based model (ABM) to simulate the emergence of apparent 

competition in a trophic system on a spatially explicit landscape lattice. The model was 

tested in its most fundamental version – with two self-limited prey populations that do not 

compete for resources but share a predator – against apparent competition (AC) theory. To 

do so, the parameters influencing asymmetry in predation were varied independently and 

the resulting change in apparent competition intensity was measured, thereby realising a 

sensitivity analysis. 

3.5.1. Conditions for the emergence of apparent competition 

Was sharing a predator sufficient to demonstrate apparent competition in an agent-based 

model? To test for this, I needed to show that a prey species final density was higher in the 

presence of just a predator than it was in the presence on both the predator and another 

prey (Bonsall and Hassell, 1997; Abrams, Holt and Roth, 1998). A challenge was that I could 

not find a suitable parameter set allowing for a stable system (i.e., no extinction and no large 

oscillations in densities) in both the absence and presence of a competitor prey species. A 

predator parameter set that was suitable for predator-prey dynamics in the absence of 

another prey competitor quickly resulted in extinction when the prey competitor was 

introduced. Conversely, a predator parameter set that was suitable in a system with both 

the focal and competitor prey species quickly resulted in the extinction of the predator 

population when the other prey species was removed, due to a lower total prey density. 

This situation also happen in real world cases, such as in Roemer, Donlan and Courchamp 

(2002) which showed that an introduced eagle population could not have sustained only on 

the local prey species (fox and skunk) in absence of an abundant, predation-resistant, 

introduced prey species (feral pigs). Yet, in the only parameter set I could find in which all 

species persisted in both experiments during the calibration simulations (µP = 200 resource 

units, pcatchi = 0.1, λP = 1), the focal prey (prey 1 in the experiments) final density was indeed 

lower in presence than in absence of the other prey (even with identical parameters; around 

1400 animals on average when alone with the predator versus around 1000 animals on 

average with the emergence of large oscillations in presence of the other population), 

leaning towards symmetrical apparent competition. The simulations in Abrams, Holt and 

Roth (1998) also exhibited stronger oscillations in the focal prey density when in presence 

of another, similar competing prey, with a negative effect on the focal prey final density. But 

finding a suitable parameter set for both experiments was not presented as a challenge in 

their mathematical, deterministic model. Nevertheless, these results suggest that sharing a 

predator could be a necessary and sufficient condition for preys to exhibit, at least, 
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symmetrical apparent competition. Also, the agent-based approach to modelling AC 

revealed that parameterising stable systems is more challenging when increasing realism 

in the form of mechanistic interactions between discrete agents. Could it suggest that 

systems of AC between prey species can be more prone to extinction than mathematical 

models alone would predict?  

3.5.2. Sensitivity to asymmetry-inducing parameter variations 

To introduce asymmetry in predation in the model, I strengthened the predator functional 

response to the competing prey (prey 2 in the experiments) by making its catches more 

frequent than the focal prey (prey 1 in the experiments). The change in the focal prey’s final 

density compared to the baseline scenario, caused by a change in the competing prey 

dynamics (apparent competition effect), was expected to be stronger because more catches 

should have sustained a larger population of predators (Courchamp, Langlais and Sugihara, 

2000; Roemer, Donlan and Courchamp, 2002). Yet, in the experiments, the focal prey final 

density actually increased with a stronger functional response to the competing prey. 

Indeed, both calibration and sensitivity analysis experiments showed that the model was 

very sensitive to the catch probability parameter, in the sense that increasing its value 

caused frequent extinction of the predator due to rapid prey depletion by over-predation 

(a predation rate that the focal prey population cannot withstand in the long term). Even 

when the catch probability parameter value was only increased for the competing prey, 

over-predation subsequently decreased the predator density and offered a predation relief 

on the focal prey, alleviating the AC effect. In this simulation experiment, both prey 

populations had the same growth rate, but the catch rate of the competing prey was greater 

than or equal to the focal prey, so the focal prey should have the highest growth-rate-to-

catch-rate ratio and is thus expected to be the superior competitor (the one with the highest 

final density) according to the P* rule (Holt, Grover and Tilman, 1994). This rule held here. 

It is perhaps counter intuitive given  previous research in terms of introduction of another 

prey species that is more easily caught than the resident prey, expected to result in an 

overall increase of predation and decline in the resident prey species (DeCesare et al., 

2010). But, in the field, two prey populations that only differ by the functional response of 

their shared predator would very unlikely have the same growth rate (or the same other 

characteristics, as in the simulations), and the population that is more subject to predation 

will most likely have evolved a higher growth rate to be able to withstand predation 

(Sinclair et al., 1998), or differentiated niche to escape predation (Holt, 1977; Bonsall and 

Hassell, 2000). Yet, the impact of asymmetry in the catch probability in isolation of other 

characteristics had not been explored in modelling studies before. An equivalent of my 
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experiment on catch probability asymmetry would be, e.g., to put a naïve subset and a 

predator-trained subset of the same prey species at similar densities in contact with a 

predator and measure apparent competition effect on the trained subset in the short term, 

before the naïve subset learns. In conclusion, these simulation results are consistent with 

AC theory, and the predator population was very sensitive to the strength of the functional 

response regarding extinction risk, but the effect on the intensity of AC on the focal species 

was positive and rather weak compared to other sources of asymmetry in predation. 

In theory, a stronger (weaker) numerical response to the competing prey than to the focal 

prey species is expected to increase (decrease) the AC effect on the focal prey due to a higher 

(lower) number of predators produced by consuming the competing prey. It was the case 

in the experiment, until increasing further the resource per catch caused the predator 

density to be too high and deplete the prey until predator extinction by prey scarcity. 

Interestingly, varying the asymmetry in predator’s numerical response resulted in 

symmetrical apparent competition between the two preys. Indeed, varying the resources 

per catch allowed a higher or lower predator survival and reproduction rate with the same 

catch rate on both preys; it did not change anything intrinsic to the prey, so the prey 

populations ended up undertaking the same predation pressure. The growth rate and 

attack rate being the same for both preys, the P* rule predicts no superior competitor; this 

was confirmed by the simulations. These results are consistent with a study of the 

consequences of bear kleptoparasitism on protected lynxes in a Slovenian national park 

(Krofel and Jerina, 2016). Lynxes feed on a kill for several consecutive days, but the 

introduction of protected bears in lynx hunting ranges greatly increase usurpation of kills 

(kleptoparasitism) by bear scavengers. This could be translated as a decrease in the prey 

resources per catch for lynx. Facing this significant energy loss, lynx compensate by strongly 

increasing hunting, with a subsequent drop on the prey populations and a feedback loop on 

energy loss. If the situation continues, lynx populations might severely decline due to a 

combination of prey scarcity and energy loss due to a decrease in the resources they acquire 

per catch. This example is another demonstration of the model accuracy in terms of theory 

and actual cases of AC. 

The model’s strong sensitivity to the catch probability could thus be mitigated by more 

stochasticity in the amount of resources the predator absorbs when catching a prey. For 

now, a catch systematically provides ϒi resources to the predator, while prey’s resource 

absorption is more stochastic (see section 3.2.3.2). If the predator’s resource per catch was 

also sampled randomly between 0 and ϒi, the increase in predator population density would 

be less drastic and preys’ depletion less likely. This could model predators that do not 
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always consume their catch entirely, by behaviour or because of disturbances (scavengers, 

enemy approaching, kleptoparasitism, etc…) or simply that the quality of the catch can vary 

(this option is implemented but was not tested here). 

A primary prey with a higher growth rate sustaining a higher density of predators and 

decreasing the density of secondary prey that grows slower is the canonical case of 

asymmetrical apparent competition (Courchamp, Langlais and Sugihara, 2000; Roemer, 

Donlan and Courchamp, 2002; Courchamp, Woodroffe and Roemer, 2003; DeCesare et al., 

2010; Wittmer et al., 2013; Ng’weno et al., 2019). In the simulations, varying the fertility 

parameter value of the competing prey impacted its intrinsic growth rate and therefore its 

capacity to withstand predation compared to the focal prey. The results met the 

expectations as the presence of a prey that reproduced faster (slower) than the focal prey 

resulted in a stronger (weaker) AC competition effect on the focal prey. Since the catch 

probability – the equivalent of the attack rate in my model – was fixed in this experiment, 

the superior prey was the one with the highest growth rate, once again the P* rule was 

confirmed. The model sensitivity to asymmetry in growth rate was weaker than other 

sources of asymmetry. This is most likely because fertility indirectly impacts growth as the 

animals still need to have sufficient resources to pass the reproduction trial. Varying the 

asymmetry in the cost of reproduction might have had a stronger, more direct effect on the 

growth rate. A surprising result was that, although the prey population with a higher 

growth rate was higher in number and therefore more frequently encountered by predators 

than the focal prey population, the catch rate ranges (at the end of a moving and feeding 

sequence) of both preys overlapped regardless of the value of λ2 (Figure 13). It would be 

whereas expected that this situation translates into a stronger realised catch rate on the 

most abundant prey population. My explanation is that, if we could see the evolution of the 

catch rate along the timesteps between two survival and reproduction trial (to limit 

computational time I assessed the population dynamics after reproduction trials and not in 

between),  the catch rate of the most abundant prey would be higher in the first timesteps, 

because it would temporarily be more frequently encountered than those of the declining 

prey population. But as members of the most often encountered prey population are caught, 

the members of the declining prey population are increasingly more likely to be taken, and 

by the 10th timestep when come the trials, the catch rates might have evened out to the 

value corresponding to the predator density. 

Finally, asymmetry in predation was generated by changing the carrying capacity of the 

competing prey, but not the focal prey. In the simulations, this asymmetry was generated 

by increasing (decreasing) the maximum resource consumption or the resource abundance 
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of the competing prey only. In a ODE model based on two real-world cases of apparent 

competition involving caribous (competition with deer mediated by cougars, with moose 

mediated by wolf), Serrouya et al. (2015) predicted that increasing the carrying capacity of 

the alternate prey species but not of the caribou population would increase the apparent 

competition effect on the caribou population. My results verified this in the parameter 

range that did not cause any extinctions. Yet, in this range, neither the growth rate nor the 

catch rate differed between prey species, so the P* rule predicts no superior prey 

competitor. It is an interesting contradiction, because in AC’s fundamental paper, Holt 

(1977) suggests that, in a prey species ensemble, the persistence of a given prey is 

independent of its own carrying capacity but might strongly depend of that of the other prey 

populations. But, in Holt’s paper introducing the P* rule (Holt, Grover and Tilman, 1994), 

there is no mention of the carrying capacity as a factor influencing the persistence of a given 

species, probably because there is no assumption about the shape of population growth 

being logistic (no appearance of carrying capacity in the mathematical reasoning). The 

agent-based nature thus helped showing that the asymmetry in prey resource availability 

might also be an important argument in predicting the outcome of apparent competition. 

3.5.3. Accounting for oscillations and cycles 

Oscillations in density make populations more sensitive to stochastic environmental or 

human-induced perturbations, especially when they oscillate close to low densities, where 

Allee effects (negative growth rate at low densities) can lead to extinction (Stephens and 

Sutherland, 1999). In AC field studies, predator-mediated Allee effect has been shown to 

cause concerning declines in secondary prey species, including Caribou in British Columbia 

(Wittmer, Sinclair and McLellan, 2005; Wittmer et al., 2013) and hartebeest in a Kenyan 

reserve (Ng’weno et al., 2019). It might then be interesting to managers that increasing the 

asymmetry in predator numerical response and preys’ carrying capacity most strongly 

impacted the amplitude of the oscillations in the focal prey species density. Changing the 

asymmetry in predator functional response and prey fertility once again had a weaker but 

noticeable impact on oscillation amplitude. A study of AC system exhibiting cycles with an 

adaptation of Holling’s (1959) disk equation (deterministic mathematical model) showed 

that, in a system with two self-limiting prey and a prey-limited predator, cycling should 

weaken AC when “predator’s per capita growth rate is a concave function of prey density” 

(Abrams, Holt and Roth, 1998). In the experiments in which varying the asymmetry in 

predation induced cycles (all but the fertility experiment), the only one in which larger 

cycles were associated to a lower AC effect on the focal prey than in the baseline (no cycling) 

scenario was the functional response experiment. In the other experiments concerned, 
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larger cycles were coupled with a stronger AC effect on the focal prey than the baseline 

scenario. Again, the authors’ first assumption is met by construction and the possibly unmet 

assumption is the predator numerical response, which emergent shape does not 

correspond to the usual relationships assumed in mathematical models (Figure 20). 

Consequently, the conclusions from Abrams, Holt and Roth (1998) might not apply to my 

agent-based model. However, a modelling study, inspired by hen harrier-mediated 

apparent competition between vole and grouse, argues otherwise (Barraquand et al., 2015). 

The authors showed that, in their mathematical model of AC between self-limited prey 

species and a prey-limited predator with constant, linear, or logistic numerical responses, 

higher variability in the competing prey species strengthened the detrimental effect of AC 

on the focal prey. Thus, Abrams, Holt and Roth (1998) did not accurately predict the 

outcome of this case of AC but my agent-based model did, with no assumptions on the shape 

of the numerical and functional responses. 

3.5.4. Importance of the shape of predator’s functional response 

When discussing the correspondence between my model and the classical assumptions of 

mathematical models in the literature, the shape of the predator’s functional and numerical 

response was the main point of argument. Indeed, the shapes obtained in the model did not 

correspond to any usual numerical response in predator prey dynamics in the literature I 

reviewed (Figure 20). These shapes could relate to a lag in the change in the predator catch 

rate and growth rate following a change in the prey populations densities (e.g., catch rate 

increases linearly with decreasing prey densities, decreases with prey scarcity and then 

stagnates to low values when prey population are increasing again) but there was no 

mention of this in studies modelling, even explicitly, such a time lag (Barraquand et al., 

2015; Serrouya et al., 2015). Modelling the functional and numerical responses as emerging 

from lower-level predator-prey interaction therefore put in perspective the way these 

capital characteristics has been assumed in mathematical models. 

3.5.5. Potential effects of interaction between sources of asymmetry 

Testing the impact of the interaction of these parameters intensifying AC between prey 

species would have been too computationally demanding, but some of these impacts can be 

inferred from model results. The effects are most likely cumulative when they induce the 

same AC effect on preys. For example, a competing prey that has both a higher catch 

probability and induces a stronger predator numerical response than the focal prey will 

most likely exacerbate the risk of prey depletion and the predator extinction. I also suspect 

that these sources of asymmetry can compensate for each other when inducing opposite 

effects.  If the competing prey is less likely to be caught but has a higher carrying capacity 
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than the focal prey, there might be a balance between the effects. Indeed, these sources of 

asymmetry in apparent competition rarely vary independently in nature. Over evolutionary 

time scales, prey in AC systems will most likely evolve higher growth rates to compensate 

for a high predation rate (Holt, 1977; Sinclair et al., 1998; Chesson, 2000), reduce their catch 

probability by isolating from the competing prey through niche differentiation (Schmitz and 

Booth, 1997; Chesson, 2000; Holt and Bonsall, 2017), predators adapt their functional 

response for the prey with which they have the most optimal energy to conversion into 

offspring trade-off (Schmitz and Booth, 1997; McPeek, 2019).  

3.5.6. Impact for conservation  

However, unlike natural processes over large evolutionary time scales, biodiversity 

conservation measures and species management can alter either one of these sources of 

asymmetry independently over very short time scales. Unsurprisingly, this study confirms 

that biodiversity managers should be extra cautious when implementing policies that 

impact predator numerical response, such as diversionary feeding (Thirgood et al., 2000; 

Krofel and Jerina, 2016). Policies directly impacting prey carrying capacities, including 

supplementary feeding or reduction of available resources, providing, or removing refuges 

from predation, should also be implemented with a full consideration of the possible 

indirect effect on other members of the trophic system. The same goes for introducing a 

predator that has a strong asymmetry in the efficiency with which it converts each prey 

catch into new offspring, or introducing a prey that exploits its resources more efficiently 

than the focal prey (Courchamp, Langlais and Sugihara, 1999, 2000; Roemer, Donlan and 

Courchamp, 2002; Courchamp, Woodroffe and Roemer, 2003; DeCesare et al., 2010). These 

results also suggest that measures impacting fertility (like offspring control such as egg 

oiling) or promoting offspring survival (Pollard, 2018) could have less impact in systems of 

AC than the other interventions evoked here. Similarly, introducing a prey with a different 

average number of offspring might be less concerning for the managed species than the 

other characteristics tested here. 

Overall, the predictions of apparent competition theory according to mathematical 

modelling and comparison to field cases were well-supported across the simulations, with 

the notable exception of the P* rule in the resources’ abundance experiment and an open 

debate on the role of density cycles on the strength of apparent competition. Also, an 

important advance is that agent-based approach allows the modelling of apparent 

competition without assuming the shape of the functional and numerical responses, which 

have been proven to play a key role in dynamics. The sensitivity analysis also informs future 

users on the mechanisms requiring particular attention when predicting apparent 



111 
 

competition outcomes. My model is therefore fit for purpose, meaning that it can serve as 

an effective framework for addressing major questions in apparent competition, and for the 

conservation of species involved in it, using an agent-based approach. Now that we are 

confident in the fact that the model can simulate the emergence of apparent competition in 

its fundamental version, the next step is to show how the model can be used to evaluate 

management strategies.  
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4. An agent-based tool to evaluate removal strategies 
for the conservation of species endangered by 
apparent competition 

 

Abstract 

In this chapter, I demonstrate how to use my Chapter 3 model to evaluate management 

strategies when a conserved population is involved in apparent competition with other 

species. I calibrate the model to a system in which a prey species of conservation interest is 

stable in presence of its predator but progressively goes extinct after the introduction of a 

more abundant, faster growing, alternate prey species through apparent competition. I then 

evaluate and compare the efficiency of three removal strategies for the conservation of the 

endangered prey population, while controlling for the persistence of the other species in 

the system. Strategies include (i) removal of predator only, (ii) removal of introduced prey 

species only, (iii) simultaneous removal of predator and introduced prey species, for which 

I explore different combinations of removal rates. All strategies successfully prevent the 

extinction of the endangered population, but some rate combinations of the simultaneous 

removal strategy guarantee a higher final density for the endangered species along with 

high densities of the alternate prey and predator populations and more stable dynamics. 

Comparing these results with previous studies of apparent competition management using 

mathematical models, I argue that the agent-based approach, especially through its time 

and spatially explicit nature, can make more realistic predictions on the outcome of 

conservation policies. All combinations of these removal strategies are now available in my 

model for evaluation by researchers or managers in other cases, and my method proposes 

to conserve the endangered population while considering the persistence of the other 

species in the system.  
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Résumé 
 

Dans ce chapitre, j’utilise mon modèle du chapitre 3 pour évaluer des stratégies de gestion 

dans un cas de compétition apparente. Je calibre le modèle sur un système dans lequel une 

espèce de proie est stable en présence de son prédateur, mais s’éteint progressivement par 

compétition apparente après l'introduction d'une autre proie, plus abondante et à 

croissance plus rapide. Ensuite, j'évalue et compare l'efficacité de trois stratégies de 

contrôle pour la préservation de la proie en danger d’extinction, tout en surveillant la 

persistance des autres espèces dans le système. Les stratégies sont les suivantes : (i) 

réduction de la population de prédateurs, (ii) réduction de la population de la proie 

alternative et (iii) réduction simultanée des populations de prédateur et de proie 

alternative. Pour chacune d’elles, j'explore différentes combinaisons de taux de réduction. 

Toutes ces stratégies ont permis d'éviter la disparition de la population menacée, mais 

certaines combinaisons de taux dans la stratégie (iii) ont permis une densité finale plus 

satisfaisante pour l'espèce menacée, ainsi que des densités élevées pour l’autre proie et le 

prédateur, et une dynamique plus stable du système. En comparant ces résultats avec de 

précédentes études sur la gestion de la compétition apparente par des modèles 

mathématiques, je défends que l'approche individu-centrée, en particulier par sa nature 

temporellement et spatialement explicite, peut faire des prédictions plus réalistes sur le 

résultat des programmes de conservation. Toutes les combinaisons de ces stratégies de 

contrôle sont disponibles dans mon modèle pour évaluation par des chercheur·euses ou 

des gestionnaires dans de nouveaux cas, et ma méthode propose de préserver la population 

menacée tout en donnant de l’importance à la persistance des autres espèces dans le 

système.  
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4.1. Introduction 

Apparent competition (AC) is an indirect negative interaction between individuals, 

populations, species, or entire functional groups, mediated through the action of one or 

more species of shared natural enemies (Holt, 1977; Holt and Bonsall, 2017). In predator-

prey dynamics, AC is an indirect negative interaction between prey species that share one 

or more common predators. Most of the time, predator population size will be enhanced by 

an abundant primary prey species that is fit to withstand high levels of predation, thus 

increasing predation on rarer, less adapted secondary prey species (Sinclair et al., 1998; 

DeCesare et al., 2010; Holt and Bonsall, 2017). These indirect interactions are known to play 

a key role in the shape of trophic communities, in species exclusion, and to be a driver of 

niche differentiation (Bonsall and Hassell, 1997; Chesson, 2000; Chesson and Kuang, 2008; 

McPeek, 2019). Consequently, AC is an important mechanism to consider in the 

conservation of biodiversity. 

Indeed, human intervention can very easily induce perturbations to AC systems over short 

periods of time, especially through species introduction, accidental or on purpose (Wittmer, 

Sinclair and McLellan, 2005; Wittmer et al., 2007, 2013; DeCesare et al., 2010; Krofel and 

Jerina, 2016). Even conservation measures can have adverse and unexpected effects due to 

AC, sometimes resulting in the decline of a species of conservation interest. An example is 

an insular case of introduced cat-mediated apparent competition between rodents and 

endangered endemic bird species, where both cats and rodent prey on the bird species. 

Rodent predation by cats reduced the overall predation pressure on the birds but at the 

same time, the abundant rodent population sustained an ever-increasing population of cats, 

causing biodiversity and health problems. The control of cat population caused a strong and 

sudden increase in the rodent population resulting in a higher predation pressure on the 

bird species than before cat control implementation (Courchamp, Langlais and Sugihara, 

1999). Another example is the establishment of a natural reserve for protected huemuls in 

Patagonia. Huemul population was declining because of apparent competition with 

abundant introduced sheep which sustained a higher number of their shared predator: 

pumas. During the first years after displacing all sheep stock to establish the reserve, 

puma’s predation on huemul strongly increased due to prey switching, causing a concerning 

decline in the protected population (Wittmer, Elbroch and Marshall, 2013; Wittmer et al., 

2013). When a managed species interacts somehow with human activities, such unexpected 

effects can escalate to conservation conflicts between human stakeholders (Courchamp, 

Woodroffe and Roemer, 2003; Ng’weno et al., 2019). For example, a conflict arose between 

game-grouse managers and hen harrier’s conservationists in the UK because of the 



116 
 

dynamics of a hen harrier-mediated apparent competition between voles and red grouse. 

Game hunters want to protect grouse from predation by removing hen harriers while 

conservationists want the hen harrier protection policy in place to be strictly respected. To 

avoid grouse predation by hen harriers, game keepers used diversionary feeding, offering 

voles to the raptor. Instead, this method increased hen harrier population and, 

consequently predation on grouse, leading game keepers to reconsider removal methods 

(Thirgood et al., 2000; Redpath and Thirgood, 2009; Barraquand et al., 2015). To avoid 

these kinds of issues, AC must be better integrated to management strategy evaluation to 

make more effective policies. 

Simulation modelling is a powerful tool for providing insights on the mechanisms at stake 

in apparent competition systems (Holt, 1977; Holt and Lawton, 1993; Holt, Grover and 

Tilman, 1994; Abrams, 1998; Abrams, Holt and Roth, 1998; Barraquand et al., 2015; Holt 

and Bonsall, 2017; McPeek, 2019) and it has served as a decision-helping tool in 

conservation policy making (Courchamp, Langlais and Sugihara, 1999, 2000; Roemer, 

Donlan and Courchamp, 2002; Courchamp, Woodroffe and Roemer, 2003; Serrouya et al., 

2015). However, an increasing level of complexity is required to further understand and 

more accurately predict the multiple sources of AC and their consequences on animal 

communities. More specifically, the role of population structure (Bonsall and Hassell, 2000; 

Mouquet et al., 2005), spatial dynamics (Schmitz and Booth, 1997; Holt and Barfield, 2003; 

Forrester and Steele, 2004; Orrock, Holt and Baskett, 2010; Ng’weno et al., 2019), temporal 

dynamics (Holt and Barfield, 2003; Barraquand et al., 2015; Serrouya et al., 2015; Smith and 

Hall, 2016), or active behaviours (Schmitz and Booth, 1997; Bonsall and Hassell, 2000) have 

been identified as needing further research (Holt and Bonsall, 2017). Despite the great 

advances in theory it permitted, the classical approach using mathematical modelling is 

limited when incorporating the aforementioned mechanisms, especially simultaneously. 

Alternatively, agent-based models (ABMs) can be used to better integrate this complexity 

in modelling. ABMs are often more appropriate for addressing theoretical questions at 

small scales, with finite and small populations, non-equilibrium dynamics, spatial and 

temporal complexity and flexibility in individual behaviours (Uchmański and Grimm, 1996; 

DeAngelis and Grimm, 2014; Stillman et al., 2015) and should therefore be more widely 

applied to AC systems. Indeed, in these systems, the landscape characteristics, foraging 

behaviours, and local interactions between animals greatly influence the intensity of 

indirect competition. However, if ABMs are increasingly widespread in ecology (Schmitz 

and Booth, 1997; Bocedi et al., 2014, 2021; DeAngelis and Grimm, 2014; Ayllón et al., 2016; 

Railsback, Ayllón and Harvey, 2021), they are more scarcely used in conservation 
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(Bousquet and Le Page, 2004; Duthie et al., 2018; Railsback, Ayllón and Harvey, 2021) and 

were, until now, non-existent in apparent competition.  

Chapter 3 of this thesis introduced and demonstrated the accurate functioning of a spatially, 

timely explicit ABM for predator-prey dynamics under apparent competition. In the present 

study, I demonstrate how to use this model to evaluate alternative management strategies 

to conserve a species endangered by AC. The most widespread method to conserve such a 

species is by controlling the other species’ densities (Courchamp, Langlais and Sugihara, 

1999, 2000; Roemer, Donlan and Courchamp, 2002; DeCesare et al., 2010; Serrouya et al., 

2015). In the classical case of a prey species endangered by the presence of another, more 

abundant, primary prey species that better withstands predation, Wittmer et al. (2013) 

identified the three most common control strategies to be (i) the control of the predator 

population, (ii) the control of the primary prey, and (iii) the simultaneous control of the 

primary prey and predator populations. In this study, the strategy (i) was identified as 

effective to protect endangered bird species (Côté and Sutherland, 1997) until predator 

control stops or weakens and the high density of primary prey causes too strong a predation 

pressure on the endangered prey. Strategy (ii) was expected to have a detrimental effect on 

the endangered prey density in cases of high numbers of predators at the time of 

implementation, as removal of the more abundant prey population could cause prey-

switching and increase predation pressure instead. Finally, strategy (iii) is expected to be 

the safest, as it undermines both these effects. Any of these strategies being preferable than 

leaving the situation unmanaged. Most of these expectations were explored in a previous 

mathematical study on the case of golden eagle-mediated apparent competition between 

an abundant population of introduced feral pigs and an endangered endemic island fox 

population on the Californian Channel islands (Courchamp, Woodroffe and Roemer, 2003). 

This study will be ideal to confront results with. 

Using my novel ABM, I will confront these predictions by evaluating the efficiency of each 

strategy on the intensity of AC on an endangered prey, compared to a null strategy of no 

management intervention, in a canonical model case of apparent competition. The spatially 

explicit, bottom-up approach of my ABM will relax key assumptions about predation in 

mathematical model and challenge the robustness of their predictions when modelling AC 

more mechanistically. In the spirit of avoiding the rise of conservation conflict, I will 

evaluate these strategies with a focus on the endangered prey dynamics, while controlling 

for the persistence and the stability of the other species in the AC system. 
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4.2. Methods 

4.2.1. Model 

The model description follows a condensed version of the ODD (Overview, Design concepts, 

Details) protocol (Grimm et al., 2006, 2010, 2020). All model details can be found in the 

section 3.2 of the previous chapter. Every detail present in Chapter 3 but not mentioned 

here was not modified for this chapter’s simulations. 

4.2.1.1. Overview 

4.2.1.1.1. Purpose 

The purpose of the model is to simulate trophic interactions between an abundant prey 

population, an endangered prey population and a shared predator population when a 

removal control policy is applied to the abundant population, to the predator, or both 

simultaneously. The aim is to anticipate these policies’ potential adverse effects resulting 

from apparent competition between prey species mediated by predation. The ABM 

approach makes it possible for this model to account for important aspects of population 

dynamics that cannot be included simultaneously in deterministic models, such as 

stochastic spatial heterogeneity in animal positions, intrinsic uncertainty, or non-

equilibrium dynamics. Moreover, the predator numerical and functional responses and the 

prey catch rates are emergent properties of the model, allowing to relax the assumptions 

made in mathematical models for these mechanisms. This work will evaluate the propensity 

of removal strategies to conserve the endangered prey species, without putting the other 

species at risk of extinction. 

4.2.1.1.2. Entities, state variables and scales 

Landscape 

All animals are simulated on a square grid lattice landscape of size S x S cells. Each cell is 

characterised by an x and a y location, a reference number unique to the cell, a certain 

amount of resources of two different kinds present on the cell, a maximum amount of 

resources that the cell can hold, the density of each animal present, and the count of catches 

of each prey types during a timestep. 

Animals 

Animals move, and interact with resources and other animals, on landscape cells. They are 

characterised by an x and a y position on the grid, the associated cell number, a type (here 

prey 1, prey 2 and predator), a dead or alive status, an age, a resource stock, and a number 

of offspring produced. The movement range (in fraction of S), satiation level, cost for 

maintenance and for reproduction (all in resource units), diet, average expected number of 
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offspring produced (fertility), and time of introduction depend on the population to which 

they belong. 

Animals – preys 

Prey entities are modelled as a specific type of animal, distinct in the way that they harvest 

resources. Prey absorb resources directly from the landscape cells. Each prey population 

has specific values for their animal characteristics and feed on a unique resource (i.e., there 

is no competition for resources between prey populations). 

Animals – predators 

Predators are modelled as a specific type of animal entity, distinct in the way that they 

acquire resources. They gain resources by capturing prey that occupy a shared landscape 

cell. Predators have additional characteristics that distinguish them from other animal 

entities. These characteristics are a conversion rate of a prey captured into resource units 

for each prey type, and a probability of catch for each prey type. Predators feed on both prey 

species with no particular preference. 

Spatial and temporal scales 

Timesteps and spatial scale are abstract in the model, but in this study, a single timestep 

could be conceptualised as the equivalent of a month, and a single grid cell could be 

conceptualised as equivalent to one hectare. 

4.2.1.1.3. Process overview and scheduling 

In all the following processes involving animals in a timestep, prey populations act first, in 

order of prey type, followed by the predator population, provided that the current timestep 

is passed their respective introduction time. A timestep begins with animals moving, which 

updates the position of each animal on the landscape and of each animal type’s densities on 

the cells. Next, prey feed and predators hunt, which updates the animals’ individual 

resource stock, preys’ status (dead or alive) and prey type’s densities on cells. Every 10 

timesteps, the following processes occur: a proportion Qi of animals of population are 

removed (if applicable); all living animals undergo a survival trial to update their dead or 

alive status; the survivors then undergo a reproduction trial to update the animals’ number 

of offspring produced. The animal tables are updated, accounting for deaths, increasing 

survivors age by 1, and introducing offspring as new individuals. Lastly, the animal type’s 

density in landscape cells is updated accordingly at the end of the timestep. A timestep then 

finishes by saving the density of resources, prey, catches and predator density on the 

landscape, appending to a results table. Every 10 timesteps, the landscape cells resources 

are replenished to their maximum before starting a new timestep cycle (Figure 21).  



120 
 

 

Figure 21. General flowchart of a timestep in the model. Boxes finishing with a '?' are realised 

only if the timestep is superior to the time of introduction of the given species. Boxes finishing 

with a '??' are realised only if, in addition, the timestep is a multiple of fsurv. Species undergo 
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removal if their population was entitled to it and if the time is passed the policy’s starting 

timestep. 

4.2.1.2. Design concepts 

4.2.1.2.1. Stochasticity 

Species removal 

Species removal is carried out after randomly shuffling the species population table to 

ensure spatial and inter-individual stochasticity in removal. 

4.2.1.2.2. Observation 

The observed variables are the density of each population on the landscape and the number 

of successful catches by predators in each prey population. In this study, these variables are 

measured after each survival and reproduction trial. They make it possible to compute 

other measures such as populations’ catch rate, fluctuation amplitude, or extinction rate. 

4.2.1.3. Details 

4.2.1.3.1. Initialisation  

At initialisation, a table containing the animal population densities and catch count is 

constructed. Resources are set to their respective maximums on each cell, and animals’ 

positions are distributed at random with an empty resource stock, alive status (DoA = 1), 0 

offspring and age 0. Structures are set up in timestep 0 and life events processes start on 

the next timestep. The endangered prey (prey type 2) and predator populations are 

introduced at timestep 0 at their pseudo-equilibrium densities in the absence of a third, 

faster growing, population of prey (prey type 1). After 300 timesteps (30 generations) of 

endangered prey - predator dynamics, the alternate prey species is introduced. After 70 

generations, the removal policy is initiated.   

4.2.1.3.2. Sub models 

Species removal 

If the given species is managed, meaning that some individuals can be removed from the 

population for conservation purposes, and if the simulation timestep exceeds the timestep 

of removal implementation, the removal quota/rate Qi is computed according to the policy 

characteristics. Next, the population table is shuffled and parsed; if the randomly chosen 

animal is not already dead, then its dead or alive status is set to 0. The process is repeated 

until the quota has been attained or that there are no living animals remaining (Figure 22). 

Removal occurs after the moving and feeding sequence and at the same frequency as 

survival and reproduction trials. 
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Figure 22. Flowchart of the removal function. 
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4.2.2. Calibration 

4.2.2.1. Model case 

I calibrated the model to a canonical case of apparent competition, where a resident prey 

species and its predator exhibit stable dynamics, but the introduction of another prey 

species with a higher growth rate (i.e., that better withstands predation) slowly excludes 

the resident species by sustaining a higher predator population, thereby increasing 

predation pressure on the resident species beyond the level it can withstand (Bonsall and 

Hassell, 2000; Courchamp, Langlais and Sugihara, 2000; DeCesare et al., 2010; Serrouya et 

al., 2015). 

4.2.2.2. Assumptions and parameter setting 

I assumed the predator to be a generalist, meaning that the predator feeds on both types of 

prey. I also assumed that predators had no preference for prey of either population. This 

was enacted by shuffling the vector of prey available for predation on a cell before 

undergoing the capture trials, and setting the prey catch probabilities to the same values. 

This ensured that predation pressure variations would only be linked to the emergent 

position and abundance of the prey. I assumed a relatively high growth rate for the primary 

prey (prey 1) in comparison to the resident, endangered prey (prey 2). Therefore, I have 

made the primary prey more efficient in converting resources into offspring by setting its 

reproduction cost to a lower level than the endangered prey. I assumed the same level of 

available resources for each prey species and set the levels to a high value, allowing prey 

species to stabilise at high pseudo-carrying capacities in absence of predation. 

Consequently, prey species dynamics were much more strongly limited by predation than 

by resource availability. I assumed the prey to be of equivalent size and abilities such that 

the predator was as efficient in acquiring resources from both prey species. Therefore, I set 

the two preys’ maximum consumption, maintenance cost, and resources per catch to the 

same values. 

4.2.3. Parameter exploration 

First, I set the endangered prey parameters to the values in Table 5 and simultaneously 

varied this prey’s maintenance cost µ2 (setting the reproduction cost ρ2 to the same value) 

and its catch probability pcatch
2 across a wide range of values before simulating the dynamics 

in the presence of the predator only. I selected parameter values for which the prey and 

predator populations stabilised to the highest densities with the lowest oscillations 

amplitude and no risk of extinction (µ2 = ρ2 = 40 resources units and pcatch2 = 0.04). Next, I 

varied the ratio between the primary and the endangered prey reproduction costs (ratio < 
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1, such that primary prey had a higher growth rate) and simulated the dynamics in the 

presence of both the predator and primary prey populations. I selected parameter values 

that resulted in the primary prey slowly but consistently excluding the endangered prey by 

maintaining a higher density of predator, with no risk of extinction for primary prey or 

predator populations (ρ1 = 25 resources units, Figure 23). I choose this parameter set as the 

null strategy, i.e., no management intervention.  

 

Figure 23. Evolution of the three species mean densities along generations with no 

management intervention. The coloured ribbons are the bootstrapped 95% confidence 

intervals around the means. The dotted line is the time of introduction of the predator 

population, the dot and dashed is the primary prey’s. 

4.2.4. Management scenario evaluation 

4.2.4.1. Experimental plan 

To evaluate the efficiency of the 4 different management strategies, I varied the primary 

prey (Q1) and the predator culling rates (QP) within a range of 0 to 0.25 by 0.05 increments 

and simulated the dynamics over 200 generations in 50 replicates for every removal rate 

parameter value combination (removal rates above 0.25 caused consistent extinction of 

either the predator or the primary prey populations in preliminary simulations). A 

combination of both rates at zero corresponded to the null strategy, or no intervention 

whatsoever. A combination with a Q1 (QP) of 0 corresponded to a predator (primary prey) 
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removal only policy. Any combination with both Q1 and QP > 0 corresponded to a 

simultaneous removal of primary prey and predator policy.  

4.2.4.2. Simulations 

The endangered prey and predator populations were introduced at timestep 0 at their 

densities of pseudo-equilibrium in absence of a second prey population (i.e., their densities 

just before the introduction of the primary prey in the calibration experiment, Figure 23). 

After 30 generations of burn-in, 100 animals of the primary prey population were 

introduced. After 70 generations, the endangered prey population was at very low 

densities, therefore needing management. The removal policy was implemented from the 

100th generation and ran for another 100 generations, until the end of simulation (200 

generations in total). All simulations were run with the model version v0.6.2, available for 

consultation at this link. The analyses were run on R (v4.2.1; R core team (2022)). 

4.2.4.3. Measures 

To evaluate the propensity of each strategy to conserve the endangered prey, I measured 

the final density of each species as the average density over the last 50 generations. Over 

the same period, I measured the difference between maximal and minimal densities to 

estimate the amplitude of the oscillations, if present. This approach avoided the artifact of 

estimating a mean final density over 50 generations which did not exactly cover a full 

multiple of a complete cycle. The extinction frequency was also assessed, calculated as the 

number of extinction events over the 50 replicates. I considered a removal strategy to be 

efficient when it allowed the endangered prey population to reach densities comparable to 

those observed in absence of the primary prey, with low to null extinction risk, and a low 

amplitude of oscillations, while also ensuring the persistence of the other species in the 

system. Parameters were set to the values in Table 5. 

Table 5. Parameters table. 

Class Object Name Symb
ol 

Value  Unit 

Landscape Size of landscape grid S 25 cells 

Max resources of type 
1 

K1 400 resource units 

Max resources of type 
2 

K2 400 resource units 

Animal 
 

Prey 1 initial density N01 100 animals 

move range  0.1 fraction of S 

max consumption σ1 10 resource units 

maintenance cost µ1 40 resource units 

reproduction cost ρ1 25 resource units 

fertility λ1 1 animals 

https://github.com/AdrianBach/abmClean/blob/3e90b766cf442ce1535f64572a18714d255bc7a2/v0.6.2/chapter2ibm-v0.6.2.cpp
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time of introduction t1 0 timesteps 

Prey 2 initial density N02 4,000 individuals 

move range  0.1 fraction of S 

max consumption σ2 10 resource units 

maintenance cost µ1 40 resource units 

reproduction cost ρ2 40 resource units 

fertility λ2 1 animals 

time of introduction t2 1,000 timesteps 

Predator initial density P0 300 animals 

move range  0.1 fraction of S 

satiation σP 100 resource units 

maintenance cost µp 200 resource units 

reproduction cost ρP 400 resource units 

fertility λp 0.5 animals 

time of introduction tP 0 timesteps 

catch proba of prey 1 pcatch
1 0.04 - 

resources per prey 1 ϒ1 100 resource units 

catch proba of prey 2 pcatch2 0.04 - 

resources per prey 2 ϒ2 100 resource units 

Other Simulation time tmax 2,000 timesteps 

Freq. of survival trials fsurv 10 timesteps 

Freq. of repr. trials frepr 10 timesteps 

Freq. of resource refill ffill 10 timesteps 

Management Prey 1 Removal rate Q1 0 – 0.25 fraction of N1(t) 

Starting time tR1 1,000 timesteps 

Frequency fR1 10 timesteps 

Predator Removal rate QP 0 – 0.25 fraction of P(t) 

Starting time tRP 1,000 timesteps 

Frequency fRP 10 timesteps 
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4.3.  Results of the alternative strategies evaluation 

4.3.1. No removal  

Given no intervention whatsoever, the endangered prey population (prey 2) went extinct 

in 90% of the replicates (Figure 24) or otherwise ended at a very low final density (35.56 

animals on average, with a bootstrapped 95% confidence interval of [27.72 ; 44.92]; Figure 

25). The mean oscillations amplitude in density in the replicates that did not end in an 

extinction was very low, with a minimum of 8.6 and a maximum of 129 animals (Figure 26). 

The other species in the system stabilised at high densities with no extinction risk (Figure 

24 and Figure 25). Without intervention, the introduced primary prey species would then 

consistently replace and exclude the endangered resident prey by sustaining a higher 

density of predator than the endangered prey can withstand. 

4.3.2. Predator removal only 

The predator removal policy consistently removed the risk of endangered prey population 

extinction, even when the predator removal rate was low, reducing prey 2’s extinction 

frequency down to 0 from a 10% predator removal rate (Figure 24). The endangered prey 

final density steadily increased with the predator removal rate (Figure 25), even to a higher 

final density than alone with the predator for high removal rates (5,415.31 [5,409.94 ; 

5,426.81] with QP = 0.25 versus 4,061.44 [4,032.27 ; 4,091.94] when alone with the 

predator). The amplitude of oscillations in the endangered prey’s final density slightly 

increased for QP = 0.15 and 0.20 (up to around an amplitude of 1,000 for around 3,000 

animals) but decreased back down to low amplitudes for the higher removal rate (Figure 

26) , most likely because decline caused in the predator density.  

Predator removal had no effect on predator or prey 1 extinction frequencies, which stayed 

at 0, and only a weak effect on their final densities, until reaching QP = 0.25 which caused 

the predator final density to drop to a low value (88.54 animals on average) with a slight 

increase in their extinction frequency (from 0 to 2% of the replicates). This relieved 

predation pressure on both prey populations, even allowing the primary prey final densities 

to increase to higher densities than in absence of management (Figure 24 and Figure 25). 

The amplitude of oscillations in predator and prey 1 final densities followed the same 

trends as prey 2’s (Figure 26). 

4.3.3. Primary prey removal only 

The primary prey removal policy saved the endangered prey from extinction by reducing 

the extinction frequency to 0 given a 5% removal rate (Figure 24). The endangered prey 

final density steadily increased with increasing removal rate, even to a higher density than 
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alone with the predator for high values (more than 5,000 animals for Q1 = 0.25, Figure 25). 

The amplitude of oscillations in the endangered prey density increased with increasing 

removal rates until Q1 = 0.15 (between 1,000 and 2,000 amplitude for between 2,000 and 

4,000 individuals), after which the amplitude decreased again (Figure 26), most likely 

because decline caused in the primary prey density. 

Increasing the removal rate also increased the predator population extinction frequency, 

with a slow but steady decrease in their final population. The primary prey population’s 

extinction frequency increased from Q1 >= 0.2, and its mean final density strongly decreased 

with increasing removal rate values (Figure 24 and Figure 25). Predator and primary prey 

populations showed the same trend as prey 2 in the amplitude of density oscillations 

(Figure 26). 

4.3.4. Primary prey and predator simultaneous removal 

Simultaneous removal of both the primary prey and the predator made the endangered 

prey safe from extinction for every possible combination tested (Figure 24). For each given 

predator removal rate values, increasing the prey 1 removal rate resulted in a higher 

endangered prey final density. Similarly, for any fixed primary prey removal rate, 

increasing the predator removal rate resulted in a higher endangered prey final density 

(Figure 25). The amplitude of oscillations in endangered prey final density was higher for 

low predator and low prey 1 removal but decreased again when increasing either the 

primary prey or the predator removal rates. Interestingly, for primary prey removal rates 

Q1 < 0.2, setting up a combined predator removal policy protected the predator population 

from going extinct (until QP = 0.25 where the extinction risk was high again). 

The primary prey was not threatened with extinction in any combination except {Q1 = 0.25 

; QP = 0.05}, where the reduction in growth rate caused by the removal policy prevented the 

primary prey from withstanding predation (Figure 24). In combinations ensuring no 

extinctions, the predator population density ended up around the value in absence of the 

primary prey (306.77 [302.48 ; 310.85] animals on average before the primary prey 

introduction). Overall, the primary prey final density benefited from a higher predator 

removal rate, but their density declined for Q1 > 0.15. Several combinations of Q1 and QP 

resulted in high densities for all species, with low oscillation amplitude and no extinction 

risk; an example is shown in Figure 27. Generally, a low amplitude was obtained with a 

higher predator removal rate, sometimes at the expense of the predator population 

declining to very low densities before taking hold again. 
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Figure 24. Heatmaps of the extinction frequency according to the different predator and 

primary prey (prey 1) removal rates for the endangered prey (prey 2, panel a), the primary 

prey (b) and the predator (c) populations. The lighter the colour, the highest the extinction 

risk. The colour range values are relative to each population results. 

 

Figure 25. Mesh plot of the mean final density of the endangered secondary prey population 

(prey 2) according to predator and primary prey (prey 1) removal rates (a). Heatmaps of the 

mean final density according to predator and primary prey removal rates for the primary 

prey (b) and the predator (c) populations. The lighter the colour, the highest the density. The 

colour range values are relative to each population results. 
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Figure 26. Heatmaps of the mean difference between the maximal and minimal final densities 

according to the predator and primary prey removal rates for the endangered prey (a), the 

primary prey (b) and the predator (c) populations. The lighter the colour, the larger the 

amplitude. The colour range values are relative to each population results. 

 

 

Figure 27. Evolution of the three species mean density (left) and of the number of catches 

relative to the density (right) along simulation timesteps with one of the removal policies that 

resulted in the highest final densities for the three species, with 0 extinction frequency and 

the least amplitude in oscillations (Q1 = 0.1; QP = 0.2). The coloured ribbons are the 

bootstrapped 95% confidence intervals around the means. The dotted and dashed line is the 

time of introduction of the primary prey population. The dashed line is the time of first 

implementation of the removal policy. Note that even if there were no extinctions in the 

simulations, the predator population decreases close to very low number in the few 

generations preceding the time of implementation of the removal policy. 
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4.4. Discussion 

My agent-based model simulated management in a case of apparent competition between 

an endangered prey species and a more abundant, faster growing, primary prey species 

mediated by a shared predator with no preference for either prey. I evaluated and 

compared the efficiency of three removal strategies in conserving the endangered prey 

population without threatening the other species in the system by testing several 

combinations of removal rates. The three strategies were (i) removal of predator only, (ii) 

removal of primary prey species only, (iii) simultaneous removal of predator and primary 

prey species. With no intervention, the endangered prey population consistently went 

extinct; all three strategies successfully reduced this extinction risk to zero, even with low 

removal rates. The endangered prey population density steadily increased with increasing 

removal rates in all strategies. The simultaneous removal of predator and primary prey 

resulted in higher endangered prey densities than removal of only one of the species. The 

amplitude of oscillations in the endangered prey density was maximised for combinations 

of low but positive predator and primary prey removal rates but decreased when the 

removal rates further increased. The primary prey species removal policy had a stronger 

effect in reducing both the predator and the primary prey densities, and therefore in 

increasing the endangered prey density, than the predator removal policy. For several 

combinations of the simultaneous removal of both the primary prey and the predator 

populations, the endangered prey and predator population ended up at levels similar to 

those in absence of the primary prey, with high densities for the primary prey and no 

extinction risk for any species. 

The efficiency of the predator removal strategy in conserving the endangered prey species 

is consistent with previous works (Côté and Sutherland, 1997; Courchamp, Woodroffe and 

Roemer, 2003; Wittmer et al., 2013). Indeed, the regular removal of part of the predator 

population instantaneously resulted in a decrease in prey catch rates, allowing both preys 

to increase in density. Nevertheless, these studies argue that the cessation of predation 

control must be planned carefully because allowing the predation population to increase 

again in presence of enhanced prey densities might lead to an even stronger apparent 

competition effect than before the policy implementation. In the face of this argument, the 

authors doubt about the long-term benefits of this strategy. 

Using a mathematical model of a real-world case of golden eagle-mediated apparent 

competition between an abundant feral pig and an endangered island fox, Courchamp, 

Woodroffe and Roemer (2003) also showed that combining predator and primary prey 

removal resulted in better conservation outcomes for the endangered prey species. 
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Consistently, in my simulations, removal of the predator alone reduced the catch rate but 

did not markedly reduce the predator density; adding removal of the primary prey also 

decreased predator density, thus combining two positive effects on the endangered prey 

density.  

An interesting point of disagreement with Courchamp, Woodroffe and Roemer (2003) is 

that the authors found removal of the feral pig prey population alone to consistently drive 

the endangered fox population to extinction. In this study’s model, the decrease of the most 

abundant prey caused the share of the fox in the predator diet to increase, strengthening 

predation pressure on fox population. In my simulations, removing the primary prey 

instantaneously caused a strong reduction in the predator population, with a positive effect 

on the endangered prey density due to predation relief. On another hand, my result also 

confirms a previous study of a real-world wolf-mediated apparent competition between an 

abundant moose population and an endangered caribou population, in which the removal 

of part of the moose population resulted in a decline of the wolf population and an increase 

in caribou population (Serrouya et al., 2015). 

There could be several explanations for these contradictory results. First, in the model of 

Courchamp, Woodroffe and Roemer (2003), foxes are expected to go extinct after 

completely removing the feral pigs within 6 years. Is this extinction because the foxes could 

not withstand eagle predation in isolation with the eagle population? Roemer et al. (2001) 

showed foxes would indeed go extinct if they were the only prey of eagles. My model case 

was built such that the endangered prey could withstand predation in absence of the 

primary prey species (Bonsall and Hassell, 1997; Courchamp, Langlais and Sugihara, 2000; 

Wittmer, Sinclair and McLellan, 2005; DeCesare et al., 2010). Additionally, previous studies 

showed that the eagle population cannot sustain only on foxes and can only settle in 

presence of an abundant feral pig population (Roemer et al., 2001; Roemer, Donlan and 

Courchamp, 2002). This unsurprisingly means that the parameter set governing this eagle-

fox-pig system is most likely different from my model case’s, starting with the carrying 

capacity values. In Courchamp, Woodroffe and Roemer (2003) study, the carrying capacity 

of the endangered prey species (fox) was much lower than that of the abundant prey (feral 

pig). This might have limited fox population growth in addition to the increase of predation 

pressure when controlling the abundant prey population. Chapter 3 has shown that 

asymmetry in carrying capacities has a strong impact on the intensity of apparent 

competition in my model. I have tried to undermine this effect by setting a high ratio 

between the preys’ consumption and the maximum amount of their resources per cell, 

resulting in high pseudo-carrying capacities for both species. Prey’s dynamics were 
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therefore more strongly limited by predation than by resource availability, allowing strong 

growth for both species at the densities of stabilisation in presence of the predator. This 

could be an explanation for these contradictory results.  

Different assumptions regarding the predator functional responses modelling would 

unlikely explain this stronger predation on foxes. First because in Courchamp, Woodroffe 

and Roemer (2003), the conversion rates (equivalent of resources per catch in my model) 

of foxes and pigs were also set to the same values. Second, the attack rate was fixed but 

modulated by the instantaneous proportion of a given prey population relative to the total 

number of available preys and by the predator density, resulting in a catch rate function of 

all species’ instantaneous densities. This modelling choice is similar to my model, in which 

the catch rate emerges from the interaction between a fixed catch probability, the 

proportion of a given prey relative to all the preys on a cell and the number of predators 

present on the cell (so by extension, from the emergent position and density of the animals). 

Nevertheless, my model assumes individual predator satiation, which is absent from 

Courchamp, Woodroffe and Roemer (2003) and might make predation less drastic in my 

simulations. Moreover, the most striking difference between our model cases was that 

Courchamp, Woodroffe and Roemer (2003), based on previous studies on the actual system 

(Roemer et al., 2001; Roemer, Donlan and Courchamp, 2002), assumed a very strong 

predation preference for foxes. This model was parameterised with a bias for foxes in the 

eagle diet (more than 8 foxes captured for 1 pig captured), combined with a bias in the 

attack rates (more than 4 times higher for fox than for pigs). Interestingly, in the same 

system, Roemer et al. (2001) showed that these biases can have a strong impact on the 

outcome of apparent competition even in absence of management; a change of preference 

from 1 to 3 foxes for 1 pig resulted in a more rapidly declining fox population. On another 

hand, in the same system as Courchamp, Woodroffe and Roemer (2003), but in presence of 

a third prey species and without management, Roemer, Donlan and Courchamp (2002) 

showed that varying the fox parameters, including bias in diet and attack rate, by ± 10% 

had very little effect on the outcome of apparent competition. An equivalent of this model’s 

attack rate parameter in my ABM would be the catch probability. In the present simulations, 

the preys’ catch probabilities were set to the same values, resulting in the same catch rate 

for both prey species. To investigate this further, I repeated the experiment by setting an 

intrinsic preference of the predator for the endangered prey (predator preferentially prey 

upon the endangered prey if present, but still with the same catch probability for both prey 

types). This resulted in a slightly higher catch rate for the endangered prey, but the 

tendencies were the same as the experiment with no intrinsic preference, although with a 

slightly stronger extinction risk for the endangered prey at low removal rates. Thus, 
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intrinsic preference alone might not suffice to explain the difference in our results. The 

sensitivity analysis in section 3.4.2.4 also showed that the asymmetry in catch probability 

between prey species had a positive impact on the intensity of apparent competition. 

Altogether, this suggests that the combination of a strong asymmetry in the fox attack rate 

with a strong bias for foxes in the eagle diet is an important factor explaining these 

contradictory results. Asymmetries in the predator diet and attack rates should then be 

carefully assessed before evaluating management strategies as it appears to be able to 

reverse the outcome of management.  

Besides, the timesteps allowed between reproduction trials in my model might play an 

important role in reducing the bias in predation. After a reproduction trial, the primary prey 

population is expected to be more abundant than the endangered prey because it 

transforms resources into offspring more efficiently. Thus, the proportion of primary prey 

on a cell will often be larger than that of the endangered prey. Therefore, there should be 

more catch trials involving primary preys than endangered ones, and since satiation limits 

predators to one catch per timestep, they are more likely to be satiated on the primary prey, 

introducing an asymmetry in predation pressure to the benefit of the endangered prey. But 

as timesteps go passed from the reproduction trial, and as more members of the primary 

prey population are caught, the proportion of primary preys on a cell should decrease, thus 

reducing the asymmetry in predation pressure on the primary prey. These few timesteps of 

moving and feeding between two reproduction trials then lowered the level of asymmetry 

in preys’ predation pressure between two survival and reproduction trials. Whereas, in 

most mathematical models, all life events are realised at once and applied directly on the 

instantaneous population densities at every timesteps, with no chance for natural processes 

to eventually smooth the asymmetries out.  

Importantly, the removal policies resulting in the most stable predator-prey dynamics 

drove the predator to very low densities in the few generations following the 

implementation of the policy before increasing in density again. Low densities are known 

to make populations more vulnerable to extinction due to environmental or human-

induced perturbations, particularly through Allee effects (Stephens and Sutherland, 1999; 

Wittmer, Sinclair and McLellan, 2005; Ng’weno et al., 2019), which are defined by negative 

growth rate at low densities. Although negative growth rate at low densities emerged in my 

simulations, the Allee effect might be underestimated because the reproduction process is 

asexual. The animals do not need to be in the same location (i.e., on the same cell) as a mate 

to reproduce. An agent-based approach to sexual reproduction would require two mating 

animals to occur on the same cell to produce offspring, which would be increasingly unlikely 
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at low densities, at least without active behaviour to move towards neighbouring mates. I 

hypothesise that such a mechanism would reduce the parameter space in which the 

extinction risk is null for all species in the system. Sexual reproduction is the norm in most 

of the conservation cases involving apparent competition as it most often involves 

terrestrial or aerial vertebrates; it would therefore be an important addition to make to the 

future versions of my model. 

One of the novelties of this study is that it enlarges the scope of management strategy 

evaluation to other species in an apparent competition system. In most of the studies 

reviewed for this work, the focus of the evaluation was on the endangered species only, with 

little attention given to the other species in the system. Although, it is common that these 

other species also have a conservation or economical value. In these cases, considering all 

the species in interaction when evaluating management strategy can avoid the rise of 

conservation conflicts between human stakeholders. In Courchamp, Woodroffe and 

Roemer (2003) study, to preserve the fox population, the complete removal of eagles is 

believed to be necessary, which is hardly possible without destructive methods (Roemer et 

al., 2001; Roemer, Donlan and Courchamp, 2002), causing a conservation conflict between 

eagle protection and fox preservation. Another example is presented in a case of managed 

savanna in Kenya, involving abandoned former cattle corrals that form nutrient-rich 

patches, attracting both the abundant population of zebra and the endangered, emblematic, 

hartebeest population. Their spatial proximity makes hartebeest predation by lions more 

likely than usual, threatening the hartebeest population. This led managers to reconsider 

the lethal control of lions, previously banned for conservation purposes, setting the 

premises of a conservation conflict between lion protection and hartebeest conservation 

(Ng’weno et al., 2019). These cases would benefit from a management strategy evaluation 

accounting for all species involved in apparent competition interactions. 

Following the amplitude of the oscillations in population densities as a measure of a 

management strategy efficiency is not widespread, apart from studies explicitly focusing on 

cycles in population dynamics (Abrams, Holt and Roth, 1998; Holt and Barfield, 2003; 

Barraquand et al., 2015). Yet, these studies show that cycles and temporal variability such 

as seasonality can have an important impact on the outcome of apparent competition. 

Besides, incorporating these cycles in management strategy evaluation, especially in 

adaptive management, can enhance conservation value by calibrating intervention timing 

more efficiently (Bach et al., 2022). Adaptive management would make sense in the policies 

simulated in the present study, notably by avoiding the removal of animals when their 

density is low or increase the rate when it is high. Adjusting the removal rate to density 
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could also avoid the problem of low predator density after the policy implementation 

mentioned earlier, achieving the same final efficiency by reducing both the risk of extinction 

for predator and potentially the amplitude of oscillations in densities, which were tied 

together in all three species (Figure 26). 

4.5. Conclusions 

This study showed that modelling animal’s behaviour more mechanistically, especially 

individual diet preferences, reproduction, and satiation could reduce the intensity of 

apparent competition expected by mathematical models. The time-explicit nature of ABMs 

also allows for natural processes to smooth out asymmetries between key life events. This 

suggests that according to parameterisation, apparent competition effects might be 

overestimated by MMs. Also, by combining the accounting of all the species involved in 

apparent competition and the follow up of the oscillations in densities as a measure of 

efficiency, this work showed how my model can enhance management strategy evaluation. 

The strategies presented here are now implemented in the public version of the model and 

available for researchers or managers to evaluate in other cases of apparent competition. 
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5. General discussion 

5.1. Contribution to conservation science 

Although the agent-based modelling (ABM) approach can meet many of the challenges 

faced by biodiversity conservation, its application in management strategy evaluation 

(MSE) is still scarce. I contribute to the democratisation of ABMs in conservation by 

proposing novel agent-based decision-helping tools for two complex conservation 

problems: conservation conflict management and the management of species involved in 

apparent competition.  

In Chapter 2, I question the understudied impact of managers’ timing of intervention in 

conservation conflicts adaptive management (Sims and Finnoff, 2013; Iacona, Possingham 

and Bode, 2017) using the agent-based software GMSE (Duthie et al., 2018). I propose an 

alternative strategy to unconditional intervention, warranting intervention only when a 

criterion of distance between a prediction of the managed population size and the 

management target is exceeded. I have implemented my ‘Trajectory’ strategy as a new 

feature of GMSE and evaluated it according to conservation, food security and equity 

objectives (Bunnefeld et al., 2013; Nilsson et al., 2021). Among the benefits brought by the 

agent-based approach was the monitoring of policy equity among members of a 

stakeholder group as a management outcome. This aspect of conservation conflict has been 

identified as having a significant impact on stakeholders’ compliance with conservation 

policies (Rakotonarivo, Bell, et al., 2021; Rakotonarivo, Jones, et al., 2021), but it had not 

been simulated before. The evaluation showed that the Trajectory strategy can result in a 

more efficient, more equitable management of a conservation conflict while saving budget. 

This can have important implications for budget allocation, as funds are often limiting in 

conservation (McDonald-Madden et al., 2011; Wam et al., 2016; Wu et al., 2021). I want to 

clarify here that this strategy should not be instrumentalised to reduce the funding for 

conservation on the basis that interventions might be less frequent. Its efficiency relies on 

regular and accurate, and therefore often expansive, monitoring of both population and 

land-users’ actions, and the budget saved should be invested to improving further 

interventions or allocated to other cases of conservation. The Trajectory strategy is now 

built in the public R-package of GMSE, available for managers and researchers to evaluate it 

in different cases of conservation conflicts. 

Apparent competition is known to play a key role in the structure of species communities 

(Holt, 1977; Abrams, Holt and Roth, 1998; Chesson and Kuang, 2008), and conservation 

measures can alter these indirect interactions in ways that can hardly be anticipated 
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without complex modelling (DeCesare et al., 2010; Wittmer et al., 2013; Ng’weno et al., 

2019). Yet, there are no existing ABMs of apparent competition, despite that the agent-

based approach could significantly advance researchers’ understanding of both apparent 

competition dynamics and how management can affect them. More specifically, the impact 

of spatial heterogeneity in resource distribution and habitat suitability, behavioural 

complexity and population structure on apparent competition dynamics have been 

identified as needing further research (Holt and Bonsall, 2017), which are all assets of 

ABMs. Therefore, I introduce in Chapter 3 a novel ABM of apparent competition between 

multiple resources, prey and predator populations that can simulate the aforementioned 

mechanics. I validated the model in its simpler form with a sensitivity analysis and 

compared the outcomes to the existing theory of apparent competition. The model 

accurately simulates apparent competition as an emergent phenomenon and is now ready 

to be improved and expanded upon to address the knowledge gaps. In chapter 4, I evaluate 

different removal strategies for the management of a species endangered by apparent 

competition to show how my agent-based tool can be applied to management strategy 

evaluation. The explicit modelling of resources, spatially explicit and time explicit nature of 

my model challenges other studies of previously considered management strategies, 

highlighting different aspects of conservation in systems involving apparent competition 

that might have been overlooked before, including the importance of biases in predation 

pressure, resource availability, and the time that separates two reproduction periods or two 

interventions. My model is now ready to be used as decision-helping tool to evaluate 

removal strategies for the management of other cases of species endangered by apparent 

competition. 

Across all data chapters, much attention has been given to enlarge the scope of management 

strategy evaluation to better inform policy making. In the case of conservation conflicts, I 

evaluated management strategies according to both conservation objectives and farmer 

income, as warranted by the MSE framework (Smith, Sainsbury and Stevens, 1999; 

Bunnefeld, Hoshino and Milner-Gulland, 2011; Nilsson et al., 2021), but I also assessed the 

equitable repartition of costs and benefits of conservation measures between and among 

stakeholder groups. This is an important outcome to measure; first because it can inform 

on the expected level of stakeholders’ compliance to the policy and, above all, because it 

ensures that policies have the least impact on land-users’ lives and income. In the apparent 

competition problem, I evaluated strategies to protect an endangered species while keeping 

a close watch on the other species in the system. Indeed, even if the priority is to conserve 

the endangered species, it should not be done at the expense of the others (unless the other 

species are also of conservation interest). Moreover, it is common – and will likely become 
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increasingly prevalent – that several species in a community exhibiting apparent 

competition interactions are of conservation interest. These kind of situations can easily 

lead to conflicts about which species should be given priority for protection (Courchamp, 

Woodroffe and Roemer, 2003; Redpath and Thirgood, 2009; Ng’weno et al., 2019), thus 

requiring a more global evaluation of alternative strategies. Additionally, the methods I 

propose are not only focused on the outcome at the end of the management period 

considered; analyses were carried out controlling for the dynamics along the management 

period. Notably, the amplitude of oscillations and cycles in population dynamics, known to 

have a strong influence on species persistence (Abrams, Holt and Roth, 1998; Holt and 

Barfield, 2003; Fryxell et al., 2010; Barraquand et al., 2015), have received more attention. 

Thus, managers can select the strategies resulting in the more stable dynamics. These 

methods, crossed with the assets of my ABM approach, provide two novel robust and 

thorough MSE tools for complex conservation problems. 

5.2. Progresses permitted by the ABM approach 

In conservation conflict problems, the spatially explicit nature of the agent-based approach 

makes it possible to evaluate management strategies in which animals can be more 

numerous in some landscape areas than others in an unpredictable way. The heterogeneity 

in animals distribution on the landscape is an important aspect to simulate because it 

impacts the equitable repartition of costs and benefits among the farmers; perceived 

inequity favouring defection from conservation policies (Rakotonarivo, Bell, et al., 2021; 

Rakotonarivo, Jones, et al., 2021). Moreover, since farmers lands were also modelled 

explicitly, this spatial heterogeneity was often reflected in farmer decision making, because 

they based their budget allocation to possible actions on the density of the managed species 

on their land, hence generating more variability in the actions undertaken. This can greatly 

influence management strategy evaluation, especially with, for example, scaring policies 

because it causes the animal distribution on the landscape to be both heterogeneous and 

unpredictable (Pollard, 2018; Nilsson et al., 2021). In Chapter 3 apparent competition 

problem, modelling the resource spatial distribution on the landscape allowed the inter-

individual variability in animals resource intake to fully take hold and simulate intra-

specific competition in a more mechanistic way (Grimm, 1999; DeAngelis and Grimm, 

2014). Again, this resulted in heterogeneity in animals’ distribution on the landscape and 

therefore on the distribution of prey available to the predators. These different strata 

cascaded into a more realistic, more mechanistic, predator functional response, which is at 

the core of apparent competition dynamics (Holt, 1977; Holt, Grover and Tilman, 1994). In 

both problems, the spatially-explicit nature of the agent-based approach permitted to 



141 
 

evaluate alternative management strategies while the position and local densities of 

animals are uncertain, thus intrinsically accounting for ‘model uncertainty’ (Bunnefeld, 

Hoshino and Milner-Gulland, 2011). 

The agent-based approach allows for more flexibility in the succession of events over time. 

It was an asset to evaluate adaptive management strategies dynamically alternating 

between intervention and waiting (Sims and Finnoff, 2013; Iacona, Possingham and Bode, 

2017), as the call of the policy update sub model could be conditioned to monitoring at each 

timestep. In the apparent competition model, allowing a few timesteps of moving, feeding, 

and hunting between survival and reproduction trials gave the opportunity for the inter-

individual variability within populations to express its potential on intra-specific 

competition. But more importantly, it dampened the asymmetry caused by differences in 

prey populations’ growth rate, as predicted by Uchmański and Grimm (1996). Thereby, it 

reduced asymmetry in predation and in apparent competition intensity, which, by 

construction, could not have been predicted by mathematical models of population 

dynamics. 

ABMs were made to simulate agent behaviour explicitly. Modelling the flexible and dynamic 

decision making of stakeholders is key for the success of management strategy evaluation 

(Schlüter et al., 2012), including choice along a continuum of possible actions and the ability 

to make mistakes. In GMSE, the agent-based approach simulated potentially suboptimal but 

practical decision making for both managers and farmers with an ABM of artificial 

intelligence called genetic algorithm (Hamblin, 2013) in the form of budget allocation to a 

variety of possible actions with a level corresponding to the budget allocated. Moreover, the 

farmers were modelled as discrete agents, and they made decision independently through 

their own call of the genetic algorithm. This generates inter-agent variability in decision-

making, allowing the evaluation of alternative strategies while acknowledging that 

managers do not always make the most optimal policies and that farmers do not always 

react as expected, thus accounting for ‘implementation uncertainty’ (Kamra et al., 2018; 

Cusack et al., 2020; Nilsson et al., 2021). In my apparent competition ABM, the focus on 

animals modelling permitted the simulation of different behaviours. First, a given prey will 

absorb different amount of resources from the landscape at each timestep, according to 

resource availability and stochastic modulation. The ABM simulated that the quality of food 

sources can vary over time and space and that feeding sequences are not always the same. 

This generated inter-individual variability in resource acquisition, therefore modelling 

intra-specific competition for resources. Additionally, predator preference could be 

modelled in a more mechanistic way (ordering of the prey available on a cell by preference 



142 
 

before catch trial sequence) while previous mathematical models simulated preference as 

a fixed bias in the catch rate (Courchamp, Langlais and Sugihara, 2000; Roemer, Donlan and 

Courchamp, 2002). Once again, this successfully accounted for model uncertainty because 

it simulated unpredictable variability in the population dynamics.  

5.3. Future research avenues 

The Trajectory strategy for the timing of intervention in the adaptive management of 

conservation conflicts introduced in Chapter 2 relies on regular and accurate monitoring of 

a managed population. But all monitoring techniques bear uncertainty (Bunnefeld, Hoshino 

and Milner-Gulland, 2011; Nuno, Bunnefeld and Milner-Gulland, 2013) and monitoring 

accuracy in often dependent on the budget invested in population surveys (Milner-Gulland, 

2011). Thus, the superiority of Trajectory strategy over unconditional intervention might 

depend on the budget available for monitoring; an argument that could play an important 

role in the selection of this strategy according to cases. I believe this question should be the 

next step in the exploration of the efficiency of the Trajectory strategy. It would also be 

interesting to investigate the pertinence of this strategy when actions other than culling are 

available to farmers, such as offspring control or non-destructive methods like scaring 

(Pollard, 2018; Nilsson et al., 2021). Since they are expected to affect population density 

less drastically, the distance to target warranting intervention might need to be adapted 

accordingly.  

One advantage of the Trajectory strategy is that small, inconsequential oscillations around 

a target will not warrant an unnecessary and potentially harmful intervention. Also, 

Chapter 3 and 4 demonstrated that oscillations and cycles are common in multi-species 

dynamics, especially in predator prey dynamics (Abrams, Holt and Roth, 1998; Holt and 

Barfield, 2003; Fryxell et al., 2010; Barraquand et al., 2015). This suggests that applying 

adaptive management would be most relevant to the removal strategies evaluated in 

Chapter 4, most likely by allowing the removal rates to change according to the monitored 

species densities (Bunnefeld et al., 2013; Cusack et al., 2020; Nilsson et al., 2021). This could 

dampen the amplitude of cycles in population dynamics and ensure more stable dynamics. 

Therefore, the management of species endangered by apparent competition could benefit 

from the Trajectory strategy. Besides, cases of apparent competition management often 

generate conservation conflicts (Thirgood et al., 2000; Courchamp, Woodroffe and Roemer, 

2003; Redpath and Thirgood, 2009; Barraquand et al., 2015; Ng’weno et al., 2019), but 

studies of management strategy evaluation in such cases are scarce. Thus, future work 

might incorporate my model of apparent competition into software such as GMSE. For now, 
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GMSE includes only one population in the resource operating model, but it is coded in a very 

flexible way, and the agent-based structure of both models will facilitate integration.  

Now that my model of apparent competition is validated and tested in its essential version, 

additional progresses can be made in AC theory and related management strategy 

evaluation by sequentially introducing and testing features lacking understanding (Holt 

and Bonsall, 2017). I believe that the features to be prioritised for implementation include 

spatial heterogeneity in resource distribution and habitat suitability. Indeed, these are 

especially susceptible to be affected by conservation intervention, e.g., through the setup of 

supplementary feeding sites (Redpath, Thirgood and Leckie, 2001; Krofel and Jerina, 2016), 

the installation of fences restricting access to some but not all species (Kaswamila, Russell 

and McGibbon, 2007; Rocío A. Pozo et al., 2021), or by providing refuges to a protected 

species (Sinclair et al., 1998; Forrester and Steele, 2004; Jensen, Wisz and Madsen, 2008). 

Moreover, these kinds of management strategies have caused several conservation conflicts 

(Ng’weno et al., 2019; Rocío A. Pozo et al., 2021), hence the need to manage them with extra 

care. I have developed and coded the model such that these characteristics can be added as 

a new landscape layer, each cell having a custom value for resource abundance or 

accessibility to a given species. 

However, I suspect that for these spatially explicit features to fully express their potential 

on AC dynamics, the model will need to integrate options for more active behaviour from 

the animals. Notably, active movement towards areas offering more resources or prey 

(Schmitz and Booth, 1997), towards the areas offering shelter from predation (or a more 

simple mechanism of predator-avoiding movement), or towards potential mates. Indeed, I 

believe that the option for sexual reproduction is an important feature to add to the model, 

as it can play an important role in the strength of Allee effects at low densities (Stephens 

and Sutherland, 1999; Wittmer, Sinclair and McLellan, 2005; Berec, Angulo and Courchamp, 

2007; Ng’weno et al., 2019). Nevertheless, these mechanisms might need more advance 

coding skills than adding a new characteristic to the landscape cells. 

Before increasing its complexity, this exciting coding work needs to be made accessible to 

non-modelling users, by setting up a graphical user interface (GUI) for parameter setting 

and simulation, but most likely by transforming the model into an R-package to combine 

running simulations and automated analyses.  

Indeed, a key area of improvement for most complex models resides in the bridge between 

developing efficient modelling tools and having stakeholders practically engage with them. 

First, the assumptions and hypotheses underlying a model of a socio-ecological system, or 

how they can effectively mimic real-world systems, are not always clear to stakeholders, 
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which can hinder their confidence in the predictions. Especially, I believe, when they 

involve mathematical equations that can be daunting to a non-familiar audience. On this 

side, in my opinion, the assumptions of ABMs are much easier to grasp because they are 

much closer to individual-level animal or human mechanisms that anyone can observe, 

especially local land-users. Also, regardless of model complexity, parameterising, running, 

analysing, and communicating results from a model often requires basic modelling skills 

that managers do not always possess. This might require a specific position for someone 

having these skills in biodiversity managements teams. Focusing on parameterisation, even 

if higher-level parameter values can partly be found in the literature, the accurate 

simulation of particular cases with ABMs often requires estimating parameter values from 

field measurements. Not only can it be expensive and bears its own uncertainty, but 

parameters are often designed to ease model programming and interpretation rather than 

facilitate the estimation of their value from the field. I have tried to keep this in mind when 

programming, but it can be challenging to conciliate it with computational efficiency. The 

caveat of this is that the parameters can become too abstract to stakeholders, further 

impacting their confidence in the model. There is matter for debate because, on the one 

hand, models should be developed in cooperation with stakeholders to guarantee their 

understanding and engagement with them, and on the other hand, conservation cannot 

afford to design an entirely new model for every single case, but rather need flexible 

software that can be parameterised to a large panel of cases.   

5.4.  Conclusions 

This thesis contributes to conservation science by taking advantage of the agent-based 

modelling (ABM) ability to simulate more complex and more intricate interactions between 

human stakeholders, animals, and their environment than the mathematical models 

historically used in conservation. Using ABMs in management strategy evaluation (MSE), I 

address two complex conservation challenges: conservation conflict (CC) management and 

the management of species involved in apparent competition (AC). While investigating the 

impact of managers’ timing of intervention in CCs, I propose the "Trajectory" timing 

strategy, which can enhance conservation success and equity among stakeholders while 

offering efficient, budget-saving alternatives. My multi-species, multi-layer, ABM of AC, 

validated through sensitivity analysis and comparisons with existing theory and actual 

cases, questions and expands our understanding of the mechanisms underlying AC; 

especially through its individualised foraging behaviour, and time and spatially explicit 

structure. The model was designed to ease the inclusion and the study of more intricate 

low-level mechanisms influencing AC outcomes that are directly influenced by conservation 
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interventions and are hardly simulated by usual models (e.g., complex foraging, 

reproductive behaviours, heterogeneity in resources repartition and accessibility). I also 

show how to use this model to assess removal strategies for species endangered by 

apparent competition, revealing insights potentially missed in previous studies, mostly 

involving usual mathematical models. These contributions expand the scope of 

management strategy evaluation, considering equity, multiple species, and oscillation 

dynamics, and offer uncertainty-robust agent-based tools for complex conservation 

problems. I hope that these tools will help further improving conservation success in an 

equitable way. 
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Appendices 

A1. Chapter 2 - Modelling details 
 

Model overview  

Model case.  

To simulate conservation conflict management over time, we develop an individual-based 

model with a population of discrete animals, discrete farmers, and a biodiversity manager, 

all interacting on an agricultural landscape. The landscape is divided into discrete cells, each 

of which produces an agricultural yield and can hold any number of animals. Each farmer 

owns a contiguous block of cells that forms their ‘land’, and the sum of its cells’ productivity 

determines the farmer’s yield. Each animal’s reproduction and survival depend on the 

amount of agricultural resources it consumes from landscape cells, which consequently 

reduces the farmers’ yield. Farmers can cull animals that are on their own land to reduce 

yield loss. We chose population parameter values to ensure that unrestricted culling 

consistently drove the animal population to extinction (see the ‘initial parameters’ section 

below). The manager attempts to avoid extinction by maintaining the population around a 

predefined target size (TN). This target was chosen to be high enough to prevent extinction, 

but low enough to ensure a satisfactory yield to farmers. The manager’s method is to 

implement a policy incentivizing or disincentivizing culling as appropriate to increase or 

decrease population size to be closer to TN. Hence, following an adaptive management 

process, the manager updates this policy according to the monitoring of the population size 

(Nt) at each timestep t. Farmers’ and manager’s actions are constrained by finite budgets 

(respectively BF and BM), which we interpret to reflect the total time, energy or money that 

a farmer can allocate to realize culling actions, or the manager to implement a change of 

policy and enforce culling restrictions at each timestep. Furthermore, a conservation 

conflict will arise when the policy enforced by the manager prevents the farmers from 

culling as many animals as they want to minimize yield loss. Our case’s conflict dynamics 

are therefore affected by both the ecology of the population and the flexible, goal-oriented 

decision-making of the manager and farmers.   

Manager policymaking.  

To maintain the population as close as possible to TN, the manager receives a fixed, non-

cumulative budget BM at the beginning of each timestep (i.e., it is completely lost if unused 

at the end of the timestep). They can allocate it into setting a cost that farmers must pay to 
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cull an animal on their land. A minimum cost of 10 budget units (b.u.) models the baseline 

budget needed for a farmer to cull an animal. The manager can draw into BM to raise this 

cost to discourage farmers from culling and favor population growth and can decrease it to 

facilitate culling and favor a population decrease. To model the budget needed to enforce a 

policy restricting culling, a raise of 1 in the culling cost requires an investment of 10 b.u. 

from the manager. Conversely, as the manager does not need to incentivize farmers to 

remove animals when the policy allows high culling rates, they do not need to spend budget 

to decrease the cost. The amount by which the manager changes the culling cost is 

computed according to their goal (see the ‘decision-making sub-model’ section below), i.e., 

keeping the population as close as possible to target. Manager’s goal was modelled as 

minimizing the distance between the monitored population size Nt and TN.  

Timing strategies.  

We included three timing strategies that determine whether a manager intervenes and 

updates the policy or waits and leaves it as is. The Control strategy (CTL) was the null model 

in this study. It corresponds to unconditional intervention at every opportunity and was 

modelled as the manager simply updating the policy at every timestep. With the Adaptive 

Timing of Intervention strategy (ATI), the manager dynamically alternates between 

intervening and waiting based on the distance between Nt and TN. ATI defines a permissive 

range PT around TN in the form of TN ± PT. Within this range, the manager considers Nt close 

enough to TN, and consequently, that the current policy results in a sustainable culling rate 

for the population. Hence, at a given timestep, the manager will update the policy if and only 

if the population is monitored outside this TN ± PT range. The Trajectory (TRJ) strategy is 

the same as the ATI strategy, except that when Nt is into TN ± PT, the manager makes a 

prediction on next timestep’s population size based on the current and preceding 

monitoring results. If this prediction falls into the TN ± PT range, the manager assumes that 

the policy is effective and leaves it unchanged; otherwise, they update it. In both ATI and 

TRJ strategies, after a timestep without updating the policy, the manager receives an 

additional proportion Bb of BM to model the benefits associated with waiting (e.g., the 

money, time or energy saved by not engaging in the process of updating the policy and 

enforce the change on farmers, or the interests gained from putting up the money saved). 

This bonus can be accumulated over several consecutive timesteps of waiting but is lost as 

soon as the manager draws into their budget to raise the level of restrictions again.  

Farmers' action planning.  
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At the beginning of each timestep, each farmer receives a fixed, non-cumulative budget BF, 

which they allocate into culling a certain number of animals on the land that they own at 

the cost set by the manager’s policy. The number of animal culled is independently 

computed for each farmer using GMSE’s evolutionary algorithm (see the ‘decision-making 

sub-model’ section below), meaning that each farmer makes an independent decision for 

how to act according to their goal: maximizing their own yield. We used this model case to 

investigate how different timing strategies for a biodiversity manager’s intervention can 

affect the outcomes of an adaptively managed conservation conflict.  

Simulations with GMSE  

To simulate a conservation conflict management with different strategies under 

uncertainty, we used the R package ‘GMSE’ (Duthie et al. 2018). GMSE is a flexible modelling 

tool to simulate key aspects of natural resource management over time and address 

adaptive management questions in silico (Cusack et al. 2020, Nilsson et al. 2021). GMSE 

offers a range of parameters to simulate resource variations and management policy 

options with individual-based models of population dynamics, monitoring, manager 

decision-making and farmer decision-making.  

Initial parameters.  

We modelled a spatially explicit landscape with a grid of 200 by 200 cells, divided into 40 

equally sized rectangular pieces of land, each individually owned by one of 40 farmers. For 

the animals, we wanted to model a population that is stable in absence of culling, but under 

an important threat of extinction under a high culling rate. We defined the population 

dynamics model parameters such that, under constraint of density-dependent intra-specific 

resource competition only, an equilibrium was reached quickly and steadily, as a stable 

natural population would. The size at equilibrium (K) was sought such that the expected 

number of animals per farmer’s land was about a hundred on average (i.e., around 4000 

individuals on the landscape). The farmers were provided with an initial budget high 

enough to cull up to the expected number of animals on their land at the baseline cost (i.e., 

1000 b.u), and at first, the manager’s initial budget was set equal to the farmers’ one. We 

set TN at half the equilibrium size, which was low enough to maintain farmers’ yield over 

90% of their maximum yield, but high enough to ensure a relatively low extinction risk of 

around 15% with the Control strategy (c.f. Management outcomes and Results sections in 

main document). We intentionally chose these parameters for the Control strategy to 

produce adequate management while also leaving room for improvement in order to 
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determine the extent to which alternative strategies can generate better results. We set the 

initial population size N0 = 1000, which is sufficiently far below K for the population to be 

under extinction threat and justify the initial involvement of a manager.  

Population dynamics sub-model.  

GMSE’s population dynamics model features a population of N animals, each of which has 

an age as well as an x and y landscape position, all initialized at random (integers sampled 

with equal probabilities along the range of possible values). In each timestep, each animal 

moves from its current cell to a random cell within a defined range of cells in any direction 

(including the original cell). After arriving at a cell, the animal feeds and consumes a 

proportion of 0.5 of the cell’s remaining yield. All animals move 12 times during a single 

timestep, but individual movement across all animals occurs in a random order to avoid 

having a subset of animals complete all their moving and feeding before the others have 

started. After all movement and feeding has occurred, the animals asexually produce one 

offspring for every 5 resource units consumed (e.g., if an animal has consumed 12 resource 

units it produces 2 offspring). The offspring are added to the population as new individuals 

of age 0 on the cell on which they were produced. Next, animals that have consumed over 

4.75 resource units and have an age under or equal to 5 timesteps survive to the next one. 

Animals that do not survive are removed from the population. This consumption criteria 

lead to density-dependent intra-specific competition for resource, and modelling life events 

discretely and probabilistically generates inter-individual variability, as well as 

geographical and demographic stochasticity, therefore accounting for several sources of 

uncertainty around population dynamics.  

Monitoring sub-model.  

We assumed that the manager makes no errors during monitoring, thus Nt represents the 

exact population size at each timestep. This assumption avoided modelled stochastic 

monitoring errors that would have challenged a full understanding of management 

dynamics.  

Decision-making sub-model.  

Manager and farmer decision-making is modelled in GMSE using evolutionary algorithms 

(Hamblin 2012). Each time an agent makes a decision, the GMSE evolutionary algorithm 

generates a set of random possible policies for managers (culling costs) or action plans for 

farmers (number of culls), and then allows this set to evolve on its own self-contained 
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timescale. Policies or action plans that are better aligned to an agent's goal have a relatively 

high fitness, and the fittest ones are selected to be the agent’s policy/action plan when the 

conditions for the algorithm termination are met (see supporting information S1 in Duthie 

et al. 2018, and GMSE documentation for further details). Our model thereby computes a 

practical but not necessarily optimal decision, recognizing that most people cannot think of 

every single possibility to choose the optimal one, but can choose the best option among 

those they could conceive. This process generates inter-individual variability, errors, and 

stochasticity in agents’ decision-making, therefore simulating several sources of 

uncertainty around human behavior.  

Timing strategies implementation.  

CTL is the default strategy in GMSE: at each timestep t, the evolutionary algorithm calculates 

an appropriate cost of culling (most likely a raise in the cost when Nt < TN and a decrease 

when Nt > TN). In contrast, when applying ATI, the manager updates the policy only if Nt is 

out of the permissive range (TN ± PT). Hence, the evolutionary algorithm is called only if  

 

Otherwise, the cost is left the same as the previous timestep. Lastly, when applying TRJ, the 

process is the same as ATI, except that the decision to update is based on a prediction of 

next timestep’s population size 𝑁̂𝑡+1  instead of Nt. We chose as a predicting function a 

simple linear extrapolation based on the current (Nt) and previous (Nt-1) population sizes 

that has the advantage of including the influence of the active policy on population variation 

in a simple way. Hence, with TRJ the condition for calling the evolutionary algorithm is 

 , 

With 𝑁̂𝑡+1 = 𝑁𝑡 + (𝑁𝑡 − 𝑁𝑡−1). 

Otherwise, the cost stays the same as previous timestep. After a timestep without calling 

the evolutionary algorithm, the manager starts the next one with an addition of a proportion 

Bb of BM b.u. to their regular budget BM. (See Fig. A5 for a flowchart of the different 

strategies.) 

https://confoobio.github.io/gmse/articles/SI1.html
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Figure A1. Flowchart of the three timing strategies. 

 

Table A1.1. Summary of useful symbols. 

Symbol  Status  Description  Unit 

tmax  constant  max simulation time  times steps 

TN  constant  manager’s target for population 
size  

nb. of individuals 

N0  constant  initial population size  nb. of individuals 

Nt  variable  population size monitored at 
timestep t  

nb. of individuals 

PT  variable  permissiveness around TN  % of TN 

BM  variable  manager’s initial budget  b.u. 

Bb variable  budget bonus amount  % of BM 

fext  outcome  extinction frequency over a set 
of replicates  

% of replicates 

Yend  outcome  average farmers’ yield at the 
end of a simulation.  

% of landscape max 
productivity 

Yineq  outcome  average differential between 
lowest and highest farmers' 
yields at the end of a simulation 

% of highest yield 

dT  outcome  Average distance between Nt 
and TN at the end of a 
simulation 

% of TN 

tw  outcome  Average proportion of 
timesteps without intervention  

% of simulation time 
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Table A1.2. GMSE parameter values. Parameters not mentioned here were set to default (as in 

https://confoobio.github.io/GMSE/articles/SI3.html). 

Parameter Value Description 

time_max 20 Maximum timesteps in simulation 

land_dim1 200 Width of landscape (horizontal cells) 

land_dim2 200 Length of landscape 

res_death_type 0 Rules affecting resource death (consumption-based) 

res_birth_type 0 Rules affecting resource birth (consumption-based) 

observe_type 3 Type of resource observation (transect observation) 

res_move_obs FALSE Resource move during transect observation 

res_consume 0.5 Pr. of a landscape cell’s value reduced by 

  the presence of a resource in a timestep 

max_ages 5 The maximum number of timesteps a resource 

  can persist before it is removed 

minimumcost 10 The minimum cost of a farmer performing culling 

user_budget 1000 A farmer’s budget per timestep for performing 

  any number of actions 

manager_budget 1000 A manager’s budget per timestep for setting policy 

manage_target 2000 The manager’s target resource abundance 

RESOURCE_init 1000 The initial abundance of resources 

culling TRUE Resource culling (removes a resource entirely) 

  is a policy option 

stakeholders 40 Number of farmers in the simulation 

landownership TRUE farmers own land and increase utility indirectly 

  from landscape instead of resource use 

manager_sense 0.15 A metric of managers accuracy in predicting 

  change in stakeholder behaviour given a change 

  in cost 

consume_surv 4.75 Amount of cell value for a resource to eventually 

  survive until the next timestep 

consume_repr 5 Amount of cell value for a resource to eventually 

  produce offspring 

times_feeding 12 Maximum number of times a resource consumes 

  landscape value per timestep 

  

https://confoobio.github.io/gmse/articles/SI3.html
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A2. Chapter 2 - Additional figures of the adaptive timing of 
intervention strategy experiment results. 
 

 

Figure A2.1. Population’s average deviation from target (dT) at the final timestep of simulation 

according to permissiveness (PT) and budget bonus (Bb) values when applying the Adaptive 

Timing of Intervention strategy. Results from simulations with an individual-based model 

simulating the adaptive management of a population under conditions of conservation 

conflict. The greener, the closer the population to manager’s target (TN). Given the numerous 

extinctions (see Fig.1), the population very often ended at a size of 0, meaning a –100% 

deviation from target, hence the large red area. With Control strategy, the population was 

under target by –30 to –20%. Expectedly, this reflects the same tendency as the extinction 

frequency fext. 
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Figure A2.2. Average farmers’ yield (Yend) at the final timestep of simulation according to 

permissiveness (PT) and budget bonus (Bb) values when applying the Adaptive Timing of 

Intervention strategy. Results from simulations with an individual-based model simulating 

the adaptive management of a population under conditions of conservation conflict. The 

greener, the closer the farmers’ yield to landscape maximal productivity. Given the numerous 

extinctions (see Fig.1), farmers very often reach their maximal yield, hence the large green 

area. With control strategy, farmers got between 85 and 90% of their maximal yield on 

average because the population was more efficiently managed and thus larger. 
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Figure A2.3. Average farmers’ yield inequity (Yineq) at the final timestep of simulation 

according to permissiveness (PT) and budget bonus (Bb) values when applying the Adaptive 

Timing of Intervention strategy. Results from simulations with an individual-based model 

simulating the adaptive management of a population under conditions of conservation 

conflict. The greener, the smaller the difference between the highest and lowest farmer’s 

yields. Given the numerous extinctions (see Fig.1), farmers very often reach their maximal 

yield while the lower yields were higher than with control strategy, hence the very low 

inequity. 
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Figure A2.4. Population’s average deviation from target (dT) at the timestep before the end of 

simulation (tmax or extinction) according to permissiveness (PT) and budget bonus (Bb) values. 

Results from simulations with an individual-based model simulating the adaptive 

management of a population under conditions of conservation conflict. The greener, the 

closer the population to manager’s target (TN). Note that in most areas of high extinction risk 

(red areas in Fig.1), the population size was monitored into the corresponding permissive 

range in the timestep preceding extinction, causing the manager to wait when intervention 

was urgent. 
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Figure A2.5. Average proportion of timesteps without manager’s intervention (tw) during a 

simulation according to permissiveness (PT) and budget bonus (Bb) values when applying the 

adaptive timing of intervention strategy. Results from simulations with an individual-based 

model simulating the adaptive management of a population under conditions of conservation 

conflict. The lighter, the larger the number of timesteps without intervention. 
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A3. Chapter 2 - Additional figures of the trajectory strategy experiment 
results 
 

 

Figure A3.1. Average proportion of timesteps without manager’s intervention (tw) during a 

simulation according to permissiveness (PT) and budget bonus (Bb) values when applying the 

Trajectory strategy. Results from simulations with an individual-based model simulating the 

adaptive management of a population under conditions of conservation conflict. The lighter, 

the larger the number of timesteps without intervention. In the 30% PT parameter area, the 

manager could save between 10 and 20% of their interventions. 

 

 



171 
 

Figure A3.2. Population’s average deviation from target (dT) at the final timestep of simulation 

according to permissiveness (PT) and budget bonus (Bb) values when applying the Trajectory 

strategy. Results from simulations with an individual-based model simulating the adaptive 

management of a population under conditions of conservation conflict. The greener, the 

closer the population to manager’s target (TN). Most areas are greener than the control 

strategy (PT = 0 band) meaning that the trajectory strategy maintained the population closer 

to target. Note that in the PT = 30 parameter area, dT is the closest to 0 for every Bb values. 

 

 

Figure A3.3. Average farmers’ yield (Yend) at the final timestep of simulation according to 

permissiveness (PT) and budget bonus (Bb) values when applying the Trajectory strategy. 

Results from simulations with an individual-based model simulating the adaptive 

management of a population under conditions of conservation conflict. The greener, the 

closer the farmers’ yield to landscape maximal productivity. Most areas are as green as 

control strategy, with a final farmers’ yield over 85% of their maximum. 
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Figure A3.4. Average farmers’ yield inequity (Yineq) at the final timestep of simulation 

according to permissiveness (PT) and budget bonus (Bb) values when applying the trajectory 

strategy. Results from simulations with an individual-based model simulating the adaptive 

management of a population under conditions of conservation conflict. The greener, the 

smaller the difference between the highest and lowest farmer’s yields. Most areas are as 

equitable, or slightly less equitable than control strategy. 
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A4. Chapter 2 - Additional figures of the sensitivity to manager’s initial 
budget experiment results 
 

 

Figure A4.1. Population’s average deviation from target (dT) at the final timestep of simulation 

according to manager’s initial budget (BM) and budget bonus (Bb) values when applying the 

Trajectory strategy. Results from simulations with an individual-based model simulating the 

adaptive management of a population under conditions of conservation conflict. The greener, 

the closer the population to manager’s target (TN). 
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Figure A4.2. Average proportion of timesteps without manager’s intervention (tw) during a 

simulation according to manager’s initial budget (BM) and budget bonus (Bb) values when 

applying the Trajectory strategy. Results from simulations with an individual-based model 

simulating the adaptive management of a population under conditions of conservation 

conflict. The lighter, the larger the number of timesteps without intervention. The BM = 800 

b.u. and 20-30% Bb parameter area was also the one where the manager needed to intervene 

less, another sign that the population is often close enough to target not to need an 

intervention. 

 

 

Figure A4.3. Average farmers’ yield (Yend) at the final timestep of simulation according to 

manager's initial budget (BM) and budget bonus (Bb) values when applying the Trajectory 

strategy. Results from simulations with an individual-based model simulating the adaptive 

management of a population under conditions of conservation conflict. The greener, the 

closer the farmers’ yield to landscape maximal productivity. In the areas where the extinction 

frequency is acceptable, the farmers’ final yield is over 85% of their maximum, which is 

comparable to the previous experiments. 
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Figure A4.4. Average farmers’ yield inequity (Yineq) at the final timestep of simulation 

according to manager’s initial budget (BM) and budget bonus (Bb) values when applying the 

trajectory strategy. Results from simulations with an individual-based model simulating the 

adaptive management of a population under conditions of conservation conflict. The greener, 

the smaller the difference between the highest and lowest farmer’s yields. In the areas where 

the extinction frequency is acceptable, the inequity is between 4 and 6% which is comparable 

to the previous experiments. 

 


