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ABSTRACT 
The accurate forecast of stock market volatility is of particular importance for policy makers, 

investors, and market participants who have certain levels of risk which they can bear. This 

thesis centres around the conditional volatility, realized volatility, and volatility spillovers in 

the context of their model extensions. In particular, we examine the behaviour of stock market 

volatility in a selection of international markets, the ability of different models to provide 

accurate volatility forecasts, and the nature of the interrelations between markets from the 

perspective of complex network theory. Focussing on the modelling and forecasting of 

volatility we compare some well-established conditional volatility models with realized 

volatility models and further investigate the use of a number of additional parameters in 

improving the forecast accuracy of the future realized volatility. In this regard, a wide range of 

additional parameters, from assets to commodities, extreme range estimators to overnight 

volatility, oil price to gold price, VIX to EPU, bond price to interest rate, are included. 

Moreover, those are classified as different information channels, namely local, regional, and 

global. In terms of volatility spillovers, a volatility spillover model is combined with complex 

network theory in order to construct a volatility network of international financial markets, 

consisting of nodes and edges. The main contributions of this thesis are four. First, using the 

thirty different stock market indices and more up-to-date data the realized volatility (HAR-RV) 

models outperform the conditional volatility (GARCHs) models and, moreover, decomposition 

of realized volatility into positive and negative realized semi-variances (HAR-PS) improve the 

forecast accuracy of HAR-RV model. Second, extreme range estimators such as Parkinson and 

Garman-Klass could contain additional information for forecasting the future realized 

volatility. Third, the role of global information at improving the forecasts of future realized 

volatility is more important than that of local and regional information. Lastly, the spillover 

networks of international financial markets are much denser in crisis periods compared to non-

crisis periods and volatility spillovers in COVID-19 Crisis (2020) period are more transitive 

and intense than Global Financial Crisis (2008) period.  
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Glossary  
 

Terms Definitions 
Volatility Clustering This characteristic of volatility was first stated by Mandelbrot (1963, pp. 418) 

who explains that ”Large changes tend to be followed by large changes…and 
small changes tend to be followed by small changes”. The series of returns are 
uncorrelated, yet the squared returns display a positive and significant slowly 
decaying autocorrelation function that accounts for the clustering behaviour. 
 

Leptokurtosis The distribution of the returns generally exhibits excess kurtosis, meaning that 
there is more weight in the tails compared to the lognormal distribution. This 
distribution is modelled as independent and identically distributed process 
(i.i.d.). 
 

Leverage Effects The so-called leverage effect is described as the asymmetric response of 
volatility to positive and negative returns of the same magnitude. More 
precisely, bad news has a more significant effect than good news. 
 

Long Memory Stock returns display a weak autocorrelation. According to Ding et al. (1993), 
they are not independently and identically distributed. The autocorrelation of 
absolute and squared returns slowly decays that means a sign of long memory. 
This phenomenon is accounted for by questioning ‘how quickly an asset forgets 
a large shocks in financial volatility’. 
 

Jump Financial data sometimes exhibit extraordinary variations due to market crash, 
political turmoil, speculative activity or natural disaster. In practice, jumps are 
not predictable. However, this stylised fact has a strong positive impact on the 
future volatility of stock markets. 
 

Realized Volatility The Realized Variance/Volatility (RV) is one of the most popular volatility 
measures that can be computed by taking the sum of squared intraday returns. It 
is important to note that it is tick-by-tick data and 5-minute RV is considered to 
be a better representative of the true volatility. 
 

  Conditional Volatility Conditional volatility can be defined simply as; “volatility is conditioned on 
lagged values of itself and of model errors”.  
 

Volatility Spillovers The transmission of information across financial markets is called in the 
literature as ‘volatility spillover effects’. This phenomenon is also referred to as 
fear connectedness by Diebold and Yilmaz (2014), who are two of the most 
well-known researchers in this topic. 
 

ARCH/GARCH According to Engle (1982),  if volatility can be correlated over time, then the 
change in variance can be modelled with the ARCH (Autoregressive 
Conditional Heteroskedasticity) model. Afterwards, Bollerslev (1986) made a 
generalization, which does not only catch ‘volatility clustering’, but also include 
‘fat tails’ in the new model that is the Generalized ARCH (or GARCH) model. 
There are many different variants of GARCH models for different needs of 
practitioners and researchers (see –‘Glossary to ARCH (GARCH)’ (Bollerslev, 
2009)– for more information).   
 

  
HAR-RV The Heterogenous Autoregressive Model of Realized Variance (Corsi, 2009) is 

a simple autoregressive type model for modelling and forecasting realized 
variance. The model consists of three components which are daily, weekly and 
monthly parameters. 
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ARFIMA The long memory autoregressive fractionally integrated moving average 

(ARFIMA) model is a long memory type model that can be used for modelling 
and forecasting realized variance. It is an alternative to the HAR-RV model 
and had been often applied before the HAR-RV was proposed in 2009.   
 

Efficient Market 
Hypothesis 

The efficient market hypothesis (EMH) states that current stock prices reflect 
all available information and thus impossible to beat the market. In other 
words, everything in the market is already accurately and fairly priced and no 
room to make excess returns for investors and market participants, except by 
chance. There are different forms of this hypothesis such as the weak form, the 
semi-strong and the strong form. The weak form aims to test whether current 
stock prices reflect all available information. The semi-strong form is based on 
event studies, in other words, the announcement effects. The strong form 
analyses whether some specific groups (insiders) have private information 
from which to take advantage.   
 

Heterogenous Market 
Hypothesis 

This hypothesis assumes that the main reason of heterogeneity in the financial 
markets stems from the existence of various types of investors (Muller, 
Dacorogna, Dave, Olsen, Pictet and von Weizsacker, 1997). Different investors 
interpret the same information differently depending on their risk appetites. 
 

 Network Theory Network theory is a concept that considers the relationships between different 
parts of real life complex systems by using nodes and edges.  
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CHAPTER 1 
 

1. Introduction and Research Background 
 

1.1. Introduction 
 

The volatility forecasting of financial assets has been one of the most important topics in 

financial econometrics. The term, volatility, refers to the degree of fluctuations in asset prices 

within a short period of time. Poon and Granger (2003) consider volatility as a “barometer for 

the vulnerability of financial markets and the economy”(p. 479). As financial volatility is 

closely related to risk and uncertainty, its sphere of influence is quite wide including, for 

example, risk management, option pricing, investment analysis, portfolio diversification, and 

policy-making. Therefore, the accurate forecast of stock market volatility is of significant 

importance for policy makers, investors, and market participants who have certain levels of 

risk which they intend not to exceed.  

         As financial markets pass through calm and crisis periods, volatility is not constant over 

time. In other words and modern terms, volatility is time-varying, meanwhile it is persistent 

(serially-correlated). Taking advantage of the persistence feature of volatility, volatility can be 

predictable to some extent with some econometrics techniques, namely the (Generalized) 

Autoregressive Conditional Heteroscedasticity ((G)ARCH) model (Engle, 1982; Bollerslev, 

1986). Fundamentally, GARCH is a statistical modelling approach in which the volatility 

tomorrow is described in terms of the volatility today, and the observed returns. In financial 

econometrics, standard GARCH and its variants have become one of the most widely used 

time series models for modelling and forecasting volatility. Therefore, the repertoire of 

GARCH family models is quite wide since academics and practitioners attempt to explain 

different behaviours and characteristics of volatility (for more information see, Glossary to 

ARCH (GARCH), Bollerslev, 2009). For instance, EGARCH (Nelson, 1991), GJR-GARCH 

(Glosten, Jagannathan, and Runkle, 1993), and PGARCH (Ding, Engle, and Granger, 1993) 

models are suggested to capture the asymmetric behaviour of volatility, whilst GARCH-BEKK 

(Engle and Kroner, 1995) is one of the multivariate versions of standard GARCH model that 

can capture the transmission of volatility (volatility spillover effects) across markets.  
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         GARCH type models are usually applied to the daily close-to-close returns, whereas 

Andersen, Bollerslev, Diebold, and Labys (ABDL, 2003) noted: “It has become apparent that 

standard volatility models used for forecasting at the daily level cannot readily accommodate 

the information in intraday data” (p. 1). Since the early 2000s, with the increasing availability 

of high frequency data (thanks to the developments in data storage technologies) the use of 

intraday data in volatility research has drawn a lot of attention in academia. The seminal work 

of Andersen and Bollerslev (1998) points out that high frequency or in other words intraday 

data contain more information compared to the daily close-to-close data as the data of financial 

markets include thousands of transaction prices per day. Amongst others, Andersen and 

Bollerslev (1998), ABDL (2001, 2003), Koopman, Jungbacker and Hol (2005), Engle and 

Gallo (2006), Sheppard and Sheppard (2010), Celik and Ergin (2014) evidence that intraday 

data have the potential to better understand the dynamic properties of financial volatility and 

improve the accuracy of volatility estimation and forecasting. This is because intraday data in 

fact is the original form of stock market prices. Traders and market practitioners frequently 

observe intraday price movements when making important trading decisions. Looking at 

minute-wise data does essentially mean looking at the heart of the process of price formation 

in financial markets.  

         The true volatility is unobservable so that a proxy for the true volatility is needed. Daily 

squared or absolute returns are often employed as a proxy for the actual volatility in the daily 

return-based methods, especially within GARCH type models. However, the fact that daily 

squared or absolute returns are known as noisy estimators and thus poor to be substituted for 

the true volatility. Alternatively, Andersen and Bollerslev (1998) construct a volatility measure 

which derived from high frequency data. This measure is called as the realized variance that is 

computed by the sum of squared intraday returns. They demonstrate that the realized variance 

is a more precise measure of volatility compared to daily close-to-close based squared returns. 

This is because the realized variance is based on cumulative intraday returns in which the noisy 

component is shrunk. Preliminary studies (Hol and Koopman, 2002; Martens and Zein, 2004) 

show that the Autoregressive Fractionally Integrated Moving Average (ARFIMA) is the best-

fitted model to the realized variance compared to other alternative models. Afterwards, Corsi 

(2009) proposes the Heterogenous Autoregressive (HAR) model for modelling the realized 

variance, which is a simple autoregressive type model but regressed over different time 

horizons. More recent studies (Barndorff-Nielsen, Kinnebrock and Sheppard, 2010; Corsi and 

Reno, 2012; Sevi, 2014; Patton and Sheppard, 2015) show that the HAR-RV is a much better 
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model than the others in modelling and forecasting financial volatility. To sum up all the above-

mentioned core literature in a few words, easy access to high frequency data since the early 

2000s has evolved the studies of volatility modelling and forecasting from the daily-based 

methods to the intraday-based methods. 

         In modelling and forecasting realized volatility, the dominant modelling approach is the 

HAR-RV specification of Corsi (2009) and much of the progress in the aforementioned core 

literature is limited to the baseline HAR-RV model (without adding any exogenous variables 

to the baseline model). However, the role of various parameters in improving the forecasting 

performance of the HAR-RV model is quite important to obtain better volatility forecasts.1 This 

is an obvious gap in the literature which this study aims to fill. In this regard, this thesis centres 

around the conditional volatility, realized volatility, and volatility spillovers in the context of 

their model extensions. In a nutshell, this thesis examines the behaviour of stock market 

volatility in a selection of international markets, the ability of extended models to provide 

accurate volatility forecasts, and the nature of the interrelations between markets but from the 

perspective of complex network theory.  

         Broadly speaking, the aims of this thesis are twofold. First, to determine the best-

performing model for forecasting the future volatility. To do this, the first three of empirical 

works analyse the role of various key parameters in improving the in-sample fit and out-of-

sample forecasting accuracy of the HAR-RV model. Second, to explore the importance and 

impact of spillover effects across financial markets. For this purpose the last empirical study 

does combine a spillover model (GARCH-BEKK) with complex network theory to investigate 

the volatility spillover network in international financial markets (consisting of nodes and 

edges).  

         Some further details of the above-mentioned four empirical exercises are briefly as 

follows. The first empirical exercise, Chapter 2, compares the conditional volatility (GARCH) 

models to the realized volatility (HAR-RV and ARFIMA-RV) models. The decomposition of 

realized volatility into positive and negative realized semivariances (HAR-PS) is also applied 

to improve the forecast accuracy of HAR-RV model. The second empirical study, Chapter 3, 

investigates the role of range-based estimators in improving the future realized volatility by 

                                                
 
1 These exogenous parameters could be such as some of the well-known global financial indicators (oil prices, 
interest rates, gold prices, implied volatility indices and economic policy uncertainty indices), cross market 
information (other stock markets) and other relevant stock markets data (overnight volatility and extreme range 
estimators).  
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extending HAR-RV model with some additional (X) variables, which are Parkinson, Garman-

Klass, Rogers-Satchell, and Yang-Zhang. The third empirical exercise (Chapter 4) also extends 

HAR-RV model with various exogenous variables but classifying them according to the 

different kinds of information channels, namely the local, regional, and global information. 

With the use of an unusual methodological approach the last empirical research, Chapter 5, 

analyses the dynamic transmission mechanism of volatility spillovers between some key global 

financial indicators and the G20 stock markets under the five identified sub-periods. This 

method is a combination of a bivariate GARCH-BEKK model with complex network theory, 

which constructs a volatility network of international financial markets using nodes and edges. 

The sub-periods are determined according to the crisis and non-crisis periods including, for 

example, Global Financial Crisis (2008) period and COVID-19 (2020) Crisis period.          

         The main contributions are four. The first study finds the superiority of high frequency 

based models over daily based models that empirically contribute to the existing literature by 

conducting a comprehensive exercise with 30 different international stock markets and more 

up-to-date data. The second empirical work suggests that Parkinson and Garman-Klass 

estimators could be utilized to produce better forecasts of future realized volatility. Third, the 

channel of global information are better to improve the future realized volatility forecasts 

compared to local and regional channels. The final exercise methodologically and empirically 

contributes to the existing literature. Methodologically, a solution is provided to the difficulty 

encountered by the bivariate GARCH-BEKK model when dealing with multi-dimensionality 

issue (i.e. we2 combine a bivariate GARCH-BEKK model with complex network theory in 

order to construct a network of international financial markets). Empirically, it is found that 

the networks of international financial markets are much denser in crisis periods compared to 

non-crisis periods and financial volatility spreads more rapidly and directly through key 

financial indicators to the G20 stock markets, especially in crisis periods.   

         The economic implications of the above-mentioned findings can be helpful in the process 

of risk and portfolio management. In terms of risk management, accurate volatility forecasting 

is quite important, especially for policy makers, investors, and market participants who have 

certain levels of risk which they can bear. This is because all financial actors desire to know 

today, “what will be the degree of volatility tomorrow?”. Thus, the results of the first three of 

empirical exercises could contain useful information in improving the forecast accuracy of 

                                                
 
2 Throughout the thesis, I prefer to use plural “we” instead of “I” as the published papers from this thesis are co-
authored jointly with my supervisory team Professor David McMillan and Dr Dimos Kambouroudis.  
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stock market volatility and determining the most and least relevant parameters of stock market 

volatility. For instance, some well-established extreme range estimators (e.g. Parkinson and 

Garman-Klass) and global information channels (global financial barometers and US market 

news) as additional variables can help in forecasting the one-day-ahead volatility of stock 

markets. The gain in forecasting accuracy is believed to be economically significant to 

minimize risk and maximize return. For example, whilst investors and market participants want 

to rearrange their stocks or portfolio positions before financial markets become too volatile, 

policy makers would desire to narrow bid-ask spread in order to restore market liquidity if the 

future is expected to be more volatile. From the perspective of portfolio management, investors 

and market participants could use our findings to align their portfolios by reducing their 

exposure to various risks (i.e. local, regional, and global risks in Chapter 4). To sum up, over 

the last two decades, the Global Financial Crisis (GFC, 2008) and the COVID-19 Crisis (CVC, 

2020) have further highlighted the significance and impact of accurate and efficient volatility 

forecasting.  

         The findings of the last empirical research could also provide important information for 

investors and market participants who wish to diversify their portfolios in international 

financial markets. This is because considering volatility spillover relations in G20 stock 

markets is important in being able to manage risks and portfolio diversifications. For example, 

the existence of global risk factors can be thought as a sign to restrict the possibilities of 

portfolio diversification, especially during crisis periods when the correlations among 

investment instruments are high. In the non-crisis periods, more diversified portfolios can be 

constructed depending on time and market specific information. 

 

  

1.2. Research Background 
 

This section gives and discusses the key concepts used in this thesis in order to draw a picture 

of this research’s background. The sub-section 1.2.1 gives fundamental information about the 

well-known conditional volatility models. Afterwards, the Heterogenous Market Hypothesis, 

the realized volatility models, and the proxies for financial volatility are explained in sub-

sections 1.2.2, 1.2.3, and 1.2.4, respectively. These sections contain some essential information 

for the first three empirical chapters, namely Chapters 2, 3, and 4. The last two sub-sections 

(1.2.5 and 1.2.6) are related to Chapter 5 and give relevant details and descriptions.     
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1.2.1. Conditional Volatility (GARCH models) 
 

As financial markets pass through calm and crisis periods, volatility is not constant over time. 

In other words and modern terms, volatility is time-varying, meanwhile persistent (serially-

correlated) it is. Taking advantage of the persistence feature of volatility, volatility can be 

predictable to some extent with some econometrics techniques, namely the (Generalized) 

Autoregressive Conditional Heteroscedasticity ((G)ARCH) model (Engle, 1982; Bollerslev, 

1986). According to Engle (1982),  if volatility can be correlated over time, then the change in 

variance can be modelled with the ARCH model. In other words, the variance of the current 

error is conditionally a function of its past values. The ARCH model is in the form of an AR 

process for the error variance and thus slow to respond to the large shocks so that it is unable 

to successfully capture the volatility persistence. Afterwards, Bollerslev (1986) suggests a 

generalized form of the ARCH (known as the so-called GARCH model), assuming an ARMA 

process for the error variance. The GARCH process does not only catch ‘volatility clustering’, 

but also include ‘fat tails’ in the model equation. Fundamentally, GARCH is a statistical 

modelling approach in which the volatility tomorrow is described in terms of the volatility 

today, and the observed returns. However, the GARCH still has some drawbacks, for example, 

one of the most important one is that the standard GARCH model is symmetric. It does treat 

positive daily returns the same as negative daily returns. Therefore, many other asymmetric 

GARCH specifications have been developed in order to explain the asymmetry in financial 

volatility. For instance, EGARCH (Nelson, 1991), GJR-GARCH (Glosten, Jagannathan, and 

Runkle, 1993), and PGARCH (Ding, Engle, and Granger, 1993) models are suggested to 

capture the asymmetric effects of volatility from different perspectives. In financial 

econometrics, the repertoire of GARCH type models is quite wide since academics and 

practitioners attempt to explain not only asymmetry, but also different behaviours and 

characteristics of volatility such as leptokurtosis, long memory, and even volatility spillover 

effects with the multivariate version of the GARCH model (for more information see, Glossary 

to ARCH (GARCH), Bollerslev, 2009). For instance, the GARCH-BEKK (Engle and Kroner, 

1995) is one of the multivariate versions of the GARCH that captures the transmission of 

volatility (i.e. volatility spillover effects) across markets. Indeed, standard GARCH and its 

variants, which are the most widely used time series models, have become the mainstream 

models for modelling and forecasting volatility. 
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         GARCH family models employ the daily close-to-close returns in order to model 

volatility. However, Andersen, Bollerslev, Diebold, and Labys (ABDL, 2003) stated: “It has 

become apparent that standard volatility models used for forecasting at the daily level cannot 

readily accommodate the information in intraday data” (p. 1). Over the last twenty-years, easy 

access to high frequency data (thanks to the developments in data storage technologies) has 

opened a new chapter in the literature of volatility research. The seminal work of Andersen and 

Bollerslev (1998) points out that the data which are higher frequencies than daily-based contain 

more information as the financial market data include thousands of transaction prices per day. 

Amongst others, Andersen and Bollerslev (1998), ABDL (2001, 2003), Koopman, Jungbacker 

and Hol (2005), Engle and Gallo (2006), Sheppard and Sheppard (2010), Celik and Ergin 

(2014) evidence that intraday data have the potential to better understand the dynamic 

properties of financial volatility and improve the accuracy of volatility estimation and 

forecasting. All these researches in the literature result in new methodological approaches in 

the field of financial econometrics.  

  

1.2.2. Heterogenous Market Hypothesis  
 

When Engle and Lee (1993) suggest to decompose the conditional variance of stock returns 

into a permanent (long-run) and a transitory (short-run) components in their proposed model, 

the intuition behind this idea was similar to the Heterogenous Market Hypothesis but these 

components are modelled without addressing the investment horizons of investors to specific 

investors groups. However, Muller, Dacorogna, Dave, Olsen, Pictet and von Weizsacker 

(1997) focus specifically on the aspect of the time horizons of various investors groups in their 

study other than informed traders and herding behaviours of different speculators (which are 

some other aspects of the market heterogeneity).  

         The Heterogenous Market Hypothesis (HMH) is a new concept in the literature of 

Efficient Market Hypothesis (EMH) rather than being a widely established or universally 

recognised theory. The HMH in fact claims that market participants are heterogenous or in 

other words non-homogenous. According to Muller et al. (1997), the main reason of 

heterogeneity in financial markets stems from the existence of various types of market 

participants and their different levels of information, risk preferences, trading strategies and 

beliefs. From this point of view, the HMH attempts to challenge the EMH. This challenge starts 

with the easy access of high frequency time series data. When researches (Andersen and 
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Bollerslev, 1998; Martens, 2001; Andersen, Bollerslev, Diebold, and Labys, 2003) evidence a 

great gain in forecast accuracy thanks to the availability of tick-by-tick data, it is seen that the 

findings of high frequency data bring counter-evidence to the weak form of market efficiency. 

This is to say that when the price movements of stock markets are observed at the interval of 

higher frequency (intraday), the markets look different in comparison with a rational market 

where stock prices react rapidly to market news and events. The reason is that not all market 

agents are rational as Shiller (1989) discusses the smartness of investors by stating “most 

participants in the stock market are not “smart investors” (following the rational expectation 

model) but rather follow trends and fashions)”.  

         Different market participants interpret same information in different ways according to 

their risk preferences. Each investors have different objectives, for example, some investors 

are completely hedgers whilst some others are completely speculators. Therefore, it is 

unrealistic to expect that each one of investors react identically to the same news. Even if there 

are many approaches to categorize heterogenous agents, the most promising way is to consider 

the expectations of market participants in various time horizons. In practice, those can be 

grouped in terms of their investment horizons as follows: Investor (over week, month or year), 

day trader (four hour or daily), intra-day trader (15 min, 30 min or 1 hour), and scalper (1 min 

or 5 min). From the perspective of the HMH, broadly speaking, market participants could be 

divided into three different categories depending on their investment horizons such as short-

term, middle-term, and long-term investors. Short term (intraday traders) investors usually do 

their trades only within a given trading day or overnight. Middle term investors carry out their 

trading activities in a weekly horizon, whilst long-termism is associated with monthly horizon. 

Short term investors assess the market at a higher frequency (intraday) level and have a shorter 

memory whereas middle term traders focus on the days up until a week. In a similar vein, long 

term investors do plan their trading activities based on monthly horizon. Each of these groups 

of market participants may have their own trading strategies consistent with their trading 

horizon and have a homogenous appearance within their own groups. In this way, the 

heterogeneity of investors could be accounted for providing a better understanding of how 

those different market participants react and perceive to the same news. Based on this idea, 

Corsi (2009) suggests to divide not only the markets but also the volatility of financial market 

into different components (as daily, weekly and monthly horizons) in a proposed model in 

which the next section explain it in more details.  
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1.2.3. Realized Volatility (HAR-RV models) 
 

The actual volatility is latent and therefore a proxy for the true volatility is needed. For 

comparison purpose, daily squared or absolute returns are often employed as a proxy to 

examine the performance of daily return-based methods such as GARCH family models. Here, 

the issue is that daily squared or absolute returns are noisy estimators and thus poor to be 

substituted for the true volatility. Alternatively, Andersen and Bollerslev (1998) construct a 

volatility measure which derived from high frequency data. This measure is called as the 

realized variance (RV) that is computed by the sum of squared intraday returns. They 

demonstrate that RV is a more precise measure of volatility compared to daily close-to-close 

based squared returns. This is because RV is based on cumulative intraday returns in which the 

noisy component is shrunk. Preliminary studies (Hol and Koopman, 2002; Martens and Zein, 

2004) show that the Autoregressive Fractionally Integrated Moving Average (ARFIMA) is the 

best-fitted model for the RV compared to other alternative models.  

         The intuition behind Corsi (2009)’s HAR model is that different investors interpret same 

information differently depending on their risk appetites as it is stated in the HMH section. 

Based on this argument of the HMH, Corsi (2009) proposes the Heterogenous Autoregressive 

(HAR) model for RV, which is a simple autoregressive type model but regressed over different 

time horizons. The HAR-RV model is based on capturing different reactions of different 

investors through a simple autoregressive process, which is in other words an additive cascade 

model of different volatility components. The HAR-RV model can simply be estimated by the 

ordinary least square (OLS) method. The model is a good alternative to the ARFIMA-RV 

model. The HAR-RV model can also capture long memory characteristics of volatility even 

though it is not in the class of long memory models. The components of the HAR-RV model 

separately reflect the information from short to long term trading activities of market 

participants. The intuition behind the model is that investors could be divided into three 

different classes depending on their investment horizons such as short-term, middle-term, and 

long-term investors. In this way, different types of investors are included in the model, enabling 

to better understand that how those different market participants react and perceive to the same 

news. Related literature is quite rich for the applications of HAR-RV model. A number of 

studies (Corsi, 2009; Barndorff-Nielsen, Kinnebrock and Sheppard, 2010; Corsi and Reno, 

2012; Sevi, 2014; Patton and Sheppard, 2015) examine the performance of the HAR-RV model 

and compare with some other alternative models. The superiority of the HAR-RV model is 

documented over the other alternative models in modelling and forecasting RV. To sum up all 



                                                                         10 
 

the literature in a few words, easy access to high frequency data since the early 2000s have 

evolved the studies of volatility modelling and forecasting from the daily-based methods to the 

intraday-based methods and a number of new realized measures are introduced in order to 

substitute the actual volatility.  

 

1.2.4. Volatility Proxies  
 

Financial price changes are unpredictable that makes the actual volatility time-varying and 

therefore unobservable. For this reason, we need to employ a target (proxy) volatility measure 

for the true volatility. Another reason is that a proxy is required to evaluate the accuracy of 

model fit and forecasts. Therefore, the choice of proxy is critical as it summarizes the true 

market information.  

         The current view in the literature is that the use of squared or absolute close-to-close 

returns are traditional approaches, whereas the realized measures based on high frequency 

intraday sampling contain more information than the daily based volatility measures and 

therefore considered to be a better representative of the true volatility (Andersen and 

Bollerslev, 1998; Andersen et al., 1999). Another alternative might be considered as the 

intraday high-low range that is introduced against the aforementioned traditional close-to-close 

approaches. The motivation behind range-based measures is that the close-to-close method 

takes into account only closing prices of today and yesterday. If two consecutive closing prices 

are the same or quite similar, the close-to-close measure fails to detect intraday volatility. 

Therefore, close-to-close volatility is commonly applied by the investors who are concerned 

with long term investment and passive investing. However, the investors who consider intraday 

trading and information need more than closing prices. In this regard, first, the high-low range 

of prices and afterwards OHLC (open, high, low, close) prices have become important in the 

literature of volatility research and some well-documented range-based volatility estimators 

are introduced in this area of research (some of the seminal papers, amongst others, Parkinson, 

1980; Garman-Klass, 1980; Rogers and Satchell, 1991; Yang and Zhang, 2000).        

         In terms of the volatility measures which are derived from high frequency data, the 

superiority of the realized variance as a good proxy for the true volatility is well-documented 

by some distinguished studies (Barndorff-Nielsen and Shephard, 2002b, and Andersen, 

Bollerslev, Diebold, and Labys, 2003). Therefore, the realized variance is most frequently-used 

volatility measure compared to other alternative measures. It is calculated as the sum of squared 
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intraday returns and therefore the choice of frequency interval for intraday data does matter. 

This issue has been addressed by many scholars. Amongst others, Martens (2001) finds that 

when the frequency of intraday observations rises, more accurate daily volatility estimation is 

obtained. However, when the frequency is too high, the efficiency of high frequency data can 

be distorted due to microstructure noise effect. For this reason, Hol and Koopman (2002) 

suggest to select the frequency interval between 5 and 30 minutes. One of the most widely-

accepted papers for this issue is written by Liu, Patton, and Sheppard (2015) that compares 

over 400 different realized measures and point out that it is difficult to significantly beat five-

minute realized variance so that the general consensus among scholars and practitioners is to 

use the 5-min realized variance as a target volatility. 

 

1.2.5. Volatility Spillovers (Multivariate GARCH models) 
 
The transmission of fluctuations across markets is known as ‘volatility spillover effects’ (see, 

for example, Yu et al., 2015; Rejeb and Arfaoui, 2016; Mensi et al., 2018). This phenomenon 

is also referred to as fear connectedness by Diebold and Yilmaz (2014). In the last two decades, 

the Global Financial Crisis (GFC, 2008) and the Covid-19 Crisis (CVC, 2020) indicate the 

importance and impact of the transmission mechanism of spillover effects across financial 

markets. This is the fact that the spillover effects across markets is likely to have a profound 

impact on each economy. However, the transmission of fluctuations varies with the degree of 

market integration. In the case of such crises, increasing globalisation and financialization of 

markets allows adverse effects in one market to further intensify existing spillover effects. 

Consequently, throughout such crises, investors typically sell-off risky assets on fears of 

financial contagion that results in a further spread of global risk. 

         Multivariate GARCH models are capable to capture the transmission of fluctuations 

between markets. The GARCH-BEKK model of Engle and Kroner (1995) is one of the 

multivariate versions of the GARCH type models. This model is a bi-variate model that can 

capture volatility spillovers between pairwise markets. In considering multivariate-GARCH 

models there is a range of alternatives including the CCC (constant conditional correlation; 

Bollerslev, 1990), DCC (dynamic conditional correlation; Engle, 2002) and the GARCH-

VECH (Bollerslev, Engle, and Wooldridge, 1988) models in addition to the GARCH-BEKK. 

A key advantage of the GARCH-BEKK model is that it does not impose any restriction on the 

conditional correlation structure between series. In addition, the conditional variances are 

restricted to ensure they are positive definite, while reducing parameter dimensions. However, 
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it is suggested to use bi-variate form of the GARCH-BEKK model. This is because if a new 

variable is added into the model, the number of model parameters increases significantly. This 

issue is worse in terms of the full GARCH-VECH specification as the VECH inherently 

requires a larger number of parameters than the BEKK to be estimated and this can often lead 

to non-convergence. The full VECH-GARCH model of Bollerslev et al. (1988) is rarely used 

in the literature because the number of free parameters increases very fast with the number of 

variables. In the case of bi-variate VECH-GARCH specification, the model needs to generate 

23 model parameters, which is a large number of free parameters for non-linear estimation. 

The restricted form of VECH or in other words diagonal VECH-GARCH model might be a 

better alternative to the unrestricted one but the restricted form of VECH does not generate 

cross-product (spillovers) parameters. This means that the direction of volatility transmission 

from one market to another cannot be extracted. Therefore, the VECH specification is rarely 

used and Bollerslev et al. (1988) did not estimate this model in their applications. Similarly, 

the CCC and DCC GARCH models also do not capture spillover effects from one market to 

another. Instead, both of the models do extract the magnitude of total spillovers between 

pairwise markets using econometrics techniques (e.g. see, method of Diebold and Yilmaz, 

(2009, 2012)). To sum up, except BEKK-GARCH model, the other multivariate GARCH 

specifications seem not to be suitable for detecting the direction of volatility spillovers. 

 

1.2.6. Complex Network Theory 
 

Complex network theory is a concept that takes into account the relationships among different 

parts of real complex systems as a network (Hao, An, Zhang, Li and Wei, 2015; An, Zhong, 

Chen, Li, and Gao, 2014). Network science is defined by the United States National Research 

Council (Network Science, 2005) as “the study of network representations of physical, 

biological, and social phenomena leading to predictive models of these phenomena”(p. 28). 

According to this definition, it is connected with other principal research disciplines. Network 

science does provide convenience to quantify and simplify the many parts of real world 

complex systems. The empirical results of complex systems can be seen in real world networks 

such as computer networks, technological networks, biological networks, social networks. This 

means that network science is a multidisciplinary field that helps us to understand the dynamics 

of real world complex systems by identifying key nodes and structures and uncovering patterns 

and properties of their interrelations.  
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         A complex network consists of nodes which are connected by edges. The structure of any 

complex network graph can be represented by the help of an adjacency matrix. In network 

theory, an adjacency matrix is a square matrix that is employed in order to represent a finite 

network graph. The elements of an adjacency matrix show whether pairwise nodes are adjacent 

or not. If two nodes are connected to each other by a directional or bidirectional line, these two 

nodes are called adjacent. In the special case of a finite network graph, the diagonal elements 

of the adjacency matrix are zeros. In short, network theory enable us to visualize and analyse 

the relationships between different nodes in a system. To do this, there are a number of network 

statistics that indicate the different features of nodes and networks such as degree distribution, 

shortest path length, network diameter, network density, and clustering coefficient. Those can 

be defined shortly as follows. The degree distribution of a node is affected by the number of 

edges the node has and the size of those edges. Shortest path length is defined as the average 

of the shortest steps between pairwise nodes in a network. Afterwards, a short definition of 

network diameter is the shortest path between the two most farthest nodes of a network. 

Network density shows how the number of edges is close to the maximum possible edges in a 

network and if the network density is equal to unit, the network is called as a complete graph 

that includes all the possible edges between pairwise nodes. Lastly, clustering coefficient is a 

measure that shows how all of nodes are well-integrated in a network graph. 

         Complex networks could have some characteristic features, for example, the small world 

effect and the superposition phenomenon. The small world effect is first discovered by Watts 

and Strogatz (1998). It is a phenomenon in the network theory, assuming that no node is 

independent from the network. In other words, all of nodes are linked to each other either with 

a direct or undirect tie. Two most widely-used network statistics, which are the average shortest 

path length and average clustering coefficient are used to find out the small world effect. 

Another network characteristic present in our networks is the superposition phenomenon, 

which is basically a physic principle applying all the linear systems such as height in a water 

wave, intensity of a light wave or pressure in a sound wave. For instance, where two water 

waves travelling in opposite directions, the size of combined wave is the sum of the both water 

waves in the intersection point. Similarly, the thickness of an edge between pair nodes is 

identified by the superposition principle in this work. 
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1.3. Overview of Thesis 
 

Motivated by the seminal paper of Andersen and Bollerslev (1998), Chapter 2 mainly focuses 

on the modelling and forecasting of realized volatility. The one-step-ahead rolling and 

recursive window techniques are employed for generating the out-of-sample forecasts.  With 

the use of a selection of forecast evaluation criteria and forecast comparison tests, we compare 

the forecasts obtained from the conditional volatility models (most-widely used GARCHs) to 

the forecasts of RV-based models (HAR-RV, RSV, and PS and ARFIMA-RV). The results are 

mostly in line with previous research that HAR-RV model outperforms the others and, 

moreover, decomposition of realized volatility into positive and negative realized 

semivariances (HAR-PS) improve the forecast accuracy of HAR-RV model. This chapter 

empirically contributes to the existing literature by conducting a comprehensive exercise with 

30 different international stock markets and more up-to-date data.  

         Chapter 3 investigates whether extreme range estimators, which is derived from OHLC 

(open, high, low, close) prices, contain important information for forecasting the future realized 

volatility in the G7 stock markets. The same methodology is used with the previous chapter 

but extending the HAR-RV model with an exogenous (X) variable (hereafter HAR-RV-X). In 

this context, we analyse the additional information content of Parkinson, Garman-Klass, 

Roger-Satchell, and Yang-Zhang estimators to the future realized volatility. Although the 

results seem to be inconclusive in the stock markets of group of Seven, Parkinson and Garman-

Klass estimators could be utilized to produce better forecasts of future realized volatility. To 

the best of our knowledge, this is the first study which examines the information content of 

extreme range information at improving the forecasts of realized volatility.  

         In Chapter 4, the HAR-RV-X model from the previous chapter is used and also further 

expanded by the Kitchen Sink (KS) strategy. The HAR-RV-KS uses a long list of possible 

exogenous variables in the model at once. For an inclusive examination, a wide range of 

exogenous variables from assets to commodities, implied volatility indices to bond rates are 

involved in this analysis. Moreover, those exogenous variables are classified according to 

different information channels, namely local, regional, and global. In doing so, we aim to 

investigate which class of models best helps in forecasting the future realized volatility. In 

conclusion, whilst the HAR-RV-KS outperforms the HAR-RV and HAR-RV-X (with only one 

X variable) specifications, the role of global information at improving the forecasts of future 

realized volatility is more important than the others.  
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         Chapter 5 is relatively different from the previous chapters, considering multivariate 

GARCH approach with complex network theory to analyse the volatility spillover relations 

between key global financial indicators and G20 stock markets. Specifically, a bivariate 

GARCH-BEKK model that captures volatility spillover effects is combined with a complex 

network theory. Using this synthesis approach, we construct the spillover networks of 

international financial markets under five identified sample sub-periods including crisis and 

non-crisis periods. The findings contribute to the literature of volatility spillovers from the 

network theory perspective as follows. The volatility spillover relations between key global 

barometers (oil, gold, and bond) and G20 markets vary significantly across five identified sub-

periods. Notably, networks are much denser in crisis periods compared to non-crisis periods. 

In comparing two crisis periods, Global Financial Crisis (2008) and COVID-19 Crisis (2020) 

periods, the network statistics suggest that volatility spillovers in the latter period are more 

transitive and intense than the former. This suggests that financial volatility spreads more 

rapidly and directly through key financial indicators to the G20 stock markets, especially in 

crisis periods.  

         Finally, Chapter 6 summarizes the main findings of each empirical works, respectively. 

Afterwards, we provide some concluding remarks about obtaining higher forecast accuracy 

and propagation path of financial volatility in international markets. Lastly, some economic 

implications of those results are addressed for policy makers, investors, and market participants 

who have certain levels of risk which they can bear.    
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CHAPTER 2 

 
A comprehensive exercise: 

Forecasting realized volatility 
 

A forecast comparison of conditional volatility models and realized 
volatility models 

 

ABSTRACT 

Easy access to high frequency data since the early 2000s have evolved the studies of volatility 

forecasting from inter-day based methods to intra-day based methods. Motivated by the 

seminal paper of Andersen and Bollerslev (1998),  this forecasting exercise compares the inter-

day (GARCH, EGARCH, PGARCH, and TGARCH) methods to the intra-day (HAR-RV and 

ARFIMA-RV) methods, including 30 different stock market indices between 2010-2019. One-

day-ahead out-of-sample volatility forecasts are generated using both the rolling and recursive 

windows forecasting methods. The out-of-sample forecast losses are measured by the MSE, 

MAE, and QLIKE criteria. The conditional Giacomini-White pairwise test is employed to test 

the forecasting performance of the competing models. The results indicate that the models 

which employ the realized variance generate more accurate forecasts compared to the models 

with the conditional variance; the HAR-RV specifications outperform the others. Moreover, 

the decomposition of realized variance into positive and negative realized semivariances 

(HAR-RSV and HAR-PS) improves the out-of-sample forecasts. Following the HAR-RV 

models, the ARFIMA-RV specification is also found to be a superior model against the GARCH 

models as it uses a more precise measure of the true volatility. However, a few exceptional 

results are encountered in our sample that is in favour of the EGARCH model. This chapter 

empirically contributes to the existing literature by conducting a comprehensive exercise with 

30 different international stock markets and more up-to-date data.  
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2.1. Introduction       
 
The fluctuations of asset prices over a short period of time is called as volatility. As Poon and 

Granger (2003, p. 479) stated, it is a “barometer for the vulnerability of financial markets and 

the economy”. It is associated with risk and uncertainty, therefore, volatility forecasting is of 

critical importance to the future of the whole economy. Its sphere of influence is quite wide 

including, for example, portfolio management, option pricing, trading strategies, and monetary 

policy making.  

         Although a great number of research papers have been conducted on the predictability of 

volatility, there is still a lack of consensus in the literature on which one is the best forecasting 

model. In this context, the data of stock market, exchange rate, and crude oil are the most 

frequently examined assets. Those have been mostly studied using the GARCH family models 

since 1980s and GARCH models with daily data have become the mainstream class of models. 

Towards the turn of the century, the easy access to high frequency data has spurred the volatility 

forecasting activities in using intraday data. In addition to this, some pioneering researches  

have introduced realized measures to the literature by taking advantage of high frequency data. 

Those are followed by the newly developed volatility forecasting models. The Heterogenous 

Autoregressive model of the realized variance (HAR-RV) was first suggested by Corsi (2009). 

In recent years, this new model and its variants have become the new mainstream class of 

models and the recent literature of volatility research has been thriving on it. 

        Motivated by the seminal paper of Andersen and Bollerslev (1998), this forecasting 

exercise compares the inter-day (GARCH, EGARCH, PGARCH, and TGARCH) volatility 

models to the intra-day (HAR-RV, RSV, and PS and ARFIMA-RV) volatility models, 

including 30 different stock market indices between 2010-2019. In doing so, this chapter 

empirically contributes to the existing literature by conducting a comprehensive exercise with 

30 different international stock markets and more up-to-date data. Majority of the indices 

consist of the stock markets of developed countries all over the world.3 We know that volatility 

is unobservable and therefore we need to substitute a proxy for the true volatility. Andersen 

and Bollerslev (1998) points out that high frequency-based data contain more information 

compared to the daily-based data as the data of financial markets include thousands of 

transaction prices per day. Moreover, Liu, Patton, and Sheppard (2015) compare over 400 

                                                
 
3 Therefore, we are unable to conduct a comparison study between developed and developing countries’ stock 
market indices due to data availability issues.  
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different realized measures and point out that it is difficult to significantly beat the 5-minute 

realized variance. For these reasons, we choose to employ the 5-min realized variance as a 

proxy in this study. One-day-ahead out-of-sample volatility forecasts are generated using both 

the rolling and recursive windows forecasting methods. The out-of-sample forecast losses are 

measured using the MSE, MAE, and QLIKE criteria. One of the main findings of this study 

indicates that the models which employ the realized variance generate more accurate forecasts 

compared to the models with the conditional variance, which is consistent with the seminal 

paper of Andersen and Bollerslev (1998).  

         More detailed findings indicate that the HAR-RV models outperform the other alternative 

models. Moreover, the decomposition of realized variance into positive and negative realized 

semivariances (HAR-RSV and HAR-PS) improves the out-of-sample forecasts. Following the 

HAR-RV models, the ARFIMA-RV specification is also found to be a superior model against 

the GARCH models as it uses a more precise measure of the true volatility. However, we 

encounter a few exceptional indices (6 out of 30) in which the EGARCH model outperforms 

the HAR-RV and ARFIMA-RV models. Furthermore, we use the conditional GW pairwise test 

in order to investigate whether the forecast errors of the competing models are statistically 

significant or not. Most of the test results are positive, which confirms the superiority of the 

HAR-RV specification. However, the test results of these exceptional indices (6 out of 30; e.g. 

DJI, FTSE, GSPTSE, MXX, OSEAX, SPX), which are in favour of the EGARCH model are 

insignificant. Therefore, we cannot exactly say that whether the winner model for those 

exceptional indices are actually superior. This is the fact that the results and findings of every 

work are specific to market, data frequency, time horizon, and some characteristics of 

volatility.  

         This chapter is organised as follows: Section 2 presents the review of related literature. 

In Section 3, the data and methods used in this study are explained in more detail. Afterwards, 

Sections 4 gives the empirical results and their evaluations respectively. Finally, the conclusion 

is presented in Section 5.  

 

2.2. Literature Review 
 
A great number of studies have been conducted to assess the forecasting performance of the 

GARCH family models and other alternative models. Indeed, the GARCH type models (with 

daily data) have become the mainstream models for the volatility forecasting. In the 2000s, the 

availability of high frequency data and the introduction of realized measures changed the 
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direction of the research towards the studies of the realized volatility. Corsi (2009) proposed 

the Heterogeneous Autoregressive model of the realized variance (HAR-RV). This model and 

its new variants are now on their way to becoming a new mainstream class of models and the 

recent literature of volatility forecasting has been thriving on it.     

         This is the fact that the true volatility is latent and therefore researchers need to provide 

a proxy of it. There are different ways to do that such as using the data of squared returns and 

realized measures. The conditional variance of daily returns is captured by the GARCH family 

models. According to Engle (1982),  if volatility can be correlated over time, then the change 

in variance can be modelled with the ARCH model. Afterwards, Bollerslev (1986) made a 

generalization, which does not only catch ‘volatility clustering’, but also include ‘fat tails’ in 

the new model that is the GARCH model. The superiority of the GARCH class of models was 

such that hundreds of other sophisticated GARCH models have been developed. Indeed, the 

GARCH models with daily data have become the mainstream models for the volatility 

forecasting. 

         In the 2000s, the easy access to high frequency data opened a new chapter in the research 

of financial volatility. A great number of studies indicate that models employing intraday/high 

frequency data clearly improve the accuracy of volatility forecasts (Andersen and Bollerslev, 

1997; Andersen, Bollerslev, Diebold, and Labys, 2001; Martens and Zen, 2004; Koopman, 

Jungbacker, Hol, 2005; Chortareas, Jiang, Narkervis, 2011; Sevi, 2014). Initially, we need to 

answer the question ‘why do high frequency data improve the forecast accuracy?’. There are a 

number of reasons. One of the main reasons is that considering the persistency property of 

volatility, high frequency data can provide a more accurate measure of current volatility 

because it contains more information for forecasting future volatility. In this sense, it also 

improves the evaluation of volatility forecasts this is because intraday data is less likely to 

induce volatility models’ inconsistent rankings. Another important reason is that high 

frequency data enable us to understand the dynamic properties of financial volatility that is 

very important for modelling and forecasting (Hansen and Lunde, 2010). 

          Following the availability of high frequency data intraday data are employed to form 

various volatility measures which are more direct proxies for financial volatility. These 

volatility measures are called “realized measure or realized variance” in this literature. The 

superiority of the realized variance as a good proxy for the true volatility is well-documented 

by some distinguished studies (Barndorff-Nielsen and Shephard, 2002b, and Andersen, 

Bollerslev, Diebold, and Labys, 2003). Therefore, the realized variance is most frequently-used 



                                                                         21 
 

volatility measure compared to other alternative measures. It is calculated as the sum of squared 

intraday returns and therefore the choice of frequency interval for intraday data does matter. 

This issue has been addressed by many scholars. Amongst others, Martens (2001) finds that 

when the frequency of intraday observations increases, in turn, more accurate daily volatility 

estimation is obtained. However, when the frequency is too high (in other words the use of 

ultra-frequency data), the efficiency of high frequency data can be distorted due to 

microstructure noise effect. For this reason, Hol and Koopman (2002) suggest to select the 

frequency interval between 5 and 30 minutes. One of the most widely-accepted research 

articles for this issue is published by Liu, Patton, and Sheppard (2015) that compares over 400 

different realized measures and point out that it is difficult to significantly beat five-minute 

realized variance so that the general consensus among scholars and practitioners is to use the 

5-min realized variance as a target volatility. Therefore, this study considers the simple realized 

variance which is constructed based on the 5-minute intervals of squared returns.  

         The realized variance approach is introduced by Andersen and Bollerslev (1998). They 

indicate that the realized variance is a better measure of true volatility compared to daily 

squared returns because absolute and squared daily returns are noisy estimators for daily 

volatility. Andersen, Bollerslev, Diebold, and Labys (2003) do not consider the realized 

variance as only a proxy for the latent volatility but also consider as a variable to be directly 

modelled. Andersen et al., (2001, 2003) point out that the directly modelled intraday volatility 

can generate more accurate forecasts compared to the forecasts of GARCH family models. 

They also indicate that as sampling frequency becomes higher, the realized variance is an 

increasingly better measure of  the true volatility. However, it is important to pay attention that 

ultra-high frequency data often result in microstructure noise which can make the estimates of 

some parameters very unstable. Similar evidence is found that high-frequency returns data 

provide more precise measure of true volatility than daily returns data (Blair, Poon, and Taylor, 

2001). Across much research (e.g., Blair et al., 2001; Engle, 2002; Andersen, 2003; Koopman 

et al., 2005; Bollerslev 2009) the consensus view can be summarised as follows: the realized 

variance, which is derived from high frequency data contains more information about future 

volatility compared to the conditional variance based on daily close-to-close prices. 

         The studies of the realized variance have become one of the most investigated aspects of 

the volatility forecasting following the paper of Andersen and Bollerslev (1998). They are one 

of the first researchers, showing that the realized variance is a more accurate measure of 

volatility compared to the squared returns. Using the data of different financial assets many 
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studies aim to find out the best performing volatility forecasting model. However, the literature 

has still to reach a consensus. Most of the papers concentrate mainly on the stock markets, yet 

in the context of single (or several) stocks or market indices. Even though stock market indices 

become one of the most investigated financial assets, there is still a gap in the literature in terms 

of the most recent developments in the research of high frequency data such as the introduction 

of new models and applications of those in the international markets. 

        There exists a large body of literature, comparing and evaluating the forecasting 

performance of various volatility models. In the 1990s, papers mainly focus on daily data. In 

this context, the literature is quite large and a great number of research papers assess the 

forecasting performance of the GARCH family model and other alternative models. It can be 

said that the GARCH type models (with daily data) have become a mainstream class of models 

for the volatility forecasting. Toward the turn of the century the availability of high frequency 

data has spurred the volatility forecasting activities by employing intraday data. In addition to 

this, extracting high frequency data research introduced a great numbers of realized measures 

instead of daily returns. The easy access to high frequency data and the introduction of realized 

measures (as newly introduced volatility proxies) changed the direction of the research and 

opened a new area of research. Hence, more recent studies concentrate more on the newly 

developed models with high frequency data (such as the HAR, MIDAS, HEAVY models) and 

also seek to extend and supplement this literature. Corsi (2009) proposed Heterogeneous 

Autoregressive model of the realized variance (HAR-RV). This model and its new variants are 

now on their way to becoming a new mainstream class of models and the recent literature of 

volatility forecasting has been thriving on it.    

         The Autoregressive Conditional Heteroskedasticity (ARCH) model (Engle, 1982) is the 

model which aims to capture the movements of volatility over time. Afterwards, Bollerslev 

(1986) proposed the generalised form of the ARCH model that is called the GARCH model. 

The GARCH model allows practitioners to capture more characteristics of data than the ARCH 

specification such as volatility clustering and fat tails. However, it still has some drawbacks, 

for example, one of the most important one is that the standard GARCH model is symmetric. 

It does treat positive daily returns the same as negative daily returns. Therefore, many other 

GARCH specifications have been developed in order to explain different volatility behaviours 

such as leverage effect. Some of extensions of the GARCH models are as follows: the 

exponential GARCH (EGARCH) model (Nelson, 1991), the threshold GARCH (TGARCH) 
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model (Glosten, Jagannathan, and Runkle, 1993), Asymmetric Power ARCH (PGARCH) 

model (Ding, Engle, and Granger, 1993).   

          Pagan and Schwert (1990) conduct research, which is one of the first systematic 

comparisons of volatility models in the literature. It has been proven by many researchers that 

the GARCH-type models capture the characteristics of data better than other models. Akgiray 

(1989) applies a GARCH (1,1) model to monthly US data and find its superiority. Cumby et 

al. (1993) find that the EGARCH model is superior to the historical volatility models. 

Similarly, Hansen and Lunde (2005) carry out research comparing sixteen different GARCH 

specification and find that the GARCH (1,1) is the best performing one among others in 

datasets of the deutsche mark-dollar exchange rates. However, when performing the out-of-

sample forecast for the IBM stocks, the models accommodating the leverage effect outperforms 

the standard GARCH model. On the other hand, Japanese and Singaporean stock indices are 

investigated and pointed out that an exponentially weighted moving average (EWMA) model 

yields better volatility forecasts compared to the ARCH-type models (Tse, 1991; Tse and Tung, 

1992).  Balaban, Bayar, and Faff (2004) evaluate various simple and GARCH models in 15 

different stock markets. They find that the exponential smoothing model provides the best 

forecasts of volatility, whereas ARCH family models generates the worst forecasts.  

         Merton (1980) first uses high frequency data for measuring volatility and notes that the 

sum of squared returns can be used for computing the conditional variance at higher 

frequencies. The reason is that absolute and squared daily returns are the noisy estimators of 

volatility. In this context, Andersen and Bollerslev (1998) construct the realized variance as a 

more accurate true volatility measure in comparison to the daily squared returns. The main 

function of the realized variance was to be employed as an estimator of the true volatility for 

evaluating the forecasting performances of the volatility models. In the 2000s, the growing 

availability of high frequency data has drawn researchers’ attention and the potential value of 

the realized variance used for improving volatility models. It is understood that high frequency 

data contain more information for the current and also future market volatility. Andersen et al. 

(2001, 2003) document that when the frequency of data rises, more accurate volatility forecasts 

are produced. Similar evidence finds that high frequency returns data contains more 

information than daily returns data (Blair, Poon, and Taylor, 2001; Engle, 2002; Andersen, 

2003; Koopman et al., 2005; Bollerslev 2009). McMillan, Speight, and ap Gwilym (2000) 

compare and evaluate the UK stock market volatility forecasts of simple and GARCH models 
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for daily, weekly, and monthly frequencies. They point out that moving average and GARCH 

models provide the best forecasts for all frequencies.  

         Corsi (2009) suggests the Heterogeneous Autoregressive model of the realized variance 

(HAR-RV) that is based on the Heterogenous Market Hypothesis. The HAR-RV model is in 

the form of a simple autoregressive model for the realized variance over different time spans, 

including daily, weekly, and monthly components. In other words, the HAR specification is an 

additive cascade model of different volatility components. The performance of the HAR-RV 

model is remarkably good in spite of its simple structure. According to Corsi (2009), the long 

memory feature of volatility is successfully modelled in a simple and parsimonious way 

although not belonging to the family of long memory models. It is not essentially a long 

memory model as the ARFIMA model, but can successfully deal with the persistence feature 

of volatility.  

         The superior performance of the HAR-RV is also supported by much research (e.g. 

Andersen et al. 2011; Patton and Sheppard, 2009; and Bollerslev et al. 2016). Barndorff-

Nielsen, Kinnebrock, and Sheppard (2010) introduce positive and negative realized 

semivariance measures, which are obtained from the signed high frequency intraday returns. 

Afterwards, the HAR-RV model is expanded by decomposing volatility into jump and 

continuous components, negative and positive realized semivariances and also taking into 

account leverage effect (Sevi, 2014). It is also found that the decomposition of the realized 

variance improves the in-sample forecast performance, whilst failing in the out-of-sample. 

Patton and Sheppard (2015) find that negative realized semivariance for future volatility is 

much more important compared to positive realized semivariance. Disentangling the effects of 

negative and positive realized semivariances or good and bad volatilities successfully improves 

future volatility forecasts’ performance. In this regard, in order to capture the asymmetric effect 

of the signed returns Patton and Sheppard (2015) suggest an asymmetric HAR model that 

include positive and negative realized semivariances. Particularly, Patton and Sheppard (2011) 

discuss the effects of positive and negative realized semivariances on forecasting power at 

different lags, namely daily, weekly and monthly signed realized semivariances. The 

decomposition of all the HAR model components (daily, weekly, and monthly) into positive 

and negative realized semivariances makes the role of the daily component diminished. Also, 

the increasing number of explanatory variables results in the overfitting issue. Therefore, 

Patton and Sheppard (2015) update the asymmetric HAR model by decomposing only the daily 

component, which contains the larger effect on the future volatility compared with the weekly 
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and monthly components. Fang, Jiang, and Luo (2017) point out that the decomposition of the 

realized variance into the signed semivariances only for the daily component of the HAR model 

is more important than the model which decompose all the model components. In the case of 

the decomposition of all the model components, they find that the power of explanatory 

variables changes from negative semivariances to positive ones.  Wu and Hou (2019) use the 

asymmetric HAR model and also suggest a combination of the asymmetric HAR with time-

varying coefficients for the Chinese stock market. Other important realized semivariance 

related studies account for the good and bad volatilities in terms of the cross section of expected 

returns (Bollerslev, Li, and Zhao, 2018) and option pricing performance (Feunou and Okou, 

2018).  

         Bucci (2017) conducts a systematic review on forecasting realized volatility that  

discusses the empirical foundations of different sorts of financial volatility. Forecast accuracy 

evaluation methods and the MIDAS, GARCH-MIDAS, Realized GARCH, and HEAVY 

models are analysed. Junior and Pereira (2011) examine MIDAS-RV and HAR-RV models 

using intraday data in Sao Paulo Stock Market. Whilst there is no difference between the 

models in the out-of-sample forecasts, the MIDAS-RV model outperforms in the in-sample. 

Celik and Ergin (2014) support that high frequency based volatility forecasting models 

outperform the traditional GARCH models. they suggest the HAR-RV-CJ and MIDAS models 

as the best performing high frequency based volatility models. It is also noted that the MIDAS 

model has superior performance in crisis periods. Using high frequency data of 100 stocks from 

different sectors Izzeldin, Kabir Hassan, Pappas, and Tsionas (2019) compare the forecasting 

performance of HAR and ARFIMA models. They point out that higher frequencies improve 

the forecasting performance of the models and an outperforming model depends on the 

frequency of data.  

         More recent studies examine the predictive ability of the HAR model for different 

markets and different settings, for example, Izzeldin, Muradoglu, Pappas, and Sivaprasad 

(2021) investigate the impact of the pandemic on the G7 stock markets at the sectoral level 

using the Smooth Transition HAR model that allows a switch between different volatility 

regimes. They find a strong transition evidence to the Covid-19 crisis regime in all stock 

markets and sectors but this varies according to sectors. Similarly, Ding, Kambouroudis, and 

McMillan (2023) incorporate the simple Autoregressive (AR) and HAR models with the 

Smooth Transition and Markov regime-switching approaches, which are non-linear regime 

switching models, to evaluate the forecasting accuracy of future realized volatility. It is pointed 
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out in their results that the HAR model incorporates regime-switching approaches in particular 

the Markov regime-switching method with time-varying transition function yields the most 

accurate forecasting errors. Slim, Tabche, Koubaa, Osman and Karathanasopoulos (2023) 

focus on the forecasting realized volatility of Bitcoin to investigate the informative role of price 

duration. They note in their volatility forecasting exercise that price duration yields significant 

gains when it is applied to the price of Bitcoin.  

         Caporin (2022) investigates the role of jumps and signed jumps in the context of 

forecasting future realized volatility using 5-min return data for over 4800 Russell-3000 stock 

prices between the period of 2003 and 2019. Their findings evidence that the inclusion of jumps 

and signed jumps mostly does not help to improve the out-of-sample accuracy of the volatility 

models of his extensive choice, whilst improving the in-sample accuracy of the competing 

models. One of the most relevant contributions of his work to the literature is that the trade-off 

between forecasting accuracies and model complexity gives an advantage to the use of the 

baseline HAR model, which is proposed by Corsi (2009). A similar study (Bu, Hizmeri, 

Izzeldin, Murphy, and Tsionas (2023)) to Caporin (2022) but contrary to his out-of-sample 

forecast results that finds statistically significant gains in the in-sample and out-of-sample 

examines the respective contributions of the various kinds of jump components to total 

quadratic variation in an ultra-high frequency settings (i.e. using second-wise data). However, 

they point out the limited contribution of signed jumps in their study using the S&P 500 ETF 

(SPY) and twenty individual stocks in this index. The contrary views of the abovementioned 

studies could stem from different settings of the studies such as different frequencies and 

different markets. For instance, while Caporin (2022) uses 5-min return data, Bu et al. (2023) 

employ ultra-high frequency data.  

         To sum up, there is an ongoing debate in the literature on which model best suits the 

patterns of data in order to understand the strengths and weaknesses of different volatility 

models. Knowing which volatility model is better is important for risk management strategies, 

investment decisions, portfolio optimization, and overall investment performance as more 

accurate models enable us to carry out better estimation of future volatility and more accurate 

evaluations of market conditions. However, the results and findings are specific to market, data 

frequency, time horizon, and some characteristics of volatility. This is one of the most 

important reasons why each contribution in the literature is essential. Motivated by the seminal 

paper of Andersen and Bollerslev (1998), this study empirically contributes to the existing 
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literature by conducting a comprehensive exercise with 30 different international stock markets 

and more up-to-date data. 

 
2.3. Data and Methodology                                                                           
.                 
        2.3.1. Data Description 
         
The data used in this study is provided by the Oxford-Man Institute of Quantitative Finance 

Realized Library. 5-min realized (semi) variance and daily returns series are employed for the 

volatility prediction of 30 different stock market indices.4 Majority of them consist of the 

indices of developed countries. We attempt to conduct a comprehensive study by using a great 

numbers of stock market indices. The full list of index names and abbreviations is given at 

Table 1.    

  
          2.Table 1   The full list of index names and abbreviations  

    
Symbol Name Symbol Name 
AEX Amsterdam Exchange Index KS11 Korea Composite Stock Price Index 
AORD All Ordinaries  KSE Karachi SE 100 Index 
BFX Belgium 20 Index MXX IPC Mexico Index 
BSESN S&P BSE Sensex N225 Nikkei 225 Index 
BVLG PSI All-Share Index NSEI NIFTY 50 Index 
BVSP BVSP BOVESPA Index OMXC20 OMX Copenhagen 20 Index 
DJI Dow Jones Industrial Average OMXHPI OMX Helsinki All Share Index 
FCHI CAC 40 Index OMXSPI OMX Stockholm All Share Index 
FTMIB FTSE MIB Index OSEAX Oslo Exchange All Share Index 
FTSE FTSE 100 Index RUT Russel 2000 Index 
GDAXI DAX Index SMSI Madrid General Index 
GSPTSE S&P/TSX Composite Index SPX S&P 500 Index 
HSI HANG SENG Index SSEC Shanghai Composite Index 
IBEX IBEX 35 Index SSMI Swiss Stock Market Index 
IXIC Nasdaq 100 Index STOXX50E EURO STOXX 50 Index 

          
 
The dataset of this forecasting exercise is the post-2007/2008 global financial crisis period. 

Every single index consists in the period of 9 years, specifically from January 4, 2010 to 

October 3, 2019. The number of observations in each index is approximately 2400 trading 

days. However, total trading days in a year can differ between each countries due to different 

                                                
 
4 The data used in this study cover all the available stock market indices in the Oxford-Man Institute’s 
Quantitative Finance Realized Library. The series are a selection of daily non-parametric estimated volatility.  
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public holidays and nontrading periods. In this forecasting exercise, the initial sample 

comprises approximately one year period (330 obs. [2010-2011]), whilst the time interval of 

out-of-sample volatility forecasts is 8 years (2070 obs. [2011-2019]). We arbitrarily choose the 

in-sample length as 330 observations considering the length at least one year period to let the 

regression fit normally and obtain a longer out-of-sample period. This is because the main 

objective of this work is to evaluate the out-of-sample performance of the models. Lastly, as 

we discussed the importance of daily and intra-daily information in the section of  literature 

review, this study focuses on daily volatility and generate only one-day ahead out-of-sample 

forecasts.  

          
  2.Table 2  Descriptive statistics of realized variance and returns series 

                REALIZED VARIANCE                            RETURNS  
INDICES MEAN ST. DEV. SKEW. EX.KUR. MEAN ST. DEV. SKEW. EX.KUR.  
AEX      7.23E-05 0.00011 9.1184 135.49 0.00020 0.0104 -0.2617 3.2510  
AORD 4.00E-05 5.37E-05 7.8535 107.25 0.00012 0.0081 -0.3858  1.7869  
BFX 6.66E-05 8.51E-05 8.1125 109.33 0.00013 0.0104 -0.1465 4.1918  
BSESN 6.15E-05 6.24E-05 5.6385 60.804 0.00032 0.0009 -0.1043 1.8976  
BVLG 4.32E-05 4.31E-05 4.4342 33.381 0.00020 0.0103 -0.5226 2.8381  
BVSP 0.00010 0.00010 9.0808 147.76 0.00015 0.0142 -0.1384 1.8879  
DJI 6.85E-05 0.00016 20.937 692.56 0.00037 0.0088 -0.4722 3.9001  
FCHI 9.68E-05 0.00013 6.7683 73.601 0.00012 0.0121 -0.2349 3.9195  
FTMIB 0.00011 0.00015 5.7298 52.499 -4.1E-05 0.0153 -0.3330 4.4745  
FTSE 8.01E-05 0.00016 20.338 656.04 0.00010 0.0092 -0.2287 2.3859  
GDAXI 9.79E-05 0.00013 6.8276 74.264 0.00027 0.0119 -0.2944 2.6917  
GSPTSE 4.47E-05 9.43E-05 18.668 558.51 0.00013 0.0075 -0.3714 2.6558  
HSI 5.82E-05 6.90E-05 8.7771 115.54 7.50E-05 0.0114 -0.2860 2.2446  
IBEX 0.00014 0.00021 11.184 211.10 -0.00012 0.0137 -0.2078 7.5089  
IXIC 6.06E-05 0.00010 10.248 167.65 0.00050 0.0107 -0.4942 3.2251  
KS11 4.48E-05 7.76E-05 14.604 331.30 7.62E-05 0.0093 -0.4493 4.0942  
KSE 5.17E-05 5.62E-05 4.9986 46.235 0.00051 0.0097 -0.4072 2.6439  
MXX 6.33E-05 0.00013 24.929 896.13 0.00010 0.0090 -0.4416 3.4626  
N225 7.19E-05 0.00014 10.093 146.89 0.00029 0.0132 -0.5673 5.4127  
NSEI 6.07E-05 6.82E-05 7.3457 99.860 0.00032 0.0098 -0.1345 1.8773  
OMXC20 8.74E-05 0.00031 29.286 1039.0 0.00043 0.0109 -0.2474 2.7520  
OMXHPI 7.33E-05 0.00046 46.596 2253.9 0.00012 0.0113 -0.3033 3.6854  
OMXSPI 6.31E-05 0.00024 34.113 1410.1 0.00027 0.0110 -0.3570 8.3484  
OSEAX 8.74E-05 0.00015 8.8676 129.06 0.00032 0.0108 -0.2398 2.7012  
RUT 6.62E-05 0.00011 10.280 166.54 0.00034 0.0123 -0.3242 3.9481  
SMSI 0.00013 0.00024 14.539 305.67 -0.00014 0.0136 -0.2924 7.4696  
SPX 6.72E-05 0.00013 11.680 242.69 0.00038 0.0093 -0.4893 4.5094  
SSEC 0.00013 0.00027 7.9734 85.157 -4.6E-05 0.0137 -0.9185 5.9848  
SSMI 5.51E-05 0.00012 21.799 680.43 0.00015 0.0094 -0.6778 6.3145  
STOXX50E 0.00011 0.00018 13.079 315.25 5.05E-05 0.0122 -0.1969 4.4480  

Note: Those are the main descriptive statistics for the indices used in this study. Figure 1 and 2 in the 
below illustrate some examples of time series graphs and distributions. 
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2.Figure 1  Some example plots of 5-min realized variance, daily return and their distributions  

 

Figure 1                           rv5_spx         
                                          

 

 
 Figure 2                      rv5_ftse 
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Liu, Patton, and Sheppard (2015) compare over 400 different realized measures and point out 

that it is difficult to significantly beat five-minutes realized variance. Therefore, we select 5-

min realized variance as a proxy for the true volatility. The aim is to estimate this target as 

close as possible using the two groups of competing models such as conditional volatility 

(GARCHs) models and realized volatility (HAR-RV) models. It is important here to note that 

intraday frequencies are aggregated to the daily volatilities (which is called realized volatility). 

This enables us to compare these two groups of competing models and find out the most 

accurate genre of models. It is likely to say that if the frequency of data increases, the accuracy 

of volatility estimation will improve. On the other hand, microstructure noise may have an 

impact on the efficiency of ultra-high frequency data through measurement errors and price 

discreteness. 

         Table 2 presents the first four statistical moments of both series for different indices 

respectively, namely; mean, standard deviation, skewness, and excess kurtosis. The values of 

the moments are as commonly seen in the literature. The means of the returns and the realized 

variance series are close to zero for each index that is consistent. The returns series are 

moderately negative skewed whereas the series of 5-min realized variance have a high positive 

skew. On the other hand, the values of the fourth moment indicate the leptokurtic distribution 

for all the time series. Indeed, it can be pointed out that the series have a non-normal 

distribution. Figure 1 and 2 illustrate several example graphs for some indices.  

 
 
           2.3.2. Realized Volatility Models 
             

Volatility is latent and therefore we need to provide a proxy of the true volatility. As a proxy, 

researchers used to employ the daily squared returns until the work of Andersen and Bollerslev 

(1998). They document that the squared returns is a poor proxy in comparison to the cumulative 

intraday squared returns. Afterwards, the so-called realized variance which is the sum of the 

squared intraday returns was defined by Andersen, Bollerslev, Diebold, and Labys (ABDL; 

2003). Indeed, the realized variance and the daily squared returns are both unbiased estimates 

of volatility, yet the realized variance is highly efficient one. 

                                                 

                                                   𝑅𝑉# = 	∑ 𝑟#,)*+
),-                                                                    (1) 
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As can be shown in equation (1), the realized variance is calculated as the sum of squared 

intraday returns, where m is the number of intraday observations during day t. Theoretically, 

the higher m value is more accurate daily volatility estimation. However, when the number of 

m is too high, the efficiency of high frequency data can be distorted due to microstructure noise 

effect. ABDL (2003), Martens (2001), and Hol and Koopman (2002) suggest the frequency 

interval between 5 and 30 minutes. In a recent study, comparing over 400 different realized 

measures Liu, Patton, and Sheppard (2015) point out that it is difficult to significantly beat 

five-minute realized variance. Therefore, we utilise the 5-min realized variance for the 

estimations of the HAR and ARFIMA models.  
           Barndorff-Nielson et al. (2010) decompose the realized variance into positive and 

negative realized semivariances or good and bad volatilities. 

 

                                                       𝑅𝑆𝑉#/ = 	∑ 𝑟#,)* 	𝐼	{+
),- 𝑟#,) > 0}                                       (2) 

 

                                                       𝑅𝑆𝑉#5 = 	∑ 𝑟#,)* 	𝐼	{+
),- 𝑟#,) < 0}                                       (3) 

 
where  𝐼	{∙} is an indicator function. We should also note that 𝑅𝑉# = 𝑅𝑆𝑉#/ + 𝑅𝑆𝑉#5. 
           
HAR-RV model 
           
The HAR-RV model is based on the heterogeneous market hypothesis of Muller, Dacorogna, 

Dave, Olsen, Pictet and von Weizsacker (1997). According to the hypothesis, there are three 

types of investors that have different risk preferences and different reactions to the same new 

market information. In addition to the hypothesis, the same researchers develop the 

Heterogenous Autoregressive Conditional Heteroskedasticity (HARCH) model. Inspired by 

the HARCH model and its background hypothesis, Corsi (2009) proposes the HAR-RV model 

that is an additive cascade model of different volatility components. The model is specified as: 

 

               𝑅𝑉#/9: = 	𝛽< + 𝛽:𝑅𝑉#: + 𝛽=𝑅𝑉#= + 𝛽+𝑅𝑉#+ + 𝜀#/9                                   (4) 
 
 
where 𝑅𝑉#: is daily realized volatility; 𝑅𝑉#= refers to weekly realized volatility, and then 

𝑅𝑉#+ indicates monthly realized volatility. 𝑅𝑉#= and 𝑅𝑉#+ can easily be calculated as follows: 

𝑅𝑉#= =
1
5 (𝑅𝑉#5B

: + 𝑅𝑉#5C: + ⋯+ 𝑅𝑉#5-: ) 
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                                    𝑅𝑉#+ = -
**
(𝑅𝑉#5**: + 𝑅𝑉#5*-: + ⋯+ 𝑅𝑉#5-: ) 

 
The main point of the HAR-RV model is to predict future volatility using three different 

volatility components; a daily (𝑅𝑉#:), a weekly (𝑅𝑉#=), and a monthly (𝑅𝑉#+) components. The 

HAR-RV model can simply be estimated by the ordinary least square (OLS) method. The 

model is such a good alternative to the ARFIMA model. The HAR-RV model can also capture 

long memory characteristics of volatility even though it is not in the class of long memory 

models. In practice, the HAR-RV model is found to be such a promising model as the model 

performance is remarkably good in spite of its simple structure.    

            Different types of investors have different objectives in financial markets. For instance, 

some investors are completely hedgers whilst some others are completely speculators. Hence 

the HAR-RV model is based on capturing different reactions of different investors through the 

simple autoregressive process. Financial interpretation of the model is that the investors are 

divided into three different categories. In the model, 𝑅𝑉#:, 𝑅𝑉#=, and 𝑅𝑉#+ components 

represent short-term, middle-term, and long-term investors respectively and indicate the degree 

of different investors’ impact on current realized volatility. In other words, the model 

coefficients provide an understanding of how these different market participants react and 

perceive to volatility. Moreover, the HAR-RV model can successfully capture the persistence 

feature of realized volatility.  

            
HAR-PS and HAR-RSV models 
              
Barndorff-Nielsen, Kinnebrock, and Sheppard (2010) first introduce positive and negative 

realized semivariance measures, which are obtained from the signed high frequency intraday 

returns. Patton and Sheppard (2015) decompose only the daily explanatory HAR model 

component into negative and positive realized semivariances. In this study, we call Patton and 

Sheppard (2015)’s model as the HAR-PS model. The HAR-PS specification is presented in 

equation (5): 

 
𝑅𝑉#/9: = 	𝛽< + 𝛽:5𝑅𝑆𝑉#5 + 𝛽:/𝑅𝑆𝑉#/ + 𝛽=𝑅𝑉#= + 𝛽+𝑅𝑉#+ + 𝜀#/9                                        (5) 
 
 
Afterwards, it is added one more realized semivariance specification to the model comparison 

that decomposes not only the daily component, but also separates weekly and monthly 
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components. The model of Patton and Sheppard (2011) is called here as the HAR-RSV and the 

model is given as follows: 

 
𝑅𝑉#/9: = 𝛽< + 𝛽:5𝑅𝑆𝑉#5 + 𝛽:/𝑅𝑆𝑉#/ + 𝛽=5𝑅𝑆𝑉#5 + 𝛽=/𝑅𝑆𝑉#/ + 𝛽+5𝑅𝑆𝑉#5 + 𝛽+/𝑅𝑆𝑉#/ + 𝜀#/9            (6) 

 
According to the seminal research of Patton and Sheppard (2011) and Barndorff-Nielsen, 

Kinnebrock, and Sheppard (2010), the decomposition of realized variance into positive and 

negative realized semivariances (or good and bad volatilities) adds more information for the 

prediction of future volatility.        

                                                                                                                        

ARFIMA-RV model 
 
The long memory autoregressive fractionally integrated moving average (ARFIMA) model 

was first developed by Granger and Joyeux (1980). The ARFIMA model is in the class of long 

memory models and therefore can successfully capture the persistency feature of volatility. 

Andersen et al. (2003) suggest the univariate ARFIMA model in order to model the realized 

volatility. An ARFIMA (p, d, q) model is presented by: 

 

                                          φ(𝐿)(1 − 𝐿)𝑑(𝑅𝑉𝑡	 − µ) = θ(𝐿)𝜀#                                              (7) 

 

where φ(𝐿) and θ(𝐿) are the lag polynomials of the autoregressive (AR) and moving average 

(MA) components. 𝜀# is the error term which is distributed approximately as a Gaussian white 

noise [N(0,𝜎N*)].  The fractional differencing parameter is represented by d in equation (7). The 

AR and MA components explain the short memory properties of volatility and as for the d, it 

accounts for the long memory properties of volatility. The value of d is expected between 0 

and 0.5 in order to capture long memory property. Andersen et al. (2003) found d=0.401. In 

this context, a general empirical conclusion with ARFIMA model is that this framework 

outperforms traditional GARCH models which are based on daily returns (Hansen and Lunde, 

2010). 

 
 
2.3.3. Conditional Volatility Models 
 

In this study, we utilise the daily returns to estimate the GARCH family models. The daily 

returns are calculated by taking the logarithmic difference between today’s and yesterday’s 
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closing prices.5 Before passing to the GARCH models, we present the notation of the returns 

process, (𝑟#), as follows: 

                  

                                      𝑟# = 𝜇# + 𝜀# ,                                                                          (8) 

where  

                                      𝜀# = 𝑧#ℎ#,                    𝑧#
).).:.
S⎯U	(0,1)  

 

The returns process, 𝑟#, consists of two components, namely the conditional mean process, 𝜇#, 

and the innovation term, 𝜀#. The first component could include AR or MA terms and the second 

component can be decomposed as:  

a-) an independent shock (noise term), 𝑧#, with zero mean and constant variance,  

b-) the conditional variance,	ℎ𝑡. 
 
 

 
GARCH model 
 
The Autoregressive Conditional Heteroskedasticity (ARCH) model was first suggested by 

Engle (1982). He aimed to capture the conditional variance with the ARCH model. if volatility 

can be correlated over time, then the change in variance can be modelled using the model. In 

other words, the variance of the current error is conditionally a function of its past values.  The 

ARCH model is in the form of an AR process for the error variance and thus slow to respond 

to the large shocks. In other words, it is unable to successfully capture the volatility persistence.6 

Assuming an ARMA process for the error variance, Bollerslev (1986) proposed the 

Generalised ARCH (GARCH) model. The GARCH model does not only capture ‘volatility 

clustering’, but also include ‘fat tails’. Therefore, we consider the GARCH and its some 

variants. The order of p=q=1 for the GARCH models is sufficient to capture the volatility 

clustering. In the finance literature, higher order models are rarely estimated. Instead, the 

parsimonious order (p=q=1) is suggested. The specification of the GARCH model is given as 

follows: 

 

                                                
 
5 The formula of returns calculation is as follows: 𝑟# = log	(𝑝# − 𝑝#5-). 
6 Therefore, we do not include the ARCH model in our comparison. 
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                                ℎ#* =	  𝛼< + ∑ 𝛼)
[
),- 𝜀#5)* + ∑ 𝛽\

]
\,- ℎ#5\*                                                   (9) 

 

The non-negativity constraints must be satisfied with 𝛼< > 0, 𝛼) ≥ 0 for i=1,2,…,q and 𝛽 ≥ 0 

for j=1,2,…,p. Essentially, it generates one-step-ahead forecasts for the variance as a weighted 

average variance,	𝛼<, the previous volatility,	∑ 𝛼𝑖
𝑞
𝑖=1 𝜀𝑡−𝑖

2 , and the previous forecast 

variance,	∑ 𝛽𝑗
𝑝
𝑗=1 ℎ𝑡−𝑗

2 . The model is covariance stationary if  𝛼) + 𝛽\<1. The sum of the 

coefficients, 𝛼) + 𝛽\ , explains how persistent is the shocks to volatility. The GARCH model 

can capture some characteristics of returns such as volatility clustering and leptokurtosis.  

            In practice, bad news has a more significant effect than good news, which is known as 

leverage effect. There usually exists a negative correlation between the current stock returns 

and the future conditional variance. The GARCH model provides a way to model the change 

in variance, yet it is a symmetric model. It treats negative daily returns the same as positive 

daily returns. Therefore, the standard GARCH model is incapable of capturing the larger effect 

of bad news. For this reason, some extensions of the GARCH models have been introduced 

following Engle and Bollerslev (1982, 1986); such as exponential-GARCH model (Nelson, 

1991), the threshold GARCH model (Rabemananjara and Zakoian, 1993), Asymmetric Power 

ARCH or APGARCH (Ding, Engle, and Granger, 1993) etc, [see –‘Glossary to ARCH 

(GARCH)’ (Bollerslev, 2009)– for more variants of GARCH models]. Each of those models 

attempts to improve the forecast accuracy by adding some idiosyncratic components on the 

traditional GARCH model. 

 

EGARCH model 
 

Nelson (1991) pointed out that there is a negative significant autocorrelation between returns 

and volatility. In order to capture the negative asymmetric effects of shocks he suggested the 

EGARCH as an alternative asymmetric model. The EGARCH is given as follows: 

 

               log	(ℎ#*) = 𝛼< + 𝛼-
|defg|
9efg

+ 𝛾 defg
9efg

+ 𝛽- log(ℎ#5-* )                                                  (10) 

 

where the parameter, 𝛾, captures the leverage effect if 𝛾 < 0. A significant 𝛼- coefficient 

means that the volatility clustering is captured. This model is effective because the logarithmic 
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form of the model will ensure the non-negativity for the conditional variance even if the model 

parameters are negative. 

          

PGARCH model 
 

The power GARCH model was developed by Ding, Engle, and Granger (1993), which is based 

on the standard deviation GARCH model of Taylor (1986) and Schwert (1989). Ding et al. 

(1993) indicate that both ways – modelling the variance (with the GARCH) and the standard 

deviation (with the TS-GARCH) – are capable of capturing the autocorrelation pattern of 

financial data. Here, we consider ℎ#i where the power parameter,	𝛿, is the key point and can be 

estimated. The specifications of the power GARCH model is:            

 

                 ℎ#i = 𝛼< + 𝛼-(|𝜀#5-| − 𝛾-𝜀#5-)i + 𝛽-ℎ#5-i                                                           (11)  

 

where	𝛿 > 0. The model is symmetric if 𝛾- = 0. According to the values of 𝛿	𝑎𝑛𝑑	𝛾, the model 

can be converted to the some other GARCH models. For example, the PGARCH specifications 

𝛿 = 2	𝑎𝑛𝑑	𝛾 = 0 is actually the standard GARCH model; 𝛿 = 1	𝑎𝑛𝑑	𝛾 = 0 is the TS-

GARCH; and 𝛿 = 2	𝑎𝑛𝑑	0 ≤ 𝛾 ≤ 1 is the GJR-GARCH. 

 

TGARCH (GJR) model 
 

Glosten, Jagannathan, and Runkle (1993) proposed the Threshold GARCH model as an 

alternative to the other asymmetric models. This model includes a dummy variable in order to 

capture the asymmetric effects. However, if we set the threshold term to zero, the TGARCH 

model evolves to the standard GARCH model. The Threshold GARCH model specifications 

can be expressed as follows: 

 

                   ℎ#* =	  𝛼< + 𝛼-𝜀#5-* + 𝛾-𝜀#5-* 𝐼#5- + 𝛽-ℎ#5-*                                                    (12) 

 

In the model,	𝐼#5- is the dummy variable that can successfully capture the leverage effect in 

financial data. The dummy variable, 𝐼, 𝑖𝑠	𝑒𝑞𝑢𝑎𝑙	𝑡𝑜	1 if 𝜀#5- 	< 0 and otherwise if 𝜀#5- > 0, it 

is zero. 𝜀#5- > 0 represents good news and 𝜀#5- < 0 is bad news. The impact of good news is 
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only 𝛼-, whilst bad news is 𝛼- + 𝛾-. Bad news has a greater impact on volatility than good 

news if 𝛾- > 0.   

     

2.3.4. Forecast Evaluation Procedure 
 

We use both the rolling and recursive windows for forecasting. The loss functions; the mean 

squared error (MSE), the mean absolute error (MAE), and the quasi-Gaussian log-likelihood 

(QLIKE) are considered in order to compare the models. Lastly, the Giacomini and White 

(2006) pairwise test is employed to evaluate the forecasting performance of two models.     

 

Rolling and Recursive Windows  
                                  
Figure 2 illustrates the rolling window’s working mechanism.7 The rolling window is one of 

the most popular methods in forecasting and therefore this study employs the rolling window 

technique in order to generate the volatility forecasts of stock markets. Initially, the whole 

sample needs to be divided into two subgroups such as the initial sample and out-of-sample 

windows. In the literature, there is no consensus on how to select an appropriate forecasting 

window. Since the main objective of this work is to evaluate the out-of-sample performance of 

the models, we arbitrarily choose the initial and out-of-sample windows considering a length 

that allows the regression fit normally and obtain longer out-of-sample period.  

 
             2.Figure 2  Rolling window’s working principle  

 

                                                
 
7 Figure 1 is taken from the website: https://docs.h2o.ai/driverless-ai/1-8-lts/docs/userguide/time-series.html 
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According to Figure 2, the rolling window’s working principle does work the way that the 

estimation sample is then rolled forward by adding one new observation and dropping the most 

distant observation. In this way, the size of initial sample window used to estimate the models 

remains at a fixed length. However, the recursive window technique makes use of an expanding 

windows that does not drop the first observation of the initial sample during the whole 

forecasting process. In Figure 2, the first four lines demonstrate how the loop command works 

and then the last line shows the pre-defined training and test samples that are green (time 

horizon between 1-8) and orange (time horizon between 9-12) respectively. Throughout this 

thesis, we produce only the one-step-ahead volatility forecasts of the stock markets. The reason 

is that the forecasts more than one-step-ahead are highly likely to give poorer forecasts due to 

the lack of information of further prediction. Therefore, they are labelled in the Figure 2 as bad 

predictions. 

         In the literature, there is no clear evidence whether the rolling and recursive windows 

should be employed. For example, Corsi et al. (2008) employ the recursive windows for the 

realized volatility of the S&P500 index, while Pu, Chen, and Ma (2016) use the rolling scheme 

for forecasting the realized volatility in the Chinese stock market. Vortelinos (2017) uses both 

of them for generating the realized volatility forecasts of some US assets and point out that 

there is no difference between the rolling and recursive methods in terms of forecast accuracy. 

We should also point out that the initial sample size of both of these methods highly matters 

and different initial sample lengths could generate different forecast results on the same data. 

In this thesis, we keep the length of in-sample period a little shorter as 1 to 2 years to obtain 

longer out-of-sample period but also allow the regression fit feasibly. 

 
Loss functions 
 
Since the main goal of this work is to compare the performance of the competing models, we 

need to measure the ability of the models using some loss functions. Many different forecasting 

criteria can be used for comparison purpose. Lopez (2001) points out that it is not clear to 

decide which measure is the most accurate to which model. On the other hand, Patton (2011) 

documents the robustness of the QLIKE and MSE criteria. The reason is explained as such: in 

the case of such a noisy volatility proxy, the QLIKE and MSE provide consistent rankings for 

volatility models. In this regard, three of the most popular measures are selected, namely the 

mean squared error (MSE), the mean absolute error (MAE), and the quasi-Gaussian log-

likelihood (QLIKE). The loss functions are specified as follows: 
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   𝑄𝐿𝐼𝐾𝐸 = -
v
∑ [𝑙𝑜𝑔𝑅𝑉#*yz/v
#,z/- + {|e}

~

{|e}
]                                                                       (13) 

 

   𝑀𝑆𝐸 = -
v
∑ [𝑅𝑉#* − 𝑅𝑉#*yz/v
#,z/- ]*                                                                             (14) 

 

   𝑀𝐴𝐸 = -
v
∑ |	𝑅𝑉#* − 𝑅𝑉#*	|~z/v
#,z/-                                                                             (15) 

 

where 𝑅𝑉#* is the proxy of the true volatility and 𝑅𝑉#*y  is the volatility forecast. The number of 

observations is represented by 𝜏. The MAE is based on taking absolute values of errors and 

equally treats all the losses, while the MSE punishes larger losses. If the absolute value is not 

taken, it becomes the mean biased error (MBE). The MBE can give useful information, yet the 

negative and positive errors are likely to cancel out each other. The QLIKE and MSE are 

frequently used ones in the literature due to being robust to the noisy volatility proxy. Patton 

and Sheppard (2009) indicate that the QLIKE is powerful in the Diebold-Mariano test, which 

is quite similar test to the Giacomini and White (GW) test that we use here. Although the MSE, 

MAE, and QLIKE are the most frequently used criteria, there is still a possibility that such a 

model with the lower error may not be exactly better than the other model. For this reason, we 

need to apply the GW test. 

 
 
Conditional Giacomini-White (GW) test 
 
For instance, we have two different forecasted series, namely X and Y. Assuming that the 

values of loss functions of X are lower than Y. Can we say that the forecast X has a superior 

performance compared to the forecast Y? Or is it possible that the difference between the 

forecasts X and Y is inherently insignificant? In order to test conditional predictive ability 

Giacomini and White (2006) suggest a pairwise test on equal conditional predictive ability, 

which examines whether two different forecasting models statistically have the same accuracy 

or not. The GW test is a better alternative to the so-called test of Diebold and Mariano (1995) 

and White (1996) (Hereafter DM test). Compare to the DM test, the GW test has several 

advantages; the GW can capture the effect of estimation uncertainty on relative forecast 

performance and also it can deal with the forecasts which are based on both nested and non-

nested models.  
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         Let 𝐿(𝑦#; 𝑦#� ) denote the loss of a model’s forecast where 𝑦#�  is the forecasted value and 

𝑦# is the proxy of the true value. The difference between the loss from model 𝑖 and a benchmark 

model 𝜊 can be defined as follows: 

 

                     𝑑),# = 𝐿�𝑦#; 𝑦�,#� � − 𝐿�𝑦#; 𝑦�,#��                                                                                       (16) 

 

The null hypothesis is 𝐻<:𝐸�𝑑),#/v�ℎ#� = 0 and ℎ# is some information set. Then, the 

conditional predictive ability (CPA) test statistic can be calculated as a Wald statistic: 

 

                     𝐶𝑃𝐴# = 𝑇(𝑇5- ∑ ℎ#𝑑),#/v)�z5v
#,- Ω		yz

5-�𝑇5- ∑ ℎ#z5v
#,- 𝑑),#/v�~𝜒-*                            (17) 

 

where the symbol, Ω	z	y is the Newey and West (1987) HAC estimator for the asymptotic 

variance of ℎ#𝑑),#/v. Under the squared error metric, the CPA is used to evaluate whether any 

model outperforms the random walk or not. 

 

2.4. Empirical Results   
                                                                                                                                                    
In this section, we present the in-sample and out-of-sample empirical results of the conditional 

volatility (GARCH) models and the realized volatility (HAR-RV and ARFIMA-RV) models. 

Afterwards, the results are tested and evaluated in terms of each stock markets in more detail.   

             
2.4.1. Parameter Estimates and in-sample evaluation 
 
This subsection evaluates the in-sample estimation results of competing models. First, we 

present the estimation results of the HAR and ARFIMA models together. Afterwards, the 

GARCH family models’ estimation results are given. According to Swanson, Elliott, Ghysels, 

and Gonzalo (2006), a preferred model should be selected by considering the out-of-sample 

performance of the models rather than their in-sample fit. It is also worth to note that the in-

sample fit of a model does not necessarily mean the out-of-sample accuracy too. Since the main 

objective of this work is to evaluate the out-of-sample performance of the models, we give a 

short in-sample evaluation here.  
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HAR AND ARFIMA model estimation results 
 
The HAR-type models are found to be promising models. In practice, the HAR model exhibits 

remarkably good performance in spite of its simple structure. The main point of the model is 

that in terms of the reactions of different market participants to the same information, investors 

are divided into three different categories; short-term, middle-term, and long-term investors. 

In other words, the model coefficients provide an understanding of how these different market 

participants react and perceive to volatility. Table 3 shows some estimation results of 

competing models for the SPX, FTSE, FCHI, and N225 indices. According to the results, 

volatility is highly persistent because the sum of the model coefficients (𝐶 + 𝛽: +	𝛽= + 𝛽+) 

for each one of the indices is close to unit and highly significant, which means that the volatility 

of past contains useful information about future volatility. The daily component of the model 

has relatively larger impact on the future volatility in comparison to the weekly and monthly 

components, which is consistent with the theory.  

         Patton and Sheppard (2011) suggest that the decomposition of realized variance into 

positive and negative realized semivariances (or good and bad volatilities) adds more 

information for the prediction of future volatility. As it is mentioned in the previous paragraph, 

the most recent (or daily) realized variance component of the HAR model has larger effect on 

the future volatility compared with the weekly and monthly components. Therefore, we first 

decompose only the daily explanatory HAR model component into negative and positive 

realized semivariances. In this study, we call this model as the HAR-PS model. The results of 

the HAR-PS model provide strong evidence that the decomposition of the daily realized 

variance into its signed realized semivariances improves the model fit. This is because the 

coefficients of negative realized semivariance for the indices are higher and more significant 

compared to the coefficients on positive realized semivariance. In addition, we add one more 

realized semivariance specification that decomposes not only the daily component, but also do 

weekly and monthly components. This model is called as the HAR-RSV. It should be noted 

that when we decompose all the HAR model components (daily, weekly, and monthly) into 

positive and negative realized semivariances, the role of the daily component diminishes. Also, 

the increasing number of explanatory variables results in the overfitting issue by consuming 

the model’s degree of freedom. As can be seen in Table 3, the HAR-PS regression coefficients 

are more consistent and significant than the HAR-RSV model results. From this point of view, 

we would expect the HAR-PS model to generate better results. 
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         On the other hand, ARFIMA models do not have a clear economic interpretation, yet they 

can capture dynamic characteristics of the data such as long memory, asymmetry, and volatility 

clustering. The fractional differencing parameters, d values, are between 0 and 0.5 for all the 

indices and highly significant. These values are consistent with the theory. The ARFIMA 

model is selected among parsimonious models to avoid overfitting issue. In our framework, we 

adjust the lag of AR and MA components to one (p=q=1). The reason is that parsimonious 

models generate better results compared to over-parameterised models. In econometric 

analysis, too many explanatory variables –in this context AR and MA components– consume 

the degree of freedom in a model, which means that explanatory variables contribute very little 

to the dependent variable.  

 

Estimation results of the GARCH-type models 
 
In this subsection, we summarise the estimation results of competing GARCH models. In the 

GARCH models (Table 3, –Panel A, B, C, D, E, and F–), the coefficients of the lagged 

conditional variance (𝛽-) and lagged squared residual	(𝛼-) terms are highly significant. The 

variance intercept terms are quite small. The lagged squared residual terms are usually between 

0.1 and 0.2, whilst the lagged conditional variance terms around 0.8. More importantly, the 

sum of the coefficients in the models is close to one. This convergence towards unity implies 

that shocks to the conditional variance are quite persistent. For our financial returns data, the 

results are as expected from the typical GARCH models.  

         The coefficients of asymmetry (𝛾) are significant in the EGARCH and TGARCH 

models, showing the existence of the leverage effect (i.e. the negative shocks tend to have a 

larger impact on the volatility in comparison to positive shocks). In the PGARCH models, 

estimated values of the power parameter	(𝛿) are statistically significant and disperse around 1 

(e.g. 0.88, 0. 90, 1.01, 0.95). The model uses the conditional standard deviation, as Ding et al. 

(1993) indicate that both ways – modelling the variance (with the GARCH) and the standard 

deviation (with the TS-GARCH) – are capable of capturing the pattern of financial data such 

as leverage effects.    

         Swanson et al. (2006) emphasise that the best model should be chosen by comparing the 

out-of-sample performances of competing models rather than their in-sample fit. Moreover, 

the in-sample fit of a model does not necessarily mean the out-of-sample accuracy of the model. 

Therefore, we aim to concentrate more on the results of the out-of-sample analysis.    
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2.Table 3  Full-sample estimation results of the HAR and GARCH models for some indices              

                Panel A: HAR model results                                            Panel B: ARFIMA model results 

    
 
 
           
            Panel C: HAR-RSV model results                                       Panel D: HAR-PS model results   

 

 

 

 

 

 

Coef. → 
 ↓ Index 

            𝛽<               𝛽:              𝛽=            𝛽+            C                d          AR(1)       MA(1)               

 

SPX  

 

FTSE 

 

FCHI  

 

N225 

 
     1.23E-05        0.329       0.212        0.273                       
      (3.40E-06)        (0.101)       (0.071)        (0.075)                
          ***              ***          ***              **                                        
     2.02E-05        0.090       0.328        0.326                          
     (6.43E-06)        (0.079)       (0.113)        (0.106)               
          ***                               ***            ***                                      
     1.15E-05        0.428       0.250        0.200               
      (3.02E-06)       (0.097)       (0.090)        (0.077)                
          ***              ***          ***            ***                                       
     1.97E-05        0.358       0.155        0.211                         
       (3.92E-06)       (0.096)       (0.069)        (0.059)                
         ***               ***            **            ***                                                                            

 
     6.92E-05     0.302     0.642     -0.575 
     (5.00E-05)     (0.033)     (0.065)      (0.066)       
                             ***        ***           *** 
     8.07E-05     0.316    -0.187      0.034 
     (6.84E-05)      (0.021)     (0.080)     (0.100)     
                             ***           ** 
     9.65E-05     0.378     0.579     -0.494            
     (9.26E-05)      (0.025)     (0.044)     (0.038) 
                             ***         ***         *** 
     6.90E-05     0.267      0.091      0.029 
     (5.79E-05)     (0.029)      (0.176)     (0.156) 
                             ***  
 

Coef. → 
 ↓ Index 

      C             𝛽:5         𝛽:/        𝛽=5        𝛽=/         𝛽+5         𝛽+/        C             𝛽:5         𝛽:/         𝛽=        𝛽+ 

 

SPX  
 

FTSE 

 

FCHI  

 

N225 

 
1.36E-05   0.391    0.158   0.286   0.200     0.486     0.047                  
(3.82E-06)   (0.119)   (0.160)   (0.171)  (0.161)    (0.317)    (0.313)  
    ***          ***                       *                                              
1.58E-05   0.085    0.163   0.252    0.471   -0.119    0.778               
(4.50E-06)   (0.029)   (0.071)   (0.081)   (0.143)    (0.181)   (0.236)           
    ***          ***        **         ***       ***                      ***                             
 1.23E-05  0.735   -0.011   0.839   -0.326    0.301    0.168           
 (3.20E-06)  (0.186)    (0.106)  (0.299)   (0.269)   (0.433)   (0.417)             
    ***          ***                      ***                                              
 1.92E-05  0.470    0.119    0.176    0.244    0.042    0.413                        
 (3.79E-06)  (0.145)   (0.135)    (0.136)   (0.242)   (0.234)   (0.281)                
    ***          ***                                                                                      

 
1.26E-05    0.406    0.147   0.258    0.272 
(3.38E-06)    (0.118)   (0.159)  (0.089)   (0.081) 
     ***          ***                     ***       *** 
1.97E-05    0.062    0.218   0.297    0.315 
(5.41E-06)    (0.103)   (0.152)   (0.128)  (0.100) 
     ***                                       **        ***       
1.16E-05    0.855   -0.099   0.289    0.203        
(3.13E-06)    (0.208)   (0.105)   (0.097)  (0.083) 
     ***          ***                     ***         ** 
2.02E-05     0.459   0.132   0.198   0.218 
(3.96E-06)     (0.154)   (0.135)  (0.061)  (0.060) 
     ***          ***                     ***       ***  
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     Panel E: GARCH model results                          Panel F: EGARCH model results 

Robust standard errors in parentheses. 
* %10, **%5, ***%1; the stars are significance levels for p values 
           

       

2.4.2. Out-of-sample evaluation 
 
The out-of-sample period is 8 years between 2011-2019, containing approximately 2070 daily 

observations. A set of GARCH-type models, employing the conditional variance, is compared 

to the HAR and ARFIMA models, which uses the data of 5-min realized variance. One-day-

ahead out-of-sample volatility forecasts are generated using both the rolling and recursive 

windows forecasting techniques. The out-of-sample forecast losses are measured using the 

MSE, MAE, and QLIKE criteria and presented in Tables 4, 5, and 6.  

         We could not find any significant difference between the results of rolling and recursive 

methods. For this reason, only recursive windows forecasting results are inserted in  Tables 4, 

5, and 6; the rolling one is in the Appendix. The parallel results of the fixed and expanding 

windows does not change the way we interpret. In order not to cover the pages with long tables 

we insert the rolling windows tables in the Appendix Table 1, 2, and 3. 

 

 

 

Coef. → 
 ↓ Index 

              𝛼<               𝛼-               𝛽-                        𝛼<                 𝛼-               	𝛾                 𝛽-                

 

SPX  

 

FTSE 

 

FCHI  

 

N225 

 
     3.73E-06          0.171           0.790                             
      (8.46E-07)          (0.025)          (0.024)                     
              ***              ***             ***                                                
     4.28E-06          0.136           0.813                                
     (1.27E-06)          (0.026)          (0.035)                    
               ***             ***            ***                                              
     3.85E-06          0.124           0.853                    
     (1.29E-06)          (0.026)           (0.028)                    
               ***             ***             ***                                               
     7.16E-06          0.133           0.830                              
      (2.27E-06)          (0.025)           (0.030)                    
               ***             ***             ***                                                                            

 
       -0.683            0.168         -0.217          0.942 
        (0.089)             (0.023)          (0.024)          (0.008)       
            ***               ***             ***              *** 
       -0.650            0.165         -0.158          0.945 
        (0.158)            (0.030)          (0.023)           (0.014)     
           ***               ***             ***              *** 
       -0.450            0.132         -0.181          0.961            
        (0.111)            (0.027)          (0.026)           (0.011) 
           ***               ***             ***              *** 
       -0.695            0.200         -0.152          0.939 
         (0.140)            (0.027)          (0.025)           (0.014) 
           ***              ***             ***               *** 
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               2.Table 4    QLIKE for recursive windows forecast models 

 GARCH EGARCH PGARCH TGARCH HAR-RV HAR-PS HAR-RSV ARFIMA-RV 
AEX      -8.6969 -8.7343* -8.7213 -8.7134 -8.8430** -8.8420 -8.8407 -8.6583 

AORD -9.1461 -9.1668* -9.1530 -9.1574 -9.2819 -9.2853** -9.2673 -9.0719 

BFX -8.6885 -8.7071* -8.6997 -8.6786 -8.8527 -8.8528 -8.8532** -8.7515 

BSESN -8.7496* -8.7485 -8.7313 -8.7392 -8.8623** -8.8615 -8.8567 -8.7286 

BVLG -8.8701 -8.8942* -8.8817 -8.8805 -9.2605** -9.2395 -9.1763 -9.0899 

BVSP -8.0710 -8.0921* -8.0805 -8.0754 -8.3105** -8.2945 -8.2861 -8.2306 

DJI -8.9694 -8.9953 -9.0121** -8.9824 -8.9790 -8.9840* -8.9828 -8.6638 

FCHI -8.3883 -8.4131* -8.3987 -8.4065 -8.5450 -8.5500** -8.5490 -8.3846 

FTMIB -8.0176 -8.0604* -8.0430 -8.0400 -8.3441 -8.3466** -8.3431 -8.1700 

FTSE -8.6845 -8.6847 -8.6833 -8.6849* -8.7075 -8.7084** -8.6668 -8.5534 

GDAXI -8.3844 -8.3870 -8.3903* -8.3820 -8.5109 -8.5140** -8.5130 -8.3626 

GSPTSE -9.2795 -9.2923* -9.2830 -9.2848 -9.3334 -9.3357 -9.3397** -9.0713 

HSI -8.5916 -8.6143* -8.5896 -8.5900 -8.8725** -8.8724 -8.8666 -8.7170 

IBEX -8.0215 -8.0488* -8.0353 -8.0308 -8.1147** -8.1119 -8.1095 -7.9500 

IXIC -8.8001 -8.8100 -8.8322* -8.8045 -9.0520 -9.0558** -9.0374 -8.9107 

KS11 -9.0485* -9.0410 -9.0353 -9.0190 -9.2606 -9.2596 -9.2649** -9.2007 

KSE -8.8503* -8.8389 -8.8407 -8.8406 -9.0144 -9.0163 -9.0378** -8.8708 

MXX -8.7525 -8.7383 -8.7561* -8.7426 -8.7741 -8.7792 -8.7819** -8.2632 

N225 -8.4380 -8.4584* -8.4532 -8.4466 -8.7708** -8.7526 -8.7670 -8.6718 

NSEI -8.7568* -8.7538 -8.7373 -8.7442 -8.8788** -8.8780 -8.8744 -8.6978 

OMXC20 -8.4406 -8.4485 -8.4505** -8.4432 -8.4475* -8.4293 -8.3141 -8.1909 

OMXHPI -8.6659 -8.6937* -8.6759 -8.6862 -8.6986** -8.6938 -8.6664 -8.6894 

OMXSPI -8.8249 -8.8286 -8.8265 -8.8333* -8.9579 -8.9805 -9.0016** -7.9089 

OSEAX -8.5604 -8.5834* -8.5817 -8.5734 -8.6303 -8.6371** -8.6183 -8.4479 

RUT -8.6053* -8.5944 -8.6029 -8.5938 -8.9399 -8.9454** -8.9416 -8.6094 

SMSI -8.1075 -8.1410* -8.1257 -8.1217 -8.2246 -8.2285** -8.2281 -7.9962 

SPX -8.9798 -8.9978 -9.0184* -8.9871 -9.0687 -9.0716** -9.0634 -8.7008 

SSEC -8.1963* -8.1574 -8.1450 -8.1816 -8.3718** -8.3654 -8.3547 -8.0772 

SSMI -8.9164 -8.9392* -8.9212 -8.9171 -9.0730 -9.0746** -9.0708 -8.8375 

STOXX50E -8.2606 -8.2840* -8.2768 -8.2740 -8.3647 -8.3652** -8.3614 -8.1962 

Notes: ** with bold indicates the best performing model, underlined with * is the best performing GARCH 
model, regardless of the HAR and ARFIMA models. 
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2.Table 5  MSE for recursive windows forecast models 

Notes: ** with bold indicates the best performing model, underlined with * is the best performing GARCH 
model, regardless of the HAR and ARFIMA models.  
 
 
          

 

 

 

 

 

 

 

 GARCH EGARCH PGARCH TGARCH HAR-RV HAR-PS HAR-RSV ARFIMA-RV 
AEX      1.19E-08 9.94E-09* 1.18E-08 1.31E-08 8.29E-09** 8.40E-09 8.42E-09 9.42E-09 

AORD 3.82E-09 3.11E-09* 3.92E-09 3.57E-09 2.34E-09 2.33E-09 2.24E-09** 3.37E-09 

BFX 9.73E-09 8.60E-09* 9.72E-09 1.28E-08 4.85E-09** 5.06E-09 5.19E-09 5.47E-09 

BSESN 4.75E-09 4.57E-09* 5.71E-09 5.36E-09 2.94E-09 2.93E-09** 2.94E-09 3.76E-09 

BVLG 9.24E-09 9.29E-09 8.95E-09* 1.04E-08 1.09E-09** 1.14E-09 1.31E-09 1.87E-09 

BVSP 2.39E-08 1.99E-08* 2.75E-08 2.88E-08 9.29E-09** 9.61E-09 9.46E-09 1.06E-08 

DJI 2.38E-08 2.13E-08** 2.21E-08 2.44E-08 2.47E-08* 2.54E-08 2.59E-08 2.57E-08 

FCHI 1.90E-08 1.63E-08* 2.01E-08 2.39E-08 1.01E-08 9.96E-09** 1.00E-08 1.30E-08 

FTMIB 4.75E-08 3.73E-08* 4.36E-08 6.03E-08 1.09E-08 1.08E-08** 1.09E-08 1.76E-08 

FTSE 2.42E-08 2.31E-08** 2.37E-08 2.32E-08 2.59E-08* 2.68E-08 2.66E-08 2.67E-08 

GDAXI 1.64E-08 1.50E-08* 1.54E-08 2.14E-08 1.31E-08 1.30E-08 1.38E-08 1.27E-08** 

GSPTSE 8.28E-09 7.57E-09 8.55E-09 7.54E-09** 8.16E-09 8.35E-09 8.39E-09 8.65E-09 

HSI 1.48E-08 1.09E-08* 1.50E-08 1.29E-08 4.17E-09 4.16E-09 4.14E-09** 5.46E-09 

IBEX 4.03E-08 3.46E-08* 3.99E-08 5.08E-08 2.80E-08** 3.27E-08 3.38E-08 3.43E-08 

IXIC 1.37E-08 9.79E-09* 1.10E-08 1.43E-08 5.53E-09 5.04E-09** 5.05E-09 6.78E-09 

KS11 1.00E-08 7.54E-09* 9.20E-09 1.11E-08 4.24E-09 4.85E-09 5.33E-09 4.06E-09** 

KSE 6.12E-09* 6.24E-09 6.26E-09 8.27E-09 2.70E-09 2.67E-09** 2.71E-09 3.42E-09 

MXX 2.04E-08 1.94E-08** 2.03E-08 2.10E-08 1.98E-08 2.02E-08 2.08E-08 2.07E-08 

N225 3.13E-08 2.65E-08* 2.89E-08 3.21E-08 1.36E-08** 1.41E-08 1.38E-08 1.40E-08 

NSEI 5.92E-09 5.80E-09* 7.11E-09 6.69E-09 3.88E-09 3.87E-09 3.86E-09** 4.98E-09 

OMXC20 3.97E-08 3.95E-08* 3.96E-08 4.13E-08 3.90E-08** 3.93E-08 4.05E-08 4.42E-08 

OMXHPI 1.32E-08 1.04E-08* 1.38E-08 1.26E-08 7.85E-09 7.81E-09 7.63E-09** 1.15E-08 

OMXSPI 1.36E-08 1.30E-08* 1.57E-08 1.82E-08 8.77E-09 8.25E-09** 8.29E-09 6.77E-08 

OSEAX 1.94E-08 1.68E-08** 1.82E-08 1.90E-08 1.76E-08 1.79E-08 1.81E-08 1.95E-08 

RUT 2.67E-08 1.70E-08* 1.98E-08 2.67E-08 7.74E-09 7.26E-09** 7.64E-09 1.12E-08 

SMSI 6.18E-08 5.50E-08* 5.98E-08 7.23E-08 5.02E-08 6.00E-08 6.21E-08 5.46E-08 

SPX 1.45E-08 1.20E-08** 1.28E-08 1.42E-08 1.34E-08 1.36E-08 1.37E-08 1.64E-08 

SSEC 5.85E-08* 6.07E-08 6.39E-08 6.04E-08 4.27E-08 4.12E-08** 4.25E-08 6.66E-08 

SSMI 1.76E-08 1.98E-08 1.58E-08* 2.27E-08 1.48E-08** 1.69E-08 1.78E-08 1.52E-08 

STOXX50E 3.28E-08 2.98E-08* 3.23E-08 3.82E-08 2.81E-08** 3.13E-08 3.13E-08 2.90E-08 
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 2.Table 6  MAE for recursive windows forecast models 
 GARCH EGARCH PGARCH TGARCH HAR-RV HAR-PS HAR-RSV ARFIMA-RV 
AEX      6.19E-05 5.73E-05* 6.13E-05 6.36E-05 3.27E-05 3.24E-05** 3.26E-05 4.97E-05 

AORD 4.04E-05 3.79E-05* 4.08E-05 3.99E-05 2.15E-05 2.13E-05** 2.17E-05 3.09E-05 

BFX 6.10E-05 5.84E-05* 6.15E-05 6.50E-05 2.82E-05 2.78E-05** 2.79E-05 3.74E-05 

BSESN 4.85E-05 4.84E-05* 5.29E-05 5.11E-05 2.62E-05 2.61E-05** 2.65E-05 4.00E-05 

BVLG 7.35E-05 6.80E-05* 7.23E-05 7.39E-05 1.66E-05** 1.70E-05 1.85E-05 2.78E-05 

BVSP 0.000120 0.000111* 0.000121 0.000121 4.34E-05** 4.39E-05 4.38E-05 5.53E-05 

DJI 4.92E-05 4.60E-05* 4.63E-05 5.03E-05 4.36E-05** 4.38E-05 4.46E-05 6.67E-05 

FCHI 8.50E-05 8.20E-05* 8.82E-05 8.97E-05 4.24E-05 4.19E-05** 4.21E-05 6.42E-05 

FTMIB 0.000158 0.000144* 0.000154 0.000158 5.10E-05 5.02E-05** 5.09E-05 7.92E-05 

FTSE 5.10E-05 4.82E-05* 5.05E-05 4.98E-05 4.63E-05 4.63E-05 4.62E-05** 6.54E-05 

GDAXI 7.63E-05* 7.84E-05 7.88E-05 8.46E-05 4.59E-05 4.53E-05** 4.58E-05 6.31E-05 

GSPTSE 3.52E-05 3.43E-05* 3.81E-05 3.44E-05 2.63E-05 2.63E-05 2.62E-05** 4.31E-05 

HSI 8.76E-05 7.95E-05* 8.80E-05 8.48E-05 2.61E-05 2.60E-05** 2.66E-05 3.47E-05 

IBEX 0.000101 9.35E-05* 0.000101 0.000108 6.46E-05** 6.58E-05 6.65E-05 0.000100 

IXIC 7.05E-05 6.83E-05 6.76E-05* 7.29E-05 2.89E-05 2.79E-05** 2.81E-05 3.97E-05 

KS11 5.49E-05 5.34E-05* 5.63E-05 5.99E-05 2.00E-05** 2.05E-05 2.11E-05 2.54E-05 

KSE 5.73E-05* 5.79E-05 5.82E-05 6.17E-05 2.71E-05 2.70E-05 2.69E-05** 3.65E-05 

MXX 5.11E-05 4.99E-05* 5.11E-05 5.18E-05 3.95E-05** 3.96E-05 4.07E-05 4.99E-05 

N225 0.000123 0.000116* 0.000119 0.000122 4.10E-05 4.14E-05 4.07E-05** 4.88E-05 

NSEI 5.22E-05* 5.25E-05 5.77E-05 5.53E-05 2.76E-05 2.74E-05** 2.78E-05 4.51E-05 

OMXC20 7.50E-05 7.36E-05* 7.42E-05 7.69E-05 5.86E-05** 5.93E-05 6.36E-05 7.64E-05 

OMXHPI 8.47E-05 7.85E-05* 8.44E-05 8.15E-05 6.10E-05 6.00E-05 5.77E-05** 7.05E-05 

OMXSPI 7.29E-05* 7.50E-05 7.95E-05 7.89E-05 4.07E-05 3.90E-05 3.69E-05** 0.000232 

OSEAX 6.86E-05 6.40E-05* 6.63E-05 6.76E-05 4.88E-05 4.86E-05** 4.90E-05 7.09E-05 

RUT 9.90E-05 9.87E-05* 9.98E-05 0.000102 3.36E-05 3.27E-05** 3.31E-05 5.27E-05 

SMSI 0.000111 0.000101* 0.000109 0.000115 6.79E-05** 6.83E-05 6.87E-05 0.000110 

SPX 5.23E-05 4.98E-05 4.94E-05* 5.26E-05 3.98E-05 3.97E-05** 4.04E-05 6.41E-05 

SSEC 0.000121* 0.000124 0.000132 0.000122 6.91E-05 6.84E-05** 7.02E-05 9.09E-05 

SSMI 5.30E-05 4.98E-05* 5.24E-05 5.42E-05 2.60E-05** 2.62E-05 2.70E-05 4.41E-05 

STOXX50E 8.69E-05 8.36E-05* 8.81E-05 9.33E-05 5.65E-05 5.64E-05** 5.65E-05 8.20E-05 

 Notes: ** with bold indicates the best performing model, underlined with * is the best performing GARCH 
model, regardless of the HAR and ARFIMA models.  
 
The GARCH family models, namely GARCH, EGARCH, PGARCH, and TGARCH are 

compared against the HAR-(RV, RSV, PS) and ARFIMA models. In terms of the loss 

functions, the results of the Tables are mixed for the above mentioned models. What is obvious 

in the Tables is that the realized variance is found to be a more precise measure of the true 

volatility in comparison with the conditional variance. This result is consistent with the seminal 

work of Andersen and Bollerslev (1998). Considering the performance of competing models, 

there is no doubt that the HAR models outperform the ARFIMA and GARCH-type models. 

The success of the HAR specification is documented by the vast majority of the indices. 

However, there are still some exceptional indices (DJI, FTSE, GSPTSE, MXX, OSEAX, SPX) 
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for the MSE criteria that the EGARCH model outperforms the HAR models. We believe that 

those exceptions occur by chance or abnormal data structure because the conditional Giacomini 

and White (GW) test results for those exceptional results are insignificant. 

 
            2.Table 7  Summary results for competing models 

Rolling 
windows 

GARCH EGARCH PGARCH TGARCH HAR-RV HAR-RSV and HAR-PS ARFIMA-RV 

QLIKE Winner 
(GARCH winner) 

0 
(1) 

0 
(7) 

1 
(20) 

0 
(2) 

19       1                   9             0 

MSE Winner      
(GARCH winner)     

0 
(3) 

4 
(22) 

0 
(1) 

2 
(4) 

15       3                   6 2 

MAE Winner  
(GARCH winner)              

0 
(2) 

1 
(23) 

0 
(2) 

0 
(3) 

12      17                  0 0 

Recursive 
windows 
QLIKE Winner 
(GARCH winner)              

0 
(6) 

0 
(16) 

2 
(6) 

0 
(2) 

10      6                   13 0 

MSE Winner  
(GARCH winner)               

0 
(2) 

5 
(25) 

0 
(2) 

1 
(1) 

10      4                    8 2 

MAE Winner 
(GARCH winner)               

0 
(5) 

0 
(23) 

0 
(2) 

0 
(0) 

9      6                   15 0 

TOTAL WINNER 0 10 3 3 75               88 4 

 First rows (bold numbers) show the numbers of winners for all the indices. Second rows 
(parenthesis ones) are only for GARCH models. 
 

Table 7 exhibits the summary results of the models for all the indices. Confirming the 

superiority of the HAR specification, we make another assessment only between the HAR 

models. The HAR-RV, HAR-RSV, and HAR-PS models are compared to each other and it is 

found that the decomposition of realized variance into positive and negative realized 

semivariances improves the out-of-sample forecasts of realized variance. We should remember 

here that while the HAR-PS model decomposes only the daily component, the HAR-RSV 

model decomposes the daily, weekly and monthly components. The contribution of the HAR-

PS model on the out-of-sample forecasts is larger than the contribution of the HAR-RSV 

model. The reason is that the decomposition of the daily, weekly and monthly components into 

the realized semivariances diminishes the role of the daily realized variance which contains the 

most important information for forecasting future volatility. 

         Following the HAR type models, the ARFIMA model also outperforms the GARCH 

family models as it uses such a more precise measure of the true volatility that is 5-min realized 

variance. This result is confirmed by the MSE and MAE criteria, whereas the QLIKE values 
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are indecisive between the ARFIMA and EGARCH models. In order to make the final decision 

between them we check the GW conditional predictive ability test results. The results also 

underpin the ARFIMA’s superiority against the GARCH models. In this forecasting exercise, 

a general empirical conclusion with the ARFIMA model is that it outperforms traditional 

GARCH models which are based on daily returns. On the other hand, it is inferior to the HAR 

models, even though both of them use the same volatility measure.  

         Broadly speaking, it is concluded in this exercise that the GARCH models are inferior to 

the HAR and ARFIMA models. In this paragraph, we evaluate only the GARCH genre models, 

regardless of the realized measure models. When we only look at the conditional variance 

models, the MSE and MAE loss functions draw almost a clear picture. The EGARCH 

specification has the best performance among its counterparts. However, only one difference 

reveals here in terms of the rolling and recursive windows techniques. While the rolling 

windows results of the QLIKE indicate the PGARCH as the best performing model, the 

recursive QLIKE criteria says that the EGARCH model is the best. The results of the QLIKE 

criteria seem ambiguous. Nevertheless, we can conclude that the EGARCH model is superior 

to its counterparts. Thereafter, the results of the loss functions for the other conditional variance 

models (except EGARCH) does not give useful information to choose the second best and also 

the worst performing model between the GARCH models.  

         As it is in the QLIKE and MAE, the realized variance models are expected to be winners 

with almost a hundred per cent of all the indices. However, 6 out of 30 stock market indices of 

the MSE results shows that the GARCH family models (especially EGARCH) outperform the 

realized variance models. The MSE loss function has the most exceptional results (DJI, FTSE, 

GSPTSE, MXX, OSEAX, SPX)  when the realized measures are considered a more precise 

measure of the true volatility. The number of exceptional results for the QLIKE is two out of 

thirty (DJI and OMXC20) and the MAE has no exception. 

         The p-values of the conditional GW test results are reported in Table 8. The null 

hypothesis is that “both of the models (row and column) statistically have the same accuracy” 

is tested in terms of squared forecast error. The signs, + and –, show which model outperforms 

and which model is outperformed. The positive sign (+) indicates the superiority of the column 

model, whilst the negative one (–) says that the row one outperforms the column model. When 

we look at the results in terms of the HAR models, most of the results are positive, which 

confirms the superiority of the HAR specification. However, the test results of some 

exceptional indices (e.g. DJI, FTSE, GSPTSE, MXX, OSEAX, SPX), which are in favour of 
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the EGARCH model against the HAR models, are insignificant. This means that the column 

and row models perform equally well, so that we cannot say that whether the row model or 

column model is superior for those exceptional indices. Indeed, the superiority of the EGARCH 

model against the HAR for the exceptional indices is likely to be unreliable.                  

         We believe that those exceptions may occur by chance or arise from abnormal data 

structure because the GW test results says that the column and row models perform equally 

well for those exceptional results. The exceptional indices mostly consist of the largest stock 

markets in the world such as the SPX, DJI, GSPTSE, MXX in the continent of America and 

FTSE, OSEAX, OMXC20 in the Europe. In this context, we need to discuss the largest daily 

changes of those indices for the post (2007-2008) global financial crisis period. Severe 

volatility of those markets may cause unpredictable data structure and could make such a best 

model incapable (and a worst one capable).  

         According to the GW conditional predictive ability test, it is difficult to say that there is 

a predictable pattern in the dynamics of those exceptional indices. For instance, 

27#9𝐴𝑝𝑟𝑖𝑙	2010, European sovereign debt crisis resulted in the decline of European stock 

markets and then spread worldwide. Therefore, the annualized volatility of the European stock 

markets is higher than the other markets. It lies around 15-25 per cent for the European markets, 

whilst the other markets are between 10-15 percent in the Appendix Table 4. 6#9𝑀𝑎𝑦	2010 

(flash crash), the DJI index dropped almost 1000 points, which is the worst intra-day point loss. 

1�#𝐴𝑢𝑔𝑢𝑠𝑡	2011 is another one that the SPX experienced a sharp drop. Those are followed by 

the stock market crash in China, affecting first Asian stock markets, and 2015-16 stock market 

sell-off in the US markets. More recent one is the world-wide stock market downturn in 2018. 

As can be seen in the periods of the financial turbulence, the largest stock markets are first 

affected ones and therefore is likely to have abnormal data structure. As a consequence, model 

comparison results would be distorted to some extent.    

         The decomposition of realized variance into positive and negative realized semivariances 

adds more information for the prediction of future volatility. This is true and indicated in our 

results. However, even if the realized semivariance specification (HAR-RSV and HAR-PS) is 

the winner and improves the out-of-sample forecasts, they could not prevail over the EGARCH 

model for some exceptional indices (6 out of 30 in MSE; DJI, FTSE, GSPTSE, MXX, OSEAX, 

SPX). As we discuss it in the previous paragraph, the turbulent times of the aforementioned 

markets between 2010-2019 could be the reason of abnormal data structure, in turn, this would 

suggest a good performing model as a bad one and also vice versa.            
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                                                        2.Table 8  Conditional Giacomini-White test results 
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In terms of only the GARCH family models, the asymmetric EGARCH model outperforms the 

other GARCH models in the vast majority of the indices –except the rolling windows 

forecasting results of the QLIKE criteria, it indicates the superiority of the PGARCH model–. 

The reasons behind the success of the EGARCH model could be some important model 

specifications of it. For instance, the logarithmic form of the model does ensure the non-

negativity condition for the conditional variance even if the model parameters are negative. 

Also, the leverage effect and volatility clustering are captured in the model.  

         We could not find any significant difference between the rolling and recursive windows 

forecasting techniques although the ways they work are different from each other. For every 

single next iteration, the rolling method adds newly observed realized volatility measures or 

daily returns, and meanwhile it drops the first observation of the initial sample. However, the 

recursive one makes use of an expanding windows, which the first observation of the initial 

sample is anchored during the whole forecasting process. Some (Corsi et al., 2008) employ the 

recursive scheme, whilst some others (Pu, Chen, and Ma, 2016) prefer the rolling one. 

Vortelinos (2017) uses both of them and found no difference. Clark and McCracken (2008) 

suggest to combine the rolling and recursive forecasts for improving forecast accuracy. It 

should be pointed out that the initial sample size of both of these methods highly matters and 

different initial sample lengths could generate different forecast results on the same data.  

Indeed, both of the techniques allow to gain a deeper understanding of a model’s performance.  

         Each one of the loss functions has a specific calculation method, causing to produce 

different results. The QLIKE and MSE are the most popular and frequently used ones in the 

literature due to being robust to the noisy volatility proxies. In this work, the QLIKE and MAE 

criteria indicate that the HAR specification is the winner among the competing models in the 

vast majority of the indices, whereas the MSE has the most exceptional results (6 out of 30 

indices, –namely DJI, FTSE, GSPTSE, MXX, OSEAX, SPX– says that the realized variance 

models are inferior to the conditional variance models). Those exceptions would occur by 

chance, data structure or perhaps different formulas of the loss functions. In order to investigate 

whether the forecast errors of two competing models are statistically significant or not, the GW 

conditional predictive ability test is applied. Using squared forecast error we find equal 

forecasting performance between the column and row models for the exceptional results. We 

cannot surely say that the exceptional results of the MSE criteria are reliable.  
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2.5. Conclusion 
 
This forecasting exercise compares the GARCH, EGARCH, PGARCH, and TGARCH models 

that use daily data to the models which are derived from high frequency data such as HAR-

RV, RSV, and PS and ARFIMA-RV models. In this regard, 30 different stock market indices 

all over the world between 2010-2019 are included. In doing so, we aim to contribute to the 

existing literature by carrying out a comprehensive forecasting exercise with 30 different 

international stock market indices and more up-to-date data.  

         One-day-ahead out-of-sample volatility forecasts are generated using both the rolling and 

recursive windows forecasting techniques. The out-of-sample forecast losses are measured 

using the MSE, MAE, and QLIKE criteria. We also use the conditional GW pairwise test in 

order to investigate whether the forecast errors of the competing models are statistically 

significant or not. 

          One of the main findings of this study indicates that the models which employ the 

realized variance generate more accurate forecasts compared to the models with the conditional 

variance, which is consistent with the seminal paper of Andersen and Bollerslev (1998). More 

specifically, considering the performance of competing models, there is no doubt that the HAR 

models outperform the ARFIMA and GARCH models. The success of the HAR specification 

is documented by the vast majority of the indices. Moreover, the decomposition of realized 

variance into positive and negative realized semivariances (HAR-RSV and HAR-PS) improve 

the out-of-sample forecasts. However, some exceptional indices (DJI, FTSE, GSPTSE, MXX, 

OSEAX, SPX) are seen in the results of the MSE and (DJI and OMXC20 in the) QLIKE criteria 

that the EGARCH model outperforms the HAR models. We believe that those exceptions occur 

by chance or due to the abnormal data structure because the conditional GW test results report 

the insignificance of those exceptional results, meaning that both of the competing models 

perform equally well. In other words, we cannot say that whether the outperforming models 

for the exceptional indices are actually superior. Following the HAR models, the ARFIMA 

model also outperforms the GARCH models as it uses a more precise measure of the true 

volatility, which is 5-min realized variance. It is concluded in this exercise that the GARCH 

models are inferior to the HAR and ARFIMA models. When we evaluate only the GARCH 

genre models (regardless of the realized measure models), the EGARCH specification is 

superior to its counterparts. On the other hand, the worst performing model is unclear. In terms 

of the results of rolling and recursive methods we could not find any significant difference 

between them. Nevertheless, the results and findings are specific to market, data frequency, 
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time horizon, and some characteristics of data. This is one of the most important reasons why 

each contribution in the literature is essential.  

         In the end, modelling and forecasting financial volatility is always a challenge for 

academics and practitioners. This chapter emphasizes the significance of high frequency based 

models for obtaining the most accurate volatility forecasts, in particular HAR-RV model, 

compared to daily based models. It can be said that the usage of high frequency data compared 

to daily data at modelling and forecasting financial volatility could enable practitioners to 

provide more efficient portfolio and risk management strategies by the help of better future 

volatility forecasts. However, the model selection for the technical and practical processes 

cannot be generalized even with a large scale of empirical study as the findings could be 

changing according to different markets, frequencies, time horizons, and specific patterns of 

volatility. This is one of the most important reasons why each contribution in the literature is 

essential. Several possible further research ideas based on this chapter would be to investigate 

considering wider classes of models such as simple and stochastic volatility models (or maybe 

machine learning and deep learning models, which are quite popular these days) as well as 

using wider stock market indices. Finally, having documented the superiority of high frequency 

based volatility models over daily based volatility models, the next two chapters build on the 

HAR model by adding some additional variables to further explore the model’s predictive 

ability.  
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CHAPTER 3 
 

Do extreme range estimators improve realized volatility 
forecasts? Evidence from G7 Stock Markets8 

 

Abstract 

This chapter investigates whether range estimators contain important information in 

forecasting future realized volatility. Widely applied range-based estimators are used: 

Parkinson, Garman- Klass, Roger-Satchell, and Yang-Zhang within a HAR-RV-X framework. 

Overnight volatility and close-to-close volatility estimators are also included, and the 

forecasting exercise is applied to G7 stock markets using a rolling window. Using QLIKE, 

HMSE and MCS forecast criteria, several noteworthy points are reported. The overall findings 

suggest that while no single model dominates, overnight return volatility achieves the most 

consistent performance. For example, HAR- RV model forecasts for CAC and DAX indices are 

improved only by overnight volatility, with some evidence also for SPX. For other indices, 

forecasts are improved by Parkinson and/or Garman-Klass volatility estimators. Of note, 

simpler range estimators outperform more complex range estimators. The findings could be 

important for investors in managing portfolio risk.  

 

 
 
 
 
 
 
 
                                                
 
8 A shorter version of this chapter is a published paper in a refereed academic journal. Reference: Korkusuz, B., 
Kambouroudis, D., & McMillan, D.G. (2023). “Do extreme range estimators improve realized volatility 
forecasts? Evidence from G7 Stock Markets”. Finance Research Letters, 1544-6123/© 2023 Published by 
Elsevier Inc. 
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3.1. Introduction 
 
The accurate forecast of stock market volatility is of particular importance for investors who 

have certain levels of risk which they intend not to exceed. In modelling and forecasting stock 

market volatility, the dominant approach uses the realized volatility (RV, Andersen and 

Bollerslev, 1998) measure, modelled with the HAR-RV specification of Corsi (2009).9 The 

subsequent literature (e.g., Degiannakis and Filis, 2017; Kambouroudis et al., 2021; Peng et 

al., 2018; Liu et al., 2019; Wang, 2019; Yang and Liu, 2012; Zhang et al., 2020) seeks to 

improve forecast accuracy by adding exogenous variables in a HAR-RV-X model. These 

exogenous variables include, for example, cross-market information, implied volatility and 

EPU (economic policy uncertainty). Further explanatory variables such as the leverage effect, 

realized semi-variance, jump, and overnight volatility are considered as more directly related 

to the dependent variable as they capture the stylised facts of volatility. For example, 

Barndorff-Nielsen et al. (2010) introduce positive and negative realized semi-variance, Corsi 

and Reno (2012) consider leverage, while Wang et al. (2015) also examine the role of overnight 

volatility. 

         An alternative source of information that can improve forecasts is given by OHLC (Open, 

High, Low, Close) prices. Although RV is the sum of squared intraday returns, it does not 

necessarily capture high-low range information. Thus, range estimators (e.g., Parkinson, 

Garman-Klass, Roger-Satchell, and Yang-Zhang) can be introduced to the HAR-RV-X 

framework. Range estimators (or OHLC estimators) are straightforward to calculate given the 

availability of open, high, low and close price data. Despite both RV and OHLC being volatility 

estimators, they capture different frequencies in the data and the information value of OHLC 

estimators for RV-based forecasts has not been examined. Therefore, this study fills the gap in 

this literature by investigating whether OHLC estimators that embed range information 

improve future RV forecasts.  

         Identifying our work from the existing literature, we can consider, for example, Peng et 

al. (2018) and Todorova and Husmann (2012). While both focus on the forecasts for a single 

market, the former incorporates ‘X’ variables into the RV equation and the latter uses the range-

based measures as the series to be forecast (i.e., the proxy for volatility). A further paper, 

Kambouroudis et al. (2021) does include a number of markets in their forecast exercise, but 

                                                
 
9 Andersen et al. (2001) indicate that Realized Variance (RV) is a natural estimator for the integrated variance.  
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does not include range-based ‘X’ variables.10 In recent work that considers range-based 

forecasts, Petnehazi and Gall (2019) combine with a neural network approach for the Dow 

Jones Industrial Average, while Wu and Xu (2022) apply the CARR approach to Chinese stock 

markets. Our study, in essence, combines these approaches by allowing the range-based 

measures to be the ‘X’ variables across a selection of markets.11 In doing so, we believe this 

chapter addresses a clear gap in the literature. 

         This chapter is organised as follows: Section 2 gives the literature review. In Section 3, 

the methods used in this study are introduced. Afterwards, Sections 4 describes the data. In 

Section 5, we present the empirical results. Lastly, the conclusion is given in Section 6.  

 

3.2. Literature Review 
 

There are various types of investors in the financial markets. In practice, those can be grouped 

in terms of their investment horizons as follows: Investor (over week, month or year), day 

trader (four hour or daily), intra-day trader (15 min, 30 min or 1 hour), and scalper (1 min or 5 

min). Even though they are named after differently depending on their investment horizons, 

they all could be called as “investor or market participants”. However, each investors have 

different objectives, for example, some investors are completely hedgers whilst some others 

are completely speculators. Therefore, it is unrealistic to expect that each one of investors react 

identically to the same news. Similarly, but slightly different from practitioners, some 

researchers divide investors into three different classes depending on their investment horizons 

such as short-term, middle-term, and long-term investors. In this way, each types of investors 

could provide a better understanding of how those different market participants react and 

perceive to the same news. What is explained from the beginning to here is the intuition behind 

Corsi (2009)’s HAR model. The HAR model is based on capturing different reactions of 

different investors through a simple autoregressive process, which is in other words an additive 

cascade model of different volatility components. It can simply be estimated by the ordinary 

least square (OLS) method and this model is in the form of a simple structure. Related literature 

                                                
 
10 Another approach is the CARR (conditional autoregressive range) model of Chou (2005), see Xie (2018) for a 
recent application.  
11 A further approach, suggested by Christensen and Podolskij (2007) and Martens and van Dijk (2007) also 
combines the RV and range approaches and does so by calculating the range within intraday intervals before 
summing to the daily frequency. This requires the availability of intraday interval high and low data as opposed 
to daily high and low as used here. This would be an interesting avenue to pursue, however, we currently lack 
availability of the required data.  
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is quite rich for the applications of HAR model and many studies employ this specification in 

order to model and forecast the RV.  

         The most widely used high frequency volatility estimator is known as Realized Volatility 

(RV) and the RV is best modelled by Corsi (2009)’s HAR-RV specification.12 Moreover, 

existing literature (Degiannakis and Filis, 2017; Kambouroudis, McMillan, and Tsakou 2021; 

Peng et al., 2018; Liu et al., 2019; Wang, 2019; Yang and Liu, 2012) attempt to improve the 

forecasting accuracy of the HAR-RV model by incorporating a set of exogenous variables in 

the HAR-RV-X model framework. Those exogenous variables could be obtained from external 

sources including, for example, cross-market information, Implied Volatility and EPU. Some 

other explanatory variables such as leverage effect, realized semi-variance, jump, and 

overnight volatility could also be involved in the model, which are more directly related to 

dependent variable. Those are usually used to capture stylised facts of volatility. Barndorff-

Nielsen, Kinnebrock, and Sheppard (2010) introduce positive and negative realized 

semivariance measures, which are obtained from the signed high frequency intraday returns. 

Afterwards, Corsi and Reno (2012), who are the first, add the leverage effect as a component 

in the HAR-RV model and find that it has a significant impact on the RV for the SPX index. 

Wang et al. (2015) examine the role of overnight volatility along with the leverage effect for 

Chinese stock market and point out significant effects of both of them when both are included 

in the model.  

         As well as the RV, another volatility estimator is the price range, which is also known as 

high/low range. The price range is defined as the difference between the highest and lowest 

prices over an identified time period. Early applications of price range in the area of finance 

could be seen in the work of Mandelbrot (1971). Afterwards, the Parkinson range-based 

volatility estimator is introduced in the early 1980s. Parkinson (1980) proposes the scaled high-

low price range in order to measure the variability of asset prices. Parkinson (1980) also find 

the efficiency of Parkinson estimator as roughly 4.9 times higher compared to the efficiency of 

traditional estimator (that is close-to-close estimator). Extreme range estimators basically 

assume that the financial prices follow a geometric Brownian motion with two parameters 

which are the drift (difference between open and close prices) and the volatility. However, 

Parkinson estimator assumes the zero-drift price process. Following the success of Parkinson 

                                                
 
12 Andersen et al. (2001) indicate that Realized Variance (RV) is a natural estimator for the integrated variance.   
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estimator, some other new range-based estimators have been introduced incorporating with 

opening and closing prices as well as the scaled high-low price range.  

         Garman-Klass (1980) attempt to improve the efficiency gain on Parkinson estimator and 

introduce Garman-Klass (1980) estimator. It is basically a weighted average of the Parkinson 

volatility estimator and the drift component although they make the same assumption with 

Parkinson that the price is a zero-drift process. Garman and Klass (1980) claim that their 

estimator is about 7.4 times more efficient in comparison to the traditional variance based on 

closing prices. Hereupon, Rogers and Satchell (1991) address the issue of drift more formally 

contrary to the aforementioned both estimators and suggest their own estimator which is 

independent of drift process. In other words, their estimator, which is Rogers-Satchell, does 

not require the assumption of zero-drift and found to be more efficient estimator compared to 

both of the Parkinson and Garman-Klass estimators. More recently, Yang and Zhang (2000) 

suggest a new OHLC estimator to overcome the drawbacks of previous volatility estimators. 

Yang and Zhang (2000) argue that their estimator is the minimum-variance unbiased variance 

estimator and independent of the drift and opening jumps of the underlying price movements. 

Many empirical researches (Garman and Klass, 1980; Ball and Torous, 1984; Rogers and 

Satchell, 1991; Kunitomo, 1992; Yang and Zhang, 2000; Brandt and Diebold, 2006; Brandt 

and Jones, 2006; Martens and van Dijk, 2007; Chou and Liu, 2011) document that one can 

employ the high/low range information in order to improve volatility estimation. Moreover, 

Alizadeh, Brandt, and Diebold (2002) and Brandt and Diebold (2006) indicate that extreme 

range estimators seem to be robust to microstructure noise, for example, bid-ask bounce. Li 

and Weinbaum (2001) evidence the efficiency of extreme range estimators for the S&P500 and 

S&P100 indices. Similar results are also found by Pandey (2002) for the S&P CNX Nifty stock 

index. 

         Some researches concentrate on modelling and forecasting of the price-range 

information. Wang, Hsu, and Liu (2014) evidence that range-based volatility estimators 

incorporating with the conditional variance of GARCH model does improve the out-of-sample 

volatility forecasts of Nasdaq100 stock market index. Similarly, Molnar (2016) demonstrates 

the superior performance of the range-GARCH model over the standard GARCH model using 

stocks and stock market indices in terms of in-sample and out-of-sample performance. Some 

others (Miralles-Marcelo, Miralles-Quirós, and Miralles-Quirós, 2013; Raju and Rangaswamy, 

2017) also examine the ability of GARCH specification based on the price-range information. 

Consequently, it is documented that the high-low range information does improve the model 
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estimates and forecasts of the GARCH model. Prior to those studies, Chou (2005) proposes a 

range based volatility model that uses the price-range information in modelling and forecasting 

volatility. This is known as the conditional autoregressive range (CARR) model. Chou (2005) 

and Heng-Chih Chou (2007) employ CARR and GARCH models in order to forecast the out-

of-sample volatility of S&P500 index. The findings show that CARR model produces sharper 

volatility forecasts in comparison with a simple GARCH model. Miralles-Marcelo et al. (2013) 

examine the CARR model’s forecasting performance using the various extreme range 

estimators of S&P 500 index. They indicate that the Parkinson estimator has the superiority for 

upward volatilities and trends, whilst the outperformance of the CARR model seems to be in 

downward trend. However, although the CARR model is a rival to the so-called GARCH 

model, it has not been paid enough attention due to the popularity of the GARCH model.  

         The existing literature of extreme range estimators analyse (Molnar, 2012, 2016) and 

compare the performance of those OHLC-based estimators. Bali and Weinbaum (2005), Li and 

Hing (2011), Todorova and Husmann (2012), and Jiang et al. (2014) find Garman-Klass (1980) 

estimator as the optimal range-based estimator. On the other hand, Raju and Rangaswamy 

(2017) point out the superiority of Yang-Zhang (2000) estimator for in and out-of-sample 

forecasting performance. Moreover, Petnehazi and Gall (2018) examine the predictability of 

some extreme range estimators by applying recurrent neural networks on the stock prices of 

the Dow Jones Industrial Average index and note that changes in the values of extreme range 

estimators seem to be more predictable compared to those of the close-to-close return based 

estimators’ values. Unlike those empirical studies, Yarovaya et al., (2016) find inconclusive 

results. All in all, amongst others, Parkinson (1980), Garman-Klass (1980), Rogers-Satchell 

(1991), and Yang and Zhang (2000) have documented theoretically that range-based volatility 

estimators are more efficient compared to return-based volatility estimators.  

         To sum up, close-to-close volatility is the most widely-used traditional method in the 

literature that considers only the daily closing prices to estimate volatility. However, the current 

volatility studies extract the volatility (i.e. realized volatility) from high frequency data and 

intraday high frequency data allow us to estimate daily volatility more precisely. We already 

point out the importance of intraday information content in the first and second chapters. In 

addition to inter and intra-day financial data, another kind of data for volatility estimation is 

daily open, high, and low prices, which are mostly available where closing price is available. 

In the applications of volatility studies, the fact that the OHLC (open, high, low, close) prices 

could contain much more valuable information than only closing prices. Accordingly, the daily 
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price range that is the difference between high and low prices is inherently prone to be 

employed for the volatility estimation. In this regard, some well-established extreme range 

volatility estimators (e.g. Parkinson, Garman-Klass, Roger-Satchell, and Yang-Zhang), which 

are derived from the OHLC (open, high, low, close) prices, have been introduced in the 

literature. Although those estimators have already existed since the early 1980s, academics and 

practitioners have rarely used them. However, the current literature employing the extreme 

range estimators began to grow as those range-based estimators can handle the volatility from 

multiple dimensions.  

         The OHLC (Open, High, Low, Close) prices could provide another important 

improvement in helping the RV forecasts. The reason is that high-low range information is not 

included in the RV even though the RV is the sum of squared intraday returns. This idea brings 

us to the point that extreme range estimators (e.g. Parkinson, Garman-Klass, Roger-Satchell, 

and Yang-Zhang) could be utilized for this purpose. Extreme range estimators (or in other 

words, OHLC estimators) are easy to calculate because of the availability of open, high, low 

and close prices. Despite the fact that both of RV and OHLC are volatility estimators but in 

different frequencies, the information value of OHLC estimators for the RV have not been 

examined yet. Therefore, this study fills the gap in this literature by investigating that question 

“could OHLC estimators embed this extreme range information into the future RV forecasts?”. 

To the best of our knowledge, this is the first study which examines the information content of 

extreme range information at improving the forecasts of realized volatility.  

 

 

3.3. Methodology 
 

3.3.1. HAR-RV-X model 
 
Corsi (2009) proposes the HAR-RV model that is an additive cascade model of different 

volatility components. The model is specified in Equation 1 as follows: 

 

            𝑅𝑉#/9: = 	𝛽< + 𝛽:𝑅𝑉#: + 𝛽=𝑅𝑉#= + 𝛽+𝑅𝑉#+ + 𝛽�𝑋#: + 𝜀#/9                                             (1) 

 

where 𝑅𝑉#: is daily volatility component; 𝑅𝑉#= refers to weekly component, and then 𝑅𝑉#+ 

indicates monthly component. In the equation, 	𝛽�𝑋#: refers to the exogenous variables (CC, 
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ONV, PK, GK, RS, and YZ) and the 𝑅𝑉#= and 𝑅𝑉#+ can easily be calculated in Equations 2 

and 3 respectively as follows: 

 

            𝑅𝑉#= =
-
B
(𝑅𝑉#5B: + 𝑅𝑉#5C: +⋯+ 𝑅𝑉#5-: )                                                                             (2) 

 

            𝑅𝑉#+ = -
**
(𝑅𝑉#5**: + 𝑅𝑉#5*-: + ⋯+ 𝑅𝑉#5-: )                                                                        (3) 

 

The main point of the HAR-RV model is to predict future volatility using three different 

volatility components; a daily (𝑅𝑉#:), a weekly (𝑅𝑉#=), and a monthly (𝑅𝑉#+) components. The     

HAR-RV model can simply be estimated by the ordinary least square (OLS) method. The 

model parameters, 𝑅𝑉#:, 𝑅𝑉#=, and 𝑅𝑉#+ theoretically represent short-term, middle-term, and 

long-term investors respectively and explain the RV via reactions of the different types of 

investors. In other words, the model coefficients provide an understanding of how these 

different market participants react and perceive to volatility.  

  

3.3.2. Forecast combination 
 
The forecast combination method is first proposed by Bates and Granger in 1969. It is 

considered as an attractive technique of forecasting and widely-used in many forecasting 

researches (Clemen, 1989; Stock and Watson, 2004; Ma, Li, Liu, Zhang, 2017). It simply sums 

all the individual forecasts and then the sum of individual forecasts is divided by the number 

of forecasts. In other words, it can be defined as the equal weighted average of the forecasts 

produced by various models. Therefore, given those forecasts in our work, we have six 

forecasting models (with the exception of the plain HAR-RV model). The sum of all these 

forecasts is divided by six in order to generate the combination forecast.  

  

3.3.3. Range Based Volatility Estimators 
 
This section presents the methodological frameworks of range based volatility estimators that 

are derived from OHLC prices. The estimators we include in this study consist of the close-to-

close volatility (4), overnight volatility (5), Parkinson volatility (6), Garman-Klass volatility 

(7), Roger-Satchell volatility (8), and Yang-Zhang volatility (9).  
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Close-to-close volatility estimator or in other words it is known as squared daily returns is one 

of the most widely used method to measure volatility. Daily squared return is often employed 

as a volatility proxy for the true volatility. It is simply computed as the above Equation 1, which 

is the log closing price of today minus the log closing price of yesterday. Close-to-close 

volatility is commonly applied by the investors who are concerned with long term investment 

and passive investing. Therefore, long-term investors are usually interested in only closing 

prices. However, the investors who focus on intraday trading need not only closing prices but 

also OHLC prices.   

 

             𝑉��|,# = (ln	( �e
�efg

))*                                                                                                  (5) 

 

Equation 5 shows the formula of overnight volatility, which is proposed by Brooks et al. 

(2000). It requires only today’s open and yesterday’s close prices to capture accumulated 

overnight information that could contain important input to improve the persistence of the 

volatility estimations of indices and so their forecasts (Wang et al., 2015; Kambouroudis, et 

al., 2021).  

 

              𝑉¡¢,# =
-

C£¤*
¥𝑙𝑛 ¦e
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*
                                                                                                  (6)       

 

High-low range can be used to measure the variability of stock market indices. Motivated by 

high-low range of prices, Parkinson (1980) proposes the scaled high-low price range in order 

to measure the variability of stock markets, shares or indices. It is found that the efficiency of 

Parkinson estimator is approximately 4.9 times higher compared to that of the traditional 

estimators.13 Extreme range estimators assume that the stock prices follow a geometric 

Brownian motion with two parameters which are the drift14 and the volatility. However, 

                                                
 
13 Efficiency of an estimator is defined as follows: 𝐸𝑓𝑓(𝜎*y) ≡ «¬­(®!")

«¬­(®"y)
 where 𝜎�* is a simple (traditional) 

volatility estimator and its efficiency by definition is 1. The denominator, 𝜎*y, refers to the extreme range 
estimators.   
14 Drift process means the difference between open and close prices during a trading day. 
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Parkinson estimator assumes the zero-drift price process. Garman-Klass (1980) in the below 

Equation (7) suggest a new estimator that incorporates with the drift process.   

  

               𝑉 ¢,# = 0.5(𝑙𝑛 ¦e
§e
)* − (2ln2 − 1)(𝑙𝑛 �e

�e
)*                                                                (7) 

 

In doing so, Garman-Klass (1980) attempt to conduct the efficiency gain for range-based 

estimation contrary to Parkinson estimator. Practically, GK estimator is a weighted average of 

the Parkinson volatility estimator and the drift (open-to-close squared return) even though they 

assume same with Parkinson that the price is a zero-drift process. Garman and Klass claim that 

GK estimator is about 7.4 times more efficient in comparison to the traditional variance based 

on closing prices. Afterwards, Rogers and Satchell (1991) propose another alternative measure 

of volatility, which is given by the following equation (8):  

 

																𝑉{°,# = (𝑙𝑛 ¦e
�e
)(𝑙𝑛 ¦e

�e
) + (𝑙𝑛 §e

�e
)(𝑙𝑛 §e

�e
)                                                                       (8)                                                                             

 

Rogers and Satchell (1991) address the issue of drift more formally with their estimator which 

is independent of drift process. This means that RS estimator does not require the assumption 

of zero-drift and therefore it is found to be more efficient estimator compared to the estimators 

in Equations 6 and 7.  

 

                𝑉±²,# = (𝑙𝑛 �e
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)* + 𝑘(𝑙𝑛 �e
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)* + (1 − 𝑘)𝑉{°,#																𝑘 = ( <.´C
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)                  (9) 

 

Lastly, Yang and Zhang (2000) develop a new volatility estimator for further efficiency gain 

on previous volatility estimators. They claim about their estimator being the minimum-variance 

unbiased variance estimator and independent of the drift and opening jumps of the underlying 

price movements. The related literature already does analyse (Molnar, 2012) and compare the 

performance of those range-based volatility estimators. GK estimator is found to be as optimal 

OHLC estimator by Bali and Weinbaum (2005), Li and Hing (2011), Todorova and Husmann 

(2012), Jiang et al. (2014). Raju and Rangaswamy (2017) suggest the YZ estimator for in and 

out-of-sample forecasting performance. Furthermore, Yarovaya et al., (2016) find inconclusive 

results.   
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3.3.4. Rolling Window Forecasting and Loss Functions 
 
In this study, we first need to decide how to create forecasts, especially the length of historical 

data to employ for forecasting. In this sense, we produce out-of-sample forecasts using rolling 

window method as rolling window technique has some advantages compared to recursive 

window. For instance, when the dynamics and behaviours of the true volatility (chosen proxy) 

changes over time, the forecasts produced by the models using rolling window method could 

adapt to this changes faster than those of recursive window method. However, the key in the 

context of rolling window technique is the choice of window size that can have an impact on 

forecasting performance of the models, nevertheless, the choice of window size is arbitrary in 

the literature. However, this is the fact that too little historical data could cause the model being 

estimated imprecisely and as a result of this, forecasting would not show such a good 

performance. On the other hand, if the models are estimated using too much historical data, 

very little out-of-sample data will left for forecasting, which is not enough time span to validate 

your work empirically. In selecting the window size of rolling method, we follow the works of 

Ma, Wahab, Liu, and Liu (2018) and Ma, Liu, Huang, and Chen (2017) who also use similar 

window size. Therefore, the optimal choice of window size could be considered as the 600 

observations, which is approximately several years of historical data. In this way, the regression 

is likely to fit smoothly and a longer out-of-sample period will be obtained. The reason is that 

the main objective of this work is firstly to evaluate the out-of-sample forecasting performance 

of the competing models, not to find out an optimal forecasting window size. Moreover, 

recursive window method is also applied to further robustness of this work.  

       To evaluate the out-of-sample performance of competing models, we employ two of the 

most popular loss functions, namely quasi-Gaussian log-likelihood (QLIKE) and 

heteroskedasticity adjusted mean squared error (HMSE), which are known as robust criterion 

in the forecasting literature. Equations 10 and 11 give the mathematical formulas of QLIKE 

and HMSE respectively as follows. 
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where 𝑅𝑉#y  denotes the out-of-sample forecasts from the competing models and 𝑅𝑉# is the target 

volatility for true volatility. 𝜏 is the number of out-of-sample forecasting days. The robustness 

of the QLIKE and MSE is documented in the seminal paper of Patton (2011). Whilst assessing 

different forecasts for the mean, the MSE criterion could be seen as a natural choice. However, 

according to Bollerslev et al. (1994) and Bollerslev and Ghysels (1996), the MSE loss function 

may be less clear in a heteroskedastic environment. For this reason, Bollerslev and Ghysels 

(1996) suggest the heteroskedasticity-adjusted MSE (HMSE). Given the heteroskedastic 

feature of financial volatility, the HMSE is the loss function of our choice over the MSE. 

Additionally, we also use the R-square statistic of Mincer-Zarnowitz (MZ) regression (Mincer 

and Zarnowitz, 1969). The regression can be expressed as follows.  

 

              𝑅𝑉#/-* = 𝛽< + 𝛽-𝑅𝑉#/-*~ + 𝜖#/-                                                                                (12) 

 

The R-square statistic of the MZ regression measures the goodness-of-fit of the forecast series 

in respect to the target series. In other words, it is revealed that how much of the target volatility 

is explained by the specific forecast series. One can interpret the R-square statistic of the MZ 

regression by looking for the highest the R-squares between the competing models’ forecasts, 

which shows the forecast series is good at explaining the target volatility. 

 

3.3.5. Model Confidence Set (MCS) Procedure 
 

Hansen et al. (2011) suggest the well-established MCS procedure to identify the set of superior 

models by the help of a specific elimination algorithm. At a given level of confidence, the 

elimination algorithm examines which group of models survive in a set of competing models, 

as those are defined in terms of a specific loss function without a priori benchmark model. The 

poorly predictive models are eliminated from the initial set of competing models. There are six 

different statistics for specifying the set of superior models, the range and semi-quadratic are 

the most preferred according to suggestion by Hansen et al. (2003). Briefly, the details of the 

MCS procedure as follows. Let 𝐿),¸  denote the criterion of model 𝑖 and 𝑑),\,¸ = 𝐿),¸ − 𝐿\,¸  is 

the differential. The null hypothesis of MCS procedure is 𝐻<,¹ = 𝐸�𝑑),\,¸� = 0, 𝑓𝑜𝑟	𝑖, 𝑗	 ∈ 𝑀,

𝑀 ⊂ 𝑀< and the null is tested against the alternative 𝐻-,¹ = 𝐸�𝑑),\,¸� ≠ 0, 𝑓𝑜𝑟	𝑠𝑜𝑚𝑒	𝑖, 𝑗	 ∈

𝑀. 
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3.4. Data 
 
The data used in this study consists of the stock market indices of G7, group of Seven, namely 

United States, United Kingdom, Canada, France, Germany, Italy, and Japan. Specifically, daily 

closing prices, daily range prices (open, high, low, close), and 5-minute realized variance series 

from June 1, 2009 to October 22, 2021 are used. Those stock market data is obtained from the 

Oxford-Man Institute’s Quantitative Finance Realized Library. The trading days across the G7 

stock markets differ from one market to another. Therefore, the data cleaning process have 

been applied to have a common data sample for the group of Seven. To conduct active trading 

day synchronization for all the markets, the rows corresponding to the nan-values by any of 

the markets are omitted.  

       Table 1a presents the full list of models (and indices) names and abbreviations, whilst 

Table 1b gives the descriptive statistics of all series used in this study after the date alignment 

process as noted in the paragraph above, which leads to having approximately 2780 

observations for each series. The first 600 observation (2009/06/02 – 2012/01/18) is used for 

the in-sample estimation and the rest of (2180) observations (2012/01/19 – 2021/10/22) is the 

out-of-sample to apply the one-step-ahead rolling window forecasting method. The summary 

statistics are as expected. For example, the means of all the series are close to zero. The 

negative skewness exists in the table for return series that is often associated with the 

characteristic of return series. Contrary to return series, range and RV series have positive 

skewness. The excess kurtosis show that all the series are leptokurtic with higher peak points 

as well as fatter tails. The Jarque-Bera normality test results indicate that the distribution of 

each series is non-normal. The Augmented Dickey-Fuller (ADF) test results reject the null 

hypothesis of a unit root at the 1% significance level, indicating that all the series are stationary. 

Ljung-Box Q-statistic shows the presence of such correlation up to the fifth order. 

         Volatility is latent and therefore we need to use a target volatility for the true volatility. 

There are different approaches to substitute an efficient measure for the actual volatility. The 

commonly used proxies are extracted from historical data such as the close-to-close (daily 

squared return) volatility, range based (OHLC) volatilities, and integrated (realized) volatility. 

Among these proxies, the realized volatility based on high frequency intraday sampling 

contains more information than the other two methods and therefore considered to be a better 

representative of the true volatility (Andersen and Bollerslev, 1998; Andersen et al., 1999). 
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Moreover, Liu, Patton, and Sheppard (2015) compare over 400 different realized measures and 

suggest that it is difficult to significantly beat five-minutes realized variance. Therefore, this 

study considers 5-minute realized volatility (RV) of Anderson and Bollerslev (1998) as a target 

volatility.   

 
3.Table 1a Full list of models (and indices) names and abbreviations  
HAR-RV Heterogeneous Autoregressive Model of RV CAC France CAC40  
HAR-RV-ONV HAR-RV-Overnight Volatility DAX Germany DAX30  
HAR-RV-CC HAR-RV-Close-to-Close Volatility FTSE United Kingdom FTSE100 
HAR-RV-PK HAR-RV-Parkinson FTMIB Italy FTSE MIB  
HAR-RV-GK HAR-RV-Garman-Klass NIKKEI Japan NIKKEI 225 
HAR-RV-RS HAR-RV-Rogers-Satchell SPTSX Canada S&P/TSX  
HAR-RV-YZ HAR-RV-Yang-Zhang SPX United States S&P500 

 
 
 
3.Table 2b Descriptive statistics of G7 data (Return, Range, and 5-min RV) 

RETURN   MEAN STD. DEV.    SKEW. EX. KURT. JARQUE-BERA    Q(5)    ADF 
CAC       0.0002 0.0135 -0.5417 7.8268 7229.12*** 19.4829*** -13.49*** 
GDAXI 0.0003 0.0133 -0.4563 7.9884 7485.72*** 16.6816*** -27.25*** 
FTSE  0.0001 0.0107 -0.8529 8.4088 8524.27*** 24.9361*** -13.59*** 
FTMIB 9.3E-05 0.0165 -1.0084 10.561 13386.5*** 12.2867** -20.67*** 
NIKKEI 0.0003 0.0138 -0.3026 4.5760 2467.13*** 17.0018*** -21.04*** 
SPTSX 0.0002 0.0096 -1.8155 25.757 78343.5*** 41.7380*** -10.93*** 
SPX 0.0005 0.0110 -0.7790 9.5335 10805.2*** 38.5681*** -13.55*** 
        
RANGE   Mean Std. Dev.    Skew. Ex. Kurt. Jarque-Bera    Q(5)    ADF 
CAC       0.0142 0.0089 2.4706 10.741 16192.9*** 3733.55*** -8.57*** 
GDAXI 0.0143 0.0089 2.4779 12.002 19529.4*** 3596.39*** -6.56*** 
FTSE  0.0126 0.0083 3.5583 24.289 74203.1*** 3931.79*** -8.16*** 
FTMIB 0.0180 0.0113 3.5887 28.654 101073*** 3382.78*** -8.61*** 
NIKKEI 0.0116 0.0084 5.1205 57.640 396984*** 1871.18*** -8.27*** 
SPTSX 0.0097 0.0070 3.9901 31.495 122277*** 4750.06*** -5.96*** 
SPX 0.0111 0.0081 2.8837 14.587 28501.5*** 4607.59*** -6.05*** 
        
5-MIN RV   Mean Std. Dev.    Skew. Ex. Kurt. Jarque-Bera    Q(5)    ADF 
CAC       0.0001 0.00017 9.9869 166.65 3.26E+06*** 4818.41*** -8.10*** 
GDAXI 0.0001 0.00016 7.7792 91.942 1.007E+06*** 5225.84*** -8.77*** 
FTSE  9.6E-05 0.00023 16.637 392.73 1.79E+07*** 2035.20*** -10.3*** 
FTMIB 0.0001 0.00016 6.5410 66.618 533886*** 4674.88*** -6.32*** 
NIKKEI 7.5E-05 0.00015 11.574 197.14 4.56E+06*** 1660.67*** -9.55*** 
SPTSX 5.5E-05 0.00013 14.468 308.73 1.11E+07*** 2497.40*** -10.4*** 
SPX 7.9E-05 0.00019 10.893 167.64 3.31E+06*** 4015.42*** -9.03*** 
Note: Asterisk *, **, and *** denote rejections of null hypothesis at 10%, 5%, and 1% significance levels, respectively. The 
null hypothesis of the third and fourth moments are “Skewness = 0” and “Excess Kurtosis = 3”. 
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3.5. Results 
 
3.5.1. In-sample evaluation  
 
Table 2 reports the full sample estimation results of the seven HAR-RV-X type models in this 

study. 𝛽<, 	𝛽:, 	𝛽=, 𝑎𝑛𝑑	𝛽+	are the model coefficients of plain HAR-RV model, which is 

explained in the methodology section in more detail. 𝛽� represents the various exogenous 

variables (extreme range estimators) that is embedded in the HAR-RV model. 𝑅* is the 

goodness-of-fit of various HAR-RV-X models for the full sample analysis. This study aims to 

evaluate the out-of-sample performance of the various forecasting models. Furthermore, the 

performance in the in-sample for a model does not necessarily have an impact on the out-of-

sample performance of the same model. Therefore, this section presents a short in-sample 

evaluation for the competing models. 

       First of all, the original parameters of the HAR-RV model such as the daily and weekly 

coefficients mostly seem to be significant for the G7 markets except the daily coefficients of 

the FTSE and GSPTSE indices which are not significant. In terms of the monthly component, 

the coefficients are insignificant, with two notable exceptions which are the FTSEMIB and 

NIKKEI indices (which are significant). Following that most of the extreme range estimators 

that are embedded as exogenous variables into the plain HAR-RV model do improve the in-

sample accuracy of the HAR-RV model for the group of Seven so that the impact of these 

exogenous variables on the performance of the HAR-RV model cannot be neglected. This can 

be better understood by comparing the adjusted R-square value of the baseline model with the 

adjusted R-squares of the models with an additional variable in Table 2. In short, the HAR-

RV-PK can be considered as a promising model in the in-sample evaluation. Amongst the other 

extreme range estimators, the Parkinson estimator when added to the baseline model (in the 

case of five indices; CAC, DAX, FTSE, FTMIB and SPX) strengths the model’s overall 

goodness-of-fit much better compared to the other estimators that are used as an additional 

variable. For other two indices, a moderate improvement can be seen for the SPTSX but the 

HAR-RV-PK model does not improve the in-sample accuracy for only the NIKKEI.  
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    3.Table 3  full sample estimation results of HAR-RV-X models 

 
 
 

Coef. → 
 ↓ Model spec. 

          𝛽<                     𝛽:                       𝛽=                     𝛽+                  𝛽�           𝐴𝑑𝑗. 𝑅* 

 

𝐻𝐴𝑅-𝑅𝑉�¾� 

 

𝐻𝐴𝑅-𝑅𝑉-𝑂𝑁𝑉�¾� 

 

𝐻𝐴𝑅-𝑅𝑉-𝐶𝐶�¾�  

 

𝐻𝐴𝑅-𝑅𝑉-𝑃𝐾�¾� 

 

𝐻𝐴𝑅-𝑅𝑉-𝐺𝐾�¾� 

 

𝐻𝐴𝑅-𝑅𝑉-𝑅𝑆�¾� 

 

𝐻𝐴𝑅-𝑅𝑉-𝑌𝑍�¾� 

 

_______________ 

𝐻𝐴𝑅-𝑅𝑉Ä¾� 

 

𝐻𝐴𝑅-𝑅𝑉-𝑂𝑁𝑉Ä¾� 

 

𝐻𝐴𝑅-𝑅𝑉-𝐶𝐶Ä¾� 

 

𝐻𝐴𝑅-𝑅𝑉-𝑃𝐾Ä¾� 

 

𝐻𝐴𝑅-𝑅𝑉-𝐺𝐾Ä¾� 

 

𝐻𝐴𝑅-𝑅𝑉-𝑅𝑆Ä¾� 

 

𝐻𝐴𝑅-𝑅𝑉-𝑌𝑍Ä¾� 

 

 

 
   1.51E-05             0.506                0.298                  0.051                –               0.56   
  (4.48E-06)          (0.091)              (0.061)               (0.049)                
        ***                   ***                    ***                    
   1.44E-05             0.482                0.268                  0.033             0.118          0.59 
   (4.33E-06)         (0.095)              (0.067)               (0.047)           (0.031)    
         ***                  ***                    ***                                             ***                                     
    1.49E-05            0.451                0.263                  0.054             0.051          0.58 
    (4.15E-06)        (0.090)              (0.079)               (0.046)           (0.013)    
          ***.                ***                    ***                                             ***                                       
     1.20E-05           0.221                0.280                  0.062             0.339          0.59                       
    (4.70E-06)        (0.084)              (0.072)               (0.054)           (0.148)    
         **                     ***                   ***                                              **          
     1.45E-05           0.301                0.303                  0.060             0.212          0.57 
     (4.56E-06)        (0.142)             (0.066)               (0.049)           (0.173) 
         ***                   **                     ***                 
     1.49e-05           0.544                0.296                  0.048             -0.031        0.56 
     (4.59e-06)        (0.138)             (0.061)               (0.048)           (0.078) 
         ***                   ***                   ***                             
     1.55e-05           0.408                0.299                  0.049              0.058        0.57 
     (4.42e-06)        (0.082)             (0.067)               (0.051)            (0.050) 
         ***                   ***                   ***             
_________________________________________________________________ 
     1.35E-05           0.436                0.378                  0.053                 –             0.56 
     (3.57E-06)        (0.092)             (0.104)               (0.062) 
         ***                   ***                   *** 
     1.36E-05           0.427                0.353                  0.041              0.066        0.58 
     (3.64E-06)        (0.092)             (0.091)               (0.060)            (0.023) 
         ***                   ***                   ***                                              *** 
     1.37E-05           0.399                0.353                  0.052              0.035        0.58 
     (3.54E-06)        (0.091)             (0.106)                (0.059)           (0.008) 
         ***                   ***                   ***                                              *** 
     1.26E-05           0.110                0.358                  0.075              0.337        0.60 
     (3.62E-06)        (0.094)             (0.108)                (0.064)           (0.105) 
         ***                                             ***                                              *** 
     1.48E-05           0.107                0.363                  0.081              0.309        0.59 
     (4.03E-06)        (0.092)             (0.100)                (0.063)           (0.067) 
         ***                                             ***                                              *** 
     1.53E-05           0.258                0.373                  0.077              0.142        0.58 
     (3.91E-06)        (0.110)             (0.104)                (0.064)           (0.042) 
         ***                   **                      ***                                              *** 
     1.42E-05           0.369                0.375                  0.051              0.039        0.57 
     (3.82E-06)        (0.102)             (0.103)                (0.062)           (0.038) 
          ***                  ***                    *** 
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(Continued) 

 
 

Coef. → 
 ↓ Model spec. 

          𝛽<                     𝛽:                       𝛽=                     𝛽+                  𝛽�        𝐴𝑑𝑗. 𝑅*      

 

𝐻𝐴𝑅-𝑅𝑉Åz°Æ  

 

𝐻𝐴𝑅-𝑅𝑉-𝑂𝑁𝑉Åz°Æ  

 

𝐻𝐴𝑅-𝑅𝑉-𝐶𝐶Åz°Æ  

 

𝐻𝐴𝑅-𝑅𝑉-𝑃𝐾Åz°Æ  

 

𝐻𝐴𝑅-𝑅𝑉-𝐺𝐾Åz°Æ  

 

𝐻𝐴𝑅-𝑅𝑉-𝑅𝑆Åz°Æ  

 

𝐻𝐴𝑅-𝑅𝑉-𝑌𝑍Åz°Æ  

 

_______________ 

 

𝐻𝐴𝑅-𝑅𝑉Åz¹ÇÈ  

 

𝐻𝐴𝑅-𝑅𝑉-𝑂𝑁𝑉Åz¹ÇÈ  

 

𝐻𝐴𝑅-𝑅𝑉-𝐶𝐶Åz¹ÇÈ  

 

𝐻𝐴𝑅-𝑅𝑉-𝑃𝐾Åz¹ÇÈ  

 

𝐻𝐴𝑅-𝑅𝑉-𝐺𝐾Åz¹ÇÈ  

 

𝐻𝐴𝑅-𝑅𝑉-𝑅𝑆Åz¹ÇÈ  

 

𝐻𝐴𝑅-𝑅𝑉-𝑌𝑍Åz¹ÇÈ  

 

 

 
   2.22E-05             0.066                0.660                  0.041                –             0.28   
  (4.81E-06)          (0.060)              (0.177)               (0.101)                
        ***                                             ***                    
   2.14E-05             0.065                0.646                  0.045             0.110        0.29 
   (4.55E-06)         (0.059)              (0.177)               (0.099)           (0.075)    
         ***                                            ***                                                                                  
    2.10E-05           -0.013                0.603                  0.050             0.116        0.31 
    (4.37E-06)        (0.075)              (0.169)               (0.092)           (0.026)    
          ***.                                          ***                                             ***                                       
     2.13E-05          -0.147                0.486                  0.068             0.430        0.32                         
    (4.85E-06)        (0.085)              (0.125)               (0.087)           (0.111)    
         ***                   *                       ***                                              ***          
     2.07E-05          -0.026                0.601                  0.051             0.204        0.29 
     (5.04E-06)        (0.051)             (0.159)               (0.098)           (0.058) 
         ***                                            ***                                              *** 
     2.22e-05           0.070                0.662                  0.040             -0.007       0.29 
     (4.81e-06)        (0.047)             (0.189)               (0.104)           (0.060) 
         ***                                            ***                             
     2.10e-05           0.0002              0.609                  0.054              0.116       0.29 
     (4.80e-06)        (0.050)             (0.165)               (0.099)            (0.037) 
         ***                                            ***                                              *** 
_______________________________________________________________ 
 
 
     1.50E-05           0.432                0.342                  0.093                 –            0.53 
     (3.95E-06)        (0.085)             (0.067)               (0.052) 
         ***                   ***                   ***                       * 
     1.40E-05           0.418                0.343                  0.076              0.057       0.54 
     (3.78E-06)        (0.085)             (0.067)               (0.051)            (0.020) 
         ***                   ***                   ***                                              *** 
     1.49E-05           0.314                0.340                  0.112              0.043       0.58 
     (3.83E-06)        (0.067)             (0.068)                (0.050)           (0.007) 
         ***                   ***                   ***                       **                   *** 
     1.59E-05           0.161                0.349                  0.143              0.145       0.58 
     (4.00E-06)        (0.079)             (0.078)                (0.050)           (0.027) 
         ***                    **                    ***                       ***                 *** 
     1.56E-05           0.291                0.344                  0.114              0.086       0.54 
     (4.10E-06)        (0.116)             (0.067)                (0.053)           (0.044) 
         ***                     **                   ***                        **                    * 
     1.46E-05           0.475                0.340                  0.087             -0.024       0.54 
     (4.05E-06)        (0.124)             (0.069)                (0.056)           (0.025) 
         ***                   ***                   ***                                               
     1.50E-05           0.274                0.347                  0.098              0.074       0.55 
     (3.96E-06)        (0.094)             (0.065)                (0.050)           (0.028) 
          ***                  ***                   ***                        *                    *** 
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(Continued) 

 
 

Coef. → 
 ↓ Model spec. 

          𝛽<                     𝛽:                       𝛽=                     𝛽+                  𝛽�          𝐴𝑑𝑗. 𝑅*      

 

𝐻𝐴𝑅-𝑅𝑉�Ç¢¢ÆÇ  

 

𝐻𝐴𝑅-𝑅𝑉-𝑂𝑁𝑉�Ç¢¢ÆÇ 

 

𝐻𝐴𝑅-𝑅𝑉-𝐶𝐶�Ç¢¢ÆÇ  

 

𝐻𝐴𝑅-𝑅𝑉-𝑃𝐾�Ç¢¢ÆÇ  

 

𝐻𝐴𝑅-𝑅𝑉-𝐺𝐾�Ç¢¢ÆÇ  

 

𝐻𝐴𝑅-𝑅𝑉-𝑅𝑆�Ç¢¢ÆÇ  

 

𝐻𝐴𝑅-𝑅𝑉-𝑌𝑍�Ç¢¢ÆÇ 

 

_______________ 

 

𝐻𝐴𝑅-𝑅𝑉°¡z°� 

 

𝐻𝐴𝑅-𝑅𝑉-𝑂𝑁𝑉°¡z°� 

 

𝐻𝐴𝑅-𝑅𝑉-𝐶𝐶°¡z°�  

 

𝐻𝐴𝑅-𝑅𝑉-𝑃𝐾°¡z°� 

 

𝐻𝐴𝑅-𝑅𝑉-𝐺𝐾°¡z°�  

 

𝐻𝐴𝑅-𝑅𝑉-𝑅𝑆°¡z°� 

 

𝐻𝐴𝑅-𝑅𝑉-𝑌𝑍°¡z°� 

 

 

 
   2.01E-05             0.347                0.263                  0.122                –               0.28   
  (3.24E-06)          (0.073)              (0.081)               (0.051)                
        ***                   ***                   ***                       ** 
   1.45E-05             0.289                0.231                  0.138             0.134          0.30 
   (3.40E-06)         (0.059)              (0.094)               (0.058)           (0.045)    
         ***                  ***                    **                         **                 ***                                         
    1.81E-05           0.233                 0.242                  0.123             0.062          0.30 
    (3.40E-06)        (0.058)              (0.070)               (0.054)           (0.015)    
          ***.                ***                   ***                        **                 ***                                       
     2.02E-05           0.314                0.269                  0.125             0.023          0.28                         
    (3.17E-06)        (0.176)              (0.091)               (0.053)           (0.092)    
         ***                   *                       ***                        **                         
     2.00E-05           0.360                0.261                  0.121            -0.008          0.28 
     (3.13E-06)        (0.142)             (0.092)               (0.053)           (0.049) 
         ***                   **                     ***                       **                  
     2.00e-05           0.372                0.257                  0.118             -0.015         0.28 
     (3.12e-06)        (0.128)             (0.091)               (0.053)           (0.029) 
         ***                  ***                    ***                       **       
     1.88e-05           0.264                0.249                  0.142              0.046         0.29 
     (3.65e-06)        (0.079)             (0.080)               (0.058)            (0.020) 
         ***                  ***                    ***                        **                  ** 
_______________________________________________________________ 
 
 
     1.26E-05           0.091                0.637                  0.034                 –             0.31 
     (2.65E-06)        (0.060)             (0.166)               (0.090) 
         ***                                            ***                        
     1.49E-05           0.042                0.434                  0.101              0.234        0.41 
     (2.67E-06)        (0.055)             (0.110)               (0.071)            (0.078) 
         ***                                            ***                                              *** 
     1.48E-05          -0.039                0.591                  0.075              0.055        0.33 
     (2.67E-06)        (0.100)             (0.178)                (0.079)           (0.010) 
         ***                                            ***                                              *** 
     1.35E-05          -0.011                0.444                  0.089              0.236        0.33 
     (2.63E-06)        (0.057)             (0.189)                (0.087)           (0.107) 
         ***                                              **                                               ** 
     1.31E-05           0.051                0.504                  0.068              0.136        0.32 
     (2.69E-06)        (0.053)             (0.199)                (0.094)           (0.090) 
         ***                                              **                                                  
     1.28E-05           0.069                0.549                  0.056              0.084        0.32 
     (2.68E-06)        (0.050)             (0.200)                (0.096)           (0.069) 
         ***                                            ***                                               
     1.41E-05           0.026                0.510                  0.074              0.077        0.33 
     (2.73E-06)        (0.046)             (0.164)                (0.083)           (0.027) 
          ***                                           ***                                              *** 
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(Continued) 

Notes: 𝐻𝐴𝑅-𝑅𝑉-𝑋Ç�ÄÆ� is the model specification; “𝐻𝐴𝑅-𝑅𝑉" is the plain Heterogenous Autoregressive 
Model of Realized Volatility. "𝑋" symbolizes the exogenous variables, which are extreme range estimators 
in our case and  "𝐼𝑁𝐷𝐸𝑋" indicates the specific stock market in the group of Seven. Robust standard 
errors in parentheses and the stars indicate the significance levels for p values; * (%10), ** (%5), *** 
(%1). 
 
Having evaluated the Parkinson estimator’s performance, the other estimators give a mixed 

results depending on the various indices. If the results are generalized, it could be said that the 

second and third best additional variables to the HAR-RV model alternate between ONV and 

CC (either ONV or CC) depending on the different stock market indices in Table 2. Both 

estimators show the same performance for the indices of DAX and NIKKEI stock markets. 

However, the HAR-RV-ONV exhibits better goodness-of-fit for SPTSX and CAC, whilst the 

HAR-RV-CC’s adjusted R-squares are significant and higher than the others (except HAR-

RV-PK) for FTSE, FTMIB, and SPX. To sum up, except for Parkinson estimator’s additional 

information to the HAR-RV model, the in-sample results are inconclusive. Hereupon, instead 

of going deeper into the in-sample analysis that does not necessarily have an impact on the out-

of-sample performance of the competing models, this work aims to concentrate on the 

competing models’ out-of-sample performance as it is pointed out in the beginning of this 

section.  

Coef. → 
 ↓ Model spec. 

          𝛽<                     𝛽:                       𝛽=                     𝛽+                  𝛽�            𝐴𝑑𝑗. 𝑅*   

 

𝐻𝐴𝑅-𝑅𝑉°¡� 

 

𝐻𝐴𝑅-𝑅𝑉-𝑂𝑁𝑉°¡� 

 

𝐻𝐴𝑅-𝑅𝑉-𝐶𝐶°¡� 

 

𝐻𝐴𝑅-𝑅𝑉-𝑃𝐾°¡� 

 

𝐻𝐴𝑅-𝑅𝑉-𝐺𝐾°¡� 

 

𝐻𝐴𝑅-𝑅𝑉-𝑅𝑆°¡� 

 

𝐻𝐴𝑅-𝑅𝑉-𝑌𝑍°¡� 

 

 
   1.49E-05             0.339                0.452                  0.018                –               0.46  
  (4.12E-06)          (0.079)              (0.136)               (0.053)                
        ***                   ***                   ***                    
   1.69E-05             0.318                0.410                  0.025             0.095          0.47 
   (3.83E-06)         (0.077)              (0.113)               (0.048)           (0.030)    
         ***                   ***                  ***                                             ***                                     
    1.63E-05           0.141                 0.456                 -0.011             0.133          0.50 
    (3.60E-06)        (0.104)              (0.134)               (0.059)           (0.027)    
          ***.                                          ***                                             ***                                       
    1.11E-05           0.099                 0.361                  0.007             0.452          0.49                       
    (3.95E-06)        (0.077)              (0.122)               (0.050)           (0.140)    
         ***                                            ***                                              ***          
     1.38E-05          0.253                0.403                  0.017              0.190          0.47 
     (4.10E-06)       (0.085)             (0.125)               (0.049)           (0.082) 
         ***                 ***                    ***                                              ** 
     1.45e-05           0.305                0.433                 0.019              0.071         0.46 
     (4.07e-06)        (0.084)             (0.130)              (0.052)            (0.038) 
         ***                 ***                    ***                                                * 
     1.65e-05           0.272                0.390                 0.020              0.092         0.48 
     (4.09e-06)        (0.074)             (0.122)              (0.048)           (0.020) 
         ***                 ***                    ***                                              *** 
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3.5.2. Out-of-sample evaluation 
 
This study examines whether extreme range estimators or in other words OHLC estimators 

contain important information for forecasting the future realized volatility. In this regards, we 

focus on some well-known estimators in the related literature, including, for example, Close-

to-close, Overnight Volatility, Parkinson, Garman-Klass, Roger-Satchell, and Yang-Zhang to 

examine their potential for generating better forecasting accuracy both in the context of model-

based approach (HAR-RV-X model) and model-free approach. Using one-step-ahead rolling 

window technique, we evaluate the forecast results of the seven competing models to 

investigate which of these forecasts is closer to the actual volatility that is 5-min realized 

volatility in our case. To do this, several well established loss functions, namely, QLIKE and 

HMSE are considered as both of them are pointed out as robust criterion in the literature 

(Patton, 2011). The MCS procedure that identifies the set of the best models is employed to 

support further those empirical results. We also repeat this forecasting exercise under recursive 

window technique in order to underpin our results.15  

 

3.5.2.1. Evaluation of results with model-free approach 
 
The model-free approach used in this study considers the extreme range estimators themselves 

as forecasters for the realized volatility. The first four rows of each market indices in Table 2 

are the model-free approach for forecasting the realized volatility, which are Parkinson, 

Garman-Klass, Rogers-Satchell, and Yang-Zhang estimators, respectively. When we compare 

the model-free approach to the model-based approach, the model-free approach (considering 

the estimators themselves as forecasters) significantly outperforms the HAR-RV-X model’s 

forecasts in Table 2. Broadly speaking, the Garman-Klass estimator based on model-free 

approach is the best-performing forecaster for the majority of indices. The second best-

performing forecaster might be considered as the Parkinson estimator, whilst the results of the 

Rogers-Satchell and Yang-Zhang estimators are a little mixed and mostly inferior to the 

Parkinson and Rogers-Satchell. An interesting point can be made as follows.16 While traditional 

range estimators with simple formulas such as Parkinson and Garman-Klass have potential to 

                                                
 
15 Even if we point out some advantages of rolling window technique, we applied recursive window method for 
further robustness check. 
16  We already emphasized this point earlier but here it is in terms of the model-free approach. 
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help in forecasting the realized volatility, the extreme range estimators derived from more 

complex formulas, namely Roger-Satchell and Yang-Zhang hardly contains new information 

for forecasting realized volatility in the group of Seven. 

 

3.5.2.2. Evaluation of results with model-based approach 
 
According to Table 2, the realized volatility forecasts of CAC and DAX stock indices are 

improved by only ONV information while extreme range estimators (Parkinson, Garman-

Klass, Roger-Satchell, and Yang-Zhang) do not add any extra information onto the benchmark 

HAR-RV model. However, the forecast combination of extreme range estimators does work 

for the CAC and DAX indices. These results draw by the QLIKE and HMSE criteria. Contrary 

to these results, MZ R-squares show that the forecast of CAC index can be improved by the 

HAR-RV-GK specification, while the best-performing model of DAX seems to be HAR-RV-

PK. When we look at the results of FTSE index, the picture is different from the other indices 

but all the three loss functions, namely  QLIKE, HMSE, and MZ R-square values give the same 

results as follows. ONV does not improve the forecasting accuracy of the HAR-RV model. 

This result is consistent with the findings in the work of Kambouroudis et al. (2020) as they 

point out that FTSE is only exception among other indices which ONV does not improve the 

forecast performance of the HAR-RV model. On the other hand, unlike CAC and DAX indices, 

realized volatility forecasts of FTSE index are improved best by the Parkinson range estimator 

(HAR-RV-PK). However, the inclusion of more sophisticated extreme range based estimators 

such as Roger-Satchell and Yang-Zhang do not improve the baseline HAR-RV model of FTSE 

index. 

         In the case of FTMIB index, the loss functions used in this study produce different results 

from each other but the common result can be summarized such a way that HAR-RV-ONV is 

such a promising model for the criterion so that ONV could be considered as an important 

variable for the FTMIB index. The difference between different criteria is that QLIKE and MZ 

R-square advise the HAR-RV-CC and HAR-RV-COMB as the best-performing models 

respectively, whilst the extreme range estimators are outperformed by the benchmark model. 

On the other hand, the result of HMSE criteria for forecasting FTSEMIB realized volatility 

select some of the extreme range estimators as the best forecasting models such as HAR-RV-

GK, HAR-RV-ONV, and HAR-RV-YZ respectively, which produces empirical 

counterevidence against the result of QLIKE and MZ R-square criterion.  
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       Afterwards, the results of NIKKEI index indicate that HAR-RV-CC model outperforms 

the others on the behalf of all the loss functions. However, rest of NIKKEI results’ ranking is 

inconclusive in terms of the choice of the loss functions. For example, QLIKE is in favour of 

the plain HAR-RV model, meaning that extreme range estimators does not contain valuable 

information for forecasting NIKKEI realized volatility whereas HMSE shows that only HAR-

RV-CC, HAR-RV-COMB and HAR-RV-YZ models improve the forecasting accuracy 

compared to the benchmark forecasting model. In addition, MZ R-squares for the NIKKEI 

present similar results with the HMSE values of NIKKEI index.  

         Following the NIKKEI index, the best-performing forecasting models of SPTSX index 

are also subject to the choice of loss functions. QLIKE suggests HAR-RV-ONV as the best-

performing forecasting model, followed by HAR-RV-COMB and HAR-RV-PK, and HAR-

RV-YZ models respectively. On the other hand, the rankings of the best-performing models 

measured by HMSE are as follows: HAR-RV-PK, HAR-RV-GK, and HAR-RV-COMB 

respectively. The MZ R-square results of NIKKEI index show that no model improve the 

baseline model. Here, we need to point out that considering HMSE criteria HAR-RV-ONV 

adds very little value on the benchmark model, which makes it the worst-performing model 

compared to the models with extreme range estimators, (while QLIKE selects the same model, 

HAR-RV-ONV, as the best forecasting model). The overall result for SPTSX is that the 

benchmark HAR-RV model could be improved best by the Parkinson volatility according to 

both of the criterion.  

         Lastly, when the results of SPX index are evaluated by the choice of our loss functions, 

the findings of best-performing forecasting model on the HMSE and MZ R-square sides 

contradict with the results of QLIKE. QLIKE is in the favour of HAR-RV-COMB and HAR-

RV-GK model. In the same rankings, QLIKE suggests HAR-RV-PK as the second worst-

performing forecasting model. However, HMSE and MZ R-square select HAR-RV-PK by far 

the best model compared to the rest of its counterparts. Likewise, HAR-RV-ONV measured by 

QLIKE is the fourth best model but when it is measured by HMSE, it seems to be worst 

performing model.  

 

 

 

 

 



 81 

 3.Table 4  ROLLING WINDOW FORECASTING RESULTS EVALUATED BY QLIKE AND HMSE AND MCS PROCEDURE 

CAC                           QLIKE      p-value             Rank         𝑴𝒁-𝑹𝟐   CAC                               HMSE        p-value           Rank            
PK  (Model-free)  0.2360     eliminated           – 0.721 PK  (Model-free)  0.3508         1.0000               3 
GK (Model-free)  0.1947     eliminated           – 0.793 GK  (Model-free)  0.2168         1.0000               1 
RS  (Model-free)  0.6907     eliminated           – 0.788 RS  (Model-free)  0.2741         1.0000               2 
YZ  (Model-free)  0.1798     eliminated           – 0.560 YZ  (Model-free)  3.6710         eliminated        – 
HAR-RV  0.1675     eliminated           – 0.477 HAR-RV 0.7861         0.3078               7 
HAR-RV-ONV  0.1517     1.0000                  1 0.476 HAR-RV-ONV 0.7257         1.0000               4  
HAR-RV-CC  0.1688     eliminated           –  0.466 HAR-RV-CC 0.8068         0.0782              10 
HAR-RV-PK  0.1766     eliminated           –  0.482 HAR-RV-PK 0.8008         0.1878               9 
HAR-RV-GK  0.1724     eliminated           –  0.494 HAR-RV-GK 0.8181         0.1964               8 
HAR-RV-RS  0.1700     eliminated           –  0.444 HAR-RV-RS 0.7893         1.0000               6 
HAR-RV-YZ  0.1817     eliminated           –  0.493 HAR-RV-YZ 0.8534         0.0378              11 
HAR-RV-COMB.  0.1599     1.0000                  2 0.487 HAR-RV-COMB.  0.7622         1.0000               5 
DAX QLIKE      p-value             Rank  𝑴𝒁-𝑹𝟐 DAX HMSE         p-value           Rank  
PK  (Model-free)   0.2141     eliminated           – 0.731 PK  (Model-free)  0.3707       1.0000                 3 
GK  (Model-free)   0.1620     1.0000                  1 0.742 GK  (Model-free)  0.2238       1.0000                 1 
RS  (Model-free)   0.4212     eliminated           – 0.715 RS  (Model-free)  0.2757       1.0000                 2 
YZ  (Model-free)   0.1963     eliminated           – 0.430 YZ  (Model-free)  4.7830       eliminated          – 
HAR-RV  0.1756     eliminated           –  0.462 HAR-RV 0.9157       eliminated          – 
HAR-RV-ONV  0.1657     1.0000                  2 0.464 HAR-RV-ONV 0.8607       1.0000                 4 
HAR-RV-CC  0.1771     eliminated           –  0.456 HAR-RV-CC 0.9355       eliminated          – 
HAR-RV-PK  0.1830     eliminated           –  0.496 HAR-RV-PK 0.8990       eliminated          – 
HAR-RV-GK  0.1849     eliminated           –  0.469 HAR-RV-GK 0.9134       eliminated          – 
HAR-RV-RS  0.1790     eliminated           –  0.436 HAR-RV-RS 0.9216       eliminated          – 
HAR-RV-YZ  0.1810     eliminated           – 0.475 HAR-RV-YZ 0.9602       eliminated          – 
HAR-RV-COMB.   0.1720     eliminated           –       0.480 HAR-RV-COMB.  0.8967       eliminated          – 
FTSE   QLIKE      p-value            Rank 𝑴𝒁-𝑹𝟐 FTSE   HMSE       p-value            Rank 
PK  (Model-free)   0.2464     1.0000                  1 0.708 PK  (Model-free)  0.4672        1.0000                2 
GK  (Model-free)   0.3033     eliminated           – 0.760 GK  (Model-free)  0.4543        1.0000                1 
RS  (Model-free)   3.9910     eliminated           – 0.585 RS  (Model-free)  0.6183        1.0000                3 
YZ  (Model-free)   0.2728     1.0000                  2 0.627 YZ  (Model-free)  1.8960        1.0000                4 
HAR-RV  0.2851     0.7680                  8  0.186 HAR-RV 2.8416        eliminated         – 
HAR-RV-ONV  0.3140     eliminated           –  0.184 HAR-RV-ONV 2.8504        eliminated         – 
HAR-RV-CC  0.2816     1.0000                  4 0.221 HAR-RV-CC 2.7036        eliminated         – 
HAR-RV-PK  0.2806     1.0000                  3 0.247 HAR-RV-PK 2.5594        1.0000                5 
HAR-RV-GK  0.2887     1.0000                  6  0.195 HAR-RV-GK 2.6977        eliminated         – 
HAR-RV-RS  0.2892     0.4778                  9  0.140 HAR-RV-RS 2.9010        eliminated         – 
HAR-RV-YZ  0.2860     1.0000                  7  0.184 HAR-RV-YZ 2.8410        eliminated         – 
HAR-RV-COMB.   0.2822     1.0000                  5 0.212 HAR-RV-COMB.  2.7220        eliminated         – 
FTMIB   QLIKE      p-value           Rank 𝑴𝒁-𝑹𝟐 FTMIB   HMSE       p-value           Rank 
PK  (Model-free)   0.1537      eliminated          – 0.572 PK  (Model-free)  2.1890       eliminated         – 
GK  (Model-free)   0.1243     1.0000                  1 0.711 GK  (Model-free)  1.4530       1.0000                2 
RS  (Model-free)   0.8281     eliminated           –  0.511 RS  (Model-free)  1.3870       1.0000                1 
YZ  (Model-free)   0.2326     eliminated           – 0.600 YZ  (Model-free)  8.7150       eliminated         – 
HAR-RV  0.1509     0.5504                  6  0.484 HAR-RV 1.6260       0.5534                9 
HAR-RV-ONV  0.1492     1.0000                  4 0.481 HAR-RV-ONV 1.5580       0.4120                4 
HAR-RV-CC  0.1471     1.0000                  3 0.534 HAR-RV-CC 1.5920       1.0000                7 
HAR-RV-PK  0.1518     0.1598                  8 0.501 HAR-RV-PK 1.6090       eliminated         –  
HAR-RV-GK  0.1519     1.0000                  5 0.458 HAR-RV-GK 1.4940       1.0000                3 
HAR-RV-RS  0.1583     eliminated           –  0.453 HAR-RV-RS 1.6650       1.0000                8 
HAR-RV-YZ  0.1504     0.3996                  7 0.461 HAR-RV-YZ 1.5570       0.2766                5 
HAR-RV-COMB.   0.1470     1.0000                  2 0.503 HAR-RV-COMB.  1.5630       1.0000                6 

 Note: Loss functions and MCS procedure results are merged in this table. QLIKE and HMSE values are obtained by one-step-ahead rolling 
window forecasting method. MZ-R square stands for Mincer-Zarnowitz regression’s R squares. Lower the values of QLIKE and HMSE is better 
while higher the value of MZ R-square is better for the comparison of forecasts. Window size is 600 observations that is used as in-sample 
estimation. The out-of-sample consists of 2180 observations. P-value and rank results are received from the MCS procedure. Bold numbers 
show the best-performing models for each indices.  
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(Continued) 
NIKKEI   QLIKE      p-value            Rank 𝑴𝒁-𝑹𝟐 NIKKEI   HMSE      p-value            Rank 
PK  (Model-free)   0.2079     1.0000                  2 0.783 PK  (Model-free)  0.2869       1.0000                 3 
GK  (Model-free)   0.1806     1.0000                  1 0.828 GK  (Model-free)  0.1914       1.0000                 1 
RS  (Model-free)   1.0070     eliminated           – 0.743 RS  (Model-free)  0.2583       1.0000                 2 
YZ  (Model-free)   0.3027     eliminated           8 0.592 YZ  (Model-free)  10.440       eliminated          – 
HAR-RV  0.2863     0.9072                  5  0.250 HAR-RV 1.6990       0.1100                10 
HAR-RV-ONV  0.2903     0.7524                  6  0.244 HAR-RV-ONV 1.7850       0.0312                11 
HAR-RV-CC  0.2835     1.0000                  3 0.259 HAR-RV-CC 1.6020       1.0000                 4 
HAR-RV-PK  0.5478     eliminated           –  0.234 HAR-RV-PK 1.7560       1.0000                 8 
HAR-RV-GK  0.4080     eliminated           –  0.250 HAR-RV-GK 1.7240       1.0000                 7 
HAR-RV-RS  0.3754     eliminated           –  0.254 HAR-RV-RS 1.7870       1.0000                 9 
HAR-RV-YZ  0.2877     0.6694                  7  0.246 HAR-RV-YZ 1.6280       1.0000                 6 
HAR-RV-COMB.   0.2863     0.9467                  4 0.265 HAR-RV-COMB.  1.6230       1.0000                 5 

SPTSX   QLIKE      p-value           Rank 𝑴𝒁-𝑹𝟐 SPTSX   HMSE       p-value           Rank 
PK  (Model-free)   0.2150     1.0000                  2 0.631 PK  (Model-free)  0.4000       1.0000                 3 
GK  (Model-free)   0.2167     1.0000                  3 0.466 GK  (Model-free)  0.2766       1.0000                 1 
RS  (Model-free)   1.3330     eliminated           –  0.378 RS  (Model-free)  0.3477       1.0000                 2 
YZ  (Model-free)   0.1932     1.0000                  1 0.474 YZ  (Model-free)  2.1500       eliminated          – 
HAR-RV  0.2532     eliminated           –  0.272 HAR-RV 1.8270       eliminated          – 
HAR-RV-ONV  0.2175     1.0000                  4 0.262 HAR-RV-ONV 1.7780       eliminated          – 
HAR-RV-CC  0.2729     eliminated           –  0.243 HAR-RV-CC 1.7360       eliminated          – 
HAR-RV-PK  0.2405     eliminated           –  0.263 HAR-RV-PK 1.4420       1.0000                 4 
HAR-RV-GK  0.2517     eliminated           –  0.237 HAR-RV-GK 1.5550       eliminated          – 
HAR-RV-RS  0.2586     eliminated           –  0.250 HAR-RV-RS 1.7160       eliminated          – 
HAR-RV-YZ  0.2480     eliminated           – 0.248 HAR-RV-YZ 1.7200       eliminated          – 
HAR-RV-COMB.   0.2304     eliminated           – 0.273 HAR-RV-COMB.  1.5670       eliminated          – 
SPX   QLIKE      p-value            Rank 𝑴𝒁-𝑹𝟐 SPX   HMSE      p-value            Rank 
PK  (Model-free)   0.2114     1.0000                  2 0.754 PK  (Model-free)  0.3105      1.0000                  3 
GK  (Model-free)   0.2332     1.0000                  3 0.661 GK  (Model-free)  0.2131      1.0000                  1 
RS  (Model-free)   2.7350      eliminated          –  0.560 RS  (Model-free)  0.2929      1.0000                  2 
YZ  (Model-free)   0.2005     1.0000                  1 0.402 YZ  (Model-free)  5.3760      eliminated           – 
HAR-RV  0.3012     0.0070                  9  0.353 HAR-RV 3.2730      eliminated           – 
HAR-RV-ONV  0.2942     1.0000                  7  0.253 HAR-RV-ONV 3.4880      eliminated           – 
HAR-RV-CC  0.4054     1.0000                 11  0.410 HAR-RV-CC 3.1940      eliminated           – 
HAR-RV-PK  0.3334     1.0000                 10 0.439 HAR-RV-PK 1.9250      1.0000                  4 
HAR-RV-GK  0.2908     1.0000                  5  0.311 HAR-RV-GK 2.5470      eliminated           – 
HAR-RV-RS  0.2993     0.0016                  8  0.251 HAR-RV-RS 3.0710      eliminated           – 
HAR-RV-YZ  0.2934     1.0000                  6  0.355 HAR-RV-YZ 2.9860      eliminated           – 
HAR-RV-COMB.   0.2833     1.0000                  4 0.372 HAR-RV-COMB.  2.6100      eliminated           – 

Note: Loss functions and MCS procedure results are merged in this table. QLIKE and HMSE values are obtained by one-step-
ahead rolling window forecasting method. MZ-R square stands for Mincer-Zarnowitz regression’s R squares. Lower the values 
of QLIKE and HMSE is better while higher the value of MZ R-square is better for the comparison of forecasts. Window size 
is 600 observations that is used as in-sample estimation. The out-of-sample consists of 2180 observations. P-value and rank 
results are received from the MCS procedure. Bold numbers show the best-performing models for each indices.  
 
Even though the results for the group of Seven in terms of indices and criterion seem to be 

inconclusive, we can summarize the results as follows. In this sense, the HAR-RV model 

forecasts of CAC and DAX indices are improved by only overnight volatility, yet the inclusions 

of extreme range estimators do not add new information on the forecasts of realized volatility. 

However, the forecast combination of extreme range estimators does work for the CAC and 

DAX indices. Unlike the CAC and DAX stock market indices, realized volatility forecasts of 

FTSE index are improved best by the Parkinson range estimator (HAR-RV-PK). However, the 
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inclusion of more sophisticated extreme range based estimators such as Roger-Satchell and 

Yang-Zhang do not improve the baseline HAR-RV model of FTSE index. In terms of the 

FTMIB index, HAR-RV-ONV is such a promising model for all the three loss functions so that 

ONV could be considered as an important variable for the FTMIB stock market. Afterwards, 

the results of NIKKEI index show that HAR-RV-CC model outperforms the others on the 

behalf of all the loss functions. In the case of the SPTSX index, the benchmark HAR-RV model 

could be improved best by the Parkinson volatility according to QLIKE and HMSE criterion 

(while MZ R-square rejects this result). For the SPX index, the results are mixed in terms of 

the criterion. For example, HMSE and MZ R-square show that HAR-RV-PK model is the best 

model by far compared to the rest of its counterparts, whereas QLIKE is in the favour of HAR-

RV-COMB and HAR-RV-GK model. 

         An interesting findings in terms of extreme range estimators is that while traditional range 

estimators with simple formulas such as Parkinson and/or Garman-Klass have potential to 

improve the forecasts of realized volatility, the extreme range estimators derived from more 

complex formulas, namely Rogers-Satchell and Yang-Zhang generally contains no new 

information for forecasting realized volatility. All in all, when the different characteristics and 

dynamics of each stock markets are considered, it is highly unlikely to expect one single model 

is the winner against the others and therefore the rankings of best performing models are 

changeable from one market to another.   

 

3.6. Conclusion 
 
In this study, we examine whether extreme range estimators, which is derived from OHLC 

prices, contain important information for the future realized volatility in the G7 stock markets. 

Including Close-to-close, Overnight Volatility, Parkinson, Garman-Klass, Roger-Satchell, and 

Yang-Zhang estimators individually as an exogenous variable in the HAR-RV model 

framework, this work examines each estimator’s ability for a better forecasting performance of 

the future realized volatility. This exercise is conducted using rolling and recursive window 

methods on the stock markets of group of Seven. The difference between target volatility and  

volatility forecasts are measured by QLIKE, HMSE and MZ R-square loss functions. 

Afterwards, those results are tested by the MCS procedure.  

         The results show several noteworthy points. We can say that the findings of this 

forecasting exercise are inconclusive on the G7 stock markets. First of all, the model-free 
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approach (considering the estimators themselves as forecasters) significantly outperforms the 

HAR-RV-X model’s forecasts. Second, the HAR-RV model forecasts of CAC and DAX 

indices are improved by only overnight volatility, whilst the inclusions of extreme range 

estimators do not add any new information on the forecasts of realized volatility. The other 

indices (such as FTSE, FTMIB, NIKKEI, SPTSX, and SPX) could be improved by Parkinson 

and/or Garman-Klass volatility estimators if included into the plain HAR-RV model. Third, 

while the traditional range estimators derived from simple formulas such as Parkinson and 

Garman-Klass have potential to improve the forecasts of realized volatility, the extreme range 

estimators derived from more complex formulas, namely Roger-Satchell and Yang-Zhang do 

not contain any new information for forecasting realized volatility in the G7 stock markets. 

Lastly, given the different characteristics and dynamics of each stock markets, it is unrealistic 

to expect one single model outperforms others in the group of Seven and therefore the rankings 

of best performing models are changeable from one market to another and also one time period 

to another. Applying our approach proposed in this chapter to a wider groups of stock market 

prices and oil and gold prices would be a plausible avenue of future research in order to validate 

the capacity of seven range-based estimators in forecasting realized volatility within a HAR-

RV-X framework. 

         Overall, this chapter provides a new insight into the way practitioners and academics 

handle volatility forecasting. For instance, the predictive accuracy of realized volatility 

forecasts could be improved by the help of the range information. From this aspect, traditional 

extreme range estimators could be employed in the applications of the realized volatility in 

order to develop better portfolio and risk management strategies. As well as this, when the 

access to intraday frequency data is restricted, traditional extreme range estimators derived 

from the OHLC prices (which are publicly available in many cases) could be used as an 

alternative approach. This is also quite valuable for academics and practitioners in the case of 

lacking in tick-by-tick data. In the end, we should also suggest investors, practitioners, and 

academics about considering global risk factors while forecasting the future realized volatility. 

In this regard, the next chapter attempts to investigate the role of global information in 

improving the realized volatility forecasts.  
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CHAPTER 4 
 

Importance of local, regional, and global information in 

forecasting realized volatility 
                                                                                                         

 
ABSTRACT 

This study aims to investigate the importance of exogenous volatilities at improving the 

forecasting accuracy of stock market volatility. In this regard, this volatility forecasting 

exercise is conducted on the SPX, FTSE, and GDAXI stock markets using the HAR-RV model 

with a wide range of different exogenous variables (i.e. HAR-RV-X). Additionally and more 

importantly, to evaluate the forecasting results from a different perspective, we classify our 

exogenous volatilities according to different information sources, namely local, regional, and 

global. Using our specific classification method we attempt to find out which class of models 

best helps with forecasting stock market volatility. In the HAR-RV-X framework, exogenous 

variables are used in various forms including, for example, each individual exogenous variable 

separately, forecast combination, and Kitchen-Sink approach. One-day-ahead out-of-sample 

volatility forecasts are generated using the rolling window mechanism and the QLIKE, HMSE, 

and HMAE loss functions for the forecast losses are employed. To check robustness of 

forecasts, we conduct the MCS procedure and different window sizes. The results present 

several noteworthy points. First, the predictive accuracy of stock market volatility increases 

where we include the other exogenous volatilities. Second, the integration of various 

volatilities, namely combination and Kitchen-Sink models, provides stronger forecast 

performance than the models with a single exogenous variable. Third, given the 

outperformance of the global information over local and regional information, the results are 

informative to reveal the dynamics of each markets.  
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4.1. Introduction 
 
Forecasting financial volatility is a critical task in informing policy makers, investors, and 

market participants about their future risks and returns and the ways how to optimize their 

portfolios. Therefore, the accurate volatility forecasts are of interest to all of them. There exists 

a growing body of literature on generating accurate volatility forecasts. However, forecasting 

volatility accurately is still a big challenge for academics and practitioners.  

         The recent literature of volatility forecasting has been building upon the HAR-RV model. 

A great number of studies in the HAR literature concentrate on the extensions of the HAR 

model such as the realized semi-variances, jump component, asymmetries and leverage effects 

(see, among others, Barndorff-Nielsen, Kinnebrock, and Sheppard, 2010; Andersen et al. 2011; 

Sevi, 2014; Patton and Sheppard, 2015). However, a limited number of studies have been 

conducted which adds some exogenous variables to the HAR-RV model to improve the 

model’s forecasting accuracy (e.g. Peng et al., 2018; Wang, 2019; Degiannakis and Filis, 2017; 

Kambouroudis, McMillan, and Tsakou 2021). Some of those studies concentrate on the 

forecasting oil price realized volatility while a few others examine from the perspective of 

stock markets. However, this work contributes to this literature from the stock market 

perspective by forecasting the future realized volatility with the HAR-RV-X specification and 

seek to reveal the cross-market and cross-asset information flows.              

         To investigate the impact of various exogenous volatilities at improving the forecasting 

accuracy of stock market volatility, this study considers a wide range of exogenous volatilities 

classified as local, regional, and global information sources. The aim of this research is to find 

out which class of exogenous volatilities best helps with forecasting stock market volatility. In 

this regard, this volatility forecasting exercise is carried out on the SPX, FTSE, and GDAXI 

stock market indices using the HAR-RV model with a range of different exogenous variables 

(i.e. HAR-RV-X) from local, regional, and global information channels. The time span is from 

01 July 2009 to 28 May 2020. In the HAR-RV-X framework, exogenous variables are used in 

various forms including, for example, each individual exogenous variable separately, forecast 

combination, and the Kitchen-Sink method. One-day-ahead out-of-sample volatility forecasts 

are produced using the rolling window forecasting method and the QLIKE, HMSE, and HMAE 

loss functions for computing the forecast losses are employed. For further analysis, the MCS 

procedure, forecasts’ robustness checks, and the cumulative HMSE difference of the baseline 

and winning models are applied. The results present several noteworthy points. First, the 
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predictive accuracy of stock market volatility increases where we include the other exogenous 

volatilities. Second, the integration of various volatilities, namely combination and Kitchen-

Sink models, improves the forecast performance much better than the models with a single 

exogenous variable. Lastly, in our samples, general conclusion is that the global information 

channel for major stock markets exhibits superior performance compared to the channels of 

local and regional information. Indeed, given the outperformance of the global information 

over local and regional information, the results could be important to inform market 

participants about the dynamics of markets.   

         This study is organised as follows: Section 2 presents the review of related literature. In 

Section 3, the methods used in this work are introduced in more detail. Afterwards, we give 

the data description in Section 4. The empirical results and their evaluations are located in 

Sections 5. Finally, the conclusion is presented in Section 6.  

 

4.2. Literature Review 
 
As the third chapter of this thesis incorporates the baseline HAR-RV model with the extreme 

range estimators, including a wider group of exogenous variables with the so-called HAR-RV 

model is a reasonable concept to  provide more accurate volatility forecasts. Many different 

kinds of additional variables could be considered for this purpose such as the VIX, EPU, other 

stock indices, oil prices, and interest rates. Previous studies, for example, Kambouroudis and 

McMillan (2016) add the VIX and volume as additional variables to the GARCH model 

whether these two exogenous variables provide any additional forecast power in the volatility 

forecasting content or not. They find some evidence that both additional variables improve the 

volatility forecasts of the US, the UK, and France stock markets. Kanas (2013) also find 

evidence for the S&P500 index that adding VIX squared in the GARCH equation gives a 

preferred forecasting results compared to the GARCH model without VIX. Similarly, 

Kanniainen, Lin, and Yang (2014) for S&P500 and Yang and Liu (2012) for emerging markets 

prove that exogenous variables, namely the VIX index improve the conditional volatility 

models’ performance. More recently, Wang, Lu, He and Ma (2020) examine which additional 

predictors (VIX or EPU) that incorporate in the HAR-RV model do better improve the future 

volatility forecasts for 19 international stock market indices during the period of Covid-19 

pandemic. Their results show that the VIX index is more useful for improving the forecasts of 

future volatility as the VIX is superior for 12 stock markets, whereas the EPU index can 

improve forecast accuracy only for 5 market indices. As a generalized result, the idea of 
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including various exogenous variables in the literature of realized volatility takes an important 

place, especially in the HAR-RV model’s framework (e.g. Peng et al., 2018; Liu et al., 2019; 

Wang, 2019).   

         The idea of employing high frequency data to compute measures of volatility at a lower 

frequency is first suggested by Merton (1980). After the 2000s, the easy access to high 

frequency data has spurred the studies of the realized volatility. The realized volatility (RV) is 

defined as the sum of squared intraday returns and first proposed by Andersen and Bollerslev 

(1998). It is an alternative measure of daily volatility that used to generate more accurate daily 

volatility measures. Initially, a number of studies use the ARFIMA model to model and forecast 

the RV. Afterwards, Corsi (2009) points out the drawbacks of the ARFIMA-RV model, saying 

it is just a mathematical trick and does not have a clear economic interpretation, and proposed 

a new model that is the Heterogeneous Autoregressive model of the Realized Variance (HAR-

RV). The HAR-RV model is based on Heterogenous Market Hypothesis (HMH) and the recent 

literature of volatility forecasting has been thriving on it. In the HAR framework, daily realized 

volatility is modelled using as a function of past daily, weekly, and monthly components. In 

other words, it is known as an additive cascade model of different volatility components. The 

intuition behind the HAR-RV model is quite straightforward. It assumes the heterogenous 

nature of market participants, implying that the components of the HAR-RV model reflect 

shorter or longer term trading activity of market participants. 

         A large number of studies in the HAR literature concentrate on the extensions of the HAR 

model to consider the realized semi-variances, jump component, asymmetries and leverage 

effects (see, among others, Barndorff-Nielsen, Kinnebrock, and Sheppard, 2010; Andersen et 

al. 2011; Corsi and Reno, 2012; Sevi, 2014; Patton and Sheppard, 2015). There are also a 

limited number of studies adding exogenous variables to the HAR-RV model (i.e. HAR-RV-

X) to improve the model’s forecasting accuracy (e.g. Peng et al., 2018; Wang, 2019; 

Degiannakis and Filis, 2017). In this context, this area of research concentrates mainly on the 

realized volatility studies of stock market and oil price. The next paragraph in the HAR-RV-X 

framework discusses current stock market related works and then the following paragraph is 

about the volatility forecasting of oil price. 

          Peng, Chen, Mei, and Diao (2018) investigate whether the G7 countries’ stock market 

indices can improve the forecasting accuracy of Chinese stock market realized volatility or not. 

They find that the G7 stock markets can contain useful information to forecast the one-day 

ahead volatility of the Chinese stock market. They also suggest that the best performing model 
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is the Kitchen Sink model that all the G7 stock market indices are used at once in the exogenous 

part of the HAR-RV model. This study is one of the similar works to ours. As for the 

differences, their work is carried out from the perspective of Chinese stock market and consider 

only G7 stock market indices as attached component to the plain HAR-RV model. Liu, Ma, 

and Zhang (2019) extend the work of Peng et al. (2018) using twenty-seven global stock 

markets in order to forecast the Chinese stock market realized volatility. They criticise the 

Kitchen Sink model of Peng et al. (2018) by saying that the model can cause overfitting issue 

due to pushing all the global stock markets in the same model. Thereupon, they suggest 

implementing the HAR-RV-X model with time-varying parameter and various forecasting 

combination strategies to extract global stock information. To compare with the Kitchen Sink 

model, they produce 27 individual HAR-RV-X models and take a weighted average of the 

individual forecasts using the mean average, trimmed mean average, median average, and 

discount mean square prediction error. The findings document that the median combination of 

time varying HAR-RV model is the best performing for the Chinese stock market. The work 

of Liu et al. (2019) is also related to ours in the sense that they attempt to extract only global 

stock information while we consider local, regional, and global. Wang (2019) analyses the 

linkage between the CBOE VIX index and 13 stock markets of G20 countries. According to 

the findings, the VIX index as an exogenous component to the HAR-RV model can improve 

the forecasting performance in the international stock markets and, moreover, the large VIX 

exhibits a stronger forecast performance on future RV in comparison to the original VIX. Duan, 

Chen, Zeng, and Liu (2018) examine the impacts of economic policy uncertainty (EPU) and 

leverage effect on future volatility in the framework of regime switching HAR-RV (MS-HAR-

RV). The findings indicate that the MS-HAR-RV model including the EPU and leverage effect 

with regimes can provide higher forecast accuracy compared to the HAR-RV type and GARCH 

class models. Mei, Liu, Ma, and Chen (2017) investigate the impacts of realized skewness and 

kurtosis on stock market realized volatility. In their work, the realized skewness and kurtosis 

as additional variables incorporate into the HAR-RV model. Out-of-sample results for US and 

Chinese stock markets indicate that the realized skewness can improve the accuracy of 

forecasts in the middle and long term forecasting, whereas the realized kurtosis cannot enhance 

the model’s performance. Kambouroudis, McMillan, and Tsakou (2021) examine whether 

some exogenous variables, including, for example, the implied volatility, leverage effect, 

overnight returns, and volatility of realized volatility help in forecasting future realized 

volatility in 10 international stock markets. The empirical findings show that including each 
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these exogenous variables in the HAR-RV model improves the forecasting accuracy of future 

realized volatility, with the exception of the volatility of realized volatility. It is also pointed 

out that implied volatility provides stronger forecast than its other counterparts.   

         Degiannakis and Filis (2017) conduct a relatively similar study with ours, but it is on oil 

price realized volatility forecasting. They investigate cross-market volatility flows by 

categorising exogenous volatilities according to four different asset classes such as Stocks, 

Forex, Macro, and Commodities. It is pointed out that the HAR-RV model with exogenous 

volatilities exhibit better forecasting performance for oil price volatility compared to the 

baseline HAR-RV model and the best performing model is suggested as a combination of 

multiple asset classes’ volatilities. Their combination model corresponds to the Kitchen Sink 

model of this study. Ma, Wahab, and Liu (2018) examine the role of only economic policy 

uncertainty (EPU) index at improving the forecasting accuracy of crude oil futures’ realized 

volatility. They use only one exogenous variable to the HAR-RV model, but the internal 

extensions of the HAR model such as the realized semi-variances, jump component, and 

leverage effects are considered and also some thresholds for the EPU are set. The forecasting 

accuracy of those models for different horizons are evaluated by both economic and statistics 

value analysis. According to the results, the EPU achieves higher forecast accuracy than the 

baseline HAR-RV model and, moreover, the above-threshold EPU exhibits higher forecast 

performance. Yu (2019) adds the leverage effect and EPU to the HAR-RV model and find that 

considering both the EPU and leverage effect in the model can substantially help in forecasting 

the Bitcoin price volatility.  

         In short, majority of the abovementioned volatility forecasting papers related to the HAR-

RV-X model analyse the Chinese stock market and the information flow is from the western 

international stock markets towards the Chinese stock market. Also, some other related studies 

focus on the forecasting exercises of oil price realized volatility. Unlike the papers concentrate 

above, this study seeks to reveal the impacts of the cross-market and cross-asset information 

flows and our work contributes to the scarce literature of stock market realized volatility using 

the HAR-RV-X models by extending them in multiple ways. For instance, we classify our 

exogenous volatilities according to their geographical sources and mainly attempt to inform 

market participants about the impacts of information flow between the US and EU financial 

data (i.e. cross-market and cross-asset).     
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4.3. Methodology 
 

4.3.1. Kitchen-Sink approach  
 
Geographically classified exogenous volatilities such as local, regional, and global information 

are added to the baseline HAR-RV model as new explanatory variables. In the HAR-RV-X 

framework, exogenous variables are used in various forms including, for example, each 

individual exogenous variable separately, forecast combination and Kitchen-Sink approach 

that includes a sets of exogenous variables at the same time in the same model. The HAR-RV-

X model specifications for individual forecasts and Kitchen-Sink forecasts are given in the 

below Equations (1 and 2) respectively as follows: 

 

																															𝑅𝑉#/-: = 	𝛽< + 𝛽:𝑅𝑉#: + 𝛽=𝑅𝑉#= + 𝛽+𝑅𝑉#+ + 𝜷𝑿𝑿𝒕𝒅 + 𝜀#/-                       (1)                                       

 

																														𝑅𝑉#/-: = 	𝛽< + 𝛽:𝑅𝑉#: + 𝛽=𝑅𝑉#= + 𝛽+𝑅𝑉#+ + ∑ 𝜷𝒊𝑲
𝒊,𝟏 𝑿𝒊,𝒕𝒅 + 𝜀#/-                (2) 

 

In Equation 1, the exogenous component, 𝛽�𝑋#:, refers to the 𝑖#9 individual exogenous 

volatility at day 𝑡. We can obtain 13 different individual HAR-RV-X model using this formula. 

For example, the HAR-RV-GDAXI, HAR-RV-FCHI, HAR-RV-SPX, HAR-RV-VIX, HAR-

RV-GOLD, HAR-RV-BOND, HAR-RV-EPU … are obtained from the abovementioned 

Formula 1. Equation 2 implies the Kitchen-Sink models where ∑ 𝛽)¢
),- 𝑋),#: , represents the 

multi-exogenous variables. These Kitchen-Sink (KS) models used in this work can be called 

as follows: the HAR-RV-REGIONAL-KS (GDAXI+FCHI+FTMIB+STOXX), HAR-RV-

GLOBAL-KS (SPX+DJI+IXIC+VIX+WTI+GOLD), HAR-RV-LOCAL-KS 

(BOND+EPU+LIBOR), and HAR-RV-OVERALL-KS (LOCAL+REGIONAL+GLOBAL). 

The combination method simply takes the average of all the individual forecasts in groups. The 

forecast combinations are the simple average of all included forecasts, which can be calculated 

as follows: the sum of individual forecasts is divided to the numbers of individual forecasts. 

For instance, the formula in the bracket (HAR-RV-BOND + HAR-RV-EPU + HAR-RV-

LIBOR / 3)  is for the local-combination and the same technique is too applied to derive the 

local, regional and global forecast combinations. 
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4.3.2. Rolling window and loss functions 
 
The rolling window is one of the most popular methods in forecasting and therefore this study 

employs the rolling window technique in order to generate the volatility forecasts of stock 

markets. Initially, the whole sample needs to be divided into two subgroups such as the initial 

sample and out-of-sample windows. In the literature, there is no consensus on how to select an 

appropriate forecasting window. Since the main objective of this work is to evaluate the out-

of-sample performance of the models, we arbitrarily choose the initial and out-of-sample 

windows considering a length that allows the regression fit normally and obtain longer out-of-

sample period. The rolling window’s working principle does work the way that the estimation 

sample is then rolled forward by adding one new observation and dropping the most distant 

observation. In this way, the size of initial sample window used to estimate the models remains 

at a fixed length. We produce only the one-step-ahead volatility forecasts of the stock markets. 

The reason is that the forecasts more than one-step-ahead are highly likely to give poorer 

forecasts due to the lack of information of further point prediction.  

         To evaluate the out-of-sample accuracy of competing models, we select three of the most 

popular loss functions in the literature, namely quasi-Gaussian log-likelihood (QLIKE), 

heteroskedasticity adjusted mean squared error (HMSE), and heteroskedasticity adjusted mean 

absolute error (HMAE) in line with recent studies (e.g. Zhou, Pan, and Wu, 2019; Ma et al., 

2018; Liu et al, 2019).  

 

                  𝑄𝐿𝐼𝐾𝐸 = -
v
∑ [𝑙𝑜𝑔𝑅𝑉#*yz/v
#,z/- + {|e}

~

{|e}
]                                                                                (3)  

               

                  H𝑀𝑆𝐸 = -
v
∑ [1 − 𝑅𝑉#*/~z/v
#,z/- 𝑅𝑉#*]*                                                                              (4)  

               

                  H𝑀𝐴𝐸 = -
v
∑ |z/v
#,z/- 1 − {|e}

~

{|e}
|						                                                                          (5) 

   

where 𝑅𝑉#*y  denotes the out-of-sample volatility forecast from competing models and 𝑅𝑉#* is a 

proxy for true market volatility. 𝜏 is the number of out-of-sample forecasting days. Each one 

of the loss functions have a specific calculation method in order to measure the forecast error. 

According to Patton (2011), these three well-established loss functions can provide consistent 

rankings for competing volatility models in the case of a noisy volatility proxy. 
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4.4. Data Description  
 
Daily realized variance series are collected from the Oxford-Man Institute’s Quantitative 

Finance Realized Library.17 According to the seminal paper of Liu, Patton, and Sheppard 

(2015), no one measure significantly outperforms the 5-minute realized variance among a set 

of 400 different volatility estimators. Therefore, we use 5-min realized variance series, which 

is a widely accepted robust volatility measure. In this study, we employ a wide range of 

different financial and economic data. For instance, the eight international stock market indices 

included are: FTSE 100 (UK), GDAXI (Germany), FCHI (France), FTMIB (Italy), 

STOXX50E (Euro Stox 50), SPX (S&P 500), DJI (Dow Jones Industrial Average), and IXIC 

(Nasdaq 100). The reason why they are chosen is that we are primarily interested in the 

information flow between the largest and most active American and European stock markets. 

Additionally, we use the Federal Reserve Bank of St. Louis (FRED) database in order to obtain 

the data of the CBOE volatility index (VIX), the Crude Oil Prices (WTI; West Texas 

Intermediate), the CBOE Gold ETF Volatility Index, the UK and US Government 10-year 

Treasury Bond Yields, and the London 12-month Interbank offered rates based on POUND 

(LIBOR-POUND), USD (LIBOR-USD), and EURO (LIBOR-EURO). The volatility index of 

the GDAXI and Germany Government 10-year Treasury Bond Yield are extracted using the 

webpage ‘investing.com’. The indices of UK and US economic policy uncertainty (EPU) are 

provided by the webpage of the Economic Policy Uncertainty.18  

         In this study, the time interval of full sample is from 01 July 2009 to 10 April 2020. We 

are restricted to this time span and also the abovementioned variables due to the scarcity of 

daily frequency data. The different stock markets have the different trading days. Therefore, 

we need to align our dataset to the days that all the markets have active trading. To do this, the 

unmatched days (by any of the series) have to be omitted. In other words, each row of all the 

series has to match the same date point. After carrying out this data cleaning, we obtain the 

2600 observations of the twenty series, which are aligned to the same date points in rows. 

 
 

                                                
 
17 https://realized.oxford-man.ox.ac.uk/ 
18https://www.policyuncertainty.com/ 
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4.Table 1    Descriptive statistics of the series  

   Mean Std. Dev.    Skew. Ex. Kurt. Jarque-Bera    Q(5)    ADF 
          
FTSE 9.91E-05 0.00024 14.986*** 314.99*** 1.09E+07*** 2602.15*** -7.975*** 
GDAXI 0.000110 0.00017 7.7620*** 87.446*** 863110*** 5541.95*** -7.163*** 
FCHI 0.000112 0.00020 10.123*** 150.49*** 2.52E+06*** 5376.08*** -7.934*** 
FTMIB 0.000122 0.00017 6.2168*** 58.473*** 390868*** 4748.29*** -6.651*** 
STOXX50E 0.000131 0.00026 10.683*** 156.23*** 2.71E+06*** 4174.94*** -9.508*** 
SPX 8.31E-05 0.00021 10.834*** 154.84*** 2.67E+06*** 4770.71*** -9.261*** 
DJI 8.50E-05 0.00024 12.721*** 224.01*** 5.55E+06*** 3718.72*** -9.684*** 
IXIC 7.45E-05 0.00019 15.448*** 353.84*** 1.37E+07*** 4368.95*** -9.128*** 
VIX 17.908 7.3291 2.7481*** 13.057*** 21950.5*** 11127.8*** -5.664*** 
OIL -7.52E-06 0.01265 1.4177*** 45.893*** 231243*** 104.958*** -10.28*** 
GOLD  17.555 5.2736 1.0482*** 2.0058*** 920.793*** 11536.8*** -4.377*** 
BOND -0.00109 0.03915 -0.8040*** 33.515*** 123090*** 15.8668*** -9.577*** 
UKEPU 331.66 206.34  2.4136*** 14.328*** 25003.1*** 4862.01*** -4.916*** 
LIBOR -0.00042 0.01175 -1.0463*** 85.886*** 806962*** 255.72*** -8.677*** 
VIXDAX  20.132 7.1466  2.7106*** 13.832*** 24122.3*** 11337.9*** -5.179*** 
BONDDAX -0.00156 0.0438  0.1837*** 2.5038*** 699.622*** 17.0596*** -16.16*** 
LIBOREU -0.00066 0.0074  3.4517*** 94.700*** 984961*** 566.049*** -6.561*** 
USEPU  110.53 78.832  3.0009*** 13.736*** 24558.5*** 6538.77*** -3.510*** 
BONDUS -0.00063 0.0292  0.1477*** 32.964*** 118726*** 60.6513*** -8.871*** 
LIBORUSD -0.00032 0.0118 -4.3787*** 104.06*** 1.19E+06*** 554.636*** -8.273*** 

Notes: Asterisk *,**, and *** denote rejections of null hypothesis at 10%, 5%, and 1% significance levels, 
respectively. The null hypothesis of the third and fourth moments are “Skewness = 0” and “Excess Kurtosis = 3”. 
 
 
Table 1 indicates the descriptive statistics of realized variance series of eight international stock 

markets, VIX, VIX-GDAXI, Oil Prices, Gold Volatility Index, UK, US and Germany 10-year 

Treasury Bond Yield, UK and US Economic Policy Uncertainty Index, and London 12-month 

Interbank offered rates (LIBOR-POUND, USD, and EURO). According to this table, all the 

series are significantly skewed and leptokurtic at the 99 per cent confidence level, meaning that 

each series has fat-tail distribution. The Jarque-Bera statistic values show the non-normality of 

all the series at the 99% confidence level. The Ljung-Box statistic for serial correlation 

indicates that the null hypothesis of no autocorrelation up to the 5th order are rejected for all the 

series, suggesting the existence of autocorrelation. Lastly, the Augmented Dickey-Fuller 

(ADF) test statistic values indicate that all the series are stationary because the null hypothesis 

of a unit root is rejected for all the series. The line graphs are also plotted in Figure 1.  
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 4.Figure 1   Line graphs of all the series 
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4.5. Empirical Results 
 
In this work, a wide range of exogenous variables are added to the baseline HAR-RV model to 

examine whether an exogenous variable(s) improves the predictability of stock market 

volatility or not. To do this, we categorise our sample exogenous variables in respect to their 

information sources such as local, regional, and global. Due to time and data limitation, this 

exercise is conducted only on several stock markets that are the SPX, FTSE, and GDAXI. The 

classification of additional variables are as follows. Firstly, the BOND, LIBOR, and EPU, 

which are the financial data of specific markets, are determined to investigate the effects of 

local information on the future volatility of the stock markets. Secondly, the major European 

stock markets (FTSE, GDAXI, FCHI, FTMIB, and STOXX50E) are assigned to the regional 

information and lastly the global information is represented by the SPX, DJI, IXIC, VIX, OIL, 

and GOLD. 

 

4.5.1. In sample evaluation 
 
Since the main objective of this study is to assess the out-of-sample accuracy of the forecasting 

models, we prioritise the out-of-sample performance of the models rather than their in-sample 

fit. It is also worth to point out that high accuracy of model in the in-sample does not necessarily 

mean that it will exhibit the same performance in the out-of-sample. Therefore, we give a brief 

in-sample analysis here and then focus more on the out-of-sample performance of the 

competing models.  

         Tables 2, 3, and 4 indicate the full sample estimation results of the HAR-RV-X models. 

For clarity, “HAR-RV-“ is the baseline model and the latter denotes an exogenous variable 

added to the model (e.g. HAR-RV-SPX). We estimate the HAR-RV-X model using OLS 

method, which is based on the Newey-West/Bartlett correction allowing for correlation up to 

the order of 5. Generally speaking, at the 99 per cent significance level, the daily, weekly and 

exogenous components of the HAR-RV-X models for the SPX and GDAXI are positive and 

statistically significant. Most of the monthly components for all the three markets are 

insignificant. The daily components are insignificant only for the FTSE. According to the 

Tables, an exogenous variable in the models seems to have a positive impact on the volatility 

of the SPX, FTSE, and GDAXI stock markets. In terms of the models’ goodness-of-fit, the 

adjusted R-squares seem normal, which are higher than 0.35, 0.50, and 60, respectively for the  

FTSE, SPX, and GDAXI. One point is that when more than one exogenous variable is added 
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to the HAR-RV-X model (e.g. HAR-RV-GLOBAL and HAR-RV-

REGIONAL+GLOBAL+LOCAL), the adjusted R-squares have risen relatively. In other 

words, the new included explanatory variables relatively contribute to the dependent variable, 

meanwhile we need to be careful about the numbers of new exogenous variables due to the 

possibility of the overfitting issue. According to the results, there is a positive sign shows that 

the majority of exogenous variables add extra information to the baseline models.  
 

4.Table 2  

                  Full sample volatility estimation results of HAR-RV-X models for the S&P 500 stock market 

Models 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝜷𝑿                 𝑨𝒅𝒋.𝑹𝟐 
HAR-RV (Baseline) 1.48E-05***  0.292***  0.593*** -0.065          -                    0.53 
REGIONAL INFORMATION                                                                                                                                                                                                 . 
HAR-RV-GDAXI  8.06E-06**  0.229***  0.548*** -0.076***  0.151***                    0.54 
HAR-RV-FCHI  9.55E-06*  0.220***  0.533*** -0.074  0.151***                    0.54 
HAR-RV-FTMIB  2.10E-06  0.222***  0.547*** -0.074  0.188**                    0.54 
HAR-RV-STOX  9.49E-06**  0.196**  0.548***  0.068  0.131                    0.54 
HAR-RV-FTSE  1.34E-05***  0.238***  0.583*** -0.076  0.077                    0.53 
GLOBAL INFORMATION                                                                                                                                                                                                                                      .  
HAR-RV-DJI  1.42E-05***  0.732***  0.547*** -0.058 -0.385***                    0.54 
HAR-RV-IXIC  1.31E-05***  0.087  0.545*** -0.042  0.277                    0.54 
HAR-RV-VIX -0.00011***  0.212***  0.521*** -0.301**  9.33E-06***                    0.56 
HAR-RV-WTI  1.50E-05***  0.282***  0.581*** -0.046 -0.001***                    0.54 
HAR-RV-GOLD -1.21E-05  0.288***  0.587*** -0.090  1.70E-06***                    0.53 
LOCAL INFORMATION                                                                                                                                                                                                                                      . 
HAR-RV-BOND  1.49E-05***  0.287*** 0.598*** -0.067** -0.0001                    0.53 
HAR-RV-USEPU  1.03E-05*  0.291*** 0.594*** -0.081  5.24E-08                    0.53 
HAR-RV-LIBOR  1.44E-05***  0.288*** 0.597*** -0.063 -0.0007                    0.53 
 
                                              	
                                       𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕       𝜷𝟏        𝜷𝟐                𝜷𝟑     𝜷𝑮𝑫𝑨𝑿𝑰     𝜷𝑭𝑪𝑯𝑰    𝜷𝑭𝑻𝑴𝑰𝑩     𝜷𝑺𝑻𝑶𝑿𝑿     𝜷𝑭𝑻𝑺𝑬                         𝑨𝒅𝒋. 𝑹𝟐                                         
HAR-RV-REGIONAL 2.02e-06    0.191**   0.547***   -0.074   0.013     -0.064      0.164        0.075       0.013                            0.54 
 
                                       𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕       𝜷𝟏        𝜷𝟐                  𝜷𝟑          𝜷𝑫𝑱𝑰        𝜷𝑰𝑿𝑰𝑪       𝜷𝑽𝑰𝑿                𝜷𝑶𝑰𝑳              𝜷𝑮𝑶𝑳𝑫           𝑨𝒅𝒋.𝑹𝟐                                                                                          
HAR-RV-GLOBAL        -9.52E-05***  0.270   0.446***   -0.247** -0.211**  0.233    1.02E-05***   -0.001***   -2.44E-06*      0.57         
 
                                       𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕          𝜷𝟏             𝜷𝟐                   𝜷𝟑            𝜷𝑩𝑶𝑵𝑫           𝜷𝑬𝑷𝑼             𝜷𝑳𝑰𝑩𝑶𝑹                                  𝑨𝒅𝒋. 𝑹𝟐 
HAR-RV-LOCAL 1.13E-05**     0.286***  0.599***     -0.076       -4.84E-05      3.82E-08      -0.0006                                   0.53 
 
                                       𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕           𝜷𝟏              𝜷𝟐            𝜷𝟑    𝜷𝑮𝑫𝑨𝑿𝑰  𝜷𝑭𝑪𝑯𝑰     𝜷𝑭𝑻𝑴𝑰𝑩  𝜷𝑺𝑻𝑶𝑿𝑿     𝜷𝑭𝑻𝑺𝑬      𝜷𝑫𝑱𝑰     𝜷𝑰𝑿𝑰𝑪 
HAR-RV-LOCAL+ -8.42E-05***  0.164  0.406***  -0.221**  -0.080   0.041      0.129       0.018        0.052    -0.196*  0.256*      ⇒ 
REGIONAL+GLOBAL               𝜷𝑽𝑰𝑿              𝜷𝑶𝑰𝑳            𝜷𝑮𝑶𝑳𝑫          𝜷𝑩𝑶𝑵𝑫         𝜷𝑬𝑷𝑼         𝜷𝑳𝑰𝑩𝑶𝑹                                              𝑨𝒅𝒋.𝑹𝟐                                         
 ⇒				9.87E-06***   -0.001***   -3.19E-06*   0.0002      -3.31E-08    -0.0004                                                 0.58 

Notes: 𝛽-, 𝛽* and 𝛽´ are the daily, weekly, and monthly components of the HAR-RV model. 𝜷� denotes the 
X (exogenous) variable that is named after within the first column. Asterisk *,**, and *** denote rejections of 
null hypothesis at 10%, 5%, and 1% significance levels, respectively.  
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4.Table 3 

                   Full sample volatility estimation results of HAR-RV-X models for the FTSE 100 stock market 
Models 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝜷𝑿                 𝑨𝒅𝒋.𝑹𝟐 
HAR-RV (Baseline)  2.01E-05***  0.772*** -0.017  0.041          -                    0.35 
REGIONAL INFORMATION                                                                                                                                                                                                 . 
HAR-RV-GDAXI  9.06E-06*** -0.024  0.621*** -0.018  0.296***                    0.37 
HAR-RV-FCHI  1.29E-05*** -0.027  0.601*** -0.011  0.270***                    0.37 
HAR-RV-FTMIB  5.42E-06  0.0002  0.648*** -0.003  0.241***                    0.37 
HAR-RV-STOX  1.11E-05*** -0.211***  0.611***  0.018  0.353***                    0.38 
GLOBAL INFORMATION                                                                                                                                                                                                                                      .  
HAR-RV-SPX  2.06E-05*** -0.082**  0.530***  0.031  0.371***                    0.39 
HAR-RV-DJI  2.07E-05*** -0.062  0.623***  0.013  0.252**                    0.38 
HAR-RV-IXIC  1.84E-05*** -0.028  0.537***  0.038  0.354***                    0.39 
HAR-RV-VIX -0.00012***  0.011  0.626*** -0.249*  1.06E-05***                    0.38 
HAR-RV-WTI  2.02E-05***  0.027  0.769*** -0.002 -0.001                    0.35 
HAR-RV-GOLD -3.31E-05**  0.037  0.756*** -0.069  3.44E-06***                    0.36 
LOCAL INFORMATION                                                                                                                                                                                                                                      . 
HAR-RV-BOND  2.01E-05***  0.019 0.809*** -0.038 -0.0005                    0.36 
HAR-RV-UKEPU  3.73E-05**  0.044 0.772***  0.008 -6.08E-08                    0.35 
HAR-RV-LIBOR  2.06E-05***  0.044 0.763*** -0.014  0.0005                    0.35 
 
                                              	
                                       𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕         𝜷𝟏               𝜷𝟐                𝜷𝟑         𝜷𝑮𝑫𝑨𝑿𝑰         𝜷𝑭𝑪𝑯𝑰       𝜷𝑭𝑻𝑴𝑰𝑩       𝜷𝑺𝑻𝑶𝑿𝑿                       𝑨𝒅𝒋.𝑹𝟐                                         
HAR-RV-REGIONAL 6.14e-06       -0.174**     0.593***     0.011       0.136*       -0.074        0.065         0.268                           0.37 
 
                                       𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕          𝜷𝟏           𝜷𝟐            𝜷𝟑       𝜷𝑺𝑷𝑿         𝜷𝑫𝑱𝑰        𝜷𝑰𝑿𝑰𝑪      𝜷𝑽𝑰𝑿            𝜷𝑶𝑰𝑳        𝜷𝑮𝑶𝑳𝑫       𝑨𝒅𝒋. 𝑹𝟐                                                                                          
HAR-RV-GLOBAL        -7.03E-05*** -0.062*  0.436*** -0.101  0.507**  -0.289**  0.119  7.15E-06***  -0.0008  -6.76E-07   0.41 
 
                                       𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕          𝜷𝟏             𝜷𝟐                   𝜷𝟑            𝜷𝑩𝑶𝑵𝑫           𝜷𝑬𝑷𝑼             𝜷𝑳𝑰𝑩𝑶𝑹                                  𝑨𝒅𝒋. 𝑹𝟐 
HAR-RV-LOCAL 3.84E-05**     0.025      0.800***       -0.008       -0.0006        -6.23E-08       0.0007                                    0.36 
 
                                       𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕           𝜷𝟏              𝜷𝟐            𝜷𝟑    𝜷𝑮𝑫𝑨𝑿𝑰  𝜷𝑭𝑪𝑯𝑰     𝜷𝑭𝑻𝑴𝑰𝑩  𝜷𝑺𝑻𝑶𝑿𝑿     𝜷𝑺𝑷𝑿      𝜷𝑫𝑱𝑰     𝜷𝑰𝑿𝑰𝑪 
HAR-RV-LOCAL+ -6.63E-05***  -0.209***  0.473**  -0.089   0.022   -0.196**  0.049   0.240***  0.328*  -0.159   0.133      ⇒ 
REGIONAL+GLOBAL               𝜷𝑽𝑰𝑿              𝜷𝑶𝑰𝑳            𝜷𝑮𝑶𝑳𝑫          𝜷𝑩𝑶𝑵𝑫         𝜷𝑬𝑷𝑼         𝜷𝑳𝑰𝑩𝑶𝑹                                              𝑨𝒅𝒋.𝑹𝟐                                         
 ⇒				6.96E-06***   -0.0006     -6.17E-07      -0.0005     -2.32E-08      0.0005                                                 0.42 

Notes: 𝛽-, 𝛽* and 𝛽´ are the daily, weekly, and monthly components of the HAR-RV model. 𝜷� denotes the 
X (exogenous) variable that is named after within the first column. Asterisk *,**, and *** denote rejections of 
null hypothesis at 10%, 5%, and 1% significance levels, respectively.  
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4.Table 4 

                               Full sample volatility estimation results of HAR-RV-X models for the GDAXI stock market 
Models 𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝜷𝑿                 𝑨𝒅𝒋.𝑹𝟐 
HAR-RV (Baseline)  1.39E-05***  0.465***  0.386***   0.020          -                    0.60 
REGIONAL INFORMATION                                                                                                                                                                                                 . 
HAR-RV-FCHI  1.41E-05***  0.412***  0.374***   0.026  0.057                    0.61 
HAR-RV-FTMIB  7.95E-06  0.325***  0.369***   0.024  0.185*                    0.61 
HAR-RV-STOX  1.42E-05***  0.297**  0.366***   0.041  0.136                    0.62 
HAR-RV-FTSE  1.46E-05***  0.399***  0.383***   0.021  0.068                    0.61 
GLOBAL INFORMATION                                                                                                                                                                                                                                      .  
HAR-RV-SPX  1.79E-05***  0.295***  0.323***   0.063  0.203***                    0.63 
HAR-RV-DJI  1.59E-05***  0.363***  0.359***   0.044  0.112                    0.62 
HAR-RV-IXIC  1.55E-05***  0.279***  0.303***   0.100  0.257***                    0.64 
HAR-RV-VIX -6.84E-05***  0.399***  0.321***  -0.147  6.46E-06***                    0.63 
HAR-RV-WTI  1.39E-05***  0.460***  0.371***   0.039 -0.001**                    0.61 
HAR-RV-GOLD -2.30E-05**  0.455***  0.378***  -0.033  2.56E-06***                    0.61 
LOCAL INFORMATION                                                                                                                                                                                                                                      . 
HAR-RV-BOND  1.38E-05***  0.464*** 0.388***   0.018 -5.23E-05                    0.61 
HAR-RV-VIXDAX  -0.00011***  0.375*** 0.312***  -0.225*  8.45E-06***                    0.63 
HAR-RV-LIBOR  1.50E-05***  0.471*** 0.378***   0.018  0.001                    0.61 
 
                                              	
                                       𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕       𝜷𝟏            𝜷𝟐                𝜷𝟑         𝜷𝑭𝑪𝑯𝑰     𝜷𝑭𝑻𝑴𝑰𝑩    𝜷𝑺𝑻𝑶𝑿𝑿     𝜷𝑭𝑻𝑺𝑬                                   𝑨𝒅𝒋.𝑹𝟐                                         
HAR-RV-REGIONAL 8.04e-06*   0.300***  0.381***   -0.036      -0.177       0.165*      0.194      -0.033                                     0.62 
 
                                       𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕       𝜷𝟏            𝜷𝟐             𝜷𝟑     𝜷𝑺𝑷𝑿       𝜷𝑫𝑱𝑰       𝜷𝑰𝑿𝑰𝑪           𝜷𝑽𝑰𝑿            𝜷𝑶𝑰𝑳        𝜷𝑮𝑶𝑳𝑫    𝑨𝒅𝒋.𝑹𝟐                                                                                          
HAR-RV-GLOBAL        -4.00E-05** 0.260*** 0.232*** -0.002  0.467** -0.386*** 0.170* 3.23E-06** -0.0008*  1.12E-06** 0.66      
 
                                       𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕          𝜷𝟏             𝜷𝟐                   𝜷𝟑                𝜷𝑩𝑶𝑵𝑫           𝜷𝑽𝑰𝑿𝑫𝑨𝑿             𝜷𝑳𝑰𝑩𝑶𝑹                                  𝑨𝒅𝒋.𝑹𝟐 
HAR-RV-LOCAL -0.0001***     0.379***  0.306***  -0.231**    -5.63E-05      8.53E-06***    0.001                                    0.63 
 
                                       𝑪𝒐𝒏𝒔𝒕𝒂𝒏𝒕         𝜷𝟏           𝜷𝟐            𝜷𝟑       𝜷𝑭𝑻𝑺𝑬    𝜷𝑭𝑪𝑯𝑰     𝜷𝑭𝑻𝑴𝑰𝑩  𝜷𝑺𝑻𝑶𝑿𝑿   𝜷𝑺𝑷𝑿       𝜷𝑫𝑱𝑰        𝜷𝑰𝑿𝑰𝑪 
HAR-RV-LOCAL+ -8.69E-05*** 0.261** 0.233*** -0.092   -0.051    -0.266      0.140     0.124    0.402*  -0.313**   0.173*      ⇒ 
REGIONAL+GLOBAL               𝜷𝑽𝑰𝑿              𝜷𝑶𝑰𝑳            𝜷𝑮𝑶𝑳𝑫          𝜷𝑩𝑶𝑵𝑫         𝜷𝑽𝑰𝑿𝑫𝑨𝑿           𝜷𝑳𝑰𝑩𝑶𝑹                                              𝑨𝒅𝒋. 𝑹𝟐                                         
 ⇒				8.88E-07         -0.0007**    5.09E-07     2.04E-05    5.48E-06***    0.0008                                            0.68 

Notes: 𝛽-, 𝛽* and 𝛽´ are the daily, weekly, and monthly components of the HAR-RV model. 𝜷� denotes the 
X (exogenous) variable that is named after within the first column. Asterisk *,**, and *** denote rejections of 
null hypothesis at 10%, 5%, and 1% significance levels, respectively.  
 
 
4.5.2. Out-of-sample evaluation 
  
The whole sample, which is 2600 trading days, is divided into two subgroups: initial sample 

and out-of-sample windows. The initial sample period has a fixed length, 400 observations. 

This is the fact that the initial sample accuracy does not necessarily affect the out-of-sample 

accuracy. Therefore, we arbitrarily choose the 400 observations considering the length at least 

one year period to let the regression fit normally and obtain a longer out-of-sample period. This 

is because the main objective of this work is to evaluate the out-of-sample performance of the 
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models. The length of out-of-sample is 2200. Defining the initial and out-of-sample periods, 

we apply the rolling window method to produce the one-step-ahead volatility forecasts of the 

stock markets. The rolling window methodology works the way that the estimation sample is 

then rolled forward by adding one new observation and dropping the most distant observation. 

In this way, the size of initial sample window used to estimate the models remains at a fixed 

length. To evaluate the out-of-sample accuracy of the HAR-RV-X models, we apply three 

different well established loss functions, namely, QLIKE, HMSE, and HMAE. The MCS 

procedure that identifies the set of the best models is employed for the further analysis of the 

predictive ability of competing models. For the robustness check, we repeat this forecasting 

exercise under two more alternative forecasting windows (e.g. 200 and 600 observations).  

         Essentially, we investigate the impacts of information flow between the EU and US stock 

markets. The exogenous volatilities are sorted according to our specific classification, which 

is called as local, regional, and global. More precisely, the exogenous variables; BOND, EPU, 

VIXDAX, and LIBOR represent the local information. In a similar vein, the EU stock market 

indices (GDAXI, FCHI, FTMIB, STOXX50E, and FTSE) refer to the regional information. 

Lastly, the data of US (SPX, DJI, IXIC, VIX, OIL, and GOLD) are employed to understand 

the role of global information. Our distinctive classification investigates how important the 

other exogenous volatilities are at improving the predictive accuracy of the stock markets. In 

this regard, a wide range of exogenous variables are added to the baseline HAR-RV model. 

Exogenous variables (in the HAR-RV-X model) are used in various forms including, for 

example, each individual exogenous variable (separately), forecast combination (simple 

average of individual forecasts for groups), and Kitchen-Sink model (all additional variables 

included at once in the model).  

 

4.5.3. Overall findings of loss functions and MCS procedure  
 
Tables 5, 6, and 7 show the out-of-sample one-step-ahead rolling windows forecasting and the 

MCS results of competing models for the SPX, FTSE, and GDAXI stock market indices 

respectively. This exercise is performed for the aforementioned three major stock market 

indices in order to strengthen and also enrich our work. The results of the loss functions and 

the MCS test are merged in the lined columns. The first columns are the loss functions that are 

calculated as the difference between proxy measure and forecast. The second and third columns 

are about the MCS procedure that indicates the p-value and the ranking of the MCS. The 

winners are selected by considering both the loss functions and the MCS procedure. 
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Afterwards, the evaluations and discussions of competing models for each indices are given in 

the same section sequentially.  

 
4.Table 5 

 Out-of-sample 1-step-ahead rolling window forecasting and MCS results for SPX (Window size:400) 
S&P 500    QLIKE      p-value  Rank HMSE       p-value  Rank HMAE        p-value       Rank 
    
HAR-RV (BASELINE MODEL) -8.9981     0.0052    18 2.7107     0.0240    14 1.0334     eliminated    – 
    
REGIONAL INFORMATION      
HAR-RV-GDAXI -8.9977     1.0000    12 2.3973     0.0124    19 0.9838     0.0016          11 
HAR-RV-FCHI -8.9672     1.0000    13 2.5514     1.0000    12 1.0060     0.0040            9     
HAR-RV-FTMIB -8.9797     1.0000    10 2.5762     0.0204    15 1.0072     0.0042            8     
HAR-RV-STOXX50E -8.9627     1.0000      6 2.6847     1.0000      9 1.0257     0.0030          10     
HAR-RV-FTSE -8.9771     1.0000    16 2.8616     0.0170    17 1.0433     eliminated     – 
REGIONAL KITCHEN-SINK -8.8571     1.0000    15 2.7692     0.0068    21 1.0186     0.0000          13 
REGIONAL COMBINATION -9.0060     0.0010    20 2.5525     0.0138    18 1.0067     0.0008          12     
 
GLOBAL INFORMATION    

   

HAR-RV-DJI -8.9656     1.0000    17 2.3077     0.0030    22 0.9972     0.0000          14     
HAR-RV-IXIC -8.8754     1.0000      2 2.2060     1.0000      3 0.9579     0.0452            4     
HAR-RV-VIX -7.2554     1.0000      8 2.6734     1.0000      2 1.0338     0.1990            2     
HAR-RV-WTI -8.9461     1.0000      5 2.8192     0.0286    10 1.0344     eliminated     – 
HAR-RV-GOLD -8.9831     1.0000    11 2.6567     1.0000      6 1.0085     0.0106            5     
GLOBAL KITCHEN-SINK -7.7278     1.0000      3 2.8071     1.0000      4 1.0390     0.0674            3     
GLOBAL COMBINATION  -9.0271     1.0000      1 1.7009     1.0000      1 0.8670     1.0000            1 
 
LOCAL INFORMATION 

   

HAR-RV-BOND -8.6652     1.0000      9 2.7160     0.0104    20 1.0367     eliminated     – 
HAR-RV-USEPU -8.9961     0.0002    22 2.9241     1.0000    11 1.0620     eliminated     – 
HAR-RV-LIBOR -8.9810     0.0032    19     2.9549     1.0000      7 1.0584     eliminated     – 
LOCAL KITCHEN-SINK -8.8856     1.0000      7 3.0304     1.0000    13 1.0777     eliminated     – 
LOCAL COMBINATION  -9.0002     0.0002    21     2.7185     1.0000      5 1.0357     0.0042            7 
    
OVERALL INFORMATION    
OVERALL KITCHEN-SINK -8.2101     1.0000      4 3.3937     0.0202    16 1.1565     eliminated     – 
OVERALL COMBINATION   -8.9664     1.0000    14 2.1672     1.0000      8 0.9529     0.0080            6 

Note: Bold row in the table is the winner model with the smallest loss functions, unit p-values, and highest 
MCS ranks.  
 
 
The objective of the MCS test is to investigate the forecasting accuracy of an initial set of 

competing models by the help of a specific elimination algorithm. The elimination algorithm 

examines, at a given level of confidence,19 which group of models survive. The poorly 

predictive model(s) are removed from the initial set of competing models, which are labelled 

as ‘eliminated’ in the below Tables. There are six different statistics for specifying the set of 

                                                
 
19 The significance level is defined as 𝛼 = 0.2.  
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superior models. We choose the range statistic among them according to suggestion by Hansen 

et al. (2003). The superior predicting models are selected according to the common sense of 

loss functions and MCS ranks. The point for interpreting the results is that the minimum values 

of loss functions are supposed to have higher p-values (unit p-value) and smaller rankings, 

indicating often superior predicting models. If the results of the loss functions and MCS totally 

contradict each other, the findings could be suspicious (but small changes do not necessarily 

matter).  

 
4.Table 6 

            Out-of-sample 1-step-ahead rolling window forecasting and MCS results for FTSE (Window size:400) 
FTSE 100   QLIKE      p-value  Rank HMSE       p-value  Rank HMAE        p-value       Rank 
    
HAR-RV (BASELINE MODEL) -8.5838     0.0000    20 2.3436     0.0842    16 0.9087     eliminated     – 
    
REGIONAL INFORMATION      
HAR-RV-GDAXI -8.5947     0.4578      9 2.1983     1.0000      6 0.8341     eliminated     – 
HAR-RV-FCHI -8.4747     0.8848      4 1.8077     1.0000      7 0.7933     0.4756            5     
HAR-RV-FTMIB -8.5993     0.5268      6 1.8782     1.0000    10 0.8056     0.3862            6     
HAR-RV-STOXX50E -8.5166     0.1938    12 1.9507     1.0000    12 0.8369     eliminated     – 
REGIONAL KITCHEN-SINK  -8.5866     0.4022    10 2.1549     1.0000      8 0.8318     eliminated     – 
REGIONAL COMBINATION  -8.6082     0.7980      5 1.8041     0.0000      9 0.8028     0.3520            7     
 
GLOBAL INFORMATION    

   

HAR-RV-SPX -8.6003     0.0110    17 2.5611     0.0244    21 0.8773     eliminated     – 
HAR-RV-DJI -8.5810     0.1988    11 2.5441     eliminated 0.8943     eliminated     – 
HAR-RV-IXIC -8.6081     0.1052    13 2.4727     1.0000    15 0.8647     eliminated     – 
HAR-RV-VIX -7.7259     0.4862      8 1.7674     1.0000      4 0.7546     0.7306            4     
HAR-RV-WTI -8.5527     0.0002    19 2.4896     0.0286    20 0.9262     eliminated     – 
HAR-RV-GOLD -8.3386     0.0734    15 1.4750     1.0000      2 0.7434     0.9872            2     
GLOBAL KITCHEN-SINK  -8.2100     0.4950      7 1.1990     1.0000      1 0.7034     1.0000            1     
GLOBAL COMBINATION  -8.6326     1.0000      1 1.7744     1.0000      3 0.7568     0.9094            3 
 
LOCAL INFORMATION 

   

HAR-RV-BOND -8.5381     0.0912    14 2.4231     0.0410    19 0.9378     eliminated     – 
HAR-RV-UKEPU -8.5759     0.0004    18 2.2753     1.0000    14 0.8826     eliminated     – 
HAR-RV-LIBOR -8.5843     0.0000    21     2.3346     0.0774    17 0.9045     eliminated     – 
LOCAL KITCHEN-SINK  -8.4818     0.0294    16 2.2989     0.0542    18 0.9177     eliminated     – 
LOCAL COMBINATION   -8.5464     0.0000    22     2.2336     1.0000    13 0.8895     eliminated     – 
    
OVERALL INFORMATION    
OVERALL KITCHEN-SINK  -6.6819     0.9970      2 1.8931     1.0000    11 0.8220     0.0036            9 
OVERALL COMBINATION   -8.6358     0.9312      3 1.7861     1.0000      5 0.7878     0.1076            8 

Note: Bold row in the table is the winner model with the smallest loss functions, unit p-values, and highest 
MCS ranks.   
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4.Table 7 

Out-of-sample 1-step-ahead rolling window forecasting and MCS results for GDAXI (Window size:400) 
GDAXI   QLIKE      p-value  Rank HMSE       p-value  Rank HMAE        p-value       Rank 
    
HAR-RV (BASELINE MODEL) -8.4787     0.0012    16 0.8228     0.0098    18 0.5974     0.0014          18 
    
REGIONAL INFORMATION      
HAR-RV-FCHI -8.4767     1.0000    15 0.8154     1.0000    16 0.5958     1.0000          17     
HAR-RV-FTMIB -8.4137     1.0000      3 0.8092     1.0000    12 0.5927     1.0000          12     
HAR-RV-STOXX50E -8.4664     0.0000    20 0.8161     1.0000    14 0.5927     1.0000          13 
HAR-RV-FTSE -8.4513     0.0000    21 0.8562     0.0080    19 0.6018     0.0002          22 
REGIONAL KITCHEN-SINK   -8.4643     1.0000    11 0.8805     0.0004    22 0.6106     0.0004          20 
REGIONAL COMBINATION  -8.4724     0.0002    19 0.8140     1.0000    17 0.5933     1.0000          15     
 
GLOBAL INFORMATION    

   

HAR-RV-SPX -8.4790     1.0000    12 0.9644     1.0000      9 0.6083     1.0000          11 
HAR-RV-DJI -8.4793     1.0000    13 0.9699     1.0000    10 0.6080     1.0000          14 
HAR-RV-IXIC -8.4794     1.0000    10 0.8669     1.0000    13 0.6046     1.0000            9 
HAR-RV-VIX -8.2381     1.0000      6 0.8190     1.0000      7 0.5993     1.0000            7     
HAR-RV-WTI -8.4327     1.0000      4 0.8437     0.0022    21 0.6056     0.0002          21 
HAR-RV-GOLD -8.3322     1.0000      2 0.7927     1.0000      8 0.5859     1.0000            8     
GLOBAL KITCHEN-SINK    -8.1336     1.0000    14 0.9855     1.0000    11 0.6323     1.0000          10     
GLOBAL COMBINATION  -8.4779     1.0000      9 0.7960     1.0000      5 0.5799     1.0000            3 
 
LOCAL INFORMATION 

   

HAR-RV-BOND -8.4723     0.0004    18 0.8010     1.0000    15 0.5963     0.0012          19 
HAR-RV-VIXGDAXI -7.8568     1.0000      5 0.6301     1.0000      1 0.5520     1.0000            1 
HAR-RV-LIBOR -8.4789     0.0006    17     0.8424     0.0056    20 0.6024     1.0000          16 
LOCAL KITCHEN-SINK    -8.4076     1.0000      7 0.6415     1.0000      3 0.5593     1.0000            4 
LOCAL COMBINATION  -8.4837     1.0000      1     0.6625     1.0000      2 0.5554     1.0000            2 
    
OVERALL INFORMATION    
OVERALL KITCHEN-SINK    -8.3701     eliminated 0.8323     1.0000      4 0.6070     1.0000            6 
OVERALL COMBINATION  -8.4672     1.0000      8 0.7546     1.0000      6 0.5744     0.0080            5 

Note: Bold row in the table is the winner model with the smallest loss functions, unit p-values, and highest 
MCS ranks.   
 
 
Overall, the results presented in Tables 5, 6, and 7 strengthen the conclusion by a majority that 

the predictive accuracy of stock market volatility increases where we include the other 

exogenous volatilities. For instance, baseline HAR-RV models are outperformed by the HAR-

RV-X models because the p-values of the baseline model for each loss functions are smaller 

than 0.2 and therefore dropped from the superior set of models. In particular, it is possible for 

this exercise to say that the integration of various volatilities, namely combination and Kitchen-

Sink models, improves the forecast accuracy much better than the models with a single 

exogenous variable. However, the findings vary according to the sample stock markets and 

also the loss functions. In terms of our sample stock markets, the SPX and FTSE draw a parallel 
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conclusion, but the GDAXI relatively gives a different result. For example, the winners of the 

SPX and FTSE stock markets come from the global information class (global combination and 

global Kitchen-Sink models respectively), whilst the outperformance of the GDAXI belongs 

to the local information class (local combination and/or HAR-RV-VIXGDAXI models). In 

more detail, the top three models of the SPX index are the HAR-GLOBAL-COMBINATION, 

HAR-VIX, and HAR-GLOBAL-KITCHEN-SINK. The worst model is the HAR-OVERALL-

KITCHEN-SINK that includes 13 different exogenous variables in the model at the same time. 

A possible reason of the worst model is that including many exogenous variables in the same 

model at once is likely to cause the overfitting issue for the overall Kitchen-Sink model. In 

terms of the FTSE 100 index, the HAR-GLOBAL-KITCHEN-SINK, HAR-GOLD, and HAR-

GLOBAL-COMBINATION are the best performing models respectively, whilst the worst one 

is not clear across the loss functions and the MCS procedure. Lastly, when we look at the 

GDAXI index, we see the ranking of top three models as the HAR-VIXGDAXI, HAR-

LOCAL-COMBINATION, and HAR-LOCAL-KITCHEN-SINK. The worst model changes 

over the loss functions and the MCS results as it is in the FTSE index. Due to the variation of 

the results of our sample stock markets, the next paragraph evaluates and also discusses the 

findings of each stock markets in more detail one by one. In terms of the loss functions, the 

HMSE and HMAE give similar results whereas the QLIKE presents a mixed picture. The MCS 

test results that identify the set of the best models are mostly in the same direction with the loss 

functions. Therefore, it is worth to note here that we account for the predominant results by 

neglecting some small differences between the loss functions and the rankings of the MCS.  

 

4.5.4. Findings in more details  
 
In terms of the SPX index, the models of the global information class are capable of providing 

more accurate forecasts. There is no doubt that the best performing model is by far the global 

combination under all the three loss functions. An explanation as to why the global 

combination is the winner model lies to the fact that the volatility of the SPX stock market is 

not substantially affected by a single exogenous volatility, but it is influenced by the different 

kinds of volatilities (i.e. the members of global information class). Therefore, the global 

combination method seems to work well in the case of the SPX stock market. The second, 

third, and fourth best performing models are the VIX, global Kitchen-Sink, and IXIC 

respectively, but those three can be questionable and changeable between each other relative 
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to the different loss functions and the MCS rankings.20 For example, the loss functions point 

out that the IXIC is the second best model, whilst the MCS rankings suggest the VIX index as 

a second best model. Nevertheless, this is the fact that the winners are the members of global 

information class and therefore we discuss the predictive accuracy reasons of these models in 

the aforementioned order. The second best performing model is the model with the VIX index. 

The VIX index, which is also known as ‘fear index’, is defined as investors’ expectations about 

future market volatility. The volatility of the next 30 calendar days is represented using the 

current prices of the SPX index options with a wide array of strike prices rather than stock 

options. Due to containing the future expectations of investors, the VIX is capable to give a 

quick sign before the stock market rally starts. Therefore, the impact of the VIX index on the 

SPX stock market volatility cannot be ignored. The global Kitchen-Sink method is the third 

best performing model for the SPX index, which underpins our argument that is about “superior 

forecasting performance of the integration of various exogenous volatilities”. The SPX, IXIC, 

and DJI are the three most-followed US stock market indices in that sense the interrelationship 

between them is inevitable. On the one hand, the IXIC index is the fourth best performing 

model. On the other hand, in the global information class, the DJI is the only exception that 

yields comparable result with the baseline HAR-RV model. A plausible explanation of DJI’s 

poor performance might be that it only includes thirty large-cap US companies and therefore 

considered an inadequate representation of the overall US stock market. Having said that the 

models of local and regional information classes for the SPX index present ambiguous results, 

which gives comparable results with the benchmark model. Moreover, some of them do not 

even improve the benchmark model such as the models of the local information. Lastly, while 

the overall combination model exhibits promising out-of-sample performance, the overall 

Kitchen-Sink model is outperformed by the baseline model. The overall Kitchen-Sink model 

includes a great number of exogenous variables in the same model at once that could cause the 

overfitting issue.  

         In terms of the FTSE, the winner is the global Kitchen-Sink model that includes all the 

members of the global group at once. The inclusion of the SPX, DJI, IXIC, VIX, WTI, and 

GOLD works better than the individual models because of involving much more information 

simultaneously. Afterwards, the global combination method that simply takes the average of 

all the individual global forecasts also exhibits a decent out-of-sample performance. In 

                                                
 
20 We consider the MCS rankings for this order because MCS rankings have some important features at selecting 
the superior set of models, which could be more reliable (see MCS section for those important features). 
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common with the SPX results, our argument that is about “higher forecast accuracy of the 

integration of different exogenous volatilities” is also consistent with the results of the FTSE 

index. Following the global Kitchen-Sink model, the second, third, and fourth best performing 

models for the FTSE index are the gold, the global combination, and the VIX respectively.21 In 

individual basis, it is shown that the two members of global information class, namely the gold 

volatility index and the VIX contain useful information to help in forecasting the UK stock 

market volatility. Both of them are known as the two of the most important factors affecting 

the international stock markets. In terms of the relationship between the prices of gold and 

stock market, gold is often inversely correlated with the stock market; when stock markets 

decline, gold price rises. For this reason, during risk-on periods, investors will to diversify their 

portfolios more on gold in order to compensate their possible losses from stocks. In the case of 

stock market decline, the leverage effect is also an important matter to be taken into account 

because the negative returns are most likely to cause sharper spikes than the positive ones in 

volatility. From this point of view, the asymmetric downside losses of markets could be 

captured on the increasing price of gold if the gold volatility is added to the model as an 

exogenous variable. This could be one of the most important reasons why the gold volatility as 

an auxiliary variable adds one of the most valuable information at improving the predictive 

accuracy of the FTSE 100 stock market volatility. The VIX index also improves the forecast 

accuracy of FTSE volatility as it is in the SPX. This means that the US information has an 

important influence on the volatility of UK stock market. The SPX, DJI, and IXIC do not 

individually show a promising performance for the FTSE, but the global Kitchen-Sink model 

as a best performing model includes these three US stock markets. The overall Kitchen-Sink 

and combination methods for the FTSE index relatively have better forecast accuracy even 

though they are not between one of the top competing models. 

         The findings from the FTSE are compatible with the SPX, indicating the superiority of 

the global information against the local and regional information. In other words, the global 

information has a significant impact on the volatility of both the SPX and FTSE markets 

because both the indices consist of the largest internationally-focused companies. A financial 

implication can be that both the indices are highly sensitive to the global news and the 

integration of various global information can contain useful information to help in forecasting 

                                                
 
21The FTSE winners might also be changeable between each other relative to the different loss functions and the 
MCS rankings as it is in the SPX index. However, we make this order according to the most predominant results 
in the Table. 
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the future volatility of the global markets. Only the difference between them appears in the 

rankings of the global information models. For example, while the FTSE suggests the best 

model as the global Kitchen-Sink method, the SPX shows that the global combination method 

is the winner. The regional information for the FTSE is the second best group after the group 

of the global information. The models of the regional information for the FTSE index (e.g. 

GDAXI, FCHI, and regional combination) have better performance compared to the models of 

the regional information for the SPX index. Germany and France are the prominent countries 

of the EU. Germany is the UK’s second biggest export market after the US. France is a 

neighbour and also a major trading partner to the UK. The econometric findings of this work 

seem to be consistent with the real life economic relationships of the UK. In terms of the local 

information, we anticipate a more direct impact of UK data on the FTSE 100. However, the 

members of the local group show a mediocre performance.  

         The findings of the GDAXI index mainly point out the superiority of the local 

information class against the global and regional classes. From this aspect, the GDAXI index 

differs from the SPX and FTSE indices. However, it is hard to decide inside of the local class 

that either the local combination or the VIXGDAXI is the best performing model because the 

loss functions and also the MCS results do not seem very sure in between. Following that the 

third place is taken by the local Kitchen-Sink model. It is important to note that the VIXGDAXI 

index is the most important measure of GDAXI stock market volatility on which investors’ 

expectations about the volatility of the next 30 calendar days. In terms of our study, the 

VIXGDAXI index is one of the main input to obtain the forecasts of the local combination and 

Kitchen-Sink methods. Therefore, we can intuitively say that higher forecast accuracy of the 

local group stems from the VIXGDAXI, which can be thought as a key factor for the 

outperformance. It is most likely true to say that if the VIXGDAXI index uninvolved in the 

local group, the local combination and Kitchen-Sink methods would not have superior 

performance as can be understood from the BOND and LIBOR’s poor performance. Explicitly, 

the BOND and LIBOR show quite poor performance although the best group for the GDAXI 

index is the local information class. The reason might be that the GDAXI index consists of the 

thirty major German companies that does not necessarily represent the whole economy, 

implying that the index depends primarily on the situation of the 30 major German companies, 

not to the macroeconomic indicators such as the BOND and LIBOR. After superior 

performance of the local information group, the second best performing group is the global 

information. The gold, the VIX, and the global combination indicate a promising out-of-sample 
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accuracy. An economic implication of this result for the GDAXI index is that major German 

companies tend to be affected by the global news as the structure of their business organisations 

are multinational. We believe that superior predictive accuracy of the local information class 

against the global and regional classes is obtained by the help of the VIXGDAXI index. As it 

is mentioned earlier if we did not employ the VIXGDAXI as a local exogenous variable, the 

global information class would prevail instead (as it is the case for the SPX and FTSE indices). 

It can be concluded that the indices that consist of major international companies hinge on 

more the global news in comparison with the local and regional news.   

 

4.5.5. Cumulative HMSE value of baseline and winning models 
 
The results of the loss functions and MCS provide convincing evidence that the HAR-RV-X 

model is the winner and always included in the set of the superior models, whereas the baseline 

HAR-RV model is never included in the set of the best performing models. It is, thus, worth to 

show the cumulative HMSE value of the benchmark and winning models whether the 

outperformance is consistent over the time or there are some periods where forecast errors 

diverge. The cumulative value is obtained by adding the observations of the HMSE series 

successively over the out-of-sample time period. The HMSE is a consistent criteria and its 

incremental value can exhibit divergence clearer compared to the other two loss functions. 

Figure 2 shows the cumulative value of the one-day-ahead forecast errors, based on the 

HMSE.22 The models that produce the lowest cumulative HMSE values over time are the most 

accurate forecasting model for each indices.  

         According to Figure 2, the cumulative HMSE values are not very different between the 

baseline and winning models from 2011 until 2016. However, they begin to show a clear shift 

in 2016 that lasts until the 2020. Therefore, it is worth to see what happened in the stock 

markets between 2016 and 2020. The starting point of fluctuation in 2016 where the cumulative 

HMSE differences between the winning and other models are sizeable for all the three indices 

corresponds to 2015-16 stock market sell-off period in global markets. This turbulent period 

includes the effects of the Chinese stock market crash (2015-16), the Greek debt default (mid-

2015), oil prices’ decline (early 2016), a dramatic increase of global bond markets (early 2016), 

                                                
 
22 In addition to these graphs, the cumulative HMAE value graphs are inserted in the Appendix (Figure 1), which 
the divergence is less clear than the HMSE graphs. 
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and finally Brexit referendum (June 2016). This study does not reflect the real effects of global 

pandemic due to the including only first couple of months of the pandemic. 

         The first graph (Figure 2) for the cumulative forecast error of SPX indicates a turbulent 

period in early 2016 due to 2015-16 stock market sell-off in global markets. Therefore, the 

baseline HAR-RV, HAR-RV-VIX, and HAR-RV-GLOBAL-KITCHEN-SINK models’ 

forecast errors start rising dramatically, whereas the best performing model, HAR-RV-

GLOBAL-COMBINATION, does not experience any shift throughout the turbulent period. 

This is to say that the HAR-RV-GLOBAL-COMBINATION model shows quite promising 

performance in the turbulent times compared to its counterparts. When we look at the second 

graph that is for the FTSE index, it has a substantial increase in June-2016 because of the Brexit 

referendum. Afterwards, another sharp increase appears in 2018 which is likely correspond to 

the impact of a possible no deal Brexit news and the Bank of England’s report about recession 

warning. Unlike the SPX graph, the FTSE graph suggests that the HAR-RV-GLOBAL-

KITCHEN-SINK model is more robust to the turbulent periods compared to the HAR-RV-

GOLD and HAR-RV-GLOBAL-COMBINATION. On the other hand, the worst performing 

model is the baseline model. Lastly, the cumulative GDAXI graph also fluctuates with the 

Brexit vote and the winner is the HAR-RV-VIXGDAXI and/or HAR-RV-LOCAL-KITCHEN-

SINK, which is same with our general results. Indeed, the cumulative HMSE differences could 

experience sizeable divergence between the baseline and winning models, but the best 

performing models for all the three indices seem to be robust despite the turbulent periods. 

 

4.Figure 2   Cumulative HMSE graphs of baseline and winning models for SPX, FTSE, and GDAXI 
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4.5.6. Further Robustness Check 
 
Choosing an appropriate forecasting windows is important to the forecasting performance of 

the models. Rossi and Inoue (2012); Inoue, Jin, and Rossi (2017); Ma, et al. (2017), among 

others, discuss about the consequences of arbitrary choices of window sizes. However, this is 

the fact that there is no consensus about how to split the whole sample into in-sample and out-

of-sample. Also, the accuracy of in-sample period does not necessarily mean having the same 

performance in the out-of-sample. In this regard, Wang, et al. (2016) and Ma, et al. (2017) 

point out that the predictive performance of in-sample changes over time and does not 

necessarily have an impact on the accuracy of out-of-sample. The out-of-sample performance 
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of a model is more crucial to market participants than in-sample performance, this is because 

they are more interested in the predictability of future volatility. All in all, in this study, we 

arbitrarily choose the first 400 observations (𝑀 = 400) as an initial sample period and the rest 

of it is the out-of-sample, which is 2200 observations. Along with 𝑀 = 400, we also choose 

two more alternative forecasting windows such as 𝑀 = 200 and 𝑀 = 600 in order to check 

the robustness of this study. The results of robustness check are given in the Appendix Table 

1-6. Briefly, robustness check findings are consistent with the aforementioned conclusions 

even if there are some unimportant changes among the rankings that does not make a big 

difference in overall results. The small changes among the rankings can be summarised as 

follows. For instance, when we change the forecasting window from 400 to 600 for the SPX, 

the second and third best models are not clear, but the winner (HAR-RV-GLOBAL-

COMBINATION) is still by far the best model. Similarly, if the window size (m=400) is 

switched to 200 for the FTSE, the HAR-RV-REGIONAL-COMBINATION prevails as the 

second best model. In terms of the GDAXI, it is still difficult to choose the best model between 

the HAR-RV-VIXDAX and HAR-RV-LOCAL-COMBINATION despite alternative 

forecasting windows.  

 

4.6. Conclusion  
 
The aim of this study is to investigate the importance of exogenous volatilities at improving 

the forecasting accuracy of stock market volatility. In this regard, we examine a wide range of 

exogenous volatilities whether they improve the predictability of stock market volatility or not. 

To evaluate the forecasting results from a different perspective, we classify our exogenous 

volatilities according to different information channels, namely local, regional, and global. 

Using our specific classification method we attempt to find out which class of models best 

helps in forecasting stock market volatility. Given the outperformance of the global 

information over local and regional information, the results are informative to reveal the 

dynamics of stock markets.   

         We conduct this volatility forecasting exercise on the SPX, FTSE, and GDAXI stock 

markets using ‘HAR-RV model’, but adding a range of different exogenous variables from 

local, regional, and global information. The time span is from 01 July 2009 to 28 May 2020. 

In the HAR-RV-X model, exogenous variables are used in various forms including, for 

example, each individual exogenous variables separately, forecast combinations, and Kitchen-

Sink approach. One-day-ahead out-of-sample volatility forecasts are generated using the 
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rolling window forecasting technique and the QLIKE, HMSE, and HMAE criteria measure the 

forecast losses. For further analysis, we carry out the MCS procedure, forecasts’ robustness 

checks, and the cumulative HMSE difference of the baseline and winning models. In 

conclusion, we find several noteworthy points. First and foremost, the predictive accuracy of 

stock market volatility increases where we include the other exogenous volatilities. For 

instance, baseline HAR-RV models are outperformed by the HAR-RV-X models because the 

p-values of the baseline model for each loss functions in the MCS procedure are smaller than 

0.2 and therefore dropped from the superior set of models. Second, the integration of various 

volatilities, namely Kitchen-Sink and combination models, gives much better forecasting 

performance than the models with a single exogenous variable. Third, the global information 

exhibits superior performance compared to the local and regional information in our sample. 

The winners of the SPX and FTSE stock markets come from the global information class that 

are global combination and global Kitchen-Sink models respectively, but the outperformance 

of the GDAXI belongs to the local information class, which are local combination and HAR-

RV-VIXGDAXI models.  

         Several practical implications from our results can help policy makers, investors, and 

market participants in the process of both forecasting and asset allocation. Notably, all of them 

want to know today that what will be the degree of volatility tomorrow? From the forecasting 

perspective, the gain in forecasting performance is supposed to be economically significant to 

minimize risk and maximize return. For example, investors and market participants would like 

to sell their stocks or portfolio before financial markets become too volatile. In a similar vein, 

policy makers tend to adjust the bid-ask spread less wider to restore market liquidity if the 

future is expected to be more ambiguous. In terms of portfolio optimization, this study could 

be beneficial for investors and market participants to align their portfolios by reducing their 

exposure to various risks (i.e. local, regional, and global risks). This is because, in this work, it 

is carried out by the inclusion of exogenous variable(s) to the HAR-RV model and the results 

reveal the degree of interrelation between markets. For future research, the same 

methodological framework would be applied to other stock indices, including, for example, 

Asian and/or Middle East stock market indices.  

         In the end, employing different market data as an exogenous variable the HAR-RV-X 

model does enable us to analyse the interrelation between markets, which makes our study on 

the edge of volatility spillover literature. To complement this chapter, the next chapter explores 

the spillover effects of international financial markets from another perspective.    
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CHAPTER 5 
 

Complex Network Analysis of Volatility Spillovers 
between Global Financial Indicators and G20 Stock 

Markets23 
 

 

 

Abstract 

This paper analyses the dynamic transmission mechanism of volatility spillovers between key 

global financial indicators and G20 stock markets. To examine volatility spillover relations, 

we combine a bivariate GARCH-BEKK model with complex network theory. Specifically, we 

construct a volatility network of international financial markets utilising the spatial 

connectedness of spillovers (consisting of nodes and edges). The findings show that spillover 

relations between global variables and G20 markets varies significantly across five identified 

sub-periods. Notably, networks are much denser in crisis periods compared to non-crisis 

periods. In comparing two crisis periods, Global Financial Crisis (2008) and Covid-19 Crisis 

(2020) periods, the network statistics suggest that volatility spillovers in the latter period are 

more transitive and intense than the former. This suggests that financial volatility spreads more 

rapidly and directly through key financial indicators to the G20 stock markets. For example, 

oil and bonds are the largest volatility senders, while the markets of Saudi Arabia, Russia, 

South Africa, and Brazil are the main volatility receivers. In the former crisis, the source of 

financial volatility concentrates primarily in the US, Australia, Canada, and Saudi Arabia, 

which are the largest volatility senders and receivers. China emerges as generally the least 

sensitive market to external volatility. 

 

                                                
 
23 A shorter version of this chapter is published in a refereed academic journal. Reference: Korkusuz, B., 
McMillan, D.G. & Kambouroudis, D., (2022). “Complex network analysis of volatility spillovers between 
global financial indicators and G20 stock markets”. Empirical Economics, pp. 1-21. 
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5.1. Introduction 
 
A key concern for investors in seeking to build diversified portfolios are fluctuations in the 

relations between assets. Further, that fluctuations in a market do not arise solely from internal 

information but are also affected by external information. The transmission of this external 

information across markets is known as ‘volatility spillover effects’ (see, for example, Yu et 

al., 2015; Rejeb and Arfaoui, 2016; Mensi et al., 2018). This phenomenon is also referred to as 

fear connectedness by Diebold and Yilmaz (2014).  

In the last two decades, the Global Financial Crisis (GFC, 2008) and the Covid-19 

Crisis (CVC, 2020) evidence the importance and impact of spillover effects across financial 

markets. Here, the transmission of volatility across markets is likely to have a profound impact 

on each economy, varying with the degree of market integration. In the case of such crises, 

increasing globalisation and financialization of markets allows adverse effects in one market 

to further intensify existing spillover effects. Consequently, during such crises, investors 

typically sell-off risky assets on fears of financial contagion that results in a further spread of 

global risk. Therefore, there is a need to understand and model time-varying spillovers among 

a range of markets and how this could impact future investment behaviour.  

In the spillover literature, there is a lack of empirical research that provides international 

evidence conducted on a large scale. The existing literature typically concentrates on spillovers 

between a small number of stock markets, often classified according to their level of 

development (e.g., emerging or developed) or considers a single stock market with several 

other assets (see, among others, Zhang et al., 2020; Golosnoy et al., 2015; Piljak and Swinkels, 

2017; Yoon et al., 2019; Zhang et al., 2020). As a larger dataset, the G20 stock markets may 

be thought as a convenient research object to study volatility spillover effects as it account for 

over 85% of Gross World Product and over 80% of world trade. Thus, this bloc captures large 

changes to the world economy (Liu et al., 2017; Zhang et al., 2020).  

While a range of spillover models exist (e.g., stochastic volatility, Diebold and Yilmaz 

(2009, 2012) spillover index), an advantage of the GARCH-BEKK model is the ability to 

capture spillover effects as volatility can be directly computed from the variance-covariance 

matrix, without imposing any restriction on the conditional correlation structure (Lee et al., 

2014). However, when examining the interrelations of multiple series, such as the G20, the 

GARCH-BEKK is not able handle the high multi-dimensional spillovers of the system as a 

whole. Therefore, a small number of studies (Liu et al., 2017; An et al., 2020; Zhang et al., 

2020) combine the econometric model with complex network theory to construct a network of 
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financial markets. The advantage of this combined approach is to provide a solution to the 

difficulty encountered by the GARCH-BEKK model when dealing with multi-dimensionality 

and to provide a visualisation of the complex financial system in a clear way.  

To address the identified gaps in the literature, this paper incorporates key global non-

stock assets (oil, gold, and bonds) into the G20 market network and extends the analysis to 

include the Covid-19 period. This allows for a wider perspective including the effect of assets 

that are considered as both safer in comparison to stocks (e.g., gold and bonds) as well as 

alternative risky ones (e.g., oil), including across a period of heightened global risk.  

The aims of this paper are twofold. First, to compare the network nature of spillovers 

across the GFC and CVC periods. This will allow a better understanding of the impact of both 

crises, where no such analysis currently exists. Second, to consider the source of volatility 

spillovers between G20 stock markets and key global financial assets over different periods. 

The main findings and their economic implications can be noted as follows. Volatility 

spillovers between global financial indicators and G20 stock markets in all sub-periods are 

significant and exhibit time-variation, with a high level of market interrelation. Importantly, 

volatility spillover networks are denser during the crisis periods of the GFC and CVC compared 

to non-crisis period networks. The implication of this finding demonstrates that crisis periods 

are more transitive in terms of volatility spillovers, which causes volatility to spread more 

rapidly through major financial indicators to G20 stock markets. These results should be of 

interest to investors seeking to diversify their portfolios across both asset types, including oil, 

gold, and bonds, and G20 stock markets. Moreover, the nature of diversification depends on 

both time and market specific information. Notably, during crisis periods, correlations between 

all markets increase and diversification opportunities becomes more restricted.  

This chapter is organised as follows: Section 2 presents the review of related literature. 

In Section 3, the methodology is explained in more detail. Afterwards, we give the data 

description in Section 4. The empirical results and their evaluations are given in Sections 5. 

Finally, the summary and conclusion are presented in Section 6. 

 

5.2. Literature Review 
 
The transmission of fluctuations across markets is known as ‘volatility spillover effects’ (see, 

for example, Yu et al., 2015; Rejeb and Arfaoui, 2016; Mensi et al., 2018). This phenomenon 

is also referred to as fear connectedness by Diebold and Yilmaz (2014). This is because any 

fluctuations in the financial markets usually reflect investors’ fear. In the last twenty years,  the 
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Global Financial Crisis (GFC, 2008) and the Covid-19 Crisis (CVC, 2020) show the 

importance and impact of spillover effects across financial markets. In times of crisis, this is 

the fact that the transmission of volatility across financial markets is likely to have a profound 

impact on each economy, varying with the degree of market integration. Moreover, increasing 

globalisation and financialization of markets allows adverse effects in one market to further 

intensify existing spillover effects. Thus, during such crises, investors typically sell-off risky 

assets on fears of financial contagion that results in a further spread of global risk. Therefore, 

there is a need to understand and model time-varying spillovers among a range of markets and 

how this could impact future investment behaviour.   

         When we broadly review the literature of volatility spillover effects, most of the relevant 

studies mainly concentrate their efforts on the emerging markets (e.g. Erten et al., 2012; 

Maghyereh and  Awartani, 2012), developed markets (Golosnoy, Gribisch, and Liesenfeld, 

2015), commodity markets (Yoon, Mamum, Uddin, & Kang, 2019), and also sovereign bond 

markets (Piljak & Swinkels, 2017). To sum up the common point of all, they examine the 

spillover relationship between several stock markets or just one stock market with other assets. 

However, capital is mobile across borders and also assets. Therefore, there is a lack of extensive 

research to provide evidence that whether there is a spillover transmission path between some 

global assets such as oil, gold, and bond and a wide choice of international stock markets or 

not. At that point, there is a gap in the existing literature and this work fills the gap in the 

literature by investigating the spillover relationship between some major assets and G20 stock 

markets. The reason why we select the G20 markets is that the 85 per cent of Gross World 

Product and 80 per cent of the World Trading are explained by the G20 countries in 2014 that 

may represent large changes in the world economy. Therefore, the G20 markets seem to be a 

convenient research object to explain the markets’ spillover effects in the global scale. In a 

similar vein, the fluctuations of oil, gold, and bond markets already have a significant direct 

impact on the global economy (especially for stock markets) that motivates us to study the 

spillover relationship between them in a broader perspective.  

         In terms of the econometric methodology, the three classes of models in the literature are 

widely-used to measure the spillover effects. The first model is Stochastic Volatility (SV) 

model in which the volatility is determined by an unobservable random process. Even if it 

appears to be a decent method in financial econometrics, it is quite difficult to estimate the 

parameters of the SV model that makes its usage hard in practice (e.g. Keating & Valcarcel, 

2015; Zhang and Zhuang, 2017). The second is the multivariate generalized autoregressive 

conditional heteroskedasticity (MGARCH) family model. The third model is the Diebold and 



 119 

Yilmaz (DY) method (2009, 2012) that is based on forecast error variance decompositions in 

a VAR framework (applied by some recent studies, see, amongst others, Prasad et al., 2018; 

Caloia et al., 2018).  

         The MGARCH models are good at capturing the spillover effects as Tse (1999), who is 

one of the earliest researchers, documents it using a bivariate EGARCH model and find a 

significant bidirectional volatility transmission between the DJI (Down Jones Industrial Index) 

and the index futures markets. Afterwards, the GARCH-BEKK model, which was developed 

by Engle and Kroner (1995), has been applied by many researches (see, among others, Kang 

et al., 2013; Liu et al., 2017; Zhang et al., 2020; Weiping et al., 2020) to extract the spillover 

relationships between financial markets. This model is a bi-variate model that can capture 

volatility spillovers between pairwise markets. In considering multivariate-GARCH models 

there is a range of alternatives including the CCC (constant conditional correlation; Bollerslev, 

1990), DCC (dynamic conditional correlation; Engle, 2002) and the GARCH-VECH 

(Bollerslev, Engle, and Wooldridge, 1988) models in addition to the GARCH-BEKK. A key 

advantage of the GARCH-BEKK model is that it does not impose any restriction on the 

conditional correlation structure between series. In addition, the conditional variances are 

restricted to ensure they are positive definite, while reducing parameter dimensions. However, 

it is suggested to use bi-variate form of the GARCH-BEKK model. This is because if a new 

variable is added into the model, the number of model parameters increases significantly. This 

issue is worse in terms of the full GARCH-VECH specification as the VECH inherently 

requires a larger number of parameters than the BEKK to be estimated and this can often lead 

to non-convergence. The full VECH-GARCH model of Bollerslev et al. (1988) is rarely used 

in the literature because the number of free parameters increases very fast with the number of 

variables. In the case of bi-variate VECH-GARCH specification, the model needs to generate 

23 model parameters, which is a large number of free parameters for non-linear estimation. 

The restricted form of VECH or in other words diagonal VECH-GARCH model might be a 

better alternative to the unrestricted one but the restricted form of VECH does not generate 

cross-product (spillovers) parameters. This means that the direction of volatility transmission 

from one market to another cannot be extracted. Therefore, the VECH specification is rarely 

used and Bollerslev et al. (1988) did not estimate this model in their applications. Similarly, 

the CCC and DCC GARCH models also do not capture spillover effects from one market to 

another. Instead, both of the models do extract the magnitude of total spillovers between 

pairwise markets using econometrics techniques (e.g. see, method of Diebold and Yilmaz, 
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(2009, 2012)). To sum up, except BEKK-GARCH model, the other multivariate GARCH 

specifications seem not to be suitable for detecting the direction of volatility spillovers. 

         Compared to the DY method (2009), one of the most important advantages of using the 

GARCH-BEKK model is that the volatility can be computed directly from the variance 

covariance matrix that gives us a compelling reason to choose this model. Another advantage 

of the model is that the GARCH-BEKK does not force any restrictions on the conditional 

correlation structure between the model variables and also ensures the positive definite matrix. 

However, the weakness of the model is that it does not give us much more flexibility to choose 

higher lag structure and more than two variables. Choosing higher lags and/or more than two 

variables requires to estimate much higher number of model parameters in the model, which 

could end up with the crash of the model or some calculation issues. Fortunately, a seminal 

paper of Hansen and Lunde (2005) suggests the choice of first lag phase as optimal for 

modelling the conditional variance and covariance and therefore we follow them.  

         When the high dimensional interrelationship in financial markets is considered, the 

models mentioned above could not solely be enough to reveal the multi-dimensional spillover 

relationship of financial system as a whole. Therefore, some previous studies (see Liu et al., 

2017; An et al., 2020; Zhang et al., 2020) combine the econometric method with the complex 

network theory in order to construct a network of financial markets. In the financial field, the 

advantage of this combined method is to be able to provide a solution to the difficulty of the 

GARCH-BEKK model at dealing with the multi-dimensionality and also provide the 

visualisation of complex financial system in a simple way. In the most relevant literature, Liu 

et al. (2017) combine the GARCH-BEKK model with complex network theory to investigate 

the volatility spillover network in the G20 stock markets. They find that volatility originating 

in one market rapidly spreads through the network, with the largest volatility receiver and 

sender being South Korea and Brazil. Weiping et al. (2020) extend this study and divide the 

G20 stock markets into four different spillover blocks. They highlight the impact of higher 

tariffs (mid-2018) imposed by the US government on other G20 markets and its economic 

impact. Both studies note that the interconnectedness of markets peaks during the global 

financial crisis in 2008, while evidence from the Covid-19 period is not included in the sample 

period. A further drawback of these studies is that capital is mobile not only across both borders 

but also asset types. This means that in addition to the G20 markets, other well-established 

global assets cannot be ignored. For example, this could include evidence of interdependence 

between stocks and assets, including, oil, gold, and US 10-year Treasury bonds as key 

indicators of global risk.  
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         Some other relevant studies can be summarised as follows. Kang et al. (2013) investigate 

the volatility spillover relationship between the spot and futures markets of the KOSPI index 

employing a bivariate GARCH-BEKK model in the context of high frequency data. They find 

a strong bidirectional causal relationship between spot and futures markets. Similarly, Kang 

and Lee (2019) analyse the dynamic spillovers between the global futures markets and find 

that the highest level of spillover occurs during the global financial crisis in 2008. They also 

point out that the FTSE 100 index futures is the largest transmitter of the spillover shocks. An 

et al. (2020) also study the spillover effects among crude oil prices. Their angle is different 

from the previous works as such; they examine a short term rolling window and its dynamic 

evolution process of spillover effects. In this way, they identify the most important bridges of 

network which are found in their study as WTI and Brent. Feng et al. (2018) do not only built 

the volatility spillover network, but also designed a research framework using the wavelet 

method for the spillover relationships of Chinese sectors. Zhang, Zhuang, Lu, and Wang (2020) 

use factor analysis approach to study the spatial linkage of volatility spillovers and its 

explanation in the G20 stock markets. They introduce the quadratic assignment procedure to 

identify the major factors which have an impact on the spatial spillovers. They point out that 

the developed markets are more influential compared to the emerging ones throughout the 

turbulence periods, whereas emerging markets are more sensitive to the shocks compared to 

developed markets during any periods. Using the GARCH-BEKK model combined with the 

network approach Wang, Gao, An, Tang, and Sun (2019) try to capture the spillover 

relationships of energy stocks and identify influential energy stocks. They find that the top ten 

influential energy stocks are belong to the industry of power and utilities, in more detail, the 

most influential sub-industries are petroleum exploitation and petroleum processing. As well 

as the GARCH-BEKK model-based network approach, some other pioneering works use that 

combined approach for constructing the Granger-causality network (Billio et al., 2012; 

Baumohl et al, 2018), the variance decomposition frame-based network (Diebold and Yilmaz, 

2014), the tail-risk spillover network (Hardle, Wang, and Yu, 2016), and an extreme risk 

network (Wang et al., 2017).  

         If we summarize the existing literature in a few words, it can be said that the volatility 

spillover has a time-varying feature. This means that the spillover is time and market specific, 

meanwhile this is the fact that any global information is likely to affect each markets with the 

increasing globalisation of financial markets (Cardona, Gutierrez, and Agudelo, 2017). In this 

regard, the purpose of this work is to contribute onto the existing literature by uncovering the 

spillover relationship between global financial barometers and G20 markets in the network 
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framework, whereas the previous literature covers the spillover relationship between a small 

number of stock markets or just one stock market with other assets. Furthermore, establishing 

the spillover networks in different time periods than the previous literature the two most 

important crisis periods (GFC-2008 and CVC-2020) are compared to each other from the 

spillover network perspective. 

 

5.3. Empirical Methodology 
 
The first step in the methodology is to extract the volatility spillovers and second, to construct 

the network and associated statistics. 

 

5.3.1. Spillover Extraction and Construction 
 
Step 1: Synchronize pairwise closing prices and calculate the log return series    
 
The trading days across the G20 stock markets differ between market pairs. Therefore, we need 

to find the intersection between market closing prices. To obtain the common trading days for 

any two markets, we synchronize the pairwise closing prices for which both markets have 

active trading. Having conducted the pairwise synchronization, logarithmic returns are 

calculated by the following equation (1): 

 

                   𝑅),# = [ln�𝑃),#� −	 ln�𝑃),#5-�] ∗ 100		                                                                          (1) 

 

where 𝑃),# is the closing price of stock index for country 𝑖 at time 𝑡 and 𝑃),#5- is the closing 

stock price index for country 𝑖 at time 𝑡 − 1.24  

 

Step 2: Employ the bivariate GARCH-BEKK model to extract volatility spillovers 
 
To capture volatility spillovers between pairwise markets, we apply the GARCH-BEKK model 

of Engle and Kroner (1995). In considering multivariate-GARCH models there is a range of 

alternatives including the CCC (constant conditional correlation; Bollerslev, 1990), DCC 

                                                
 
24 An alternative approach to the modelling outlined in the section is to use a VAR for the whole network and 
follow the general method of Diebold and Yilmaz (2014) and, more specifically, the adapted approach of 
Demirer et al. (2018). However, to use a single VAR would mean matching all series simultaneously (rather 
than pairwise) and result in a significant loss of data (approx. 45% of original the data would be lost).  
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(dynamic conditional correlation; Engle, 2002) and the GARCH-VECH (Bollerslev et al., 

1988) models in addition to the GARCH-BEKK. A key advantage of the GARCH-BEKK 

model is that it does not impose any restriction on the conditional correlation structure between 

series. In addition, the conditional variances are restricted to ensure they are positive definite, 

while reducing parameter dimensions. In contrast, the CCC and DCC models do not capture 

spillover effects from one market to another, while the GARCH-VECH requires a large number 

of parameters (23) to be estimated and this can often lead to non-convergence. Furthermore, 

the restricted form of the GARCH-VECH, known as the diagonal GARCH-VECH model, may 

have better convergence properties but it does not generate cross-product (spillovers) 

parameters. As the GARCH-BEKK does not suffer from these issues and is used within the 

cogent literature (see, An et al., 2020; Liu et al., 2017; Weiping et al., 2020; Zhang et al., 2020) 

we conclude that the GARCH-BEKK model provides the preferred estimation approach. We 

use a single lag for the sake of parsimony.  

For the GARCH-BEKK model, the mean equation is given as: 

 

                   𝑅(𝑡) = ó	𝑅-(𝑡)𝑅*(𝑡)
	ô = 	 ó	𝜇-(𝑡)𝜇*(𝑡)

	ô + õ	
𝜑--	 𝜑-*
𝜑*- 𝜑**	÷ 	ó

𝑅-(𝑡 − 1)
𝑅*(𝑡 − 1)

ô +	 ó	𝜀-(𝑡)𝜀*(𝑡)
	ô	             (2)    

 

where 𝑅# is the logarithmic return that is a (2 × 1) vector of market 1 and market 2 at time t, 

𝜇-(𝑡) and 𝜇*(𝑡) represent the long-term drift coefficient, and then 𝜀-(𝑡) and 𝜀*(𝑡) are the 

random errors at time t. The variance-covariance equation is then given by: 

 

                    𝐻(𝑡) = 	𝐶�𝐶 + 𝐴�𝜀#5-𝜀#5-� 𝐴 + 𝐵�𝐻#5-𝐵                                                            (3)   

 

                   	𝐶 = 	 ó	𝑐--	 0
𝑐*- 𝑐**

	ô ,							𝐴 = 	 õ	
𝑎--	 𝑎-*
𝑎*- 𝑎**	÷ 				𝑎𝑛𝑑				𝐵 = 	 ó	

𝑏--	 𝑏-*
𝑏*- 𝑏**

	ô               (4)    

 

where 𝐻(𝑡) is the conditional covariance matrix (2 × 2). 𝐶 is the constant coefficient terms in 

the form of a lower triangular matrix. The coefficient matrices of the GARCH-BEKK model 

are given by 𝐴 and 𝐵. 𝐴 represents the parameters of the conditional residual matrix, and 𝐵 is 

the conditional covariance matrix’s parameters. The diagonal elements of A and B such as 

𝑎--, 𝑎**, 𝑏--, 𝑎𝑛𝑑	𝑏** measure their own markets’ previous shocks (ARCH effect) and 

volatility (GARCH effect), while the off-diagonal parameters in the matrices 

(𝑎-*, 𝑎*-, 𝑏-*, 𝑎𝑛𝑑	𝑏*-) quantify the cross-stock market effects of shocks and volatility between 
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stock markets 𝑖 and 𝑗, in other words, the volatility spillovers. The bivariate GARCH-BEKK 

model is estimated with 17 parameters in total, which does not impose any restriction on the 

conditional correlation structure between the model variables.  

         The GARCH-BEKK model is estimated using the maximum likelihood method, with the 

conditional log likelihood function written as. 

 

                     𝐿(𝜃) = −𝑇	𝑙𝑛(2𝜋) − -
*
∑ [	ln|𝐻#(𝜃)| + 𝜀#(𝜃)�𝐻#5-𝜀#(𝜃)	]z
#,-                                (5)    

 

where 𝑇 is the number of observations and 𝜃 is the vector of parameters to be estimated. The 

influence of volatility spillover from stock market 𝑖 to stock market 𝑗 is calculated as the 

absolute sum of the off-diagonal values of matrices 𝐴 and 𝐵, which can be defined as follows.  

 

                     𝑒-,* = |𝑎-*| + |𝑏-*|                                                                                                       (6) 

 

where 𝑎-* and 𝑏-* represent the off-diagonal elements of matrices 𝐴 and 𝐵, respectively. 𝑒-,* 

stands for the magnitude of volatility spillover effect from market 1 to market 2. Similarly, 𝑒*,- 

is the size of volatility spillover from market 2 to market 1.  𝑒-,* + 𝑒*,- is the total size of 

bidirectional volatility spillover relation between markets 1 and 2. 

 

STEP 3: Construct the spillover network considering complex network construction rules 
  
Complex network theory takes into account the relations among different parts of a real 

complex financial system as a network (Hao et al., 2015; An et al., 2014). A complex network 

is a collection of nodes that are connected by edges. A complex network system is symbolised 

in equation (7): 

 

                                                            G=(N, E)                                                                     (7)    

 

where G represents a complex network. N refers to the set of nodes and E is the set of edges 

between nodes. In the context of this study, our complex networks have some characteristic 

features such as the small world effect and the superposition phenomenon. The small world 

effect (Watts and Strogatz, 1998) is a phenomenon in network theory that no node is 

independent from the network, which means that all nodes are linked to each other either with 
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a direct or indirect tie. Two widely used network statistics, which are the average shortest path 

length and average clustering coefficient are used to determine the small world effect. Another 

network characteristic is the superposition phenomenon, which is a principle in physics 

applying all the linear systems such as height in a water wave, intensity of a light wave or 

pressure in a sound wave. For example, where two water waves are travelling in opposite 

directions, the size of combined wave is the sum of both water waves at the intersection point. 

Similarly, the thickness of an edge between pair nodes is identified by the superposition 

principle in this work.  

To build a complex network, we prepare the nodes (as data frame) and edges (as matrix 

element) in the form of a square matrix whose main diagonal consists of zeros. Thus, the square 

matrix of spillover relation for the G20 stock markets can be shown by equation (8):  

 

                                               M = !
e-,- ⋯ e-,#
⋮ ⋱ ⋮
e#,- ⋯ e#,#

&                                                              (8) 

 

where M is the matrix of edges, which creates the complex network. Here, we consider the 

G20 stock markets and other global assets as the nodes. In a similar vein, the volatility 

spillovers (𝑒) are considered as unidirectional or bidirectional edges between the nodes. Using 

the off-diagonal elements of the GARCH-BEKK model, we create a complex network of the 

global financial system. If the estimated off-diagonal parameters of the GARCH-BEKK are 

significant, it means that there is a volatility spillover effect from market 1 to market 2 and then 

the spillover value (𝑒-,*) from market 1 to market 2 is entered into the specified cell of matrix.25 

The direction of spillover effect is shown with an arrow mark from market 1 to market 2. If 

there is also reverse spillover relation (market 2 to market 1), the spillover is bidirectional and 

arrow marks appear on both edges. In identifying the spillover relations, previous studies (Liu 

et al., 2017; Weiping et al., 2020; Zhang et al., 2020) use the 10% significance level. They 

argue, this is because a too strict significance level may miss important spillover relations.  

 

 

 

                                                
 
25 If the estimated parameters are insignificant, no spillover relation between pairwise markets and enter 0 into 
the specified matrix element. 
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5.3.2. Spillover Network Statistics 
 

Weighted in-degree and weighted out-degree 
 

The weighted degree of the spillover network indicates how strong the effects of the volatility 

spillovers are. If a node has a larger weighted degree, it has more potential to affect or be 

affected, depending on the weighted in/out degree, where the weighted-in-degree receives 

spillovers and the weighted-out-degree causes spillovers. The weighted in and out degrees are 

expressed by equations (9) and (10) as follows:  

 

                                                   𝑤))¤ = ∑ 𝑒)\+
\,-                                                               (9)      

       

                                                   𝑤)*N# = ∑ 𝑒\)¤
\,-                                                          (10) 

 

where 𝑤))¤ and 𝑤)*N# represent the weighted in-degree and weighted out-degree, respectively. 

𝑒)\ implies the size of volatility spillover from node 𝑖 to node	𝑗 and 𝑒\) implies the amount of 

volatility spillover from node	𝑗 to node 𝑖. 𝑒 is obtained by equation (6). 𝑚 and 𝑛 denote the 

number of edges that node 𝑖 has with the other nodes of network. A higher weighted degree 

means stronger volatility spillover relation in a complex network.  

                

Average shortest path length and network diameter 
 
In a complex network, the small world phenomenon (Watts and Strogatz, 1998) means that all 

nodes are linked either with a direct or indirect tie. For detecting this phenomenon Watt and 

Strogatz (1998) suggest looking at both the average shortest path length and network diameter 

statistics. The average shortest path length is defined as the mean of the shortest steps of 

volatility spillover propagation from node 𝑖 to node 𝑗. It is expressed by equation (11): 

 

                                                   𝑟 = ∑ :+,
¤(¤5-)

			;),\ 						(𝑖 ≠ 𝑗)                                        (11)  

 

where 𝑟 denotes the average shortest path length; the smaller 𝑟 in a network, the more linkages 

between nodes, which indicates a denser network (a larger	𝑟 denotes less linkages between 

nodes and a looser network). 𝑑)\ is the shortest distance from node 𝑖 to node 𝑗. The 

denominator, 𝑛(𝑛 − 1), shows the maximum number of possible edges in the spillover network 
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where 𝑛 is the total number of nodes. The network diameter is ‘the shortest path between the 

two most distant nodes of the network’. Once the shortest path length of every single node with 

respect to the other nodes is calculated, the network diameter is the longest one among all the 

calculated shortest path lengths. The smaller or larger value of diameter is interpreted same as 

the shortest path length. 

 

Graph density and average clustering coefficient 
 

The graph density indicates how close the number of edges is to the maximum number of 

possible edges in the network. If the graph density is equal to 1, the network is called a complete 

graph and includes all the possible edges. The network graph density can be calculated by 

equation (12) as follows: 

 

                                                      𝐷 = *|Æ|
|¤|(|¤|5-)

                                              (12) 

 

where E is the number of edges between the nodes of network and 𝑛 is the total number of 

nodes. This measure amounts to a ratio of actual connections to potential connections. Another 

network statistic is the average clustering coefficient, which is a similar measure and shows 

how the nodes are integrated in the network graph. It is calculated by dividing the number of 

edges connecting a node’s neighbours to the total possible number of edges between the node’s 

neighbours.  

 

5.4. Data Description 
 
The G20 is an international forum, consisting of 19 major developed and emerging countries 

(with the EU as a whole also represented). From a global perspective, the G20 accounts for 

85% of Gross World Product and 80% of world trading (2014) and thus, represents an 

important bloc. However, capital is mobile across asset types, such that other (global) assets 

should be considered alongside stocks. Therefore, in examining spillovers, we also include oil, 

bonds and gold market information.  

Specifically, we employ the daily closing prices of 19 major stock market indices of 

the G20 countries; which are S&P MERVAL (Argentina), S&P ASX200 (Australia), 

BOVESPA (Brazil), GSPTSE (Canada), SHCI (China), CAC40 (France), DAX30 (Germany), 
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SENSEX (India), IDX (Indonesia), Italy 40 (Italy), NIKKEI225 (Japan), KOSPI (Korea), S&P 

BMV (Mexico), MOEX (Russia), TADAWUL (Saudi Arabia), SOUTH AFRICA TOP40 

(South Africa), BIST100 (Turkey), FTSE100 (UK), and SP500 (US).26 Additionally, crude oil 

(WTI; West Texas Intermediate), gold returns and the US 10-year Treasury bond yields are 

included. All the data is extracted from the ‘investing.com’ website, at the daily frequency and 

over the sample period between January 8, 2003 and January 4, 2021, which includes both 

periods of calm and turmoil. 

 
5.Table 1    Summary Statistics 

 Mean Std. Dev. Skew. Ex. Kurt. JB Stat. ADF Q(20) ARCH(1) 
Argentina 0.106 2.309 -1.398*** 21.537*** 82701.4*** -23.549*** 41.597*** 21.453*** 
Australia 0.016 1.061 -0.721*** 8.408*** 13811.1*** -48.044*** 49.558*** 577.262*** 
Brasil 0.054 1.777 -0.376*** 7.705*** 10686.1*** -14.432*** 58.796*** 540.84*** 
Canada 0.020 1.107 -1.123*** 21.120*** 84301*** -12.453*** 148.653*** 757.594*** 
China 0.031 1.947 -0.379*** 5.954*** 4555.17*** -7.823*** 53.765*** 53.125*** 
France 0.012 1.394 -0.169*** 8.958*** 15022.3*** -24.047*** 49.609*** 222.499*** 
Germany 0.033 1.401 -0.233*** 7.260*** 9885.87*** -67.336*** 25.465 85.511*** 
India 0.061 1.454 -0.264*** 10.454*** 19474.8*** -17.628*** 83.539*** 211.144*** 
Indonesia 0.063 1.334 -0.530*** 7.308*** 9636.64*** -59.179*** 63.849*** 206.137*** 
Italy 0.042 0.748 -0.605*** 1.735*** 177.9*** -33.096*** 14.030* 9.372*** 
Japan 0.028 1.508 -0.202*** 10.531*** 19474.3*** -23.729*** 52.068*** 230.224*** 
Korea 0.035 1.303 -0.455*** 7.432*** 10161.6*** -12.961*** 45.727*** 338.596*** 
Mexico 0.044 1.227 -0.204*** 7.157*** 9317.0*** -15.878*** 63.192*** 150.833*** 
Russia 0.054 1.950 -0.314*** 20.147*** 73640.3*** -10.338*** 104.100*** 73.716*** 
S. Arabia 0.039 1.895 -1.196*** 13.869*** 25038.7*** -14.263*** 71.399*** 129.999*** 
S. Africa 0.043 1.358 -0.162*** 5.692*** 5744.59*** -15.203*** 47.441*** 257.982*** 
Turkey 0.059 1.675 -0.314*** 3.997*** 2972.02*** -28.556*** 38.799*** 59.164*** 
UK 0.010 1.163 -0.357*** 9.814*** 18034.5*** -13.503*** 67.922*** 216.446*** 
US 0.031 1.225 -0.547*** 13.831*** 35853.9*** -14.511*** 207.461*** 501.845*** 
WTI (oil) 0.015 2.644 -0.172*** 16.065*** 47132.9*** -11.322*** 690.461*** 1059.56*** 
10Y bond -0.032 2.616 0.010*** 31.433*** 187479*** -11.171*** 153.38*** 1223.85*** 
Gold 0.053 1.717 -0.169*** 11.603*** 18043.4*** -38.333*** 117.108*** 99.894*** 

Note: Asterisk *,**, and *** denote rejections of null hypothesis at 10%, 5%, and 1% significance levels, respectively. The 
null hypothesis of the third and fourth moments are “Skewness = 0” and “Excess Kurtosis = 3”. 
 
 
Table 1 presents the descriptive statistics of all series used in this study after synchronising the 

data as noted above, this leads to approximately 4400 observations for each series. The 

summary statistics are as expected, with a mean daily return that is close to zero and a larger 

standard deviation. The skewness and excess kurtosis statistics show that the return series are 

leptokurtic with higher peak points as well as fatter tails. The Jarque-Bera normality test results 

indicate that the distribution of each series is not Gaussian. The Augmented Dickey-Fuller 

(ADF) test results reject the null hypothesis of a unit root at the 1% significance level, with all 

series stationary. Serial correlation tests for both the mean (Ljung-Box Q-statistic) and variance 

                                                
 
26 In determining the choice of index, we follow those used by Weiping et al. (2020) and Zhang et al. (2020) as 
well as being based on, arguably, the most recognisable index in each country. 
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(ARCH-LM test) indicate the presence of such correlation, which supports the use of the 

models outlined in Equations (2)-(4).  

 

5.5. Empirical Results 
 
This paper seeks to examine volatility spillovers between key global financial assets and G20 

stock markets, which compares with the current literature that typically analyses a small 

selection of stock markets or one stock market with alternative assets. To study this relation, 

we use a synthesis, first developed by Liu et al. (2017), which combines the bivariate GARCH-

BEKK model with the complex network theory.27 To examine this spillover network of 

international markets we use daily data over the period 08/01/2003-04/01/2021, which is 

divided into five sub-periods that cover tranquil and crisis periods. Two important crisis periods 

within our sample are the Global Financial Crisis (GFC) in 2008 and the Covid-19 Crisis 

(CVC) in 2020, and these act as the cornerstone of this study.  

Specifically, we divide our full sample into sub-periods in accordance with the crisis 

and non-crisis periods. Period 1 captures the Pre-Crisis period and is from January 8, 2003 to 

August 9, 2007. Period 2 encompasses the 2008 Global Financial Crisis, covering August 10, 

2007 to December 30, 2009. Period 3 (Post-Crisis) takes place between January 4, 2010 and 

December 16, 2013. Following, Period 4 is the Pre-Pandemic period and covers between 

December 17, 2013 and December 30, 2019. Period 5 is from January 4, 2020 to January 4, 

2021, and is the Covid-19 Crisis period.  

In choosing these dates, we follow the work of Weiping et al. (2020) and Zhang et al. 

(2020) who also use similar sub-sample analysis. Our sub-sample dates differ slightly from 

these two papers as we use a larger sample, both starting earlier (in 2003 compared to 2006) 

and ending later (in 2021 compared to 2018). The end of our Period 1 and the dates for Period 

2 are the same as these papers, while our Period 3 matches that of Weiting et al. (2020). We 

extend our Period 4 beyond the sample in each paper, and this allows us to isolate the Covid-

19 period. While the choice of sub-sample dates always contains an element of subjectivity, by 

following the previous literature, we are able to provide some comparability.28  

                                                
 
27 To estimate the models, we use a range of software. Specifically, R studio (xts package) to match and prepare 
the pairwise data, Gretl (mgarch package) for GARCH-BEKK model and Gephi for networks construction. 
28 An alternative approach, as considered by Demirer et al. (2018) is to estimate a rolling full-sample VAR. 
However, as noted above, this would mean a substantial loss of information in aligning the data.  
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Table 2 presents some widely-used networks statistics. The first statistic, column (𝑖), 

shows that there are 171, 257, 142, 175, and 297 volatility spillover linkages that are extracted 

from the 462 edges in the 5 sub-periods, respectively. In column (𝑖𝑖), the total degree indicates 

the sum of all node sizes in the sub-periods and whose values are highly correlated with the 

values in column (𝑖). These measures are two of the more important general network statistics 

and indicate that volatility spillover between global financial indicators and G20 stock markets 

are present in all sub-periods and that the spillover relations are largely bidirectional. More 

importantly, volatility spillover networks are more dense during a crisis, as evidenced by the 

values in Period 2 (GFC in 2008) and Period 5 (CVC in 2020) when compared to the non-crisis 

Periods 1, 2, and 4. It is also clear that the volatility spillover network is time-varying with the 

number of linkages changing over the five sub-periods. 

 
5.Table 2   Network Statistics 

 Number of 
edges (𝑖) 

Total degree 
(𝑖𝑖) 

Av. Weighted 
degree (𝑖𝑖𝑖)  

Av. Shortest 
Path length (𝑖𝑣) 

Network 
Diameter (𝑣) 

Graph density 
(𝜈𝑖) 

Av. Clustering 
coefficient (𝜈𝑖𝑖) 

Period 1 171 24.95 1.134 1.463 3 0.541 0.615 

Period 2 257 72.28 3.286 1.329 2 0.671 0.699 

Period 3 142 36.02 1.638 1.602 3 0.420 0.539 

Period 4 175 29.81 1.355 1.424 2 0.576 0.608 

Period 5 297 206.9 9.406 1.225 2 0.775 0.808 

  Note: Smaller the values of (𝑖𝑣) average shortest path length and (𝑣) network diameter mean tighter networks. The others 
are meant to be as normal; more precisely, higher values, tighter networks are. 
 
 

Of the other statistics, in column (𝑖𝑖𝑖), the average weighted degree is the ratio of total degree 

to the number of nodes. The higher the average weighted degree, the tighter the market 

interrelations. These values are higher in the crisis periods 2 and 5 (3.286 for GFC and 9.406 

for CVC) compared to the non-crisis periods 1, 3, and 4 (1.134, 1.638, and 1.355, respectively). 

The implication is that crisis periods are likely to deepen market connections and therefore, the 

potential for financial contagion. Fluctuations occurring in one market can therefore, spread 

more easily to other markets. For column (𝑖𝑣), the average shortest path length is defined in a 

network as the mean shortest steps of volatility spillover propagation from node 𝑖 to node 𝑗. A 

smaller shortest path length means stronger linkages between nodes, which also mean a denser 

network. This statistic fluctuates between the values 1 and 2, with lower values in the crisis 

periods (1.329 and 1.225 for periods 2 and 5 respectively) compared to the networks of non-
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crisis periods (1.463, 1.602, 1.424 for periods 1, 2 and 4 respectively). Hence, volatility 

spillovers in crisis periods propagate faster compared to those in non-crisis periods. 

In column (𝑣) the network diameter is known as the shortest path between the two most 

distant nodes of the network. The network diameter is at 2 for the second, fourth, and fifth sub-

periods, while the same statistic is at 3 for the first and third periods. This means that any 

spillover in any node may reach the farthest node point in maximum 2 steps in the crisis 

periods, whilst it is a maximum of 3 steps in normal periods. Again, this is the evidence of 

stronger spillover transmission during the crisis periods. In column (𝜈𝑖), the graph density is a 

measure that shows how close the number of edges is to the maximum possible number of 

edges. If the graph density is equal to 1 in a network, the network is called a complete graph 

that includes all the possible edges. The graph density statistics are closer to 1 in the turmoil 

periods 2 and 5 (0.671 and 0.775, respectively) in comparison with the calm periods 1, 3, and 

4 (0.541, 0.420, and 0.576, respectively). Column (𝜈𝑖𝑖), the average clustering coefficient, is a 

similar measure to graph density, indicating how the nodes are integrated in a network graph. 

The graph density and average clustering coefficient move together to a large extent; the two 

peak points of the average clustering coefficient are approximately 0.7 and 0.8 in the GFC and 

CVC periods, respectively.  

In sum, the network statistics present three key results. First, spillover effects exist 

through the five different sub-periods. Second, the nature of such spillovers is time-varying 

across the sample periods. Third, the strength and nature of spillovers increases during a crisis.   

 

5.5.1. Results by Period 
 
5.5.1.1. Crisis Periods 2 and 5 
 
The crisis periods 2 and 5 cover the GFC and CVC and thus, it is of interest to see the different 

impact of the two crises. Notably, we can observe a clear difference in the network graphs, 

presented in Figures 1 and 2, and statistics noted in Table 2 for the two periods. Comparing the 

two figures, the spillover network graph in Period 5 is tighter and more integrated than the 

network graph of Period 2. This suggests that volatility spillovers among markets in the CVC 

period spreads faster than volatility spillovers in the GFC period. This implies that the CVC 

period exhibits more widespread effects on both key global assets and the G20 markets 

compared to the GFC period in 2008. This can equally be seen in the number of edges (297 in 
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period 5 against 257 in period 2), the total degree (207 against 72), average weighted degree 

(9 against 3) and graph density (0.8 against 0.7). 

         In Period 2 (Figure 1), the rankings of top weighted nodes are US, Saudi Arabia, Canada, 

and Australia, respectively, while the stock markets of China and Italy are the bottom weighted. 

More specifically, US, Canada, Saudi Arabia, and Australia have the highest weighted-in-

degree that receive spillovers, while Saudi Arabia, Japan, Australia, Argentina, and US are the 

top weighted-out-degree volatility senders, respectively. Thus, we can see similarity in the 

markets that are the highest volatility receivers (weighted-in-degree) and senders (weighted-

out-degree). For example, the US appears as the most active node with the largest weighted 

degree.  
 

 
5.Figure 1   Period 2 (10/08/2007-30/12/2009 Global Financial Crisis) 

 
 

Note: Darker colours in networks represent larger spillover relationships, while lighter colours indicate weaker spillover 

relationships; red and bigger nodes show bigger spillover centres, wider and dark purple edges are the strongest linkages. The 

table on the right hand side is sorted by the average weighted degree values of the markets from largest to smallest.     

 

While the GFC began in the US, we can observe the effect spreading to the rest of the world 

through interconnections in the global financial system. We can see that Canada and Australia, 

which rely on commodity exports are notably affected. Equally, a further market affected is the 

major oil-exporting Saudi Arabia, while South Africa is also a commodity exporter. We can 
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also see the role played by the global risk factors of interest rates, oil, and gold prices play in 

the transmission. Although, they appear towards the bottom of the weighted list, they play a 

more significant impact than several G20 markets. 

         These results do imply the existence of systematic risk on a global scale that can be 

thought of as restricting the possibility of international portfolio diversification. However, a 

small number of markets during this period, such as China and Italy, could be used to construct 

more robust diversified portfolios as the node sizes of these markets are the smallest in the 

network.  

 
            5.Figure 2  Period 5 (04/01/2020-04/01/2021 Covid-19 Crisis) 

 
 
Note: Darker colours in networks represent larger spillover relationships, while lighter colours indicate weaker spillover 

relationships; red and bigger nodes show bigger spillover centres, wider and dark purple edges are the strongest linkages. The 

table on the right hand side is sorted by the average weighted degree values of the markets from largest to smallest. 

 

In Period 5 (Figure 2), the average weighted degrees are much higher compared to their 

counterparts in Period 2. A notable difference is that no specific stock market can be regarded 

as the source of the crisis compared to Period 2 and the US market. In Period 5, the oil and 

bond markets are shown to be the source of the largest amount of volatility spillovers directed 

to the G20 markets. In terms of the G20 stock markets themselves, the largest weighted degrees 

are South Africa, Korea, and Brazil, whereas Japan, China, and Turkey have the smallest 

weighted degree values, respectively. Looking deeper into the Period 5 results across the 
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weighted degrees, the top volatility senders (out-degree) are different to the receivers (in-

degree). As noted, the global financial indicators of oil and bonds are the volatility senders, 

meaning that they affect but are not affected by other markets. The top receivers are the stock 

markets of Saudi Arabia, South Africa, Russia, Korea, and Brazil, respectively. This again, 

notably, highlights the importance of oil within global financial markets, with major oil export 

markets affected.  

         In explaining the large volatility spillovers from oil prices to the G20 markets, we saw 

reduced global oil demand by 29 million barrels per day during the Covid-19 lockdown period, 

while the price of West Texas Intermediate (WTI) fell to negative $37 per barrel on April 20, 

2020. This oil price crash creates a large spike on own volatility that spread to oil dependent 

markets as well as globally. Following oil, the node on US 10-year Treasury bond yields is the 

second largest that has an impact on G20 markets. The bond yields start decreasing when 

Wuhan lockdown began and reach the lowest level (below 0.6) with the declaration of 

coronavirus pandemic by the World Health Organisation. In contrast, the spillover effect from 

gold prices on the G20 stock markets is relatively smaller.   

 

5.5.1.2. Non-Crisis Periods 1, 3, and 4 
 
The network graphs (Figures 3 to 5) of the non-crisis periods are less dense than for the crisis 

periods. Furthermore, unlike the crisis periods, the influence of the global assets (oil, gold, and 

bond) on the G20 markets is limited.  

         In Period 1 (Figure 3), the node on Italy has the largest weighted degree among markets, 

while its value in Periods 3 and 4 is relatively smaller. This emphasises the time-varying nature 

of the volatility spillover relations among the G20 markets. The most active nodes in Period 1 

following Italy are from the US, Germany, Indonesia, Japan, and France. As a most active 

node, Italy is the largest volatility receiver, but not the largest volatility sender. The ranking of 

the largest senders is Indonesia, Japan, and France. The smallest nodes during this first period 

are Australia, bonds, gold, Saudi Arabia, and China. In Period 1, the impact of oil, bonds, and 

gold on the G20 stock markets is notably limited.     
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5.Figure 3   Period 1 (Pre-Crisis 08/01/2003-09/08/2007) 

 
 

Note: Darker colours in networks represent larger spillover relationships, while lighter colours indicate weaker spillover 

relationships; red and bigger nodes show bigger spillover centres, wider and dark purple edges are the strongest linkages. The 

table on the right hand side is sorted by the average weighted degree values of the markets from largest to smallest.    

 
5.Figure 4   Period 3 (Post-Crisis 04/01/2010-16/12/2013) 

 
Note: Darker colours in networks represent larger spillover relationships, while lighter colours indicate weaker spillover 

relationships; red and bigger nodes show bigger spillover centres, wider and dark purple edges are the strongest linkages. The 

table on the right hand side is sorted by the average weighted degree values of the markets from largest to smallest.    
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In Period 3 (Figure 4), the ordering of markets changes reflecting the time-variation in 

spillovers. Here, the most active nodes are South Africa, UK, US, and Canada, while Saudi 

Arabia, bonds, Argentina, India, and Japan are the least active ones. Notably, South Africa, 

Brazil, Russia, UK, and US are the largest volatility senders, while South Africa, UK, US, and 

Canada are the largest volatility receivers.  
 

 

5.Figure 5   Period 4  (Pre-Pandemic 17/12/2013-30/12/2019) 

 
Note: Darker colours in networks represent larger spillover relationships, while lighter colours indicate weaker spillover 

relationships; red and bigger nodes show bigger spillover centres, wider and dark purple edges are the strongest linkages. The 

table on the right hand side is sorted by the average weighted degree values of the markets from largest to smallest.   

 

 

In Period 4 (Figure 5), UK, Argentina, Canada, and Germany exhibit the largest set of nodes, 

whereas Russia and China have the smallest. The biggest volatility senders are Argentina, 

Saudi Arabia, gold and the UK, with Canada, UK, and France the biggest volatility receivers. 

In terms of the global financial indicators, gold is a significant volatility sender that affects the 

G20 markets, but oil and bonds have a moderate effect. Of note, the price of gold saw a gradual 

increase towards the end of the period, just before the beginning of the CVC. This time period 

includes the Brexit vote and this may explain the high degree of UK spillovers.     
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5.5.2. Key Paths in Spillover Networks  
 
The spillover relations are conveyed by the edges among the nodes in a complex network and 

therefore detecting the thickest linkages between markets may reveal some important 

information about market interrelations. Table 3 presents the top five edges (strongest linkages) 

over each of the sub-periods. It is worth noting that the top edges are independent from the size 

of nodes, meaning that a node could be relatively small, while having the top edge of network. 

For instance, the node of India is relatively small in Period 2, but it has the largest linkage in 

the same period, which is from India to Canada.  

         Examining the results in Table 3, Period 5 has the strongest linkages among all the sub-

periods, with spillovers from oil to Saudi Arabia, Indonesia, Mexico, and South Africa. The 

strongest edge is from oil to Saudi Arabia with a 5.4% weight of the total spillover. This 

highlights the importance of oil to the Saudi stock market given its major oil-exporting role. 

As noted above, both oil demand and the oil price fell dramatically at the start of the CVC 

period. Mexico and Indonesia are also notable for oil exports. In Period 2, the direction of top 

edges are towards the node of US market. This means that despite the US being the origin of 

the GFC crisis, the US market is also exposed to significant external volatility, with the top 

two edges from France and Germany. Again, Saudi Arabia is notably affected as the GFC led 

to a global recession and a fall in demand for oil. This provides further evidence of a strong 

relation between oil prices and the Saudi stock market.   

  
5.Table 3  Key Paths in Spillover Networks 

PERIOD 1 Value      (%)  PERIOD 2 Value  (%)  PERIOD 3 Value   (%) 
Turkey     –>    US 0.71      2.8% India          –>  Canada 1.02   1.4% Brasil       –>   UK 1.55   4.3% 
Germany –>    Italy 0.66      2.6% France       –>  US 1.00   1.3% UK           –>   US 0.93   2.5% 
France     –>    UK 0.64      2.5% OIL             –>  Saudi 0.96   1.3% US            –>  UK 0.90   2.4% 
Indonesia–>    Canada 0.51      2.0% Germany   –>  US 0.87   1.2% S. Africa  –>   UK 0.86   2.3% 
France     –>    Germany 0.50      2.0% Argentina  –>  Australia 0.69   0.9% Japan        –>   S. Africa 0.80   2.2% 
PERIOD 4                                             PERIOD 5 
UK             –>     US 0.70      2.3% OIL        –>     Saudi 11.3   5.4%   
Saudi          –>     Australia 0.65      2.1% OIL        –>     Indonesia 5.63   2.7%   
US              –>     UK 0.65      2.1% OIL        –>     Mexico 4.37   2.1%   
GOLD        –>     Germany 0.62      2.0% OIL        –>     S. Africa 4.12   1.9%   
Argentina   –>     Canada 0.54      1.8% BOND   –>     Canada 4.02   1.9%   

Note: “–>” indicates the spillover direction, the first row (value) is the amount of volatility the second 
(percent) is the percentage of spillover amount in total spillover. 
  

In Period 3, the top edge is from Brazil to the UK, while other significant edges take place 

bidirectionally between the UK and US markets. Japan to South Africa and South Africa to the 

UK also show notable linkages. The bidirectional spillover relation between the US and UK 

stock markets returns in Period 4. It is followed by edges from Saudi Arabia to Australia, Gold 
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to Germany, and Argentina to Canada. In Period 4, some economic implications regarding the 

largest edge between the UK and US markets can be linked to the Brexit referendum (23 June 

2016) that has a significant impact on the UK economy and reveals the UK as large volatility 

source. Afterwards, the 2015-16 stock market sell-off in the US market and the world-wide 

stock market downturn in 2018 can further explain the strong linkage between the UK and US 

stock markets. In Period 1, the largest linkages are more mixed, being from Turkey to the US, 

Germany to Italy, France to the UK, Indonesia to Canada, and France to Germany.  

 

5.5.3. Network Robustness Checks 
 
Testing the robustness of our complex network can ensure its stability and resilience and the 

reliability of the presented results. To consider robustness in a complex network, we can 

examine the response of the network to changes in the number of nodes. Therefore, we re-

examine each network by, first, adding a further node and, second, by removing the global 

financial indicators from our sample dataset. Inevitably, changing the number of nodes will 

alter the results, however, the key question is whether this results in substantial changes to the 

network statistics and node sizes. The results evidence that no significant changes to the 

network statistics and node-edge sizes of the included markets is observed across the sub-

periods. This underpins the consistency of our results. 

Specifically, we undertake two exercises and consider how the network statistics 

change with a differing number of nodes. First, we increase the number of nodes from 22 to 23 

by including the implied volatility index, VIX, based on the US SP500. Here, the average 

weighted degree, graph density, and clustering coefficient for all sub-periods rise 

proportionally to indicate that the networks with 23 nodes are slightly tighter compared to those 

of 22. However, the average shortest path length and network diameter statistics, which are 

inversely proportional with the other three statistics, decrease slightly. In the second exercise, 

the number of nodes decreases from 22 to 19 by removing the three global financial indicators. 

Here, we do not encounter any substantial changes in the network statistics (except for the 

average weighted degree in Period 5 that falls from 9.406 to 4.407).29 For the graph density 

and clustering coefficient, we see a small increase in the first four sub-periods, and a slight 

decrease in Period 5. Accordingly, the average shortest path length decreases in the first four 

                                                
 
29 This change in Period 5 is linked to the crash in oil prices (20 April 2020) that have a notable impact on the 
network. Therefore, when we omit the oil, bond, and gold in this exercise, we observe the noted fall.  
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sub-periods and increasing in the fifth period. The network diameter does not change in 

general, but the weighted degree results suggest an increase in the first and third periods and a 

decrease in other periods. To sum, these results do not affect our main conclusions as no 

significant changes in the node-edge sizes of networks is reported. 

 

5.6. Conclusion 
 
This paper analyses the volatility spillover relations between key global financial barometers 

(oil, gold, and bond) and G20 stock markets using a network approach. Specifically, a bivariate 

GARCH-BEKK model that captures spillover relations is combined with a complex network 

approach. Using this synthesis, we construct the spillover networks of international financial 

markets between 08/01/2003 and 04/01/2021 and divided this sample into five sub-periods to 

cover calm and crisis periods including the Global Financial Crisis (GFC) in 2008 and the 

Covid-19 Crisis (CVC) in 2020.   

We detect 171, 257, 142, 175, and 297 volatility spillover linkages across the five sub-

periods, respectively. This highlights the time-varying nature of the spillovers between the key 

global variables and G20 markets. Of note, the volatility spillover networks are much denser 

during the GFC and CVC crisis periods compared to the networks of non-crisis periods. The 

crisis periods are more transitive, resulting in volatility that transmits more rapidly and directly 

through the different assets examined. In Period 5 (CVC), the global financial indicators of oil 

and bonds appear as the main senders of volatility, indicating that they affect other markets but 

are not affected by those markets. In contrast, Saudi Arabia, Russia, South Africa, and Brazil 

are major volatility receivers in this period. An important point here is the role that oil plays in 

affecting global stock markets and notably oil-exporting markets. In Period 2 (GFC), as the 

crisis began in the US, it acts as a major source of volatility spillovers along with Australia, 

Canada, and Saudi Arabia. A further point of interest is that China is among the least sensitive 

market to external volatility across all the sub-periods. In the non-crisis periods, the influence 

of the global variables on the G20 is notably lower compared to the case of the crisis periods. 

Instead, the effect of regional information becomes dominant, such as the Brexit referendum 

in the UK.  

Although the results of this work are time and market specific, the movements of key 

nodes and edges over time provide important information. For policymakers, investors, and 

market participants, considering spillover relations in G20 stock markets is important in being 

able to manage risks and portfolio diversifications. For example, the existence of global risk 
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factors can be thought as a sign to restrict the possibilities of portfolio diversification, 

especially during crisis periods when the correlations among investment instruments are high. 

In the non-crisis periods, more diversified portfolios can be constructed depending on time and 

market specific information. 
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CHAPTER 6 

 

6. Summary and Concluding Remarks  
 

6.1. Summary 
 

The aim of this thesis is to examine the behaviour of stock market volatility in a selection of 

international markets, the predictive ability of extended models to provide accurate volatility 

forecasts, and the nature of the interrelations between markets from the perspective of complex 

network theory. In particular, this research consists of four substantive chapters in the centre 

of the conditional volatility, realized volatility, and volatility spillovers.  

         Focussing on the modelling and forecasting of realized volatility the first chapter 

empirically contributes to the existing literature by conducting a comprehensive exercise, 

including 30 different international stock markets and more up-to-date data. We conduct a 

comparative forecasting exercise for improving out-of-sample volatility forecasts of different 

stock markets at daily horizon. Two different classes of volatility forecasting models are 

considered and compared: the conditional volatility models such as GARCH type models and 

realized volatility models, HAR-RV and ARFIMA-RV. The findings are mostly in line with 

previous research that HAR-RV is the best-performing model. Moreover, the decomposition 

of realized volatility into positive and negative realized semivariances (e.g. HAR-PS model) 

improve the forecast accuracy of HAR-RV model. 

         In the second chapter, we extend the baseline HAR-RV model with some exogenous (X) 

variables (symbolized as HAR-RV-X) which are extreme range estimators such as Parkinson, 

Garman-Klass, Roger-Satchell, and Yang-Zhang. Essentially, this chapter examines whether 

these extreme range estimators improve the out-of-sample forecast accuracy of future realized 

volatility in the G7 stock markets. Despite the fact that the findings seem to be inconclusive in 

the stock markets of group of Seven, Parkinson and Garman-Klass estimators could be 

employed in the HAR-RV model to generate better forecasts of future realized volatility. To 
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the best of our knowledge, this is the first work which examines the information content of 

extreme range information at improving the forecasts of realized volatility.  

         The third substantive chapter uses the HAR-RV-X model from the previous chapter and 

also further expand it by the Kitchen Sink (KS) strategy. The HAR-RV-KS includes a long list 

of possible additional variables in the model at once. A wide range of exogenous variables 

from assets to commodities, implied volatility indices to bond rates are involved in this analysis 

for an inclusive analysis. Furthermore, those additional variables are classified in respect to 

different information channels, namely local, regional, and global. In doing so, we aim to 

investigate which class of models best helps in forecasting the future realized volatility. The 

results indicate that while the HAR-RV-KS  model outperforms the HAR-RV and HAR-RV-

X (with only one X variable) specifications, the role of global information at improving the 

forecasts of future realized volatility is more important than the others.  

         Unlike the first three chapters, the last chapter handles the transmission of volatility 

across international markets, namely the interrelation between non-stock assets (oil, gold and 

bond) and G20 stock markets. In this regard, we consider a bivariate GARCH-BEKK model 

that captures volatility spillover effects. Moreover, the GARCH-BEKK model is combined 

with a complex network theory to analyse the volatility spillover relations between key global 

financial indicators and G20 stock markets. Using this method, we construct the spillover 

networks of international financial markets under five identified sample sub-periods including 

crisis and non-crisis periods. The findings contribute to the literature of volatility spillovers 

from the network theory perspective as follows. The volatility spillover relations between the 

global indicators such as oil, gold, and bond and G20 markets vary significantly across five 

identified sub-periods. Notably, networks are much denser in crisis periods than those of non-

crisis periods. In comparing two crisis periods, Global Financial Crisis (2008) and COVID-19 

Crisis (2020) periods, the network statistics indicate that volatility spillovers in the latter period 

are more transitive and intense than the former. This suggests that financial volatility spreads 

more rapidly and directly through key financial indicators to the G20 stock markets, especially 

in crisis periods.   
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6.2. Concluding Remarks 
          

In conclusion, this thesis presents the four main contributions. The first substantive work 

empirically contributes to the volatility forecasting literature by carrying out an extensive 

exercise with the thirty different international stock markets and more up-to-date data. The 

second empirical exercise informs that the well-established range based estimators such as 

Parkinson and Garman-Klass could be employed to generate more accurate forecasts of future 

realized volatility. Thirdly, the sources of global information are better to improve the future 

realized volatility forecasts than local and regional information. The final exercise 

methodologically and empirically contributes to the literature of volatility spillovers. 

Methodologically, a solution is provided to the difficulty encountered by the bivariate 

GARCH-BEKK model when dealing with multi-dimensionality issue. In other words, a 

bivariate GARCH-BEKK specification is combined with complex network theory to build a 

network of financial markets, consisting of nodes and edges. Empirically, we find that the 

networks of international financial markets are much denser in crisis periods than that of non-

crisis periods and financial volatility spreads more rapidly and directly through key financial 

indicators to the G20 stock markets, particularly in crisis periods.   

         The findings of the first three of empirical studies could provide useful information in 

improving the forecast accuracy of stock market volatility and determining the most and least 

relevant parameters of stock market volatility. For example, some well-documented extreme 

range estimators such as Parkinson and Garman-Klass and global information sources (e.g. 

global financial indicators and US market information) as exogenous variables can help in 

forecasting the one-day-ahead volatility of stock markets.  

         Over the last two decades, the Global Financial Crisis (GFC, 2008) and the COVID-19 

Crisis (CVC, 2020) have further indicated the importance and impact of accurate and efficient 

volatility forecasting. Hence, accurate volatility forecasting is quite important in terms of 

portfolio and risk management, especially for policy makers, investors, and market participants 

who have certain levels of risk which they intend not to exceed. Some practical implications 

from our findings can help them in the process of both forecasting and asset allocation. This is 

the fact that all financial actors desire to know today, “what will be the degree of volatility 

tomorrow?”. In terms of forecasting angle, the gain in forecasting accuracy is believed to be 

economically significant to minimize risk and maximize return. For instance, while investors 
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and market participants would like to rearrange their stocks or portfolio positions before 

financial markets become too volatile, policy makers would desire to narrow bid-ask spread in 

order to restore market liquidity if the future is expected to be more volatile. From the 

perspective of asset allocation, investors and market participants could use our findings to align 

their portfolios by reducing their exposure to various risks (i.e. local, regional, and global 

risks).  

         The results of the last empirical research could also contain important information for 

policymakers, investors, and market participants who would like to invest in overseas. This is 

because assessing spillover relations in G20 markets is crucial in being able to manage risks 

and portfolio diversifications. For instance, the existence of global risk factors can be 

considered as a sign to restrict the possibilities of portfolio diversification, particularly during 

crisis periods when the correlations among investment instruments are high. In the non-crisis 

periods, more diversified portfolios can be constructed depending on time and market specific 

information. 

         A plausible avenue of future research to extend Chapter 2 would be to investigate the 

forecasting ability of wider classes of models by adding simple and stochastic volatility models 

(or maybe machine learning and deep learning models, which are quite popular these days) as 

well as using wider stock market indices. In Chapter 3, applying our methodological approach 

to a wider groups of stock market prices and oil and gold prices could validate the capacity of 

seven range-based estimators in forecasting realized volatility within a HAR-RV-X 

framework. Also, employing the range-based estimators derived from higher frequencies could 

yield noteworthy results. In a similar vein, the proposed methodological framework in Chapter 

4 would also be used to identify different risk exposures (e.g. local, regional and global) of 

other different stock indices, including, for instance, Asian and/or Middle East stock market 

indices. In Chapter 5, it might be worth to conduct this exercise using the Diebold and Yilmaz 

(2009, 2012) spillover index under a common sample data (which is possible with weekly 

frequency data), however, we are unable to do it in our case due to the usage of daily data. 

Also, within the same chapter, a sectoral extension of this network analysis could be another 

interesting avenue of research.    
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Appendices: 
 
Chapter-2 
 
 
 
      Table 1: QLIKE for rolling windows forecast models  
 

 GARCH EGARCH PGARCH TGARCH HAR-RV HAR-PS HAR-RSV ARFIMA-RV 
AEX      -8.7107 -8.7298* -8.7437 -8.7120 -8.8382** -8.8361 -8.8287 -8.6937 

AORD -9.1450 -9.1610 -9.1707* -9.1465 -9.2734 -9.2779** -9.2577 -8.8708 

BFX -8.6286 -8.7225 -8.7361* -8.7272 -8.8446** -8.8441 -8.8411 -8.7465 

BSESN -8.7091 -8.7404* -8.7180 -8.6927 -8.8565** -8.8540 -8.8489 -8.7369 

BVLG -8.9305 -8.9458 -8.9627* -8.9592 -9.2641** -9.2430 -9.1782 -9.2085 

BVSP -8.0419 -8.0106 -8.0432* -8.0346 -8.3046** -8.2847 -8.2970 -8.1859 

DJI -8.9317 -8.9478 -8.9838** -8.9635 -8.9827 -8.9319* -8.9108 -8.9077 

FCHI -8.3810 -8.4446* -8.4342 -8.4100 -8.5473** -8.5471 -8.5425 -8.3937 

FTMIB -8.0436 -8.0573 -8.0743* -8.0602 -8.3467** -8.3413 -8.3226 -8.2210 

FTSE -8.6696 -8.6517 -8.6737* -8.6058 -8.6841 -8.6930** -8.2896 -8.4948 

GDAXI -8.3645 -8.4054 -8.4090* -8.2687 -8.5083 -8.5110** -8.4845 -8.2662 

GSPTSE -9.2440 -9.3235* -9.3108 -9.2641 -9.3515 -9.3571** -9.3409 -9.2069 

HSI -8.4927 -8.5821 -8.6213* -8.6151 -8.8635 -8.8636** -8.8613 -5.4198 

IBEX -8.0355 -8.0375* -7.8975 -8.0201 -8.1109** -8.1082 -8.1007 -8.0316 

IXIC -8.8146 -8.8373 -8.8676* -8.7976 -9.0537** -8.9816 -8.8783 -8.9988 

KS11 -9.0523 -9.0275 -9.0843* -9.0517 -9.2587 -9.2604 -9.2641** -9.2024 

KSE -8.8437* -8.8180 -8.8246 -8.8152 -9.0120** -9.0099 -8.9948 -7.8012 

MXX -8.7058 -8.7425 -8.7554* -8.7025 -8.7678 -8.7743** -8.7488 -8.5656 

N225 -8.4473 -8.4494 -8.4768* -8.4650 -8.7590** -8.7362 -8.7518 -8.3652 

NSEI -8.5931 -8.7597 -8.7681* -8.7075 -8.8752** -8.8738 -8.8652 -8.7519 

OMXC20 -8.4141 -8.4376 -8.4384* -8.4344 -8.5103** -8.5063 -8.4616 -8.3132 

OMXHPI -8.7209 -8.6853 -8.7198 -8.7267* -8.9772 -8.9780** -8.9693 -8.9271 

OMXSPI -8.8722 -8.9059* -8.8989 -8.8924 -9.1111** -9.1056 -9.0925 -8.5845 

OSEAX -8.5447 -8.5548 -8.5657* -8.5161 -8.6173** -8.3806 -8.5349 -8.3525 

RUT -8.6318 -8.6819* -8.6745 -8.6440 -8.9418 -8.9420** -8.9102 -8.8375 

SMSI -8.1292 -8.1448 -8.1474* -8.1018 -8.2256** -7.9472 -8.1851 -8.1601 

SPX -8.9751 -8.9787 -9.0417* -8.9568 -9.0802** -9.0671 -8.9199 -8.9044 

SSEC -8.1701 -8.1341 -8.1699 -8.1868* -8.3591** -8.3450 -8.2361 -8.2106 

SSMI -8.9251 -8.9198 -8.9378* -8.8715 -9.0732** -9.0680 -9.0413 -8.9806 

STOXX50E -8.2579 -8.3149 -8.2995* -8.0975 -8.3473 -8.3586** -8.0329 -8.1420 

Notes: ** with bold indicates the best performing model, underlined with * is the best performing GARCH 
model, regardless of the HAR and ARFIMA models.   
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          Table 2: MSE for rolling windows forecast models 
 

Notes: ** with bold indicates the best performing model, underlined with * is the best performing GARCH 
model, regardless of the HAR and ARFIMA models.   
 
 
 
 
 
 
 
 
 

 GARCH EGARCH PGARCH TGARCH HAR-RV HAR-PS HAR-RSV ARFIMA-RV 
AEX      1.32E-08 9.77E-09* 1.19E-08 1.31E-08 8.27E-09** 8.45E-09 8.46E-09 9.01E-09 

AORD 4.15E-09 3.85E-09* 4.36E-09 4.05E-09 2.46E-09 2.43E-09 2.35E-09** 2.79E-09 

BFX 1.11E-08 8.73E-09* 8.99E-09 1.23E-08 4.68E-09** 4.96E-09 5.01E-09 5.03E-09 

BSESN 4.85E-09 4.64E-09* 5.69E-09 5.06E-09 2.99E-09 2.98E-09** 3.09E-09 3.30E-09 

BVLG 9.80E-09 1.16E-08 9.87E-09 9.76E-09* 1.12E-09** 1.16E-09 1.37E-09 1.48E-09 

BVSP 2.93E-08* 3.63E-08 4.00E-08 3.31E-08 1.01E-08** 1.04E-08 1.03E-08 1.04E-08 

DJI 2.45E-08 2.35E-08 3.00E-08 2.27E-08** 2.84E-08* 2.96E-08 3.98E-08 3.41E-08 

FCHI 2.03E-08 1.45E-08* 2.02E-08 2.00E-08 1.01E-08 1.00E-08** 1.00E-08** 1.14E-08 

FTMIB 5.83E-08 4.97E-08* 9.06E-08 7.77E-08 1.17E-08** 1.26E-08 1.25E-08 1.70E-08 

FTSE 2.50E-08 2.42E-08 2.42E-08 2.40E-08** 2.62E-08* 2.78E-08 2.83E-08 3.64E-08 

GDAXI 1.84E-08 1.45E-08* 1.68E-08 1.69E-08 1.27E-08 1.32E-08 1.37E-08 1.26E-08** 

GSPTSE 8.57E-09 7.68E-09** 8.40E-09 8.05E-09 9.43E-09* 1.01E-08 1.39E-08 1.15E-08 

HSI 1.71E-08 1.41E-08* 1.54E-08 1.55E-08 4.51E-09** 4.55E-09 4.64E-09 5.42E-09 

IBEX 4.38E-08 4.10E-08 3.80E-08* 4.89E-08 2.88E-08** 3.09E-08 3.08E-08 3.68E-08 

IXIC 1.38E-08 9.88E-09* 1.24E-08 1.39E-08 6.36E-09 6.19E-09 6.09E-09** 8.29E-09 

KS11 1.17E-08 8.11E-09* 9.73E-09 1.22E-08 3.92E-09** 4.39E-09 4.55E-09 4.17E-09 

KSE 6.71E-09* 7.75E-09 8.13E-09 9.42E-09 2.74E-09 2.69E-09** 2.77E-09 3.75E-09 

MXX 2.14E-08 1.97E-08** 2.08E-08 2.11E-08 2.09E-08* 2.43E-08 3.28E-08 2.10E-08 

N225 3.78E-08 2.93E-08* 3.95E-08 4.01E-08 1.46E-08** 1.63E-08 1.64E-08 1.78E-08 

NSEI 6.08E-09 5.87E-09* 7.01E-09 6.63E-09 3.96E-09 3.95E-09** 4.06E-09 4.50E-09 

OMXC20 4.12E-08 4.06E-08* 4.18E-08 4.22E-08 3.94E-08** 4.33E-08 4.28E-08 4.12E-08 

OMXHPI 1.70E-08 1.87E-08 1.98E-08 1.66E-08* 3.71E-09** 3.73E-09 3.80E-09 3.84E-09 

OMXSPI 1.65E-08 1.25E-08* 1.26E-08 1.73E-08 7.34E-09** 7.83E-09 7.93E-09 8.52E-09 

OSEAX 2.05E-08 1.71E-08** 1.91E-08 1.99E-08 1.73E-08 1.72E-08** 1.73E-08 2.07E-08 

RUT 2.81E-08 1.35E-08* 2.07E-08 2.11E-08 1.05E-08 9.47E-09 9.67E-09 9.27E-09** 

SMSI 6.47E-08 5.96E-08* 6.24E-08 6.55E-08 4.95E-08** 5.26E-08 5.46E-08 5.16E-08 

SPX 1.52E-08 1.24E-08** 1.46E-08 1.49E-08 1.55E-08* 1.64E-08 1.84E-08 1.71E-08 

SSEC 6.27E-08* 6.73E-08 7.16E-08 6.84E-08 4.61E-08 4.46E-08** 4.58E-08 6.39E-08 

SSMI 2.56E-08 2.20E-08* 7.42E-08 9.42E-08 1.54E-08** 1.55E-08 1.99E-08 2.25E-08 

STOXX50E 3.40E-08 3.10E-08* 3.48E-08 3.27E-08 2.64E-08** 2.71E-08 2.79E-08 2.76E-08 
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       Table 3: MAE for rolling windows forecast models 
 

 GARCH EGARCH PGARCH TGARCH HAR-RV HAR-PS HAR-RSV ARFIMA-RV 
AEX      6.05E-05 5.38E-05* 5.65E-05 6.03E-05 3.31E-05 3.30E-05** 3.38E-05 4.19E-05 

AORD 4.01E-05 3.91E-05* 6.06E-05 4.01E-05 2.20E-05 2.18E-05** 2.26E-05 2.69E-05 

BFX 5.88E-05 5.45E-05 5.32E-05* 5.66E-05 2.81E-05 2.80E-05** 2.82E-05 3.34E-05 

BSESN 4.53E-05 4.39E-05* 4.68E-05 4.58E-05 2.62E-05 2.61E-05** 2.67E-05 3.13E-05 

BVLG 7.00E-05 6.92E-05 6.60E-05 6.50E-05* 1.66E-05** 1.69E-05 1.90E-05 1.89E-05 

BVSP 0.000130 0.000139 0.000134 0.000129* 4.54E-05** 4.59E-05 4.64E-05 5.30E-05 

DJI 4.99E-05 4.50E-05* 4.56E-05 4.87E-05 4.47E-05** 4.53E-05 5.15E-05 5.08E-05 

FCHI 8.17E-05 7.33E-05* 8.07E-05 8.18E-05 4.20E-05 4.19E-05** 4.27E-05 5.42E-05 

FTMIB 0.000157 0.000150* 0.000157 0.000154 5.07E-05 5.05E-05** 5.15E-05 7.03E-05 

FTSE 5.04E-05 4.57E-05** 4.88E-05 4.86E-05 4.80E-05 4.79E-05 4.84E-05 5.74E-05* 

GDAXI 7.89E-05 6.97E-05* 7.38E-05 7.87E-05 4.57E-05 4.54E-05** 4.61E-05 5.93E-05 

GSPTSE 3.54E-05 3.05E-05* 3.39E-05 3.33E-05 2.59E-05 2.58E-05** 2.85E-05 3.23E-05 

HSI 8.86E-05 8.35E-05* 8.47E-05 8.57E-05 2.73E-05** 2.74E-05 2.78E-05 3.44E-05 

IBEX 9.47E-05 9.16E-05* 9.23E-05 9.68E-05 6.31E-05** 6.38E-05 6.34E-05 8.18E-05 

IXIC 6.76E-05 6.13E-05* 6.26E-05 7.00E-05 2.95E-05** 3.02E-05 3.04E-05 3.35E-05 

KS11 5.50E-05 4.97E-05 4.93E-05* 5.52E-05 1.95E-05** 1.99E-05 2.03E-05 2.30E-05 

KSE 5.84E-05* 6.20E-05 6.39E-05 6.54E-05 2.71E-05 2.70E-05** 2.72E-05 3.50E-05 

MXX 5.22E-05 4.81E-05* 5.05E-05 4.95E-05 4.12E-05** 4.24E-05 4.67E-05 4.60E-05 

N225 0.000126 0.000118* 0.000128 0.000125 4.43E-05** 4.60E-05 4.57E-05 5.67E-05 

NSEI 4.87E-05 4.70E-05* 5.10E-05 4.95E-05 2.74E-05 2.73E-05** 2.81E-05 3.40E-05 

OMXC20 7.44E-05 7.20E-05* 7.33E-05 7.49E-05 5.57E-05** 5.67E-05 5.77E-05 6.24E-05 

OMXHPI 8.28E-05 9.09E-05 8.72E-05 8.06E-05* 2.67E-05 2.66E-05** 2.70E-05 3.01E-05 

OMXSPI 7.18E-05 6.62E-05* 6.81E-05 7.01E-05 2.70E-05** 2.71E-05 2.90E-05 3.59E-05 

OSEAX 6.75E-05 6.19E-05* 6.52E-05 6.58E-05 4.87E-05 4.85E-05** 4.91E-05 6.05E-05 

RUT 9.45E-05 8.03E-05* 8.65E-05 8.76E-05 3.43E-05 3.30E-05** 3.36E-05 3.92E-05 

SMSI 0.000102 9.41E-05* 0.000104 9.93E-05 6.58E-05 6.41E-05** 6.52E-05 7.83E-05 

SPX 5.14E-05 4.47E-05* 4.81E-05 5.27E-05 4.06E-05** 4.08E-05 4.40E-05 4.73E-05 

SSEC 0.00012* 0.00013 0.00013 0.00013 7.39E-05 7.19E-05** 7.39E-05 9.38E-05 

SSMI 5.69E-05 5.04E-05* 5.91E-05 6.25E-05 2.62E-05 2.59E-05** 2.88E-05 3.24E-05 

STOXX50E 8.40E-05 7.44E-05* 8.31E-05 8.35E-05 5.77E-05 5.65E-05** 5.68E-05 6.86E-05 

Notes: ** with bold indicates the best performing model, underlined with * is the best performing GARCH 
model, regardless of the HAR and ARFIMA models.   
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           Table 4: Annualised volatility and geographically distributed indices 
 
 Annualised 

Conditional 
volatility  

Annualised 
Realized 
volatility 

Europe Asia America Australia 

AEX      0.16 0.13 AEX BSESN BVSP AORD 
AORD 0.12 0.10 BFX  HSI DJI  
BFX 0.16 0.12 BVLG KS11 GSPTSE  
BSESN 0.15 0.12 FCHI KSE NASDAQ  
BVLG 0.16 0.10 FTMIB N225 MXX  
BVSP 0.22 0.15 FTSE NSEI SPX  
DJI 0.14 0.13 GDAXI SSEC   
FCHI 0.19 0.15 IBEX    
FTMIB 0.24 0.17 OMXC20    
FTSE 0.14 0.14 OMXHPI    
GDAXI 0.19 0.15 OMXSPI    
GSPTSE 0.12 0.10 OSEAX    
HSI 0.18 0.12 RUT    
IBEX 0.21 0.19 SMSI    
IXIC 0.17 0.12 SSMI    
KS11 0.14 0.10 STOXX50E    
KSE 0.15 0.11     
MXX 0.14 0.12     
N225 0.20 0.13     
NSEI 0.15 0.12     
OMXC20 0.17 0.14     
OMXHPI 0.18 0.13     
OMXSPI 0.17 0.12     
OSEAX 0.17 0.14     
RUT 0.19 0.13     
SMSI 0.21 0.18     
SPX 0.14 0.13     
SSEC 0.21 0.18     
SSMI 0.15 0.11     
STOXX50E 0.19 0.17     
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  Table 5: GW test results for the rolling windows 
 

 

ROLLING       EGARCH         PGARCH         TGARCH         HAR-RV         ARFIMA-RV     HAR-RSV       HAR-PS 

AEX 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.000 (+)        0.134 (+)       0.047 (+)         0.000 (+)          0.000 (+)       0.000 (+)        0.000 (+) 
 
             -                 0.000 (-)         0.000 (-)         0.000 (+)          0.000 (+)       0.000 (+)       0.000 (+)          
 
             -                      -                  0.000 (-)         0.000 (+)          0.000 (+)       0.000 (+)       0.000 (+) 
 
             -                      -                       -                  0.000 (+)          0.000 (+)       0.000 (+)       0.000 (+) 
  
             -                      -                       -                        -                   0.097 (-)        0.192 (-)       0.272 (-) 
              

-               -                       -                        -                         -                0.211 (+)      0.138 (+)                            
            

-               -                       -                        -                         -                      -               0.000 (+)   
AORD 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.000 (+)        0.000 (-)         0.006 (+)        0.000 (+)          0.000 (+)       0.000 (+)        0.000 (+) 
 
             -                 0.000 (-)         0.000 (-)         0.000 (+)         0.000 (+)        0.000 (+)       0.000 (+)          
 
             -                      -                  0.000 (+)        0.000 (+)          0.000 (+)       0.000 (+)       0.000 (+) 
 
             -                      -                       -                  0.000 (+)          0.000 (+)       0.000 (+)       0.000 (+) 
  
             -                      -                       -                        -                   0.009 (-)        0.050 (+)      0.025 (+) 
              
             -                      -                       -                        -                         -                0.046 (+)      0.014 (+)                            
            
             -                      -                       -                        -                         -                      -               0.029 (-)   

BFX 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.004 (+)        0.023 (+)         0.014 (-)         0.000 (+)          0.000 (+)        0.000 (+)     0.000 (+) 
 
             -                 0.000 (-)         0.000 (-)         0.000 (+)          0.000 (+)         0.000 (+)     0.000 (+)         
  
             -                      -                  0.001 (-)         0.000 (+)          0.000 (+)         0.000 (+)     0.000 (+) 
 
             -                      -                       -                  0.000 (+)          0.000 (+)         0.000 (+)     0.000 (+) 
  
             -                      -                       -                        -                   0.000 (-)          0.334 (-)     0.424 (-) 
 

-               -                       -                        -                         -                  0.035 (+)    0.016 (+) 
 
-               -                       -                        -                         -                         -            0.220 (+) 

BSESN 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.009 (+)        0.000 (-)         0.000 (-)          0.000 (+)         0.000 (+)          0.000 (+)     0.000 (+) 
 
             -                 0.000 (-)        0.017 (-)          0.000 (+)          0.000 (+)          0.000 (+)    0.000 (+)      
  
             -                      -                 0.000 (+)         0.000 (+)          0.000 (+)          0.000 (+)    0.000 (+) 
 
             -                      -                       -                  0.000 (+)          0.000 (+)          0.000 (+)    0.000 (+) 
  
             -                      -                       -                        -                   0.000 (-)           0.046 (-)    0.059 (+) 
 

-               -                       -                        -                         -                   0.000 (+)   0.000 (+) 
 

-               -                       -                        -                         -                          -           0.046 (+)     
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ROLLING       EGARCH         PGARCH         TGARCH         HAR-RV        ARFIMA-RV        HAR-RSV        HAR-PS 

BVLG 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.070 (-)        0.000 (-)         0.000 (+)         0.000 (+)          0.000 (+)          0.000 (+)       0.000 (+)  
 
             -                0.015 (+)       0.050 (+)         0.000 (+)          0.000 (+)          0.000 (+)       0.000 (+)        
  
             -                     -                 0.001 (+)         0.000 (+)          0.000 (+)          0.000 (+)       0.000 (+) 
 
             -                     -                       -                  0.000 (+)          0.000 (+)          0.000 (+)       0.000 (+) 
  
             -                     -                       -                        -                   0.000 (-)           0.000 (-)       0.001 (+)  
 

-              -                       -                        -                         -                   0.001 (+)      0.000 (+) 
 
-              -                       -                        -                         -                         -               0.000 (+) 

BVSP 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.385 (-)         0.000 (-)         0.149 (-)          0.000 (+)           0.000 (+)        0.000 (+)      0.000 (+) 
 
             -                 0.032 (-)        0.300 (+)          0.000 (+)           0.000 (+)        0.000 (+)      0.000 (+)          
  
             -                       -                0.002 (+)          0.000 (+)           0.000 (+)        0.000 (+)      0.000 (+) 
 
             -                       -                       -                  0.000 (+)           0.000 (+)        0.000 (+)      0.000 (+) 
  
             -                       -                       -                        -                    0.000 (-)         0.325 (-)       0.118 (-) 
   

-                -                       -                        -                          -                 0.000 (+)     0.000 (+) 
 
-                -                       -                        -                          -                       -              0.030 (+) 

DJI 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.079 (+)        0.004 (+)         0.440 (+)        0.151 (-)           0.514 (-)           0.067 (-)      0.171 (-) 
 
             -                 0.192 (-)          0.001 (-)         0.092 (-)          0.319 (-)            0.022 (-)     0.094 (-) 
  
             -                      -                  0.051 (+)         0.119 (-)          0.404 (-)            0.032 (-)     0.128 (-) 
 
             -                      -                       -                   0.161 (-)          0.483 (-)            0.049 (-)     0.120 (-) 
  
             -                      -                       -                        -                   0.155 (-)            0.122 (-)     0.225 (-) 
 
             -                      -                       -                        -                         -                    0.225 (-)     0.169 (+) 

 
-               -                       -                        -                         -                          -             0.384 (+) 

FCHI 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.000 (+)        0.009 (+)       0.015 (+)         0.000 (+)          0.000 (+)           0.000 (+)      0.000 (+) 
 
             -                 0.000 (-)        0.000 (-)          0.000 (+)          0.000 (+)           0.000 (+)     0.000 (+)                 
  
             -                      -                 0.000 (-)          0.000 (+)          0.000 (+)           0.000 (+)     0.000 (+) 
 
             -                      -                       -                  0.000 (+)          0.000 (+)           0.000 (+)     0.000 (+) 
  
             -                      -                       -                        -                   0.000 (-)            0.033 (+)    0.038 (+) 
 
             -                      -                       -                        -                         -                    0.013 (+)    0.007 (+)  

 
-               -                       -                        -                         -                          -             0.018 (+)    
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ROLLING       EGARCH         PGARCH         TGARCH         HAR-RV         ARFIMA-RV       HAR-RSV       HAR-PS 

FTMIB 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.114 (+)        0.467 (-)         0.575 (-)         0.000 (+)          0.000 (+)          0.000 (+)       0.000 (+)  
 
             -                 0.120 (-)         0.132 (-)         0.000 (+)          0.000 (+)         0.000 (+)       0.000 (+) 
  
             -                      -                  0.267 (+)        0.000 (+)          0.000 (+)         0.000 (+)       0.000 (+) 
 
             -                      -                       -                  0.000 (+)          0.000 (+)         0.000 (+)       0.000 (+) 
  
             -                      -                       -                        -                   0.000 (-)          0.507 (-)       0.419 (-) 
 
             -                      -                       -                        -                        -                   0.000 (+)      0.000 (+) 

 
-               -                       -                        -                        -                         -               0.115 (-) 

FTSE 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.009 (+)        0.076 (+)        0.045 (+)         0.202 (-)          0.246 (-)           0.281 (-)       0.151 (-) 
 
             -                 0.000 (-)         0.006 (-)          0.251 (-)          0.003 (-)           0.183 (-)       0.217 (-)      
  
             -                      -                  0.000 (+)         0.286 (-)          0.022 (-)           0.324 (-)       0.239 (-) 
 
             -                      -                       -                   0.225 (-)          0.027 (-)           0.299 (-)       0.228 (-) 
  
             -                      -                       -                        -                   0.173 (-)           0.326 (-)       0.453 (-) 
   
             -                      -                       -                        -                         -                   0.587 (+)      0.590(+) 

 
-               -                       -                        -                         -                         -               0.239(+) 

GDAXI 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.003 (+)        0.002 (+)        0.030 (+)         0.000 (+)         0.003 (+)           0.000 (+)      0.000 (+) 
 
             -                 0.000 (-)         0.000 (-)         0.003 (+)          0.096 (+)           0.005 (+)     0.005 (+)        
  
             -                      -                  0.000 (-)         0.000 (+)          0.000 (+)           0.000 (+)     0.000 (+) 
 
             -                      -                       -                  0.000 (+)          0.000 (+)           0.000 (+)     0.000 (+) 
  
             -                      -                       -                        -                   0.000 (+)           0.069 (-)     0.326 (-) 
 

-               -                       -                        -                         -                    0.011 (-)     0.000 (-) 
 

-               -                       -                        -                         -                          -             0.077 (+) 

GSPTSE 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.000 (+)        0.005 (+)        0.003 (+)          0.017 (-)          0.396 (-)           0.245 (-)      0.010 (-) 
 
             -                 0.000 (-)         0.000 (-)           0.522 (-)          0.132 (-)           0.159 (-)      0.581 (-) 
  
             -                      -                  0.000 (+)          0.090 (-)          0.564 (-)           0.257 (-)      0.080 (-) 
 
             -                      -                       -                    0.308 (-)          0.445 (-)           0.253 (-)      0.256 (-) 
  
             -                      -                       -                        -                    0.017 (-)           0.161 (-)      0.112 (-) 
 

-               -                       -                        -                          -                   0.275 (-)     0.002 (+) 
 

-               -                       -                        -                          -                          -            0.404 (+) 
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ROLLING       EGARCH        PGARCH         TGARCH         HAR-RV        ARFIMA-RV       HAR-RSV         HAR-PS 

HSI 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.000 (+)       0.000 (+)         0.000 (+)         0.000 (+)        0.000 (+)         0.000 (+)         0.000 (+) 
 
             -                0.000 (-)         0.000 (-)          0.000 (+)        0.000 (+)         0.000 (+)         0.000 (+)    
  
             -                      -                  0.000 (+)        0.000 (+)        0.000 (+)         0.000 (+)         0.000 (+) 
 
             -                      -                       -                  0.000 (+)        0.000 (+)         0.000 (+)         0.000 (+) 
  
             -                      -                       -                        -                 0.000 (-)          0.224 (-)          0.095 (-) 
 

-               -                       -                        -                       -                  0.013 (+)         0.004 (+) 
 
-               -                       -                        -                       -                         -                 0.186 (+) 

IBEX 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.009 (+)        0.061 (+)        0.003 (-)          0.000 (+)           0.008 (+)       0.002 (+)         0.000 (+) 
 
             -                 0.055 (+)        0.029 (-)          0.000 (+)           0.054 (+)       0.007 (+)         0.007 (+)            
  
             -                      -                  0.052 (-)          0.000 (+)           0.000 (+)       0.000 (+)        0.000 (+) 
 
             -                      -                       -                   0.000 (+)           0.022 (+)       0.001 (+)        0.000 (+) 
  
             -                      -                       -                        -                     0.000 (-)        0.469 (-)         0.474 (-) 
   

-               -                       -                        -                          -                 0.071 (+)        0.066 (+) 
 
-               -                       -                        -                          -                       -                 0.113 (-) 

IXIC 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.000 (+)        0.000 (+)         0.001 (-)         0.000 (+)           0.000 (+)         0.000 (+)       0.000 (+) 
 
             -                 0.000 (-)          0.000 (-)         0.000 (+)           0.000 (+)         0.000 (+)      0.000 (+)   
  
             -                      -                   0.000 (-)          0.000 (+)          0.000 (+)         0.000 (+)      0.000 (+) 
 
             -                      -                       -                    0.000 (+)          0.000 (+)         0.000 (+)      0.000 (+) 
  
             -                      -                       -                        -                     0.434 (-)         0.235 (+)       0.178 (+) 
 

-               -                       -                        -                           -                 0.284 (+)       0.310 (+) 
 
-               -                       -                        -                           -                        -               0.187 (-)     

KS11 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.000 (+)        0.000 (+)         0.018 (-)          0.000 (+)         0.000 (+)           0.000 (+)      0.000 (+) 
 
             -                 0.000 (-)         0.000 (-)          0.000 (+)          0.000 (+)          0.000 (+)      0.000 (+)   
  
             -                      -                  0.000 (-)          0.000 (+)          0.000 (+)          0.000 (+)      0.000 (+) 
 
             -                      -                       -                   0.000 (+)          0.000 (+)          0.000 (+)      0.000 (+) 
  
             -                      -                       -                        -                    0.223 (-)          0.418 (-)       0.436 (-) 
 

-               -                       -                        -                          -                   0.295 (-)       0.274 (-) 
 
-               -                       -                        -                          -                         -               0.115 (-)    
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ROLLING       EGARCH        PGARCH         TGARCH         HAR-RV          ARFIMA-RV      HAR-RSV         HAR-PS 

KSE 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.000 (-)        0.000 (-)        0.000 (-)         0.000 (+)           0.000 (+)         0.000 (+)         0.000 (+) 
 
             -                0.000 (-)        0.000 (-)         0.000 (+)           0.000 (+)         0.000 (+)         0.000 (+)           
  
             -                      -                0.000 (-)         0.000 (+)           0.000 (+)         0.000 (+)         0.000 (+) 
 
             -                      -                       -                0.000 (+)           0.000 (+)         0.000 (+)         0.000 (+) 
  
             -                      -                       -                        -                  0.000 (-)         0.000 (-)          0.010 (+) 
 

-               -                       -                        -                        -                 0.000 (+)          0.000 (+) 
 

-               -                       -                        -                        -                       -                  0.009 (+) 

MXX 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.000 (+)        0.005 (+)         0.153 (+)        0.001 (+)            0.001 (+)      0.317 (-)          0.015 (-) 
 
             -                 0.001 (-)         0.000 (-)          0.316 (-)            0.088 (-)       0.123 (-)          0.546 (-)  
  
             -                      -                  0.004 (-)          0.017 (-)            0.001 (-)       0.250 (-)          0.144 (-) 
 
             -                      -                       -                   0.012 (+)           0.002 (+)      0.286 (-)          0.105 (-) 
  
             -                      -                       -                        -                     0.016 (-)       0.119 (-)          0.568 (-) 
   

-               -                       -                        -                            -              0.184 (-)          0.169 (-) 
 
-               -                       -                        -                            -                   -                   0.382(+)   

N225 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.000 (+)        0.000 (-)          0.000 (-)         0.000 (+)          0.000 (+)       0.000 (+)         0.000 (+) 
 
             -                 0.000 (-)          0.000 (-)         0.000 (+)          0.000 (+)       0.000 (+)        0.000 (+) 
  
             -                      -                   0.000 (-)         0.000 (+)          0.000 (+)       0.000 (+)        0.000 (+) 
 
             -                      -                       -                   0.000 (+)          0.000 (+)       0.000 (+)        0.000 (+) 
  
             -                      -                       -                        -                    0.000 (-)        0.191 (-)         0.187 (-) 
 

-               -                       -                        -                           -               0.000 (+)        0.000 (+) 
 
-               -                       -                        -                           -                     -                 0.090 (+) 

NSEI 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.003 (+)        0.000 (-)         0.000 (-)          0.000 (+)           0.000 (+)       0.000 (+)        0.000 (+) 
 
             -                 0.000 (-)         0.000 (-)          0.000 (+)           0.000 (+)       0.000 (+)        0.000 (+) 
  
             -                      -                  0.000 (+)         0.000 (+)           0.000 (+)       0.000 (+)        0.000 (+) 
 
             -                      -                       -                   0.000 (+)           0.000 (+)       0.000 (+)        0.000 (+) 
  
             -                      -                       -                        -                     0.000 (-)        0.115 (-)         0.077 (-) 
 

-               -                       -                        -                          -                 0.000 (+)        0.000 (+) 
 
-               -                       -                        -                          -                      -                  0.097(+)         
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ROLLING       EGARCH        PGARCH         TGARCH         HAR-RV         ARFIMA-RV      HAR-RSV       HAR-PS      

OMXC20 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.000 (+)       0.000 (-)         0.001 (-)         0.000 (+)          0.000 (+)        0.191 (-)        0.047 (-) 
 
             -                0.001 (-)         0.000 (-)         0.000 (+)          0.015 (-)         0.414 (-)       0.476 (-) 
  
             -                      -                 0.005 (-)         0.000 (+)          0.000 (+)        0.100 (-)       0.050 (-) 
 
             -                      -                       -                 0.000 (+)          0.000 (+)        0.060 (-)       0.031 (-) 
  
             -                      -                       -                        -                  0.226 (-)         0.192 (-)       0.579 (-) 
 

-               -                       -                        -                        -                 0.311 (-)       0.167 (-) 
 

-               -                       -                        -                        -                        -              0.099 (-) 
OMXHPI 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.000 (-)         0.000 (-)         0.000 (+)          0.000 (+)         0.000 (+)       0.000 (+)      0.000 (+) 
 
             -                 0.000 (-)         0.000 (+)          0.000 (+)         0.000 (+)       0.000 (+)      0.000 (+)          
  
             -                      -                  0.000 (+)          0.000 (+)         0.000 (+)      0.000 (+)      0.000 (+) 
 
             -                      -                       -                    0.000 (+)         0.000 (+)      0.000 (+)      0.000 (+) 
  
             -                      -                       -                        -                    0.007 (-)       0.006 (-)       0.000 (-) 
   

-               -                       -                        -                          -               0.026 (+)      0.003 (+) 
 
-               -                       -                        -                          -                     -               0.006(+) 

OMXSPI 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.000 (+)        0.047 (+)        0.006 (-)         0.000 (+)          0.000 (+)       0.000 (+)       0.000 (+) 
 
             -                 0.114 (+)        0.002 (-)         0.000 (+)          0.000 (+)       0.000 (+)       0.000 (+)      
  
             -                      -                  0.012 (-)         0.000 (+)          0.000 (+)      0.000 (+)       0.000 (+) 
 
             -                      -                       -                  0.000 (+)          0.000 (+)      0.000 (+)       0.000 (+) 
  
             -                      -                       -                        -                   0.000 (-)       0.150 (-)        0.427 (-) 
 

-               -                       -                        -                         -               0.005 (+)       0.000 (+) 
 
-               -                       -                        -                         -                     -                0.004(+) 

OSEAX 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.001 (+)        0.130 (+)         0.000 (+)          0.000 (+)         0.031 (-)       0.000 (+)      0.000 (+) 
 
             -                 0.000 (-)          0.011 (-)          0.003 (+)         0.107 (-)        0.009 (-)      0.001 (+)    
  
             -                      -                   0.019 (-)          0.000 (+)         0.175 (-)        0.000 (+)     0.000 (+) 
 
             -                      -                       -                    0.000 (+)         0.170 (-)        0.000 (+)     0.000 (+) 
  
             -                      -                       -                        -                    0.000 (-)        0.050 (-)      0.012(+) 
 

-               -                       -                        -                          -                0.000 (+)     0.000 (+) 
 
-               -                       -                        -                          -                      -              0.095(+) 
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ROLLING       EGARCH         PGARCH         TGARCH         HAR-RV        ARFIMA-RV     HAR-RSV        HAR-PS 

RUT 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.000 (+)        0.000 (+)        0.003 (+)         0.000 (+)        0.000 (+)        0.000 (+)        0.000 (+)  
 
             -                 0.000 (-)         0.000 (-)         0.000 (+)        0.000 (+)         0.000 (+)       0.000 (+)     
  
             -                      -                  0.000 (-)         0.000 (+)        0.000 (+)         0.000 (+)       0.000 (+) 
 
             -                      -                       -                  0.000 (+)        0.000 (+)         0.000 (+)       0.000 (+) 
  
             -                      -                       -                        -                 0.179 (+)         0.134 (+)       0.233(+) 
 

-               -                       -                        -                       -                  0.222 (-)       0.226 (-) 
 
-               -                       -                        -                       -                         -              0.267 (+)  

SMSI 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.033 (+)        0.004 (+)        0.006 (-)          0.004 (+)         0.014 (+)        0.002 (+)       0.001 (+)    
 
             -                 0.000 (-)         0.042 (-)          0.003 (+)         0.052 (+)        0.007 (+)      0.001 (+)      
  
             -                       -                 0.037 (-)          0.000 (+)         0.000 (+)        0.000 (+)      0.000 (+) 
 
             -                       -                       -                  0.004 (+)         0.005 (+)        0.003 (+)      0.001 (+) 
  
             -                       -                       -                        -                  0.046 (-)         0.351 (-)       0.221 (-) 
  

-                -                       -                        -                        -                 0.116 (-)       0.030 (-) 
 
-                -                       -                        -                        -                      -                0.275(+) 

SPX 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.021 (+)        0.000 (+)         0.147 (+)         0.048 (-)            0.079 (-)        0.200 (-)      0.149 (-) 
 
             -                 0.004 (-)          0.034 (-)         0.208 (-)            0.530 (-)        0.134 (-)      0.285 (-)       
  
             -                      -                   0.064 (-)         0.091 (-)            0.276 (-)        0.214 (-)      0.239 (-) 
 
             -                      -                       -                   0.098 (-)            0.047 (-)        0.157 (-)      0.085 (-) 
  
             -                      -                       -                        -                     0.354 (-)        0.082 (-)      0.143 (-) 
 

-               -                       -                        -                           -                0.149 (-)     0.219 (+) 
 
-               -                       -                        -                           -                     -              0.417 (+) 

SSEC 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.002 (-)         0.002 (-)        0.001 (-)           0.000 (+)         0.000 (-)          0.000 (+)     0.000 (+) 
 
             -                 0.032 (-)        0.000 (-)           0.000 (+)         0.000 (+)         0.000 (+)     0.000 (+)       
  
             -                      -                 0.002 (+)          0.000 (+)         0.000 (+)         0.000 (+)     0.000 (+) 
 
             -                      -                       -                   0.000 (+)         0.000 (+)         0.000 (+)     0.000 (+) 
  
             -                      -                       -                        -                   0.089 (-)          0.060 (+)    0.017 (+) 
 

-               -                       -                        -                         -                  0.183 (+)    0.072 (+) 
 
-               -                       -                        -                         -                        -             0.044 (+) 
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ROLLING       EGARCH        PGARCH         TGARCH         HAR-RV        ARFIMA-RV      HAR-RSV       HAR-PS 

SSMI 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.047 (+)       0.590 (-)         0.183 (-)         0.009 (+)        0.005 (+)          0.010 (+)     0.019 (+) 
 
             -                0.564 (-)         0.209 (-)         0.095 (+)        0.028 (-)           0.045 (+)    0.097 (+)        
  
             -                      -                 0.078 (-)         0.035 (+)        0.427 (+)          0.389 (+)    0.076 (+) 
 
             -                      -                       -                 0.072 (+)        0.158 (+)          0.166 (+)    0.085 (+) 
  
             -                      -                       -                        -                0.216 (-)           0.042 (-)     0.074 (-) 
 

-               -                       -                        -                     -                    0.065 (+)    0.256 (+) 
 
-               -                       -                        -                     -                          -             0.032(+) 

STOXX50 
GARCH 
 
EGARCH 
 
PGARCH 
 
TGARCH 
 
HAR-RV 
 
ARFIMA-RV 
 
HAR-RSV 

 
       0.000 (+)        0.000 (-)         0.054 (+)        0.006 (+)           0.031 (+)       0.006 (+)    0.003 (+) 
 
             -                 0.000 (-)        0.000 (-)          0.013 (+)           0.086 (+)       0.018 (+)    0.008 (+)            
  
             -                      -                 0.000 (+)         0.000 (+)           0.003 (+)       0.000 (+)    0.000 (+) 
 
             -                      -                       -                  0.000 (+)           0.003 (+)       0.000 (+)    0.000(+) 
  
             -                      -                       -                        -                    0.000 (-)        0.012 (-)    0.255 (-) 
   

-               -                       -                        -                           -               0.003 (-)    0.000 (+) 
 
-               -                       -                        -                           -                     -            0.058(+) 
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Chapter-3: 
 

Table 1: RECURSIVE WINDOW FORECASTING RESULTS MEASURED BY QLIKE AND HMSE AND 
MCS TEST 

CAC                           QLIKE      p-value             Rank         𝑴𝒁-𝑹𝟐   CAC                               HMSE        p-value           Rank            
PK  (Model-free)  0.2360     eliminated           – 0.721 PK  (Model-free)   0.3508        1.0000               3 
GK (Model-free)  0.1947     eliminated           – 0.793 GK  (Model-free)   0.2168        1.0000               1 
RS  (Model-free)  0.6907     eliminated           – 0.788 RS  (Model-free)   0.2741        1.0000               2 
YZ  (Model-free)  0.1798     eliminated           – 0.560 YZ  (Model-free)   3.6710        eliminated        – 
HAR-RV  0.1559     eliminated           –  0.499 HAR-RV  0.7151        eliminated        –  
HAR-RV-ONV  0.1427     1.0000                  1 0.529 HAR-RV-ONV  0.6886        1.0000               4 
HAR-RV-CC  0.1557     eliminated           –  0.512 HAR-RV-CC  0.7192        eliminated        –  
HAR-RV-PK  0.1565     eliminated           –  0.530 HAR-RV-PK  0.6902        0.9962               6 
HAR-RV-GK  0.1558     eliminated           –  0.495 HAR-RV-GK  0.7140        eliminated        –  
HAR-RV-RS  0.1566     eliminated           – 0.489 HAR-RV-RS  0.6983        0.7078               7   
HAR-RV-YZ  0.1564     eliminated           –  0.505 HAR-RV-YZ  0.7239        eliminated        –  
HAR-RV-COMB.  0.1494     eliminated           – 0.499 HAR-RV-COMB.   0.6895        1.0000               5 
DAX QLIKE      p-value             Rank  𝑴𝒁-𝑹𝟐 DAX HMSE         p-value           Rank  
PK  (Model-free)   0.2141     eliminated           – 0.731 PK  (Model-free)   0.3707      1.0000                 3 
GK  (Model-free)   0.1620     1.0000                  2 0.742 GK  (Model-free)   0.2238      1.0000                 1 
RS  (Model-free)   0.4212     eliminated           – 0.715 RS  (Model-free)   0.2757      1.0000                 2 
YZ  (Model-free)   0.1963     eliminated           – 0.430 YZ  (Model-free)   4.7830      eliminated          – 
HAR-RV  0.1623     eliminated           – 0.473 HAR-RV  0.7545      1.0000                 4  
HAR-RV-ONV  0.1557     1.0000                  1 0.494 HAR-RV-ONV  0.7574      1.0000                 5 
HAR-RV-CC  0.1661     eliminated           –  0.486 HAR-RV-CC  0.7786      0.6164                11  
HAR-RV-PK  0.1687     eliminated           – 0.511 HAR-RV-PK  0.7711      0.9390                10 
HAR-RV-GK  0.1683     eliminated           – 0.501 HAR-RV-GK  0.8034      0.0266                 7  
HAR-RV-RS  0.1656     eliminated           –  0.474 HAR-RV-RS  0.8016      0.0004                 9  
HAR-RV-YZ  0.1660     eliminated           – 0.461 HAR-RV-YZ  0.8083      0.0586                12  
HAR-RV-COMB.   0.1614     eliminated           – 0.473 HAR-RV-COMB.   0.7684      1.0000                 6 
FTSE   QLIKE      p-value            Rank 𝑴𝒁-𝑹𝟐 FTSE   HMSE       p-value            Rank 
PK  (Model-free)   0.2464     1.0000                  1 0.708 PK  (Model-free)   0.4672      1.0000                 2 
GK  (Model-free)   0.3033     eliminated           – 0.760 GK  (Model-free)   0.4543      1.0000                 1 
RS  (Model-free)   3.9910     eliminated           – 0.585 RS  (Model-free)   0.6183      1.0000                 3 
YZ  (Model-free)   0.2728     1.0000                  2 0.627 YZ  (Model-free)   1.8960      1.0000                 4 
HAR-RV  0.2605     0.9248                  5  0.239 HAR-RV  2.1279      0.0300                12  
HAR-RV-ONV  0.2620     0.7684                  6   0.239 HAR-RV-ONV  2.0387      1.0000                 8   
HAR-RV-CC  0.2580     1.0000                  2 0.263 HAR-RV-CC  2.0605      1.0000                 9 
HAR-RV-PK  0.2585     1.0000                  4 0.277 HAR-RV-PK  1.9706      1.0000                 5 
HAR-RV-GK  0.2612     1.0000                  3  0.243 HAR-RV-GK  2.0053      1.0000                 6  
HAR-RV-RS  0.2634     0.6496                  7  0.231 HAR-RV-RS  2.1116      0.0280                11  
HAR-RV-YZ  0.2669     0.0086                  8  0.243 HAR-RV-YZ  2.0778      1.0000                10  
HAR-RV-COMB.   0.2581     1.0000                  3 0.239 HAR-RV-COMB.   2.0020      1.0000                 7   
FTSEMIB   QLIKE      p-value           Rank 𝑴𝒁-𝑹𝟐 FTSEMIB   HMSE       p-value           Rank 
PK  (Model-free)   0.1537      eliminated          – 0.572 PK  (Model-free)   2.1890       eliminated         – 
GK  (Model-free)   0.1243      1.0000                 1 0.711 GK  (Model-free)   1.4530       1.0000                2 
RS  (Model-free)   0.8281      eliminated          –  0.511 RS  (Model-free)   1.3870       1.0000                1 
YZ  (Model-free)   0.2326      eliminated          – 0.600 YZ  (Model-free)   8.7150       eliminated         – 
HAR-RV  0.1480      0.3120                 5  0.509 HAR-RV  1.8228       0.6864                6  
HAR-RV-ONV  0.1453      1.0000                 3 0.509 HAR-RV-ONV  1.7518       1.0000                4 
HAR-RV-CC  0.1462      1.0000                 4 0.569 HAR-RV-CC  1.7309       1.0000                2 
HAR-RV-PK  0.1491      0.2910                 6 0.539 HAR-RV-PK  1.7104       1.0000                3 
HAR-RV-GK  0.1490      eliminated          –   0.494 HAR-RV-GK  1.7232       0.7582                7 
HAR-RV-RS  0.1484      0.2364                 7 0.485 HAR-RV-RS  1.8314       0.6504                5 
HAR-RV-YZ  0.1503      eliminated          –  0.510 HAR-RV-YZ  1.7570       0.7122                9 
HAR-RV-COMB.   0.1450      1.0000                 2 0.509 HAR-RV-COMB.   1.7270       0.8146                8 
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(Continued) 

NIKKEI   QLIKE      p-value            Rank 𝑴𝒁-𝑹𝟐 NIKKEI   HMSE      p-value            Rank 
PK  (Model-free)   0.2079     1.0000                  2 0.783 PK  (Model-free)   0.2869      1.0000                 3 
GK  (Model-free)   0.1806     1.0000                  1 0.828 GK  (Model-free)   0.1914      1.0000                 1 
RS  (Model-free)   1.0070     eliminated           – 0.743 RS  (Model-free)   0.2583      1.0000                 2 
YZ  (Model-free)   0.3027     eliminated           – 0.592 YZ  (Model-free)   10.440      eliminated          – 
HAR-RV  0.2875     eliminated           –  0.260 HAR-RV  1.6937      eliminated          –  
HAR-RV-ONV  0.2799     1.0000                  3  0.256 HAR-RV-ONV  1.5365      1.0000                 4  
HAR-RV-CC  0.2817     0.7368                  4 0.282 HAR-RV-CC  1.5472      0.8864                 5 
HAR-RV-PK  0.3242     eliminated           – 0.223 HAR-RV-PK  1.8027      eliminated          –  
HAR-RV-GK  0.3271     eliminated           – 0.235 HAR-RV-GK  1.8173      eliminated          – 
HAR-RV-RS  0.3414     eliminated           – 0.240 HAR-RV-RS  1.8239      eliminated          – 
HAR-RV-YZ  0.2905     eliminated           –  0.257 HAR-RV-YZ  1.6741      eliminated          –  
HAR-RV-COMB.   0.2862     0.6535                  5 0.260 HAR-RV-COMB.   1.6240      0.7564                 6 

SPTSX   QLIKE      p-value           Rank 𝑴𝒁-𝑹𝟐 SPTSX   HMSE       p-value           Rank 
PK  (Model-free)   0.2150     1.0000                  2 0.631 PK  (Model-free)   0.4000       1.0000                3 
GK  (Model-free)   0.2167     1.0000                  3 0.466 GK  (Model-free)   0.2766       1.0000                1 
RS  (Model-free)   1.3330     eliminated           –  0.378 RS  (Model-free)   0.3477       1.0000                2 
YZ  (Model-free)   0.1932     1.0000                  1 0.474 YZ  (Model-free)   2.1500       eliminated         – 
HAR-RV  0.2668     eliminated           – 0.306 HAR-RV  1.9910       eliminated         –  
HAR-RV-ONV  0.2245     1.0000                  4  0.324 HAR-RV-ONV  1.9339       eliminated         –  
HAR-RV-CC  0.2475     eliminated           –  0.305 HAR-RV-CC  1.9170       eliminated         –  
HAR-RV-PK  0.2320     0.4454                  6 0.327 HAR-RV-PK  1.5610       1.0000                4 
HAR-RV-GK  0.2473     eliminated           –  0.310 HAR-RV-GK  1.6255       eliminated         –  
HAR-RV-RS  0.2609     eliminated           –  0.305 HAR-RV-RS  1.7507       eliminated         –  
HAR-RV-YZ  0.2608     eliminated           – 0.322 HAR-RV-YZ  1.9277       eliminated         –  
HAR-RV-COMB.   0.2316     0.4856                  5 0.306 HAR-RV-COMB.   1.6850       eliminated         – 
SPX   QLIKE      p-value            Rank 𝑴𝒁-𝑹𝟐 SPX   HMSE      p-value            Rank 
PK  (Model-free)   0.2114     1.0000                  2 0.754 PK  (Model-free)   0.3105      1.0000                  3 
GK  (Model-free)   0.2332     1.0000                  3 0.661 GK  (Model-free)   0.2131      1.0000                  1 
RS  (Model-free)   2.7350     eliminated           –  0.560 RS  (Model-free)   0.2929      1.0000                  2 
YZ  (Model-free)   0.2005     1.0000                  1 0.402 YZ  (Model-free)   5.3760      eliminated           – 
HAR-RV  0.2905     eliminated           –   0.445 HAR-RV  2.9500      eliminated           –  
HAR-RV-ONV  0.2861     eliminated           –  0.325 HAR-RV-ONV  3.0161      eliminated           –  
HAR-RV-CC  0.2846     eliminated           –  0.493 HAR-RV-CC  3.0495      eliminated           –  
HAR-RV-PK  0.2720     1.0000                  4 0.483 HAR-RV-PK  2.4647      1.0000                  4 
HAR-RV-GK  0.2831     eliminated           –  0.453 HAR-RV-GK  2.7022      eliminated           –  
HAR-RV-RS  0.2889     eliminated           –  0.445 HAR-RV-RS  2.8742      eliminated           –  
HAR-RV-YZ  0.2875     eliminated           –  0.455 HAR-RV-YZ  2.9223      eliminated           –  
HAR-RV-COMB.   0.2797     1.0000                  5 0.445 HAR-RV-COMB.   2.7940      eliminated           – 

Note: QLIKE and HMSE values are obtained by one-step-ahead recursive window forecasting method. MZ-R square stands 
for Mincer-Zarnowitz regression’s R squares. . Lower the values of QLIKE and HMSE is better while higher the value of MZ 
R-square is better for the comparison of forecasts. Window size is 600 observations that is used as in-sample estimation. The 
out-of-sample consists of 2180 observations. P-value and rank results are received from the MCS procedure. Bold numbers 
show the best-performing models for each indices.    
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Chapter-4: 
 

Table 1: Out-of-sample 1-step-ahead rolling window forecasting and MCS results for SPX (Window size:600) 
S&P 500    QLIKE      p-value  Rank HMSE       p-value  Rank HMAE        p-value       Rank 
    
HAR-RV (BASELINE MODEL) -9.1098     0.0108    14 3.3659     eliminated    – 1.1467     eliminated       – 
    
REGIONAL INFORMATION      
HAR-RV-GDAXI -9.1286     1.0000    10 2.6016     eliminated    – 1.0448     eliminated       – 
HAR-RV-FCHI -9.1165     1.0000    11 2.9471     eliminated    – 1.0907     eliminated       – 
HAR-RV-FTMIB -9.1120     1.0000      8 2.8067     eliminated    – 1.0731     eliminated       – 
HAR-RV-STOXX50E -9.0986     0.0010    18 3.2899     eliminated    – 1.1402     eliminated       – 
HAR-RV-FTSE -8.7559     0.0032    17 3.4309     eliminated    – 1.1562     eliminated       –    
REGIONAL KITCHEN-SINK -9.1055     1.0000      3 2.7375     eliminated    – 1.0572     eliminated       – 
REGIONAL COMBINATION  -9.1149     0.0068    15 2.9559     eliminated    – 1.0974     eliminated       – 
 
GLOBAL INFORMATION    

   

HAR-RV-DJI -9.0478     1.0000      6 2.5206     eliminated    – 1.0503     eliminated      – 
HAR-RV-IXIC -9.1264     1.0000      7 2.8105     eliminated    – 1.0468     eliminated      – 
HAR-RV-VIX -8.3660     1.0000      4 5.7578     eliminated    – 1.3617     eliminated      – 
HAR-RV-WTI -9.0651     0.0064    16 3.3454     eliminated    – 1.1415     eliminated      – 
HAR-RV-GOLD -9.1383     1.0000    12 2.3928     eliminated    – 0.9930     eliminated      –  
GLOBAL KITCHEN-SINK  -6.8097     1.0000      2 3.5249     eliminated    – 1.2069     eliminated      – 
GLOBAL COMBINATION  -9.1476     1.0000      1 1.6023     1.0000           1 0.8503     1.0000             1 
 
LOCAL INFORMATION 

   

HAR-RV-BOND -8.8423     1.0000    13 3.6082     eliminated    – 1.1590     eliminated      –  
HAR-RV-USEPU -9.1067     0.0000    21 3.3948     eliminated    – 1.1426     eliminated      –  
HAR-RV-LIBOR -9.0623     0.0010    19     3.4924     eliminated    – 1.1554     eliminated      –  
LOCAL KITCHEN-SINK  -8.9117     1.0000      5 3.6591     eliminated    – 1.1737     eliminated      –  
LOCAL COMBINATION  -9.0698     0.0000    20     3.3372     eliminated    – 1.1347     eliminated      – 
    
OVERALL INFORMATION    
OVERALL KITCHEN-SINK  -8.4560     eliminated  4.2103     eliminated    – 1.3211     eliminated      –    
OVERALL COMBINATION  -9.0787     1.0000      9 2.2990     eliminated    – 0.9992     eliminated      – 

Note: Bold row in the table is the winner model with the smallest loss functions, unit p-values, and highest 
MCS ranks.   
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Table 2: Out-of-sample 1-step-ahead rolling window forecasting and MCS results for SPX (Window size:200) 
S&P 500    QLIKE      p-value  Rank HMSE       p-value  Rank HMAE        p-value       Rank 
    
HAR-RV (BASELINE MODEL) -8.9673     0.0028    16 2.3016     0.0012    19 0.9531     0.0000          19 
    
REGIONAL INFORMATION      
HAR-RV-GDAXI -8.7504     1.0000      5 2.1830     1.0000    16 0.9405     1.0000          11 
HAR-RV-FCHI -8.9255     0.0020    17 2.2989     0.0002    22 0.9603     1.0000          17     
HAR-RV-FTMIB -8.9401     1.0000      8 2.3614     1.0000    12 0.9634     1.0000            9     
HAR-RV-STOXX50E -8.9296     0.0000    20 2.2973     0.0006    20 0.9562     0.0000          22     
HAR-RV-FTSE -8.7301     0.0000    19 2.4246     1.0000    13 0.9571     1.0000          16 
REGIONAL KITCHEN-SINK -8.7007     1.0000      3 2.6892     1.0000    11 0.9973     1.0000          13 
REGIONAL COMBINATION  -8.9516     0.0000    18 2.2453     1.0000    17 0.9464     1.0000          18     
 
GLOBAL INFORMATION    

   

HAR-RV-DJI -8.9076     1.0000    13 2.2566     1.0000    14 0.9610     1.0000          15     
HAR-RV-IXIC -8.9646     1.0000    14 1.9647     1.0000      4 0.9097     1.0000            3     
HAR-RV-VIX -8.7438     1.0000    11 2.0635     1.0000      2 0.8918     1.0000            2     
HAR-RV-WTI -8.9381     0.0000    21 2.3875     0.0006    21 0.9640     0.0004          21 
HAR-RV-GOLD -8.8381     1.0000      4 2.3475     1.0000    15 0.9620     1.0000          12     
GLOBAL KITCHEN-SINK  -8.5882     1.0000      7 2.0268     1.0000      3 0.9290     1.0000            4     
GLOBAL COMBINATION  -8.9839     1.0000      1 1.8100     1.0000      1 0.8837     1.0000            1 
 
LOCAL INFORMATION 

   

HAR-RV-BOND -8.8972     1.0000      6 2.3808     1.0000    18 0.9605     0.0004          20 
HAR-RV-USEPU -8.9439     1.0000    12 2.5542     1.0000      7 0.9614     1.0000            8 
HAR-RV-LIBOR -8.5372     1.0000      2     2.6312     1.0000      6 0.9708     1.0000          10 
LOCAL KITCHEN-SINK  -8.8484     1.0000    10 3.0334     1.0000      5 0.9832     1.0000            7 
LOCAL COMBINATION  -8.9653     1.0000    15     2.3840     1.0000      8 0.9497     1.0000            6 
    
OVERALL INFORMATION    
OVERALL KITCHEN-SINK  -8.6302     eliminated 2.7047     1.0000    10 1.0347     1.0000          14 
OVERALL COMBINATION  -8.9784     1.0000      9 2.0417     1.0000      9 0.9141     1.0000            5 

Note: Bold row in the table is the winner model with the smallest loss functions, unit p-values, and highest 
MCS ranks.   
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    Table 3: Out-of-sample 1-step-ahead rolling window forecasting and MCS results for FTSE (Window size:600) 
FTSE 100   QLIKE      p-value  Rank HMSE       p-value  Rank HMAE        p-value       Rank 
    
HAR-RV (BASELINE MODEL) -8.6775     0.0000    17 2.8117     eliminated    – 0.9404     eliminated     – 
    
REGIONAL INFORMATION      
HAR-RV-GDAXI -8.6919     1.0000    10 1.7138     0.1868         12 0.8343     eliminated     – 
HAR-RV-FCHI -8.6928     1.0000      3 1.5850     0.3648           6 0.8001     0.0844            5     
HAR-RV-FTMIB -8.5275     1.0000      4 1.8222     0.2246           9 0.8213     0.0724            6     
HAR-RV-STOXX50E -8.6860     1.0000      8 2.0081     0.2956           8 0.8335     eliminated     – 
REGIONAL KITCHEN-SINK -8.6380     1.0000      2 1.8139     0.2026         11 0.8332     eliminated     – 
REGIONAL COMBINATION  -8.5614     1.0000      5 1.7151     0.3220           7 0.8145     eliminated     – 
 
GLOBAL INFORMATION    

   

HAR-RV-SPX -8.6962     0.0000    18 2.8851     eliminated    – 0.9116     eliminated     – 
HAR-RV-DJI -8.6819     1.0000    15 2.8425     eliminated    – 0.9317     eliminated     – 
HAR-RV-IXIC -8.6975     1.0000    13 2.8735     0.2206         10 0.8950     eliminated     – 
HAR-RV-VIX -7.8497     eliminated 2.0964     0.7608           3 0.7700     0.0848            4     
HAR-RV-WTI -8.6564     0.0000    20 2.8899     eliminated    – 0.9591     eliminated     – 
HAR-RV-GOLD -8.5442     0.8716    11 1.2141     0.9924           2 0.7164     0.9264            2     
GLOBAL KITCHEN-SINK  -8.1505     1.0000    12 1.0641     1.0000           1 0.6674     1.0000            1     
GLOBAL COMBINATION  -8.4869     1.0000      1 1.9837     0.7536           4 0.7730     0.2482            3 
 
LOCAL INFORMATION 

   

HAR-RV-BOND -8.4640     0.8424      7 2.9217     eliminated    – 0.9794     eliminated     – 
HAR-RV-UKEPU -8.6719     1.0000    14 2.6554     eliminated    – 0.8796     eliminated     – 
HAR-RV-LIBOR -8.6778     1.0000    16     2.8158     eliminated    – 0.9339     eliminated     – 
LOCAL KITCHEN-SINK  -8.1715     0.2064      9 2.7366     eliminated    – 0.9281     eliminated     – 
LOCAL COMBINATION  -8.6801     0.0000    19     2.6921     eliminated    – 0.9092     eliminated     – 
    
OVERALL INFORMATION    
OVERALL KITCHEN-SINK  -7.9749     eliminated 1.5325     0.0970          13 0.7759     0.0000            8 
OVERALL COMBINATION  -8.6952     1.0000      6 1.9766     0.5860            5 0.8061     0.0570            7 

Note: Bold row in the table is the winner model with the smallest loss functions, unit p-values, and highest 
MCS ranks.   
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    Table 4: Out-of-sample 1-step-ahead rolling window forecasting and MCS results for FTSE (Window size:200) 
FTSE 100   QLIKE      p-value  Rank HMSE       p-value  Rank HMAE        p-value       Rank 
    
HAR-RV (BASELINE MODEL) -8.5465     0.0188    18 1.9557     0.2086    17 0.8077     eliminated     – 
    
REGIONAL INFORMATION      
HAR-RV-GDAXI -8.5202     1.0000      8 1.3682     1.0000      5 0.7196     0.8966            7 
HAR-RV-FCHI -8.5115     1.0000      3 1.3703     1.0000      3 0.7039     1.0000            2     
HAR-RV-FTMIB -8.5197     1.0000      5 1.6749     1.0000    11 0.7468     0.7458            8     
HAR-RV-STOXX50E -8.5618     1.0000      7 1.4448     1.0000      6 0.7418     0.2474          12 
REGIONAL KITCHEN-SINK -8.4860     1.0000    17 1.5121     1.0000      7 0.7518     0.4574          10 
REGIONAL COMBINATION  -8.5549     1.0000      4 1.3393     1.0000      2 0.7091     0.9960            6     
 
GLOBAL INFORMATION    

   

HAR-RV-SPX -8.5354     0.0000    14 2.1214     1.0000    16 0.7810     0.0604          13 
HAR-RV-DJI -8.5254     1.0000    11 1.8870     1.0000    15 0.7857     eliminated     – 
HAR-RV-IXIC -8.5695     1.0000      6 2.3493     1.0000    13 0.7765     0.2672          11 
HAR-RV-VIX -7.8476     1.0000      9 1.4252     1.0000      4 0.7116     1.0000            3     
HAR-RV-WTI -8.5117     0.0000    13 2.4302     1.0000    12 0.8261     eliminated     – 
HAR-RV-GOLD -8.4973     1.0000    12 1.6112     1.0000      9 0.7503     0.6112            9     
GLOBAL KITCHEN-SINK  -8.0804     1.0000    10 1.2804     1.0000      1 0.6942     1.0000            1     
GLOBAL COMBINATION  -8.6021     1.0000      1 1.5702     1.0000    10 0.7132     1.0000            4 
 
LOCAL INFORMATION 

   

HAR-RV-BOND -8.5293     0.0102    21 2.0225     0.1662    19 0.8217     eliminated     – 
HAR-RV-UKEPU -8.5287     0.0176    19 1.9402     0.2010    18 0.8046     eliminated     – 
HAR-RV-LIBOR -8.5451     0.0170    20     1.9420     0.1612    20 0.8087     eliminated     – 
LOCAL KITCHEN-SINK  -8.4609     1.0000    15 2.0194     eliminated 0.8283     eliminated     – 
LOCAL COMBINATION  -8.4687     1.0000    16     1.9090     1.0000    14 0.7984     eliminated     – 
    
OVERALL INFORMATION    
OVERALL KITCHEN-SINK  -8.4038     eliminated 1.7934     0.0888    21 0.7904     0.0142          14 
OVERALL COMBINATION  -8.6037     1.0000      2 1.4681     1.0000      8 0.7136     1.0000            5 

Note: Bold row in the table is the winner model with the smallest loss functions, unit p-values, and highest 
MCS ranks.   
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Table 5:Out-of-sample 1-step-ahead rolling window forecasting and MCS results for GDAXI (Window size:600) 
GDAXI   QLIKE      p-value  Rank HMSE       p-value  Rank HMAE        p-value       Rank 
    
HAR-RV (BASELINE MODEL) -8.5680     0.0028    17 0.9281     0.0014    20 0.6322     0.0026          19 
    
REGIONAL INFORMATION      
HAR-RV-FCHI -8.5694     1.0000    16 0.9042     1.0000    13 0.6241     1.0000          14     
HAR-RV-FTMIB -8.5561     1.0000      7 0.9050     1.0000    14 0.6228     1.0000          11     
HAR-RV-STOXX50E -8.5699     1.0000    15 0.9008     1.0000      9 0.6200     1.0000            8 
HAR-RV-FTSE -8.5679     0.0002    20 0.9525     1.0000    19 0.6351     0.0004          22 
REGIONAL KITCHEN-SINK -8.5643     0.0012    19 0.9514     1.0000    18 0.6331     1.0000          17 
REGIONAL COMBINATION  -8.5706     0.0020    18 0.9070     1.0000    16 0.6233     1.0000          15     
 
GLOBAL INFORMATION    

   

HAR-RV-SPX -8.5673     1.0000    14 1.0500     1.0000      5 0.6381     1.0000            9 
HAR-RV-DJI -8.5645     1.0000    10 1.0515     1.0000    11 0.6419     1.0000          16 
HAR-RV-IXIC -8.5682     1.0000      8 0.9589     1.0000    10 0.6363     1.0000            7 
HAR-RV-VIX -7.6456     1.0000      3 0.8440     1.0000      4 0.6220     1.0000            6     
HAR-RV-WTI -8.5385     1.0000      9 0.9480     0.0012    21 0.6410     0.0008          20 
HAR-RV-GOLD -8.5516     1.0000    11 0.9524     1.0000    15 0.6423     1.0000          12     
GLOBAL KITCHEN-SINK  -8.4427     1.0000    13 1.0617     1.0000    12 0.6592     1.0000          10     
GLOBAL COMBINATION  -8.5755     1.0000      6 0.8870     1.0000      7 0.6137     1.0000            4 
 
LOCAL INFORMATION 

   

HAR-RV-BOND -8.5667     0.0002    21 0.9311     1.0000    17 0.6344     0.0004          21 
HAR-RV-VIXGDAXI -8.0537     1.0000      5 0.7164     1.0000      1 0.5855     1.0000            2 
HAR-RV-LIBOR -8.5636     1.0000    12     0.9366     0.0010    22 0.6338     1.0000          18 
LOCAL KITCHEN-SINK  -3.9831     eliminated 0.7355     1.0000      3 0.5941     1.0000            3 
LOCAL COMBINATION  -8.5839     1.0000      1     0.7260     1.0000      2 0.5733     1.0000            1 
    
OVERALL INFORMATION    
OVERALL KITCHEN-SINK  -8.3704     1.0000      4 0.9433     1.0000      8 0.6464     1.0000          13 
OVERALL COMBINATION  -8.5797     1.0000      2 0.8384     1.0000      6 0.6041     1.0000            5 

Note: Bold row in the table is the winner model with the smallest loss functions, unit p-values, and highest 
MCS ranks.  
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Table 6:Out-of-sample 1-step-ahead rolling window forecasting and MCS results for GDAXI (Window size:200) 
GDAXI   QLIKE      p-value  Rank HMSE       p-value  Rank HMAE        p-value       Rank 
    
HAR-RV (BASELINE MODEL) -8.4713     0.0008    17 0.7225     0.0510    15 0.5741     0.0208          15 
    
REGIONAL INFORMATION      
HAR-RV-FCHI -8.4544     0.0006    19 0.7298     0.0142    18 0.5752     0.0042          17     
HAR-RV-FTMIB -8.4628     0.0006    18 0.7591     1.0000    14 0.5860     1.0000          14     
HAR-RV-STOXX50E -8.4679     1.0000    15 0.7237     1.0000    13 0.5755     0.0196          16 
HAR-RV-FTSE -8.4682     1.0000    16 0.7579     0.0038    21 0.5805     0.0002          21 
REGIONAL KITCHEN-SINK -8.4505     1.0000    13 0.8422     eliminated 0.6068     eliminated 
REGIONAL COMBINATION  -8.4707     0.0004    20 0.7272     0.0194    17 0.5757     0.0038          19     
 
GLOBAL INFORMATION    

   

HAR-RV-SPX -8.4686     1.0000    12 0.7643     1.0000    11 0.5767     1.0000          11 
HAR-RV-DJI -8.4699     1.0000    14 0.7866     1.0000      9 0.5785     1.0000          12 
HAR-RV-IXIC -8.4719     1.0000    10 0.7273     1.0000      8 0.5711     1.0000            7 
HAR-RV-VIX -8.4558     1.0000      6 0.6693     1.0000      4 0.5635     1.0000            3     
HAR-RV-WTI -8.4439     1.0000      4 0.7454     0.0126    19 0.5816     0.0014          20 
HAR-RV-GOLD -8.4583     1.0000      8 0.7875     1.0000    10 0.5861     1.0000          10     
GLOBAL KITCHEN-SINK  -8.4016     1.0000      7 0.7954     1.0000    12 0.5965     1.0000            9     
GLOBAL COMBINATION  -8.4808     1.0000      2 0.6851     1.0000      6 0.5596     1.0000            4 
 
LOCAL INFORMATION 

   

HAR-RV-BOND -8.4109     1.0000    11 0.7181     0.0094    20 0.5786     0.0038          18 
HAR-RV-VIXGDAXI -8.4509     1.0000      5 0.6386     1.0000      2 0.5462     1.0000            1 
HAR-RV-LIBOR -8.4710     0.0004    21     0.7430     0.0266    16 0.5753     1.0000          13 
LOCAL KITCHEN-SINK  -8.4427     1.0000      9 0.6533     1.0000      3 0.5521     1.0000            6 
LOCAL COMBINATION  -8.4703     1.0000      1     0.6295     1.0000      1 0.5488     1.0000            2 
    
OVERALL INFORMATION    
OVERALL KITCHEN-SINK  -8.3969     eliminated 0.7506     1.0000      7 0.5867     1.0000            8 
OVERALL COMBINATION  -8.4729     1.0000      3 0.6710     1.0000      5 0.5582     1.0000            5 

Note: Bold row in the table is the winner model with the smallest loss functions, unit p-values, and highest 
MCS ranks.   
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Chapter-5: 
 
 
Table 4: Network statistics for G20 markets without global barometers (19 nodes) 

 Number 
of edges 

Average 
degree 

Total 
degree 

Weighted 
degree 

Network 
diameter 

Graph 
density 

Average 
path length 

Clustering 
coefficient 

Period 1 135 7.105 22.257 1.171 2 0.579 1.421 0.636 
Period 2 196 10.316 61.006 3.211 2 0.673 1.327 0.718 
Period 3 115 6.053 32.317 1.701 3 0.439 1.596 0.592 
Period 4 136 7.158 22.726 1.196 2 0.608 1.392 0.651 
Period 5 190 10 83.732 4.407 2 0.708 1.292 0.731 

 
 
 
 
 
Table 5: Top network edges for G20 markets without global barometers (19 nodes) 

Only g20         
Period 1   Period 2   Period 3   
Turkey         –> US 0.71 India         –> Canada 1.025 Brasil      –> UK 1.553 
Germany     –> Italy 0.66 France      –> US 1.000 UK          –> US 0.935 
France         –> UK 0.64 Germany  –> US 0.876 US           –> UK 0.909 
Indonesia    –> Canada 0.51 Argentina –> Australia 0.695 S. Africa –> UK 0.861 
France         –>  Germany 0.50 Mexico     –> US 0.679 Japan     –> S. Africa 0.808 
Period 4   Period 5      
UK                –> US 0.706 Argentina –>  Korea 1.448    
Saudi           –> Australia 0.650 Italy           –> S. Africa 1.379    
US                –> UK 0.635 Germany  –> Brasil 1.310    
Argentina   –> Canada 0.546 Germany  –> France 1.282    
Argentina   –>  Italy 0.539 Brasil         –> Russia 1.213    

 
 
 
Table 6: Network statistics for G20 markets and global barometers with VIX (23 nodes) 

 Number 
of edges 

Average 
degree 

Total 
degree 

Weighted 
degree 

Network 
diameter 

Graph 
density 

Average 
path length 

Clustering 
coefficient 

Period 1 199 8.652 37.537 1.632 2 0.545 1.455 0.631 
Period 2 282 12.261 82.457 3.585 2 0.676 1.324 0.694 
Period 3 153 6.652 38.365 1.668 3 0.419 1.601 0.542 
Period 4 192 8.348 33.741 1.467 2 0.589 1.411 0.622 
Period 5 332 14.435 223.88 9.734 2 0.787 1.213 0.814 
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Table 7: Top network edges for G20 markets and global barometers with VIX (23 nodes)  

Only g20         
Period 1   Period 2   Period 3   
Russia         –> Italy 1.53 India         –> Canada 1.025 Brasil      –> UK 1.553 
Italy             –> Argentina 1.36 France      –> US 1.000 UK          –> US 0.935 
Italy             –> WTI 1.10 WTI           –> Saudi 0.964 US           –> UK 0.909 
Italy             –> Mexico 1.02 India         –> VIX 0.922 S. Africa –> UK 0.861 
Brasil           –>  Italy 0.92 France      –> VIX 0.914 Japan     –> S. Africa 0.808 
Period 4   Period 5      
UK                –> US 0.706 WTI           –>  Saudi 11.3    
Saudi           –> Australia 0.650 WTI           –> Indonesia 5.63    
VIX               –> UK 0.647 WTI           –> Mexico 4.37    
US                –> UK 0.635 WTI           –> S. Africa 4.12    
Gold            –>  Germany 0.623 Bond         –> Canada 4.02    

 
 
  
 
 
 
 
 
 
 
 


