Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author's prior written consent.

D 19162/77

Jones, K. F.
pp 331

by
Keith Frank Jones.
Paired-associate recall followine two presentations of a pair to be remembered is heavily influenced by the spacing (in terras of intruding trials involvine different pairs) between the two successive pres-ntations. In particular, subsecuent recull performance improves as the spacine between two successive presentations of a pair increases, at least up to some optimal interresentation spacin interval. This effect is nown as the spaced practice improvement (or SPI) effect, and is clearly of fundamensal importance to our ancerstandine of the relationship between rejetition ana learnine. Ho ever, most of the recent research on the SFI effect has involved free-recall and BrownPeterson paradigms, and tiere are grounds for suspectin that the SPI effect obtained with pained arsociates may have a different underlying rationale to the SFI effect observed in these other paradisms.

Although the extant date stronely sugest tiat pairs held in short-tem memory at the time of their second presentation raceive little or no benefit from that re-presentation, there has been no zystematic work attempting to relate the effectiveness of a re-presentation with both interprese tation spacing and with the state of learning of a pair at the time of the re-presentation. This thesis was designed to investicate t is relationship in an effort to e ive constraints on an adecuate theory of the SI effect in paired-associate learnine beyond those imposed by prior research.

To this end, three experiments yere conducted, each of which e ployed a variation of the study-test, continuous paired- associate (CPA) paradigm. The basic condition common to all three experiments may be depicted as

$$
\mathrm{P}_{1} \ldots \ldots . . . \mathrm{T}_{1} \quad \mathrm{P}_{2} \ldots \ldots \mathrm{T}_{2}
$$

where P_{1} and P_{2} are prosentations of a pair to be remembered, T_{1} and T_{2}
are tests of the pair, i represents the spacine between the two successive presentatioas in terms of intruding trials involvine otler puirs, and there were always 8 guch trials between the second presen:ation P_{2} and the final test of a pair, I_{2}. It will be noticed that T_{1} always immediately preceded P_{2}, so that I_{1} performance would give some insicht as to the state of learnine of a pair on entry to P.

In Experiment I there vere tell conditions defined by $i=0,1,2$ $3,4,5,6,8,12$, or 16 trials. Comon word stimuli were employed, paired with intecer responses in the rane l-15. On each test trial, subjects were regured to respond wit the appropriate intecer, giessine if necessary. Soth study and test tri Is were aced at a 2-second rate.

In Experiment II, there were five basic conditions defined by $i=0,4,8,12$ or 16 trials. The procedure followed that of bxp. I with swo exceptions. In the first place, subjects we:e recuired on each test trial to make two responses; a stimulus recosnition response ("old" or "new") followed by a recail response, asain buessine mhere necessary. Secondly, because of the additional response mequired at test, both study and test trials were paced at a 3-second rate.

In ixperinent III, there were five conditions defined by $i=0$, 2, 4, 6, or 8 trials. Joncense-s. llable stimuli of lo:: meaninefulness were paired with integer responses in t.ee range 1-5. The procedure otherwise followed that of Exp. II with the important exception that, wheress study trials were paced at a 3 -second rate as l.efore, test trial duration was subject-deteruined (i.e. test trials were torminated only when the subject had completed inis responding).

The principal findings of Exps. II and III may be summarized as follows. A!though stimulus recoenition apeared to be a nccessary condition for correct recall, in that recall performance on any trial to which a recoenition error had been made could be accounted for by a guessin n^{\prime} hypothesis, there was no evidence that stimulus reconnition otherwise influences the SPI effect on T_{2} recall erformance.

The results of Exp I strongly sugeested that altourg I reer 11 performance following T_{1} error improved sharply as interpresentation
spacine increased from 0 to l or more trisls, there was not subsecuent systematic relationship with interpresentation spacine. On the other hand, T_{2} recall performance following a correct recall on T_{1} appeared to increase systematically with interpresentation spacine, anc furthemore, this improvement appeared to he aaintained over spacinis in excess oft ose required to ":ipe out" short-term retention effects at T_{1}.

The results of ixp I were suojected to a detailed analysis employing a ariovian learning̈ model. Two major conclusions wer drawn from the analysis. Firstly, the SPI effect on T_{2} recall performance resulted entirely from an incressed effectivness with interpresentstion spaci sof the second presentation in reducine the subsecuent decay rate of those items that were already mocerately ell encoded on entry to P_{2}. Secon ly, this increase mas maintained over inter prosentation specines in excess of those sufficient to remove shortterm retention effects at 2_{2}. These results appeared consistent with a di_ferential encodine hypothesis based upon an ancodine theor of paired-associ.te foreettinc.

THE EFFECTS OF IUTER-TRIAL
 SPACING IN PAIRED-ASSOCIATE LEARIIIMG

by

Keith Frank Jones.

A thesis submitted in fulfillment of
the requirements for the degree of
Doctor of Philosophy
in
The University of Stirling.
1976.

PREFACE

It wo:ld be impossible to acinoled e the efforts of all $t e$ people who have helped me in the writine of this thesis. I would like to than mupervisor, ur. ichael F. oore for his invaluable advi.e and encouracement. Special thanks also go to fncus sman and Irene Lloyd, who helped desin and asse ble the apparatus employed in waps I and I, and to Dr. Rocer Heary, who eave me substantial as istance in pro raming the ecuipment employed in Exp III. I would alsc like to thank Klaus-Peter Stram for helpin me to man Lxp II, and Dr. Ronald acjonald and Ir. slistair lataon for the many pationt hours spent in discussion of verious theoretical and practical problens wich I encountered in the course of wy research. Invaluakle belp and suport of a aifferent kinc was provicied by uy wife, fàle.

Tinis research was supported and financed by an S. S. i. C. research studentship erant.

CCITHITS
Puçe
FRTMOE ii
LIST OT IABLES v
LIS? CT FIGTHK vi
CHAPTR OIVE
I:TRCDUCTICI 1
1.1 Learmiat, verbal leamine nd memory 2
1.2 Curront tieoretical issue. in emory 7
1.3 Paircá-associste memory 29
1.4 The ef ects of practice on pairecinssociate memory 69
1.5 Suamery 100

A ERIEF HİNORY. 102
2.1 Jost's Liw 102
2.2 The ature of the learnince task 103
2.3 Fuctors favourin iassed practice 104
2.4 Factors favourine disvributed practice 106
2.5 Summary 109
THE
 112
3.1 Frse recall 112
3.2 Continucus r cocrition studies 131
3.3 Erown-Peterson stucijes 137
3.4 Sumary 146
FCUR
FRESENATIOTS IN PaIRD-ASSCCLITA LETORY 149
4.1 Stimulus eacoding 142
4.2 Irter-pair oremisation 167
4.3 The hypotheses 169
4.4 Su: wary 179
CMPTRTace
FIV. T: PRENTM EXPZRIMNTM131
5.1 ixperiment I 181
5.2 Experiment II 196
5.3 Experiment III 208
5.4 Cowclusions 220
SIX226
6.1 Vodels of humin memory 226
6.2 iJunerical and statistical aethods 231
6.3 Fits to perforn nce on ${ }^{\mathrm{T}_{1}}$ 232
6.4 Further analuses involviá zocel 2. 239
6.5 Discussion. 265
SEVEN CORCLUNOM, 270
BIELTOGZ.FHY 200
APVEDICLIS 297
Appen: ix 1 Stimulus material 298
Appendix 2 tive 16 resporse catue onies in ixp II 302
A pendix 3 Oversll proportions of items falling intothe 16 response catecories in Zu III.303
Appendix 4 Data from ixp I and the corresponcine valuespreíicted by versions I anu II of wodel 2304

LITA CF TASLLS

Table Pace

1. Error aulysis for 2jor:'s (1970) Xxp III 57
2. Proportions correct at second preantation 88
3. Proportione correct at final test 88
4. Proportions of airud assucintes correctly recalled 98
5. Recall of bomographs and control words as a finction
of tise lac between two pr sentations, andi context 129
6. Proportion of complete wore tri_rans correctly recal- led as a function of interpresentation interval and reiearsal time. 143
7. Fropcrtion oi complete noun tricrams correctly
recalled 145
8. Results of 185
9. Analyses of variance by subjects for 187
10. Recoenitica and recall performance in axp. II 199
11. Recoǵrition aná recail däta for $\omega \operatorname{dxp}$ III 213
12. Results of fittince $\operatorname{Hodels} 1$ and 2 to retention date at T_{1} from Natp I 236
13. Results of fittine nodel 2 to conditional perforim ance data from ar I 253
14. Results of the fits of hodel 2 to the joint dataof exp I255
15. Res:ults of fittine liodel za to the joint data of Byp I 257
16. Data from Exp I and the correspondin: values predicted b, versions I and II of Nodel za 260

LISNS OF RIGURES

Pigure
 Page.

1. Some t pical paireassociate retention curves
2. Retention of puired associates as a function of
lac, prior to the trial of the last error
40
3. The effect of prior activity on the ret ntion of paireù associates
4. Retention of paired acsociates as a fuaction of
list lencth
45
5. Correct response proportions as a faction of lict type
6. Retention of paired associstes from a 6-item list as a function oí presentation rate

71
7. Retention of paired associates as a function of the rumber of presentations
8. Retention of puired associutes as a function of the spacine of two study trials
9. Paired-associate retention as a fanction $0 \overrightarrow{1}$ retention interval and of the spacini; betweea t::\% successive presertations
10. affect of retention interval and the spacine between two resentations on pir d-assuciste memory
11. Free recill of words as a function of the interval
between two successive presentations, and of presentation rate.
12. Proportions of items correctly ecoeniced as a function of short and lom retention and interpresentation intervals.
13. Proportions of consonant trierams correctly recalled
as a function of
a) the number of successive 1-second presentutions of the trieram.
b) the amount of o'ert rehearsal of tri, rans
14. Proportion of correct responses on T_{1} and T_{2} as a function of interpresentation interval in ixp. I
15. Performance on T_{2} conditional on performance on T_{1} as a function of interpresentation interval in tixp I.
16. Recocnition at I_{1} as a function of retention interval in Exp II
17. Paired-associate recell in Exp II
18. Zecall performance on T_{2} conditional upon nonrecoenition, and recognition and recall performance on F_{1} in \exp. II
19. Stimulus recoenition in $\operatorname{l又口} \mathrm{s} p$. III

2C. Faired-associate recail in Exp. III
21. Recall performance followine a corrcct recognition on the same test trial in Exp. III
22. Observed values of $\operatorname{Pr}\left(C_{j}\right)$ from Bxp I with the values predicted by wodel 2 .
23. Cbserved valies of $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$ from $\mathbb{\operatorname { w i n } p}$. I and the correspondine values predicted oy versions I and II of odel 2a

CHAPTER ONE

INTRODUCTIOIT

It has long been known that the repetition of a task to be learned usually has beneficial effects on perfomance, or in other words, practice facilitates learming. This is not to say that learning can be equated with practice; indeed, it has been shown that under some conditions, practice can impair learning, possibly because it induces fatigue (both physical and psychological) which retards performance and may also disrupt acquisition. It is probably true to say tiat no satisfactory definition of learning has as yet been proppunded, but that in general psychologists are able to agree as to when learning is present in performance and when it is absent. Furthermore, it is generally accepted that the most straighforward method of studying learning is to set up some kind of practice schedule on the relevant task, and then to examine the resultant changes in performance with practice; if performance improves, learning as taren place.

During recent years, a great deal of research has been carried out in the field of human memory and verbal learnirg (for reasons which will become apparent a little later). Now, in any field of research, when a phenomenon is discovered that is not predicted by current theory, then it immediately becomes apparent that the theory is, if not totally incorrect, then at least inadequate. The opportunity then presents itself to advance our state of knowledge in the field in question. One such phenomenon that has emerged in the area oi verbal learning and memory is known as the spaced practice improvement (or SPI) effect, which may be briefly sum:arised as follows. If a verbal item to be remembered is presented repeatedly for study, then subsequent recall of that item is better if periods filled with "interfering" activity (of the kind that would normally lead to a decline in recall if interpolated between study and test) intrude between successive presentations of the item, than when the successive presentations immediately follow each other with no such irtruding activity.

Such a inding is clearly of immense importance to our understanding of the relationship between repetition and verbal learning. It seems
reasonable to hope that a careful study of the phenomenon will be of great value, at best by suggesting a more comprehensive, unique theory of memory, and at the very least by reducing the range of plausible alternative theories. The issue will first be clarified, however, by an examination of the relaticnship between learning and memory, followed by a brief outline of current theories of memory, in order to provide a theoretical framework for later discussion. It is furthermore proposed to restrict research to an examination of the SPI effect in paired-associate memory, and to this end, a more detailed review of paired-associate memory will be undertaken.

1.1 Learnir.g, Verbal Learning and Memory

Learning has long been an important area of study in psychology, due to a great extent to the recognition that a very large proportion of all behaviour is at least partially determined by the organism's experience. Because behaviour is so dependent on learning, the psychology of learning is a topic of fundamental theoretical importance. Most of the major learnirg theorists of the past, such as Tolman (1932), Guthrie (1935), Skinner (1938) and Hull (1943), have tended to concentrate on the motivational aspects of learning, following an approach which derives from Pavlov's (1927) classical work on conditioned reflexes. Research in this field characteristically involves the study of animal conditioning (both operant and classical), and is very much concerned with the role and nature of reinforcement.

Another major approach to the study of learning, which may be traced back to Ebbinghaus' (1885) book "On Memory", is concerned with the study of human learning. Work in this field has been primarily addressed to the investigation of the learning process per se. The difference between these two approaches may best be illustrated by outlining the general experimental procedures employed. In a typical conditionin study, an experimental (animal) subject is placed in a carefully controlled stimulus environment,
and subjected to a training schedule which usually comprises a number of components, both discrimirative and reinforcing in nature. Certain aspects of the training schedule are often contingent on the emission of a specific response by the subject. The training schedule is maintained until such time as the animal's behaviour is judged to have become stable, and a comparison is then made between aspects of the pre- and post-training behaviour of the subject. The emphasis is very clearly placed on investigating what is learned in relation to the applied training schedule, and theoretical approaches attempt to relate chanes in behaviour to aspects of the trairing procedure via motivational hypotheses.

By contrast, in a typical human learning situation, the subject is set a learning task by the experimenter, whose interest in the subject's motivation is strictly limited; as long as the subject is sufficiently motivated to attempt to learn the task, he is satisfied. Furthermore, both subject and experimenter know in advance what the subject is trying to learn to do. The tasks employed in human learninis studies may range from perceptual-motcr tasks to verbal memory and proclem solving. The subject's training usually takes the form of a sequence of practice trials, and aspects of the subject's performance are recorded on each trial. Emphasis is placed on an examination of the trial-to-trial changes in performance which occur; in this way, evidence conceming the nature of the learning process itself is assembied.

Thus, the animal conditioning and human approaches to learning may be distinguished both on operational grounds, and on the basis on theoretical emphasis. However, a more fundamental distirction between the two fields can be made; for example, Estes (1967) has pointed out that the manipulation of the delay and magnitude of a response-contineent reward in a human learning situation often has quite a different effect to a similar manipulation of response-contingent reinforcement paracieters in animal conditionine studies. In general, it appears that the informational aspects of reward are critical in human learning, whilst reward magnitude has relativel. little effect, in marked contrast to the effects of reinforcement in animal
conditioning.
During the last fifteen years or so, by far the greatest proportion of work on human learning has been carried uut in the fields of short-term verbal memory and verbal learning. Historically, the shift of emphasis towards verbal tasks was made on operationsl grounds, and was initiated by the most influential member of the human learning school, Ester (1960). During the late 1950 's, psychologists began to recognise the shortcomings of the perceptual-motor learning paradigms traditionally employed in this field. Such tasks do not readily admit precise control over the various components involved in training, so that it is difficult to relate aspects of the subjetts performance to a set of well-defined stimuli in the training situation, and furthermore, satisfactory performance measures are difficult to obtain, as such tasks often allow the subject to "trade-off" accuracy in his performance againt speed. Verbal learning paradigns ir contrast permit exact control of certain specific events, such as the presentation of an item to be memorised, and a means of relating performance to these events. In particular, one can say whether or not a response is appropriate, or correct, giver a particular well-defined cue or stimulus. Thus the adoption of verbal learning paradigms allowed psychologists to exercise far greater control over the various task components involved in training, and furthernore admitted more satisfactory methods of measuring performance. In particular, the experimenter could "pace" the subject at any desired rate of presentation of verbal items to be learned, so that "trade-off" effects were largely eliminated.

A number of new verbal learning paradigms made their appearance at about the same time, whic tended to break down the barriers between verbal and memory, and finally led to a re-direction of effort in both areas. Traditional human learning paradigms, dating back to Ebbinghaus' day, had usually involved subjects in undergoing repeated practice sessions on a list of vertal items to be remembered until recall performance had reached and maintained for some time a pre-determined criterion level, such as some fixed number of consecutive errorless trials. In cther words, practice
trials were administered until such time as it was considered, on fairly arbitrary grounds, that the subject had "learned" the list of items. Such a procedure naturally led to a tendency to measure learnine performance in terms of trials-to-criterion. Such a measure is clearly unsatisfactory. In the first place, it is unduly sensitive to relatively small variations in error patterns (for example, a subject learning a paired-associate list who gradually reduces overall errors from trial to trial wosld be equated by this measure to a subject who makes only one error on each trial, but takes the same number of trials to reach an errorless criterion). Secondly, such an approach does not readily lend itself to a detailed analysis of trial-to-trial changes in performance.

This point is nicely illustrated oy a study by Tulving (1964), who employed a traditional paradigm in which free recall performance on a 22-word list was examined as a function of the number of repetitions of the list. In order to ensure that all items were likely to be learned at the same rate, the list order was re-randomized on each trial. Tulving isolated four response categories on each repetition.

Or, say, the n'th trial, these were:-
$\left(C_{n-1}, C_{n}\right)$ - recall of an item which was also recalled on the previous trial
(Nn-l,Cn) - recall of an item which was not recalled on the previous trial.
(Cn-1,Nn) - non-recall of an item which was recalled on the previous trial.
(Nn-1,Nn) - Non-recall of an item which was not recalled on the previous trial. The number of items falling into each category was measured on each trial. It was found that only the intertrial retention category ($\mathrm{Cn}_{\mathrm{n}}, \mathrm{l}, \mathrm{C}_{n}$) actually showed an increase as a function of the number of trials, n, whilst the category ($\mathrm{Nn}-1, \mathrm{Nn}$) decreased sharply. There was evidence of short-term intertrial retention, provided by the category ($\mathrm{Nn}-\mathrm{l}, \mathrm{Cn}$) which declined slightly across trials, coupled with the category ($\mathrm{Cn}-\mathrm{l}, \mathrm{Nn}$) which remained almost constant.

These results suggest that performance on any given trial consists of a fairly long-term component provided by (C_{n-1}, C_{n}) which depends strongly on trials, coupled with a more short-term effect ($\mathrm{Nn}-\mathrm{l}, \mathrm{Cn}$) which depend
only slightly on trials. These two processes can be readily identified with lone and short-term memory components, which are known to depena heavily on the number of other words on the list which intrude between the presentation of a particular word and its subsequent recall. However, in this traditional paradigm, list position was randomized and much valuable information relevant to the underlyine memory proces es was lost. Experiments of this kind made it abundently clear taat verbal learnine and memory are stroncly interrelated, and that any investigation of verbal learning must have regard to known memory phenomena. Indeed, if a definition of verbal learning were at empted then it would have to equate the state of learning of an item with the subject's ability to recall it from memory. Although few psychologists would attempt such a definition, there is general agreement nowadays that the distinction oetween verbal learning and memory is largely artificial. Ar operational distinction has long been made which defines a memory experiement as one in which items to be remernuered are presented only once, and a verbal learning experiement as a study in which such items are presented repeatedly. Such a distinction may have appeared valid when repetition was equated with a trials-to-criterion procedure, but it can only be confusine in the modern context, when in a single experiment, some items may be presented only once, whereas others may be presented many times.

In the light of the difficulties of defining learning, and it should be borne in mind that repetition is neither a necessary nor a surficient condition to produce learning, it would perhaps be better to dispense with the term altogether, and instead to talk about the effect of repetition on memory. Such an argument would gain weight were one to consider the results of recent studies involving a number of the new memory paradigms intimated earlier, such as the Brown-Peterson and continuous paired-associate procedures. The picture that is now emerging suggests that verbal memory phenomena are strongly task-related, in that performance depends on strategies employed by subjects in specific task situations which fovern the organisation and representation of material in memory. The idea that verbal learning, let
alore human learning in eneral, can be characterized as a collection of phenomen waich can be easily described with reference to a set of fundemental psychological laws, is becominc increasingly untenable.

Thus, in summary, it can be said that the study of topics traditionally associated with a human learning apprcach can e more fruitfully conducted within a memory framework. The subject matter of the field described as verbal learning may be more accurately characterised in terms of the effect of repetition on verbal memory, so that consequently, a sumrary of current theory and research in the field of memory will be necessary in order to provide a firm basis for the interpretation of material related to the SPI effect, which will then be discussed at a later stage.

1.2 Cursent Theoretical Issues in Femory

Although there are many interesting issues in th study of memory, the following stard out as being the most relevant to the present thesis.

1.21. Interference Theory

The direction tacen by a Ereat deal of contemporary research has been strongly influenced by classical interference treory, which is perhaps the earliest hypothesis concerned with forettine, and which inherits many of the concepts of associativity postulated by Ebbirghaus (1885). Interference theory regards the learning of an association between a stimulus and a response as the basic unit of memory. Forgetting is taken to be a consequence of an original association being followed by a subsequent conflicting association.

Suppose the association $A-B$ is learned, and subsequently the association A-C. Then is it postulated that A-C learning produces a competing association and at the same time a weakening of the original $A-B$ association, termed retroactive inhibition. With the pas ing of time, however, the original $A-B$ association is hypothesised to recover some of its original strength, a phenomenon claimed to be analogous to spontaneous recovery in clas ical conditioning, and so it becomes ircreasingly able to compete with A-C, which consequently tends to be forgotten. This effect is termed proactive inhibition. 1.22 Number of Bemory Stores.

One of the major theoretical controversies in the field of memory has
concerned the question of whether there are one or two memory stores, corresponding to short-term memory (STLi) and long-term memory (LTii). Such a distinction was first made by James (1890), who defined the terms primary and secondary memory introspectively : an event in primary memory has never left conciousness and is part of the psychological present, whilst an event in secondary memory has been absent from conciousness ano belongs to the psychological past. James postulated that primary memory would extend over a fixed, but limited, period of time.

A similar dichotomy was proposed by Hebb (1949), who based his arguments on the discovery of the physiologist Lorente de Nó (1938) of neurclogical fibres arranged in close, possibly self-exciting circuits. Hebb postulated that in LTMí, permanent structures or traces would be fomped, which could only be disrupted by interference from other lone-term traces, whilst in STM, traces would be short-lived, as a result of their dependence on reverberatinধ, self-excitin $n_{\dot{\varepsilon}}$ neural circuits which would be readily subject to decay.

Broadbent (1958) inferred a similar mechanism from an informationprocessing approach to memory, and based his inferences on behavioural data. His conception of the memory system involved tiree components : a sensory memory store which was capable of holding a considerable amount of information for a very short period of time, a limited-capacity STN system, in which the memory trace was assumed to dece,y rapidly but could be maintained by rehearsal (the process of repeating to oneself the items to be remembered), and a long-term store, in which forgetting was attributable to interference. Work by Sperling (1960) and by Averbech and Coriell (1;61) demonstrated the existance of a very short-term visual store or "iconic" memory (with a deca: time of less than a second) in whic. a fairly literal trace of the stimulus is held, whilst Neisser (1967) a Eueu that work by Freisran (1964) demonstrated the existance of a similar sensory store in the auditory, system, with a decay time of the order of 2 seconds. A similar store was postulated by Crowder and …orton (1969). Thus, there is considerable corroboration for Broadbent's idea of a very short-tem sensory memory store.

Interference theory made no:distinction between lone-and short-tern memory, so that opponents of the two-store hypothesis can Eenerally be associated with an interference - theory position. For example in an extremely influential paper, ielton (1963) attacked the dichotomous vie: of memory, areuine that there had been little functional distinction made between ST_{i} and LT_{L}, and that furthermore, short-term foretting could be explained in terms of the principles of interference theory. Defenders of the two-store hypothesis were guick to point out that the mork on which Lelton had based his arguments involved experiments which did not separate LTL and STL components i: performance; the STE component was superimposed on long-term recall, which could account for the supposed similarities between the two memory stores, Furthermore, a variety of evidence that appears to be an ombarrassment to an associative interference-unitary memory position has accumulated in recent years.

Yany memory tasks appear to have two components hich can be readily identified with STis and Lm:. For example, in a free-recsll tas , the subject is presented with a list of words which he must suvsequently recall in any order he wishes. The probability of recall of an item depends on its position in the list. In particular, the last few words presented are usuelly recalled particularly well; this phenomenon is mown as the "recency effect". Glanzer and Cunitz (1965) ha:e shown that when recall is delayed briefly, and the delay interval is filled with some task such as comntine, in order to prevent rehearsal, then the recency effect disappears, whilst memory for ealier itens is comparatively unaffected. Postman and Philiizs (1965), observed similar results but imterpreted them as evidence for a: increase in proactive in ibition at the end of learning , in other words, for the spontaneous recovery of earlier items in the list. Glinzer and Cunitz have pointed out that if this were true, the recall of relatively early items in the list should improve in proportion to the decline in recall of later items. No such improvement was found, horever.

When recall of the list is to ce made in the order in which it was presented, so that the last items in the list are to be recalled after a
fairly lone period filled witi he recall of earlier iters, it is found t at recency effects are mach diminished, whilst the recall of items earlier in tile list is unaffectod (Raffel, 1936; Deese, 1957; Wurdock, 1963b; Tulving and Arbuckle, 1963 and 1966). Although the recency effect is so sensitive to delay, it appears otheraise to be very stable; tiis contrasts with performance on the rest of the list, which is affected by a whole rance of variables that leave performance on the last few items unchanged, such as presentation rate, word frequency, the subject's age, and rany other factors (Raymona, 1959).

Studies of the recall performance of amnesic patients has also produced results which a unitary hypothesis would find difficult to explain. Milner (1967) reported the case of a patient witi hippocampal lesions who suffered from in inability to remember any new information for very long; as soon as his attention was distracted, the new material was lost, although he could recall incidents t at had happened before the brain damage had occurred, and appeared quite normal on tests involving previously acquired knowledge. This evidence sugeents the existerce of a short-term memory system in which items can only be retained if attention is concentrated on them, and a separate long-term momory. The patient had apparently lost the ability to form nea long-term traces, although retrieval of traces already in loneterm memory was possible. These observations have since been confirmed in other cases.

Shalice and Warrineton (1970) have reported a patient who showed unimpaired retention of events in everyday life and normal learnine abilit. who was, however, unable to report back sequences oi' nore than two digits, and in a free recall test showed a recency effect of only one iterm. Two-store theory would claim a normal LTli but a defective STM in this patient. It is clear that a unitary memory system would have trouble in explainine such cases.

Two store theory also gains support from stadies which sugeest that there is some limit on the storage capac ty of short-term memory, as suge, ested by Broadbent, both in terms of the span of imuediate memory (
or the size of the recency ef:ect (Craik, 1971) When the subject's information processing capacity was reduced by the requirement to sort cards during the presentation of a list of words, it was found that performance at long retenion intervals deteriorated, whilst t at at short lags was unchanged (Baddeley, Scott, Drynan and Smith, 1969). This result clearly suggests a two-component memory system, with different storage or acquisition properties.

Some functional differences between long ani short-term memory have been pointed out by Eaddeley. It was shown that STM was adversel. affected by phonemic similarity witin a list of woris presented for free recall, but that it was relatively unaffected by semartic similarity (Baddeley, 1y66a). When performance improvements due to short-tera remembering were eliminated by testing memory at only relatively lonE retertion intervals, the rate of learning a ten-word sequence was unaffected by phonemic similarity, but was reduced by semantic similarity (Baddeley, 1966b). Kintsch and Buschke (1969) studied the same question usinc a serial probe task (Walagh and Norman, 1965), in which the subject attempts to remember a list of items, and is tested by being given one of the items (the "probe") as a recall cue ; his task is to supply we item which followed the probe in the original list. It was found that phonemic similarity affected performance only on the last few items of the list, or those that would be recalled from short-term memory, whilst semantic similarity affected ouly loneterm memory.

These results sitrogy imply a two-store memory system, consisting of a limited-capacity, rapidly decaying short-term store which containe predominantly phonemic characteristics, and a large capacity, loneterm store with a slower decay rate, which operates predominantly on the semantic aspects of verbal material. Of course, the argument regarding the number of memory stores does not end here. For example, wickel ren (1970) has presented an argument for a third store, called intermediate-term memory (I.w) with a rate of decay faster than that of STA and slover than that of LTiil. Both Young (1971) and Pollatsek. (1969) have postillated interwediate
"fluctuation" memory states, from which recall is imperfect. Funthermore, two-store or multi-store theories can be attacked on the erounds that to be valid; they must adequately define what is meant by a store, and moreover they must define what is stored. The supposed functional separation of phonemic and semantic properties of short- and lon-term memory has recently been called into quegtion by a considerable body of experimental evidence which sugeests that both phonemic and semantic memories are potentially available at both short and long reten ion intervals (Shulman 1971). Such results can only be an embarrassment to multi-store theories, which can only find credence if a clear functional distinction can be made between the various stores. Nevertheless, the evidence in favour of distinguishine between lorquan short-term memories is also very convincing, and it is hard to see how a sincle-store, unitary theory of the memory system could explain simultaneousiy all the results listed above. However, before atteripting to resolve this question, a more detailed examination of long and short-term forgetting will be undertaken.

1. 23 Short-term forsetting

It was stated earlier that many memory tasks contain two components which can be readily identified with S and Lin. In particular, performance is often virtually perfect if recall is tested imnediately after presentation, and it thereafter declines fairly rapidly with increasing retention intervals. However, this decline is not maintained. Beyond a retertion interval of a few seconds, performance deteriorates only very slowly as the retention interval increases. In this section, interest is confined to the rapid forgetting \because ich occurs over the initial part of the retantion curve.

Broadvent (1958) claimed that all short-term foretting was due to a spontaneous decay of the STid trace with time coupled with the limited nature of the capacity of STM, whilst unitary theorists such as Lelton (1963) held that STM was subject to the same laws of interference as LTM. Recently, however, the issues have become less clear. Rejection of a unitary hypothesis, for example, would not necessarily imply acceptance of a simple
trace-decay theory of s ort-term foreeting.
Tie serial prove tecknique of "augh and horman (196) allows the experimenter precise control over the leneth of the retention interval. In the original study, subjects were presented with 16 dirits at the rate of 1 or 4 dieits per second. One of these mas then repeated (the probe) and the subject was recuired to respond with the digit which followed the probe.A simple time-decay theory would predict much betier retention of the more rapidly presented list. If was found, however, that the number of items between presentation and test mas the important determinant of recall probaoility. Shallice (1967) pointed out that the rapidly presented digits did show less mar.ed forgetting tian the slower iterns, and that, furthermore, a higher degree of initial learning would be expected with the slower rate, which would in turn reduce the apparent rate or forgettine. This study, then is in broad agreement with the hypothesis of a limited capacity STM and that displacement of earlier items by later ones is the main cause of forgettine. Shallice's observations can be accounted for if it is assumed that displaced items are not imnediately lost, but decay rapidly over time.

Other experiments on the effects of presen ation rate on forcetine from STi have prociuced conflicting results. Aaronson (1967) has roviewed many of these studies, and has pointed out that slower presentation rates often imply hiecher initial retention rates, whilst in many stuaies, sT: and LIN components of recall performance are difficult to separate. This difficulty arises because on a tro-store hypothesis, some of the items that are recalled from STr at short reteition intervals are also beld in Li.. (these are precisely those items which can be recalled at lone retention intervals), and it is therefore impossible to determine which items are held only in $3 T$, and those which are held $i_{i i}$ both stores. Nevertheless, a recent extensi e study bij Glanzer, Giautsos and Dubin (1;69) e:aploying a free recall paradigm showed that t e displacement hypothesis as the most li..ely factor involved in eliwinating the recency effect, with a small effect of decay over time.

However, such arguments do not establish the existance of a limited capacity short-term store. For example, short-term memory effects could to some extent result from reharsal processes. Rehearsal is the tern used to describe the process of sub-vocalising material to be remembered, and will be dealt with more comprehensively in a later action. However, several investigators have proposed that rehearsal might serve to maintain material in imisediate memory (e.g. Waugh and iNorman, 1965), and such a hypothesis is supported by the results of Brown-Peterson studies. For example, Peterson and Peterson (1959) required subjects to retain a sequence of three consonant letters. In order to prevent rehearsal, they had their subjects count backwards in threes from a randomly determined starting point and in time with a metronome, immediately following the presentation of the consonant trigram. Following this retention interval, su.jects were required to recall the trigram.

It is clear that the retention interval was filled by a difficult task that would certainly preclude ehearsal of the trigram, but would not senantically interfere with it in the classical associationist interference theory sense. However, it was found that substantial forgettine occurred, following the usual paitern. Performance declined rapidly over retention intervals of a few seconds, and thereafter more slowly. As will be seen in Chapter Three, these results ave been replicated many times. It is also interesting to note that performance is typically nearly perfect with no retention interval, and such a condition corresponds exactly to an immediate memory span situation. Miller (1956) has reported that subjects can typically recall sequences of up to 5 or even 9 verbal items (depending on the material) without error imiediately after presentation, but that beyond this critical length, errors are made. This critical length is known as immediate memory span, shorter lists are designated as sub-span lists, and larger areas as super-span.

The rapid decay of material from memory which occurs in tasks which include the presence of some interfering (or rehearsal-preventing) activity between presentation and recall sugeests that the span of immediate memory
is limited by rehearsal capacity. There is some evidence that subvocal rehearsal is a sequential process, similar to vocal rehearsal, but somewhat faster (Landauer, 1962), so that the limited capacity of the rehearsal procesa can only be explained in terms of a rapid decay of unrehearsed items, which are not held in long-term memory. Thus in attempting to remember a sub-span list, the subject is seen as sub-vocally rehearsing the entire list in sequence, jumping wack to the beginning each time be reaches the end. If the list is too long, then the unrehearsed early items would have decayed, leading to retention loss, or alternatively the subject might opt to rehearse a sub-span portion of the list to the detriment of the remaining items. In any case, it is clear that too long a list will cause disruption of such a cyclic or "rote" rehearsal process, as will an interfering task of the kind employed in the Peterson and Peterson study. It should be stressed that this argument has been advanced to explain only the rapid initial decline in performance that occurs when subjects' ability to rehearse a sub-span list is curtailed. For example, imiediate memory span can be increased by using more meaningful naterial, so that performance on such a task cannot be explained entirely in terms of rote rehearsal, whilst much of the slower, long-term decay in Brown-Peterson studies may well be due to semantic interference from previously-presented material, as will be seen in Chapter Three. These reservations, however, do not invalidate the argument presented above.

However, another problem is posed: in order to account for the limited capacity of short-term memory in terms of rehearsal, and for the retention of some amount of rapidly-decaying information without rehearsal in Erown-Peterson studies, it was necescary to postulate that "unmemorised" items which are not currently being rehearsed are not immediately lost, but are retained subject to rapid decay. If this rapid decay were time-dependent, ther it would a pear that a separate short-term memory store must be proposed, whereas if this decay were dependent on interference of some kind from other items, then there
would be little need to propose a separate short-term store. Landaur (1962) has reported that sub-vocal rehearsal takes place at a rate of about 3 syllables per second, although it may in rare cases be as rapid as 6 syllables per second. With a typical memory span of around 7 monosyllabic items, this would suggest a decay time for unrehearsed items of about 2 seconds. This figure agrees very well with ileisser's (1967) proposal for an acoustic sensory store, or "ecioic" memory. The articulatory nature of sub-vocal rehearsal would clearly sugeest that rehearsal might give rise to an echoic memory trace, even it items were presented visually. Such a store could well account for the short-term decay over time found by Clanzer et al (1969) and implied by Shallice (1967).

Wickeigren (1973) has argued that rapid short-term decay of unrehearsed material might well result from phonemic interference which would presumably reach far greater proportions than semantic interference from a given number of interforing items, and would even occur when attending semantically unrelated material as in Erown-Peterson studies. In other words, it is argued that short-term forgetting results from interference in a similar way to long-term forgetting, and that therefore, there is no structural difference between short and lone-term nemory, and hence no reason for making such a distinction. Such an argument, however, would have difficulty in explaining the slower rate of shortterm forgetting found with faster presentation rates in a probe tagn by Shallice (1967), which strongly iaplies some anount of spontaneous decay over time. However, if \%ickelgren's argument is accepted in conjunction with the limited-capacity rehearsal hypothesis and ivisser's sensory store, most short-term memory phenomena can be explained.

Perhaps the most outstanding evidence for two-store theory lies in the study of amnesic patients. It will be rememuered that wilner's (1967) patient appeared to have normal STM and defective LTM; the above arguments, however, explain STM in terms of a sensory store and active rehearsal processes, neither of which is really part of the memry
system as such. If the subject was merely unaole to form new memory traces, only a slight inpairment of STW performance would ensue (due to the loss of phonemic information) which might well have been too small to detect. Shallice and Warrington's (1970) patient, who apparanily suffered from a defective STL may either bave lost the ability to rapidly subvocally rehearse material, or he may have had poor access to decaying sensory information. Aithough this argument is not so satisfactory as the two-store hypothesis in accounting for this patient, most of the other phenomena ascribed to short-term memory can be accounted for by rehearsal and sensory storage. Wickelgren's argument regarding the rapid decay and phonemic information by interference can explain the sensitivity of short-term retention to phonemic similarity, but this phenomenon can also be explained in terms of rehearsal errors and sensory memory decay. Indeed, Shulman's (1971) conclusion that phonemic memories are available at long retention intervals suacests that some phonemic information can be retained far longer than a separate short-tern memory structure would sugsest.

To conclude, it appears that evidence from short-term forgetting studies by no means establishes the existeace of a separate short-term memory store, but that the phencmena observed can be explained in terms of an active rehearsal process coupled with an "echoic" sensory store, neither of which can be described as being fundamentally part of the memory system, and by the rapid decay of phonemic intormation in memory.

1.24 Long-term Forcietting

In studying short-term forgetting, there is always a problem in interpreting results since it cannot be determined which items recalled at a short retention lag would subsequently have decayed rapidly, and which would have been recalled even after a relatively long retention interval. Such difficulties do not apply when examiniñ long-term forgetting, since the rapid decay items can be "wiped out" by ensuring that recall is made after a sufficiently long retention interval.

Of course, classical interference theory was originally advanced to account for long-term forgetting phenomena, but more recently, a number of observations have come to light which cast douot upon its validity. It would firstly appear that interference theory would have difficulty in predicting forgetting in a situation where the material to be rememicered consists of items auch as nonsense syllables, which a subject is unlikely to have encountered in other situations. Underwood and Postman (1960) proposed that such material might include improbable letter combinations which would conflict with the subjects previously acquired language habits. An extension of this hypothesis, however, should predict that high-frequency words should be more prone to proactive interference from previously acquired language habits than low frequency words. Attempts to demonsirate faster forgetting rates for low frequency letter combinations or bigh frequency words have nevertheless proved unsuccessful (Keppel, 1968).

Another major difficulty for classical interference theory is raised by what Wartin (1971) has called "the independent retrieval phenomenon". If associations $A-B$ and $A-C$ learned, interference theory claims that forgetting occurs as a result of mutual interference between the $A-D$ and $A-C$ associations, and so, when recall of both is required, a negative correlation in the recall probabilities of the two associations would be predicted. However, the recall probabilities of two such conflicting associations have been found to be independent across a wide range of experimental conditions (Greeno, 196\% Martin, 1971).

Results of this nature are extremely embarrassin n_{E} to classical interference theory, and it is unlikely that the traditional stimulus response associationist position will survive. Nevertheless, no-one would claim that all loig-term forgetting is due only to the decay of the memory trace over time. There are several feasible $h_{\text {, pothesis of lon -term }}$ forgetting : the simple "overwriting" of memory traces, response competition in situations where only one response may be given to a recall cue, inadequate initial storage of information leadirig to
subsequent confusion and competition, or even failure to retrieve the appropriate information even when it is adequately stored. Furthermore, performance can also be affected by the subject's organisation of the material to be remembered.

Early work on the rate of organisation in memory followed the classical associative tradition ; Bousfield (1953) showed that words belonging to certain categories tended to be clustered together in the free recall of randomized lists, and Jenkins and Russell (1952) demonstrated that pairs of words that tend to oe highly associated (such as table - chair, bread - butter) also show clustering in free recall. Results of this kind take advartage of pre-existing associations, and are therefore consistent with the traditional associationist position.

More recent experiments, however, suggest that subjects can and do actively organise material in memory. Tulving (1962) defined subjective organisation as a tendency to recall groups of words in the same order on successive learning trials in a free-recall situation. He found that subjective organisation was a significant phenomenon, and t at it increased on successive learning trials and was correlated positively with the amount recalled. Whereas Tulving employed an informationtheoretic measure of subjective organisation, Bousfield, Puff and Cowan (1,64) merely counted the number of words which were recalled in the same order on successive trials and based an index on this total. leventieless, they obtained essentially identical results with those of Tulving.

Further evidence that there is a causal relationship between subjective organisation and learning was produced by Tulving (1966) His first experiment involved the free-recall learning of a 22-word list. Half his subjects had previously read throug: the list 6 times, whilst control subjects had 6 readines of a complete y unelated list. There was no difference in the rate at which the two groups learned the critical list, which shows that rote repetition alone does not facilitate free-recall learning of weal integrated items. In a second study, a list of 18 unrelated words was to be learned. Half the sub-
jects had previously learned a 9-word list made up from items on the critical ligt, whilst control subjects had previously learned a totally unrelated g-word list. Despite the initial advantage of the former group, it was found that after trial 7 , the control group performed better. It would thus appear that the learnins of irrelevant word clusters was actually deleterious to the learning of the critical list, where a different oreanisation would presumably be optimal. It is interesting to note that the expesimental Eroup would have produced more inter-word associetion, and should therefore have performed better accordire to associative theory.

These results, however, pose another problem. In assigning a currentlypresented word to what is presumably an idiosyncratic, semantically determined word cluster, the subject must have access to the previously presented words that form that cluster. In general, however, these words will have lcft consciousness in that they are unlikely to be currently underछoing rehearsal, so the question remains as to what form this access takes. For example, does the subject maintain some kind of functional semantic representation of word clusters in a conscious rehearsal loop and actively add some representation of the current word to the appropriate ciuster description, or is a particilar ciuster retrieved as a result of some kind of recognition process trigegered off by some property of the current word? When a word is added to a cluster, is the representation of the entire cluster in memory updated, or is the word merely given a representation in menory that is somehow similar to that of other works which are subsequently recalled as a erroup? Some attempt to answer suck questions will be made in the next section.

It has recently become clear that a distinction must be made between lcarning and performance in memory. Performance only gives an indication of what can be retrieved at a particuler time. In a study by Tulving and Pearlstone (1966) subjects were required to learn a list of 48 words, comprising 12 categories of 4 words each. Each category was presented as a group and preceded by its name. Cued subjects were given a
list of the category names during recall, whilst uncued subjects were not. Although cued subjects recalled more worcs overall, it was found that uncued subjects recalled as many words per category; they merely missed some categories out. When uncued subjects were subsequently given the list of category names, further words were recalled, almost entirely from the omitted categories, and the overall performance of the uncued roup became a nost equal to that of the cued group. A similar phenomenon was reported by Tulving (2967), who conaucted a free-recall experiment following which retention was tested on three successive trials. Although the number of words recalled on each of these trials remaincd roughly constant, only about one-half of the words recalled occurred on all three trials. It is clear that the subject's performance on each trial was somehow limited by his retrieval ability.

These results suggest that loneterm forgetting is due to some extent to the difficulty of locating and retrieving information that has, in fact, been stored in memory. In other words, there is a lot more material "available" (actually stored) tion is "accessible" (or able to be retrieved) at the time of recall. Furthermore, it has been shown that pre-existant or active subjective organisation of the material to be renembered influences the siorage, and probably the retrieval, of that material. Several questions are posed by these results, for example, to what extent is forgetting due to the iraccessibility of information as opposed to its unavailability, and is unavaila ility caused by interference from other infomation in memory in a similar way to inaccessibility? How are these factors affected by organisation, and how exactly does orcanisation facilitate performance? Recent research has suggested that such questions may best be answered within the framework of encodire theory.

1.25 Encoding Theory

Psychologists have recently recognised that a distinction must be drawn between the nominal stimulus, that is the stimulus as the experimenter presents and defines it, and the functional stimulus, which is the form
in which the stimulus is stored in memory. The act of transforming the physical or nomal stimulus into a functional one is nown as codin or encodine, and a functional stimulus is nown as a code or an encoding.

Two types of encodine are distineuished (Baddeley and Patterson, 1971) and are nown as reduction and elaboration coding. Reduction coding operates to reduce the amount of material the subject has to process. For example, it may take the form of selecting one from amonest many attributes of a presented stimalus ite. (e.G. the CVC nonsense syllable VJP micht be encoded in terms of a phonemic representation of its initial letter V). A second form of reduction coding takes the form of "rewritinc" several items into a sincle codine. A classic example of this is given by liller (1956) who trained subjects to recode lone sequences of binary digits (O 's and I's) by splitting them into groups of three digits, each of which was then substituted by an octal digit $(0-7)$. The subjects thus had only to renember a far shorter se uence of octal digits, which were decoded into binary triples during recill, and a far greater than normal immediute memory span for binary dicita resulted. Richaraison (1972) has produced convincing evidence tiat stimulus selection coding takes place in certain situetions, whilst further support for the process of "rewriting" of items into a single code, or hierarciical coding has been produced by cohnson (1970, 1972). 3oth types of reduction coding are believed to be used when waterial is presented at a fast rate, and when the items to be recalled are not hard to discriminate from a large nuriber of related items.

When items are difficult to discriwinate, elaboration coding is seen to je useful, since this form of codine provides enough attributes of an item to be renembered to distinguish it from other related, but not-to-berenembered items. For example, an item such as "apple" ma;r be encoded in terms of the fact that it occurred in a list after the word "table", in terms of its sound attributes (e.j. it is disyllaioic and starts with A) and in terms of meaning (e.g. it is an edible fruit). Items uay not
only be elaborated by being coded in terms of atributes that the subject extracts, other features may also be added to them. For example, a verbally presented item ray ce coded irto a complex visual inage (Paivio, 1969; D̄over 1970).

Craik and Leckart (2972) have distinguished various depths of encodine. At the so-called surface level, the nominal stimulus is seen as entering some kird of sensory store, such as the iconic and echoic stores described in section 1.22, and it is thought that certain acoustic-articulatory-phonemic features of the stimulus may become part of the ensuine furcticnal stimulus, although such features are probably prone to a ereat deal of irterference and rapid decay. At a decper level episodic attributes might be encoded (iri other words attributes derived from the episode of presentation) such as whether the item was presented visually or auditorily, where is appeared in the list, how many times it appeared, and so on. Evidence that such information is often ericoded has been reported by Hintiman (1970), Hintznan and 3lock (1971) and by Hintzman, Block and Inskeep (1972). At the deepest encodine levels, semantic attributes referring to the items meaning resulting from general past experience and maturation are thought to be encoded. Craik and Lochart argue that the deeper forms of encodine are less prone to interference and therefore less subject to decay, but on the other hand more difficult to construct and decode (Elias and Perfetti, 1973; Wood 1972; Gardiner, 1974). The subject is seen as exercising some degree of control over the level of coding applied, and it is postulated that his choice of codinf: strategy will depend upon task variables.

Coding theory has been of considerable help in examining the question of accessibility and availability and evicence has recently come to light that sugeests that in free-recall, organisation plays an important part. It will be rememeered that in the Tulving an Pearlstone (1966) study (See 1.24) the superiority of subjects cued with category nemes was in terms only of the number of categories from which item: were recalled, and not in terms of the number of items per category. This
result s oeests that althoug suoject bad stored items meins on catecory codins, they could not provide themselves ith these codines at recall. . study by mulving an. Psotr.a (1971) has shorn that interierence between tro lists each frica are composel of a number of semantic cotegories is at the catecory, and not at the mond level. These interference effects may de counteracted by prociucing category cues (Strand, 1571). Furtiermore, Cohen (296) has pointed out that if a cetegory of items is recalled at all, then several of its member items are recalled; single iters from a catecory are seldom remerbered. It is possible, houever, that if one iter: from a catefory is rec:.llen, then the subject may be able to qeduce the category and hence recall more of its items.

These results suecest that in the free-recall of categorized lists, sukjects employ some rink of wierarcifical encodine schene, whereby individual items are encoded in teras of semantic cat cories. It furtherwore appeans thet codine is less jeep (and wor prone to inverfercnce) at the superordinate or rel:tioial level t an at the inividual item level. \quad owever, such studies are rati er artificial in niture, and it is not at all certain wiether oreansation in arelaten freereczll list learain is based upon serantic relationsirizs, and indead tiee method oí det ctine oreanisation in such situations by "clusterin_" would tend to favour t e detection of episodic relationslips. Rerriot (274) has arcued that in tine case of categorized lists, the reletions cetwe.n items are encoded very early on in the wresentation trials, cecause the attrioutes by which items are related are very oovious. In the case of uarelated lists, however, it is argued that relation beti.eer. itens will only become apparent when tiae items have been codel by several attributes (i.cressine the likelincod that several iters will share an attribute in cominon). (veriaps way well be multiple, ia that difie ent relations may become apurent for a siacle item. Dy thic arument, orearisation is seen as operatine principally durine retrieval, the recill of one word "throwine up" an attribute tiat is shared by arother which hence acts as a recall cue. It is only with repated practice that trese
overlaps become encoded as relations, and some form of active organisational encoding is initiated.

Forettine in situations other than free-recall has often been explained in terms of the "encoding specificity" hypothesis
(Thompson and Tulving, 1970) which maintains that the coding used for retrieval of an item has to be the same as that used for its storage. Their experiements, which vary the context in which the critical item appears durine presentation and recall, sho: poorer recall when the item is probed in a different context to that in which it was presentec. However, there are many ways that context may chane from presentation to recall outside the context of the experimenter. For example, the abject may be daydreaming about different thirgs at the two phases of the experiment. Nevertheless, the hypothesis is useful in providing an explanation for the kind of forgettine that appears in, say, Brown-Peterson studies, where the subject appears to experience difficulty in discriminating between the current tc-be-remembered item and previous ones. It may well be that foretting in tris situation is largely due to the loss of episodic information that would presumably enaule the subject to make such a discrimiration.

1.26 Rehearsal.

An areument has already been advanced that proposes rehearsal as fulfilling the role of an active short-term remory store, operatint principally on the acoustic representation of the nominal stimulus. This interpretation is rendered difficult, however, by results of Craik (1968) who showed that words could vary in lencth without having any effect on the recency effect, and Glenzer's (1972) findin n_{6} that lists of proverbs show a recency effect. However, some evidence as to the active nature of short term memory is provided by studies which shov that repetitions of the same ittm one after another do not have any effect cri short-term capacity as measured by the recency effect (Glanzer and Meirzer, 1967; Waugh and Normen, 1968). This implies that repetitions are recognised for what they are, and are filtered out by an active
selection process.
However, a considerable body of evidence now exists to subeest that rehearsal increases the likelihood that material will receive a deeper encoding. Howe (1967) presented two croups of subjects with a 9 consonent list. One group was specifically instructed to rehearse the items aloud in troups of three. When recall was tested after an interferine digit reading task, the recency performance of the control group wis depressed, in agreement with the studies cited earlier (see section 1. 2). However, or the rehearsal group, all items were slightly affected to the same extent, suge esting that they were all similarly encoded and thus were equally vulnerablc to interference effects.

Bernibach (1967b) showed his subjects eight different colour cards which were placed face down in a row. A test card was then shown which the subject was required to match by selectine the a propriate face-down card. The performance of adults and younc children was compared. Apart from the overall superiority of the adults, both performance curves showed a recency effect which spaned mone items for adults, but adults also showed a primacy effect (superior recall of early items) which was completely absent for children. It was arbued that these differerces were due to the adults ability to rehearse the names of the colours, which were uninown to the children, and that the primacy effect was caused by a deeper encoding of the early items resulting from the creater amount of rehearsal they would receive in comparison with later items.

When the c ildren were taught names for the colours and retested, it was found that altnough their performance was still inferior to that of adults, their performance curves now showed increased recency effects (indicating that they were rehearsing) and a pronounced primacy effect, incicatine that renearsal had facsitated deeper encodine of the early items in some way.

Hore direct evidence has been produced by Rundus (1971), who found that forcing subjects to rehearse aloud each item in a free recall list presented at a slow rate improved recall on the asymptotic, and not on the
selection process.
However, a considerable body of evidence now exists to sugeest that renearsal increases the likeihood that material will receive a deeper encoding. Howe (1967) presented two eroups of subjects with a 9 consonent list. One group was specifically instructed to rehearse the items aloud in roups of three. When recall was tested after an interferine digit reading task, the recency performance of the control group was depressed, in agreement with the studies cited earlier (see section 1.22). However, for the rehearsal group, all items were slightly affected to the same extent, suge esting that they were all similarly encoded and thus were equally vulnerablo to interference effects.

Berribach (19670) showed his subjects eight different colour cards which were placed face down in a row. A test card was then shown which the subject was required to match by selecting the a propriate face-down card. The performance of aduits and youn children was compared. Apart from the overall superiority of the adults, both performance curves showed a recency effect which spanned more items for adults, but adults also showed a primacy effect (superior recall of early items) waich was completely absent for children. It was argued that these differences were due to the adults ability to rehearse the names of the colours, which were unhown to the children, and that the primacy effect was caused by a deeper encodine of the early items resultine from the reater amount of rehearsal they would receive in comparison with later items.

When the c ildren were taught names for the colours and retested, it was found that although their performence was still inferior to that of adults, their performance curves now showed increused recency effects (indicating that they were rehearsing) and a pronounced prinacy effect, incicatine that rehearsal had faci itated deeper encodine of the early items in some way.

Wore direct evidence has been produced by Rundus (1971), who found that forcing subjects to rebearse aloud each item in a free recall list presented at a slow rate improved recall on the asymptotic, and not on the
recency part of the performance curve. Results of this nature sues st that at least in some situations, rehearsal may have the effect of holdine items ir attention whilst deeper encodires of those items are constructed. It would therefore a pear to follcw from this areument that any rehearsal process whose function is to transform the acousticarticulatory nominal stimulus into a functional encodec form must be ble to deal with functional items. In other worcis, the units of rohersal may not be simply acoustic-articulatory syllables, but rather whatever functional units the subject is encoding the nominal stimuius irto. It has been established that, for example, rehearsal of visually encoded material can occur (Hintzman and Sumers, 1973; Shaffer and Shiffrin, 1972).

Thus, the fact that active renearsal may operate upon functional stimuli provides an explanation for the resilts of Craik (1968) and Glanzer (1972) cited at the becinning of this section. The lencth of the nominai item in acoustic-articulatory terms may not be the prime deterainant of reheareai capacity, but ratier the decay time of the functional representation of that item.

It may be necessary to distinguish between "passive" rehearsal, whose function is merely to recirculate and hold nominal stimuli, and "active" rehearsel whose function is to encode nominal items. Such a distinction may well depend on task variables and their effect on the subject's depth of coding strategy. Nevertheless, rehearsal and surface codine can still oe advanced as an explanation of short-term forcettinet efiects, and it is still doubtful whether it is necessary to postulate a separate short-term stcrage structure. Nevertheless, "iickelgren (1973) has established convincingly that short-term forgetting does proceed at a faster rate than long-term forcettine, and for this reason it may be useful to retain the ter. STw as providine an operational, as apposed to a functional, descriotion of the rapid-decay portion of retention curves.

1.27 Repetition and Practice

A number of hypotheses have been advanced to explain the i provement
in performance that often occurs when items to be rememiered are repeated or when the subject is given adequate time to rehearse them. In this sense, a rote rehearsal of the nominal stimulus could we agarded as formine a repeated presentation. Three main positions may be defined. The first of these claims that memory traces are either formed or they aren't ("all-or-none"), so that repetistion would increase the probatility that a trace was formed. i second approach postulates that memory traces can assume values on some lirid of strength continuum, so that practice would have the effect of increasing the strength, and thus the resistance to interference, of the memory trace. Finally it conld be postulated taat a number of in:ependently-decaying memory traces of a stimulus are formed ("maltiple copy") and that this number increases with practice. There are any number of intermediate positions within this framework. For example, a maltiple-copy-strength model conla be proposed, or a two-store theory with, sav, an all-or-none Smy and multiple copy LILA.

A closely related issue is tiat of consolidation, which may be generally Uefined as the hypothesis that a memory trace has some chance to increase in strencth or permanence each moment it is hold in the memory system. A more speciic version of this hypothesis ray be traced to Hebb (1949), who pustulated that if a sort-term reververatine trace were not interered with, but simply allowed to run its course, then it would consolidate into a more perwanent lone-term structural trace. This has given rise to the question of whether repetition and rehcarsal of an item can lead to its consolidation into loncterm memory, and to the subsequent controversy as to whether material can be rehearsed whilst the subject is ostensibly payine attention to the presentation of another item.

A different approach to the effect of a repetition is the differential encodine hypothesis, which claims that if the same nominal stimalus is presente: to the subject on two or more different occasions, then that stimulus may be perceived and encoded in different ways on these occasions. These different encodings would presumably have an elaborative effect, in that
they would procuce aore potential retrieval routes to the critical itom, and mint also oper ine to _...rease its uiscriminebility. Eoth these processes would facilitate performance, Coding rypothoses differ frora the michanistic proposals Listed asove in that they ascrive a different function to rehearsal, in that with increased reearsal time, there may still be some limit or the rance and depth of attrioutes which will be encoded, whilst a repetition, especislly in a new context, mi ht well serve to increase t is ran \in.

Of course, it is beyond the scope of this brief review to resolve all the issues outlined above. Wevertheless, many of these issues Will be encountered acain in later chapters, and will be dealt with wit in the contexts in winch they arise. The brief theoretical framework which has been established will serve as a sound basis for the interpretation and understanding of the experimental material to be presented later on in this thesis.

The chapter will no: be concluded with a review of the pairedassociate literature, winch will fall into two arts, Firstily, after a brief outline of experimental teciniques and paradicms, an examination of the factors affecting pairei-associate forgetting will de made; in other words, of the field traditionally known as memory. Following this, the effects of various inds of practice on paired-associate memory will be discussed, an area which may be rougily described as paired-associate learnine.

1.3. Paired-issociate Menory

Paired-associate tashs have traditio ally been regarded as the ideal metaod of investigating the formation of associative comections be'wsen pairs of items. However, in the licht of the iradecuacy of associative interference theory, less ewplasis has been placed upon paired-associate memory in comparison with techniaues such as the free recall, serial probe and Erow-Peterson paradiems. This is unfortatate for several reasons.

In the first place, it has be in shown that performance in any
memory task is inflienced by task-specific, active oreanisational and encoding processes. Therefore there appears to be Iittle justification for according ereater importance to one experimental technique over another; each paradigm places its own unique demands upon the subject, and it is likely that he will react differently to different memory tasks. Concentration upon too narrow a range of memory tasks could very well lead to a confounding of subject strategy, with the result t at active, organisational effects are mistaken for underlyiné memory mechanisns and stractures.

However, there are more convinciaE arguments in favoun of pursuing paired-associate studies. It has been shown that free-recal lists are actively encoded into related groups to scme extent. How ver, it is extremely difficult to detect ad identify sach encodings mere clustering in recall may well reflect shallow, episodic encodines as opposed to deep semantic Erouping. Brown-Peterson stuaies typically employ stimulus triples, since even shorter suju-span stimuli produce very little forgetting. It is quite possible that such trilles are associatively encoded in such a waj that recall of one item of the triple may assist retreival of its ot er items. However, the effects of such encodings tend to be smamped by the difficulty experienced by the subject and roducine adequate episodic traces that will enable him to discriminate between the current triple and previous ones. Serial probe techniques clearly recidire the subject to encode items in terms of episodic, serial rel tionsiips.

Thus, many memory tasks probably involve the subject in encoding relations between succes ive items, but the lack of specific controls maies it nearly impossible to detect t ese encoding aspects. In freerecall and Brown-Peterson studies, the suoject's main task is recall, so that there is no guarantee that a relational encodine will be of any use. Studies with categorised free-recall lists suğest that entire elated grouping may be omitter in recall if the relation itself cannot be recalled. There is no way of determining to what extent active
relational encoding strategies will be employed in such situations, and to what extent relational encodincs merely result from the encodines of overlapping attributes. However such relational encoding occur, it is fairly certain tiat they do occur, and they may therefore have a profound effect upon performance.

Serial probe techniques also present the subject with a formidable task. Not on?y mast pac list item be sufficiently well encoded as to permit its recall, but the subject is also faced wit. the task of producia a secuential relational encoding between successive item pairs. Forcetti: in such a task could result from inadecuate recocnition of the prove item, íability to retrieve the apropriate response, or an inability to determine which response is a propriate.

Paired-associate techniques therefone provide a valuable tool for the investication of relational encoding, w ich mast occur to a lesser or greater extent in all these other situations. Ther compare favourably with the serial probe technique in that in a paired-associate task, the subject is only required to produce relational encodines between specific and well defined item pairs, and not between each s'dccessive item pair. Furthermone in a prose tas , each list item is equally likely to be the required resyonse, so all items must be encoded for recall, whilst in a paired-associate task, the subject knows exactly which item of each pair to encode for recall, and which one to encode for recognition. This certainly reduces his infornation-processin load, since it is cenerally accepted that recognition is far easier than recall (e.g. Kintsch 1970a).

Paired-associate techniques also permit the experimenter to independently vary stimulus and response material, and therefore alter the encoding requirements of "probe" and "target" itens, whereas similar material must be employed througnout in other yaradigns. Paire -associate methods therefore admit a very precise definition of the encoding requirements demanded of subjects, and could be reasonably expected to provide an admirable research tool for the invest gation of the various theories of lone-tem forcetting such as trace overwriting and response competition
which is, after all, the main object of memory research.

$1.31:$ Paired-associate paradicms

The earliest paired-associate paradigms typically involve the learning of a repeated list of stimulis response pairs, usually to some predetermined criterion level of performance. The subject is instructed that the first, or stimulus item of each pair will serve as a recall cue for the second, or response, itern. In the stidy-test method, th list of pairs is presented for study, one pair at a time, followin which the stimulus items alone are presented one at a time and the subject attempts to respood with the appropriate response itern. The experiuent consists of an alternating sequence of a ulock of presentation or study trials followed b_{j} a block of test trials, and usually the serial position of items within a block is randomised from each block to the next.

In the anticipation method each jair receives one anticipation trial (comprising a test trial followed by an immediate presentation of the same pair) on each presentation of the list. Thus, an anticipation trial on the pair GREEN-LAS would take form: GRIFN -, GRELTMEN. The subject attempts to respond with the appropriate word "، Ai" when the stimulus word "GREMT" is presented alone, and is then immediately presen:ed with the correct pairine. Eoth the study-test and anticipation learaing paradigms suffer from the drawback that the list order is re-randomised from one trial to another, and although care is taken to ensure that short-term retention effects are "wiped out" by providing adequate numbers of trials on other items betaeen the presentation and test of each item, the experimenter has no other effective control over the rete tion interva!s between study and test.

The relative!y new continuous paired-associate (CPA) paradiem has provided a more flexible tool for the investigation of paredassociate retention. In this paradigm, the number of trials on other pairs intruding between successive trials on each particular pair is determined in advance by the experimenter. This is achieved by
"interleavinc" pairs to form a list in such a way taat the interval between successive trials on each particular pair consists of study and test trials of other pairs. When all the pairs of inverst, or "critical pairs" nave been assigned to list position, any remaining vacant list positions have unaralysed "filler" pairs assignta to them. These fillers are constracted in such a way as to e indistinguisnable from tie critical pairs, so that they will receive as much of the subject's atiention as the critical psirs.

The main features of the interleaving process may be depicted diagramatically as fol:ows:-

1) Pair A receives two trials, A_{1} and A_{2}, with four intruaine trials besween them:-

$$
A_{1} \ldots A_{2} \ldots
$$

ii) Pair B receives two trials with five intruding trials between
them:-
$A_{1} B_{1} \cdots A_{2} \cdot B_{2}$
iii) Pair C receives two trials with two intruding trials between ther:$A_{1} B_{1} \cdot C_{1} \cdot A_{2} C_{2} B_{2}$
iv) Finally, the two vacant list positions are occupied by presentations of the filler pairs Y and Z :-
$A_{1} B_{1} X C_{1} \mathrm{YA}_{2} C_{2} B_{2}$
Each iist position may je oscupied by either a study trial or a test trial, or alternatively, anticipation trials may ve employed tirroughout. One drawback to the CPA paradigm is that in eneral, the experimenter has little control over the specific sequence of trials that fill the intertrial intervals of particular items. In the diagram above, for example, the iirst trial on each pair may constitute a study trial, and the second a test trial. Pair A is therefore tested at a retention interval of four trials each of wich is a study trial, whereas pair C is tested at a retention interval of two trials, one of wich is a study trial, and one of which is a test trial. There is no giarantee that an intruding test trial will have the same effect on retention as
an intrudi ${ }^{6}$ stmady trial, so that even if each r iention interval is tested many times with different pairs in the hope tal these difierent effects will "average out" between retention in:ervals, an element of uncontrolled variation is introduced into the experiment. Difficulties of this ind arise even if asticipation trials are emplojed throutout; although this method Ëu rantees equal numbers of intrudine vests and presentations at each retention interval, there is still the possibility that say an intruding short-lag test which results in a corroct response has a different effect on the retention of the critical item t an ai intruding lon-lag test that results in an error.

This problem is avoiaed by the paired-assosiate (or د..) "probe" task in which a list of pairs is presented for otudy, one pair at a tirne at a fixed rate, following which tre stimulus item of one of the pairs is presented as a recall cue. Thus only one pair from the list is tested. Since each pair in the list is equally likely to be the one tosted, ard since the retention intervel comprises only intrudine presentation trials, this technique does not suffer from heterogeneity in th effect of the retention interval. y varyine bot list Iength and t e position of the critical (or subsequently probed) pair the experimenter can control both the retention interval in terms of the number of suosequent pairs, and furthermore the number of proviously-presented pairs, so t.at the P.: probe procedure is a useful method of examinin the effects of proactive interference. However, this procedure is clearly far more expensive in terms of time and material thar the CPA method.

Fithin the framework of these methods, tiere are a numver of veriables pertainine to the stimulus and response material which lend themselves to experimental control. Taus, for example, the response items may be totally unfamiliar to the sabject (e. है. nonsense syllables), extremely familiar and from a finite, weil-defined set (e.g. the integers 1,2,3,4 and 5), or familiar, but from a poorlydefined, potentially very large set (e.e. five-letter, comion nouns). Ir the first instance, the subject would be expecied to experience a

Great deal of difficulty in recalline responses since the task would involve learning all the responses "from scratch", whilst in the second case, very little respo.se learning would be required, and in the third example, the subject's task would involve the learning of which items from a familiar set actually beloñ to the response poul. The difficulty of encodine the stimuii ray be similarly manipulated.

This thesis is primarily concerned with the relational encodine of the stimulus-response pair, and it has been argued that this is the major object of paired-asscciate studies. Pailure to produce the appropriate response to a stimulus may result in three ways; failure to correctly identify the stimalus, failure to associate the appropriate response with the stimulus, and failure to retileve the response. Tre third possibility can largely be eliminated by employing well-defined "compaijole" response sets, such as a range of integers, thereby removing response learnine components from the tisk. There seems little justification for increasing the complexity of a task when there are aspects of performance on the most simple form of the task which are not fully understood. Unfortunately, material involving response learning cannot be excluded from this review, since there are many important stucies of this kind which have not been replicased with the response learnine component of the task eliminated.

1.32 Short-term retention of paired associates.

The most marked aspect of short-term retention of pairea associates is that a substantial amount of forgetting occurs over quite short lags (in ter of the number of intruding trials) between the presentation of a pair and its subsequent test. Performance tends to decline rapidly up to a lag of about 3 intruding trials, and thereafter far more slowly. This type of relationship has been found to hold over a wide range of stimulus and response material, and across a variety of presentation raies, and is typical of both CPA and prove procedures.

The three retertion curves displayed in Pigure 1 are fairly typical, but despite their oovious similarities, they result from widely differine
experimental procedures. The data coll cted by Young (1966) emereed from a complex CPA study in which stimuli were consonant tríframs (CCC'S) and responses were the digits 0-9. A randomized interleavine teconique was employed to prepare a separate list for each subject. Dummy pairs were used to provide a "primacy buffer" (in other words, dummies began each List to eliminate primacy effects from performance on critical items), and such pairs were al:o employed to fill vacant list positions. Study trials were of 4 seconds' duration, finereas t.at of test trials was subject-deterrined (i.e. trials were terninated only when the subject had made his response). The data displayed in Fig. 1. is that for critical items which were presented once, an. tested after a retention lag of c -10 intrudine trials.

A CPi procedure was also employed by Athinson, Brelsford and Shiffrin (1967), ir two stuies employin two-diéit numpe sas stimuli, and the 20 letters of the alphabet as responses. Anticipation trials were employed troughout; the test phase of such trials lasted for 3 seconds, followed by a $2 \cdot$ second blank interval, a 3 -second study phase on a new item, and a further 3 second blank period preceded the onset of the next trial. It is clear that this procedure allowed the subject ample tine to rehearse previously-presented pairs durinc the ll-second anticipation trial on the two curvent pairs. The data in \#iture 1 emered from the investigators' Bx. II, in which each critical pair was presented once, and sủssequently tested after lags rangine from 0 to 20 intrudine anticipation trials; oly data for lags 0 to 10 are shown, as performance over longer lags declined only slightly, and follo:"ed the egeneral trend of the portion of the curve displayed. Suojects were instructed that each pair would only receive one presentation and a subsequent test, and that therefore any pair just tested could safely be forgotten. Despite this, no difference in performance was found betwee: three experimental conditions in which the number of different pairs that a subject wauld be required to remember at any point in time was 4,6 or 8 and the results displayed ane averaged over these three conditions.

FIGURE 1

Some typical paired-associate retention curves.

A paired-associate probe procedure was employed jy üurcoock (1963a, Exp.I) with stimuli and responses coasisting of common english words presented at a 2-second rate. Critical items were preceded during presentation by $0,1,2$ or 3 other pairs, and were tested at lags of $0,1,2,3$ or 5 subseçuently presented pairs. Subjects were allowed 15 seconds for recall. The retention data displayed in Figure 1 were obtained by averagine proportions correctly recalled across the number of prior pairs at each retention lag. Similar results were obtained in a further study (Murdock, 963 a Exp. II).

Peterson, Saltzman, Hillner and̀ Land (1962, Exp. I) emplojed a CPA procedure in which stimuli were common 3-and 4-letter, monosyllabic English words, and responses were the digits l-9. Each critical item was presented once for study and suosequently tested after 0,l,3 or 8 intmutin tri s other items. An interlecving technique similar to that employed by Young (1966) was used in the preparation of lists, but otherwise this experiment differed from: loung's in that the duration of both. study and test trials was 2 seconds. The important difference here lies not so much in the slightly faster presentation rate, but in the fact that the subject was forced to respond in 2 seconds. Wevertheless, the obtained retention curve arpeared not too differ nt to those discussed earier. Greero (1967) has pointed out that similur exomplars could be extr cted from tro furtier studies by the same authors (1962 Expts II and III) and from a study by Peterson and Erewer (1963, ExpIII) which differed from the current experiment only in th number of alternative numerical responses; by correcting all data for guessiné, Greeno was able tc construct a retention curve over a wider ran e of study-test lags w. ich is essentially identicul to Young's data in Figure 1.

It would appear at this stage that the effect of the reterstion interval on pared-associates memory can be easily interprete in terms of a dichotomous STh-LTLL view of memory. The rclatively rapid decline
in perfomance from lags 0 to 3 coula ke icientified with a rapialy decayine STM component, and the more eradual subsecuent decline :ith LTH. A CPA stuciy by Bjork (1966) has proviced rore direct evidence on the nature of short-term forcettine. Sequences of anticipation trials were constructed in such a wai that all intertrial lass from. 1 to 40 intruding trial were equally likely to occur. Although all the pairs in this study were resented at least 12 times, Bjor. arcued that if long-term forgetting were relatively slight, then retention due to STid alone could be measured as a function of lag if attention were restricted to those items on which a subsecuent exron was made, since any item on which an erron is subsequently made is ver: unlikely to be currently held initw. The data are reproduced in Ficure 2.

Although the greater proportion of forgettins appears to occur between lags 0 and 3 , performance shows a subsecuent gradual ciecine to suessing at around laf 20. This would imply a small amount of retertion due to STii far keyond retention lacs which a forgettin -by-displecement hypothesis woula predict. Of course, there is the possibility tat some of the analyseu items were held on LTM and subsecuently forgotten. Turthermore, it must be borne in mind that mach of the data resilts from items that had been prese ted several times; there is some convincine evidence, mainly from Eromn-Peterson experiments, that the repetition of material to be remembered markedly retards the rate of short-term forgetting. Those studies will be discussed in Chapter I ree.

Bjorks results can be more easily understood in the light of the results of a study-tect CPA experiment by Peterson, Saltzman, Hillner and Land (2962, Exp.II). Stimuli were consonant-vowel-consorart trigrams (CVC's) of 99-100, ircher (1960) meaningfulress, and responses were the digits 1 to 15 . Both study and test trials were of 2 seconds duration. Critical pairs received one presentation, and viere tested at a lag of $i=0,2$ or 4 intruding trials, and were then subsecuently tested again at a lag of $j=2$ or 4 trials after the first test. A typical sequence may be represented aiacranatically as follows:-

FIGURE 2.

Retention of paired associates as a function of lag, prior to the trial of the last exror (Bjork, 1966)

[^0]

```
P.....T.....T.T
```

The resulis of this study are tubulated below, rhere C_{k} means "correct on T_{k} " and $"_{k}$ means ".irong on $T_{k} "$.

$$
F\left(C_{2}\right) \quad P\left(C_{2} / C_{1}\right) \quad P\left(C_{2} / m_{1}\right)
$$

| | $P\left(c_{1}\right)$ | $j=2$ | 4 | $j=$ | 4 | $j=2$ | 4 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $i=0$ | .99 | .48 | .30 | .49 | .30 | x | x |
| 2 | .37 | .34 | . .7 | .65 | .46 | .14 | .29 |
| 4 | .30 | .24 | .25 | .71 | .52 | .06 | .10 |

It is clear from this data that there is a certain amount of
 on T_{1} were correct on T_{2}. In all but one case (when $i=4$ and $j=2$) the observed proportion $P\left(C_{2} / W_{1}\right)$ was sienificantly superior to guessing, on a 2 - taileà 2 test. It appears in eeneral that especislly at short lag, certain items are cirficult to recall, and that furthermore, this difficulty dissipates over a suksecuent retention interval, at a faster rate t an that at wish forgettinc occurs.

These results suejest that althouch some items are accessible, or stored in aerory, they are not almays available for recall (sie 1.24). This phenomenon could be ex lained in terms of the encoding secificity hypothesis ("horapson and Oulving, 1970; see 1.25) whereby the code used for retrieval must be the same as that used in sto.age. .ore specifically it is postulated t at certain episodic attributes incluad in the oricinal coding are not always available at the time of testing, possibly because the test episode itself posesses different attrioutes to the encodine episode. Consequently, the subject may initiate his response searcit on the basis of functional aspects of the stimulus which may not correspond to tiose functional aspects used in prociucince the relational stimulus-response encoding at the time of presentativ. On a subsequent test, however, episodic fectures maj be available which correspond closely to those employed during original encodine, lading to correct
recall, and thus the reminiscence effect described by Peterson et al above.

In Bjor.'s (1966) study, of course, many of those features that would aid recall at test misht well occur durine the present tions of other pairs, leading to inter-pair interference and for $r_{\dot{\prime}}$ ettinc. Severtheless, and episodic encodinc hypothesis could well account for the slo:" decline to chance of performance on items on which a subsequent error was made. In other words, it is claimed that a proportion of such items were encoded in a fashion that relisd substantially upon episodic information, althouch it is clear that tie Greater proportion of thern may well have progressed no further than a shorterm "passive" acoustic rehearsal loop (see 1.26). The latter items would account for the rapid decline in performance from lass 1 to 3 , and the former for tie relativoly slow subsequent decline to chance at around lag 20. Clearly, Ejork's data are more satisfactorily explained in terms of functional encoding theory than by a simple LTiu - Smid dichotomy. 1.33 Prior Activity

The so-called primacy effect in free-recail illustrates very nicely the eflect of prior activity; iteras in intermedia e list positions are less well recsiled than items at the becinaine of the list. In other words, prior activity tends to iahibit performance on later items. This phenomenon is termed proactive interference (P.I), although it must be borne in mind that this terwinology does not imply acceptance of traditional intererence theory; it is just a label for describine a widely observed phenomenon. Cf course, the free-recall paradigm is not ideally suited for stad, ine the effects of prior activity, since the retention lag is not under the experimenter's control.

The paired-ascociate probe paradism has the advantae e that the experimenter can control woth the anount of prior activity and furthermore the retention interval. A number of stuades by urdock (1963a Exps. I and II; 1963c. Exp.I) employed a Pa probe procedure :Ith pairs consistine of coan ion English words. Lists of varying lengths were

FICURE 3

The efiect of prior activity on the
retention of paired associates
(Murciock, 1963a)

FIG.3A - EXP.I.

FIG.38-EXP.II.
prosented at a $2-s e c o n d$ rate, with each sגbject beinc tested many tima ir each of a number cf conditions defired by the number of pairs presented prior to and after the critical item. In this way the effects of varying amounts of prior activity upon retention at a given lag were examined. Although results in all three studies were very similar, there are several ways of presenting them; Figure 3 shows the data for Vurdocks(1063a) Exps I and II as a function of retertion lag and the number of rior pair respectively. It is clear from the figure that prior activity appears to hive a sharply deleterious effect up to and around two prior pairs, and thereafter, the effect of prior activity increases only very siighty.

One problem with stidies of this kind lies ir the fact that retention lag and pricr activity are consounded with list lensth. On closer examination, the PA. proce procedure is very similar to the serial probe paradiem of Wauch and Norman (1965); it can, indeed be tioukht of as a more simple version, since the suoject knows in advence which items to learn (the responses), and which one he merely needs to recognize (the stimuli). Ir turn, the serial probe procedure is a simpler version of the serial recall paradigm, and one would expect nearly perfect serial recall of lists of around 1 to 5 words (Willer, 1956). This probably results from the subject's ability to rehearse ail the items in a very short (on subspan) list. Thus, one would expect a fairly sharp drcp in performance as the paired-associate list leneth increases beyond two or three items, or about four to six irdividual words.

Retention data fr m Luraock's (1963c) Z̈xp. I are presented in Figure 4 as a function of list leneth. It can be seen that, in general, for a given retention lag, ferformance declires with list lengith, or in other words vith. the number of prior pairs. This is especially true if items tested at a retention $\operatorname{lag}_{\mathrm{E}}$ of zero are discounted on the grounds that performance on such items will be enhanced by short-term retention effects. There is indeed a very sharp drop in performance on iteas tested at las 1 from a two - to a thre - item list, uut it is also clear from the fikure that at a eiven retention lag, the larest

FIGURE 4

Retention of paired associates as a
function of list length.
(Murdock 1963c, Exp.I)

discrepancy ir performance occurs between items with no prior pairs, and items with 1 prior pair.

These observations appear to suggest that the deleterious effect of Pl is primarily due not so much to some kind of trace competition or irterference from early items that depresses performarce on later ones, as to an enhancement of performance on early iters. It can be areued that if the subject were to adopt a primarily pas ive rote rehearsal strategy of the kird that would be optimal in, say, a serial memory span task, than on the najority of Murdock's lists (which are super-apan) the earlier list items would by cycled through the re earsal loop nore often than later ones, due to the limited capacity of the loop (see 1.26). Indeed, the extra processing time available for early items due to the rehearsal loop not bein full might well be used in "active" functional rehearsal, leading to deeper encoding, thereby leadine to a marked primacy effect. However, there are problems with suck an interpretation. Aa examination of Figures 3 and 4 will confirm that performance on supposedly sub-span lists of two pairs (i.e. four words) was not perfect, although the probe Pi task shoild if anythin be easier than a memory sean task in which all four words must be recilled in their correct serial order, and on which subjects could be expected to perform perfectly (willer 1956). Furt ermore, the curves presented in the fiçures show a very small primacy effect compared with, say, typical free-recall curves.

These results can be explained if it is borne in mine that wurdock's subjects were each tested on a large number of lists of varyine length the majority of which were beyond their icmediate memory span. It is postulated that sibjects would quickly five up an initial passive acoustic rehearsal strategy after encountering a super-span list, ana instead alopt a strategy of, say, activity rehearsing each item as it occurred in order to produce a deeper encoding. Such a strategy would tend to improve overall performance on long lists, but might well
yield less than perfect performance on short lists due to the greater difficulty of producing t ese deeper encodinés, and woul certainly reduce the primacy ef ect. Alternatively it could be argaed that the subject's initial strategy would predominantly involve encoding at the episodic level; primacy in this case would result from the enhanced distinctiveness and resistance tc interference of the episodic cues aveilable for tice first few items on the list. The strategy-change hypothesis would then claim that because of the rapid build-up of episodic interference in superspan lists, the subject would tend to opt for a semantically-based encodin strateg, which would likewise improve overall performance aue to the added resistance of such encodings to interi'erence, and result in a reduction of the primacy effect, and generally irperfect performance on very short lists due tc encoding difficulties.

The strategy-change hypothesis is supported by a number of studies by liurdock involving 6 -pair PA lists throughout. when suojects were tested repeatedly on such lists (1963a, 政ps. III and IV; 1963b Exps. I, II and III; 1963c, Exps II and III) serial position curved displayed only a very small primacy effect, and were comparable to that displayed in Figure 4 for the 5-pair list. However, when naive suojects were tested on only one 6pair list, the resultant serial position curve displayed a far more marked primacy effect (Wurdock, 1963a, ixp. IV). An enormous primacy effect wi:ss found by Tulvine and Arbuckle (1963) using a 10~pair PA probe list with digit-nonsense syllable pairs (which would be difficult to encode semantically, and might therefore make subjects even more prone to employ a rote rehearsal strategy); askain, subjects were tested on only one list.

Furthermore in a similar word-pair PA probe study in which PI between lists was examined (Kurdock 1964), it was found that when subjects were tested on six 6-pair lists, there was a marked primacy effect on the first two lists so tested, but on subsequent lists this was found to disappear. Indeed, on the fifth and sixth lists, no items
at all were correctly responded to in the first list position, and performance was found to improve monotomically with list position (i.e. as the number of subsecuent pairs declined). No evidence of a decline in overall performance was found across lists; if anythinén, overall performance was found to improve with lirts, altioush this improvement was maintained only up to list 4, and thereafter overall performance fell back to a level comparaole with that on list 1.

There was little evidence to sugerest t at this subsequent declire ir performance was in any way due to lone-terr interference or confusion with items from previous lists. The proportion of extra-list intrusion errors made on t e last two lists was no higher than that on earlier lists, and tiere was no significant difference in the probabilities of an extralist intrusion given an error between the first four lists and the last two $(z=.396)$.

These results strongly siggest that trere is little if any interaction of lone-term memory traces between lists (incidently, another nail in the coffin of traditional interference theory), and so it can be deduced that the decline in performance on the last two lists was probably due to fatigue, or to a loss of motivation as the experiment proceeded. Furthermore, the relatively low level of extra-list intrusion errors (as compared with intrusions from items within the same list) was found by liurdoch in all his studies involving the repeated testing of subjects on many lists. The fall-off ir primacy coupled with an improvement in performance found across the first four lists strongly sugeests a practice effect caused by a stategy change of the sort sugqested - a move away from a shallow encoding strategy that would favour items ir. short lists or in early positions in longer ones, to a more balanced,deeper encoding strategy that would improve overall performance on superspan lists.

To return to the PI effects within lists, a re-examination of Figures 3 and 4 at this stage would suecest that with practiced subjects the effect of intra-list FI reaches an asymptote after about two prior
pairs, and this deleterious effect occurs only when performance is measured at non-zero retention lags : in other words, it is a lone-term ratier than a short-term memory effect. Tiere is some evidence that the deleterious effect is only apparent, in that it may result from a strategy that favours early list items beine em loyed by suojects on their first two or three lists. However, it is unfortunate that Lurdock's lists are in eneral so short as to limit the retention data for lare nambers of prior pairs to critical items tested at relatively short lag. The fact that intralist intrusion errors were found to occur with a consistently higher frequency than extralist intrusions woula sufeest that some kind of lon-terre trace competition within lists was taire place, although it could equally well be argued that the subject could somehow distinguish response items from the current list from t ose of previous lists, ard that intra-list intrusion errors were therefore a result of accurate guesswork. at this stage, there is no way of determining how much of the irtralist PI effect is due to rehearsal on early lists, and hor' much is due to some kird 0_{2}^{p} intralist long-term memory trace competition, confusion or interference.

A modified version of the pi probe paradigm was employed by Peterson and Peterson (1962) in an attempt to compare directly the deleterious effects of prior and subsequently presented pairs. Lirts con isted of two pairs, designated pair is and pair E respectively, each of which comprised a 3-letter stimulus word, and a 4-1 etter response word. The following (visual) presentation sc.eme was employed : stimulus A was presented alore, followed by response A alone, then stimulus B alone and finally response B. Stimlli were presented in red, upper case type, whilst responses consisted of black, lower case letters, and all presentation trials were of 1 second's duration. Immediately after the of set of response B, a numver appeared on the screen; subjects were recuired to count back pards from this number until the onset of the probe stimulus, which occurred after

4,8 or 16 seconds of backward countine is cormperison condition in which only one pair was presented in a list completed the design. The observed proportions of correct responses were as follows: Retention interval (seconds)

	4	$\underline{8}$	$\underline{16}$
Sinfle item list	.94	.89	.84
Two item list, test 4.	.67	.63	.60
Tho item list, test B.	.57	.46	.43

These data clearly illustrate the deleterious effect oi a prior or sabsequently presented pair. Recall in both two-item list conditions was inferior to that of a single item at a 1 retention intervals. Furthermore, the second pair (E) was recalled mar edly less well than the first pair (h_{4}) at all retention intervals, suGEesting stron ly that prior activity is more deleterious than subsequent activity.

These results contrast sharply with those of Surdock involvine two-iter lists (e.g. Figure 4), although Murdocs also employed word pairs presented at a 2-second rate. However, Juruock's probe occurred immediately after the presentation of the second pair, and it is probaiole that performance on the second pair would thus be augmented dy Smiin erfiects to a Ereater degree than that on the first pair. In the present study, bac.rard counting durine the retention interval would efiectively "wipe out" this STHil component.

A more meanin ful comparison can be made by examinire the recall of the first few itenis, on, say, a 6-item list in furdock's experiments treatine the latter part of the list as a retention interval whose effect :rould be to "wipe out" STA effects on the recall of the criticul iten. Thus, in irurdock's $(1963, a)$ Exp.I, the proportion of correct responses to iteris with: no prior pairs and subsequent pairs was • 350 , whilst that on iteas with 2 prior pairs and 3 subsequent yuirs was only .219. Thus with a retention interval of 3 subsequently presented pairs, an additional 2 pairs presented prior to the critical item proved more deleterious than an additional 2 pairs presented subseauently.

Nany similar examples may be isolated from ifurnoc. 's data, to which can be added the results of serial position experiments to be discussed in the next section, which sugeest that lonetern paired-associate memory is adversely affected to a greater extent by prior activity than by subsequent activity.

It should be pointed out, however, that t e a parently larger difference in the two effects found by Peterson and Peterson sugeest that the above comparison with furducr.'s data does not provide a complete explanation of their results. Subjects in the Peterson and Peterson study reere never presented with lists loneer than two pairs (i.e. four worâs), and it coild be argued that since all lists were subspan, it is probable that some kind of rehearsal strategy would be enployed throughout. Thus, rehearsal of the first pair would irterfere with attention to the second, to the detriment of the long-term encoding of the second pair.

Even if this explanation in terms of a rehearsal strategy is not accepted, a more convincing argument can be constructed from a more detailed examination 0: Feterson and Peterson's experiment, and in particular, of the unusual presentation procedure employed. Clearly, the subject's attention will oe focussed on pair h, the first pair in t e list, during tre presentation of stimulus h, and that of res onse word h. However, when stimulus word B appears, the subject has not yet seen response word B - it is surely likely that the s.bject would prefer to continue attending to pair á (by rehearsing it, or otherwise "woriníć" to encode it) ratiaer than switchin attention to the stimulus half of pair B, which alone woulan't be of much use to him. Thus, the relatively large difference found between the deleterious effects of prior and subsequent activity in favour of the latier in this study can be explained in terms of the subject's devotine more attention to the first pair of the list than to the second pair, as a result of the presentation procedure employed.

A different a proach to the examintition \therefore. A. paired-associste
memory ws ioliowed by Bjock (1970 Exp. I) i prove procedure was employed, in which pairs consistine of nonsense-syllable stimuli in the range of 43-60 Archer (1960), and word responses drawn from Thoradike and Lorge (1944) with a G rating in the ranee 18-A were presented visually at a 3 -second rate. One half of the puirs a peared as a ereen backeround, and the remainder on a yeilow backerou:d. The lists employed consisted of $0,1,2$ or 3 pairs shown on a first colour (colour h) followed by $1,2,3,4$ or 5 shown on the second colour (colour B). Test s ides conzisted of a probe stimalus shown by itself on a white background.

The 48 subjects wera instricted that any time a list containsd a colour chance (from green to yellow or vice-versa), they could foret the pairs shown in the first colour, and inaeed, the probe stimulus came from the colour E purt of the list. Each subject was tested on 60 lists (thus every serial position in the colour "part of the lint ras tested once for every value of the numiver of colour A pairs). One list in four contained no colour A items, so that since the list prosentation urder was randomized, the suojects conld never now if a list would contain a colour change (or forcet instruction, and wo ild thus have to try to learn each pair as it was presented.

The results of this study were startling. At ever level of retroactive interference (in terms of the namber o? subsequently presented colour 3 pairs), solour 3 items presented prior to the critical item resulted in a maried decrease in performance, whereus previously presented colour a items had no effect whatsoever. An anal., sis of intrusion errors (ina propriate res onses) sio ed that overall, there were roukhly 17 times as many colour I response intrasions as colour is responce intrasions. Iurthermone it was found that the numiber of colour as response intrasions remined roughly sonstant, on iniependint of the numi er of colour A pairs in the list, whereas colour 3 response intrusions increased with the num er of colour ". pairs in tho list.

Bjork's (1970) ExpII followed the same procedure as his Rxp. I.
excepi that no "Fore et" instractiona were Given (in other oràs, colour chanes had no sifnilicance whatsoeverl, aid all items were e ually likely to e tosted. It was found that in this $\mathrm{C}=\mathrm{se}$, the deletarious effect or vrevionly presented colour a airs did not differ from that of a similar number of proviously-resented colour 3 pairs. To difference was found in the recall of items from a two-colour list from t at of similarly-nositioned items in a unecolour list of the same length - thus colour in jitself was not aidine performance. Taking the results of these two experiments togethor, Bjork concluded the effect of a foret instruction was to eifectively truncate the iist, or in other words to "wipe out" tie PI effect of the colour is portion of the list. Thus "yot in tems of perfumance level and in terms of the nature of errors, a list of n coloun \mathfrak{A} items followed by m colour \bar{B} items in Reperiment I is fuctionally a list of mitems".

Bjork conducted a farther experinent along similar lines (1970 Exp III) in an attempt to clarify a number of theoreticel is ues concarning intentional forgetting. A procedure simil.r to that of Exp I and II was employed, excpet thet evary list conisted of tao pairs on a yellow back ground, I first instraction, two jairs on a green bacieroud, a second instruction, and a test trial consistine o. a probe stimulus iter (i.e. a CVC) from the list on a white bacl cround. The first instmuction told sjbjects either to foreet or remember the two yellow pairs. If the first instruction was to remember, the second instruction told axject's sither to fore et the yello: pairs, forget the ereen pairs, or remember the ereen pairs. If the first instraction was to fo $\tilde{E}^{\text {et }}$ the yellow pairs, t e second insumction told surjects either to forget the green pairs or rememer the gree pairs.

For every combination of instractions, recall of items in each serial position of the to-he-remembered pant of the list was tested

FIGURI 5
Correct response proportions as a
function of list type (Bjork, 1970, ExpIII)

to forget yello: and then to forget green, the test slide said "no t.st". This condition was included to prevent subjects from pr dictine trat a "forget yellow" instraction would ve followed $0, y$ a "rememer green" instruction. The results of this stidy are presented in Figure 5.

Performance improves in every case frum a "ioret" instruction, relative to performance on the $\mathrm{RY}: \mathrm{RG}$ ist in which all pairs on the list are to be remembered. It is also very clear from the figare that the positioning of a forget nstruction is important, in that performance on the freen pairs is much better in the Firg condition than in the RY:FY condition. A similar pattern emerced from an analysis of intrusion errors; there was only one yellow response intrusion oui of a total of 31 grrors in the FII:RG condition, whereas 54 errors out of 110 were jellow response intrucions in the MY : Fl condition. Bjork has areued that the data sugegest a two-proc ss theory which asserts that subjects are able to take adv ntage of a forget instruction in two ways. Firstiy, they orsanise the items to de rememicerea in a groupine that functionally separates them from the items they are to foret, and secondly, they devote all rehearsal, mnemunic and int r grative activities following the foret instruction to the items t:ey are to remember.

Bjork angued that joth processes ure nccessary to explain the results of Exp III, since the groupin notion alone would imply that performance in the $\mathrm{RI}:$ FY condition should be equal to that in the FY:RC condition. On the other hand, in order to predict the results of Exps I and II, the reheersal process alone wo 11 have to be coupled with the assumption that the "forgotter" items were lost. That this is not the case has been shown by Reitmai, ..alin, Ejori and Higman (1973) who essentially replicated Bjork's Exp I except for one innvation : subjects were tested very infrequantly on one o: the to-be-forgotten pairs in a list. When such a test occurred, the probe stimul. was uarked witi an asterish. Subjects were, however, instructed to make every effort to intentionally forget hen instructed to do so.

Out of the oricinal 82 suojects, $j 0$ were excluded when a postexperimental interview revealed that they had not followed the foreet instraction to the letter. The data of the remainine 32 were essentially identical to those of उjori's Exp. I. for to-be-rememicered items, and it was found that the "forgotten" items were recalied well above chance level, but not as well as "rememuer" items. It was also found that although "forget" items interfered with each other, as dił "remember" items, no inverference effects were evident between the two groups of items.

If Bjori's arguments are accopted, then it follows that in a normal PA probe procedure, subjects must do some work on the early items in the list during the presentation of later ones. This is a hichly controversial prediction, and before such an explanation is accepted, an alternative theory must se soucht.

A re-cxamination of Bjork's (1970) Exp III (Fiejre 5) sugeests that subjects have sone ability to discriminate between the "remamber" and "foreet" items in the list even when the first instruction is to "remember yellow". The improvement in parformance yie d d in the $\mathrm{RY}: \mathrm{FG}$ and RY:FY conditions over and above the $\overline{R Y}: R G$ condition cun be explained if it is reremoered that no cue as to the colour of the probe stimulus was given darin testing. In the first two conditions listed above, subjects were able to determine, from the instruction sequence, where to direct their search; in the RY: FG conuition, to the earlier or yellow portion oi the list, and in the RI:FI condition, to thelatter portion of the list. No such information as available in the RY:RG condition. If anything at all is surprisine in these results, then it is sur $l y$ tle fact that the additional benefit derived Irom the aduitonal recall cue was so small.

A more detailed examination of the errors wide in this ex eriment howe er, suctests that the veneficial effects of cuine are not as straichtforward in their effect as has been suge ested. Taole 1 sho s the number of observations in each condition out of a total of $2: 8$ which
fall into five response categories : correct, yollow intrusion, green intrusion, catra list intmusion, and omission. The figures in parentheses following the error frequencies are the conditional probabilities observed, eiven that an error is made, of the pariicular type of error.

TASLE 1.
Error inalysis for Bjork's (1970) Exp. III

Condition	$\frac{\text { Yellow }}{\text { Intrusion }}$	$\frac{\text { Green }}{\text { Inirusion }}$	$\frac{\text { Other }}{\text { Intrision }}$	Omisaion	Correct
Uncued, test G (RY:RG-test G)	59(.48)	$37(.30)$	18(.15)	9(.07)	165
Cued, test G (RY:TY-test G)	54(.49)	25(.23)	18(.16)	$13(.12)$ $24(.18)$	178 156
Uncued, test Y (RY:RG-test Y)	32(.24)	44(.34)	$32(.24)$ $24(.24)$	$24(.24)$	188
Cued, test Y (RY:FG-test Y)	36(.36)	$16(.16)$	24(.24)	24(.24)	257
Forget I test G (FY: RG-test G)	1(.03)	20(.65)	10(.32)		

Consideration will first be given to the four conditions in whioh the first instruction is to remember yellow. Clearly, the sibject's behaviour durine the presentation of the four pairs will not differ betreen these conditions, and the second instruction can only affect the subject's retrieval, or search strategy. Then yellow pairs are tested, the data follow very much the pattem that one would expect. The number of correct responses increases, and the number of oreen intrusions decreases, when the second instruction sives t.e subject information about where to direct his search; in other words, when a comparison is made of the uncued, test yellow condition (RY:RG-test 7) with the cued test yellow cundition ($\mathrm{FY}: \mathrm{FC}-\mathrm{test} Y$). These results suacest that (i) yellow stimuli are not well recognised as suc. when presented as a probe (so that the information implicit in the FG second instruction is of use) and (ii) the subject has some informstion about response colour, wich enables him to retrieve the correct response more often, and to avoid clearly inappropriate green intrusions when he nows that a yellow is under test. However, the picture is not so clear when the two test gree:
conditions are examined. Indeed, there is no significant difference in the number of correct responses in the two conditions (RY:RG - test G and RY:FY - test G)o: in the patterns of responses across the five categories $\left(Z=1.05, X_{4}^{2}=3.76\right.$, both not siennificant $)$. T ere are two possible explanations for the lack of a facilitator, cuing effect. Either colour information is of no use to the subject when green itens are tested, or colour information is already available when ercen stiruli are presented for test (i.e. they are recugnised as green stimuil) so that cuiag provides no additional information. Since it has already been areued that response coloun information is available to the subject, because yellow cuine enacles him to avoid green response intrusions, the latjer of these two explanations is accepted as the most li:sely. However, if the subject rocozises freen stimuli as such, and ias information regardine the colour of a retrievea response, why are there almost exactiy twice as many yellow intrusions (113) as ereen intrusions(62) when the data for erreen recall folowing an initial RY instruction are pooled?

Given tiat the correct response has not beenretrieved, there are two ina propriate yellow responses to one inappropriate green one. Thus, if no colour iaformation were available about ritrieved response words, one vould expect twice as many yellow responses as green ones. However, it has already been argued that there is some response coloxr information available to the subject. There is, however, an alternative explanation of the data. Suppose material is encoded in such a way that there is very little colour information available on yellow stimuli and responses and a great deal of information available on green stimuli and responses.

If the colour information on green responses is available oniy after the response has been recalled (and does not materially aid recull of the response) then the following predictions can be made : (1) yellow cuin will have a beneficial effect, becase culour information is not always available on yellow stimuli, and such information will lead the subject
to avoid making a ereen response, whic upon retrieval will be recognised as inappropriate. (ii) Green cuing will not be very helpful, because Ereen stimuli are nearly always recognised as such anyway. (iii) When responding to a green stimulus, the subject is roughly twice as Likely to retrieve an inappropriate yellow response as an inappropriate sreen one, but will not surpress such a yellow response since he lacks positive information that it is inappropriate.

Attention is now turned to the fifth condition in Bjork's (1970) Exp. III, that is, the condition in which the first instruction is to forget yellow. It is reasonable to suppose that the subject will employ a different strategy durine the presentation of the green pairs to that employed in the previous four conditions, and that furthermore, this strategy will be based on the expectation that the second instruction will be to remember ereen, and that a green stimulus will constitute the probe. If the second instruction is, in fact, to forget green, the slide "no test" appears instead of a probe stimulus, and the subject will have lost notiving by adopting such an approach.

The enormous improvement in the level of recall of G_{2} (the second green pair) when tested in this condition as opposed to the two conditions where the first instruction is to remember yallow can be easily explained. All 3 h probe experiements typically yield an enormous recency effect; for example, Wurdock's data in Figure 4 show that the l st item of a list is recalled with a probability in the region of 9 whilst the figure for the fourth item of a four-item list with no forget instruction in Ejork's (1970) Exp.I is $\mathbf{~} 94$. Why, then, is G_{2} recalled so badly in the RY\&G and RY:FY conditions? The answer clearly lies in the fact that in these two conditions the subject has to atiend and process the second instruction, which comes after C_{2} and before the probe onset. This processing will prevent rehearsal of G_{2}, and will effectively "wipe out" the STM component responsible for the recency effect. When, however, the first instruction is to forget yelloi, the subject can effectively ignore the second
instruction, and continue rehearsing G_{2}, since the second instruction conveys no useful information. (It is interesting to speculate as to whether the subjects could so easily have ignored an auditory, as opposed to a visual, signal). If a prove stimulus occurs, the subject can respond, whilst if a "no test" appears on the screen, he will not have lost anything by renearsing. Another glance at Fingure 4 will show that the first item of Kurdock's 2-item lists was also very well recalled, as was the first item of a 2 -item list with no forget instruction in Bjork's Exp I (recall probability of 0.81). It is probable, therefore that even when suoject's are not principally employing a "memory span" rehearsal strategy, they continue to use such a strategy on the first one or two items of any list, and discontinue it when the list becomes super-span. It is li.iely that such a strategy is employed following a first FY instruction, on the two green pairs. Thus the overall improvement in performance on green items followins an initial FI instruction can be explained in terms of the subject employing a rehearsal strategy which is effective because there is no further processing required of the subject (which would dismpt the strategy) between presentation of the two pairs and the onset of the probe stimulus. Clearly, then, the results of Bjort's Exp. III do not unequivocably support his discriminationconcentration of effort theory.

However, it will be rememoered that Bjorks theory is strongly supported by the results of his (1970) Exp.l, and by the results of Reitman, Halin, Bjurk and Hisman (1973). In the latter study lists of nonsense-syllable-word pairs were presented at a threesecond rate. Pairs fere presented on a green or a yellow backround, each list comprising $0,1,2,3$ or 4 colour A pairs (green or yellow) followed by $1,2,3,4$ or 5 pairs on the other colour background (colour B). Subjects were instructed to foreet all the items prior to a colour change. After a short practice sescion, subjects were informed that occasionally, tests would occur of colour A pairs (i.e. "forget" items)
and that such tests would be sicnalled by an asterisk next to the probe stimulus, but that they should continue to forget colour A items as before. Out of 82 subjects tested, 50 were rejected on the basis of a post-experimental interview as not adequately following the instructions to forget.

In so far as tests on colour E pairs, the 32 critical subjects produced data almost ilentical to that of Bjork's (1970) Exp. 1 . In particular, recall of to-be-remembered items (colour B) was unaffected by the number of previously-presented "forget" (ColourA) items, whilst colour A intrusions were independent of the numeer of colour a pairs, and were outnumbered by colour intrusions in the ratio of $16: 1$. When pre-signal pairs (i.e. "forget" or colour A items) were tested, and it must be borne in mind that such tests were cued with a. asterisk, it was found t at the probability of recall declined with the number of forget pairs (in other words, forget pairs were mutually interfering and that recall of forget pairs whilst being significantly above chance level, was decidedly inferior to that of comparable pairs (i.e. with the same number of preceding and following items) from lists in which no forget signal was given. Since the subject would not know durine presentation whether he would be subsequently instructed to foret first colour items, this result rules out the possicility that subjects were not devoting much effort to first colour items in the expectation of a "forget" sisnal. It thus appears that "forget" items were, to some extent, actually forgotten. However, it was also found that the level of recall of "forcet" items decreased as the number of subsecuently-presented "remember" itens increased, and furthermore, the ratio of appropriate to inappropriate colour response intrusions to "forget" items was only about 3:1 (in comparison with a similar ratio of $16: 1$ found when "remember" items were tested). Thus, "remember" items were interfering retroactively with "forget"items.

The fact that "forget" items are recilled less well than comparable itens from a single colour list even though they are cued on tost iso
that the sabject knows where to direct his search) lends strone support to Bjork's hypothses, which would predict that "forget" items would receive less processing than comparable remember items. However, the high level of "remember" response intrusions to "forget" stimuli would suggest that "remember" items mere interfering in a more complex way than a simple "displacement from processine" hypothesis would predict. However, these data do admit an alternative explanation. Encoding theory would claim that in a PA tasc, the response is encoded in relation to the functional, or encoded form of the stimulus (e.g. Martin 1972). Thus, in a normal PA prove list learaing study it is probable that in encoding a particular pair, the subject becomes aware tat certain aspects of his encodin scheme are siared by the encodines of earlier pairs, by some sort of recognition process, and that he will therefore be motivated to elaborate his current encoding in order to discriminate it from earlier ones. An elaboration of the stimulus encoding would fulfil this requirement admirably. To the extent trat the subject has some accoss to previous encodings diring the encodin of a current pair, it can ce said that he is devoting attention to earlier pairs durine the prasentation of a cur ent pair. This does not, however, imply that he is actively operating on these earlier pairs, as Bjori's hypothesis suggests, but rather that he is takine them into account whilst encoding the current pair.

Proactive interference would oe a measure of the extent to which the subject was forced to elaborate the encoding of a currently-presented pair in order to discriminate it from earlier, similurly encoded pairs. The additional processing time involved in operatine on the functional stimu us would thus reduce the processing time available for, and thus the efficiency of, the encoding of the response and the relational encodin of the functional stimulus - functional response issociation. Retruactive interference would res.llt from a failure to adequately discriminate the encoding of a current pair from t at of an earlier one. The most recent encoding misht to some extent "overwrite" the earlier one;
a more satisfactory argument would suggest that since tre episodic aspect available at test are more likely to correspond to those used in the encodiag of a more recent item than an earlier one, then searcin at test is far more likely to lead to the retrieval of the more recent encodirg. Ir this way, subsequently presented material would retroactively interfere with performance on earlier items.

When a subject is instructed to forget a list of items just presented, it is clear that the "forget" items will mutuslly interfere in the normal way. It is postulated that encodings of subsequent pair, however, are then mede withou's reference to the previous encodins of "forget" items, bui with reference to previously encoded "remember" items, at least to the extent to wich sufficient episodic information is available to discriminate the two groups. Colour cues as employed in the studies above would certainly provide a distinctive episodic cue. As a result, "forget" items will not proactively interiere with "remember" items and furthermore, "remember" items will interfere retroactively to a greater extent with "forget" items tan with comparable "remember" items.

An attempt can now we made to explain the error analysis of the Reitman et al. (1973) study. It is fairly certion that their subjects were unable to recognise first colour "forget" stimuli adecuateiy vithout being presented with such information at test, since performance on unched (unasterisked) tests of "forget" stimuli was found to be at a nesigible level; such a phenomenon could be well explained in terms of the encoding specificity hypothesis. This result suggests that stimuli were encoded in such a way that cuin as to whether the stimulus were a "rememoer" or a "forget" stimulus would be necessary for recoenition, and woild not be available subsecuent to recognition. The relatively Low rate of inappropriate colour, "for $\overline{5}$ et" responses to "remember" stimuli can be explained in terms of two processes. In the first place, by a similar argument employed to explain the results of Ejork's (1970) Exp.III, it is postulated that response encodings often contained
a colour component. Such a component woild bi more likely to be available uron retrieving a "rememoer" response than a "foret" response, either cecause more emphasis vas placed upor encodine such a component for "remember" responses, on because "rememker" response encodires would retoactively interfere with similar "foret" response encoding. Thus, were the subject to erploy a directed guessine stuategy, a far ereater number of positively-identified "remenber" responses would result than unidentified "forget" responses. Furthermore, the encoding hypothesis would also predict that a mis-recognised "rememuer" stimulus is almost certain to be mis-reccenised as another "rememer" stimulus, since two suwh stimuli are more likely to share episodic aspects thet are present at test than say, a "remember" and a "Iorget" stinulus, resultire in a high level of appropriate-colour response irt usions.

On the other hand, when applyine a directed response guessing strat-gy to a cued "forget" stimulus, the subject would, as in ujorin's Exp III, surpress responses inown to be of inappropriate colour (i.e. "rememoer" responses). However, suc information would be less linely to be nvailable onevery "remember" response in the Reitman et.cl. study than in Bjork's Exp. III, since initial encodine by colour woulc virtually be essential in Bjork's task. Furthermore, such an encodine would be easier to mintain in that task, since only two second-colour responses were present in each list, as compared with anything us to 5 in the Reitman et.al. study. In additicn, were a "foreet" stimulus mis-recoenised, although it is highiy likely that it would be mis-recoernised as another "forget" stimulus, there is still e good chance tuat it would be mis-recognised as a "rememor" stimulus " ose encoaine would be more likely to share a number of other (i.e. non-colour) episcaic attributes with. the test episode. These arcument: would account for a higher level of inappropriate response intrusions to cued "foret" stiruli than to "remember" stimuii.

It should be stressed that the directing guessing strategy was postulated to explain the error enalysis of Bjorn's Bxp. III in those
conditions in which the sukject was tryine to remember items α both colours during the presentation of the second colour items. The encoding hypothesis woald predict such behaviour, sirce the subject would certainly attempt to encode secono-colour items by colour in order to distirg ish them from first-colour items (especially as colour cues were often available at testi. Such a strategy is not necessarily predicted when encodine second-colour items after an instruction to forget firstcolour iters, and it is thought that stimulus mis-recognition provides a more satisfactory explanation of the Feitman et. al. error analysis.

The encodire hypothesis advanced to expleir directed forgetting can be expanded to produce a eeneral theory of peired-associ te foret tting. When the attributes employed in encoding a currently-presented pair are recognised as being similar to those employed in encodin a previouslypresented, to-ie-rememvered pair, than an attempt is made to elaborate the current stimulus encodirg in such a way as to discriminate it from the earlicr stimulus encoding. To the extent that this detracts from the processing time availeble for completine the encodine of the cur ent pair, earlier to-be-remembered pairs will interfere proactively with performance on later ones. Nevertheles, the effect of this PI on performance is thougnt to be slight, and the major effect of a forget cue (either explicitly ritrin a list or implicitly between two successive lists) may well be to afford a little extra processine time to early items in the currently to-be-remembered lict. Encodines of currentlypresented pairs are seen to interfere retroactively with previous similar encodings since they are more likely to share episodic attributes with the test sequence, and are therefore more likely to be retrieved than the earlier encodine. This effect will not be so pronounced when the current stimulus has been differentially encoded to the eariier one (as when the earlier pair is still to-be-remembered), as when the current stimulus is not differentially encoded ir this way (when the esrlier encoding is of a to-be-forgotton it m). One problem with sucb an inverpretation rosults from the findin by Reitman et. al. that uncued
"forget" stimuli were not recuenised as such at test. How, then, could subjects discriminate between which earlicr encodines to take into account when encoding current stimuli, and which to ignore?

Tro possible explanations are advanced. In the first place, it is possible that encoding similarities do not become apparant until encoding has progressed beyond the stimulus encoding phase, and that therefore more information from the earlier encoding is available than stimulus information alone upon which to base such a discrimination. Seconcily, and more convincingly, it could be argued that earlier encodings became availabie oniy if they share episodic aspects with the current presentation episode. "Forget" items woulc clearly not be nearly so likely to share such aspects "iith currently-preserted "remember" items as previously presented "remember" items. Thus. the subject coes not so much choose to ienore the encodings of previously presented "forget" items havire recognised them as such, as he fails to have access to such encodirgs in the first place.

Such a hypothesis would predict that PI woulc not extend beyond some limit determined by the rate at which episodic aspects change irom trial-to-trial, and is supportea as least by Lurdoci's failure to find such effects beyond about two prior items, although Bjork (1970 Exp.1) found within list II effects extending over four pricr items. This prediction would be difficult to test experimentally in any case, since one would need to be certain that episodic information were being attended and encoded in the first place. With the lone lists required to find a PI limit, there is a very real chance that subjects woula opt for a deeper (semantic\%) encoding strategy, and a far greater extension of PI effects would be expected in this case.

It shoula also be pointed out that an episodic accers hypothesis would predict an increased effect of PI with increasing retention interval, since in this case, in additicn to increasing the encoding requirements oî later items, similurly encoded early it ms woulc̀ be equally unliely to share episodic aspects intr the test sequence as more
recently encoded items, and herice equally likely to be retrieved at test. The increase of PI with retention interval is a well established phenomanon (e.g. Koppenaal, 1963), and indeed results of this nature led interference theorists to postulate the "spontaneous recovery" of initial associations(see 1.21). The above theory, ther, Eives a satisfactory account of paired-associate forgetting phenomena.

1.34. Interpolated Recall.

So far, attention has been restricted to Ph probe studies in which the retention interval between the presentation of an item and its subsequent test is filled with presentations of other pairs. The question now arises as to the effect of recalling other items during the retention interval. Two studies by tiurdock ($1963, \mathrm{~b}$, Exps I and II) employed a Pis proee procedure with lists consistine of 6 comm-word pairs presented at a two-second rate, which were followed by 3(Exp I) or 6(ExpII) probes on different list pairs. In Exp II, it was not possible to i-clude every possible testing order, so a counterkalancing procedure was employed to ensure that the items tested prion to the test of any given item were equally likely to come from any list position, so that, on average, intrucing tests shoula be of equal difficulty irrespective of the current critical item. All tests were subjectpaced; in other words, the onset of the next probe stimulus was delayed until the subject had responded to the current probe.

Nurdock's findings were straighiforward. Both studies sugeested that interpolated recall had a detrimental effect, and that this effect was most pronounced for later serial positicns. Thus, the proportions of correct responses for the first list item after 0,1 or 2 interposed recalls were $.266, .315$ and .237 respectively, wheress the corrosponding figures for item 6 were $.864, .409$ and .285 . The results of Exp. II suggested that from 3 to 5 interpolated recalls had the same effect as 2 , so that additional interpolated recalls beyond 2 had little or no effect.

A similar study by Tulving and Arbuckle (1963) employed 10-item lists

With the dicits $0-9$ as stimuli, and nonsen:e-syllabie responses. They found that interpolated reca_l had no efiect on tiee recall of the first four items, and an increasingly detrimental eifect on itcms 5 to 10. Furthermore, the effect of intervolated recall was found to as mptote after about four such tests; in other words performace remained rouely constant whether there were 5 on 10 iriterpolated recals. These data acree very well with "uraoci's resulta.

A study by Tulvine and Ariuckle (196) employed a ki probe procedure with common-:orci-dicrit pairs presented visually at a z-second rate. Items in serial positions 1 to 5 were tested follo ine ti:o succeedine presentations with ro interpolute tests, anj two interpolated tests with no successive presentatioas, allowing a comparison of the detrimentil effects of 4 two-test reuntion interval with tict of t... presentations. It was foun thet a two-presentation retention interval had a more pronounced doleteriois effect on recill. The authors argued that interpolatec testc "ere primanily efiective in preveating reooursal of items not beine tested and in "wipind out" active short-term memory of the most ront itams (incluanc, posaioly, secuential inforiation), whereas inter olsted presentations \%olld, in acaition, af ect the nore deeply encoded components of previouslo-prescnted itens, nesultins in poorer perfor...i.ce.

This hypothesis ir sup orten by urdoc 's (I,63b) syp III, in inch test trialz ere of fixel curution, either 2 or 8 secoud. It was found that one or two interpolated -second tests proved more deleterious to the recill of a cratical ite... tan the same naner oin 2-secon: tests. urdoc. also found (19630, ixp. I) that in 6 -item lists, an ircorrect response to an interpolatad test of itein 5 was iore deletcrious to the recail 0-item C than a correct response to sucil a t st of itam 5. Not only woile a cur ect recull ingly a shorter search time on the intmided tont trial, but ing even permit tie retrieval of response 6 vin \& secuentiul oncoding i.volvime pair 5. T..is type of process
would presumably not interfere with tie sequential encoding of item 6 , so that this process could also underly the resuit.

1.4. The Effects of Practice on Paired-issociate Wemory

In the context of this thesis, the term practice will be used rather lousely to refer to any experimental procedure that potentially allows the subject to allocate additional processine time to the material to be remembered. Such procedures usually take the form of either allowing the subject additional rehearsal time by increasing the duration of presentation trials, or of increasine the overall exposure time of selected puirs by presenting them repeatedy.

1.41 Rehearsal

It is certainly a well estaciished result that fiving subjects are time to study paired-associates improves performance. For example, Keller, Thompson, Tweedy anc Atkirson (1,67) emploved a list-learning paradigm in which stimali were 2-digit numbers, and responses were the letters A, B and C . The list was repeated 15 times, and pairs; ere presented for $\frac{1}{2}, 1,2$ or 4 seconds. Three pairs received each of these presertation durations throughout (making a total of 12 pairs receiving a fixed presentation duration) whilst a further 12 pairs had the duration of their precentation trial random? y assigned with each repetition of the list. It was hoped that this procedure would prevent subjects from adopting special stratécies ir this tast, such as usine some of the presentation time of, say, well-learned 4-second items to rehearse previously-presented short presentation items, and furtsermore this method allowed data from "sll-same" presentation duration items to de averaed with that from "random duration" items, thereby minimising such effects in the cverall results.

The total proportion of erros made over the 1; trials was recorded for each presentation duration, and it was found that this error rate decreased with increasine exposure time, flline from about . 66 for a $\frac{1}{2}$-second rate, to .58 with a l-second rate, and thereafter to about . 53 for 2 - and 4-second rates. It thereiore appeared that there was
some limit beyond which an increase in exposure time would not produce a significant porfor ance improvement. Several processes could account for such a limit. Ir the first place, there is no guarartee that subjects were actively employine all the exposure tire available on each pair to actively process that pair; for example, subjects may have been reluctant to maintain attention on any particul r pair for more than about 2 seconds. It is also possible that the numioer of attributes available for encodine would somehow be limited by the episodic aspect of the presentation triai; beyond a certain point, all the available attributes would be adequately encoded, and extra processinc time would therefore be of litt1e benefit.

Of course, this study only measured reteition from trial-to-trial but ro control was availabie over the retention interval (see 1.31). In a study by Murdock. (1963 c , Exp.II) the presentation rate of a ist of 6 word pairs was varied, taking values of 1 second per pair, 2 secondès per pair, or 3 secouds per pair. a probe techniçue was employed to examine retertion of items at each sericl position. The data from this study are depicted in Figure 6. It is clear t.at improvement in performance with exposure rate is most maried at lone retertion intervals, and although the number of prior pairs is confounied with the number of subsequent pairs in this study, the lack of a primacy effect in this data suggests that PI effects are negligible (again, subjects were tested repeatedy on many lists). Differences in skort-term retention appear crily between the 1 -second and slower rates, and may result from difficulties in attendin every item at such a fast rate; in other words, at very fast rates, a proportion of items don't even get into an active rehearsal loop, possibly beca se the subject is still actively encoding the previous ite: w en the next one is presented. Such an interpretation would account for the differences in performance found cy Feller et. al. between the $\frac{1}{2}, 1$ - second and slower rates, although their failure to find significant aifferences between 2- and 4- second rates conflicts sharply witn the wiurdock stuady.

FIGURE 6
Retention of pairec associates frcm a
6-item list as a function o prescntation
rate (urdock $1,63 \mathrm{c}$, Exp. II)

It should ulso be pointed out that in uurdock's study, presentation rate is cunfounded with the length in time of the retention interval, which woukd operate to the detriment of parformance at slower presentation rates in two ways. Firstly, it ould reduce the likelihood that episodic t-mporal cues encoded at presentation would oe present at test, and frthermore, at slower rates, more attributes per item might be encoded, increasine the chance thet subsequently-presented pairs woulc share encoding aspects with earlier ones, leading to interference. These processes world serve to decrease the differences in lon-term retention performance in ifurdock's study, which makes the results of Yeller et.al. doxbly surprising. However, it should be borne in mind that Keller et. al. measured performance across 15 repetitions of the list, and there is a very real chance that, as mor items become very well encoded after a few repetition, subjects woild utilise the preseatation periods of such items to conirne the active encodine of the previous item, thereby roducira overall differences in Ferformance between those items that at least enter active rehearsal (i.e. those presented at a 2- or 4- secon rate).

The most imporiant point to emere here is t at there is no fuarantee that the experimenter - controlled presentation time necessarily corresponds to the subject - controlied processing time allocated to a particular item. This appears to be especially true in situations w..ere pairs receive many presentitions. In suc situations, it is postulated that subjects may cloose to disregrara the presentations of items taat they know they tinow particularly vell, and utilise suc a presentation iriterval to more adequately encode a previously-presentea pair.

1. 42 Unreirforced test-trials

In a typical study-test p ired-associate learning procedure, tie subject is repeatedly presented with cycles comprising a study list followed by a test list, the orier in which items appear in the list being re-randomized each time (see 1.31). is nuriver of studies by Izawa have made use of a more elaborate version of this paradigm.

Izawa constructed elaborate schedules for her items, invciving reinforcements, or study trials, (R), tests (T), neutral trials (I) and blank trials (B). On a blank trial, nothine woula a pear on the screen for a period equal to that of a study or test trial, whilst on a neutral trial, the subject woxld be required to fill suc a period :ith an activity such as colour namin to prevent rehesrsal of previousiy-presented material.

Iza a also distineuished between mixed and unmixed list desibns. In a mixed list, items receivin $n_{\dot{e}}$ differert schedules would fe tested together in the same lists, as follows: suppose for example, that a number of items receiving an $R T$ schedule are to be mixed with a similar number receiving an RTI schedule. Wach cycle of the experiement involves one trial on each item as follows:-

Cycle

	1	2	3	4	5	6	7	8
RT items	R	T	R	T	R	T	R	T
RTT items	R	T	T	R	T	T	R	T

Thus, the experiment wo lica begin with a list of study trials on ail the items. Followine this, a list of test trials on all the items would be prisented. The t ird list, however, would involve study trials on the RII items mixe together with test trials on the RIr items, whilst the fourth list world comprise test trials on the RT items and study trials on the RTI items, and so on. In an unmixed list design, however, different eroups of subjects would ve tested on either lists made up entirely of RT items, or on lists made up entirely of BTM items, so that on eack cyde, the list presented would consist entirely of stady trials, or entirely of test trialg. Under such a scheme, then, the normal stuay - test procedure vould constitute an unmixed - list RT design. It should also be pointed out that Iza a employed consonant - vowel - corsonant (CVC) nonsense syllables as stimuli in all her experiments.

In her 1966 study, Izawa compared the standard study - test RT
condition yith a do: ble - test RNM c nìition in a mixe list desien, employing 2 - digit number responses. It was found tiat in the Rirr condition, t.ere were no essential differences in the cverall proportion of correct responses made between the tiro successive tests followine a presentation, whic sucuested that test trials had nc effect whutsoever, in t.at they led neither to forgetting, nor to learning. Bowever, an important effect of uneeinforeed test trials was found : performance followin the second or subsequent presentation of an item in the RTM condition was si nificantly superior to that of an 12 item which hid received the same number of presentations. Similar results ave also been found with both number and noun responses in both mixed lists (Izawa, 1967) and unmixed lists (Izawa 1970).

In another nixed list desien (Izawa, 1968) performance was neasured followine the eight presentation of iters that had received eitier a schedule of eicht consecutive study trials (\mathbb{R}), eight study trials on an RT schedule, or eight study trials on an RTHTI schedule. It was found that the for-test condition led to the best performance, followed by the sincle-test condition. In an atteryt to establish whether there was some upper limit beyond which additional unreinforced test trials would have no furtier beneficial effect, Izawa (196\%) compared performance followinc $1,2,3$ and 4 presentations on items tested unüer four different schedules in a mixed list design. The four schedules were as follows:-

1) $R T$
2) $\mathrm{RM}_{1}, \ldots, \mathrm{~T}_{5}$
3) $\mathrm{RT}_{1}, \ldots, \mathrm{~T}_{11}$ and 4) $\mathrm{ET}_{1}, \ldots, T_{15}$ Both namber and noun responses were investicated. It was founi in each case that although the sinele test condition(1) resulted in the poorest performance, the best performance resulted from the five-test condition (2) whilst performance in the eleven and fifteen-test conditioñ (3) and (4) vas if anytaing sliehtly inferior to that in condition (2). This result suggested at least an upper limit of between 5 and 11 unreinforced test trials beyond wrich no further improvement in performarce would take place.

In her 1967 study, Izai"a also compered RTB and $\AA I$ schecules, and Rivi and RirT schedules, for both noun and namber responses, in mixed lists also includin the R an Rrechles discussed awove. Little difference was found between perforance in lise lists containing blanks and those containine neutral trials. Fowever, this does not necessarily imply that subjects were not usiné blank trials to releman previoxsly presented material; in a mixed list design, almost any item (under any schedule) could receive the benefit of tais extra processing time, although there was no significunt inference in overall levels of performance in lists contaiain \ddot{C}_{i} blank ane tose containing neutral trials. Eilanks anci neutrai trials had tas same effect on t.oose items mose schedules inclued ther, in that performance in condition amb was superior to that in RBT, and is similar compurison held for conaitions RON anu RIV.

Izava aruea that these results suebested at least two functions of unreinforced test trials. In tae jirst place, they clearly ucted in some way to "potentiate" learaine on the nexi study trial, and secoudly, they had the effect of pre entiag forgettine, wiich accounted for the superiority of $\overline{X T}$ - over $\operatorname{li}-T$ conditions (ware - repres nts a B or an if tria2). It was found, furthermore, that tie superiority of the RTB to $R E T$ coneitions was also maintained in an unnixed list desien (Izawa 1970) (when subjects would almost certainly was use of the lone blank period to rehearse and practice items), for number responses, and for noun responces up to about four reinforcoments.

Izawa (1971) arcuud wat the role of an unreinfo cad test trial operated princi:ally in increasin the marber of eucoded stimalu attributes that :iould be relationally linked to the response. To account for the phenomen that the more M's per replicitiou, the better the learnine, she postiluted t as: durine the active search mude on test trials, most of the stimalus attribates that woulu not norm 12y be avilaole (i.o. were tiat trial a resent.tion) ure samplad, and may consequentiy still be availabie for associution ..ith the ces onse
durin the nex present tion triz?. Cn ;e ot eer hand, tho:e stimulus attributes that mere avillable the start of the test trial but inere not of use in retrieving the a propriste respanse wold ve "discurded" by the subject in some way, and would be less likely to be sampled and used in an atterpt to retrieve the rasponse on a subseruent test trial. This hypothesis ..ould accont for tie laci. of Eoreetine across unreinforced test trisln. A mathemstic:l mociel based on tris theorf proved quite succes ful (Izwwa, 1971) but as will be shown in Ohapter Four, tacre is considerable evidence that stimulus encodine durine on-going paireu-associste learning is reductive in nature, and not elaborative as Izawa suçects.

1.43 Repeated Pr ent t-ons

A number of CPA staides subeest that rapested presentation of a pair leads to superior performance across ä variety of rotz.tion intervals. For example, Peterso., Saltzman, Hillner and La d (1952 ixp.I) employed a stady-test CPA technique in wich trials involvine comon word stimuli and mmerical responses in the range 1 - 9 were visually presented at a 2 -second rate. Some pairs received a single presentation and were tested at a retention intervil of $0.1,3$ or 9 intruaje tri:s on other pairs, whilst in anotier condition, item: received tro presentations, one after anothor, and were teated at a retention interval of 3 intrading trials. The retention data for the single-presentation items has been deacri ed elsewhere (see 7.32), but it was founi thet retention after 3 intr dine trials for sincle items rielded a proportion correct of 0.40, whilst the corresponding figure for the double items was 0.55 .

In a further stady, Peterson et.al. (Ixp. III) employed a simil r design, in which stimili ere 99-100\% urcher (1960) nonsense syllables, and rosponces were numisers in the rante of $1-10$. Four conditions were employed in a mixed-list st ady-iest CPA desisn : (I) douvle presentition. Items in this condition receiyed wiro s.ccessive presentation trials, one immediately after the other. (2) presentation-tost. Itens
in this condition were pres ted once, and i.en irm. diately wested.
(3) Rehearsal. Iterns in tiis condition were presenteu, arid on the followine trisl, a pair of ditto marka (") uppeared on the screen. (4) Sicte presentation. Items in this condition received just one presentation. All items mere then tesited after a retention intervai of thre intradiae trials on other pairs had follo:ed the schedules described above.

The proportions of correct responses obtained in the four conditions were as ioLoms: (1).42, (2).44, (3).40, (4).35. As \%ould be expected, the double presentation, resentation tost ani rehearsal conditions all produced superior performance to the sinele-presentation condition.

Lrelsfod, Shifirin and stainson (1,58) employed a modified version of the corm anticipation rocedure, in whick stimuli iiere twodicit numbers, and responses were letters of the alphabet. Their visurily-preserited anticipation trials lasted fur a tot 1 of 11 seco ds each, snd somprised a 3-seconi test phase, fol aned by a 2-second blunk perioa, a 3-seconu sta, phase, and finally a 3-second blank period beffo e the onset of the next trial. Cther aspects of their zrocedure are described more fu y elsewhere (see ncxt section: 1.44). The proportio:s of correct responses ounerred Sor various rutention intervals since the nost recent presentation (measured in terms of tion mam..er of intradiuck antici ption mrials on other items) are depicted in Iivue T. It sholld be puinted out that in ceneral, the successive presentations of a particular pair wo ili not generolly have occurred on successive anticipution trials, so that these data ane averised over the various intervals separatin the successive presentation of eacrimpticulur item. Nevertheless, th curves obtained are rorariablif similur to that of ktinson, Srelsford and Shifirin (1967, Lxp. II) depicted in Figure 1. The data furthermore saggest prese itations are ol junefit at all non-zero retention intervals.
is number 0 list-learrin studes, hwever, have not produced

FIGJRE 7

Retention of paireù associatec as a function of the numuer of presentations (Brelsford, Shiffrin and Atkinson, 1908)

FIGJRE 7
Retention of paireù associates as a function of the number of presentationo (Brelsford, Shiffrin and atkinson, 1908)

such convincin results. Peterson and Brewer (1963 , Bxp. II) employed a sondy test paradigm in which cormon-word stimuli were paired with numarical responses in the rance 1-12. Thee conditions :ere compared in a mixed list design. Pairs in the sincile presentation condition were presented once only in each study cycle. In the double presentation condition, pairs received two presentations, the second follo:ing immediately after the first, on each study cycle. Pairs in the interference cordition received a presentstion with an incorrect response, insediately followed by the presentation of the correct pairing. Performance (in terms of the propontion of correct responses) was measured on eaci of 15 study-test cycles.

It was found that the doxble presentation condition produced only slightly superior performance to the single presentation condition at all stages of learane, and indeed, performance followine the fifteenth study trisl was alnost equal in the two conditions. Furthermore, althoug the interference condition was enormously disadvantaged in comparison :rith the othen two over the first six cycles, performance in this condition thereafter rapialy overhauled that in the other conditions, and was $0 . l y$ slightly inferior after the final cycle.

Calfee (1968) sugeested that the surprisinely slight differences in performance found in such stuaies might well be an artifact of the experimental desicn, in that, if items in the doxile - presentation condition are learned fuster, then on lajer bloc s, subjecte michit well devote the presentation time of such $i^{\text {tems }}$ to processine items that are not so well loarned. Such a hypothesis would account for the small differences found betwee the conditions in this study aiter seven or more study cycles. Furthermore, Calfee (1968, Ixp. IIT) convincinely denonstrated in inverse relationship between the rate at which items were learned and the numoer of unlearned items in the lict. Greeno (1964) employed an anticipation paradigm with ehort word stimuli and nimerical responses in the rance $1-5$. He armanced his
items into blocis of 30 anticipation trials. Salf his items receive only one presentation per block, whilst the remainder received two anticipation trials, separated by zero or one intervering trisl of another iter. Thus, single- and double- presentation conditions were compared in a mixed list. Greeno found sardy any difievence between performance on single- and double- items in terms of inver-iiock retention (i.e. when performance was measured on the first anticipation trial on an item in each tlocki), althouch performance on the test piase of the second anticipation trial oi double iteas in a particular block was nearly perfect. Greeno areded that witnin-bloc. retention of double iters resulted from shori-term memory components, whist inter-bloc: retention implied Iong-term performance (although the inter-block retention intervals were not directly controllea, they were sufficiently lone to "wipe out" short-teris retention effects). Although Calfee's objections would apply to this stud. Greeno's data sowed no signs of performance on single items o:erhauling that on double items as the numer of blocas increased; on the contrary, differences in performance were non-existent from the first block of trials onwards.

Similar studies were carried out by Greeno and inite and by Greeno and Rumelhart (reported in Greeno, 1970a) but with an imporiant difference to the stidy reported above: in both these studies, an unmixed list design was empl.yed. In other ords, separate ir ups oi subjects were tested either on blocirs of trisis containin, only sinelepresentation itens, or on blocks contaiṅace only doxble-presentation items. Greono (1970a) aggrecuted the results of thase zuc sioluies, and compered them mi_{i} th his 1964 experinent. It was found that interblock performance on double items jn unnixed lists was markedly supericr to that on unmixed single items. Furthermore, this difference became more pronounced as the number of blocks (in other words, the number of successive single or double presentations) increased.

Greano (1970a) examined two possible explanations of these resulis, The first of these was a time-sharinc̈ hypothesis (Greeno, 1967) which stated that on the second of two closely-spaced presentations, the subject may be unwilling to use the second presentation to process the current item, on the grounds that he had just seen it and processed it anyway, and may therefore use the time available to process other items curnently hela in short-term memory. In a mixed list desien, the items which would benefit from this extra processine would be equally likely to be single- or double- presentation items, so that overall, both types would receive an a era e equal amounts of processine (about le trials' worth per block). In unmixed lists, however, double items would receive twice as much processing as sincle items per block, since the available processing time on the second presentation of a double item mould be used to process another i:em from t'e list, which ia this case woild be another double iten.

There are tio objections to suc. a hypothesis. Greeno pointed out that if processing time were shared in this way, then the most likely items to benefit from the extra processing wolld je those that were presented just prior to the second presentation of a double item. Potts (1969) found no evidence of improved performance on such items, although as Lelton (1970) has pointed out, it is possible that the items t at would jenefit from extra processinc world be those that shered the same resyonse as the current item (on the bypothesis that subjects were froupine items by res onse). Potts employed numerical responses, anu in seneral, many pairs in his study shared each response number, so this objection is certainly pertinent. Greeno also pointed out tat a closely spaced do ble presentation was of little value in Brown-Peterson stuuides in which only one item has to be learned at any one tirne; in this situation, the time-sharing hypothesis would certainly not apply, since there would be no other item to benefit from extra processing. Such an objection appears somewhat superficial, however, since different organisational strategies mig t well apply in the two paradigms.

There are two, more fundamental, objections to the time-sharine hypothesis in this context. In the first place, such a hypoth sis would predict an improvement in performance on dociole items in unmixed lists over that on comparable iteus in mixed lists, as cal average, the former items would receive 2 trial's processing per block, and the latter l_{2}^{2}. Silthough Greeno made no attempt to statistically compure performance on doxile iters in his 1964 study with that on double items in the unmixed list stady, an examination of the dita sageests that if anything, performance on double items was poorer in the unmixed list condition.

Admittedly, performance on sincle item. in the anmixed liet studies was poorer than that on sincle items in the mixed Iist condition, despite the fact that, if anything, inter-block foretting should have oeen more pronounced in the mixed list study, when there were 30 trialis per block as compared with only 15 in the unmixed list studies. However, a similar argument applies to perforance on dodile items; there were 30 trials per block in the mixed condition (comprising 10 trials on sincle items and 20 trials on 10 double items, givins a total of 20 different pairs) as compared with 30 trials comprisine 15 double items in the unmixed condition. AEain, if anythine, t ere should have been a more pronounced inter-block forettine effect on double items in the mixed list condition.

Thus, if a between-study comparison of single item performance is accepted as valid evidence supporting the time-shi ring hypothesis, then by the same token, the results of t.ee mixed - unmixed list comparison of douvle item performance provide an equally valid basis for rejecting the hypothesis. Greeno (1970a) has pointed out that such inter-study comparisons may not have been religble due to a number of small procedural difierences between the various experiments. Therefore, there is little evide ce to support the time-sharine hypothesis whichever way these inter-study comparisons are regarded.

The second objection to the time-sharing hypothesis has already been
hinted at. If subjects applied a time-sharing strajegy durine the prosent tion of it ms that they regard as adequately processed, then unless a very stron form of Greend's hypothesis applies (i.e. that subjects always time-shared on ever: second presentation of a double iten) then there should have been an initial advantage in faver of douole items in Greend's (1964) study which would have disappeared as the number of blocks increased. In other voràs, Calfee's argument that subjects would also time-share on items that had been presented many times (and would therefore be regarded as adequately processed) should also be expected to apply. However, it has already been reported thet Greeno found no evidence of suth an effect.

Greeno (1970a) suecested an alternative hypothesis t account for his data. If the between-study comparisons are regarded as veing unrei iable, than the weight of evidence suecests that the time-charing hypothesis is incorrect. It was postuleted tat sujjects may occusionally need to "take a rest" from processing, perhaps in order to maintain the level of efficiency of processin over a substained period of time. The subject would clearly take sucn a rest when he considered that the item currently being presented had probably received adequate processing in the past. Greeno sugested that, in particular, items which received closely-spaced double presentations would in ceneral still be held in short-term memory at the onset of the second presentation, and that, consequently, the subject wouid recognise them as items that had just recently been processed and rould therefore not require processing again on the cur ent trial. This would clearly account for Greeno's (1964) mixed list data.

This procescine-attenuation theory can also be extended to account for the results of Peterson and Brewer and Calfee mentioned earlier. hs the number of trial blocks increases, so the double items become better learned. Thus, a double itear presentod in a relatively late block may well be regarded as very well learned by the subject, and in need of no further processing. Hence in a relatively late ulock, double ite..s would
receive lardly any adiitioncl processin, wilst single and interference items wculd still be receiving a ereat deal of processing, and woulch therefore tend to "overhaul" double items as the numuer of blocks increased. Calfee's results could be explsined by the arcument triat, as the number of unlearned items in the list decreased, so the number of leamed items would increase, end the subject would be increasin ly able to avcid restine from processinc on trials involving unlearned

items.

Of course, it f llows from Creeno's version of the processincatteruation hypothes is that multiple presentations would have a far larger beneficial effect on performance were the: spaced out to the extent that on each presentation, sort-term retention from the previous presentation would be "wiped out". There is a good deal of evidence that the specine of repetitions does have a beneficial effect, as will be seen in the next section.

1.44 The Spacinc of pepetitions

Ir an atteupt to find a spacinë effect such as Greeno rredicted, Calfee (1968, ixp.I) employed a mixed - list anticipation procedure in which CVC - number pairs received one or two anticipation trials per block. The two presentations of double items were separated by 0,1,2 or 3 intrudire trials on other items. This meant that irter-block. and within-olock spacings of do dble items would be confounded (sirce a shorter within-lock spacire would imply a longer inter-block spacint), but Calfee arcued that since 27 trials appeared in each block, the between-bloc: differences were small relative to the witnin-bloci differences in spacing.

Calfee measured both inter-block retention, and the mean number of presentations recuired for an item to reack a critericn of three consecative correct responses. Inter-block reteation was found to be almost equal in the 1,2 and 3 spacing conditions, but performance in these conditions was superior to performace in the zero suacine conition, which was in turn slightly superior to performance in the sincle presentation
condition. Eoth the time-sharing and processinc-attenuation hypothes es could account for these results, and the fact that all non-zero spacincs of double items produced comparable results supports Greeno's hypothesis that items still in short-term memory receive little or no processing when presented.

However, tie trials-to-criterion data produced a surfrise. Although, in the case of doucle items, this data followed an almost identical pattern to the inter-block retention data, it was found that single items reached criterion in fewer trials than douvle items. However, when these scores were converted into blochs-to-criterion, (by halving the scores of double items w ich received two trials per olock), it was clear that the single items required more blocks to reach criterion. Of course, Calfee hypothesised that single items received more procecsing on later blocks becadse by then, all the douide items had oeen learned, and such a hypothesis is clearly consistent with his results. However, these results coula be explained both by a timesharing and by a processine-attenuation theory, and on balarace, the list-learning data does not appear to discriminate between the two theories.

In a further study, Calfee (1968) Exp.II, att, pted to obtain a clearer picture of the effects of the spacing of repetitions by Ulancine out the rates of learning of the various types of item. He divided his material into two groups of six blocks each; spaced items occurred once in each block, whilst massed items occurred either twice in each second block or three tiwes in each third block. Thus, over a croup of six blocks, each item of any type a peared six times. Retention was tested after the sixth blocl and asain after the twelfth. No consistent differences in performance were found between any of the item types. Spaced items and both kinds of massed item produced very similar performances on each retention test. Funthermore, no consistent difrerences were found in the rates of learning of the various types of item, as measured by a trials-to-criterion score.

Although Calfee failed to find a consistent effect of interpresertation interval, a number of studies exist which establish such an effect beyond all doubts. In a mixed List study, Izawa (1968) found that retention after eight repetitions was far better on an RNOW schedule than on a simple R schedule. Although Calfee's objections regariing differential learning rates apply to this study, the dirferences in performance found in this study were relatively laree. Furthermore, since 12-item lists were employed in the mixed design, it should be ointed out t at in ooth conditions, interpeesentation intervals would have been relatively large (averafing 11 trials on other items in the R condition, and around 55 in the Rivins condition).

Apart from the differential learnin rate effects present in such list learnine studies, there is the added problea t at such stidies do not permit the experimenter to control retention intervals, and the fact that performunce at any stage in such a study is averaced across a distribution of retention intervals may well acco int for the inconsistencies observed in their results. Fortunately, most of the really convincing evide.ce cousernine the effects of the spacing of repetitions involves studies employine variations of the CPA procedure. In General, suc. procedures do permit precise control over reteation interval and furthermore, tiae subject's learning load (in terns of the number of items currently to be remembered) usua?ly remains farly constant across each esperimental session.

Bjork (1960) erployed a CPA anticipation procedure in which there were 21 items with CVC stimuli, and the digits 3,5 and 7 as responses. Presentation sequences were constructed in such a way that all interpresentation intervals from 1 to 40 were equally likely to occur, and a different sequence was employed for each iter. All subjects received the same sejuences but with difierent itemc. The shortest secuence involved 12 repetitions, and the longest 29 .

As has been described eleewhere, Bjork found that prior to the trial of the list error, performance imnediately after a presentation was
almost perfect, but it then rapidly fell away towards the cuessine level of $1 / 3$ (see 1.32 and Figure 2). However, in addition Bjork found more rapid learnin and better performance at lon retention intervals with those sequences which involved predominantly well-spaced, as opposed to closely-spaced presentations. Although Bjork's stiday confounded the number of learned and unlearned items with the number of presentations, this confounding was not so complete as in, say, a rigid list-learnine situation, and in any case, he discovered improvement with interpresentation spacing relatively early in his lists. In fact, Ejork's procedure is fairly untypical of CPA experiments in eeneral, when the numer of items to be remercered and their overall state of learning remains roughly constant throughout the experimental session.

A number of CPA studies have employed a procedure whereby the retention interval is held constant, and iteuis receive trio prosentations with various interpresentation intervals. For example, Feterson and Erewer (1063 Exp III) employed a study - test CPA procedure which made use of an interleavire processsimilar to that descrioed earlier (see 1.31). Their stimuli :.ere common, monosyllabic worùs of 3 - on 4letters, and responses vere numers in the rance 1 - 9 . Each iter: Was allocated to one of four schedules, which may be represented as follows:-

$$
P_{1}-i-K-30-T
$$

where P_{1} represents the first presentation trial involvires that iter, T represents a final test trial involvirg that item, and X represents one of the four secuences described below. The first presentation $\left(P_{1}\right)$ and the sequence X viere separated by i trials, either presentations or tests, involvire other items, whilst the sequence X and the final test T were separated by a sinilar interval of 30 trials.
T e four conditions were defined as follows:-
I : information X represents a test triel follo:ed by an
impediate presentation of the critical
item i.e. $X=T P$

N : neutral X represents two consecutive test trials on the critical item i.e. $\bar{X}=\pi$

D: douile X represents two consecutive presentations of the cr tical item i.e. $X=P P$
S : single $\quad X$ represents two intruding trials on other items
Thus, S iten fomed a comparison condition, acainst which performance in the other three concitions colld be measured. All trials mere presented visually at a $2-s e c o n d$ rate, and the interval i between P_{1} and X took: values of 1 or 4 trials on other items. The results of this study are presented in tables 2 and 3.

TABLE 2
Proportions correct at second presentation (Peterson and 3rever, 1963 Exp.III)

MAELE 3
Proportions correct at final test (Peterson and Eremer, 1963, xp III)

Interval i.

Condition	Second occurrence (X)	1 trial	4 trials
Information (I)	correct	. 34	. 70
Infornation (1)	Wrone	. 16	. 22
Neu ral (iT)	Both correct	. 31	. 70
Neu.ral (.I)	Boti. wrone	. 02	. 06
Double (D)	Tvo presentations	. 31	. 3
Single (S)	None	. 19	. 21

In the neutral conition $(X=T T)$ it is clear from table 2 that there was a slicht reminiscence effect from one test to the next, similar to that observed by Peterson, Saltzman, Hillner anci Land (1962, Exp. II - See 1.32). Performance at final test in this condition
followine two corect responses at $X(=T T)$ was similar to that in the information condition followinf; a correct response at $X(=T P)$, so that the second test appered in this case to fulfil tho same role as a re-present tion.

Overall proportions correct at final test ir: the infonmation condition (irrespective of whet.er a correct or a wrore response was eiven just prior to the second presentation) were . 31 anci .34 when the interval i was 1 and 4 trials respectively. These figures compare with those obtained for retention at final test in the do:ble condition (See Taclo 3), so that, on the whole, it appears tat $t e$ two massed re-presentations in the double condition were of no more value tha: the sincle re-presentation in the information condition. Both sets of data, however, show a slight i provement in Airal test perfcrmance with an increase in the interval between the first anc subse uent exposures, or in other woris, a spaced practice improvement (SPI).

A glance at Table 2 should convince the reader that rapid short-term forgettin occurred, following tae initicl presentation, between retention intervais oi 1 and 4 trials. Thus, in the information condition, a consicerable proportion of the iteras that were correctly recalleu just prior to the second presertation at ag 1 woxld have been held in short-term memory. On the other hand, the majority of th. items correct at lag 4 just prior to the second presentation woxld probably have been recalled from memory proper (or lon -term memory). Thus, the startine difierences in performance with interpresentation lag at final test foliowing an initial correct response in tile infomation conditicns (see Table 3) are certainly consistent with the hypothesis that items held in short-term memory when re-presented receive no further processin and so subsequently decay. However, once again, the data does not tell us wether the subject employs the adiational processing time made available by ierorin. such items on re-presentation, or not.

It is also of interest to note that performace at firal test in the infomation condition followin, a wrong response just prior to re-presentation sowed a far smaller SPI than that followinc an initi:l correct res onse. Furthermore, performance following an iritial er or was roughly comerable to that on singly -presented items tested at a slightly lonet retention lag. It is postulated t at the small SPI effect observed in this case ray have resulted from items that were a ailable but rot accessible at first tes: (and such items would gimilerly account for the small reririscence effect described above in the neutral condition) . Fowever, the negligible size of the reminiscence effect sugeests that the majority of the items that were wrong at first test were simply not available, and the data imply that upon re-presentetion, such items produced equivalent performance to brand-new sinele items. In other woris, the majority of the pairs that were recalled wronely just prior to re-presentation were essentially ecuivalent to brand-nev items receivine their first presentation.

Unfortunately, the small rance of interpresentation intervals investigated in this study doe not ive a very clear picture of the extent of the SPI effest in paired-associate menory. However, Peterson, Wampler, Kirkpatrick and Saltzman (10,63, Exp.1) conciucted a similar CPA study in which comron word-number pairs received two presentations separated by $0,1,2,4,8$ or 16 irtrudirg triale on other items, and were tested at a retention interval follcwing the second presentation of 8 such trials. The results of this study are depicted in Ficure 8, alone with data from a similar study by Young (1966) described below.

Young (10,66) employed an interleaved study-test CPs procedure, in which stimu?i were consonant trigrams (CCO's) and responses were numbers in the range $\cap-n$. All trials (both study and test) were present d visually at a 4 -second rate. Two types of sckedule were employed. In the first of these (PPT) an item received two present tions (i.e. study triala) separated b_{j} an interpresentation interval of from 0 to 17 iutruding trials (both study and test) on other items; retention was
investigated on a test trial whick occurred after a retention interval of 10 intruciing trials on otker items following the second presentetion. The second type of schecule (PTPT) differed from that above only in that an additional unreirforced test trial was irtruded between the two successive presentations of an item, at various positions in the interpresentation interval. The proportions of items cor ectly recalled at final test in th. PPT condition as a furction of irterpresentation interval are depicted in Figure 8, alone with the results of the comparable items examined oy Peterson, wampler, ipkpatrick an. Saltzman. The figure sugests that in coth stadies, retention performance following a fixed retention interval after the second presentation showed a rapid improvement i.ith an increase in interpresentation spacine from zero to about eight trials. With ircreased spacine, however, t ere is a sugestion that performance declines again (ulthough neither investigator actually found a statistically sienificart cecline). however, these results have been shown to reliably estaclish an SPI effect.

Young's retention data following a sirele presentation have been discussed elsewhere (see 1.32 and $2 i$ gure l) although it is interestine to note that in this case, short-term retention effects apear to have dissiated after aoout 2 trials, whereas the SPI effect appears to continue well beyond such an interval. In other words, it would seem that although Young's data are consistent with t e hypothesis that items ir siort-term memory do not receive additional processing when re-presented, performance may co tinue to improve beyond the rane of inter-presentation intervals that an explanution solely in terms or such a short-term memory $h_{i j}$ pothesis would predict.

The Peterson and Brewer (1963 路. III) data examined above woula suefest that an examination of performance followine a correct resuonse to a first test irrediately prion to the second prese. tation woul provile a far more sensitive way of looking at the SPI effect, and such data is available from a number of IMPT items (which had their first test just prior to the second presentation) ia ioung' study. Unfortunately

FIGURE 8.
Retention of paired associates as a
function of the spacing of two study trials.

Youne tested insufficient replic tions of such items to enerate data stable enough to give a reliaile picture of the extent of the SPI effect.

Indeed Young's examiration of performance in all his YTPT conditions was handicapped by an inability to find reliable trends in performance at finel test conditional on correct or wrong responding on the first test, for t is reason. However, tar:ing mareinal performance at the finai test, it vas found that in eeneral, PTPT items resulted ir superior performarice to c mparible PPT items, and that furthermore, performance at final test on PPP items was eenerally better if the first test occurred in the midde of tha interpresentation interval rather than at one end or another. The result that an intruded urreinforced test trial improved performance following a subsecuent presentation is consistent with the resilts of the various studies by Izava discussed in section 1.42.

A number of studies have varied both interpresentation and retention intervals. For example, Peterson, Hillner and Saltaman (1962) employed an interleaved study-test CPh procedure in which stimu'i were common, monosyllabic 3- and 4- letier words, and responses were numbers in the rance l-10. Items receiv-d two presentation trials followed by a test trial. The interpresentation interval consisted of zero or four intruding trials on other items, and the retention interval beween the second presentation and the test comprised 1,2,4 or 8 such trials. All trials were presented visually at a 2 -second rate. Th results of this study are presented in Fíure 9. These data clearly demonstrate an interaction between interpresentation and retention invervals: short interpesent tion intervals are better when the retention irterval is relatively short, ani long interpresentation intervals produce superior performance at long retention intervals. A similar result ias been established for word-word pairs presented at a 2 -second rate, although when such pairs were resented it a 4 -second rute, both short and lone interpresentation intervals led to roughly ecual performance at short retention intervals (Peterson, Wampler, Kirspatrick and

FIGURE 9

Paired-ascociate retention as a function of retention interval and of the spacing between two successive presentations. (Peterson, Hillner and Saltzman 1962)

Saltzman 1963, Exp III). Rumelhart (1967) found an analatous interaction between spacing and retention intervals in a CPA task in which each individual pair pas given six anticipation trials separated by various sequences of inter-trial intervals.

Brelsford, Shiffrin and htkinson (1968) employed a modified CPA anticipation procedure in which stimuli were eight randomly-selected tro-digit numbers, and responses were letters of the alphabet. Their lists were constructed in the followine way. Each of the eicht stimuif was randomly paired with a response, and each pair so forned was then allocated a 1-,2-,3-, or 4- reinforcement schedule with probabilities of $0.3,0.2,0.4$ and 0.1 respectively. When a pair had received its finsl presentation, it was sjbseruently tested in the normal wa, but the study phase of the anticipation trial in which the firal test occurred was used to present a new pair, consistine of the stimulus just tested paired with a new response (i.e. one that it had not been paired with earlier in the session). The new pair so formed was ascigned a reinforcement schecule in accordance with the probability distribution describec above. Thus, each of the eight stimuli occirred many times during the session, paired with a number of different responses.

The stimulue that would be involved on each anticipation trial was determined at random, so that the intervel (in terms of irtrudinc anticipation trials involving other stimuli) between successive trials on the same stimulus wis ε eometric, with a parameter of $\frac{7}{b}$. Each (visually-presented) anticipation trial lacted for 11 seconds, and comprised a 3 -second test phuse, followed by a 2-second blank period, a 3-second study phase and fineally a furtier blant: period of 3 seconds. Retertion data from this study averaced across the various interpresentation intervals has already been described elsemere (see 1.43 and Fiéure 7).

Reteation lata on pairs which had received their first two presentations are presented ir. Figure 10 , as a function of retention interval and of interpresentation interval. Various intervals heve

FIGURE 10
Effect of retention interval and the spacing between trio presentations on paired-associate memory (Brelsford, Atkinson and Shifirin , 1,68)

been averuged together in prodicirg this data, due to the smaler numbers or ooserv tions at long lag. It is aite clear, however, that these data do no exhicit the lind of interpresentation - retention interval interaction described by Peterson, Hillner and Saltzman (1962) discussed above. This may be due eitier to the fact that data from vary short non-zero retention intervals are averaged in with data from longer ones, or to some difference in the subjects' short-term rehearsal strategy. It should be pointed out that that rete of presentation vas remariably slow in the resent study, and that furthermore, the results obtained are similar in form to those obtained oy Peterson, ampler, Kirkpatrick and Saltzman (1963, ixp. III) when using a slower rate than that employed by Peterson, ifillner and Saltzman. Thua, presentation rate appears to affect the interaction between interpresentation and retention interval. Otherwise, the data for non-zero retention lags resemble very closely those of otiner investications discussed above. In other words, for a given non zero retention interval, performence improves with interpresentation spacing. deain, the data sucest that there is some limit to this improvement; bejond an interpresentation spacin: of 4 to 5 anticipation trials, performance appears to declinc slightlu.

A comparison of the curves in this ficure with the short-tem retention curve (folloring a sirfle presentation) obtained in the same study (See Ficure 7) again imlies that items still held in short-term memory when they are re-presented do not receive much benefit from the second presentation. However, the data do no appear to discriminate between the hypothesis that the time made available durin f_{t} the second presentstion of such items it used to process other items, and the hypothesis that this free time is used to "take a rest" from processin. Furthermore, the sincle-preseatation retention data suigest that very fev items will still be hold ia short-term menory when re-presented at any interpresentation intervel freater than zero. Conseciuently, the continued improvement in performance observed with
increased inverpreae tation sracine appears to be fintained well beyond the intermresentation gacine thet an explantion solely in term of tiae siort-term retention hyothesis wonld predict.

A study by Lundauar (1969) sdouests that the improvernent in performance achieveu ith -....erpr seatation spac.ac nay well be paintained over extrenely lo:1 retention intervals. Lendauar emplad 4 lints, each consistin of 12 pairs : on list conprised nonsense s, 1laviei.tocer pairs, a secone employed body - paru stimali and colour-name responses, a third̀ adjective stimuli and consonant letter resporises, whilst the final list coaprised comon first numes paired with the Conths Janury to Decemer. "ithin each list, some pairs iere uresented only once, and others received tr:o presentations separated by intervils of $0,1,3$ or 5 trials on other virs.

The lints were pessented to subjects in booklet form, one pres ntstion to a page. Subjects read the booklet at a paced rite, in tiat the paces were turned at a 2 -secona rate in time with a metronome. a test was administed by haviné suïjects 6 through a booklet of stimuli at a paced 5-second rate, circlin the desired responce in a list of all twelve possible responses. Che tost of retention was auministereá after an irterferine free-recal tack, at an average retention interval of 3 minutes, and a funtier test vas administered after 3 cays. Landauer fount no essential differences in the patterns of performance on the various item lists; the proportions of correct responsos otserved, ageregated over the four lists are presented in Taole 4.

Tista 4.
Preportions of paired associates correctly receled (Lindaver, 1 9).

Retention Interval Sinele

Items

3 rinutes
3 days
.51
.37
Double itams
$=$ inter resentation interval
at bott retention intervals. Furtierriore, at woth retention intervals, performance improved with interpresentation spacing up to an asympiote at about 3 intrucinc trials ; no additio.ial improvement was observed at a spacine interval of 5 trials.

Finally, mention must be made of a CPA study by Ejork and Abramowitz (1968) in winich some paired-associate items received seçuences of four anticipation trials. The first and thind trials ere separased by an interval of 21 anticipation trials, 20 of which were intruding trials on other items, and one of wic: was the second anticipation trial 0.: the current item. Retention was measured on the fourth trisl of each item secuence; this followed the third trial after a retention interval of 2,8 or 20 trials on cther items. The investicators wore principally inverested in the effects on retention on the fourth trial of the positionine of the second presentation of an item between its first and t ir. presentation.

It was found that at all retention lage, performance was optim 1 at finel test when the second presentation fell half way between the first and third preseniations. This result is clearly analagous to Toung's (1966) finding with an unreinforced test trial similarly intrudine between two presentations. In adidition, it was found that at all retention intervals, performance at final test remained roughly the same if the intervals beiween the first and second, and between the second and third presentations ..ere interchanced. In other worus, when performance rias measured at a fixed retention interval following three presentations, the first and third of which were always 21 trials apart, a second presentation intruaded between the first anc trird had the same effect whether it was nearer the first presentation, or equally rear to the third presentation. The spacines between the first and second, and between the second and third presentations were thus found to be comutative in their effects on sukseuent performunce. Jnfortunately, it is not known whetier such on effect holds for all irtervals between the first and third pres ntation.

1.5. Surmary

Follo ing the development of a tentative t eory of paired-associ.te for otting (in 1.33) based on a careful consideration of proactive and retroactive interference effects, a number of pken mena concerned with the effects of practice on paireci-associute memory have been described. The most irportant effects descrioed may be sumniarized as follows:

1) Aliowine subjects aduitional time in which they can potentially process items to ie remembered enerally results in improveủ perioncance. This sugeests tat subjects proces paired-associate iters in real time. 2) Unreinforced reiention tests (i.e. where no immate feediack is given to the subect as to the correctness or othemise of his yoch i,
 prese..tations more valuable.
2) Repatca presentations of a pair a pear to have little vaiue if they occur one after the other in immediate succession.
3) However, if such repeated preseatations are spaced out with intrudin trials on otier items beti:zen trem, subsequent performance
is improved.
4) If erformace is measurea afier very short retention intervals, then massed presentations apear to be no worse then spaced presentation. Inced, if rapid prasentation rates are employed, massed presantations may produce superior performace at short retention intervals.
5) There appears to be some limit to the improvement of performance with spaciné; as the interval between two presentations increases, performanc aspears to improve to a point, and thereafter no fartiier improvoment, and perhaps a decline, is observed.
6) It appears that the majority of items which are curiently held in short term memory whea re-presented receive little be:sefit from that additional presentation. It is not clear, bowever, wheter such iterns receive processinf on taat presentation or not. If it is, assumed that such items are not processed, it is possible that the subject may use tineir
presentation trial either to proces other items, or to take a rest from processing altogether.
7) Similar ouservations may ve made regandine items which have received manj presentations, and may be rebarded by the subject as ade uately learmed on their next presentation.
8) There is some evidence that performance continues to inprove with interpresentations spacings far in axcess of those wich would be sufficient to "wipe out" short-term retention of items at their second presentidion.
9) When three presentstions are civen, it appears that performance is optima? when they are equally spaced. Unedual spocines appear to be commatative in theim effects on subsequent performance.

The next step is cicarly to extend and reaine the or posed theory to take account of these ratice effects, "ricn are of obvious and fandamental importance to oxr inderstanding oi paired-a soci te memorizing ana learning, and ten to devise experimental tests of the theory. Humever, t'ese prectice effects, and in particulur the spaced practice effect, are not inique to puired-associ te tasıs. Psychologists have known about the beneficial effects of spaced practice in a varieter of humen lemrnin situations Ior nesrly a centung. Furthermore, spaced practice improvenents have been found more recently in a variety of memory tasks.

Thus, all tiese reswlts must be carefully examined and tacen into account Defore uttemptine to derive an ade ate theory of pairedassociate nemory. In Shapter Iro, a brief history oi the spaced practice effect will be presented, whilst Ghapter Three examines contempory results concernine repetition and practice in a variety of different memory sitiations. The task of postulating, a theory, or a range of theories, which take account of the resilts outlined above will be returned ta in Chapter Four.

CHPE THO

- 6 BRIEF HISTORT

As was pointed out at the end of the previoas chapter, psyohologists have lone realised that performance in a variety o. learning tashs is often improved if in interval is allowed between successive repetitions and practice trials. Of course, many psychologists today would claim that a human learning approach is far too brodd to establish really meanincful r sults; however, there is certainly a very real daner of approaching the SPI effect in paired-associate memory from too specific a standpoint. Whis brief review will attempt to estailish the major findiags in the area of the spacing of practice of traditional human learnine theoriats.

2.1 Jost's Law

Perhaps the earliest discovery that performance coula be improved by spacine practice trials was ande by Ebbingha 1 (1885), who found that he could memorize lists of nonsense syilables and stanzas of Eyron's "Don Juan" in fever readines if thrse days were a? 10wed to elapse between successive prastice sassions rather than one day.

Jost (1897) found that sukjects could master paired-associate lists in fewer repetitions if $t: e$ lists had been part-learnea on the previous day, as o poseu to lists that hisd veen part-learnea a few mi uutes prior to the learnine session, despite the fact that oniy for the items were correcti; recalled at the start of the session in the former condition as opposed to 40% in the latter. Jost summarized ohese an other similar indines in the fllowine hypothesis, often hown as Tost's Liw: "If two associations are now of ecual strength but of different ages, thon further study izill have freater value for the older one". Youtz (1941) has produced a notaule review of many stadies which lend experimental support to Jost's Law.
when viewei in the licht of the increased amount of forbetting:
that would take place with the increase of inter-trial spacing, results of this nature were very surprisine inioed. In the licht of their fundamental importance to the understandine of learning, it was inevitable t at psychologists would make an intensive effort to gain a better unierstandine of the role of interpresentation spacine in the learnine process. Two basic experimintal procedurea were commonly employed to this enu. In the first of these, single practice sessions dare separated ly various leneths of time, whilst the second procedure consisted of holaing the tire interval between successive ractice seasions constant and systematically varyine the nurioer of practice trials per session.
2.2. The nature of the Itarnin task

Generally speal ine, it pas found that a wide variety, and indeed the ereat majority of iearnin tasis yielded results which favoured tine distribution of practice. Thus, for example, Calvin (1939) found that, for the acquisition of conditioned responses, 3 trials per minute were superior to 9 or 18 per miruve. A similar results was obtained by Humphreys (1940) ; two blocks of 48 trials with an interspersed rast period yielded better results than a sintile biock of 96 trials without a rest period. As has been indicutel above, stuaies of verbal learning senerally favoured the distrioution of practice. To the stuaies of Eobinçhas and Jost can be added those of bu stead (1y43) ani of Hovland (1938, 1933 and 1949).

The majority of studies involving erceptual-motor learning tasks also favoured the distribution of practice, with the following reservation : when equal numers of learaing trials were employed in each practice session, results often iadicaied au optimal lengt of rest pause between successive aessions, beyonü which performance either stabilised or actually deciined. For the pursuit roto task, usity l minute trials, Dore and Hilegard (1937) found that $I 1$ minutes betiveen tri:ls was better than 3 minutes, which was in turn betier than 1 minute. Lorge (1930), using a mirror drawine task, found that both
l-minute and 1-day intertrial rest periods ware eetter tion completely nassed trials, but Sound no differen:e in the two conditions. ientzle (1946) obtained similar resuits with an inverted alphabet task; performance improved as the intertrial rest period increased up to about I minute, beyond which duration no further improvement in performance was obtained.

In a pursuit rotor task witi an oscillatine target and 5-minute practice periods, Travis (1937) foun that 20 -minute rests gave the most ra id trial-to-trial improvement in performance, b-minute rests next, and reste of 2 days the least rapid improvement. It would seem likely that had a more comprenenive rance of rest periods been employed in the moton-learninc experiments above, a similar puttem of performance impruviag with rest poriods up to an optimal spacine, and then declining, woula heve emerged. A curious result that also telon's in this section was observed by "uarden (1923). In a maze experiment with rats, he found that the maze was learned in fewer trials if a 2 -hour intertrial rest period was employed, than in conditions with a 6- or 24-hour intertrial rest period.

An analacous result was found usinc the alternative experimental design; when rest pauses were lept uniform there was generally an optimal length of practice period (or number of trials per practice session) peculiar to euca task. Thus, for example, Pyle (192:) found that in a substitution tash, a 30-minuie practice period was optimal, beine superior to eitrer a shorter (15-mirute) or loneer (40-or 60-minute) session. Snoddy (1945) found that, in loarring to trace a stan pattern reflected in a mirror, subjects impro ed more rapidly over trials if 1 trial per day rias eiven, as opposed to a eroup of 10 trials every 2 dars.
2.3 Factors favounin, massed practice

It was found that in some situations, massed practice yielded a faster rate of improvement per trial than did distributed ractice. Bell (1942) has shown this to be the case when a period of time is
required to "eet set" or "warm up" to a task. If the amount of naterial to be learned is very small, then massed practice may be superior to distributed practice. This was demonstrated by Lyon (1917) who needed less time to menorise a list of 12 digits in continuous readin ξ_{ξ} than in one readine per day. with loneer lists, the advanta e shifted to daily readine, and becare a very freat wren the lists were very Ione (100-200 digits). He hypot'esised that the important factor here was probably the effect of shori-term memory, or perhaps covert rehearsal. Very ?itile short-term foreetting wolla occur duri a_{6} massed readines of a short list, and it is also possible that rekeursal capacity woind have improved ure to a werw- p effect in a few massed readines.

Somewhat surprisinely, a similer result was found to hold Zor rats learnine razes of dififerent leneths. It was found that short mazes were learned in fewer massed t an distributed trials, whilst lareer mazes were learned in Aewer distributed trials (1 per day) than massed trials (Pechstein, 1921 and S.A.Cool, 1928).

A "spider maze", with six allers, five of which were blind, at each choice point was employed by T.F. Cook (1944). His human subjects learned it much more quickiy in maised trials than with one trial pur day. A similar result ras obtained usine a "mental"riaze, which offered six choices at each choice point (subjects had to discover by triel-and-erron which of the numbers l-6 as cornect at eac. choice point.) These results were explained in terms of the serious conseciences of forgettine in such a task.

A further factor which may have influenced Cook's results was demonstrated by Ericison (1942), who used a puzzle box thit allowed for a Ereat variability of attack. This was learned more quickly with massed practice; Erickson prodiced evidence to show thet distributed practice in such a task tended to produce a firation of response, whereas massed oractice resulted in a creater vari:bility of rosponse.
required to "ett set" or "warm up" to a task. If the amount of materisl to be learned is very small, then massed practice may be superior to distributed practice. This was demonstrated by Lyon (1917) who needed less time to memorise a list of 12 digits in continuous readings than in one reading per day. with lonser lists, the advanta e shifted to daily reading, and became a very great aken the ? ists were very lone (100-200 digits). He hypothesised that the important factor here was probebly the effect of short-tern memory, or perhaps covert rehearsa?. Very !ittle short-tem foreetting would occur durin mansed readines of a short list, and it is also possible that reberncel capacity woind have improved due to a werm- p effect in a Iew massed readincs.

Somewhat surprisinely, a similar result was founa to hold For rats learning mazes of different leneths. It was found that short mazes were iearned in fewer massed t an distributed trials, whilst lareer mazes were learned in Aewer distributed trials (1 per day) then massed trials (Pechstein, 1921 and S.k.Cook, 1y2?).

A "spider maze", with six alle s, five of which were tlind, at each choice point was employed by fow. Cook (1944). His buman subjects learned it much more quiskly in massed trials than with one trial pur day. A similar result :.as obtained usin a "mental"raze, which offered six choices at each choice point (suojects had to discover by trial-and-error which of the numbers $1-6$ was cornect at eac: choice point.) These results were explained in terms of the serious conseriences of foresettine in such a task.

A further factor which may have inflionced Cook's results was demonstrated by Erickson (1942), "ho used a puzzle box thit allowed for a great variability of attack. This was leamned more quickly with massed practice; Erickson prod ced evidence to show that distributed practice in such a task tended to produce a fixation of response, whereas massed practice resulted in a greater variubility of response.

Similar recults were obtained by Garrett (1940).
Of course, there is always a poscibility that studies reportine the superiority of massed practice are invalid because the spacine in the distributed practice condition was too lone, when, in fact, a short spacing between triuls wodld have been advantageous, as has been shown for some motor-learaing tasks.

2.4 Factors favouring distributed practice

Undoubtedly, many of the results tinat favour distributed practice, especially those of motor-learning technicues, are attributable to fatigue and work decrement, rather than to learniat factors. Hull (2943) introduced the concept of "reactive inhibition" in an attempt to bridec the eap between work decrement and learning principles. te postulated that ever: effortful response, whether reinsorced or not, produced a tendency to avoid a repetition of trat response, with the amount of inhizition becoming greater the more effortful the response. Full believed that this reactive inhibition would dissipate as a simple decay function of the time allowed for rest.

The concept of reactive inhibition has important implications; differences in performance may not necessarily mirror differences in the amount learned; in ability, nowledge, or what Hull called "habit strength" and desicnated by the symbol SR. Thether ons agrees with Hull's theories or not, this point is still valid, and it is important to discrimi ate between performance (which as observed in a function of $S^{\prime \prime} \mathrm{R}$ and inhibition I , in Hull's terianology) and carning. This point is beautifully illustrated by a stady conducted by Zimble and Shatel (1952).

A pursuit rotor task was emsloyed, in which two eroups of subjects received trials of 15 seconds duratio., over a 10 -àay period, 15 trials beine givea per day. The "massed" Group had only a 5-10 second rest between trials, whilst the "spaced" Eroup received an intertrial rest period of $65-70$ seconds. Durine each day's work, the performance of the massed eroup was found to lag far behind that of
the spaced eroup. It vas discovered, however, that on the firit and second trials of each day's wor., the maseed group, although still inferior in performance, had nevertheless significantly "caught up" with the spaced eroup in comparison :"ith the diference in performance levels at the end of the previous day's wori. This result would sugest that some kind of fatigue or inhibition was accumulatin, during each day's work, especially for the masced group, and dissipatinco ..ith the passage of time to the start of the next day's session, an. that furtine rmore, the difference in actual leuraine between the two eroups was not as great as straighifor:ara performance measures would sugkest. Nevertheless, some dificrence was still apparent after a 24-hour rest, which should probably have been amplo to dissipate any fatigue effects in performance, and probably most of Hull's reactive inhibition, which demonstrates that th se efects were cortainly impedine learning for the massed group. Similar results were obtained for the pursuit rotor task b. Adams (1952), for the inverted alphabet task by Kientzle (1949), and for a substitu*ion task by ipstein (1シ49).

In many verbal learning situations, the superiority of distributed practice may be due to extra practice in the form of covert rehearsal durine the rest pause. This can be prevented by fillint the interval with controlled activity of some kinả, provided this does not interact with the task itself. In many such situations (sucn as the exporiments of Hovland reported below) distributed practice is still beneficial, which shows that conscious rehearsal is not lizely to provide a sufficient explanation of the superiority of distributed oractice.
fovland (1938) believed trat distributed practice was favoured by the dissipation durine rest pauses of interferences built up durine the practice sessions. Tionsense syllables were presented at two different rates, either 4 seconds or 2 seconds, in an attempt to isolate this factor. Nassed and distributed proctice ..ere compared under the two conditions, and it was found that although overall perf rmance vas superior at the slower rate, the advantages of distrivuted
practice were reatly reduced. Hovlend arcued that at the slower rate, greater processing time was available to subjects, and interference was thus less likely to occur, which accounted for the overall improvement in performance. However, as less interference was present, less advantage was gained witr. distributed practice, as the decay of interference was a much less significant factor.

In another study, Hovland (1939) compared tie effects of m. ssed and distributed practice on a serial learning task, and on a pairedassociate learning task. The anticipation procedure vas employed in both cases; the serial list appeared in a fixed order, oi course, whilst the paired-asscciate list was re-randomised on each trial. It was foun: that the advantage of distributed practice was more mara ed with the serial material when performance was measured in terms of the number of trials talen to reach an errorless criterion fin. Again, Hovland applied an interference hypothesis, claiming that interference Fould be more resistant to decay with the fixed order serial-learning list. He also found (Hovland 1949) that in paired-associate learninc the advantages of distributed practice were more pronounced with a faster rate of presentation, and again accounted for this result in terms of within-list interference. At faster presentation rates, within-list interferences would have less time to decay during presentation trials, and so consequently the advantages of distributed practice would be mo:e pronounced.
illotivational hypotheses may also be advanced to explai: the superiority of distributed ractice. Prolonged fractice micht well result in reduced motivation (due to borezom, etc) with attendant reduction in perfornance. Unfortunately, hypotheses of this kind appear to rusult in identical predictions to Full's inhibition theory, and it is therefore practically impossible to liscriminate experimentally between the tro approaches. However, all three factors of reduced
motivation, increased inhibition and increased inserference should tend to operate in the same direction when the quantity of the material to be learned is increased. Thus, in a verbal learning situation, one would expect the advantace due to distriou*ed practice to increase with list leneth. Tiis has been shown to be the case by Lyon (1914) ana by hovland (1940).

2.5. Summary

At first sight, there appear to be substantial similarities between tile efiects of the spacing of ractice trials in traditional learning studies and the effects of the spacinc; of presentations on paired-associate memory. For example, in both cases there appears to be an optimal spacine period beyoni wich performance not only shows no further improvement, but actually declines. In both cases, this result could be accounted for in terms of the increase in intertrial forgetting with very lone inter-trial spacines.

Ho ever, there are some important $\overline{\mathrm{c}}$ ifferences. In conditionine and perceptual-motor studies, practice trials are separated by rest periods: intervals of time during which the subject's activity is not controlled by the experimenter. It is quite possiole taat human su-j-ct. in perceptual-motor studies may have oeen able to use these rest periods to practice some aspects of t a tası, perhaps by employine some ind of active attentional procedure analagous to rehearsal (although it is certain that animal subjects in conảitioning stuaies were unaule to fruitfully use these rest periods in such a way!) Nevertheles, it is true in general that performance in perceptualmotor and conditionine tasks declines across a time interval between pracilce and test, so that in both learning and memory studies, the spacing interval is filled with some kind of activity that usually results in forgetting. However, the superiority of spaced practice in these learning studies was explained in terms of dissipation of uscular fatieue and reactive inhibition across the spacing interval, and the hypothesis that, with spacing, a higher level of motivation might be amatained than in massed
practicec trials. Clearly, none of these explanations is valid in the case of the spacin of presentations in paired-associate memory, since both nassed and spaced items are oqually likely to occur in such a situation in any part of the experimental session, and the factors above would only affect performance across the session.

In those situations here mas ed practice was superior, it was postilated tat short-term forgetting between repetition might ce responsible, in that such an ef ect would counteract th cenefits of spacing. io ever, in paired-associate memory studies, performance improves with interpresentation spacin s wich guarantee short-term forcettin from one trial to the next. Indeed, the ceneficial effect of interpresentation spacine in pared-associate memory may wel be enhanced by short-term forgetting between successive presentations! It was also sugbested that rassed presentations often lead to a Erester "variability of attack" in that the subject woxld se more likely to vary his learning stratege in cuch a situation. The weight of evidence from paired-associate studies sucuests, however, that with massed presentations, the subject rither ceases his "attac." on the current item.

Hovland certainly controlled his subject's behaviour during the intertrial period to the extent of re uirine them to perform sowe task that would preclude conscious remearsal. However, his studies ere very different in nature to those descriven in Chapter One. In Hovland's case, the item to be learned was an entire list rather than a single paired-associate, and the interval between successive presentations of this itemi was filled with activity on a tac.. that did not conilict with his learnine material. In contrast, in the paired-associcte memory experiments described in Chapter One, the interpresentation intervals were filled with items to be learned that certainly did conflict with the critical item. Consequatly, Hovland's explanation of the superiority of spaced practice in terms of the dissipation of interferences across the spacing intervale certainly does not apply
to the effects of within-1ist spacins of successive presentations of items. If anything, wore "interferences" should be built up with spacinc in the latter case.

Horlena's studies are fur more similer to the Brown-Petarson procedure, in that retention and interpresentation intervals consist of rehearsal-precluaine activity that does not conflict with the mate ial to be remembered. However, in Erown-Peterson studies, the items to be remembered usually consist of subspan word lists (such as noun tricrams), not freat comrlex paired-associate or serial recall lists of the kind Hovland employed. The fact that performance in Brown-Peterson studies also improves ..ith spacing (as will be seen in Chapter four) casts doubt on ovland's interference hypothesis, since intra-list interference effects in a 3 -noun list must be negligible. It should also be pointed out that, in addition to the unvenacility of clas:ical interference theory for reasons describeu elsewhere (see 1.24), Hovlanis interference hypothesis sur ers from a logical inconsistency, in that, if interferences are associative, und memory traces are associative, then why should interfering associations be forcotien more rapidily over an interpresentation interval than those appropriate to correct respoudine?

Thus, in conclusion, it appears tiat on the whole, classical learning studies do not contribute much to our understandiag of the superiority of spacca presentations of paired-associates within a list of other pairs to be memorized. The early verbal learnine studies of Hovlend difier so much in procedure as to be irrelevant, and inueed his tasks were so complex that it is unli: ely that a satisfactory explatation oin his results will ever emer, e. It is still possible, however, that the superior: ty of spaced presentations of paired-associate items within a list reflects some underlying basic property of verbal menory common to performance in other tasks. Consequentiy, the effects of the spacing of presentations in a variety of mencry situations will be examined in the next chapter.

CHI.P.ER MTREX

Performance improves with the spacin of preseritations of an item to be rememoered in a number of memory tasks. Recent research has tended to concentrate on three basic areas besides pairedassociate memory: namely free recall, recosnition memory, and Brown-Peterson studies. In shis Chapter, the effects of interpresentation spacin in these situations ":ill we examined.

3.1 Free Recall

The experimental paradigm that has received most attention in recent research is almost certainly the free-recall procedure. Eefore describine results in detail, an outliae is Eiven of the rasic experimental proceduaet. emplo, ed.

3.11 Experimental procedures

In a normal free-recall procedure, a list of verbal itemis is presented, one at a time, to the subject, who ther., upon completion of the list, attempts to write do n as ariy of the is.ms just prosented as he can, in any order he ishes. A undamental drawack to this procedure is the lack f experimenter control over tin retention inverval; for xample, subiect: may, if they wish (and freeurntly do) report items from the end of the list oefore earlier ones. This meuns that list position is frequently coniounded with the retention interval, in adation to the namers of previously- and suisequentiypresentei itens.

The procedune employed son stadyine the eifects of interpresentation spacin was first developed oy waug (1963). Within a aingle pres n:ation of the list, a numicer of itens are repeated. These repetitions may occur in succe sive lit position, no.n as a massed prac ice (...P) schedule, or in list positions separated by presentuitions of other iteras, eivia: a distriouted practive (JP) schedule. Disuriouted or spaced items may be tested unuer a variety oi conditions defined by
interpresentation interval (or "lag"); in other vords, by the number of other itens that are presented between successive presentations of the particular item. These intrudinc iteme are usually presentations of other critical items, and the lists ave normally constructed employing an interieavine procedure similar to that described for CPA desiens (See 1.31).

Of course, free-recall curves (which lot the proportion of items correctly recalled against list position) typically show marked primecy and recer oy effects. Thus, items from early list positions or from relatively late ones are recalied better than iters ir the middle portion of the list. The recency effect has been discussed elserhere (1.22) whilst the primacy effect is often explained either in terms of the additional "active" rehearsal that early items receive in comparison with later ones, or ir terms of the ereater distinctiveness of episodic cues available at presentation (See 1.33 for a similar explanation of this effect in paired-associate probe lists). In order tc avoid contamination of results by these effects, studies on spacine usueliy employ a number of dumry (unanalysed) items ir the early and late list positions. The critical (analyzed) items are thus all presented in the micdle portion of the list, where performance is relatively unaffected by list position.

Thus, studies involvires the spacing of presentaticns ir. free-recall employ an analagous procedure to trose concerned with such effects ir paired-associate memory. In both cases, tho presentations of items ir. a list are searated bresentitions of other items to be remembered. Hence at first sight, one might well expect spacing phenomena in both instances to be very similar, and to reflect identical unuerlyine memory procosses.

3.12 Som negative resuits.

Although it generally appears that the relative improvement in recall performance with distrikuted practice (DF) in free recall is greater than that observed in other memory tasks, in some of the earliest studies
on the specinc of presentations in free-recall lists no ienefit at all was derive from Di. In two studies by Waugh (1963, 1967), lists of monosyllabic inclisci words were presented auditorily at a rate of 1 word per seconc. Test items in the list each received two presentations; for massed items, these occurred in successive list positions whilst for istributed items the two bentations were separate by the presentetion of one or wore other words. ilo difference was found in the frequency of recall of massed and distributed items. Furtrermore, in the 1963 study, the interpresentation lag for distributed items was systematically varied; no difference in the frequency of recall was found between items of differ nt lags.

In an atterpt to explain these nagative findines, Faugh (1970) conducted a further series of studies. In tie first of trese (augh, 1970, Exp. I.) lists of monosyllabic English words were resented auditorily at a l-second rate. Test itens received either two massed or two distributed presentations, with the interpresentation las beine sysiematica1ly varied. The proportion of words recslled in all conditions was about the sane, whick confirmed the earlier finding. When ide tical lists were presented auditorily at a slower rate (one word per 4 seconds) it was found that, wilst some improvement in recall was found for all items, recall for massed items was only slichtly superior to that of items receivinc only a single presentation, and furthermore, items receiving two distributed reseniations yielded rare edly superior recall to massed iteras (although not tice as $\mathbb{E} 00 \mathrm{~d}$ as that for massed items). Once ágain, no lag effect was found; all distribut ditems were recalled ecually well.

In a second study (inaugin 1970 Exp.II) lists of common words were presented auditorily at a rate of 1 word second. In the $1 P$ condition, lists consisted only of items receivin from 1 to 8 massed presentations; no distributed items occurred in these lists. In the JP condition items receive from 1 to 8 distributed presentations. LaE was not controlled, and no massed items occurred in this conditior. This
paradiem will be referred to in future as the "unmixed lisss" paradigm. Although there was no significent differe ce ir the mean number of words recalled overall from i.F and DP lists, there were differences in the relationship of rec. 11 to presentation frequency for the two conditions. S facilitated recall relative to $D P$ at present tion frequencies of 1,2 and 3 ; gave equal recall for a frequency of 4 ; and poorer recall at frec iencies of 6 and 8 .

In bot IP and DP conditions, it was found that the relationship between presentation frequency and recall was well described by a linear recression; the slope of the regres ion line was greater for $D P$, and in fact it was found that recall for 8 presentations as roughly 8 times as eood as recall for a sincle presentation. In other words, the data for the unmixed DP lint was we?l fitted by a reqression line t rough the origin.

In a further study. Waugh (1970, Exp III) employed auditorilypresented lists of common words, each word beine read at a l-stcond rate. Each presentation pias followed by a blank period of 1 - 8 seconds, desi ned to allo:" the subjects to rehearse covertly. Each item received only a sincle presentation. It was found that all items were recalled about equally well, irrespective of the leneth of the rehearsal period. Furthermore, the mean number of words recalled from a list of civen duration of this type did not differ signific.ntly from the mean number oi words recalied from a list of the sume duration in the previous stud;. In otter woris, the mean number of words recalled from a list of Eiver. duration remained constant regardess of whetier the words received $1-8$ massed presentations of 1 second each, $1-8$ distriouted presentations of 1 second each, or a single presentation of 1 second followed by a blank period of $1-8$ seconds.

Waugh claired that these results were in accord with the totaltime law (Tr') which states that the amount learned from a list of items is a direct fu ction of stud time, recarless of ow that time is distributed arrongst items on the list. Cooper and Pantie (1961)
have documented an impressive array of evilence in zupport of this hypothesis. Wauch suggested tat all the recedin; results could also be explained in terms of the ThL if it is supposed that subjects are unwilling to hold any item in attention (i.e. rehearce or other ise process it) for wor than a siven length of time, and that when the duration of a presentation, or block of presentations, exceeds this critical period, then the excess time is devoted to the processing or rehearsal of previo sly-presentei items. This ypothesis is identical to that proposed by Oreeno (1967) to explain spacinc effects in a paired-associate task (see 1.43).

This shared rehearsal hypothesis of augh has no difficulty in explainiñ any of her results. The ne presentation rates with mixed is and DP lists follows if one assumes that no free rehearsel time was availacle due to the rapid rate. For slower presentation rates with mixed lists, DP items would robably receive more processing time during actual presentation, and the sape share of any other "spare" processing time as ... items. In the fast-rate unmixed lists condition, the enhanced recall of lor:frequency ${ }^{\prime} P$ items is tal:en to be a consecuence of the extra processing time available durine the presentations of hich-frequency ilit items, which would not be availaiole to low-frecuency it ms in unmixed DP lists.

Thus, Waugh's shared rehearsal hypothesis distinguishos between experimenter-controlled presentation tiwe and subject-controlled processin time. An implicit assumption of the Lypothes s apears to be that the robasility of recelling in item is related in a very direct way, in fact varies as, processine time. The ouserved relationship between recall and poocessing time in rapidly presented uncixed dF lists leads support to this assumption. Unfortunately, the majo ity of fincines concernin the distribution of presenvations in free rec 11 lists do not lend support to waudh's interpretation of the DP parnonenon.

Uncerwood (1969) has reported the followinc series of studies whose results conilict very markedly with those of "iaugh. In the first of these, the shared rehearsal hypothesis was tested directly (Underwood, 1969y Exps. I and II). Lists of common, unrelated monosyllabic nouns wite presented auditorily at a rate of 1 word every 5 seconds. Tho roups of subjects ere tested; the control group received normal free recall instructions (Ex.p.I) whilst the experimentel group were specifically instructed not to rehearce previously presented words, and to concentrate solely on the wora beine presented (axp.II). a mixed lists design was employed, with coth musced and distriouted items receiving 2, 3 or 4 presentetions. It was found that the proportion of distributed items recalled was considerabiy superior to that of massec items at each presentation level, for both groups of subjects, and that, furthermore, the performance of control and experimental €roups was identical in every way.

In a further study, Underwood (1969 , ixp. III) employed lists of conmon, unrelated monosyllasic nouns which were presented auditorily at a rate of 1 word every 5 seconds, in an unmixed lists paradigm. Test items received i - 4 presentations. Different suojects were employed in each condition. It was found that the wean number of words recalled overall from DP lists was greater than that for lists. Furthermore, words tiat had only received a single presentation were recailed equally well in the two conditions, in sharp contrast to Waugh's (1970, exp.II) findings. Underwool also found that on the whole, perfomance on both LIP and DF items in this study differed very little from performance on compurable items in the previous (mixed lis;) stud.f. The only major difference appeared to be a sup riority in the recall of high-frequency DP items in mixed, as opposed to unmixed iists.

In ad ition, Unierwood found that the cvarall probability of recall of massed items in both mixed and unmixed lists was identical; thus recall of massed items was not depressed by their occurrence ir. a
mixed list. On the whole, these resulta to not support the suared rehearsal hypothesis. It should also ve ointed out that ir contrast with the results of "iaugh's (1970, Exp. II) uncixed list study, the relationship between recall and presentation frequency in Underwood's unmixed list experiment vas non-linear. Peformance showed an iritial rapid improvement with frequency, but thereafter, the rate of improvement decined substantially. Indeed, hardly any difference was found in either iP or DP recal after 3 or 4 presentations.

As part of a more complex study, Underwood (1969, Exp.IV) attempted to find a systematic inverpresentation lag effect. Lists of common, two-syllable unielated nouns were presented auditorily at a rate of 1 per 4 seconds. Test items received 2, 3 or 4 presentations. The mean interpresentation lag was either 2, 8, 14 or 20 intervenin presentations of other items. Significant effects of frequency, lag, and the frecuency x lag interaction were found, but no orderly and systematic statement of the lag effects could se formulated.

A further series of experiments was reported by underwocd (1970). In the first of these Underwood, (1970, Ex ps. I and II) lists of short sentences were pres ated auditorily at a raie of 1 sentence every 5 seconds. Wixed lists were employed (Exp, I) as were unmixed lists of both IIP and DP items (Exp.II). Test sen, ences received between 2 and 6 presentations. Performance was measured in terms of the rumeer of senterces correctly recalled. It was found that in both the mixed and unmixe coaditios, recall for $D r$ items was superior to that for $\mathcal{M P}$ items at all presentation frequencies, and there was no significant difference in the relationships of recall to presentation frequency between mixed and unmixed DP conditions. Furthermore, singly-presented items were recalled equally well in all three conaitions (i.e. mixed, unmixed DP and unmixed P). It had been thought that sentences presented at a slow rate woula be handled in a similar wa; to haugh's voras presented at a rapid rate, as there would be little spare processinc time in either condition. These results are therefore evidence
against this hypothesis, since $D P$ was superior to P in the mixed list, and in unmixe lisis, there as no superiority of low-frequency

5 item recall.

Under the assumption that it would take lon er to establish a stable code for nonsense syllables then for words, Unierwood (1970, Fxp, IV) argued tiat an ITP schedule mi hit be less deleterious for syllables presented at a rapid rate than for syllables presented at a slow rate. An adidional presentation at a rapid rate wieht allow the suoject to establish a stable code that might not le established on the first presentation. ..ixed list of nonsense syllables of medium associstion value ":ere presented visually at one of two rates; either 1 item per 2 scoonds, or one item per 5 seconds. Syllables received from 1 to 4 massed or distributed presentations. It i.as found that recall for $D P$ ivemc was acain suprior to that of P items presented the same number of times at the sam rate. Ho:- ever, this differece in werformance was not anected by the rate of presentation.

The purpose oí a final study (Underwood 1970, Exp,V) i. as to examine whether rehearsal of an item, or the processine of such an iten to five a lone-term coie, could be curtailed by havine the subject perform a task after each presentation of an item in a freerecall list. Zixed licts of two-syllable nouns were presenjec visually; each presentation lasted for 4 seconds, and was followed by a l-second interval. In the control condition, a blant appeared on the screen durin this interva?, whist is. the experimental conditions, two single digit numbers vere diisplayed, separated by a plus sien, e.e. 3+5. In the "read" condition, sub;ects were simply required to read aloud the two numbers, whilst in the "ada" conition the sum of the two numbers was reguired. The cuntrol ani r ad conditions yielded almost identical results, with the usual liP-Dr differences across presentation frequencies, whilst a similar, but much attenuated pattern was observed in tie "add" cundition.

Althoug botin Maye and Underwooc failed to find a systematic effect of interpresentation laf, their results strongly disayree on all other counts. Underwood found that the recall of sinely presented or low-frequency rassed items did not depend on context; the same level of recall was found in both mixed lists and unmixed lists. The relations ip between recall and presentation Precuency was nowhere found to be linear. Specific instructions not to rehearse previously presented words did not affect the recall of either massed or distributed items in a mixed schecule. Firally, the mean numiver of words recalled from unmixed LP lists was always greater than the ean number recalled from unmixed \mathbb{P} lists of similar material, and of the same duration, in direct contradiction of the TML.

One very obvious difierence in proc dure between the studies of Wauch and Undemood is to be found in the presentation rate. "iaugh used a l-second auditory presentation scheme throughout, except in a mixed schedule study winich was presented at a 4 second rate, wherein items received onily two presentations, and her results here did not conflict with those of Underv:ood. Underwood sateested that for slow presentation rates the differential rehearsal hypothesis micht obtain in a modified form; subjects mieht be unwillin; to hold any one item in attention for more than a eiven period of time, as vefore, but might not use any extra time thus éained to their fullest advanta, (i.e. for the rekearsal of previously presented items). Performance on both IP and DP items would thus be indeponcent of the type of schedule in which trey appear, whilst JF would still prouce superior performance, Honever, it is still unclear as to why the TTL should only obtain for very rapid auditory presentation rates. It should also be pointed out that Underwood's differential rehearsal hypothesis corresponds almost exactly to Gre:no's (1570a) "restinc" hupothesis (see 1.43).

Uncer, ooc (1970) confessed his dissatisfaction with this modified hypothesis; altouth it explains the broua pattern of his data, there are still one or two results which are somem at ambarrasing to the theory.

Firstly, it fails to predict the enhanced recall observed for highfrequency $D P$ items in a mixed schenule, as compared to an unnixed schedule, and sccondly it has very little to say about the effects of a disrupting tas following each presentation trial. If subjects do not make the use of free time tiat has been sugeested, then all three conditions (control, read and add) should yield very similar results. Performonce in the add condition, however, was much poorer than performance in the otier trio conditions, for both P and $U P$ items. Two hypotheses are possiole. -ither the add concition affects retention, or else the tas of performin mental aritimetic actually displaces items from $5 T$, where they would other ise be uvailaivle for encodine into organised word roupins with later items.

Straightforurd differential reheursal hypotheses are unsatisfactory in another respect. There is very little reason to suppose that, say, Unuerwood's hypotnesis shoula not apply e ually well to otaer verbal learnine parazigms, suc as contivuous wired-associate or Brown-Peterson type tasks. Welton (1970) has pointed out trat the imarovement in performance due to DP in these parauidems is usuily much smaller than that outained in free-recall procedras. If dilenential rehearsal only explains sich small-scale improvements then there must be some other proces? pres nt in the free-recall situation which accounis for the bull: of the improvement in er:ormance sue to $D P$.

Fefore leaving the prowlem of the conflictine results of wuch and Underwood, it swould be powntud out that elton (170) has sueicestea that ""auch's cuport o. the mith be, to some extent, amifactual. Her lista were ralatively chart, añ tom seacuces mere hi hly predictable. Furthermore, each of hor auvjectio fas testea on many lists. It is tilere.ore ossible tiat ther adofel a differ intial rellearsal stratecy in the fust presentation intuation as the Eest :as, of dealine with the materia?. This might also account for her failure to find a systumatic laध ef ect.

Undervood's fuilure to fina any aystematic and order effect of interpresentation lag may well heve been a consequence of his lak of control of the exact lac; only men interpresentation laes werz systematically varied. i. pained-associate study by ajord and horainowitz (196; See 1.44) has sugeested that equally-spaced precentations are optima? in terns of rec 11 performane. It is therefore faasiula that the incomprehensible results of Jnderiood's stuay eere a pe ult of uncontrollad devations from equality of interpresentation sacin", which :ould result in lure systematic biases in measurin the eff cts of mean lag.

Fortunately, there are some studies winch shorr a very systematic ana reliable effect of interpresen ation las in free recall situations. After a brief preliminary report (Welton, Seicher and Shulman, 1966) showine an increasingly beneficial effect of las of $0,8,20$ and 40 for trice-presenten items, Nelton and Ghulman (1967) repurted the data shown in licure 11. After a short practice tas, each subject was given a recall test on each of three lists 0 ? iourletter nouns. In the ridale portion of esc Iist ere 8 woris that occurred once, and 4 words t at occurred winice at each of the following interpresentation lags; 0, 2, 4, 8, . 0 and 40. wifferent groups of sub, ects learned these lista oy visual presentation at each of three diffirent rates: one word per 1.3, 2.3, or 4.3 seconds. It is clear from the figure t at the main effects of presentation rate and laci were sisnificent. The ewas no sigrificant rate x lag interaction. Therefore, in so far as isual presentition is concerned. rate of presentation is not a critical variable in detemiaine th. $D P$ effect. It also appears from the "igu"e thet interpresentation interval has an increasincly cencficial ef coct well be ond those values that would be sufficient to "wipe out" short-term retention eflect.
a very sinilar stady by lielton and Zois. Adams vas reported by iuelton (1970). is simple factorial desien as uaed, one fsctor beinc word class ("rixixed" "ords as employel by "auch, and hich-frequency

FIGURE 11.
Free recall of words as a function of the interval between two successive presentations and of presentation rate (ifelton and Shulman, 196\%).

FIGURE 11.
Free recall of words as a function of the interval between two successive presentations and of presentation rate (ivelton and Shulman, 1967).

nouns) and the second factor, modality of pr sentation (auditory or visual). Each subject had one li t of each of the four ty es. The rate of pr sentation was alinays one word per 2.3 seconds. Significantly better recall was found with ..omocenous nouns, and with visual resent tion. Sienificant labe effects, similar to those reporteã by helton and Shulman were also found. There was also a significant lac x modality interaction, the slope of the lag fanctions beine steeper for visua? resentation. In particular, the slope of the lag function fon a däitorily presented rixed worus nas rery smal , perhaps another Eactor contributine to Nauch's Cailure ic find a lac eî「ect.

3.14 Direrential encodinc

Eelton (1970) ointed out that a differential reheursal hypothesis contains no provision for a systematic la effect ich extenás far beyond the reme of showt-term memory, and . 10 sted that some hind of dif erential oncoding hypothesis micht be a feasiole explanation of the DP effect. The kionk of Tulring (1962 and 1966) has stronly suge ested that freerecall learning involves sabjective orfanisation of word clu iers within a list, and that there subjective cluster units may serve as cueinj systems at the time of recall (see 1.24). Therefore, the inclusion of a wor in wo different suojective clusters would increase the cuis or "access routes" to retrieval. Welton proposed that as the lace between successive presentations of a particular item increases, the word contexiss in which is oucurs vould become less and less correlated, and so the total number of different cues to its retrieval wourd increase.

This theory clearly accounts for t lag data presented above, and for the eneral observations concernine the superiority of DP to MP. Furthermore, the resalt obtained by Unierwood (1969, 政pIII) tilat recall for high presentation frecuency histribited items was enhanced if they occurred in a mixed, as opposed to an unmixed,
schedule, can no: be explaincd; for a ziven inter resentation inierval the contextual cues surroundine a given word on its various presentation trials are les likely to be correlated if the ord appears in a mixed list, where new context is supplied by new massed items, as opposed to an unmixed list, where only di-triuated itoms cocur, anā might appear several times in proximity to the given word. This difference would claarly become far nore exac orated ith hich procentation frecuencies, as more "nev:" massed items :oula be available for contextual clusterine in a miyed schedua, .
iielton's differential encodine hypothesis is supported indirectiv by the frecuency juduement studies of Underwood (1969). In his ixp IV t:"o-sy lable nouns were aresentod auciitorily at the rate of 1 word every 4 seconds; items received 2, 3 or 4 presentations, with a mean interpresentation $I_{E} 2,8,14$ or 20. Subjects were insuructed to memorise the frequency of occurrence of each word. hithouich las was not found to affect periormance, mean judged frequevicies were fairly accurate for tirice-precen eà items, but fell off to about 3.3 for items which had received 4 presentations.

In a second study (Undemood, 1969, twp. V) mas ed and distributed items were read at a 4 -second rate in mixed ists. Two groxps of subjects had both been instructed that a momory test of some hind woula follow the list presentation, although word order .. oll not se tested. The first group was then eiven a recall test, whilst th second eroup riceived a frequency juỉgement test. Test items were presented 2, 3 or 4 times. The usual IP-DP differences were found forth recall broup. Frecuency judgoments for DP items were much as in the previous stuay, bein, about 2 for twice-prusented items, risine to about 3,25 for items t at had received 4 prosentation. Fre uency judgements for uP items were much pooror, eine about 2.5 fom items that had occurred twice, risin to about 2.0 fo: items that had beea presented 4 times.

Althou there was no control over what bujjects incre attemptine to memorise in this study, the recall cata suggests that normal listlearnine behaviou: was bein employed. The frequency juldement data could be interpreted as the result of some ind of "context countine" behaviour durine the test, as opposed to frequency encodine durine the actual list reading. If such an interpretation is accepte, then this stuay clearly supports the multiple encoiine hypothesis.
in a similar study, fintzman (1969a) showed that mean jude ed frequency, althouch lower t.an true frequency, was an increusi:g function of lag. Nadigan (1969) presented tivo roups of subjects with lists of nouns; presentition vas visual, ani at a rate of wora per 2.5 seconds. One roup was instracted to recull the worus, whilst the other was instructed to recall the lists, und also to give an estinate of l.ow many times each word ad occurred. Test items receivea two presentations, with an interpresen ation $1 a_{5}$ of $0,2,4,5,10$ or 32 items. The proportion of words r called for the item recall group was an increasing function of laz; the same was true of recull for the frequency recill group. However, when the performance for the lutter eroup was bro. en down into proportions of words which had been judged to have occurred once, and words which had oeen judged to have oscumred twice, it was found tat recall of the former category did nut show a lag effect, whilct r call of the litter showed a mar ed fifect of lâe. This stuay illustrates ver: clearly the relationship between recall and judged frequency of occurrence in a free.recall situation, and substantiates the hypothesis that frequency judements are made by some kind of "context countinc" strategy.

In a second study, Wadican presented subjects with word pairs; presentation was visu 1, and at a rate of one pair per 4 seconds. to be rememiverad; the first word ised was = "cue" word, included to facilitate recall. Each test item received two presentations,
at a lag of $0,4,8$ or 16 injervenin pairs. One sujject eroup performed in the same cue condition, wherein each to-stremeered word appeared with the same cue word on each presentation, whilst a second subject rroup performed in the different cue condition where two different cue words were paired with each word to be remembered. When each list had been presented, sujjects were given a 4 - minute free-recall test on to-be-rememeered words, followed by a 4 - minute cued-recall test, during which they had a complete list of cue words before them.

For noncued recall, the same-cue group yielded results which showed a large effect of lag on the proportion of worls recilled; the lag 16 condition showed a 90,0 improvement of recall over the lag 0 condition. Similar results were found for the different -cue eroup, althourh the benefit of lonêer injerpresentation lags was les marked; the lag 16 condition produced about a $40 ; 8$ improvement in recall over the lag 0 condition.

For cued recall, the performance of the sime-cue group improved trough 1 azs $0-8$, and then declined at lag 16 , whilst the performance of the different-cue er up exhibited no systematic lae effect. Cued recall of words that had not been recalled in the uncued recal period was then examined; the performance of the same-cue group exhibited the same relationship with lag, that is, an improvement through lags $0-8$, with a decline from lag $8-15$. The performance of the different-cue croup was found to decline slightly with increusinf lag.

It is interesting to note that for both non-cued and cued recall, the overall performance of the same-cue and different-cue groups did not differ significantly; cueing seemed to affect only the lag function, with diffe ent cues facilitatine recall for short lags and impairing recall for longer lags. It vas also found that cued recall was superior to nicued recall in all conditions.

Particl support for the differential encudine hypothesis is afforcied by the non-cued recall results. Differential cueing clearly reduced the slope of the lag function, as the hypothesis would predict, but did not produce an overall improvement in performance. This was possibly due to the fact that in the same-cue conditi n, cue words were presented twice, and were therefore more likely to be rememoered than the once-presented different cues, and woild also show a lag effect. Thus any improvement in recall of to-be-remembered words due to differential cueing would be counterbalanced by an improvement (die to superior cue recognition) in recall for the samecue condition.

Although this argument also holds for the cued recall performance, two aspects of the data differ most strikingly from that for noncued recall. Firstiy, differential cueing completely removed all effects of $1 a_{e}$ and secoady, recall in the same-cue condition did not improve beyond $\operatorname{lag} 8$, and in fact declined from lae 8 to lag 15. This result is in compiete agreement with results from pairedassociate studies (which this condition strongly reseritles) described in section 1.44•

Gartran and Johnson (1972) also studied the effects of context words on recall. Lists of common ords were presented visually at a 2-second rate. Test items ere homographs (words havine two or more meanings which were preceded on eack of two presentations by two contextual woras. Two conditions were employed: in the "same" condition, the context worùs were from the same context on each presentation, whilst in the "diffe:ent" condition, two words from a different context occurred prior to the second presentation. For example:

Context
SA. E
D1F9EREM

1st Presentation

metre inch foot
metre inch foot

2nd Presentation mile yard foot arm leg foot

Control items receivine two presentations were also included; no contextual factors were applied to these itens. Interpresentation lags of 2-18 were employed. The reults of this study are shown in Table 5. As can e seen, there is a laree lag effect in the control condition, in contrast to the experimental conditions in which no significant lag effect was found.

TRIE 5
Recall of homographs and control words as a function of the lag between two presentations and context (Gartman and Johnson, 1972)

		HO OGPMPES			CONTROL ORDS		
CONTEX	LAG:-	$\underline{2}$	8-10	16-18	$\underline{2}$	8-10	16-18
Same		. 13	. 20	. 19	. 13	. 27	. 51
Different		. 61	. 61	. 60			

It does appear that there ras a slight effect of lag in the same-context condition, but the authors have advanced no information on this point. Nevertheless, recali of homorraphs in the differentcontext conaition was far superior to that of homosraphs in the samecontext condition, and also superior to that of lone-lag control items. Recall of control items and same-context homographs re-presented at lae 2 did not differ sienificantly from that of sinely-presented items.

The results of this tudy do confict markedly with those of Liadigan (1969) discussed above, in that the overall level of r call in the different-cont xt condition was far suverior to that in the samecontext concition, whereas in Ladigars stady, no differences in the overall levels of recall were found detween the same- and different-cue conditions. However, the two studies did differ procedirally, in that Yadifan's subjects knew that they would not have to recall the cue words, whereas in the current study, subjects would presumably have attempied to learn the context words. The different encodine strategies frich
micht have resulted frum these different tasi nequirementa may account for this conflict in results.

The Gartman and Johnson study suffers from another difsiculty, in that recall of homosraphs in the dif erent context condition was more than double that of sincly-presented items. The authors were unajle to explain this result. It is suggested that sabjects may have employed a catecorisation strategy in this experiment, especially as cue words were not specifically pointed out as such, nd were therefore indistin uishable from the items on interest. In such a case, homographs occurring in the "difierent" condition would be easily identifiable as homorraphs, and it is likely that subjects nould therefore work difierentially on such ooviously "special" words. Furthermore, different-context homocraphs might be encoced as beloneing to three categories; the two presented by the experimenter and the third, "nomograph", discoveren by the subject.

Thus the results of this study must be viened with caution. However, it i: difficult to see how the difierential rehearsal hypothesis could be expected to account for these results, or those of Madigan. "ith the eyception of Wauch's results, which have not to date been dupicated by uny other observerc, the results of free • recall experiments are iell described by the differential encoding hypothesis. This hypothesis can explain the reletionship bet..een injerpresentation 195 and probability of recall, anả judeeca frequency of occurrence, and is unique in of cering an explanstion of the results of cueing experiments. Furthermore, differential encoing can account for the erreater magnituie of the lace effect in frec-rocall situations as compared with other parauigms which rely less on intri-list associations.

However, as a ceneral explanation of the distributed practice efiect it has shortcomincs. One element of doubt is raised by wadican's results on cued recall; perfomance appears not to improve with lae bejond a certain point. Chis is not account ed for by the hypothesis. The
hypothesis would seem to imply that codine is purely devermined by context, othemise two mas ed presentations would allow a second chance to aderuately code items inadequately coderl on the first presentation. Furthermore, given that a code will support recill (and t erefone rocognition) of an item on its second preentation, what has the hypothesis to say a out codin on the second preseatation? For cxample, is the original encoding elavorited or is it ignored in so far as constructine a second code is concerned?.

Clearly such questions are of little importance when it is nown that contextual codine is an important factor. Fowever, they attain more relevance in the stuay of jaired-associate learning and the examination of spaced repetitions in experiments of the Brown-Yeterson type. In the former area, where recall is cued, results have suggestei some limit be ond which lac is no loneer beneficial, but detrimental to performance, wilst in the Brown-feterson paradigm, only one subspa. item must be rememered at any one time, so that there are no other to-ie-remembered items to provide contextial cues.

3.2. Continuous Rec enition Studies.

Kintsch (136) has shorrn that the ro abilit of reonisin an iten correctily increases with the sacinc of repetitions of that itea in a continuous recocnition tag. Four digit nuibers were presentod visually at a rate of 1 item ever: 2 seconds. Each item was presenied 6 times. On each trial, subjects were recuired to say whether the item had bein presented iefore (by responding "olu") or not (oy responding "hew"). Ferformance was ne:lsured iy the proportion of it ews correctly identified as old, $\Gamma($ "ol " "/01d).

Four treatments defined by four spacins patterns were employed. If a secuence is represented as foliows:-

$$
P_{1} I_{1} P_{2} I_{2} P_{3} I_{3} P_{4} I_{4} P_{5} I_{5} P_{6} I_{6}
$$

where $P_{1} \ldots P_{6}$ are the six presentations of a particuiar itera, and
$I_{1} \ldots I_{6}$ are the interpresentation intervals, ocin trials inv lving other items, then the four treatments can be defined us follows:-

Short (S)

$$
I_{1}=I_{2}=I_{3}=I_{4}=I_{5}=l \text { trial }
$$

LONE (I)

$$
I_{1}=I_{2}=I_{3}=I_{4}=I_{5}=10 \text { trials }
$$

Lon-short ($\mathrm{L}-3$) $I_{1}=I_{2}=I_{3}=10, I_{4}=I_{5}=1$

Short-10ne (S-I)

$$
I_{1}=I_{2}=I_{3}=1, I_{4}=I_{5}=10
$$

Kintsch's results are shown in Fi , ure 12.
Performance on S itams was clearly superion to that of L items at every repetition level. i. comparison of S-L and I treatments at repetitions 5 and 6 clearly shows that three wide spacines were superior to three masced esentations when retention as measured at a lone interval. A comparisuln of is ank I-S treatments shows little difference in performance followin triee mas:on a thean hat presentations when retention is measured at a short interval, al though once acain spaced repetitions were slightly superion. Similar resulus were found तith consonant-vowel-consonant trięram (OVC) màerial.

Kintsch compared a numer of jearnine models havine different accuisition and retention axioms, and fourd that his data were well explainea by the Lis-2 model of it: inson and Crothers (ig64). This model assumed three memory stetes: a lon -term state, from which no forgetting occurs, a transitory siont-torm state, which leads to a cor ect response, but from which fo nuttinte can take place, and a naive state, in which a correct rasponse can be gles ed - the probability of such a quess is ta en to be the overall false recognition rate, $P(" d a ̃ " / n e w)$.

The model also assumes that the 10 --term state is equally likely to be entered from both the short-term ani naive states. Leerning and short-term forcettin parameters were estimated independentiy for lon - and short-aelay schedules. It was found that whortdelay schedules su fered less from short-term forgetting, as one would expect, but yielced lower values of the learning parameter. Performance shits observed in I-S and S-L scheaules were then pre-
$I_{1} \ldots I_{6}$ are the interpresentation intervals, ocine trials inv lving other items, then the four treatments can de defincd as follows:-

Short (5)
Loñ (I)
Lone-short ($\mathrm{L}-\mathrm{S}$)
Short-loñ (S-L)

Kintsch's results are shown in Pisure 12.
Ferformance on S items was clearly superior to thet of L items at every repetition level. ic comprison of S-L and L treatments at repetitions 5 and 6 clearly shows that three wide spacines were superior to three masced presentations when retention ..as measured at a lone interval. A comparison of a and L-S treatments shows little difference in performance following three mas. aí . Wrur mont presbritations wren retention is masurea at a short interval, althouch once again spaced repetitions were slightly supericr. Similar resulis were found with consonant-vowel-consonant trik ram (CVC) material.

Kintsch compared a number of learnine mociels having different acurisition and retention axioms, and fourd that his data were Vell explained by the LS-2 model of str inson and Crothers (i964). This model assumed three memory states: a lon -term state, from which no forgettine occurs, a transitory slort-torm state, which leads to a cor ect response, but from which foriettine can take place, and a naive state, in which a correct r.sponse can be gueas ed - the probability of such a guess is ta: en to be the overall false recogniticn rate, $P($ "dã"/new).

The model also assumes that the 10 - -tera state is eciatly likely to be entered from both the short-terin and naive states. Learnine and short-term forgettin parameters were estimated independently for lon - and short-deay schedules. It lias found that shortdelay schedules su fered less from short-term forketting, as one would expect, but yielced lower values of the learninc parameter. Performance shifts observed in L-S and S-L scheaules were then pre-

FIGURE 12.
Proportion of items correctly recognisea
as a function of short and lone retention
and interpresentation intervals (: irtsch 1966)

dicted nocerately i.e l. Nevert eless, Kintsch ras unniline to eive any theoretical explanation as to why less learning should occur on a short del.ay schedule.

The anderlying ascum tions of the LS-2 model as aplied to reco nition memory are parifially justified by a study conducted by Shepard and Techtsoonian (1961). Their subjecis were eiven a deck of about 200 cards, on each of which was a 3-digit number, and Were instructed to go throuch the deck at their own rate, noting on a record sheet whether each item had ceen seen before (i.e. it mas "olä") or nct (it was "ner:").

Bach number appeared twice in the deck; the lag (in intervening items) between successive appearances of a particular item was systematically varied, and the proportion of correct recognition ("old"/old) responses plotted as a function of lag. It was founç that pefformance declined rapidly up to a laf of about 10 items, and then much more slowly. A short-term decar component would account for the initial rapid decline in perfomance, althcueh there did appear to be a sicnificant decline in the lone-term part of the curve. Ho:iever, as a first approximation, the assumption of an absorbing lon -term state appears justiliea.

01son (1,69) as demonstrated the transitory nature of shont-ter recoenition memory. His cubjects were prescnted with lone lists of consonant tricrars (CCC's); each trial was of 3 seconds duration; n item was presented on a screen for 1 seconc, following which the screen rewained blank fo two seconç, durinc wich perioci the sủject was requireâ to make a recognition response ("olã" or "new") to the item he had just seen. It ms piers all presented eicht times, at a variety of inierpresentition lags between 0 and 70 intervening items.

Olson chose a critericn level of four succesoive correct recocnition ("ol $\mathrm{t} / \mathrm{cld}$) responses, and examined the proportion of precriterion and postcriterion correct responses as a function of
lag since the last pesen ition. Precriterion performance zas founc to decline with lag to an asymptote around the overall false alarm rute, $P($ "old" /nev" $)$ whereas postcriterion performance declined only slichtly with lag. Whis result is clearly analacous with Bjork's (1,66) results in a paired-associate study (see 1.32 and Figure 2).

Olson's study clearly justifies the asaumption nade by intsch that items Sorgotten from the short-ern state re-enter the naive state; it further a pears that for CCC's at least, the rate of foréttire: from the long-term state is of neelicible proportions.

Yintsch's (1966) results are t erefore consistert with a differential rehearsal hypotilesis which states that items stil held in short-¿erra memory when r-presented receive little benefit from the re-presentaticn. Such a hypothesis coulá well account for the aiower rate of learnine observed on a short-ieliy schedule, whilst the results of Shepard and Teghtsoonian sugeest that short-term revention effects in recoenition memory woulc be "riped out" after about 10 intervening presentations of otier items, so that items on Kint ch's lons-ielay schedules would not suffer it ropresentation.

It should also be pointed out that Velton's differential encodin hypothesis coule also eccount for Iintsch's Eindincs, especially if it is accepted that some ind of trunsitory short-tern: memory state can boo: perfomance at bhort retention intervals, as sufeested by the above studies. Short-delay scheduies moulu then lead to less forcetting from this short-term state, but would also lead to \$ess lone-term learrine (and therefore poorer performance at lone reterition irtervals) than lone-delay schedules as a result of there ceine fewer a cess cues coded on short-delay schedules.

Hirtzanan (1969b) prosented suujects ith lisis of common woras. Each item was presentod three times; the intewval between the first two prusentaticn (the $P_{1}-P_{2}$ interval) was either $1,2,4,8$ or 16 trials on other items, whilst the $P_{2}-P_{3}$ interval was always 16 such tricils.

Response latencies were measured, and it was found that correct recognition ("old"/old) latencies were shorter than error latencies on all three presentations. An analysis of correct response times as a function of $P_{1}-P_{2}$ lag revealed that P_{2} latency was an increasina function of $P_{1}-P_{2}$ laE, as one would eypect; furthermore, the relationship of P_{3} latency with $P_{1}-P_{2}$ lag clearly showed a spaced-practice improvement effect. In other words, correct response lutency at P_{3} declined as the $P_{1}-P_{2}$ intervel increased.

A multiple encodine hypothesis could account for these results if it is assumed that access to one of two reconition cocies is more rapid than access to a sirele code. The chance of possessire two wheh alterrative encodins would ciearly improve with $P_{1}-P_{2}$ spacing. If memory search is conceived as beine made through a lare set o? cocies at a constant rate, then it is feasiole that the msan search time rould be loss if there wore two target coces ratior t an one. The recult that error latencies ,ere hicher than corect response latencies lends support to such a search hypothesis, since an unsuccessful search may not be terminated until a laree number of inappopriate encodints had been drawn. The searci proces: envisared here woulc be initiatea on the basis of some functional aspect of the current stimulus presentetion. Jncodincs sharine these aspects mould be drawn from memory, and then matched more carefully wit the current item. Furthermore, recent work reviewed by Kandler (ig72) subests that contextual and semantic cui. at test materially aicas recognition performsnce, and results of this ind can only adu crederice to a dif.erential encoaine hypothesis that depende heavily on contex tual attributes.

Unfortuately, a differential processing hypothesis csn also account for the r sults of interpr:s ntation spacin, studies in recognition memory. Wo results exist: ich compare perfomance over
a sufficient rance of interpresentstion intervals to deteraine whether performance contirues to improve with spacing beyond the p int at which short-term retention ef ects wold be "wiped out". Althouch Eintzman (1969b) employed a wide enough rance of irverpresentation intervals, his latency data did not even show a short-term retention ef ect at sacrt 1ag.
3.3. Brown-Peterson Studies

The Brown-Peterson technicue is one of the relati:ely new ex erimental metiods which appeared at about the same time that human leaminc theorists were marin their move towards a verbal learning framewori, and desertine their old, classical perceptualmotor tasks. It was first develcped ky Erown (1954) as a tool for the stydy of short-term retention, and Later popul rised by Petersun anc Peterson (1959). A single subspan item (i.e. one that can be held in Sin. and perfect.y rucalled if no distractine task intrudes between presentation and test), is presented for study, an after an intervel filled with interferine activity of some ind (such as bachinard counting $)$ the subject is asked to rec $L 1$ the itern.

The procedure is frequently modified to admit various sirds of presentation-test sequences; the important feature is the nature of the interferine activity. This is senerally chosen to preclude covert reneargal of the test it m, but ro to conilict with the test item (in the sense of not bein material to memorise which mitht be confused with, or compete with, tie item). This techni ue thue admits a very exact definition of the material that the subject is tryire to learn at a éiven time - one specific suospan item.

3.31 Repeated presentations and rehearsal

Hellyer (2962) presented consonant trierams (CCC's) 1, 2, 4 or 8 times in massed trials, anù tested retention following 3, 9, 18 or 27 seconds of an interferine tesl, which in this case was a digit namiré task. The proportion of complete tricrams correctly recal eú was plotted as a function of retention interval, at each presentation

FICURE 13
Proportions of conconant trigrams correctly recalled as a function of
a) the numuer of successive 1 -second presentations of the trigram (Hellyer, 1962)
b) the amount of overt renearsal of tri rams (Peterson and -eterson 1959)

level. His results are s own in Rigure 13a. Perfornarce following a single presentation declined rapidly from 3 to 9 seconds, and then more slowly. The retention curve clearly demonstrates both short- and lone-term decay components. As the number of presentations increases, it can be seen that both lone and shont-term retenticn improves, althoueh performance after 3 seconds irproves only slichtly.

A study by Peterson and Peterson (1959) included two conditions: in the overt condition, suojects remearsed the stimuli (3 consonant trisrams) aloud in time to a metronome, at a rate of 1 repetition per second, either 0, l or 3 times, whilst in thecovert condition suojects were given time to rehearse the stimuli to themselves for varyire seriods; no specific instructions were eiven to rehearse. A retention interval filled by counting backwards by threes for 3 , 9 or 18 seconds followed in both conditions, followed by a test of retention. For the overt Ercup, increasine the rehearsal time improved performance at all levels of interference time, but there was no efject of rehearsal time for the covert Eroup. However, since there was no guarantee thet the covert group were rehearsing, the negative results for this roup are inconciusive.

Data for the overt eroup are show in Fisure 13 b. The retention curves all appear to ave the same shape, and aciain $\dot{\text { asplay }}$ an initial rãid decline followed by a slower ciecline. Jurthermore, increasine overt rehearsal improves perfornance in both snort-and lone-term parts of the curves. Althouch Heilyer's curves flat.ened out as the number of repetiticns increased, and the latter did not, this effect ma, be due to the increased difficulty of the material and retention tas employed by Peterson and Peterson, rather than a difference in function of repetition and overt rehearsal.

A modified version of the paridigm was employed by Peterson (1963). Suibjecte were presented with a consonant-vo...el-consonant trigram (CVC), and were then required to count bachvards fur 1,3 , 6 or 11 seconds. After thi inverference interval, the CVC was asain
presented. A second interference interval of 6 seconds followed this second presentation, and the subject was then cued for recall. This sequence may be presented as follows:

$$
P_{1} I_{1} P_{2} I_{2}
$$

where P_{1} and P_{2} represent the first and second presentations of the CVC respectively; I_{1} is an interference period of $1,3,6$ or 11 secs., I_{2} is an interference perioci of 6 secs., and T is the final test of recall.

Peterson's results are show ir the table belcw. Performance on the final test trial clearly imp oved with the leneth of the interpresentation interval I_{1}. It is clear that once á゙ain, performance improves with the spacing of practice. It is difficult to see how the multiple encoding hypothesis could possibly apply in this case, as items do not appear in the context of other items to be remembered, and therefore the interpretation of 'access route' coding cannot apply.

	I_{1} (seconds)			
	1	3	6	11
Proportion of trisrams	.66	.67	.74	.77

In order to fain some idea as to the underlying causes of the spaced practice effect in the Brown-Feterson paradigm, a more detailed examination of results is necessary.

3.35 Proactive interference

Observers have generally found that on the first trial of a BP task, forgettine is very rarely more than 10%, even after retention intervals of 20 seconds (Lcess and wagh, 1367). Perfurmence then declines rapidly to a steady state with trials; it nould appeer therefore, that items studied on revious trials somehow interfere with the encodine or reaention of items currently to ve rememered. This effect will be labelled 'proactive injerference' (PI); it must Le noted, however, that this label does not in any way assume any particular theoreticul viewpoint, such as classical interference theory, it is merely a title for the phenomenon. PI from precedine trials
usually reaches asymptote in 3 - trials, althoush this value is influenced by the inter-trial rest period; after a lone rest, perf rmance recovers to a verer high level.

Jimilarity of the preceding items to the item cur ently to de rememberad has been shown by Loess (1967) to have an important effect on PI; with tlee recall of word tric rams firom different taxonomic classes (e.e. trees, binds, etc.,) a chance of taxonomic class on a particulur trial produced a dramatic improvement in perfomance on that trial (called by Loess 'release from PI')] For example, a control ercup presented with trigrams from the same class troughout recalled about 30% on trial 13; another erap, who had received trigrams from one class only on the first 12 trials, and were then presented with a tri ram from a different class on triai 13, achieved a recall score of 00%. Clearly, the effect ias dramatic.

A variable that ocviously depends on PI is the proportion of intrusions (recall errors t at are previously-presented item, or parts thereof, as opposed to wild fuesses and omissions). Ho ever, it rould be rash to reard intrasions as a measure of PI, for two reasons. Firstly, there could be 'covert intrusions' tret is, items that someho:: interfere ith the current item but are known by the suicject to be incorrect, ana are therefore not rouced as a response. Secondly, some intrusions may not kave interfered t all with the current item; they micht just be reasonable cuessea on the part of the eubjeot. eppel and Underwood (1962) found thet the proportion or intra-experimental intrusions (IEI's) increaseu "rith retention interval althouck at a slower rave thin total errors. Loess (1)68) found that 80-90; of IEI's came from the same category as items to be rememberod, and of these 60-80, came from the nowt r cent item $0 i$ that catecory. However, t e proportion of IEI' s from the most recent itom of the aame category decreased if there .ere other items vetwoen it and the to-ceremembered item. Pollatser (1969) found that with items of the same kind (common four-letter noun trisrams with no cateqory controls),

60-70\% of IEI's came from the previous item, $10-20 \%$ from the item 2 back, an most of the remainder from items 3-4 back.

3.33 Some theories of the SFI effect in EP stuajes

In the light of results on the PI eflect, three possible explanations of the spaced practice effect in the Brown-Peterson paradigm may be advanced.

1. Reduction of interference from previous items. The greater the spacine between two presentation, then the less should be any PI effects during the second presentation.
2. Consolidation of thememom trace. It is possible thet the stimulus trace is in some sense cettine mone potent durini the interference period.
3. Differential codin, of items. This mechanism colld have at least three different rationales (Pollatsek, 1969): (a). If the subject thinis he i.now: s the item well on P_{2}, then he doesn't bother to wor: so hard; (b) If the subject doesn't haow wh ch items he knows well and which he doesn't, a: after a short $P_{2}-\vec{F}_{2}$ interval, then he will not now where to direct his effort; (c) If the subjec already has a code which is "bad", then he is less li" ely to be able to think of a ner one cecause of the irterfe ence from the old one.

Pollatse (1969) employed five conditions in an atiempt to discriminute bet:..een these hypotheces, as follo:"s:-
I. Simple (5)
II. Double Presentation (P)
III. Dcubie Test (Dir)
IV. Forget (I)
V. Control (C)

PRIT
$P_{1} R_{1} I_{1} P_{2} R_{2} I_{2}$
$P_{1} R_{1} I_{1} T_{1} I_{2} T_{2}$
As DP, with a ne:: item for memory at P_{2}
$I_{1} P_{1} R I_{2}^{m}$
where P_{j} are prosentations, I_{j} are intorference intervals, T_{j} are tests of retention, and R_{j} are blani periods desiened to allo: covert rehearsul. In the JP condition, the tioo rehearsal periods R_{1} and R_{2} took values of 0 , 3 , or 6 seconds; the interprosentation interval Il
was 7 or 22 seconds, ard the retention interval I, was 10 or 22 seconais (of paced formard countiné in each case).

It was found that the proportion of itoms (word trigrams)retinined increased with rehearsal time, and woth R_{1} and R_{2} proủucad facilitation in this respect. Whis is in aureement with the assumed role of r.hearsal deduced from the results $0:$ Hove (1967) and -ernbech (19670) discussed earlicr. It was also found that retention was poorer with the lonfer retention interval ($I_{2}=22$ secs.) ; the usual spaced pructice effect was found however; perfcrmance was betier in all conditions with $I_{1}=22$ secs., as 0 posed to $I_{1}=7$ secs. Pollatsel.'s data, collapseci over both values of I_{2}, and all trree values of I_{2}, are shown in Tabie 6 .
maide 6
Proportion of omplete ford inierus correctiy recalled as a function of interpresentation interval and of reheansai time (Poliateei, $1 ; 6 ;$)

$I_{1}=6 \mathrm{secs}$.70	.80	.82
$I_{1}=21 \mathrm{secs}$.80	.88	.92

In the simple condition it was found the incressinc overt rehearsal time generateà a family of retention curv ss similar to thove of Hellyer (fic 139), both in terme of complete tri, rams recilled, and word recalled. Thi result is at varience ritin the necative findings for covert rehearsal o. Peterson and Peterson (1959). In the double test concition, it was found that perfo mence on T_{2} "as almost as good as performance on I_{1}, even aith $I_{2}=22$ secs.; overt respondinc appearea to improve the coding of iteras.

In the foreet condition effects asscciated with the firct (tomeforgoten) item were quite small. The ffects of R_{2} añ I_{2} were comparable to those found in tas: s i and DF. Petrormance tas Pound to improve vith I_{1}, as one voulá expect, but only very slichtiy. It was found, however, that increasine, z_{1}, that is, the rehearsal period on the to-bo-foreoten item, actually improved performance on the to-i oremen eved item. The results for tive curtrol condition wore sirilur to
those for tia aiuple coalision, bit retention as betier, clearly illusirniine a release from 3 effect.

The data :rere analysed :ithin a conceptual frame:.onk that distinuished between four tipes of stcrage: wor, int memory (in), a skort-term acoustic store (STS), items in a lon-term stome (ITS) that were either uniquely coded (UC) and coili be easily retrieved, and items in L.S that were only eqerally coled (GC) anc suffereu from zesponse in:erference.
..ithin this Pramework, itwas concluded that reneargai allo..ed for more unique codine in ITS, since rehearsal of items to se rememberec had a lare beneficial effect, und rehearsal or to-be-forgouten items reduced their interference on to-se-remembered itams. Tha re-
 fortif.inc the Sms trace.

1t yai lociled tiat the beneficial effectu of spacine in task DP could not be explained by some ind of re?ease from PI on the second presentation; a curacison with concition C was employed, and cave a sicnificant undorestimate of the spaced ructice improvement. Turthemore, a consolidation explanation li.e:ise anierpredicted the size of the effect quite drustically. It was conelded tiat tiae major cause of spaced practice improvenent in tasi. DP Nas that the lon er spacine interval allow ed for rore unirue (and therefore more ef ective) encoding of the otimulus is 2 the scont prosentation. Towever, on the basis of his data, Pollatsen i.as unablo to discriminate betireen the three posaible rationeles which might unierly such a mochanism.

Bjori and Allen (1970) also prozuced s rikine evidence ajuinst consolidation. The paradicm may be represented as follo s:-

$$
P_{1} I_{1} P_{2} I_{2}^{T}
$$

where F_{1} and P_{2} represent tri:o presentations of a noun trigrm; I_{1} denotes the interpr sentation tas (dicit shadowins), either 3 secs. (easy), 12 secs. (easy), 3 secs (difoichlt), or $12 \operatorname{secs}$. (difiriculy), and I_{2} denotes the retenion task of 8 or 12 seconus moierate difficulty.

Tásti 7
Proportion of complete roun trierams correctly recalled (Bjork and Allen 1970).

		COINROL	$I_{2}=8 \mathrm{secs}$	$I_{2}=20$ secs
$I_{1}=3 \mathrm{secs}$	Eesy	.75	.87	.79
	Difficult	.62	.89	.79
$I_{1}=12$ secs	Easy	.66	.92	.82
	Difficult	.51	.94	.89

A control condition $P_{1} I_{1} T$ was included, as a check on the effects of the various I_{1} conditions. Results in terms of complete tricrams are pres nted in Table 7. It is clear that the results for the control condition support the labelline of the interpresentation task as easy or difficult. The control results also show the level of recall just prior to the second presentation in the experimental conditions, and it is clear that performance following P_{2} is generally better the lower the retention level on enterine P_{2}. This result is clearly quite embarrassine to the consolidation position.

However, Pollatsek (1969) su Gested that an underlying lone term trace micht be strenthened by conso idation, whereas performance at short retention intervals micht be 'b osted' by ST'S effects which are not subject to consolidation in the same way. However, one would expect more consolidation with an easy interference tast: in this case; it is clear that the 3 secs and 12 secs easy tasks do not produce the widely different retention levels in the experimental conditions that one would expect if the 12 second tas allowed for 4 times the amount of consolidation as the 3 second tast. Furthermore, difficult interpresentation tass lead to better retention in double presentation conditions than comparable easy ones, especially in the 12 second case. This result poses extreme difficulties for any kird of consolication hypothesis.

It would therefore appear thet Pollatsek's dinferential encodine theory is the only one that is consistent with all the

3rown-Peterson results so far avilable. It is interestin to note tiat he rejected a si:ple 'release frem ing iypotheais, but did not inciude release froin II as a possible facilit.tive factor in finding a unique code on the second presentation, which appears an equally feasible underlying rationale for a differentiel encodine lypothesis to those t at he actually did advance. Such a hyothesis might also explain what Pollatsek meant by a "bad" code.

3.4 Sumary

The results of free-recall studies very stroncly suagest that the benefit derived from spaced presentation in such a study sprins mainly from additional contextual cues which becone available for encoding with increased spacing. The Gartalan and Johnson (1972) stidy, wilst superficially convincing, should be viewed with caution, since in this situation, experimental itens were placed in semantically related contexts, and such contextual cues would not normally be available in most of the studies on seacing. Similurly, tadigan's (1969) study involving not-to-be-learned cue wordis was untypical of normel spacinc studies in Tree-recill. There is a daner that in ooth these studies, the procedure employea would suge est a conteztual encoding strategy that the subject wouldn't normally employ. However, both studies do establish beyond doubt that contextual information can be employed by subjects in the oncodine of free-recall liuts. Furthernorg, the fact that same-context homorpahs in Gartman and Johnson's experiment showed far less improvement with interyresentation spacine than controls presented in the same lists can only ve interpreted as evidence that cuatextual information is normally employed in free-recall. In addition, their diferent-context homo r phs showed no spacine effects, and such effects pere :minch attenuated in non-cued recall of "úndler's different-cue words, Thus, contextual encoding was accountine for a ereat deal of the benefit derived from the spacing of presentations.

When taken in conjunction with frequency judeement data, these results provide much more convincing support for the differential encoding hypothesis. This is not to say that other factors may not be operating to enhance performance with increased spacing. As Melton (1970) has pointed out, contextual cuine in free recall may only account for the ereater benefit derived from spacing in this situation as compared with other memory paradiems.

The data from recoenition memory studies are far more ambiguous and may ve explained either in terms of a hypothesis of differential processing of items currently held in STM, or by a multiple encoding hypothesis. It is relatively easy to see how the encoding hypothesis would account for performance in free-recall; recall of a particular word would act as a cue for the recall of others. However, in a recognition memory study, a word presented at a partioular test would generally be in a different context to those in which it appeared on previous trials, so that it is not at all obvious how contextual cues from earlier trials would become available to the subject to uid performance. The search hypothesis proposed in section 3.2 is at least a feasible explanation of how differential encodine resultin from spacin might operate. Neverthe less, on the whole, the data cannot be said to unecuivocally support a differential encodine int rpretation.

Brown-Peterson studies strongly indicate a differential encoding hypothesis, and indeed, the results of Ejori. and Allen (1970) certainly render a consolication aproach untenable. iowever, once acaing Pollatsel's (1969) conclusions do not discriminate between a namber of rationales that could unierly such a hypothesis, one of which was essentially a differential processing hypothesis. Furtiermore, Pollatsek did not examine a sufficient rane of interpresentation intervals to establish wheth r the effectiveness of a second presentation wa. dependent on an iterisretention in short-term cemory. .lor:ever, it is clear that the contextual cuing hyothesis, whic is such a feasible explanation of spaced presentation effects in free-recall, cannot
possibly apply to Erown-Peterson experiments. In conclusion, then, this chapter has been of ereat value in spelline out a number of alternative hypothesis that could account for the spaced practice effect in verbal memory, and furthermore, it nas omphsised the point that the effect may well have different underlyin rationales in dif erent experimental situations.

CHAPTIR FOUR

IN PAIRED-ASSOCLLTE MACRY

Results concerning the spacing of presentations in a number of other memory tashs, and in particular free recall, sugiest that encoding processes may play a prominent role in determinine the beneficial effects of distributed ractice. Therefore, before going on to specify specific hypothesis concernine this effect in pairedassociate memory, a brief examination of current tweory and results in the field of encoding and organisational processes in pairedassociate memorising will be undertacen.

4.1. Stimulus Encodiat

A prominent line of reasearch in paired-associate memory has concerned the development and examination of associative interference theory by the use of negative transfer experiments based upon the classical paired-associate learnine paradisms. For example, an influential study by D̄arnes and Uncerwood (1959) employed an $A-E$, i-C transier paradigm in which a list of eight CVC - adjective pairs exe learned to a criterion fone correct anticipation trial. Following the learning of the original list ($\mathrm{A}-\mathrm{E}$), $1,5,10$ or 20 anticiation trials were administered on a ney: list, consisting oi the oricinal CVC stimuli re-paired with new adjective respons $s(h-C)$. Suojects were then presented with the eight stimuli and instructed to recall both the firct list and second list responses. It ":as found that as the amount of trainin ${ }_{\xi}$ on the second ($A-C$) list increased, so the proportion of cor"ectly-recalled second-list responses increased, and there ias a correspondine decrease in the recsll of first list respons s. Furthermore, the level of racall of sacond list responses was ganerally lower than that of the r sponses of a similar list that had not been preceded by a competin $A=$ list. Resulta of this kind have since been replicated many times (e.E. Ioppenaal, 1963; Poetman, Star: and Fraser 1968). Such results were explained in terms of associative
interference theory (see 1.21). Thus, the oricinal $A-B$ associations were seen as proactively inhibiting the formation of the now A-C associations, whilst these were in turn assumed to overwrite, or interfere retroactively, with the oriciral $A-\bar{y}$ associations. The negative correlation between the recall of first and second list responses across the amount of re-traininc on the second list served to reinforce this view. Hovever, these results presented only part of the picture. In particular, at each level of A-C trainine, it is probable that the same ievel of first list response ricall would have been found regardless of whether the seond-list response was correctiy recalled or not - the so-celled "incependent retrieval phenomenon" (Uartin, 1971; Greeno, 1969, See 1.24). As has already been stated results of this nature pose great difficulties for associative interference theory.

Althoufh association theory has been found lacking in a number of respects, it does posses the attractive property of regardine the memory trace "as a constructive process relatin; to a cognitive act" (Neisser 1967); in other words, as a functional entity related to info mation already stored in memory - the mind is not seen as a blank slate. However, encoding theories also stres the functional nature of the memory trace, or code. Perhaps the ajar objection to association theory lies in the specific way in which it defines this functionality as derivine from direct word associations in memory. Furthermore, there is a crowini body of evidence that the implicit assumptions underlying the acceptance of paired-aszociate learning as a straightforward peradigm for the learnin of associations are false. In the first place, there is an implicit assumption that the nominal repetition of a stimulus or stimulus-response pair eives rise to an identical functional repetition; this is especially crucial in the interpretation of the results of transfer experiments. Seco:dly, It is assumed that learnine ta.es place within pairs, and that therefore it should be unalfected by inter-pair oreanisation, and
indeed should not be amenable to any form of subjective or anisational
process. There is considerable evidence to the contrary.

4.11 Stimulus meaninsfulness and encodinc verialility

One of the most important recent developments in our understandine of paired-associate learning is the realisation that reptition of a particular stimulus, or stimulus response pair, does not necessarily lead to a repetition of the same encoded version of the stimulus or pair. Ulartin (1968) has called this phenomenon "stimulus en oding variability", and has argued that many paired-associate learning phenomena can be explained in terms of a hypothesis that different stimuli have different numbers of possible perceptual/encoding responses that can oe made to them.

Clearly in order to compare learning performance on stimuli with high and low encodin variability, and tierefore test the predictions of a stimulus encodin: variability hypothesis, it is nece:sary to bave some ad - Loc method of classifying stimuli with regard to their degree of enc ding veriability. ...artin has areued t at consonant-vowel-consonant (CVC) and consonant triEram (CCC) stimuli constitute a readymade set of stimuli cassified in such a way, and that their encodinc variability can ve deduced from their meaningfulness (iin).

Traditionally, ir is associated with such variables as whether or not the stimulus elicits an association (Glaze, 1928, Mitmer, 1935), how many associations it elicits (Nobel, 1952) how much like a word it is (Archer 1960) and how pronounceable it is (Underwood and sohulz 1960). This, high - Liverbal units are seen to be better interated serially (i.e. they are more word-lile, as op osed to a randum collection of 3 letters) and to elicit a ereater number of associations with actual words. There is little controversy about the ef.ects of meaninefulnes on verbal learning; it has a facilitative effect. That is to sey, hich-ia items are in eneral easier to leam than low-...
stimuli in a single list learnine situation (e.g. HicGeoch, 1;30; Cieutat, Stockwell and Noble,1958)

The traditionel vier of how stimulus - 14 affects pairedassociate learning is well represented by as-ociative probability theory (Mandler, 1967, pp32-33; Underwood and Schulz, 1960, pp45-49) which claims that stimuli givinc rise to a greater number of associations (hich - - stimuli) are more viable in learning situations than are stimuli giving rise to feiver associations, because such stimull are more likely to form an association with a response traugh the mediation of one of these existing associations. However, Lartin places an almost completely opposite interpretation on t.e role of stimulus 4 .

In an examination of stimulus cue selection, Underwood (1;63) demonstrateí that subjects tend to associate cvert resionses rith fewer than all as eects of tue nominal stimuli than the learning task would appear to jermit. Sheparà (1963), in commenting on Uncerwood's paper, added the observation that stimulus M may be viewed in terms of the extent to which the stimuli may be analysed into components. Lw
-lif stimuli were considered to be more fractionable and less well integrated into single word-like units then hich-il stimuli. Martin (1968b) extenced these observations into the hypothesis that there exists sone kind of variability in the functional stimulus (that is, the perceived, encoded version of the nominal stimulus) winch is inversely related to stimulus N .

Martin's hypothesis may be explained more fully with refarence to the following schematic representation (some: hat idealisea!) where S_{j} and S_{f} are, respectively, high-it ani lon-id nominal stimu? 1 , and r-s corresponds to some central event composed of a perceptial response (r) plus the consecuent functional encoding (s) of the nominal stimalus s.

$$
\begin{aligned}
& \mathrm{s}_{11} \longrightarrow \mathrm{r}-\mathrm{s} \\
& \\
& \mathrm{~s}_{\mathrm{L}} \xrightarrow{\mathrm{r}_{1}-\mathrm{s}} \underset{1}{ } \mathrm{r}_{2}-\mathrm{s}_{2} \\
& \mathrm{r}_{3}-\mathrm{s}_{3}
\end{aligned}
$$

Thus, whereas $S_{\text {B }}$ (e.g. the tricram (.OP) is seen to have unly one possible functional encoding, S_{L} (e.e. the trigram XCL) has tiree possible functional encodings, only one of which will be assumed to occur at any given time. Kartin has called the event $\mathrm{S} \rightarrow \mathrm{r}-\mathrm{s}$ (the elicitation of the perceptual response by the nominal stimulus together with the conseuent encoding of that stimulus) the $\mathrm{s}-$ phase, or encoding phase, of the paired-associate process. The formation of associations between the momentary encoded version sof timulus \mathfrak{S} and the overt response, and the elicitation of previously-formed associations by s are referred to as the A-phase, or associ tion phase.

Oi course, the above representation of the hypothesis is hichly idealised, and it is not ossible to determine exactly which perseatual/ encodine responses mey reall: be made to the trifram XCL, nor their relative prubabilities of occurence. Zorever, in the case of alphabetical conficurations, the wor of Postman and Greenbloom (1967) and others (Under:ood 1963) sucests that the initial letter of the stimulus is a hich probability perceptazl encocinc. a rather more detailed (but still incomplete) distribation in terms of idivivual letter memoers could in theory be cunstructed from the results of a study by Zum (1931). Nevertheless, this aspect of the 2 -phase must rewain rather indefinite; it is relatively unimportant, however, if the reative encodiat variability of particular items can be deduced.

4. 12 Repetition and Stimulus encodinc

It has also been proved possible to gain some idea oi the effect of repetition on encodine variatility. In the case where repetition is of the stimulus-familiarization form, stimuli are rehearsed prior to, and incependently of, paired-associate learnine. Shulz and Wartin (1964) have shown that 30 stimulus-familiarization trials have the same (facilitative) effect on subsequent paired-associate learnine over a rance of levels of stimulus \mathbb{L}^{2} as do 30 familiarization triuls on tricram. which do not appear su sequently in the yaired-associate task.

In a stidy test paired-associate task, Martin (1966) forced
one group of subjects to rehearse aloud the complete trieram stimulus during a short interval between the appearance of the stimulus and that of the response on study trials. A second group were required to count baciwards. It was found that the deleterious effect of backward countine did not differ over four levels of stimuls \bar{y}, and that there was no interaction botween stimulus i and intervenin: activity. Therefore, increasine stimulus availability (in the sense of stimulus recallability) did not affect the acquisition of associations difirentially over \mathbb{X}. These results to ether sugcest that although iadependent familiarisation with the aminal stimulus may assist in cainins experience with tricram stimuli, and perhaps a number of their possible perceptual encodincs, thus increasine the overall probability that a perceptual encodin response (and hence an association with the overt response) will be made, it does not a pear to di ferentially affect the relative availability of one alternative encoding to another for the purpose of incorporation into a response-producin association code.

In contrast, when repetitions of the stimuli occur in the context of on-goine paired-associate learaine, several experimental results indicate that the relative availability of the various functional encodines of a particular stimulius does alter, firstly towards deseneracy about the preferred functional version of the stimulus (a sort of "fccussine in" onto the preferred functional version) and then with overlearnine towards the inclasion of additional, alternative or more elaborate encodines. For example, a series of studies by Jàmes and Greeno (1967) employed compound stimuli com osed of a word and a CVC, paired with digit responses. After pretraining with the compound stimuli-digit pairs to various criterion levels, subjects were given a number of trials on a neir paired-issociste task. The pairs in this second tash were generated by brea isk dovin the original pairs into a word-digit pair and a CVC - digit pair , each stimulus retaining the response digit that had previously been assiened to the corresponding compound stimulus. The proportions of
word and CVC stimuli to whici no errors were comaitted on the second tas: wer compared. This proportion increased with pre-trainine for word stimuli, but remained constant at a very low level for CVC stimuli, except when a very large degree of pretraining had been administered, when it also showed an increase. It was also found that first-task learning could not be attributed to the word components of s imuli alone. These results sugcest that, as stated above, with on-eoing paired-associate learning, subjects tended to "focus in" on specific aspects (functional versions) of the compund stimuli (to some exteat on the word components), and it was not until a lare amount of overtrainine had been administed that non-preferred functional versions (the CVC components) appeared to acquire cue function. These results were replicated several times by James and Greeno, incorporatinc additional controls.

It has also been shown that with leaming, and certainly wit overlearnife, associations may form amun the components of any given stimulus (James and Greeno 1967; Postman and Grecnbloom, 1,67), and so it is possible that in the above study, improved second task performance on the CVC components with overtrainine may in part have been due to mediation throuich the word components. This possibility nevertheless still requires the relaxation of the selective process to allow encoding of the CVC components, and may be recarded as complementary to the encoding variability hypothesis.

4: 13 St.imulus Recognition.

Given that the nominal stimulus S can be variably encoded, and Given that a particular functional encodine is eicited on a eiven trial, tien it follows that if the learner encodes the stimulus 5 differently on the next trial, he will fail to recognise that stimulus as the sae stimulus that occurred on the previous trial. Lielton and Lartin (Lartin 1967b) utilised the Shepard-Teghtsoonian (1961) continuous recognition memory paradigm (see 3.2) to study the effects of a between-groups manioulations of trigram L. Hioh, medium and low- \mathbb{L}
lists were ade up, each of 160 CCC or CVC trigrams, each of which was presented twice at lass of $1,3,6,15$ or 30 invervening items. Intralist formal similarity did not vary over \mathcal{L}. It was found that recognition performance declined as lag increased, in agreement with the original Shepard and Teghtsoonian study, and that, furthermore, recognition increased as a function of list \mathbb{L} at all $\mathrm{la}_{\mathrm{b}} \mathrm{s}$, regardless of whether performance was expressed in raw frequencies, in a form corrected for false recugnition, or in terms of the information-processine measure d^{\prime}. These results subeest that the probaibility of mal:ing the same functional encoding response to a stimulus dereases as a function of the lag between presentation and test, but remains greater for bigh4 stimuli, as would be expected on the hypothesis that such stimuli posses fewer encoding alternatives.

Lore significantly, it was found that the false recognition rate for lists consisting of low-M stimuli markedly exceeded that of high lists. This result suggests tiat the functional encodin s made to bigh-M stimuli contained more information about the nominal stimulus than those made to low-i. stimuli, and supports the view expressed earlier that low-li stimuli are more fractionable and less well-inte rated than high-E stimuli. Thus, for example, the low-ili trigrem XAL might be encoded as ' X - vowel - L', and would therefore give rise to a false recognition of the trigram $X O L$, whereas the hich-w trigram IKP would almost certainly be encoded as the (word "mopl), and would be very unlikely to lead to the false recognition of the tricram intip. Thus, stimulus \mathbb{N} would appear to affect the E-phase in two ways; the perceptual fragmentation of low-M stimuli leads to poorer recognition due to encoding variability, and to an increased tendency towards false recognition due to incomplete coding.

The effects of E-phase variability on paired-associate learning may now be examined. The reconnition hypothesis stated earlier may be extended to A-phase effects by making the observation that if a particular encoded version s of stimulus S is associated with the overt response

R on trial re, and if a different encoded version s^{\prime} of that same nominal stimulus 3 is elicited on triul $m+1$, then S will not we recoenised, and furthermore, R will not materialise. This has been verified and replicated by harin ($1967 \mathrm{a}, 1967 \mathrm{c}$) usine a study-test pairedassociate paradiem. Eight trieram-digit pairs were presented orally for silent study at a 2 -second rate; on each trial, the eight studj- trials stimuli were randowly interaxed with 16 new tricrams and presented at a 6-second rate. Suojects were required to mate two responsec to cach test stimulus, firstly, a sibject had to press one of the t:o buttons to indicate whethe" he reconised the trisran as a studytrials stimulus, and seco. ly, he had to respond with the first dieit that came to mind.

In both studies ($1967 a, 1,670$) it was found that althoue reconition memory for study-trial stimili increased witiz trials, the probability of a correct responce eiven a fail re to recotnise the stimulus remained at chance level. This ras found to be so irrespective of the number of times the subject iad responded correctly on previous test trials (1067c).

In a further report (artin 1960) it was shovin that the false recognition rete of filler tricram increased sienificantly if the filler trigram in question had its first letcer in co won wit. s studytrials trieran. It was furthermore shown thet oiven false recoenition of sucin a filler trieram, the probability of emititinc the responize which was paired with tiae stuiy-trials tricram with the same initial lety e increased with triels as did correct respondina to stuciy-trials trigrams, althouch it was slightly lower at all re etition levels. These results strondy suceest that tia initial letter of the nominal stimulus was a bigh probability functio al encoding, althout the fact that intrision respondine to falsely-reco nieod. fill ere was slichtly belo: the level of correct respondin: to stuay-triule trírus vith the same initial letter suegests tat at least some false reconitions were not Eenenateà by iuitiul-letter encoủins.

The implication of these resclts is clearly that the overt response can only be elicited by an encoded, functional version of the nominal stimulus to which it has previously been associated. It is also worth noting that the recognition of study-trials stimuli in the above studies began in the $60 \%-70 \%$ rance on test trial 1 , and thereafter increased with trials to an asymptote. This suggests that the subjects' perceptual responses to stimuli, and consequent functional encodings, were more variable in early trials, ad that thereafter this variability decreased with practice durine on-coing paired-associate leariing.

Analagcus results to those ajove vere obtained by Bernbach (1867a) employine visual presentation in a continuous paired-associate task. Stimuli were tri rams made up from a set of nine consonants, and were counterbalanced for witmer (1935) meaningfulness, whilst responses were the digits 1, 2 and 3. Each experimental item received 4 anticipation trials, with an interpresentation lag of 2 , 5 or 10 trials. On each trial, subjects were required to make a stimulus recosiniti n response (old/new) followed by a digital response. It was found that both the number of correct recognitions, and the number of correct responses increased with repetitions, and that both measures of jerformance were higher for short lag items at all presentation levels, as would be expected. Nevertheless, it was found that the response rate was no better than cuessine if an item was ca?led new, irrespective of the number of occurrences of the item. Furthermore, the probability of a correct response was found to be an increasing function of the number of consecutive correct rec.gnition responses, indepen ent of the number of presentations. This sugeests that repetition is beneficial to the formation of associctions only if the stimulus is nerceived to be the same on each repetition; that is, th. same functional version of the stimulus occurs on eacb repetition.

So far, no mention has been made of stimulus ${ }^{4}$ effects in pairedassociate learning. In the study on stimulus recognition in paired-
associate learninc reported above（ نartin 1967c）stimulus $⿺ 辶 ⿱ 亠 乂 斤$ was varied witinin lists．It was found that high－：stimuli were better recognised especially at ligh presentation frequency，and that the probability of a correct response éiven a correct stimulus recognition was hicher at all presentation levels for hich－ \mathbb{L} stimuli．These results taken together yield the expected facilitation is paired－associate learnine for high－if stimulus material．However，the latter result appears to deny that the effects of stimulus in can be isolated in the i－phase， but Martin has pointed out that with low－i stimuli，there are，oring to the existance of alternative encodine possibilities，more different processing routes via wich recognition might ensue than there are processing routes via which correct responding might ensue．In other words，not every functional encodine that ：＂oula give recognition has necessarily become associated with the response，whereas with high－il stimuli，there is a ereater clance that the same functional encoding occurs on every repetition，and so repetitions will have more value in formine an association with the overt response，and there is a better chance that the encoced version sampled on a test trial is associated ：ith the response．

It was also found in this study that the false recognition rate was not affected by stimulus 1 ．This would a pear to conflict with the observations of Melton and Martin（Martin 1967b）reported above． However，in the Melton and Martin Study，stimulus \mathbb{K} was varied between lists，whereas in the Martin（1967c）study，stimulus M was varied within lists，and so it is possible that as many high－ \mathbb{I} as low－N stimuli could be falsely recognised as preceding low－1R study trials stimuli by reason of the incomplete perceptual encoding of the low－ \mathbb{M} stimuli． This result would not follow if stimulus \mathbb{M} were constant within lists．

Another apparent inconsistency is implied by these results，in that if stimulus recognition is a necesaary antecedent to association activation and is greatly affected by \mathbb{M} according to the proposed encoding variability hypotheses，then pre－familiarization with stimuli
should aflect stimulus recognitica, and therefore peirel-associate learrin, differentially wit: res, ct to , which as ve have seen is not the case. However, ..artin has areued that i.n the familiarization situation, the subject is attempting to learn the stimuli in suct a way a. to be able to recail them; thus the mode of operation of the $\mathrm{c}-$ phase is seen as not involvin selective encodine of particular aspects of the stimuli, but rather a more unifcrm encodine of those aspects, to the end tiat stimuli becom? serially integrated and hence Fore verbally reproducible. This could also have been the case in the continuous recognition study of Leiton and artin, even thouch stimalus u effects did a pear in performance. Th refore, although independent stimuluc learnine does impose ample experience with many (perhaps all) of th possible encodines of any fiven stimulu, and stimulus \therefore zay difierentially affect this independent stimulus learme, the operatio of the Bhase durine iniependent sti dus leamine is not seen as setting upon a conristent eacodiaf. Thus, althouch in a subsequent paired-associste task stimulus recognition ray be better for icher - stimuli, as a result of pre-familiarization, tine as oociution activatine poiror of any one encodine is initially Wea. owiag to its inrecuency of co-occurrence with the response terv. Therefore, althouth pre-familiarisation should proiuce an overall facilitation of p ireà-ncsociate learnine, due to improved sti:ulus recognition, it does nothin in the ":ay of selective encodinc, and hence should not affect subsecuent paired-associate learain differential y With respect to ... This argumint is consistent witio the results of the familiarisation studies revorted earlier.

Despite its obvious succese in accountine for the results reported so far, the encodint variability hyotliesis is still a fragile
structure, as most of these reshlts coula be accounted for b_{j} the more traditional view of stimulus $\ddot{\prime}$, that of associstive probability theory. Although the work of Uncerwood (1963) and Sheparà (1963) inplias sone validity for uartin's interaretation, the most convincine eviance that
the encodine variability hypothesis is correct comes from studies of the effects of stimulus \mathbb{M} in paired associate transfer experiments.

4. 14 Paired-associate transfer studies

In a study by :Sartin (1968b) two transfer paradigms were employed; the $A-\bar{Z}, A-B r$ task, and the $A-B, C-B$ task. In the former task stimuli from an initial paired-associate learnine tas: (A-B) appear in a second tas, re-paired with different responses from the orisinal response set. The scheme below is an example of this task:-

$A-B$	$A-E r$
$X O L-1$	$X C L-3$
$Z A G-2$	$Z A G-5$
$B E X-3$	$B E X-2$
$H I N-4$	$H I N-1$
KUT - 5	$H U J-4$

The $A-B, C-E$ task, employed as a control, involves an initi l paired-associate task ($A-B$), followed by a second task in which totally new stimuli are paired with the orivinal response set (C-B) for example:-

A-B
$X O L \div 1$
ZAG - 2
$B E X-3$
HIN - 4
KUJ - 5
$C-B$
TUZ - 1
FOQ - 2
GEX - 3
LTT - 4
QTH - 5

The encoding variability hypothesis predicts that although firstlist learning ($A-B$) should reflect the usual effects of stimulus 2 (that is, facilitation for high-if stimuli), there should be arkedly more negative transfer in the $A-B r$ tas for high-il than for low-i: stimuli relative to the $A-B, C-B$ control, as the low -12 stimuli would be more amenable to recodin n_{E} in the second task, and subjects would therefore not have to modify or overwrite any association code previously formed to link the first list encoded version of the stimulus

With the first list response.
Martin's list were made up of 6 CVC - dieit paires, stimuli being either high-ir ($100 \%_{0}^{\circ}$ Archer 1960) or low-2 (21% Archer) Four conditions were employed: A-E, A-Br high-N; A-B, A-Br low - N; $A-B, C-B$ high-M and $A-B, 0-B$ low-i. Twenty subjects were assiened to each of the four conditions. In each condition, the first (6 item) list A-B was leamed to a criterion of two successive perfect trials, 2(6/6). The second list, $A-B r$ or $C-B$ was then learned to the same criterion, followine which the original h-E list was re-learned to $2(6 / 6)$ and finally, the stimuli just seen, the A's were free-recalled.

As expected task 1 ($A-B$) learnin; was more rapid in terms of trials to criterion for high-ii stimuli; this result shows the usual facilitative effect of meaningfulness. Percent transfer scores from task 1 to task 2 were calculated for individual subjects using the formula $100\left(T_{1}-T_{2}\right)\left(T_{1}+T_{2}\right)$ (where T_{1} and T_{2} are trials to criterion on tashs 1 and 2 respectively) and from these, mean transfer scores were calculated for the four conditions and com ared statistically. In the $A-B, C-B$ conditions, similar levels of positive transfar pere found for high- and low-lif stimuli, and so the facilitative effect of 4 was maintained in $C-B$ learning.

In the case of the $A-B, A-B r$ conditions, it was found that a small amount of positive transfer was present from task 1 to task 2 for low- stimuli, and that negative transfer occurred for high-il stimuli; these transfer scores differed significantly. When transfer scores for the corresponding control conditions ($C-B$) nere deducted, it was found that the relative amoint of negative transfer in bigl.tim conditions was even more pronounced than in low-lif conditions.

It was also found thet the variability among individual suivject transfer scores from $A-B$ to $A-B r$ was sicnificantly higher for low-Li stimuli than for high-ill stimuli, which suEgests that the process underlying the smaller amount of negative transfer for low-í stimuli was nontheless more variable than that responsi le forthe ereater amount
of negative transfer for hich-Li stimuli. Again, this conclusion accords well with the hypothesis that with low-ir stimuli there is greater coding, and hence recoding, variability. By comparison, no difference between the variability of irdividual subject transfer scores was found between high- and low-i conditions in the $4-B, C-E$ paradigm.

In task 3, the relearning of the original A-E lists, it was found that releaming in $A-B, C-B$ conditions was more rapid for high-iin stimuli, but that there was no significant difference in the amount of transfer from task 1 to task 3 between high- and low-2 stimulus conditions; in both cases it was laree and positive. In the case of the $A-B, A-B r$ conditions, transfer from task 1 to task 3 was positive for both high- and low-N lists, but was significantly lower for highM stimuli; in other words, it was harder to get bac to the original $A-B$ pairings after task $2 A-B r$ learning when the stimuli were high-il. Again, this sugeests tat low- stimuli could be recoded, whereas associations made to high-M stimuli had to be re-learned.

The above transfer results are precisely in accordance with the predictions of the hypothesis that low-w stimuli can be encoded in a ereater variety of ways than can high-iik stimuli, and hence are able to provide a greater number of alternative recodine routes in a negative transfor situation. Notwithstanding the above utility of low-M stimuli in negative-transfer situations, far fever low-is stimuli were successfully free-recalled in both the $A-B, A-B r$ and the $A-B, C-B$ paradiems. This serves to emphasise the ouservation made earlier; namely that stimuli t be recalled are encoded differently to those whose function is to signal an overt response, and that furthermore the relative unavailability of low-il stimuli in a free-recall situation can be explained in terms of the hypothesis that they are processed in a more fractionated, less vell integrated fasiion than are high-ik stimuli.

It is worth notine that in the above study, the number of
perseveration errors in the $A-B r$ task (that is, wrong responses that would have been correct had the original A-jpairings still been in fonce) was significantly higher for low-ik stimulus conditions. This result would appear to conflict with the encoding variability bypothesis and Lartin was unable to explain it. This is because he made tie implicit assumption that if two functional versions of the same numinal stimulus are associated with different responses, then the subject should be able to determine which of these functional encodings is relevant to the present task. It is quite possible that on the early trials of an A-Sr transfer tasi, if the first tash encoded version of the stimulus occurs, leadinf to the elicitation of the original(inappropriate) response, then the subject may be able to "tag" that association code as no loner relevant, as part of the association re-learnin n_{G} process. If the first tash stimulus version is then elicited on a later trial, it is lifely that in the absence of a new association with the relevant response, the sutject will Euess from the remaining response alternatives rather than inowingly maie an ine propriate perseveration. This could account for the lower rate of perseveration to bigh-is stinuli, when the probability of the Eirst-task stimulus version is very high (if not unity) in the transfer task. In the same way, with low-if stimuli, the subject may adopt a strategy of tacjing the first list functional version of the stimulus as inapproprate. However due to encoding variability, he would have relatively fewer opportunities to do this to a particular functional encodin ${ }_{6}$. Altermatively, he may prefer to search around for an alternative functional encoding rather than waste valuable processing time in taseing inappropriate first list stimulus encodings in this way. Whichever of these hypothesis is accepted, the net result would still be a greater degree of perseveration to low-M stimuii than to high-ill stimuli durin an A-3r transfer task.

Transfer studies are important in that they justify Xartin's original bypothesis that low-al stimuli are more fractionable, and less
well integrated than high-i⿺辶 stimuli; in other words, that they give rise to a greater deree of encodine variabllity. It was remarked earlier that associative probability theory can account for the results of single list learaing situations with respect to stimulus in. However, if the argument that bich-if stimuli are more viable in leamine situations because they give rise to a greater number of associations that may mediate with the response is applied to the transfer study reported above, then it is clear that the ensuinc. predictions with respect to the effects of stimulus will be totally opposed to the observed results. This strongly sugeests that Nartin's interpretation of stioulus \mathbb{d} is correct.

The result that high-wi stimuli lead to a higher degree of negative transfer in an $A-B, A-3 r$ paradigm when compared with a control $A-B$, C-E paradigm than do low-a stimuli has been replicated by Lartin and Carey (1971); a similar, but non-sienificant effect was also found by Weaver, cCann and Wehr (197). On the other hand, Postman and Stark (1971) found that high-iik stimuli lead to less negative transfer in the above situati n. . Wartin (1972) has argued tat in some cases, learners may prefer to form new associations to old functional stimuli rather than part with established functional encodins, and that this peference may be to a lar e extent determined by tas! conditions.

Credence for this argument is rovided by the studies of derryman and Merryman (1971) and Schneider and Houston (1969). Both these studies made use of an $A-D, A X-B r$ paradigw, wherein an additional redundant component was added to each stimulus durine the learning of the transfer list. Lerryman and Lerryman found that their subjects opted to make use of te new cue, and in doing so rere able to reduce interference tetween the two tasks, whereas Schneider and Houston found that their subjects effectively ienored the new cue. It is possible that in the atter tisk, subjects found it easier to modify their associations to the first task stimuli than to form nev ones to the additional seconil task cues.

As a eneral theory of paired-associate learnin in phenomena, the $^{\text {en }}$, stimulus encoding variability hypothesis still has a lone may to go. There is at present an almost universal isnorance regardine the determinants of perceptual encoding. As intimated above, one relevant factor insofar as stimulus recoding is concerned may be the relative difficulties (imposed by tasi. variables) of stimulus recoding and of the formation of new, conflicting associations. However, even in a single list situation, there are still many questions to be ans:: ered. For example, to what extent is perceptual encoding determined by the subject's reaction to task variables, as opposed to straightforward contertual effects? If the subject "focuses in" on a preferred encoded version of the stimulus durins on-going paired-associate learning, to what extent is this determined by an active subject strategy of attemptine to find an unambicuous set of functional encodinss corresponding to the nominal stimuli, as opposed to same hind of passive, reinforcement process? Although Creeno (1970b) has argued (with data) that be response item of a paired-associate pair may be a factor in the deternination of the functional encoding of the stimulus, these questions have still to be answered.

Although ¿artin's formulation of the encodine variability hypothesis depends heavily on the use of the meaningfulness of tri ram stimulus material in order to form some kind of a-priori ranking of stimuli according to their encoding variab:lity, so that experimental verification of the hypothesis is possible, it must be ta en seriously as a general offect underlying paired-associate lea ning. The iypothesis could be applied to almost any form of unintegrated alphabetical or digital configuration, but clearly runs into trouble when attempting to deal with actual words. Ooviously homographs possess alternative perceptual encodings, but words normally appear to be well-integrated units of 10% meaningfulness. One possible sugeestion is that words may be encoded according tc acoustic, episodic or semantic properties, or that perhaps some form of encodine variability may derive from the possibility of the
perceptual encoding of a word being made at various levels within some :ind of hierarchical semantic structure, such as that proposed by Collins and Quillian (1972). Whether these rationales are accepted or not, it would be dangerous to consider the encodine varisbility hypothesis as a theory solely concemed with alphabetical trigrams, and to reject it out of hand when dealing the paired-associate tasks involving word stimuli.

4.2 Inter-pair orkanisation

In the majority of paired-associate studies, there appears to be an implicit assumption that subjects attenpt to memorize each pair individually, and that in particular, between-pair organisational processes do not exist. Battig (1966) has argued that a numier of results involving paired-associate list learning provide evidence of active subject grouping during on-going learning on the basis of the "state of learning" of pairs.

For example, in a study by Brown and Battig (1962) the serial positions of items were randomly varied from one repetiti n of the list to the next in the usual way. However, when a subject had made his first correct response to an item, the position of that item in the list was thereafter held constant. This condition produced superior performance to the normal varied-order procedure. Reversal of this procedure, so that each pair was presented in the same serial position only until responded to correctly and was subsecuently varied in serial position, also produced facilitation as compared with a normal varied-order condition (Battig, Brown and Nelson, 1963). In the lat er study, the facilitation was slightly greater than that produced by a constant serial order on all trials for all items. These results suigest that it was not so much serial order per se that produced faciltation, but the fact that serial order co:ld be used as a cue to the state of learning of an item.

In a study by Schild and Battig (1966), bidirectional conditions were employed, under which the stimulus and response items of each pair were
unsystematically reversed from trial to trial until a pair was first responded to corvectly, after which the pair directionality remained constant on all trials. This condition produced less errors per pair than an average value taken from a standard unindirectional procedure and a bidirectional condition, wherein the stimulus and response term order of all pairs was unsystematically varied throughout.

In a study by Brown, Battig and Pearlstein (1965), facilitation was found when new second and third letters were added to an oricinel single.letter stimulus term for a given pair immediately following the attainment of a specified performance criterion (either one or three successive correct responses). Of course, in all these studies it is quite possible that facilitation r sulted from cues to the learning difficulty of pairs (or their adequacy of encoding) rather than their "state of leaming". Horever, such a distinction is merely a semantic quibble, as to all intents and purposes, they would be equivalent in so far as tellin the subject where to direct his effort. However, none of these results can be ta en as evidence that subjects actively group items of equal difficulty togetier during on-going learning.

In an experiment by Battig and Dernstein (1965), subjects learned a 12-item list which was either bomocenous (all item pairs of equal learning difiriculty) or heterocenous (items included both rotds, and CVC's of minimal association value). Subjects "ere then given 12 individual cards, each containing one of the pairs, and astisd to arrange them into eroups on any basis they could. Results suge ested that each subject tende $\div 0$ group the aards on the basis oi his own dif iculty in learnine them, although thie effect was more pronounced in the heterogenous list condition. Batiig (190) interpreted this result as evidence that subjecto employ an active roupine strategy durine on-coinc paired-associ.te learning.

This interpretation, however, is suspect. The fact that subjects
are demonstratably able to erou, iteme on a basis of difficulty does not necessarily mean that they actively employ this ability durine learning. In fact, as !erriot (1974) has pointed out (see l.25) it has not even been established tiat such a stratesy is employed in ireerecall, where the evidence is somewhat more convincing. However, these studies do show that subjects become aware of the learaing or encoddifficulty of items when leamine lisis, and that furthermore they can mal.e use of cues to such difficulties durine on-coince learninc. Howeven, such information may just indicate to them where to direct their effort, since there is no way that, in efneral, encodin paired associates in groujs would be of value at test.

4.3. The typotheses

The various hypotheses to be advanced to account for the beneficial effects upon memory performance derived from the spacin of presentations in a paired-associate task must all be made in terms of a ceneral theory of paired-associate forgetting. Thus, in the followine section, the theory tentatively outlined in section 1.33 will be restated in the light of the resalts discussed earlier in this chapter. This theory will thus provide a general conceptual baciground against which to examine the various hypotheses.

4.31 A theory of aired-associate fongotting

Although the theory to be stated is rincipally an encodine theory, it makes a number of implicit assumptions regarding short-term memory (STA) which should first of all be stated. Short-term retention effects are seen as possibly reflecting three different underlying factors. The first of these is some ind of echoic sensory store or structure in which traces are seen to decay over time. Secondly, an active conscious rehearsal process may be responsible for short-term retention. A distinction is made between "passive" or "rote" rehearsal, by which the nominal stimulus or a number of nominal stimuli may be cycled through attention by sub-vocalisation, and "active" rehearsal, which operates to hold functional and nominal aspects of a stimulus
in attention whilst encoding ta es place. The rote reiensal process is clearly of limited capacity, because c_{i} the nature of echoic decay, whilst the active, or encoding, rehearsal process is seen as cein limited to some extent by the assumption that it is an attentional, real time process. Thirdly, short-term retention effects may reflect memory proper (whic will be called INLi on te grounds that it is responsible for long-term performance, to the extent that certain episodic and articulatory-acoustic - phonemic aspects of an encoded stimulus may be subject to an enornous amount of intenference and hence rapid decay. For the saie of brevity, all these poteitial processes will be grouped toeether and called short-term memory (ST:i).

In a typical paired-associate memory procedure, the subject is presented once only with each vair, and the followine sequence of events is hypothesised to occur. Firstly, some perceptual response is made to the nominal stimulus, and this percestual response will to some extent determine the functional, or encoded form, of the stimulus. Since it is thought that much of the difficulty that occurs in paired-associate memory stems from an inability to recognise th stimulus under test or to discriminate it from otier, similarly encoded stimuli, attention will principally be focussed on stimulus encôding. However, it should be borne in mini that a functional encoding of the response must also be mide, and furthermore, an associative encodine which will link it with functional aspects of the appropriate sti-mulus.

It is possible that certain functional aspects of the stimulus are related t the response fairly early on in the encoding process, since there is some evidence that stimulus ncoding is detemined to some extent by the response. Although it is not nown exactly where in the sequence association codes are formed, it is fairly certain that a second stage of stimulus encodinc takes place, wherein encodincs of previously-presented stimuli that are similar to that of the current stimulus becone available and are taken into account in completine the encoding of the cur ent stimulus. It is postulatei t at these encodin ${ }_{t} s$
are "cued" both iy semantic aspects of the curvent stimulus, and by episodic aspects oit the current presentation event which contribute to the current perceived finctional stimilus. Consecuntly, the subject may find it necessary to elaborate, or even chance, his current stimulus enooding in order to discritrinate it from previously-presented stimuli. However, it is postulated that in all projability, these previous encodines are not modified or elaborated, since if they were, one would expect far swaller retroactive interfer nce effects relative to proactive interierence effects than actually occur. Thus, at test, when a perceptual response is mede to the nominal stixulus that is ambiguous, in that it shares functional aspects wit_ several stiruli, then the stimulus will be identified as that whose encoding possesses the nost similar episodic features to the functional sticulus at test, all other things beine equal.

At first clence, this theory appears to contradict the general finding that stinuius encoding durine on-going paired-associate learning is reductive in nature. However, it should be borne in mind that in a list-learning situation, pairs are resented repeatedly in randorized order, so that the subject will rapidly eain some appreciation of the total stimulus set which he has to discriminate, which after all comprises a relatively small numier of items. Durince a menory task, however, the subject has to discriminate each etimulus from a potentially very large set of not-yet-seen stiruli. Thus the list-learnine process of "focussing in" on a specific preferred version of the stirulus may not be typical of memory tasks in ceneral. Fuithermore, codires míbht well be elaborated in terms of episodic cues that point to the preferred semantic encodine that these list-learning studies have isolated; clearly, it would be extremely difficult to detect the episodic fe tures by which basic semantic encodines may be elaborated.

Although this theory is by no means comlete, it adequately describes the effects of prior and posterior activity on paired-associate mamory performance, and is certsinly consistent vith the current state
of knowledge concernine stimulus encodine. It will therefore suffice to serve as a conceptual basis for the hypotheses now: to de advanced.

4.32 Consolidation

In its most simple form, the consolilation hypothesis states that a memory trace is able to ain strencth in sore way every monent it remains in memory. In other words, every moment thit a memory trace has failed to decay increases its subsequentresistance to decay. Close examination of retention curvos often reveals that the rate at wich performance declines itself declines as a function of the retention interval (e.. . "ickelgren, 1973) and this is often taken as evilence of consolidation. However, it should be pointed out that retention curves are almost always obtained by averagine data across many cubjects, or by averaginc data for a single subject across many observations ta en across a period of time. Thus, if foretting rates varied between subjects, or vithin a suoject over a period of tine, one would expect to find a decline of forgetting rate with retention interval, since witl a longer retention interval more points arisinc from "good" suojects, or each subject's better part of the session will contribute to the data. In addition, it is quite possible that there are various levels at which material can be enc ded; so items wil decay rapidly, others more slowly. Acain, tie loneer the retention interval, the ereater the contribution of slowly-decayin itens to the data, and the slow the observed rate of forettinc. It woald be almost impossiole to desien an experiment to discriminate between consolidation and a hypothosis based upon a sampling distribution of foretting rates.

In addition to these arguments, the resulte of Bjorl: and Allen (1970) discussed in section 3.33 place such a consolidation hypothesis beyond consideration. However, an alternative form of the consolidation hypothesis has been advanced by Athinson and Shiffrir (1968) and a mathematical model based on this hypothesis has been applied with Ereat success to the oured-associate experimnts of at inson, Brelsford and Shiffrin (1967) and Brelsford, Shiffrin and atrinson (198)
described in Chapter One. Stated simpl:, the Cyothesis claims that items entering the memory system from a sensory store are placed in a fixed capacity "rehearsal buffer". Itens in the buffer renain there until displaced by the entry of nev items. A lont-term memory trace is ascumed to be built wile an iten remains in the buffer; the longer the stay in the bufier, the greater the long-term trace strength. Once an iter: has left the buffer, then its lon-term trace is assumed to decay in some way.

Thus, this theory mould explain the improvenent in erformance on paired-associates with spaced presentations in teris of the yypothesis taut items continue to be learned durine the presentations of successive later itecs regardess of the state of learning of these itens (since they may still remain in the rehearsal buffer after their own presentations trial has ceased). Tus, if on averace an item remained in the buffer for say, tert trials, then with an interpresentation $\operatorname{spacin}_{\text {a }}$ s of less than ten, items woild not receive their full complement of proc ssing. They would be optimally processed with an interoresentation spacing of ten trials, and would receive maximal processing but :oulu also suffer from decay w-th an interpresentation spacinct in excess of ten trials. The theory also predicts an interaction of interpresentation and retention interval of the ind found by Peterson, Hillner and Saltzman (1:62) (see 1.44 and Ficure 9), since at whort retention itervals, performance will be eihanced oy recall from the rehearsal ouffer, and an item is more li. ely to te in the buffer after two massec, rather than tro spaced resentetions.

There are a number of objections to this buffer tineory as a General explanation of the effects of the spacing of presentations in pair d-associate memory. In the finst place, it should be pointed out that the studies that the theory was desiened to explain all involve an extremely slow rate of presentation (1l-second anticipation trials) which might well allow the subject ample time to rehearse
previously-presented items, ven whilst procescin the current item. Furthermore, in these studies short retention intervals were far more frecuent tan long ones (another factor that might lead the subject to employ a shared-rehearsal strategy), and in addition, the material employed (two-digit number stimuli and alphabetical responses) would not be easily amenable to deeper forms of encoding. There is considerable doubt that shared cyclic or sequential rehearsal would be a significant factor in such studies as that of Peterson, Wampler, Firkpatrick and Saltzman (1963)described in 1.44 when a 2 -second presentation and test rate was emplcyed, and furthermore, stimulus material consisted of highly encodable common words. Nevertheless a beneficial effect of the spacinc of presentations is found in such studies. Furthermore, most of the stuicies involving spacine in paired-associate memory bave employed a CPA procedure during which the material to be learned is constantly refreshed, and experimental sessions are relatively lons. It is unli ely that a shered rehearsal strategy would be maintained for very $1 \mathrm{n}_{\mathrm{E}}$ in such situations. Even durine the learnine of relatively short free-recall lists, (incidentally, a situation in which shared, secuential rehearsal is an even more feasible strategy than in paired-associate procedures, it has veen found that sujjects are unable or umilling to maintain a hieg rate of rehearsal from the beginnin, to the end of the list, and that inieed the frequency of rehearsal declines monotonically with list josition (Rundus, Loftus and Atkinson 1970).

4.33 Multiple Encoding

The multiple encodinc hypothesis as applied to the sacin of presentations in paired-associate memory is essentially identical to that pro ounded by ixeiton (1970) to explan spaced presentation effects in free-recall (see 3.14). The hypothesis basically states that as the interpresentation interval increases, so the contexts in Which the successive presentations occur vecome les correlated, increasing the probability that different encodings of the item are
formed on each presentation. Consequently, on a subsequent test, there will be a greater chance that the eerceived functional stimulus is recognised as one of these encoded forms, and thus the response will materialise. In other words, the hypothesis states that the spacinc of presentations indirectly serves to increase the numier of potential retrieval routes to the response.

Such a hypothesis appears to conflict with the observation that in list-l carniné paired-associate studies, suojects tend to "focus in" on one particular encoding of the stimulus during on-going learning (See 4.12). However, there is even more convincinc evidence that the hypothesis is false, which comes from a recent study by Schwartz (1975), who employed lists consistin of 16 pairs, the stimulus and response elements of which were letter bierams. For each bieram pair, there were two corresponding word pairs. The stimulus word of each pair began with the two letters constitutine the correspondine stirulus bieram, and a similar relationship existed between the response words and the correspondin response bieram. Furtherwore, the word pairs were selected from word association norms; the response rord of each pair was one of the six most common normative responses to its stimulus word. An example of one of Schartz's iferam and corresponding word pairs is:- AR-LE, arm-leg, arrive-leave.

Four conditions were tested in an unmixed list, 2×2 factorial design. The two factors were presentation (massed VS distributed) and coding (varied VS constant). In the massed presentation condition, each of the 16 bigram pairs was presented twice in succession, whilst in the spaced condition, the list of 16 pairs was resented once, and then repeated in the same order, so thet there were al ays 15 presentations of other bigram pairs irtruding between the two successive presentations of any particular bigram pair. Pairs were presented visually at a 4 -second rate. On each presentation trial, the display constituted a bigram pair, beneath which apeared one of its corresponding word pairs. In the constant codinc conditions, the same word pair
appeared on each of the tro presentations of the bigram pair whilst in the varied codine condizion, a difierent corresponding word pair accomparied the bigram pair on each presentation.

Subjects were in tructed to read aloud both the bigram and the word pairs, and to use the words to help remember the bi ram pairings; they were also informed that paired-associate memory of the bicran pairs mould subsequently be tested. After the 32 exposures which constituted the presentation of the lists, subjects were re uired to perform a short distractine tas (numicer readins:) in order to remove short term recency effects from performance, and were then civen a retention test. This consisted of a sheet containing all 16 bisram stimuli against each of which subjects were recuired to write down tie appropriate $\mathrm{bi}_{\text {i ram }}$ response. Cnce this had been completed, su jectis were asked to write down the correspondine :rord pair to eacis bigram (or one such pair in the case of varied encoding subjects).

It was found that, given a correct bigram response, the overall probability of correctly producing a correspoiding word pair yas 0.984, which stronely suggests that sujjects were makine use of the particular semantic e codins (i.e. the word pairs) that the experimenter had gone to such great pains to provide.

In terms of bigram responge performance, it was found that in both varied and constant codin conditions there was a sienificent spacing effect, with distrituted presentations leadine to superior performance; furthermore, there was no sienificant interaction of sracine with codine. Of course, Schwartz confounded spacin_ with sequential effects in this stud, but oven so, codin ${ }^{5}$ did not differentially affect verformance differences with swacine. However, the most damacing result for the multiple encodinc hypothesis lies in the finding that, in both spacine conditions, constant codine produced superior performance to varied codine. In otier words, in a civen spacing condition, it was better to practice the same encodin, twice than to form two different ones.

Although Schwariz claimed to ave demonstrated the superiority of spaced to rassed presentations in an unixer list study, thereby casting considerable doubt upon a shared rehearsal hypothesis as well, it has already been pointed out that spacing in this study vias confounded with sequential factors, renderine such a strong interpretation of the results doubtful. Nevertheless, the result that the varied codine condition produced inferion performance clearly renders the multiple encoding hypothesis untenable.

4.34 Differential Encodinc

The differential encoding hypothesis can have a mumer of equally feasible, alternative underlyine rationales. Stated simply, it claims that if an item is presented again after a short-interpresentation interval then that item is lis ely to be encoded less efficiently that it would have seen with a loneer presentation interval. Three distinct and separate positions may be adopted. In tho first place, differential encodine may be regarded as a passive process, whereby at shont interpresentation intervals, "bad" or int rferenceprone encodines that occurred on the first presentation miGht survive sufficiently on re-presentation to be employed again; hence at shorter interpresentation intervals, Jad first presentation codes will survive because the subject rerely employs them acain on the second presentation. A more active view may be taken of the subject's role, and it nay be postulated that if a bad code survives to the second presentation, then the suoject believes he has adequately processed the item, and uses his time either to process so ething else, or to take a rest from processine. Finally, it may be postulated that at lone interpresentation intervals, the sibject is ceierally less confident in any survivine first presentation encoding, and is consequ ntly motivated to improve them. BEain, when a first rresentation encoding survives in which the subject has confidence, he may oither devote his time durine the second presentation to processinc other itens, or he merely may rest and do nothing. It is proposed to set aside the
question as to what te subject does if for some reason he doesn't process a currently presented item, althouich as has been pointed out (see 1.43) there is very little evidence that other items are processed durine the virtually useless representation trials on short-spaced items.

Evidence from paired-associate retention curves (see 1.32 and Ficure 1) sugeests that there are only two types of code; essentially stable long-term codes and essentially rapidly-decsyinc short-term ones. Consequently, the problem in the first two hypotheses is to find some way of determinine how loné a rapidly-decayine short-term encoding survives to the extent that it will be rerpoduced on a representation. There are three possiole positions; firstiy, a "bad" code will carry over onto the second presentation as lonf as it will support recall; secondily, such an encoding will carry over as long as the stimulus encoding survives, since this will ten to result in the same association being formed; and thirdly, such an encodinec will carry overa longer interval than it will support retention, and a shorter interval than it will support stimulus recognition.

It may be quite feasible to discriminate between these three positions experimentally, but no ouvious method based on behavioural data suEcests itself as a way of discriminating vetween the two rationales, namely, that a jad code way be maintained or reproduced on a re-presentation either because the subject just can't help rep oducin the encodinf, or because he doesn't know enouch about the encoding to decide that its inadequate. Doth rationales predict that once a sufficient interpresentation interval has elapsea, the bad encodines will not be maintained, either because the subject just can't help thin ing of a new one, or because he recoénises the bad encoding for what it is, and actively tries to find a neiv encodinc.

The third rationale would predict on ability on the part of the subject to improve an even quite stable encodincs at a sulficient interpresentation interval, so that the lon--aru forie.tine rate
after a second presentation should be slower then ve longoterm fretting rate following a single prese tation, and should furthermore decline as a function of interpresentation interval.

4.4 Sumary

A number of alternative lypotheses concerning the effect of spacing presentations in aired-associate memory have been proposed. It is considered that in ceneral, differential encoding hypotheses offer the simplest and most general explanations of the effect. In particular, it has been arsued that a consolidation hypothesis based upon a serial shared rehearsal process may only apply to situations in which a slow rate of presentation is paired with a preponierance of short retention intervals, winist a multiple encodine hypothesis is almost certainly erroneous.

A mumber of discriminable rationales for a difîerential encodin. theory have been isolated as being ecually feasible explanations of the spacine effect, as follows:-

1) On the hypothesis that some aspects of inadequate first prasentation encodincs may somehory survive until a representation, leadine to the maintenance o the inadequate code, it is possiole that
a) Such an encodine will be maintained if it can support recall on the secone presen ation.
b) Such an encodine will be maintained if the oricinal stimulus encodine survives until the second presentation
c) Such an encodinf wil? be maintained if the second presentation occurs sometime after the encoding has ceased to support cecall, but the encoding may not emaintained over all interpresentation intervals at which stimulas recognition will occur. In particular, at lone interpresentation intervals, t ie surviving stimulus encodine may no loneer evoke the oricinal association encoding, or the subject may reco-nise the inaderuacy of the original association encoding.
2) Alternatively, the subject may be dissatisfied with his first
presentation encodin at lonc interpresentation inte:vals, even though such an encoding may still support recall, and he may consecuently be motivated to improve it.

The following experiments were performed in order to attempt to discriminate between these hypotheses.

Ohemen AVE
THE P.CEBTI KPRITNT,
The three experiments reported here were designed to provide data upon tie basis of which to ciscriminite setiven the various hypotheses outlined at the end of the previous chapter.
5.1 Experiment 1 .

It has been su gested earlier (see 1.44) that a particulary sensitive indication of the effect of iaterpresentation spacing may je provided by an examinction of perform:nce at final test conditional upon performance on a test imedi-tely precedin the second of tro preseitations. Although Young (1965) included such conditions as part of his more complex study, unfortunately it apoeared that he tested insufficient replicates of t ese conditions to odserve really stable conditional performance effects. ixperiment 1. was desi ne to correct this oraissio...
5.11 ethod (䰚p. 1.)

Subjects The nine subjects employed in this study were underधraduate and postgraduate students at Stirling Univensity, who were paid a small fee for their participation in the experiment. all nine subjects were experimentally naive.

Waterials. The stimulus materials employed in this stidy were selected at random from a stimulus pool of 886 cormon monosyllaioic Inglish words of 3-4 letters (the pool may be found in bypendix 1). Responses were the integers 1-15.

Apparatus The lists of material were prepared in aper tape form on Stirling University's Elliott 4130 computer. These tapes were interpreted on a standard teletype machine, which had a cardboard mask fitted to it so that only one line of print was visible. The rate at which the display in the "window" of the nas.. was updated was controlled by havine a teletype punch runouts for the desire. period (wail toinc this, the macine carriage remains stationary). A line-feed character on the paper tape served to up-date the visible
display.
Decause of the great volume of noise generated by the teletype the entire sequence output on the teletype was filmed usinc standard videotape equipment. This process inciaentally allowed the experimenter to check each list for errors defore actually presentine it to subjects. During the experiment, the videotape was played back over a closed-circuit television screen, Eiving a display about $\mathrm{I}^{\prime \prime}$ y 6 ". Although subjects sat some distance away from the screen, they all reported that they coild read the display without difficulty.

Procedure. A study-test CPA paredign was employed. Six lists ware prepared using an "interleaving" procedure as described in section 1.31. Each critical iter received two presentations (or study trials). A test trial (T_{1}) occurred irmediately prior to the second presentation $\left(P_{2}\right)$, and a final test trial $\left(T_{2}\right)$ always occurred after an interval of 8 intruding trials on other iters following P_{2}. The interval between the first presentation $\left(P_{1}\right)$ and the first test trial (T_{1}) was varied accordine to condition; ten interpresentation spacincs were employed, namely $0,1,2,3,4,5,6,8,12$, or 16 intruding trials on other items. A typical schedule may be depicted as follows:-

The interpresentation interval i takes values as described above, in the range 0-16.

Each of the six lists comprised ten o erlappine blocks. Each of the ten spacine conditions occurred once in each block, in a randomlydetermined order. Prials towards the end of one block overlapped slightly with trials at the becinnine of the next block. This procedure ensured that the virious spacinc conditions would be evenly distributed through the list. The stimulus word for each item was selected at random (without replacement) from the stimulus pool. This meant that each critical stimulus occar"ed on only four trials; two study trials and two test trials. Each stimulus word was randomly paired with a response
in the rance of 1-15. The same response aypeared with the word on each of its two study triuls. Where vacant list positions were left by the interleaving process, dimmy "filler" pairs were presented. Such dummies comprised a randomly-selected stimulus word paired at random with a response inteser in the rane 1-15. Iio dumay stimulus was presented more than once. Thus, no word was employed nore than once in a list. Furthermore, diferent words were used in each of the six lists.

Bach subject was tested on all six lists. Due to prectical difficulties encountered in arrancinc; individual sessions, it was necessary to test the subjects as a group. This unfortunately meant that all subjects were tested in the same order on all six lists. The subjects were instructed to read to themselves everytiling that they sav on the display, and to respond to test trials by writine down the appropriate response (Euessinc if necessary) on a prepared response sheet. The response sheets eaployed comprised rows of ten boxes, in which subjects were to write their responses. After every ten test trials, the experimenter cued the subjects to besin a new row of their response sheetr. This procedure was adopted so that if a subject accidentally omitted a response, only one row of the response sheet (involvine ten responses) would be lost. Defore the experiment proper, subjects were given a short practice session after which they were allowed to ask questions about any points in the instrustions that they didn't fully understand. The subjects were then tested on each of the six lists in turn; each list lasted for about 20 minutes, and there was a fivemimute breal: between successive lists. All the lists were presented at a rate of 1 (study or test) trial every 2 seconàs.
5.12 Results oi Exp. 1.

The items occurrine in the first and last block of each list were omitted from the analysis; the first block served as a "primacy buffer" and short practice session, whilst the final block was omitted because it contained large mumioers of sinely-presented filler items,
and was thus untypical. This meant that there would be 48 pairs contributing to each condition; it seemed reasinable to hope that the relatively large sample of material, plus idiosyncratic subject effects would more than compensate for any systematic biases that might be introduced into the data by the fact that all subjects vere tested on the same lists in the same order.

It should also be mentioned that any subject item which had a missing response was ornitted from the data. ihis meant that in general, the total numers of observations varied from conition to condition, and in addition, that subjects dic not contribute equal mumbers of observations to each condition. It should be borne in mind when following the analysis that the interval i between P_{1} and T_{1} is both the T_{1} retention interval, and the effective interpesentetion interval (since P_{2} always followed immediately after F_{1}). Furthemore the interval between P_{2} and the final test T_{2} was al ays 8 intrudin (study or test) trials on other items.

A useful notation that will be employed tiroughout is to represent an error on a test trimi by the symbol Fi (for "wrong") and a correct response by the symbol C (for "correct"). In addition, a number may ba subscripted to indicate the trisl to which the symbol refers, For example, C_{1} represents a correct response on T_{1}, whilst $W_{1} W_{2}$ represents the response sequence "wrong on both T_{1} and T_{2} ". Consequantly the data from this study may be expressed as proportions of suoject item responses falling into the various response categories.

The overall results of Exp. 1. are sumrarized in Fable?. The proportions were calculated across subjects and lists. The symbol n refers to the total number of observations in each spacing condition. Clearly the proportions of items falling into the categories (${ }_{1} \mathrm{C}_{2}$), $\left(C_{1} C_{2}\right),\left(W_{1} W_{2}\right)$ and $\left(C_{1} C_{2}\right)$ must sum to unity in any particular condition. The T_{1} and T_{2} performance scores were obtained by addin the proportions

TABLE 8

Results of Experiment 1.
$\frac{P_{1}-T}{}$
$\frac{\text { Li }-G}{}$
0
1
2
3
4
5
6
8
12
16
\underline{n}
412
413
420
418
417
420
417
412
413
414
$\operatorname{Pr}\left(W_{1}{\underset{C}{2}}_{2}\right)$
.005
.145
.219
.196
.158
.138
.132
.202
.179
.201

$\operatorname{Pr}\left(\mathrm{C}_{1} \mathrm{C}_{2}\right)$	$\operatorname{Pr}\left(W_{1} W_{2}\right)$
.456	.066
.380	.262
.321	.357
.311	.426
.391	.362
.383	.424
.441	.357
.396	.357
.392	.378
.333	.406

$\operatorname{Pr}\left(\mathrm{C}_{1}-2\right)$
.473
.413
.213
.102
.102
.067
.067
.089
.055
.070
, 070
.046
.051
.060
$\frac{\mathrm{P}_{1}-\mathrm{T}_{1}}{\mathrm{LAG}}$
$\operatorname{Pr}\left(\mathrm{C}_{1}\right)$
.930
.593
.424
.378
.480
.438
.511
.442
.443
.394
$\operatorname{Pr}\left(\mathrm{C}_{2}\right)$
.461
.525
.541
.507
.549
.521
.573
.597
.571
.534

$$
\operatorname{mr}\left(C_{2} / C_{1}\right)
$$

$$
\mathrm{Pr}_{2}\left(\mathrm{C}_{2} \operatorname{NH}_{1} 2\right.
$$

6
$\frac{\mathrm{F}_{1}-\mathrm{I}_{1}}{\underline{\mathrm{IGG}}}$
Perseverations
.370
.185
.293
.320
.272
.298
.268
. 259
.295
12
. 369
$\operatorname{Pr}\left(C_{1} C_{2}\right)$ and $\operatorname{Pr}\left(C_{1} i_{2}\right)$ and the proportions $F r\left(C_{1} C_{2}\right)$ and $I r\left(i_{1} C_{2}\right)$ respective'. y , whilst the conditional proportions were computed in the usual way; e.g. $\operatorname{Pr}\left(C_{2} / C_{1}\right)=\operatorname{Pr}\left(C_{1} C_{2}\right) / \operatorname{Pr}\left(C_{1}\right)$. In addition, perseveration errors are listed for the ten spacine conditions; these are merely the proportions of ($\left(i_{1} i_{2}\right)$ iteas on which the same incorrect response integer occurred on both T_{1} and T_{2}. when examinine these data, it should be borne in mind that the prosability of makin a corruct response by chance (or suessinc) is just the inverse of the number of response alteratives; i.e. $1 / 15$ or .067 .

Two methods of anal. sis were adopted. In the first place, in order to gain a rough impression of the trends present in the data, the various performance scores for each condition were computec for individual subjects, and the r-sultine proportions were subjected to a subjects x conditions analysis of variance. Essentially, the data may je suruarized by the tiree statistics $\operatorname{Pr}\left(C_{1}\right), \operatorname{Pr}\left(O_{2} / C_{1}\right)$ and $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{N}_{1}\right)$, althouch the proportion $\operatorname{Fr}\left(\mathrm{C}_{2}\right)$ was also analysed in this way because of its obvious interest. It shoulci be stressed tat $\operatorname{Pr}\left(\mathrm{C}_{2}\right)$ merely measures the proportion of correct responses on T_{2} recardless of performance on T_{1}. Therefore, the conitional proportions $\operatorname{Pr}\left(C_{2} / C_{1}\right)$ and $\operatorname{Pr}\left(C_{2} / W_{1}\right)$ will serve to provide additionsl info:wation on the relationship of $\operatorname{Pr}\left(\mathrm{C}_{2}\right)$ with interpresentation spacin i, since performance on T_{1} will give some insight as to the state of a particular item when its second presentation P_{2} occurs, as P_{2} in eaiately succeeds T_{1} in all coniitions.

The analyses of variance are all prasented in Fable. 9.

PLE 9

Analysis of Variance by Suojects for ixp. 1.

1. $\operatorname{Pr}\left(C_{1}\right)$

Source	SOS	DIII	V2	逐事	\underline{F}
S	2.6826	8	0.3353		
${ }_{\text {T }}$	0.5691	1	0.5691	8	58.699***
T_{Q}	0.4343	1	0.4343	8	14.612 **
T_{H}	1.1404	7	0.1629	56	29.916***
$\mathrm{SXF}_{\mathrm{L}}$	0.0776	8	0.0097		
SXP_{4}	0.2378	8	0.0297		
SxT:	0.3050	56	0.0055		
TOTAL	5.4467	89			

2. $\operatorname{Pr}\left(\mathrm{C}_{2}\right)$

Source	Sos	D21	VE
S	3.5672	8	0.4459
$\mathrm{T}_{\text {L }}$	0.0289	1	0.0289
TQ	0.0550	1	0.0550
T_{H}	0.0361	7	0.0052
SXP_{L}	0.0213	8	0.0027
SXT_{Q}	0.0313	8	0.0039
$\mathrm{SXT}_{\mathrm{H}}$	0.2320	56	0.0041
TOTAL	3.9718	89	

DF2 $\quad \underline{F}$
8 10.869 *

8 14.057 **
561.244 ir .3.
-
3. $\operatorname{Pr}\left(C_{2} / C_{1}\right)$

Source	S0S	DFI	VE	DE2	F
S	2.3081	8	0.2885		
T_{L}	0.5490	1	0.5490	8	54.801 ***
TQ	0.4080	1	0.4080	8	28.925 ***
m_{H}	0.1301	7	0.0186	56	1.925 N.S.
SXIL	0.0801	8	0.0100		
SKP ${ }_{\text {Q }}$	0.1129	8	0.0141		
$\mathrm{SXP}_{\mathrm{H}}$	0.5403	56	0.0097		
FURAL	4.1291	89			

This 2 continued..

4. $\operatorname{Pr}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$

Source	SCS	271	VE	DiP	F
S	1.6221	8	0.2038		
T_{L}	0.1170	1	0.1170	8	9.441 *
T_{Q}	0.1083	1	0.1083	8	8.484 *
T_{H}	0.6267	7	0.0895	56	9.093 **
$\mathrm{SXI}_{\mathrm{I}}$	0.0991	8	0.0124		
SXT_{Q}	0.1021	8	0.0128		
$\mathrm{SXT}_{\mathrm{E}}$	0.6195	56	0.0111		
fotal	3.2946	89			

The analyses were performed on the raf proportions observed for individual subjects, in order to retain the teaningfulness of the linear and cuadratic components of the syacine interval. Thus, T_{I} represents the linear effect of the $F_{1}-{ }^{-5}$ intervel i on the particular statistic, $T_{\text {is }}$ the uadratic effect, and T_{H} the higher order or resicual effects. There are obvicusly stron theoretical objections to submittine raw proportions to analy is of variance, not the least of which corcerns the enomous heterojeneity of sincle plot variances , hich :ilill result, However, it should be pointed out that the mithin-subject proportions were cener lly based on different numbers of observations in any case, and no appropriate transformation exists in this case. Funtherwore, it shoula be restated that these analyses are only intended as a rouch cuide; more acceptable statistical methods will also be applied. In addition to the analyses of variance by subjects, similar analyses of the virious proportions computed by lists across subjects were also carried out, and these yielded almost identical results to the analyses reported, althouih uniortuantely

FIGURE 14

Proportions of correct responses on T_{1} and T_{2} as a function of interpresentation inte val in Exp. 1.

there were insufficient ooserv tions to carry out a conditions x lists x subjects analysia, and considering the many reservations concerning such analysis, and exercise of this kind would certainly have been rather a waste of effort.

The performance scores on T_{1} and $T_{2}, \operatorname{Pr}\left(C_{1}\right)$ and $\operatorname{Pr}\left(C_{2}\right)$, are depicted as a function of the $P_{1}-T_{1}$ interval i in fisure 14. In the case of $\operatorname{Pr}\left(C_{1}\right)$, the spacing i may be regarded as a retention interval separating the first presentation of an item $\left(P_{1}\right)$, from its suosequent test $\left(T_{1}\right)$. The curve in the figure is quite similar to those typically found for retention of a singlypresented paired-associate (See Figure 1,) anc it appears to display the usual short- and loncterm retention components. Short-term retention seems to disappear at retention intervals of 2 or more trials. These ooservations are underlined by the analysis of variance However, in the analysis of variance, there is a significant effect of T_{H}; this may reflect the apparent "noise" in the retention curve between intervals of 2 and 8 trials. Furthermore, the loneterm portion of the curve a pears if anything to recover sliehtly over this range. When the last eight values of $\operatorname{Pr}\left(\mathrm{C}_{2}\right)$ were compared, a significant difference was found $\left(X^{2}=21.72, \mathrm{df}=7, \mathrm{p}=.003\right.$). It would thus appear that the loneterm portion of the curve is not stable, and this effect is probably due to the inedequacy of the basic desien in confounding testine order with material and witi conditions.
$\operatorname{Pr}\left(C_{2}\right)$ certainly appears to display a spaced presentations effect. In examinine $\operatorname{Pr}\left(\mathrm{C}_{2}\right)$, it skould be remembered that the spacing interval is essentially the interpresentation interval, and that $\operatorname{Pr}\left(\mathrm{C}_{2}\right)$ reflects performance on T_{2}, which always follows P_{2} at an interval of 8 trials. The appropriate analysis of variance clearly supports the apparent pattern of improvement with spacing; an improvement up to a maximum followed by a subsequent decline. However, there was no significant difference between the values of $\operatorname{Pr}\left(\mathrm{C}_{2}\right)$ at interpresentation spacines of 2 or more $\left(X^{2}=10.42, d f=7\right.$,
$p=.167$). It was also found that the ap arent decline over lacs of 8,12 and 16 was not significant $\left(X^{2}=3.41, d f=2, p=.182\right)$. It is, of course, quite likely that $\operatorname{Pr}\left(\mathrm{C}_{2}\right)$ is beine affected by the "noise". detected in $\operatorname{Pr}\left(C_{1}\right)$; if there is a regular relationship between $\operatorname{Pr}\left(C_{2}\right)$ and $\operatorname{Pr}\left(C_{1}\right)$, then variation in $\operatorname{Pr}\left(C_{1}\right)$ will be reflected by $\operatorname{Pr}\left(C_{2}\right)$, although the variation may no longer reach significance since it may te confounded with more systematic effects.

A clearer picture may be obtained fron an examination of the relationship of the conditional proportions $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$ and $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{W} \mathrm{W}_{1}\right)$ with $P_{1}-T_{1}$ interval depicted in Fisure 15. Certainly $\operatorname{Pr}\left(C_{2} / C_{1}\right)$ appears to exhibit an extremely regular relationship with spacine and again this observation is emphisised by the analysis of variance. Now, on the hypothesis that the improvement found in lone-term recall with the specine of presentations results from the foreetting of shortretention items that would otherwise be poorly processed on the second presentation for some reason (cf 4.34), then on the basis of the $\operatorname{Pr}\left(C_{1}\right)$ function, one would predict t at $\operatorname{Pr}\left(C_{2} / C_{1}\right)$ should reach its apper asymptote at the same time that short term retention effects disappear, that is, at a spacine or 2 trials. However, the improvement in $\operatorname{Pr}\left(C_{2} / C_{1}\right)$ appears to be maintained up to a spacine of around 8 trials, and indeed the last eight values (at spacings of 2 or more) were found to difier sienificantly ($x^{2}=9.92, \mathrm{df}=7, \mathrm{p}=.006$). Consequently, these results markedly conflict with the sort-term forgetting hypothesis.

However, it may be argued that the continued improvement of $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$ at spacing intervals in excess of 2 could well result from subject differences, in that a greater proportion of the ouservations contributing to the statistic at lone interpresentation intervals will come from the betier or more competent subjects. Horever, by the same argument, even a within-subject comrarrison may prove misleading, since the subject may experience both positive and negative transfer across even a sincle session, and consequently vill contribute more

FIGURE 15
Performance on T_{2} conditional on performance on T_{1} as a function of interpresentation interval in hep. 1.

points to $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{C}_{2}\right)$ at lone intervals when he is going through a relatively "good patch".

Furthermore, a sampling areument could also be applied to $\operatorname{Pr}\left(C_{2} / H_{1}\right)$; namely that more relatively poor subjects will contribute to this statistic at short intervals. An examination of Figure 15 certainly sugeests that $\operatorname{Pr}\left(C_{2} / / 1_{1}\right)$ might chow some improvement with spacing and acain the analysis of variance emphasises tiis suspicion. Furt erwore, it appears that if an error is made on T_{1} at a retention interval of zero, then performance following an imediate re- resentation $\left(P_{2}\right)$ appears on T_{2} to be no betier than chance; the value of $\operatorname{Pr}\left(C_{2} / W_{1}\right)$ at a spacing interval of zero was $2 / 29=.069$, whilst the theoretical guessing probability is $1 / 15=.067$. This result is surprising, as one would expect an error on T_{1} imnediately after P_{1} to result from inattention. However, even if the subject failed to see P_{1} for some reason, he would certainly have attended to the display durine T_{1} (otherwise he would have failed to respond) and so there is little reason to suspect that the subject would fail to attend to P_{2}.

A comparison of $\operatorname{Pr}\left(C_{2} / /_{1}\right)$ over all spacine intervals showed that the values differed significantly $\left(X^{2}=24.06, \mathrm{~d} f=9\right.$, $\mathrm{p}=.0042$) althouch when the lor: value at a sacinc of zero was omittid, it was found that a comparison of the remainine values of $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{w}_{2}\right)$ only just reached significance $\left(X^{2}=15.61, \mathrm{df}=8, \mathrm{p}=.04\right)$. However, there is no obvious systematic relations.ip of $\operatorname{Pr}\left(\mathrm{C}_{2} / \bar{\pi}_{1}\right)$ with $\boldsymbol{P}_{1}-T_{1}$ spacing of the kind predicted by a sampling hypothesis. Rather an examination of Figure 15 subgests a certain amount of "noise" in the response, and this again could well result from shortco...ings in the design.

It was also noticed that $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{w}_{1}\right)$ apeeared to be cenerally lower then performance followine a first presentation and a subseçuent test at lag 8 would suEgest. If a wrone response on T_{1} indicated merely that the item was unlearned, one rould expect $\operatorname{Pr}\left(C_{2} / W_{1}\right)$ to equal $\operatorname{Pr}\left(C_{1}\right)$ at a retention interval of 8 trials. However, a subject -
sampling hypothesis would predict poorer perfomance on $\operatorname{Pr}\left(\mathrm{C}_{2} /{ }_{1}\right)$, as would an interference hypothesis.

The interference hypothesis ill be considered first. If some errors result from, say, stimulus mis-recognition, or confusion, then clearly performance on an item on which an error was wiously made should be inferior to that on a ner item at the same retention interval. It is tempting' to regard perseveration errors as a mensure of interference, althouch if perseveration scores are added to the corresponding values of $\operatorname{Pr}^{\prime}\left(C_{2} /{ }_{1}\right)$ the resultine vaiues are far higher than lonf-term retention at T_{1}. It is $s u_{\text {sested }}$ that perseveration scores may te particularly contaminated by the adoption by subjects of a "Euesssinc number" stratesy, by which they have a particular number that they always employ when they have no lnowledge of the appropriate response. Pure guessing vould then result in a far higher than chance rate of perseverations.

It seems t at the only way of resolving this dispute is to test the subject sampling hypothesis directly by compring $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{M}_{1}\right)$ with $\operatorname{Fr}\left(C_{1}\right)$ at a retention interval of 8 within subjects. It vas decided to compare the pooled values of $\operatorname{Pr}\left(C_{2} / \%_{1}\right)$ at $\operatorname{spacin}_{\mathbb{E}} s$ of 8,12 , and 16 trials with $\operatorname{Pr}\left(C_{1}\right)$ at a retention lac of 8 for aach individual subject. This procedure would do much to remove sampling effects from "bad patches" that each subject might have gone tirough, since these would mainly ave a deleterious effect on $\operatorname{Pr}\left(C_{2} / W_{1}\right)$ at s^{2} ort spacincs. The nine l-tailed sisnificance levels obtained were combined to yield a X^{2} of 37.75 with 18 df ($p<.005$). Consequently, it was concluded that $\operatorname{Pr}\left(C_{2} / W_{1}\right)$ was inferior to $\operatorname{Fr}\left(C_{1}\right)$ at lag 8 within subjects, and that on the whole, the interference hypothesis woula be wost liiely to account for this result.

A!though not entirely convincing, this argument maj be turned around and applied to the observations ade earlier concerning $\operatorname{Pr}\left(C_{2} / C_{1}\right)$. In other words, if subject sampliné doesn't account for the low values of $\operatorname{Pr}\left(C_{2} / W_{1}\right)$, then there is little support for the lypothesis that it
does account for the continued improvement of $\operatorname{Ir}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$ bejond those spacings at which short-term retention effects disappear. Finally, a comparison of perseveration ere ra across the ten spacine condition proved non-sisnificant $\left(X^{2}=13.83, d f=9\right.$, $p=.128$) and so it was conclujed that there was little evidence that perseveration errors were dependent on the $P_{1}-T_{1}$ spacing interval. This result supports the aroument advanced earlier that perseveration errors may result at least in jart from a "guessing number" stratesy.

5.13 Conclusions (xp. I)

The main conclisions dram frow this study may be sumarized as follows. $\operatorname{Pr}\left(C_{1}\right)$ certainly exhibited a rapidly-decaying short-term component which had disappeared by a retention interval of 2 trials, although subsequent performance was found to vary significantly in an unsystematic ray. Altiough $\operatorname{Pr}\left(C_{2}\right)$ exhibited a significant improvement at non-zero spacincs over a spacing interval of zero, no further spacings effects could be isolated. However, $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$ aypeared to exhibit a much more stable relationship with spacing, and certainly continued to improve beyond the rane of short-wern retention. Tais *as interproted as evidence against Grecno's (1970a) version o. the processing attenuation inyothesis or equivalent short-term menory explanations of the spacin effect (of 4.34), although it is clear that short-retention iteras must receive litile benefit from a representation. It was also found that perforiance at T_{2} following an error on Γ_{1} was inferior to performance at a similar retention interval on a new item, and it was concluced that the evidence marginally supported an interference explanation.

In conclusion, it appears that the ancuntrolled "noise" resulting from design faults was mainly restricted to the arginal performance measures $E\left(C_{1}\right)$ and $\mathrm{Fr}_{1}\left(\mathrm{C}_{2}\right)$, and to some extent to $\operatorname{Pr}\left(\mathrm{C}_{2} / "_{1}\right)$. Clearly, these observitions poild all be affected by specific contextual and semantic relationships that may have been present
in the six lists. However, $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$ was extrenely stable, and exhioited a remariably orderly relationsiip with spacine. This sugbests that the majority of encoded iteus were relatively unafiected by specific contextual factors, and this in tum suriests that such items were cuite elaborately and deeply encoded. Finally, it se=ms that the analyses of variance did not wake much contribution to the overall interpretation of the data, because of the strone reservations held about acceptine their results.

5.2. Experim:nt II

It was su sested in section 4.32 that recall performance following two presentations of a paired associate may be directly related to the rate of short-term forcetinc of stimulus recognition. In other words, it may be that even with a stable, relatively deep associative encoding, performance at final test may suffer if confusable or inadecuate stimulus encodings survive at the second presentation. Such a hypothesis would redict that recall perfomance at final test rould continue to improve with interpresentation spacing until that spacing was suficiciently lon to ensure that short-term stimulus recognition components mere efiectively "wiped out" on P_{2}. This experiment was designed to examine such a hypothesis directly. 5.21 Iethod of 11

Suojecto The subjects were 18 undercraduate students at Stirling University who opted to act as experimental subjects in partial fulfillment of the practical requirements of their introductory paychology course. $A l l$ subjects were experimentally naive.

Katerisls The stimulus and response materials erployed in this study were identical to those employed in the revicus experiment. Stimuli were selected randomly from the common word pool in Appendix 1, whilst responses were randomly selecte integers in the rance $1 .-15$.

Apparatus The ap:aratus employed in this experiment was identical to that used in Bxp. 1.

Procedure Critical items were assienned schedules similar to those
employed in the previous study; tus

$$
P_{I_{i}} \ldots \ldots T_{\text {trials }} T_{1} P_{2} \ldots \ldots \ldots{ }_{8} P_{2}
$$

Hoi ever, only 5 specine conditions were employed, with the spacing interval i tãine values of $0,4,8,12$ or 16 intruding trials on other items. An ciditional conciti in was also included, in wich a stimulus that had never occurred before was tested. This condition allowed the estimation of the probability of a flse recognition; i.e. the subject identif:in' a stimulus word as "old", when it was, in fact nev.

The procodure employed in this study was almost identicel to that of Exp. 1, with tiree important exceptions. In the first pl ce, subjects were recuired to make tio responses on each tesi trial. They were first of all recuired to indicate whether they thought they had seun the stimulus anuer test earlier in tice session (by nitine the letter "C" for "ola" on the response sieet) or not (by writine " " " for "new"), and then a normal recall response was recrirea. AC:in subjects were instructed to cuess if necessary. if recelt response was recuired even if tio subject ad thought thet he hiad not previonsly scen the stimulus uncer test, and had consequently made a "nev" recognition response.

In the second place, to allow extra time for the additional response to be made on test trials, the list were presented at a 3 -second rate. Finally, 0 ly three ten-bloc lists were employed in this study as compere: with six in Whp. 1. The 18 subjecte were tested in sma?1 groups of between 2 and 5 individuals; in other wows all the subjects in a group were tested sirultaneously, which meant triat tiey all saw the three lists in the same order. Althouch tis list order was varied from group to croup, thic unequal broup sizes (cazed by the freçuent failure of students "ho had "sicned u?" for the experiment to actually attend) meant that list order as not perfectly counterbalanced acros the subject samply.

It should be pointeà out that in fact, d p. II mas not really completed. The original intention had been to test six roups each of five subjects, counterbalancing list order between these groups. Hovever, the experiment had reached its present stage of completion at the end of the academic year, which meanst that the subject pool had "dried up" for the sumer. However, an examination of the extant results at this stage strongly sugeested that very little additional information, if any, would become availavle even if the design had been completed. Consequently, the experiment was terminated at the present stage, and the results of the incompleted design are presented below.
5.22.Results of Exp.II

Once again, the itens occurring in the first and final (tenth) block of each list were omitted from the analysis for the reasons outlined in section 5.12, which meant that only 24 different pairs contributed to the results of each spacing condition, and of the false recognition condition. Funthemore, any subject item which had an omitted response was discarded from the analysis, so that, in general subjects did not contribute equal numbers of observations to each condition.

On each test trial, four response categories were defined in an analagous way to the two categories in Exp.I; in addition to the "correct/wrong" or C/4 recall categories, the symbols "0" and "Tr" were employed to descrive the corres jonding recognition resyonse. Of course, a response of " 0 " to an item in one of the five sacing conditions would have been correct, and a "new" response to such an item would be wrong. On the other hard, the opposite would be trase of such responses to itens in the "fillse recounition" condition; an "old" response would be incorrect. On each test trial in the spacine conditions, the subjects two responses (recoenition followed by recall) could fall into one of four categories; CW, CC, iIW or iJC. Four such categories on T_{1} talen in conjunction with four such cotegories
on T_{2} gives a total of 16 possible response categories by which to summarize performance on each item (i.e. $\mathrm{O}_{1}{ }^{\mathrm{H}} \mathrm{C}_{2} \mathrm{C}_{2}, \mathrm{O}_{1} \mathrm{H}_{1} \mathrm{O}_{2} \mathrm{C}_{2}$, $\left.\mathrm{O}_{1} \mathrm{H}_{1} \mathrm{~N}_{2}, \ldots, \mathrm{~N}_{1} \mathrm{C}_{1} \mathrm{H}_{2} \mathrm{C}_{2}\right)$. The overall proportions of the total number of subject items (n) falling into these sixteen categories are presented in Appendix 2. Of course, such $=$ table is almost impossible to interpret, and more detailed breakdowns of the data will be presented at the appropriate points in the following discussion. When examining these results it should be borne in mind that the probability of making a correct recall response by chance is just $1 / 15$ or .067, and that analysis of false recognition items yielded a false recognition rate, $P($ "old $/$ new $)$, of $95 / 523$, or . 180 .

It is proposed firstly to deal separately with recognition and recall performance. The relevant data are summarized in Table 10. It was decided to omit analysis of variance on these data, following the somewhat disappointing results of such a procedure in the previous study. Recognition performance was generally of such a hi ch TAEL. 10

Recognition and recall performance in Exp II

0

4	415	.918
8	422	.879
12	419	.862

16
$\frac{P_{1}-T_{1}}{\underline{L i} G}$

0	423	.903
4	415	.451
8	422	.408
12	419	.401
16	422	.374

n
423

422
.855
$\begin{array}{cr}\underline{n} & \underline{\operatorname{Pr}\left(C_{1}\right)} \\ 423 & .903 \\ 415 & .451 \\ 422 & .408 \\ 419 & .401 \\ 422 & .374\end{array}$
$\xrightarrow{\operatorname{Pr}\left(\mathrm{C}_{2}\right)}$
.979
. 993
. 979
. 995
.991
$\mathrm{Pr}\left(\mathrm{C}_{2}\right)$
.482
.533
. 507
.487
. 533

$\operatorname{Pr}\left(\mathrm{O}_{2} \mathrm{O}_{1}\right)$	$\operatorname{Pr}\left(\mathrm{O}_{2} / \mathrm{H}_{1}\right)$
.983	.750
.995	.971
.978	.980
.994	1.000
.989	1.000

$\mathrm{Pr}_{2}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right) \quad \operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{H}_{2}\right)$
.513
. 840
. 814
. 827
.823
.195
.281
. 296
.259
. 360
level that valid tests of the effects of $P_{1}-P_{1}$ spacine rere impossible to contruct, owing to the very small numbers of soores falling into the "new" categories on T_{1} and T_{2}. However, a comparison of the values of $\operatorname{Pr}\left(O_{1}\right)$ proved hichly sicnificant $\left(X^{2}=50.21, \mathrm{~d} f=4, \mathrm{p}<.0001\right)$, and an examination of Picure 16 suggests that short term recoenition effects may still be effective up to retention intervals of 12 or more; there is not clear division of perfomance into lonc-and short-term comionents, although it is quite possible that very little additionsl decline wo ld have been found at retention intervals in excess of 16 trials, so that the entire portion of the curve tested in this study micht lie in the short-term recognition resion. There were ins fficiont data to statistically compare the values of $\operatorname{Pr}\left(\mathrm{C}_{2}\right)$ at the various spacing intervals, and this was also true of $\mathbb{F}_{2}\left(\mathrm{O}_{2} / \mathrm{O}_{1}\right)$ and $\operatorname{Pr}\left(\mathrm{O}_{2} / \mathrm{N}_{1}\right)$, but an inspection of the data in Table 10 sugeests that these scores were not particularly afiected by the sacing variable. Thus, there is little evidence that roconition on T_{2} was affected by the spacinc interval betreen P_{1} and P_{2}.

Analysis of the recall data, however, proved less disappointing. Becall at T_{1} shows the usual short- and loneteru retention componente, (See Figure 17) and $\operatorname{Pr}\left(C_{1}\right)$ was found to differ significantly as a function of $P_{1}-F_{1}$ las $\left(X^{2}=336.00\right.$, df $=4, p<.0001$), ilthough no differences were found in recall on T_{2} at lacs of $4,8,12$ and $16\left(X^{2}=5.18, d i=3, p=.159\right)$. These results stroaty suEfest that short-term reteation had diseppeared by a retention interval of 4 intruding trials, and that, furthermore, lone-term forgetting was at a negligible level.

Recall performance at $T_{2}, \operatorname{Pr}_{2}\left(\mathrm{C}_{2}\right)$, rather cisappointincly failed to exhibit a spacing effect $\left(X^{2}=3.94, d f=4, p=.419\right)$, and this may well lave been due to systematic but uncontrolled offects of matericil or list order, since material anc spacine were completely confounded in this study, and lict order was not completely counter-

FIGJRE 16
Recognition at T as a function of retention interval in Exp. ${ }^{1}$ II.

FIGJRE 17.
Paired-associste recall in Exp. II

balanced across suojects. However, it was found that, as in the last study, $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$ shomed a far more orderly relationship with spacing (See Fig. 17), and furt ermore exinibited a significant spacing effect $\left(X^{2}=118.14, d f=4, p<.0001\right)$. Ho::ever, this effect a peared to be limited to an improvement up to a spacing of 4 trials or more, since tbere was no significant differ nce in recall performance at T_{2} conditional upon a correct recsil at T_{1} at $P_{1}-P_{1}$ lacs of $4,8,12$ and $16\left(x^{2}=0.43, \mathrm{df}=3, \mathrm{p}=.935\right)$.

Consequently, it appears that in this experiment, insufficient $P_{1}-T_{1}$ intervals were included to fix the spacine effect with any degree of certainty. All that can be stated is thet performance at T_{2} conditional upon a correct response at T_{1} improved with spacing up to a limit hich occurred at some $P_{1}-T_{1}$ lag between 0 and 4 intrudin trials. In contrast to the results of Exp. I these findincs are consistent with a short-term retention hypothesis, in that improvement with spacing appears to reach its upper asymptcte at the same point that slort-term retention reaches its lower asymptote. However, tris conflict nay well be only apparent; were $P_{1}-T_{1}$ spacings of 1,2 and 3 trials incluced, it is quite likely in the light of the results of Exp.1. that $\operatorname{Pr}\left(\mathrm{C}_{\rho} / \mathrm{C}_{1}\right)$ would have shown a continued improvement beyond the rance of short-term retention at T_{1}. However, it should be pointed out that these data apporr to conflict narkeily with a short-term stimulus recognition hypotiesis; an examination of the T_{1} recognition cunve (Fig. 16) would suecest under such a hypothesis that T_{2} recall performance would show continued improvement over the entire range of spacing intervals inciuded in the study. This was certainly not the case.

Recall performance at T_{2} conditional upon a recall error at T_{1} followed a similar pattern to that in the previous study, althourch in this case, $\operatorname{Pr}\left(C_{2} / W_{1}\right)$ dia not ap,ear to be affected by $P_{1}-T_{1}$ spacine $\left(X^{2}=9.08, \mathrm{df}=4, \mathrm{p}=.05\right.$) However, once again overall
recall performance at T_{2}, which followeà e ght trials after P_{2}, was poorer following two presentations with a recall exior on $T_{1}(.296)$ than performance at T_{1} at a similar retention interval of eicht trials (.408); $(z=4.03, p=.001,1-$ tailed $)$.

So far, recosnition and recall jerformance have been treated separately; consecuently, it is now necessariv to examine the effects of stimulus recognition upon recall performance. Although insufficient "new" responses were made on both T_{1} and T_{2} to allow a meaniruful examination of recall performance coniational upon a stimulus recognition failure on the same trial, it was possible to produce a meanincful estimite of this performance neasure by ageregeting ir(C / N) across $P_{1}-T_{1}$ lace on both T_{1} and T_{2}, to yield a value of $\operatorname{Fr}(C / 1 i)=20 / 239=.084$. Thus, Eiven a "new" response on either T_{1} or T_{2}, the propontion of correct recill responses on the same trim was only . 084; this value did not differ sisnificantly from the theoretical chance recall level of $1 / 15(z=.967, p=.28,2-t a i l e d)$. Tais result is in accordance with earlier finding tiat recall performance or a particular test trial is no cetter than chance if ti.e sabject fails to recoenize the stimulus on that test trial (see section 4.13).

Recall :erformance on T_{1};iven a correct recognition on T_{1} (i.e. $\operatorname{Pr}\left(C_{1} / C_{1}\right)$) certainly showed a siknificant decline with revention interval $\left(X^{2}=290.84, d f=4, p<.0001\right)$, althouch, as with $\operatorname{Pr}\left(C_{1}\right)$, this decline appeared to be limited to a rapid short-term decay effect, since the observed values of tiis statistic did not differ at $P_{1}-T_{1}$ lags of $4,8,12$ and $16\left(X^{2}=2.88\right.$, $\left.d f=3, p=.410\right)$. Because recognition at T_{1} was at such a high level, $\operatorname{Pr}\left(\mathrm{C}_{1} / \mathrm{C}_{1}\right)$ was very similar to $\operatorname{Pr}\left(O_{1}\right)$ at all $P_{1}-Y_{1}$ lass; however, this result is still of interest becuuse it firmly establishes that recall performance declines much rore repidly than recognition performance as a function of retention interval. The values of $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{O}_{2}\right)$ were virtually identical to those of $\operatorname{Pr}\left(C_{2}\right)$ at all $P_{1}-r_{1}$ indervals, again as a result of the bith level of recognition performance on I_{2}, so that consecuantly

FIGRE 18
Recall performance on T_{2} conditional upon nonrecognition, and recognition and recall
performance on T_{1}, in Rxp. II.

the same observations apply in that this statistic did not ewhibit a spacing̈ effect.

Recall performance da a on T_{2} concitional upon both recognition and recall performance on T_{1} are presented in Figure 18. Again, because recognition on T_{2} was almost perfect, it was not considered necessary to examine both recosnition and recsil on T_{2} conditional upon total performance on T_{1}. Furthermore, since there is little eviuence that subjects were performing better than chance on a test trial iven a stimulus recognition failure on the seme trial, it seems reasonable only to consider $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{IT}_{1}\right)$ irrespective of recall peeformance on T_{1}; in any case, there were insufficient $N_{1} \mathbb{N}_{1}$ observations to meaningfully examine $\operatorname{Pr}\left(C_{2} / \mathrm{H}_{1} W_{1}\right)$ as a function of $\mathrm{P}_{1}-\mathrm{T}_{1}$ spacing.

Because of the very hich level of recognition performance on T_{1} there is hardly any difference between the values of $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{O}_{1} \mathrm{C}_{1}\right)$ and $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$; consequently, it appears that the $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$ function is almost perfectly accounted for by the $\operatorname{Fr}\left(\mathrm{C}_{2} / \mathrm{O}_{1} \mathrm{C}_{1}\right)$ curve. On the other hend, $\operatorname{Pr}\left(\mathrm{C}_{2} / N_{1}\right)$ results from the functions $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{O}_{1} N_{1}\right)$ and $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{N}_{1}\right)$, and it is clear from Ficure 18 that the former of these two curves lies entirely above the latter, Furthermore, both these functions appear to lie entirely belo: the value of $\operatorname{Pr}\left(\mathrm{C}_{1}\right)$ at a retention interval of 8 ; that is, a value of .408 . It was found that neither $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{O}_{1}\right.$ "1 $\left._{1}\right)$ nor $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathbb{N}_{1}\right)$ showed a spacine effect $\left(X^{2}=8.35\right.$, $\mathrm{df}=4, \mathrm{p}=.08 ; x^{2}=1.68, \mathrm{df}=4, \mathrm{p}=.79$, respectively), and when the values of these proportions were estimated across spacing intervals and compared, it was found that the overall value of $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{O}_{1} \mathbb{W}_{1}\right)$ differed significantly from that of $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{N}_{1}\right),(z=2.29$, pa.222, 2-tailed). In addition, botk overall values were found to be significantly lower than the value of $\operatorname{Pr}\left(C_{1}\right)$ at a retention interval of 8 ; for $\operatorname{Pr}\left(C_{2} / O_{1}{ }_{2}\right)$, a z value of 3.38 resulted for this comparison ($p<.001,1$-tailed), whilst the value for the correspondin€

These resilts confirm an extend the indings of Lxp.l.; not only was $\operatorname{Pr}\left(\mathrm{C}_{2} / \pi_{1}\right)$ found to be simificantly inferior to $\operatorname{Pr}\left(\mathrm{C}_{1}\right)$ at a reteation interval of ε, but both underlying components of this conditional recall performance measure, $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{O}_{1} \mathrm{iin}_{1}\right)$ and $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{IT}_{1}\right)$ were found to take values tat were significantly inferior to that of $\operatorname{Pr}\left(\mathrm{C}_{1}\right)$ at lag 8. This means that followine a successful recognition With a recall error on T_{1}, subsequent perfomance following an immediate presentation, P_{c}, and a retention interval of 8 trials was significantly inferior to performance on a brand new item that bad received just one presentation, P_{1}, and was tested at a similar lag of 8 trials. This was also true of recall performance on T_{2} following a recognition error on T_{1}, and f rthermore, a recognition error on T_{1} was found to be more deleterious to performance on T_{2} than a recall error. The results of Exp.1. suceested that this depression in performance could not be accounted for in terms of subject differences (i.e. an error at T_{1} sugeesting that that partic lar subject item was more likely to have resilted from a less able subject), so that the relatively poor performance on T_{2} followine just a recall error on T_{1} in this study might well result from interference or response competition and confusion. The even poorer performance on T_{2} following a recognition error on T_{1} cold be explained in terms of the encoding variability hypothesis; those stimulus items not recognised on T_{1} are seen as more fractionable, less well integrated, and hence more variably encoded. Consequently, such items are nuch more likely to be mis-recognised, or recognised in terms of stimulus features not associated with the appropriate response, on T_{2} (see 4.13).

5.23 Sumary (Exp. II)

The recall performance results of Exp. II are on the whole consistent with those of Exp. I, although a smaller sample of interpresentation spacings were tested, and the spacine at which recall on T_{2} reached its upper asymptote was "mis.ed". This r=sult was obvionsly
disappointing. However, several of the results of ixp. I were confirmed, principally the finding thet the spacinc effoct ap ears to operate only on tiose items that are relatively well encoded on P_{2} (i.e. those that are correctly recognised and recalled on the iumediately precedine test trial, \mathbb{T}_{1} 。) However, the recognition results were also disappointing, in that recognition was at a very high level throughout the study, although there is evidence that interpresentation spacinc effects on recall performance on T_{2} reached their upper asymptote far earlier than short-term stimulus recogniti n components on P_{2} had completely decayed; this findine conflicts with the hypothesis that the spacine effect is caused by the maintenance of encodines with poor stimulus components on P_{2}.

On the whole, recognition did not appear to offer the slichtest explanation of the spacine effect. However, it is possible that because of the nature of the stimulus material (i.e. common words) stimulus recognition was dependent upon the encoded stirulus aspects that were not employed in asociative encodines, since it is feasible that, for example, all levels of encoding assisted stimulus recognition (auditory, episodic and semantic) whilst say, only semantic aspects of stimuli were employed in associative encodins. In other words, additional cues may have been available to aid recoenition which would not materially benefit recall.

Finally, it siould be pointed out that despite certain obvious inadequacies in the (incompleted) experimental desien, the data from this study exhibited surprisincly regular relationships with spacinc; consequently, it appears that the partial counterbalancin \mathscr{E} of list orier in this study was successful in removin some of the uncontrolled "noise" that was present in the results of axp. I.

5.3 Exporiment III

As had just been pointed out, it was felt that the results of Exp II left one or two important questions to be ancl:ered. In the first place, the recosnition data might well have resulted from
elaborate stimulus encodings only part of ::hich vere employed in association codings, and secondly, because of the small rane of spacincs tested, the experiment appeared to "miss" the point at which the improvement in recall performance at T_{2} with interpresentation spacing reached its upper asymptote. ${ }^{\text {Wxperiment }}$ III was desicped to clarify these two points.

5.31 Lethod of Exp III

Subjects The 25 subjects employed in this study were underEraduate and postéraduate student volunteers from the Psychology Department at Nottinchem University. $I 11$ subjects claimed to be experimentally naive.

Materials The stimuli employed in this study were selected at random from a pool of 106 consonant-vowel-consonant (CVC) trierams in the rane 30-40 Archer (1960). The stimulus pool (see Appendix 1) was made up in such a way as to ensure that the first two letters of each CVC were unique, and as far as possible, each initial consonant occurred equally often in the pool. Responses were randomly-selected integers in the rance l-5. It was hoped that with more fractionable, low-M stimuli, there would be agreater likelihood that the stimulus aspects employed in reconnition would exivit a high degree of correlation with those enployed in associative codes.

Apparatus The CPA studj-test lists employed in this study vere prepared in paper-tape form on the Nottincham University Psychology Department's Elliot 903 computer. These tapes were then read into the department's PDP-11 computer, wich controlled the real-time durations of both study and test trials, and output the material on a GT40 display console. Subjects sat in a small dariened booth in front of the console, and resporded where appropriate by pressine keys. Responses were recorìed, stored, and subsequently output by the PDP-11.

Procedure. The basic paradicm remained the CFh stidy - test procedure eaployed in the previous two studies. However, each subject in the curnent experiment was tested on only ons list, and a separate list was made up for each subject. Açain, lists were composed of ten overlapping blocks, each of which contained one exemplar of eack experimental condition. Trere were five doujle presentation conditions, ajain aployine the schedule,

$$
\mathrm{P}_{1}{ }_{i t r i a i s}{ }^{T} \mathrm{l}^{3} 2 \ddot{8} \text { trials }^{2}
$$

but in this study the $P_{1}-T_{1}$ interval i comprised $0,2,4,6$ or 8 intruding trials on other iteas, in onder to reduce tine likelihood of "missine" the optimal $P_{1}-T_{1}$ spacing. Furthemmore there was an additional "false reconition" condition, wherein items received a single unreiaforced test trial.

Slightly wore realistic filler items were constructed in this stady to occupy list positions left vacant by the random interleaving process. Each filler item was presented once, and a filler was tested on a subsecuent vacant list position if it occurred between X and 8 trials after the filler's presentation trial, where X took values 1,2, 3 and 4 each with probability $\frac{1}{4}$. Ilorever, responses to fillers were not recorded. Within each list, each paired-associate item (i.e. double presentation, false recognition or filler) comurised a C.C stimulus randomily selected wit out replacement from the pool in Appendix 1, paired with a randomly sel cted intecer in the rance $1-5$. The interleavine order was varied randouly from list to list.

Instructions were similar to those in the previous study, so that on each test trial, subjects were recuired to ma:e two responses; a recognition response (0 or \mathbb{N}) followed by a recall response in the rance l-5 guessing where necessary. Ho ever, t ere was on major difference between this experiment and Exp. II. Study trials were of 2.7 second's duration whilst the duration of each test trial was determined by the subject, in that the trial was terainated only when
the subject had made iis second (i.e. recall) response. During study trials, a stimulus response . Eir ap eared tocether on the GT40 screen, whilst on a tost trial, the word "TEST" was displayed followed uy the CVC currently under test. In an effort to pace subjects, the word "Tisci" becan to flash on and off 2.7 seconds after the trial onset if both responses hid not been made, to cue the subjects to hurry up and finish respodinc. There was a blant period of 0.3 seconds between the offset of each trial and the onset of the next one. Upon completion of the session, each subject in adaition ras given a short, inforal postexperimental interview in order to ascertain his reactions to the task.

5.32 Results (Exp. III)

Once again, the first and final (i.e. tenth) blocks of each list were discarded, so tiat only eicht items per conciition were analysied for each subject. However, the procedure adoptea ensured tat subjects could not pos ibly omit responses, so that conse uently, there were in all 8×25, or 200 observations contributinc to each condition. The theoretical chance level of currect recall in this study is simply $1 / 5$ or .2 (tiere were five response alte natives) whilst the false recoennition rate $\operatorname{Pr}($ " 0 " / New) was found to be $47 / 200$, or .235. This value is somewhat hicher than that recorie. in ixp II (.180) which sugests that the relatively low-ic CVC's employed in this study werc prone to more encodins variability, and were hence more likely to be ais-recognised, then the co:mon words employed in the earlier study. The date from this stidy are fully sumnarised in Appendix 3.

Recoenition and recall data from this study are presented in Table 11. The recognition data are also depicted in Figure. 19. It is apparent from the figure that recognition performance at $T_{1}, \operatorname{Pr}\left(0_{1}\right)$, exhibits a rapid short-term decline from a $P_{1}-T_{1}$ interval of z ero to an interval of 2 trials, and possibly a somewhat slower subseiuent decline with larger retention intervals. This is borne our by

FI URE 19
Stimulus recognition in Exp. III

FI JRE 19
Stimulus recognition in Exp. III

TABLE 11
Recognition and recall data for Exp. III

$\frac{P_{1}-P_{i}}{I A G}$	$\mathrm{Pr}\left(\mathrm{O}_{2}\right)$	$\underline{\operatorname{Pr}\left(\mathrm{O}_{2}\right)}$	$\underline{\mathrm{Pr}}\left(\mathrm{O}_{2} / \mathrm{O}_{1}\right)$	$\underline{\mathrm{Pr}}\left(\mathrm{O}_{2} / \mathrm{H}_{1}\right)$
0	. 960	. 845	. 844	. 875
2	. 820	. 895	. 915	. 806
4	. 840	. 945	.964	. 844
6	. 755	. 905	. 954	. 755
8	.770	. 925	- 942	. 870
$\frac{\mathrm{P}_{1}-\mathrm{T}_{1}}{\underline{L A C}}$	$\underline{P r}\left(C_{1}\right)$	$\underset{\sim}{\operatorname{Pr}\left(C_{2}\right)}$	$\left.\mathrm{Pr}_{(\mathrm{C}}^{2} / \mathrm{C}_{1}\right)$	$\mathrm{Pr}\left(\mathrm{C}_{2} / \mathrm{H}_{1}\right)$
0	- 950	. 365	. 363	. 400
2	. 500	. 450	. 540	- 360
4	. 425	. 365	- 541	. 235
6	- 370	. 430	. 622	. 317
8	. 315	. 380	. 571	. 292

Note: $\mathrm{n}=20$) observations in each condition
statistical analysis; a comparison of all five values of $\operatorname{Pr}\left(O_{1}\right)$ was highly sínificant $\left(X^{2}=37.13\right.$, df $=4, p<.0001$) whilst the values at lags of 2 or more trials did not differ significantly $\left(X^{2}=6.00, d f=3, p=.112\right)$. Eoth $\operatorname{Pr}\left(\mathrm{O}_{2}\right)$ and $\operatorname{Pr}\left(\mathrm{O}_{2} / \mathrm{O}_{1}\right)$ appear to show a spacing effect. In the case of $\operatorname{Pr}\left(\mathrm{O}_{2}\right)$, a comparison of all five values was sieniricant $\left(X^{2}=12.97, ~ d i f=4, p=.011\right)$ whilst a comparison of the 1 st four values was not $\left(X^{2}=8.9\right.$, $d f=3, p=.273$). This suEEests that recognition on T_{2} improved With an increase of $P_{1}-T_{1}$ spacing from zero to two trials, but that thereafter, performance was not affected by interpresentation spacine. Comparable results were observed for $\operatorname{Pr}\left(\mathrm{O}_{2} / \mathrm{C}_{1}\right)$; a comparison of all five values was sicnificant $\left(X^{2}=23.10, d f=4, p<.001\right)$ whilst the last four values did not differ sienificantly ($X^{2}=4.23, \mathrm{df}=3$, $\mathrm{p}=.238$). These results are consistent with the hypothesis that the improvement in reconition performance at m_{2} with $\mathrm{P}_{1}-T_{1}$ spacin
results from the decay of short-term recognition components which would othervise be maintained at P_{2}. However, since a $P_{1}-P_{1}$ lag of 1 was not included in the stud, it is quite possible that the coincidence of the upper asymptote of the pacing effect with the final decay of short-term recognition on T_{1} is merely apparent. However, in the light of the small spacing iatervals reuired to achieve optimal recognition on Γ_{2}, it should be suspected that similarly disappointing obsevations :ill result from th recall data. There vere insufficient observations to statisticaily compare the five values of $\operatorname{Zr}\left(\mathrm{O}_{2} / \mathrm{N}_{1}\right)$, but the overall vilue of this proportion computed across lag, was . 819, which oxceeded the value of $\operatorname{Pr}\left(C_{1}\right)$ at a retention interval of 8 trials (.770), so there is no evi lence that items are not recognised on T_{1} are more difficult to encode than brand new items.

The recall data for this study are presented in Ficure 20. Recall performance at $T_{1}, \operatorname{Pr}\left(C_{1}\right)$, clearly shows a rapid decline as the $P_{1}-T_{1}$ interval increases from 0 to 2 , and a subsequent slower decline. Statistical comparisons of all five, and the last four, values of $\operatorname{Pr}\left(C_{1}\right)$ were both significant $\left(X^{2}=206.94, \mathrm{df}=4, \mathrm{p}<.001\right.$; $X^{2}=15.57$, $\mathrm{df}=3, p=.001$) so that both lone-and short-tera components exhibit significant for ${ }_{6}$ etting with increasing retention intervals, in contrast to the results of the two previous studies. $\operatorname{Pr}\left(\mathrm{C}_{2}\right)$ was dicappointingly unaffected by $\mathrm{P}_{1}-T_{1}$ spacing $\left(X^{2}=5 \cdot 20\right.$, $d f=4, p=.267$), although a comparison of the five values of $\operatorname{Pr}\left(C_{2} / C_{1}\right)$ was sifnificant $\left(X^{2}=20.92, \mathrm{df},=4, p=.0003\right)$. Then the values of $\operatorname{Pr}\left(C_{2} / C_{1}\right)$ wiere compared at $P_{1}-T_{1}$ intervals of $2,4,6$ and 8 no significant differences were found $\left(X^{2}=1.43, \mathrm{~d} f=3, \mathrm{p}=.699\right.$) so that, as expected, after an initial improvement in recall perfor:ance at T_{2} conditional upon correct tecall at T_{1} from a $P_{1}-T_{1}$ interval of zero to an interval of two trials, there was no evidence of firther improvement with subsequent increases in interpresentation spacing.

FIGURE 20
Paired-associate recall in Exp. III

Recall performance on F_{2} concitional upon a recall error at $T_{1}, \operatorname{Pr}\left(C_{2} / W_{1}\right)$:ias not affected by $P_{1}-T_{1}$ spacinc $\left(X^{2}=4.73, \mathrm{df}=4\right.$, $p=.316)$, and the overall value of $\operatorname{Pr}\left(C_{2} / / 11_{1}\right)$ computed across the five spacings, . 301, did not difier significantly from recall at T_{1} at a retention interval of 8 trials, .315 ($z=.360, p=.361$, 2-tailed). Thus there is no evidence in this study that items upon which a recall error was made on T_{1} were any more difficult to encode on P_{2} than were brand new items on P_{1}. This result conflicts sharply with the findines of Exp II..

Recall condition 1 upon a corract recognition on the same trial did not materially difier from marginal recill performance. The proportions $\operatorname{Pr}\left(\mathrm{C}_{1} / \mathrm{O}_{1}\right)$ and $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{C}_{2}\right)$ are depicted in pigure 21 , and a comparison with Figure 20 confirns that overall recall can be almost entirely explained in terms of recall following a correct recognition on the same trial coupled with guessing followins a recognition erro on the same trial. Certainly, $\operatorname{Pr}\left(C_{1} / J_{1}\right)$ failed to exhibit any relationship with $P_{1}-T_{1}$ s racing $\left(X^{2}=.64, d f=3, p=.887\right)$. There were insufficient observations to permit a meanineful comparison of the balues of $\operatorname{Pr}\left(C_{2} / N_{2}\right)$ at various $P_{1}-T_{1}$ spacing. Thus, overall values of these proportions were computed across spacine intervals. The value of $\operatorname{Pr}\left(C_{1} / N_{1}\right)$, 257 , did not differ significantly from that of $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{N}_{2}\right)$, which was .268. Consecuently, these two estimates were pooled to yield an overall value of $P(C /:$ on the same trial) of .261. Somewhat surprisingly, this value was found to significantly exceed the theoretical chance level of $1 / 5(z=2.53, p<.01$, -tailed). This result su cests that given a recognition error, recall performance on the same trial was better tian chance, in direct conflict with the results of the previous study, and those outlined in section 4.13. It is suefested that this result may hare arisen from the relatively small number of response alteraatives employed in this study. It is possible that suojects had some idea of which responses they had been presented with most often in the recent past, so that on failing

to recognise a stimulus, they may have guessed away from t is set. Such a strateçy might well serve to ¿oost tie equessine level, and the failure to find any effect of retention interval on $P\left(C_{1} / \mathrm{II}_{1}\right)$ is certainly consistent with such a hypothesis.

Since $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{O}_{2}\right)$ and $\operatorname{Pr}\left(\mathrm{C}_{2}\right)$ were so similar at each $\mathrm{P}_{1}-\mathrm{F}_{1}$ spacing, it was considered sufficent to examine only recall performance at F_{2} conditional upon both recognition and recall performance on T_{1}. $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{H}_{1}\right)$ dià not exhibit a $\mathrm{P}_{1}-\mathrm{T}_{1}$ spacing effect $\left(X^{2}=2.56, \mathrm{df}=3\right.$ $\mathrm{p}=.461)$, and moreover, the overall value of $\operatorname{Pr}\left(\mathrm{c}_{2} / \omega_{1}\right)$ comjuted across the five spacine conitions $\cdot 275$, did not differ significantly from the value of $\operatorname{Pr}\left(C_{1}\right)$ at a retention interval of 8 trials, $315(z=.84)$. This result supports the earlier conclusion that a recognition failure at T_{1} did not inaicate that the encoding of a puir on a subsequent presentation was in any way more difficult or less adequate than the oncoding of a brand new pair on its first presentation. Similar results were found for $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{O}_{1} \mathrm{H}_{1}\right)$; there was no spacine effect $\left(X^{2}=3.74, \mathrm{df}=3, \mathrm{p}=.290\right)$, and the overall value of $\cdot 319$ clearly did not aiffer from that of $\operatorname{Pr}\left(C_{1}\right)$ at a similar retention interval, -315. An examin tion of $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{O}_{1} \mathrm{C}_{1}\right)$ revealed tiat this statistic was almost identical in form to $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$, in that a comparison of all five values was sienificant ($X^{2}=26.99, \mathrm{df}=4, \mathrm{p} .001$), whilst the values at $P_{1}-T_{1}$ spacines of $2,4,6$ and 8 trials dici not differ significantly ($X^{2}=3.44$, df $=3, p=.329$). A $A_{\text {Eain }}$, an increase in $P_{1}-T_{1}$ spacing from 0 to 2 trials was beneficial, whereas subsequent increases produced no additional benefit.

An examination of erseverations in this study was interesting. The proportions of items to which an incorrect recall had been made on both T_{1} and T_{2} which were also perseverations were examined as a function of the two reconition responses. In the case of tro correct recognitions, i.e. $\mathrm{O}_{1}{ }^{\prime \prime \prime} \mathrm{O}_{2} \mathrm{H}_{2}{ }^{\mathrm{H}}$ items, parseverations were found to exhibit a significant $l_{a g}$ effect, anà to increase with $P_{1}-T_{1}$
spacing. This result siegests tiat as the retention interval increazes after a first presentation, the probability of a perseveration given an error also increases. However, it is not clear whether this indicates an interference off ct, or merely reflects a "guessing numoer" strategy, since the highest proportion of perseverations siven two recall errors and two correct recoenitions was $34 / 66$, or .515 , whilst the overall proportion of perseverations eiven two recall errors and two reconnition errors was $9 / 17$ or .53 ! In the latier case, there is considerable evidence that sukjects were buessin responses on both test trials, so that the hich level of perseverations clearly su, gests an underlying "guessing number" stratecy of the kind postulated in section 5.13. Thus, it is quite linely that at long retention intervals, eiven correct stimulas recounitions, a greater proportion of recall errors were pure gutswes then at shorter intervals. 5.33 Summary (Finp. III)

Clearly, Bxp III failed to fulfill the function for which it was desiधned, since the rance over which T_{2} performance improved with interpresentation spaciñ was, if anythinc, smaller then that ooserved in Cxp II. In addition, t, ϵ re were almost certainly insufficient observations to make full use of the recoenition data, and more particularly of T_{2} recall performance conditional upon T_{2} recosnition and T_{1} recognition and recall performance.

However, it was interestine to note that in this study, poor performance on T_{1} did not deletericusly affect subsequent performance on T_{2}. This succeats that in the previous two studies, although inadequate encodinc on ontry to F_{2} clearly mas not always rectified by that presentation, the encodinse which resulted from P_{2} were inadequate only in that they did not permit recall in the short fixed Deriod allowed for test trials in these studies. Items to which r_{1} errors were made in the current study would be if anytiving more inadequately encoded than such items in the first tro studies, since much more time was potentially available to respond on T_{2} in this
experiment. Despite this, the deleterious effects of these T_{1} errors were totally "wiped out" by allowine ample recall time on T_{2}. These results may well be interpreted as evidence that recodin s on P_{2} following an error on P_{1} are somevhat elaborative, perhaps of the form "the response is not the erroneous one just made, but etc., " in which case the search time renuired to retrieve the response on T_{2} might well be excessive if T_{2} is of a small, fixed duration.

5.4 Conclusions

Taken together, the results of lxps. I and II stroncly suguest that the improvem at final test with increasiñ interpresentation spacine may be partially accounted for the relatively small effect of the second presentation upon itcme only in showt-term memory at the onset of the second presentation. However, there is considerable evidence in Exp. I that the improvement is maintained across interpresentation spacings far in excess of those sufficient to "wipe out" ghort-term retention effects at P_{2}. Hovever, in "oth Exps. II and III. there ras little evicence to support the hypothesis thint more slo::1y decaying short-term stimulus recognition components were responsible for this.

All three experiments sugest th i the spacine effect can be accounted for only in terms of those items t at are successiully responded to just prior to the second presentation, tiat is, on T_{1}. Therefore any hypothesis based upon some kind of strength theory (where there is no share division between those items to which correct responses are made on T_{1} and those on which errors are made) appears to be untenable, since there is very little evidence $t a t T_{2}$ perfornance on items on which errors are made at T_{1} is affected in any regular way by interpresentation spacinc.

A comparison of Exps. II and III with exp. I suesests that the introduction of a recoenition probe on test trials cay well affect the subject's task perceptions to such an extent that he chances his encoding stratecs altogetier, since neither of the latter studies
exhibited iaprovements in T_{2} performance over anyt ine like the range of interpresentation spacinss found to have an increasincly beneficial effect in Exp.I. This strate the employment of more claborate stimulus encodines in or er to improve performsnce on tiae stimulus recognition component of the task. However, it is far from clear as to how such a sirategy chance would operate to reduce the rance of the spacine effect.

There is very little evidence to sucgest that sabjects were employing a shared cyclic re earsal strategy in thece stuãies similer to that proposed by At inson and Shiffrin (1,68) and outlined in 4.32. In the nost-experimental interview at the conclusion of Ixp III, subjects were specifically cuestioned on this point, and the results Fere illuminatinc. Out of a total of 25 subjects, only one subject claimed to have exclusively employed a stratezy that involved the rehearsal of previously-presented items durine current study and test trials. A second subject admitted to employine such a strategy "occasionally"; in particular, previously-presented items were rehearsed during study trials on pairs that the suoject had decided were very disficult to memorize. In other words, this subject employed a strategy oi essentially ienorine certain pairs that he found difficult. Two other subjects adritted that they had exployed a shared rehearsal strategy durince the early part of the session, but had suoseçuently given it up (as too difficult to maintain) in favour of the procedure followed by the vast majority of sabjecte; that is, the concentration of effort and attention upon each item as it occurred on a study or test trial. Consecuently, it is most unlilely that a ared rehearsal contributed significently to the results to Bxp. III; at least it is certain that subjecte were not conscious of employing such a procedure.

Although there is no direct evidence on this matter in the first two experiments, it seems likely that were shared cyclic rehearsal to occur, then it would be more probable in Exp. III then In the first two studies. In the first place, the subject-pacinet of
test-trials in this study meant that the rate of occurrence of trials vas at least jartially uncer to subject's control, and such a procedure would surely be less disruptive of relearsal processes then the ilixed rate method usec in Exps. I and II. Secondly, the relatively low-d CVC stimuli employed in Exy III would be more difficult to encode tian the common words employed in the first two studies, and so a shared rehearsal strategy might well have been eraployed as an alternitive to a deep encoding strategy. These two arguments both imply that shared cyclic rehearsal mould be even less likely in aps. I and II than in Furthermore, since subjects in the first two stuades were tested over a far loneer period then those in the finel experiment, there is a strong possibility that even had subjects initially employed shared rehearsal, they moulc have given it up relatively early durine testing, so that the bulk of their results mould not be affectei by it. This argument applies to Exp. I in particular, when each subject was tested on six lists, and it should be pointed out in addition that the rate of occurrence of trials in this study was extremely rapid, and would therefore be extremely disruptive to rehearsal processes. In conclusion, then, it appears most unlikely that shared rehearsal occurred to any significant extent in all three studies; this is not only evidence against a shared cyolic rehearsal interyretation, but also renders unlikely a shared processinf hypothesis of the t pe postulated by Greeno (1967, see 1.43). Although shared reheersal mas almost certainly a sienificent factor in the Erelsford et.al. study, due to the extremely slo: presentation rates that were employed, it thas appears that such a process cioes not offer an explanation of the spaced presentations effect for relatively rapidly presented material.

A number of observations made in lyps. I and II reere not replicated In axp III, namely those concerning T_{2} recall performence on items that were incorrectly respondec to on T_{1}. There is considerable evidence in the first two studies that the second presentation of such items mas less effective than a first presentation of ε brand nerf item. The
failure to find a similar effect in Ex III suceets t at this result is somehow tied up with the fixed duration test trials employed in Exps, I and II, in that items that were not responded to correctiy on T_{1} appeared to be, in general, more difficult to encode for subsequent rapid recall on T_{2}. It is quite possible that an elaborative encoding is employed on P_{2} when a correctly recoenisod stimulus still results in a recall error on T_{1} of the form "the response is not X but Y ". Such an encodine would be decoded on a subject - paced I_{2}, whilst on a fixed duration T_{2}, there is a strone possibility that the subject often only kas time to decode the item to the extent that "the response is not X". The resultant response mould thus be a cuess from the reminine response alternatives, and in particular, it would not be a perseveration. This hypothesis is consistent with the results of Exp. III which sucested that yerseverations very much reflected a "gressinc number" strategy, and would consequently occur only on those items that were either not recoenised, or whose responses had not been adecuately encoded in the first place, on both test trials.

Ho:iever, such a hypothesis is called into cuestion by the even poorer recall at T_{2} of items that were not recognised on T_{1}, as compared with those that were recognised but incoriectly recalled on T_{1}, in Exp. II. It is cuite possible that t e association encodine in this case is of the elaborative type desoribed above, since even a guess on ? may serve to establish an inappropriate response pairine rhich is corrected on P_{2}. In addition, it is postulated that so much time is employed on T_{2} in fulfillin ${ }^{\text {e }}$ the stimulus recognition requirement (since that particular stimulus was oriecinally difficult to recocnised on T_{1}) that even less time is available for the retrieval of the appropriate response. Such a hypothesis is con istent with the res lis of Ixp.II, and furthermore, would predict no reauction in F_{2} recall following a T_{1} recognition error relative to a brand-nev item if test trials were subject paced. This prediction is worne out by the results of Exp III. There is one somewat startline resuit from Exp. I that deserves
further coment, which is that items incorrectly recalled at T_{1} at a retention interval of zero were recalled at chance level on T_{2}.

It is difficult to offer a really convincinc explanation of this result, since an attentional hypothesis clearly does not apply. If items that are incorrectly recalled at a retention interval of zero are just those that were not at ended on P_{1}, then performance following P_{2} should be equivalent to that on new items at T_{1} at a retention interval equal to the $\mathrm{P}_{2}-\mathrm{T}_{2}$ spacing, or 8 trials. This is clearly not the case. Several explanations of the result are possible; for example, items incorrectly responded to on T_{1} at a zero retention lac may be items that were totally mis-perceived on T_{1}, were acain mis-perceived on P_{2}, but were correctly perceived on T_{2}. Whatever rationale is accepted, it appears that there are sone items t at are extremely difficult to encode uniquely for rapid recall at test. However, there is som evidence tist these encoding difficulties can be overcome if P_{2} is sufficiently lone since T_{2} recall performance on suck items was not sicnificantly differert to T_{2} recall performance on items to which T_{1} errcrs were made at non-zero retention intervals in drp.II. This observation is at least consistent with a mis-perception hypothesis, since with a loneer P_{2}, the subject may have time to realise that he has mis-perceived the stimulus, and may consequently have some time in whic to roduce an appropriate encodin. However, a mis-perception hypothesis is not completely satis factory, since it implies that the subject perceives the stimulus correctly on \bar{F}_{1} and T_{2}; this should produce better-than-chance recall on T_{2}. in alternative, and periaps more attractive hypothesis is that certain stimuli are for sowe reason already associated with a particular, inapropriate response, Suck a pre-existant association night well enoruously interfere with any attempt to produce a nem encoding. however, it is still most surprisine that recal performace on T_{2} fiven an error on F_{1} does not show some kind of systenatic improvement with the P_{1} and T_{1} spacing, since in Eenoral, the shorter the $P_{1}-P_{1}$ inte val, the more "difricult" on averace the item to whic a T_{1} ernor is made, and the poorer whe
performance on T_{2}. It should be pointed out, thouch, that in axp. I, the $\mathrm{Pr}_{\mathrm{r}}\left(\mathrm{C}_{2} / \mathrm{N}_{1}\right)$ curve may well reflect such an improvement with spacing (See Ficure 15), since overall, the value of this statistic appears sowerh t loiocr at $P_{1}-T_{1}$ spacings of 0 to 6 tian at spacin's of 8 to 15 .

In conclusion, it is clear that Exp. I exhibits the most interestine results, in that this study clearly discriminates between short-term retention at T_{1} (and consequently $a_{u} P_{2}$) and the extent to which increasine $P_{1}-T_{1}$ spacing benefits performance at T_{2}. However, there are still a narnber of questions to be answered. In particular it is not clear whether the apparently continued improvement of $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$ with interpresentation spacincs from zero up to about 8 trials reflects a reduction in the lon-term forsettinc rate 0 ? items re-presented at longer lags in comparison vith that of siagly-presented items, or whether the improvement reflects an increase in the benefit derived fro the second presentation by those iteras that vere incorrectly recalled on T_{1} or correctly guessed on that trial. In other mords, does P_{2} principally operate to improve the encodines of those items that are alread adequatel encoded, or to proiuce more adequate enco ings of those items that mere inadequately encodid uson re-presentatior? An attempt is made to examine these points in the noxt ciapter.

OHPTM SIX

As was pointed out at the conclusion of the precedin chapter, it is only by a detailed theoretical analysis tiat the effect of a second presentation may be decuced. In particular, the specific question to je answered concerns whether a re-presentation aerves to improve the encoding of already adecuate encoded items, or to improve the encodince of inade uately encoded items, or both. In adidition, such an analysis will be of great value in incicatine which of the above factors is the main contributer to the sacinc effect. There are many matheratical models of human memory in existance which could be employed in such an analysis, so that the first task is clearly to select the most appropriate formulation for testine the hypotheses of interest.

6.1 Kodels o: unan hemory.

Generally speaiing, there are three extant classes of models that have some chance to account for the effects of spacing. hlthough each of these classes embraces a wide rance of specific mojels, it will be sufficient for the purzose of this thesis to deal briefly with the tiree eeneral classes only.

6.11 Stimulus samplin theory

The first class of models derives from stiwul s sampline theor, and is based on the idea of stimulus fluctuation (Estes, 1955; Izara, 1971). These models ascume trat an iten to be remernere: Jogether witl: the context in which is is presented may be descrived in tems of a set of "stimulus elements". it any one time, some of these elements are ass:med to be available to the subject, whilst the remainder are not available. Over a period of interferine activity, eaci stimulus element is assumed to move at random, or ilxctuate, ietreen the available and unavilable sets.

The mociels as appliec to pared associttes generally assuine that during presentation, all the available stimuius elements are sampled, and each may becomo associated with the response with sowe fixed provability.

The presence of one or more response-associated stiroulus elements in the available set at test is acsumed io lead to a correct response with probability 1. Conseguently, if two presentations of an itew are biven, then if the second presentation occurs soon after twe first, the stimulus items in the available set will rainly be tiose that mere associated with ine response on the first presentation, so that the second presentation will be of li:tle value. Ho: ever, as the interpresentation interval incrosses, the available set of stimulus elements at the second presentation will become less and less lik ly to iucluade many of the already-coniitioned elements, so that the second presentation will be effective in producing a lare numoer of new sticulus elementresponse associations. Consecuently, on a subsequent test, there will be a greater likelihood that an associated elerent is in the available set.

There are a number of objections to such a model. The first objection is made on broady psychological grounds, in that models of this nature clearly assume that pared-associste encouin is elaborative in nature, and tiat, in particular, paired-associate learnine reflcots the association encoding of a wide rance of stimalus attributes or elements. This supposition is in airect conflict with the results outlined in 4.12 which show that during on-going paired-associnte learnine, subjects tend to "home in" on a specific, preferred version of the functional stimulus, so that learnine is partly a consecuence of the staui isation of the available set of stinulus attributes. Seconcily, fluctuation nociels cortainly imply that the spacine effect is dependent upon multiple contextual encoding, and this is also at varience with the extant data (e.g. see 4.33). Thirily, samplin models are somewhat infleaible, since tiey postulate a very definite relationsinip (via the stimulus elements falline into the available set) between retention followinc a siacic presentation and the effectiveness of a second presentation. In particula, performance following a second presentation should be inversely related to performince just prior to the second presentation. This interpretation
is precisely one of the hypotheses to ce tested! Consequently, sampling models will be of lit:le value i. proixciag acceptable tests of the hypotheses of interest. Finally, it siould be pointed out that sampline models would predict that a second presentation would have an optimal effect if a recall error were made just prior to it. This prediction is, to say the least, somewhat at variance with the results of Exps. I and II.

6.12 íultiprocess and consolidation nodels

The second class of models are the multirocess "ou'fer" models of the type proposed by iuti inson and S'iffrin (1968). These models essentially assume that there is a fixed-capacity rehearsal buffer which operates both as a short-term store, and as an attentional device whereby material is encoded into a form suitable for long-term storage. The lons-term storage of items is assumed to lead to irperfect retrieval due mainly to the traditional processes of associative interierence. The probability that an item is represented in the lon-term store is assumed to be an increasing function of the langth of time tiat it resides in the rehearsal buffer before it is displaced (by the entry of a new item), and a decreasing function of tie leneth of time since the item was so displaced from the bufier. Thus, these models in General interpret the spacing effect as resultine from the fact that itens ady continue to reside in the rehearsal buffer (and consequently increase their long-tem storage probability) durine the presentation and testine of other items which constitues the interpresentation interval. This notion constifutes a mechanism tirough winch memory traces consolidate over time.

There is considerable controversy as to whetier, in fact, it is possible to consciously process material wilst attending to the presentat on and testing of otiler items, and indeed there is some evidence that shared rehearsal did not contribute reatly to the results of the threa experiments in the preceding Chapter. Furthermore, models of this lind place a very specific interpretation upon the spacine effect, so that once again, it is difficult to see bow they could provide a framewor: for
testine the hypotheses of interest. It should ilso be notec that during the period over wich items are assumed to be "consolidated", they are resident in the rehearsal buffer, whence they are assumed to be recelled perfectly. There is clearly very little evidence of suck a consolidation process in the sincle-presentation retention curve of Exp.I (see Fig.14). Finally, it should be pointed out that the models of Ati.inson and Shiffrin were intractable to the extent tat predictions lad to be cenerated using monte-carlo methods, so that enomous practical difficilties would be expected if nodels of t is type were adopted. 6.13 ar ovian Lodels.

Wodels of the third class are generally nown as Larkovian radels, and in their simplest form they assume t at an item may be held in one of three states: a "naive" state (i.e. not in memory), a short-term retention state, and a permanant, loneterm memory state. The individual memeers of tis class are defined by teir variods assumptions about transition probauilities from one state to another, and include the oricinal models of atkinson and Crothers (1964) and Greeno (1907), the more Generalised modei of Bjork (1960), and the codified version of Bjork's model pro osed by Iumelhart (1907) and called by him GFT (General Forgetting Theory).

A Zarkovian approach ofifers several advantases. In the first place, such models are not based upon mechanisms which relate very specifically to any particular psychological theory, as are the stimulus sampling and buffer types of model. However, Liariovian moċels do provide a flexible framework within which hypotheses relatinc to specific psychological processes may be tested. For example, additional ststes may be acded to the model, in such a wa: t at the transition probailitities between these states represent the desired psyciolocival proces. A statistical test day then be constructed to detemine waether the inclusion of these adiitional parameters si, nificantly improves the fit of the model to the data (see 6.22).

Perhaps the most pronounced advantace offered by a dariovian model
lies in the fact t at the postulated staies relate in a very direct and ojvious way to the observed aspects of the data. Fhis means that, first of all, the states of the model may be operitionally defined, so tiat the lon-term and short-term retention states of the model way be tanen as the smallestnumber of states necessary to predict the observed relationship between retention interval and recall performance. This does not necessarily imply the acceptance oi a teeory of memory that postulates a dichotomy into a specific short-term and a specific loneterm memory store, but rather reflects the observation that suci a dicnotomy in the model is necessary in order to predict the broader aspects of the extant data. In the second place, the direct relationship between the postulated states of the model and the predictions of the model may be particularly useful in succesting improvenents and modifications to the model in the eventuality that it does not successfully charscterise the data.

Finally, a Larkovian approach appears to bo unicue in providinc a framework witicin which to evaluate the hypotheses outiined at the beginning of this chapter; in other words, does a second presentation operate to retard the rate of forgettinc of already quite adequately encoded iters, or simply to improve the ncodins of those items that were not adecuately encoded on their first presentation? Liriovian models will provide a metiod of deter ining wich of these mechanisms best accounts for the spacinc eifect.

Consequently, it is proposed to employ a harkovian approach in the following theoretical analyses, in the expectation that the application of such bocels will provide a far nore precise sumary of the data of experiment I than that available as a result of the preliminary analyses carried out in the previous chapter. It is hoped that this information may rove to be of ereat valde in the evaluation of the various psychological bypotheses advanced to explain the ofiects of the spacine of paired-associate study irials upon subsequent recall performance.

6.2 Numerical and Statistical .ethods

The analyses to be reported in the reiainaer of the Chapter were carried out solely upon data from Experiment I, since this was the O.ly study that included a sufficient rance of interpresentation spacings to effectively discririnate between to rance of interyesen ation intervals over wich short-term retention effects survive until P_{2}, and that rance over which performance at final test apparently contimues to improve. Ladependent analyses of $\operatorname{Pr}\left(\mathrm{C}_{1}\right), \operatorname{Pr}\left(\hat{O}_{2} / C_{1}\right)$ and $\operatorname{Pr}\left(\mathrm{C}_{2} / \operatorname{M}{ }_{1}\right)$ clearly cannot convincingly provide an apreciation of the extent to which each of these performane measures determines tiee relationship of $\operatorname{Pr}\left(\mathrm{C}_{2}\right)$ with the interpresentation interval. Defore proceding to describe the theoretical anal ses in detail, however, it is proposed to give a sumary of the numerical and statistical cethods which they employed.

6. 21 Numerical Lethods.

Since the data essentially tal es the form of the ir uencies of observations wich were observeci to full into tle various response categories, the apropriate goodness-of-fit statistic is clearly Chi-squared. Thus, a minimum Chi-squared tecknique was employed to fit the various models to the data (i.e. to produce the "ivest" estimates of the various parameters of each model). It was not found possitle to minimise X^{2} analytically, due to the complex relationshiv between χ^{2} aid the various para eters, and to the relauively large numbers of paraneters involved (between four and nine).

Consequently, minicisation in all the analyses was accoplished by the use of Fortran computer procrames which e...ployed the WAG subroutine E04CAF. This subroutine rinimises a function of several variables by an iterative procedure based upon a direct search, noncradient method developed by Powell (1,64).

6.22 Statistical Methods

The statistical technicues employed were based on a result in the works of deyman (1949). Suppose it is desired to fit a mathematical
podel t: an arizy of irequency data with n deerees of Ereedom, and that there is a vector of the theoretical yarameters of the model (p_{1}, p_{2}, \ldots, p_{s}) where $s \leqslant n$, such t at the model precicts the probabilities of observations falline into each category of the data array as a function of this parmeter vector. Surpose, in adaition, there is a special case of the model with $q\left(\langle s)\right.$ parameters, ($p_{1}, \ldots, p q$) where $p_{q+1}^{*}=p_{q+1}, \ldots, p_{s}^{*}=p_{s}$, and $p_{q+1}^{*}, \ldots, p_{s}^{*}$ are either constants, or functions of $\left(p_{1}, \ldots, p_{q_{1}}\right)$. In other words, the special case defines a "sub-model" of tle orisinal model. Then, if fittine the fill model yields a minimam χ^{2} with $n-s$ desrees of fredom of m_{1}, and fittins the special case yields a mininum \tilde{x}^{2} with $n-q$ decrees of freedom of m_{2}, Neyman (1949) showed that $m_{c}-m_{1}$ has a X^{2} distribution $\begin{gathered}\text { vith } \\ s-q\end{gathered}$ decrees of freedom under the null rypothesis that the improvement in fit from allowing $p_{\mathrm{q}+1}, \ldots, p_{\mathrm{s}}$ to vary freely is due nerely to capitalising on chance.

Thus, if the null hypothesis is accepted, nothinc is gained by allowing p_{q+1}, \ldots, p_{s} to varv freely, so that they cen junt as well be left at their a-priori values of $p_{q}^{*}+1, \ldots, p_{s}^{*}$. This result is of obvious applicability in comparing the fits of models involvine additional parameters which define the spacine mechanisms described by the various hypothesis outlined earlier with that of a model which does not include these exta parameters.

6.3 Fits to performance on Tr

Because the $\operatorname{Pr}\left(C_{1}\right)$ curve resultinc from Rxp. I did not sho:. a regular, monotonic decline with retention intervil as mas expected from previous data (see Ficures 14 and 1), it was anticignted that difficulties would occur in fitting a zarkovian forettine model to this aspect of the data. Two alternative formiations were proposed, each involvine four parameters, and their fits to T_{1} performance were compared.

6.31 Kodel 1

It will be remenioered that in Exp.I, so far as I_{1} perfortance is concerned, each item received a schedule which may be depicted as

$\mathrm{p}_{1} \ldots$ trials $_{1}$

where tie retention interval i took values of $0,1,2,3,4,5,6,8,12$ or 16 trials. تodel 1 was constructed in order to jredict recall performance at T_{1} as a function of the retention interval i. The model includes 3 states:

I - Lon-tern retention state
S - Short-term retention state
IV - Haive (unleameci) state
The probability oif a correct response on a test trial Eiven that an item currently resides in one of the three states of the mociel is represented oy the vector \underline{I}^{i}, where

$$
\underline{R}^{\prime} \quad=\quad(1, \quad 1, \quad E)
$$

and E is the probacility that the subject correctly guasses the correct response. The results of 2 . II sucgested that this ipobability did not differ from the theoretical cuessin probability (see 5.2.), so that as there were 15 response alternatives in Exp.I, ε was set to $1 / 15$, and consequently E did not constitute an effective parameter of the :adel.

The effect of the study trial P_{1} may be represented b_{y}, the vector of prababilities \underline{P}, where

$$
\begin{aligned}
& \text { P } \left.\quad=\quad \begin{array}{cc}
I & S \\
(a,(1-a) c,(1-a)(1-c)
\end{array}\right)
\end{aligned}
$$

Finally, the eifect of an intrudine trial on another iter, or a "forgettine" trial, is described by the matrix \mathcal{F}, where

$$
\underline{F}=\mathbb{L}\left[\begin{array}{lll}
L & S & H \\
p & 0 & 1-p \\
0 & s & 1-s \\
0 & 0 & 1
\end{array}\right]
$$

It was assumed that the test trial T_{1} did not a Neect the state in which items were held.

The probability of a correct response on r_{1} at a retention
interval of in preaicted by the followie e uation

$$
P_{i}\left(C_{1}\right)=\underline{P} \underline{F}^{i} \underline{R}
$$

or, alternatively, by

$$
\begin{gathered}
P_{i}\left(C_{1}\right)=B(i)+(1-B(i))_{E} \\
\text { where } \left.B(i)=a p^{i}+C_{(}^{\prime} 1-a\right) s^{i}
\end{gathered}
$$

Thus, the model interprets performance at T_{1} as resultine from lonc-retention items, that are retained in state L with a relatively hich probability p on each forcettins trial, partially from shortretention items (es ecially at short retention intervals) wicici are retained with a relatively low probability s on each forettinc trial, and from chance-level guessine to iters tiat have been forgoten, or were never learned in the first place.

6. 22 \%odel 2

It is clear from the above formation that lodel 1 predicts anzero short-term retention effects at retention intervals of two or rione trials, whereas examinetion of Fieure 14 sugbests t at short-term retention has been es entially "wiped out" by a retention interval of two or more trials. This mieht well cause wodel 1 to yield a lor: estimate of the parameter s, in order to compensate for the overprediction of short-term retention effects at nocercte retention intervals, resultinE in an underprediction of $\operatorname{Pr}\left(C_{1}\right)$ at short retention intervals. Although no monotonic forettin nodel could possibly hope to satisfactorily explain the $\operatorname{PY}\left(C_{1}\right)$ data of Exp.I, it was thou ht that a superior fit mi hit ensue from a nodel that predicts no short-ierm retention at all at retention intervals of 2 or ore trials. wodel 2 makes such a prediction.

The model includes 4 states:
L- lone-term retention state
S_{1}
S_{2}
$\mathbb{N}-\quad$ Naive (unleamed) state
The probability of a correct response on T_{1} is represented by the
vector \underline{R}^{\prime}, where

$$
\left.\underline{\mathrm{R}}^{\prime}=\begin{array}{cccc}
\mathrm{L} & \mathrm{~S}_{1} & \mathrm{~S}_{2} & \mathrm{IN} \\
(1, & 1, & 1, & \mathrm{E}
\end{array}\right)
$$

and $g=1 / 15$ as before. The effect of the initial presentation P_{1} is represented by the vector $\underset{\sim}{P}$, where

$$
\begin{gathered}
\mathrm{L} \\
\underline{P} \quad= \\
(a, \\
S_{1}, \\
S_{2}
\end{gathered} c
$$

Finally, the effect of an intrudine trial involvinc another iten, or a foreetting trial, is represented by the watrix F, where

$\underline{F}=$| L |
| :--- |
| S_{1} |
| S_{2} |
| N |\(\left[\begin{array}{llll}L \& S_{1} \& S_{2} \& i

\mathrm{N} \& 0 \& 0 \& 1-p

0 \& 0 \& s \& 1-s

0 \& 0 \& 0 \& 1

0 \& 0 \& 0 \& 1\end{array}\right)\)

Again, it was assumed that the test-trial, T_{1}, had no effect upon the state in which an item resicied.

The probability of a ccrrect response at a retention interval of i trials is predicted to be

$$
P i\left(C_{1}\right)=\underline{P} F^{i} \underline{Z}
$$

or alternatively

$$
\begin{aligned}
\operatorname{Pi}\left(C_{1}\right) & =E(i)+(1-B(i))_{\varepsilon} \\
\text { where } B(i) & = \begin{cases}a+(1-a) c, & \text { if } i=0 \\
a p+c(1-a) s, & \text { if } i=1 \\
a p^{i}, & \text { if } i \geqslant 2\end{cases}
\end{aligned}
$$

The splittire of the short-term retention state into the two states S_{1} and S_{2} yas really a mathentical device employed to prese ve the arkovian aspects of the model, in that all four parameters of the model, c, a, p and s remain constant over trials.
6.33 The fits of Hodels 1 and 2 to $\operatorname{Pr}\left(C_{k}\right)$

For each nodel, the predicted value of $\mathrm{Pi}^{(}\left(\mathrm{C}_{1}\right)$ was multiplied by the total numer of observations at a retention interval of i, to yield a prediction of the number of observations falline into the C_{1}
category. When subtracted from the total number of observations, this yielded the predicted number of observations falline into the " ${ }_{1}$ category (i.e. the sum of categories $W_{1} C_{2}$ and $W_{1} W_{2}$), and the value of X^{2} vas consecuently computed as $\sum(0-E)^{2} / \mathrm{E}$,
where 0 and E refer respecti ely to the observed and predicted frequencies in each of the 20 categories.

TABLE 12

Results of fittine models 1 and 2 to retention data at T_{1} from Bxp. I
(i) Observed and Predicted values of $\operatorname{Pr}\left(\mathrm{C}_{1}\right)$

Observed
.930
.593
.424
.378
.480

$$
.438
$$

.511

$$
.442
$$

$$
.443
$$

$$
.394
$$

Predicted

.0231	.930
.560	.593
.473	.447
.451	.445
.444	.443
.442	.442
.440	.440
.437	.437
.430	.431
.424	.425

(ii) Parameter estimites and coodness of fit

	Parameter jstimites				$\frac{\text { Sinimum }}{\text { Chi-suared }}$	d.f.	prob
	c	a	P	-			
Hodel 1	. 874	-410	. 996	. 234	27.274	6	$<.001$
Model 2	. 872	. 410	. 996	. 302	21.067	6	<.001

The data array couprises 10 decrees of freedom, whilst the fitted models each allowed 4 parameters (c, a, p and s) to vary freely, yieldin 6 degrees of freeciom for the minimun chi-s hared statistics. Details of the fits of the two mocels are resented in Table 12. Althou Eh $^{\text {Liddel }} 2$ did result in a reduction of 6.207 in the minimum chiscuared value, nevertheless this value was still hichly sionificant, which sugeests thet the fit of Hodel 2 still left much to be desired. Hovever, a close examination of the observed and wredicted values in the table shor that liodel 2 did result in an improvement in fit at retention

FIGURE 22

Coserved values of $\operatorname{Pr}\left(C_{1}\right)$ fron $3 x$.I with
the values predicted oy odel 2 .

intervals of 1 and 2 trials, so that the iypothesis that short-ter rete tion disapears after a retevion interv 1 of 2 or more trials doos appear justified, since \because ociel 1 clearly under-wredicted $\operatorname{Pr}\left(C_{1}\right)$ at a retention interval of 1 trinl to compensate for its over-preciction at a retention interval of 2 tricls.

The observed values of $\operatorname{Pr}\left(\mathrm{C}_{1}\right)$ are presented alone $\cdots i t h$ the predicted values from liodel 2 in Figure 22. The ficure sugsests thet the model predicts the data as well as any monotonic forcetting model is likely to. It therefore appoare tiat the noise in the data curve betreen retention intervils of 2 and 8 is the cause of the enormously sienificant value of the minimun Chi-s uared, and this observation only serves to underline the fears expressed at the bevinin of section 6.3.

Of course, in the absence of convincine evidence that the apparent recovery in $\operatorname{Pr}\left(C_{1}\right)$ is due to raythin more than shortcomines in t...e
 complete the desired analysis witain the framerorly of lat 2 . Fortunately, some methods do exist whereby meaninciul results may be obtained. Pefore goinc: on to describe t ese met ods, nowever, it scould be pointed out thet the results obtained in this section do have some slight psycholocical sicnificance. Althoueth it is Fairly certain that short-term foreettin: is shomehory caused by the üisplacement of itew by later ones (see 1.23), on the oesis of these results, it appears that the least recent item currently held in STA is the one most likely to be displuced. In other words, it appears that siont-term retention arisinc from an echoic sensory store andor "ऐassive" rehearsal has a capacity of about tro nominal items, and that the displacement of attention caused by an intrudine trial has a fair chance of "wipinc out" the item attended on the previous triul, and is almost certain to displace the item attended on the previoxs trial but one. Thie onse-vation is a last consistent with the supposed secuential properijes of rote rehearsal and echoic storage.

6.4. Aurtier anal, ses involvin ooiel 2

Of course, Hodel 2 as presented in the precedin; section, whilst clearly superior to Nodel 1 in accountine for the relationship of $\operatorname{Pr}\left(C_{1}\right)$ with retention interval, is clearly not a le to oiffer an explanation of all the sspects of the r sults of \exp.I. Consequently, the rodel must undergo a process of aucmertation and aodi'ication before it can be expected to yrovide a satisfactory tool for the evaluation of the two hypotheses advance as alternative explanations of the spacine effect.

6.41 Lodel 2 augrmented

In its most complete form, ...odel 2 comprisen 8 states:-

The probability of a correct response on any test-trial (either T_{1} or I_{2}) may be represented by the vector g^{\prime}, where
$\underline{\mathrm{R}}^{\prime}=\left(\begin{array}{cccccccc}\mathrm{LU} & \mathrm{LI} & \mathrm{LD} & \mathrm{S}_{1} & \mathrm{~S}_{2} & \text { Ns } & \mathrm{Nf} & \mathrm{Nx} \\ \mathrm{l}, & \mathrm{l}, & 1, & 1, & 1, & \mathrm{E}, & \mathrm{C}, & \mathrm{E}\end{array}\right)$
and where $\mathbb{C}=1 / 15$ as before, hs before also, the sodel assumos that the state in which an item resides is unchanged by a test trim. The effect of a P_{1} (the first presentation of an item) is represented by the vector ${\underset{P}{1}}$, where

$$
\underline{P}_{1}=\left(\begin{array}{ccccccc}
\text { LU } & L I & I D & S_{1} & S_{2} & \text { Ws } & \text { If }
\end{array}\right] \text { IX }
$$ Thus, on its first presentation, an iter: eaters one of the thre states L_{1}, S_{1} or ${ }_{x}$. The parameter c clearly corresponds to the parameter c in the earlier formation, whilst a_{0} corresponds to the oricinal parar:eter a. The effect of a second resentation, P_{2} is represented by the matrix \underline{P}_{2}, where

Thus, items in states $L U$, LI and S_{1} remain there on a P_{2}. An item in state LD enters LU with probability a_{3}, or LI with probability l-a 3_{3}. Items in states S_{2} and Ifx automatically enter S_{1}, whilet an iteri in state ins or Iff may enter either LI or S_{1}.

The effect of an intrudin trial on another item, or a foreetting trial, may be represented b_{v} the matrix \mathcal{F}, where

	LU	LI	L)	S_{1}	S_{2}	lis	Nf	Nx
Lu	1	0	0	0	0	0	0	0)
LI	0	pr	$p(1-r)$	0	0	0	1-p	0
ID	0	0	p	0	0	0	1-p	0
$F=S_{1}$	0	0	0	0	s	(1-s)	$(1-s)(1-q)$	0
$\underline{L}=s_{2}$	0	0	0	0	0	q	1-q	0
IVs	0	0	0	0	0	9	1-q	0
Nf	0	0	0	0	0	0	1	0
lix	10	0	0	0	0	0	1-c.	q)

Before goin on to discuss the completed version of Lodel 2 in detail, it may be helpful to remind the reader of the form talen by the presentati n-test schecules applied to items in $3 x p$.I. These schedules may be depicted as follows:

$$
\mathrm{P}_{1} \ldots \mathrm{trials}{ }_{2}{ }_{8 \text { trials }}
$$

Thus, each particular item received an initial presentation, P_{1}, and was subsecuently tested at T_{1} after an intervil of $i=0,1,2,3,4,5,6$,

8, 12 or 16 trials involving other items. A seconc eresentation, F_{2}, always followed im ediately after T_{1}, so that performatce at 7_{1} would serve as some indication as to the state of an item on its entry to P_{2}; in particular, an error on T_{1} would imply t at the itein entered P_{2} in one of the trree "naive" states, as these are tho only states in which recall errors can occur at test. Furthermore, the $P_{1}-T_{1}$ interval i may be thought of both as the T_{1} retention iatervel, and the $P_{1}-P_{2}$ interpresentation intervil. Finally, a seconi test trial, Γ_{2}, always occurred after an interval of 8 trials involvine other items (i.e. "forgetting" trials) followine P_{2}.

An examinution of the forettine matrix F will reveal that items in the lon-term state LU are never foretten. Thus, the state Li may be thouch of as a "Mnicue" state, in whicis items have received a unique lont-term encoaing which is not prone to the usual interference effects. Items in states II and \bar{L} may be forcotton into what is essentially a "forget" state, if, and indeed, state LI corresponds exactly with state I in the earlier formulation of t:e model. The state is, however, split into two omponents, LI and ID. in sucia a way that fiven that in item remains in state L on a forget trial, it will remain in state LI with probability r, end will enter state IW fith probability l-r. Items in states LI and Liv may be thoupht of as being fairly deeply encoded, but still prone to a ce tain awount of interference, so that they way eventually be forcotten into iff. is remexa inction of $\underline{-P}_{-2}$ will revenl that items wich are in II on a subsecquent presentation will remain there; in other words, their oricinal encudin is maintained, whilst there is a non-zero prob-bility that itens in will enter UJ, or in other words, have their encocine iraproved on a P_{2}. Thus, the three loneterm states, LU, LI and ID, toether ith their various transition probabilities, represent a mechanism rhereby tha improvement with r_{2} performace with interpres ntation spocin is seen as a consequence of the incre: sin, probability that items thet are relatively well-encoded at P_{1} (and enter LI) enter $L U$ on P_{2} from in.

This mechanism nay have several underlyin psycholo ical rationales. II may be thou h of as an "imiediste lon-tern retention state, wherein items are iminediately recalle, so that the subject has no reason to suspext that his encoding is not perfectly adecuate, and simply maintains it on F_{2}. Recall from the "delayed" lonctera state D may be delayed to the extent that the subject bas to initiate or. effortful search process in orier to retrieve the correct response, and may therefore be motivated to alter or otherwise improve lis encodine. Alternatively, with short interpresentation spacines, it is probacie that the tro presentation trisls have many opisodic aspects in common, Whilst with a longer interyesentation interval, P_{1} and F_{2} may shere very few episodic cues. Thuc, if P_{2} follows shortly after ${ }_{1}$, an item that has boen deeply encoded on P_{1} (and enters iI) will simply maintain its encodine on P_{2}, and will remain in II, either because there are relatively few new episodic components available at P_{2} that can be used to elaborate and enrich the encodinc, or because the P_{1} and P_{2} episodes are so similar that the surject doesn't realise on P_{2} that there are alternative, superior encodin s of the pair. Fiith a loneer interpresentation intervel, there is a fer ereater probability that the episodic aspects of P_{1} and P_{2} are vastly different, so that a superior encodin: may result on P_{2}, eithor becarse there are many now episodic attributes available on P_{2} which may be amployed to elaborate the original encouine, or because the tiro presentation episoies are so different that the srbject just can't belp thinkine of ne", iapoove. encodings on P_{2}. Thus, LD ray ve thought of as representin these items that were deeply encoded on P_{1}, wh whose encodines shere relatively fen episodic aspects ith the current trial.

Of course, the state may be tioucht of as a "unicue" longterm state representinc those items whose encodin is so unique as to be anaffected by interference from otier iteras, so that these items will never be forgotten. It will be noticed, horever, that items camot enter $L U$ on their first presentation, ${\underset{1}{1}}^{1}$. Rath r than place a
psycholocical interp esentation on state U, it is yerhaps more sound to conceive of $L U$ as remesenting a convenient rathenatical way of expressin, the notion that the rate of decar of deeply ercoded items may be reduced by a second presentation which occurs at a sufficiently Ion interval after tre first presentation. Since iteris enter LU with probability a_{3} (which is lik ly to be less than unity) the overall effect of the state will be to reflect auch a decline in foretting rate. It is certainly ver. doubtful tiat any ite... is so well encoded that it will :ever be forgotten. This particilar formalation was cosen to represent the hepothesis of a reduction in the lon-term decay rate because it was tie rost efficient aray of cxpress-r. the idea; oily to additional parameters r and a_{3} are necessary to specify the yrocesc.

The two states S_{1} and S_{2} are identicsl to the 0 rrespon:ing states in the earlier for ulation of the wodel, and recuire no further explanation they merely reflect the short-teru retention efiects which are clearly identifyable in the $\operatorname{Pr}\left(C_{1}\right)$ function. It should be pointed outh though, that the moiel predicts that short-retention iteris zill remain in the short-retention state S_{1} followinc: a seconc presentation, $\underline{-}_{2}$. This assumption is justified by previous results (e.g. Greeno, 1964; see 1.43) and by the results of Exp.I. Ferformance at \tilde{x}_{2} following to. massed presentations (.461) was hardly ani better tian performance following a sincle pr-sentation at a similar retention iaterval of 8 trials (.442), so that there is little evi cence taat short-ratention items received any benefit from the second presentition.

It will be noticed t at the oricinal naive stave in has been split into three states, ifs, if and ix. in examination of the matrix F will confirm that all items which are prone to forecting, are eventually forgotten into state If, the "forget" state. On a subsecuent presentaiion, P_{2}, items in the "forget" state way en.er II with probability a_{1}, or S_{1} with probability $1-a_{1}$. The state was postulated in order to predict the observation that recall of items at T_{2} (which followed 3 trials after P_{2}) was poorer if an error was made on " ${ }_{2}$ (50 thet the iter would
be in Nf on entry to P_{2}) than recall oî a brand-new item of T_{1} at a retention interval of 8 trials (see 5.12). Conseçuently, it was expected that the value of a_{1} monla be estimated to be less than that of a_{0}, the probability that a now item enters LI on its first presentation.

It will be noticed that the matrix \underline{P}_{2} makes no provision for items in the naive state inf to rerain in a naive state, in contrast to the vector \underline{P}_{1}, which does allo:: nem items to enter a naive or guessing state on initial presentation. Since $\operatorname{Pr}\left(\mathrm{C}_{1}\right)$ was less than perfect at a retention interval of zero, it is clear that some new items reiain mlearn on F_{1}. However, since the interval between P_{2} and T_{2} was always 8 forgettin trials, it is impossible to discriminate between a formulation that allors some of the items that do not enter a lone-term state of P_{2} to enter either S_{1} or a naive state, and a formulation that only allows such items to enter j_{1}. Items which enter S_{1} at P_{2} will certainly be in a naive state ij the time T_{2} occurs, so that effectively, T performance on items that entered P_{2} in a naive state would only depend on the probability that such items entered LI on the second presentation, F_{2}. Consequently, the simpler formulation was chosen, since this would lead to somewhat sirpler pr dicted values, and would thus save valuable computer time wen findine the best fit of the model by an iterative procedure.

It will be seen from P_{1} that items that io not enter a retention state on their first presentation enter the vaive state ivx, wlilst F_{2} ensures that items still resident in ix on their second presentation automatically enter S_{1}, whence they will have entered a guessing state with probability 1 by the time that T_{2} occurs (i.e. 8 trials after $P_{2} ; S_{1}$ items are automatica:ly forgotten into a guessing state after 2 or more fongetting trials). Thus, in particular, the model predicts tiat items which are incorrectly recalled on T_{1} at a $P_{1}-T_{1}$ interval of zero (and thus must be in state Ilx) will be recilled at ciance level on T_{2}. This result, of course, is precisely what is observed in Brp.I. On a fo-get trial,

F, items in Nx are s.en to remam there with prooability q, and to enter the "forget" state, Mf, with probability l-q. Thus, as the interpresentation interval increases, the proporition of items to which T_{1} errors are mide that are in lif (as opposed to $\mathrm{k} x$) increases, so that $\operatorname{Pr}\left(C_{2} / \mathrm{H}_{1}\right)$ is predicted to increase from the guessinc level observed at an interpresentation interval of zero.

The postalated forgetting process from ix to if, in conjunction with the as mptions concerning the third naive state ivs, constitutes the mechanism by which the alternitive spacine hypothesis is represented by the wodel. This hypothesis states that the inprovement in recall on T_{2} with increasine interpresentation spacinc results from a process whereby items that were not adecuately encoded on P_{1} (and therefore entered S_{1} or iNx) will for some reason be poorly processed on P_{2} if aspects of the original poor encodine survive until P_{2} even thou in they day no loner support recall. Thus, items that enter state S_{1} on ikeir Sirst presentation may, over a period of forgettine trials, enter state ivs, a naive state. Items in as on entry to P_{2} have a probability if $a_{2} a_{1}$ of entering II (which is thus less tien or equal to the probaiviity a_{1} that Wf items enter LI on a second preseatation). Forcettine oscurs from Ifs to $V f$ at the same rate as forgetting from ix to if, so that if q taies a value greater than zero, the noiel predicts that $\operatorname{Pr}\left(\mathrm{C}_{2} \mathrm{f}_{1}\right)$ increases with inve presentation interval from an initial chance level at an interval of zero, and furthermore, this improvenent will be maintained over interpresentation intervals in excess of 2 trials. It was not clear in the preliminary analysis of arp. I whetker this was, in fact, the case, so that the propose theoretical analysis offers the only method of evaluetine this hypothesis. Furthermore, it shoula be pointed out that the proposed mechanism is also capable of predicting the observed continued increase in the value of $\operatorname{Pr}\left(C_{2} / C_{1}\right)$ with interpresentation spacincs in excess of 2 trials, since T_{2} performance on items that were correctly guessed on T_{1} will show continued improvement over such a range.

The mechanism repr-sented by the state Ns may be eiven the follo:ine psycholoeical interpretation. It may ve tat episodic aspects of the first presentation trial P_{1} to some extent detercine the suoject's perceptual resconse to the presented pair. In particular, this perceptual response may be such thet the encoaing of the pair which results will not subsecuently support racall. Cf course, an inadecuately encoded pair ma survive for a short period because of echoic memory and passive rene rsal effecte, and it hes already been pointed out that an item held in such a sort-retention state will not be more adequately encodod on P_{2}. However, the current mechanism states that even if such a pair has left the short-ter. system, it may enter Ns, which will result in P_{2} failine to fulsill its maximum encodine potential. It is postulated that with short interpresentation spacincs, P_{2} may share a number of episodic aspects with Y_{1}, end that these aspects may operate to produce the same percentual response to the pair that resulted in the oricinal inadecuate encoding made on \bar{r}_{1}, so that consecuently, there is some likelihood tiat tie orieinal inadecuate encoding may recur. The decline in this probability with increasine interprescntation spacine is represented in the model by the forgettin which may occur from ins to if, althouch it sho:ld be pointed out that if a_{1} is leas than a_{0} on a P_{1}, then this will mean that the probability that an oricinal iradouate encodine survives on P_{2} never reaches zero.

There are uefinitely probelms in siallarly accountine for the mechanism represented by forcettine from x to If. It has already been pointed out thet the state ix was postulated in orcer to predict the chance level of $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{M}_{1}\right)$ at an intergresentation interval of ero, and it was arcuec in section 5.4 that this result may have jeen caused by stimulus iters to which T_{2} errors are made at a zero revention lac possessinc re-existert aecociations with frimporiate responses. The
 Y on P_{1} may result in an association encoding which states thet "the
response X is incorrect, and the appropriate response is Y ". With only 2 seconds to respond to the stimulus on T_{1}, it is possible that even at a rejention interval of zero, the subject does not have sufficient time to unravel the encodine beyond "the response X is
incorrect...". The current formulation regards an inadecuete encoding of this type as being affected in a similar way by episodic cues as other types of inadecuate encodin, althoueh because it is posible that the oricinal pre-existent inappropriate airine is based on fairly "deep", serantic aspects of the stimulus, the model preuicts that the survival of episodic cues from P_{1} to P_{2} will automatically result in the original extended encoding bein re noluced on F_{2}.

There are, owever, a number of feasible alternative mechanises. For example, transition from N_{X} to iff may occur at a difierent (possibly more rapid) rate to transition from Is to if on a forgettine trial. This mechanism was rejected on the rounds that it rould require the postulation of an additional parameter. Alternatively, foreetting may occur from Nx to if via Nis; thus at short ncr-zero interpresentation intervals, items that entered Nix on \bar{F}_{1} might enter LI on P_{2} by reason of their havine moved into if durine the retention interval, so that the maintenance of episodic cues from P_{1} to F_{2} mould not autonaticaliy imply the recurrence of the original poor encodine on P_{2}. Tnis hypothesis mould also require the postulation of an additional parameter to reflect the rate of transition from $\mathbb{N} x$ to Ns on a forget trial, althodeg this migat conceivasly be set to unity. Wowever, it shoula be pointed out that the proportion of items to wich I_{1} errors are made at non-zero retention invervals, that had entered ixx on P_{1}, woulc be relatively small, so that this more complex bypothesis mould only have the slichtest mareinal ffect on the predictions of the model. Thus, ibe formulation as presented ras adopted, even though it might tend to underpredict $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{Fi}_{1}\right)$ at short, non-zero interpresentation spacines.

Cperationally spea ine, the cur ent foriulations apears cuite sound, and will allow the comparison of three hypothesis, whicll may be
defined as follows:-
H_{1} : the spacinc effect results merely from the fect t at shortretention items that were otherwise inaderuately encoded on P_{1} will be inadeçately encoded on P_{2}.
H_{2} : the spacing effect results from the fact that items that were adequately encoded at P_{1} may receive enhanced encodines on F_{2}, and that the probebility of such an enhancement on P_{2} increases with interpresentation spacing, provided the oriEinal ercodins su vives until P_{2}.
H_{3} : the apacing effect results from the fact that items that were inadeçuately encoded on P_{1} may receive the same inadecuate encodire on P_{2} even after short-term retention has ceased to support recall. The probability that the original inadeçuate encoding will survive in this way decreases with interpresentation spacing. It will be clear on an examiration of the model that the additional mechanism pepresentin H_{2} can be removed from tie model by applying the restriction tbat $r=1$ and/or $\varepsilon_{3}=0$. Si ilarly, the mechanism that represents H_{3} can be removed from the model by applyin the restriction that $q=0$ and $a_{2}=1$. The full model possesses nine parameters : $a_{0}, a_{1}, a_{2}, a_{3}, c, p, r, s$, and q (since \tilde{E} is postulate to be $1 / 15$), so that versions of the model representine the followin hypotheses may be fired to tise data:
Version I $\left(H_{1}\right): \quad c, a_{0}, a_{1}, p$ and s free; $r=1, a_{3}=0 ; q=0, a_{2}=1$. Version II $\left(H_{1} \cup H_{2}\right): c, a_{0}, a_{1}, p, s, r$ and a_{3} free; $q=0, a_{2}=1$ Version III $\left(V_{1}, H_{3}\right): c, a_{0}, a_{1}, p, s, c_{1}$ and a_{2} free; $r=1, a_{3}=0$ Version IV $\left(\mathrm{H}_{1} \cup \mathrm{H}_{2} \cup \mathrm{H}_{3}\right): c, a_{0}, a_{2}, p, s, c_{1}, a_{2}, r$ and a_{3} all free. The improvement in go dness of fit tiat results from including an additional hypothesis (i.e. freeing tro additional parameters) may be tested by usinc tie result of Neyman (1949_{i}^{\dagger} described in section 6.22, which states that the difference between the two appropriste minimum Chi-squareds it itself distributed as a Chi-squared with 2 decirees of freedom.

6. 42 Derivations of Ooiel ${ }^{2}$ -

It is immediately apparent that the ropurtion f correct resonses on $\mathrm{T}_{1}, \operatorname{Pr}\left(\mathrm{C}_{1}\right)$, is predicted by the euation

$$
P_{i}\left(C_{1}\right)=\underline{E}_{1} \underline{F}^{i} \underline{R}
$$

where i represents tric interpres ntation spacine, ani that the proportion of correct responses on ${ }^{2}, \operatorname{Pr}\left(C_{2}\right)$ is predicted by the e,uation

$$
\operatorname{Pi}\left(O_{0}\right)=\underline{p}_{1} \underline{z}^{i} \underline{p}_{2} \underline{F}^{8} \underline{Z}
$$

However, these ecuations are not particularly enlicktenin, and, furthermore, they cio not coustitute predictione which are sufficient for all aspects of tie diata.

An alterative form:lation for $\mathrm{Pi}\left(\mathrm{C}_{1}\right)$ is given by

$$
\begin{array}{ll}
P i\left(O_{1}\right)=E(i)+(1-E(i)) E \\
a_{0}+\left(1-a_{0}\right) c, & \text { if } i=0 \\
a_{0}+\left(1-a_{0}\right) c s, & \text { if } i=1 \\
a_{0} p^{i} & \text { if } i \quad 2
\end{array}
$$

$$
\text { where } E(i)=a_{0} j+\left(1-a_{0}\right) \text { cs, } \quad \text { if } i=1
$$

This formulation is identical to thet pres nied in section 6.32 for the simple version of ilodel 2, siace a_{0} in the augnented version corresponds to the parmeter a in the simple version. In order to genorate further predictions, it will first be a c-s ary to define a munjer of different probabilities. The fol orin represent the robabilities that an item is in each of the states of the model follorine an initial presentation F_{1}, and i subsecuent forgettin trials:
and finally,

$$
\hat{z}_{I f}(i)=1-Q_{I I}(i)-Q_{I D}(i)-w_{S}(i)-Q_{\cdot i s}(i)-w_{T x}(i)
$$

$$
\begin{aligned}
& Q_{o I}(i)=a_{0} V^{i} r^{i} \\
& a_{\infty}(i)=a_{o} p^{1}\left(1-r^{i}\right) \\
& q_{s}(i)= \begin{cases}c\left(1-a_{0}\right) & \text { if } i=0 \\
c\left(1-a_{0}\right) s & \text { if } i=1 \\
0 & \text { if } i \geqslant 2\end{cases} \\
& W_{I S}(i)= \begin{cases}0 & \text { if } i=0 \\
c\left(1-a_{0}\right)(1-s) q & \text { if } i=1 \\
0\left(1-a_{0}\right)(X G q \\
\left.i-1+(1-s) q^{i}\right) & \text { if } i \geqslant 2\end{cases} \\
& a_{i x}(i)=(1-c)\left(1-a_{0}\right) q^{i}
\end{aligned}
$$

It will be noticed that since T_{1} recall is perfect in both states S_{1} and S_{2}, and that, furthermore, it ms in both states automatically enter S_{1} on a P_{2}, these two states have been combined to five a si file probability $\alpha_{s}(i)$, which represents the appropriate probability that an item is either in state S_{1} or in state S_{2}. Also, since no items can enter $L i$ on a P_{1}, the appropriate probability for this state is zero.

On exit from a second presentation, P_{2}, items can only be in one of three states, namely LJ, UI or S_{1}. The resultant proocibilities of a correct response on $T_{\text {, }}$ (rikich always follows \vec{P}_{2} after $\&$ for citing trials) are therefore

1, if the item left P_{2} in state IU
A, if the ite.in le :t P_{2} in state II
(where $\left.k=p^{8}+\left(1-p^{8}\right)_{E}\right)$
s, if the item left P_{2} in state S_{1}
It is nor possible to generate the predicted values of $\operatorname{Pr}\left(\mathrm{C}_{2} \mathrm{C}_{2}\right)$ and $\operatorname{Pr}\left(\bar{i}_{1} C_{2}\right)$ for each value of i, as follows $P_{i}\left(C_{1} C_{2}\right)=a_{3} a_{I D}+A\left(a_{I I}+\left(1-a_{3}\right) a_{I D}+g a_{1}\left(a_{1 f}+a_{2} a_{1 S}\right)\right)$

$$
+\bar{\sigma}\left(a_{S}+\delta\left(\left(1-a_{1}\right) a_{i f}+\left(1-a_{2} a_{2}\right) i_{i s}+q_{i x}\right)\right)
$$

 Since $\mathrm{Pi}\left(\mathrm{C}_{1}\right)$ has already been derived, it is no: posibible to predict

$\operatorname{Pi}\left(C_{1} W_{2}\right)=\operatorname{Pi}\left(C_{1}\right)-\operatorname{Pi}\left(C_{1} C_{2}\right)$
$\operatorname{Pi}\left(i_{1} i_{2}\right)=1-\operatorname{Pi}\left(C_{1}\right)-\operatorname{Pi}\left(i_{1} C_{2}\right)$
and the two conditional probabilities by

$$
\begin{aligned}
& \operatorname{Pi}\left(C_{2} / C_{1}\right)=\operatorname{Pi}\left(C_{1} C_{2}\right) / \quad \operatorname{Pi}\left(C_{1}\right) . \\
& \operatorname{Pi}\left(C_{2} / i i_{1}\right)=\operatorname{Pi}\left(C_{1} C_{2}\right) /\left(1-P i\left(C_{1}\right)\right) .
\end{aligned}
$$

6.43 Fits to the conditional performance cores

It ill be recalled t at the fit of Model 2 to $\operatorname{Pr}\left(C_{1}\right)$ yielded an extremely unsatisfactory minimum X^{2}, and the .t this was interpreted as a consequence of the unsystematic variation in the observed values of $\operatorname{Pr}\left(\mathrm{C}_{1}\right)$ at retention intervals between 2 and 6 trials (see 6.33). Consequently, it wis thou ht that an attempt to fit the various versions to all the data simultaneously (ie. to the four joint proportions
$\operatorname{Pr}\left(\Pi_{1} C_{2}\right), \operatorname{Pr}\left(C_{1} C_{2}\right), \operatorname{Pr}\left(C_{1} i_{1}\right)$, and $\left.\operatorname{Pr}\left(W_{1} W_{2}\right)\right)$ would not yield a satisfectory minimum X^{2} in any case, due to this unsytematic variation.

However, it was noticed that all four versions of the model outlined at the end of section 6.41 were identical insofar as their predictions concerning $\operatorname{Pr}\left(C_{1}\right)$. In fact, $\operatorname{Pi}\left(C_{1}\right)$ depends only on the parameters o, a_{0}, p and s. It was therefore decided to try an approach which involved fitting the model to $\operatorname{Fr}\left(C_{1}\right)$ to yield estimates of these four parmeters; these values were then carried forward, and the remaining parameters of the model were estimated by fitting the model simultaneously to $\operatorname{Pr}\left(C_{2} / C_{1}\right)$ anà $\operatorname{Pr}\left(C_{2} / W_{1}\right)$.

Of course, in each case, the fit to $\operatorname{Pr}\left(C_{1}\right)$ yielded identical results to tiose already described in section 6.33 for the simpler version of Lodel 2. The observed minimum Chi-sçuared was $X_{1}^{2}=21.067$ on 6 derees of freedom, and the resultant parameter estimates were $c=.872, a_{0}=.410, p=.996$ and $s=.302$ (cf Table 12). In the further fittine procedure to be described beloii, these four parameters were constrained to take these estimated vilues.

In order to provide a clear description of the subsequent fitting procedure, it will be necessary to introduce some new notation. Let ili be the total number of observations in Cxp . I at an interpresentation intervel of i trials, und let $n i\left(W_{1} C_{2}\right), n i\left(C_{1} C_{2}\right), n i\left(W_{1} W_{2}\right)$ and $n i\left(C_{1} W_{2}\right)$ be the corresponding numoers of observations falline into the four response catesories.

$$
\begin{aligned}
& \text { Then, } n i\left(C_{1}\right)=n i\left(C_{1} C_{2}\right)+n i\left(C_{1} W_{2}\right) \\
& \text { and } n i\left(W_{1}\right)=n i\left(W_{1} C_{2}\right)+n i\left(W_{1} W_{2}\right)
\end{aligned}
$$

are merely the observed numbers of items that were correct and wrong respectively on T_{1} at a $P_{1}-T_{1}$ las of i.

The procedure basically too the form of minimisine

$$
x_{t}^{2}=x_{2}^{2}+x_{3}^{2}
$$

where
and

$$
X_{3}^{2}=\sum_{i} \frac{\left(n_{i}\left(w_{1}\right) P i\left(c_{2} / w_{1}\right)-n i\left(\pi_{1} c_{2}\right)\right)^{2}}{n_{i}\left(w_{1}\right) P i\left(c_{2} / \pi_{1}\right)}+\frac{\left(n_{i}\left(w_{1}\right)\left(1-P i\left(c_{2} / \pi_{1}\right)\right)-n i\left(w_{1} w_{2}\right)\right)^{2}}{n_{i}\left(w_{1}\right)\left(1-P i\left(c_{2} / \pi_{1}\right)\right)}
$$

Consequently, it can be seen that χ_{t}^{2} was a measure of the goodness-offit of the model to the tiio conditional probab-lities $\operatorname{Pr}\left(C_{2} / C_{1}\right)$ and $\operatorname{Pr}\left(C_{2} / \mathbb{Y}{ }_{1}\right)$ which did not depend upon the fit of the model to $\operatorname{Pr}\left(C_{1}\right)$, since X_{2}^{2} is calculated by restricting attention only to those ooservations that were correct on T_{1}, and χ_{3}^{2} similarly restricts attention to those observations that included a T_{1} error. In other words, X_{t}^{2} would not be inflated by the relatively poor fit of the model to $\operatorname{Pr}\left(C_{1}\right)$, except to the extent that it was based on a procedure that fixed the values of c, a_{0}, p and s to their best estimates from a consideration of $\operatorname{Pr}\left(C_{1}\right)$. It therefore appeared likely that tis procedure would procuce a reasonable fit to the conditional performance soores, and ould therefore constitute an acceptable method of discriminatinc betiveen the four versions of the model outlined at the end of section 6.41.

The ninimur X_{t}^{2} that results from such a method involves fitting the model to a data array with 20 desrees of freadom since i takes 10 separate values. Thus, for any particular version of the model, its degrees of freecom will be 20 less the number of parameters allowed to vary freely (and it s.o ld be remembered that in computine X_{t}^{2}, the probabilities c, a_{0}, p and s do not constitute effective parameters of the mocel). Although it is possible to examine the values of the two components of χ_{t}^{2}, that is, χ_{2}^{2} and χ_{3}^{2}, these are unfortunately not distributed as a Chi-scuared; for example, it is not possible to deduce their degrees of freedom, since, say, the free parameter a_{1} contributes both to the value of χ_{2}^{2} and to that of χ_{3}^{2}.

Finally, an overall value of Chi-squarea for each version of the model was computed upon completion of the two fittine procedures, which measured the fit of tiae moiel to the four joint proportions $\operatorname{Pr}\left(W_{1} C_{2}\right), \operatorname{Pr}\left(C_{1} C_{2}\right), \operatorname{Pr}\left(W_{1} i_{2}\right)$ and $\operatorname{Pr}\left(C_{1} W_{2}\right)$, by use of the formula:

ThBLE 13
Results of fitting Lodel 2 to concitional performance data from Bxp. I.

(i) Parameter estimates and grodness-of-fit

Version	Estimated (Conistrained) Parameters					
	a_{1}	a_{2}	q	a_{3}		
I	. 265	(1.000)	(.000)	(.000)	(1.000)	
II	. 265	(1.000)	(.000)	. 000	1.000	
III	. 265	1.000	. 000	(.000)	(1.000)	
IV	. 265	1.000	. 000	. 000	1.000	
Version	χ_{2}^{2}	χ_{3}^{2}	χ_{t}^{2}	dft	χ_{0}^{2}	dfo
I	110.094	17.945	128.039	19	146.564	25
II	110.094	17.945	128.039	17	146.564	23
III	110.094	17.945	128.039	17	146.564	23
IV	110.094	17.945	128.039	15	146.564	21

(ii) Observed and oredicted values.

$\underline{\text { i }}$	$\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$		$\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{w}_{1}\right)$	
	Obs	Pred	0bs	Pred
0	. 491	. 465	. 069	. 067
1	. 641	. 701	. 357	. 306
2	. 758	. 911	. 330	- 300
3	. 823	. 911	. 315	. 306
4	. 815	. 910	. 304	. 306
5	. 875	. 910	. 246	. 306
6	. 864	. 910	. 270	. 306
8	. 896	. 909	. 361	. 306
12	. 885	. 907	. 322	. 306
16	. 847	. 906	. 331	- 306

$$
\chi_{0}^{2}=\sum_{i} \frac{\left(\mathbb{N i} \cdot \operatorname{Pi}\left(W_{1} C_{1}\right) \cdot n i\left(W_{1} C_{1}\right)\right)^{2}}{N i \operatorname{Pi}\left(W_{1} C_{1}\right)}+\ldots+\frac{\left(i \cdot \operatorname{Pi}\left(W_{1} W_{2}\right)-n i\left(W_{1} W_{2}\right)\right)^{2}}{\operatorname{Ni~Pi~}\left(W_{1} W_{2}\right)}
$$

For each version of the model, the decrees of freedom were simply 30 less the total numiser of fitted varameters (includine c, a, pand s) of the model.

Details of the fittin procedure are presented in Table 13.
It is clear from the table that this purticilar approach was a failure. Not only was the minimum value of χ_{t}^{2} for Version I hiehly sicnificant beyond all conventional values, but the freeins of the paremeters

TABLE 13

Results of fitting Kodel 2 to concitional performance data from Bxp. I.

(i) Parameter estimates and E odness-of-fit

Estimated (Constrained) Parameters

Version	a_{1}	a_{2}	q	a_{3}	r
I	.265	(1.000)	$(.000)$	$(.000)$	(1.000)
II	.265	(1.000)	$(.000)$.000	1.000
III	.265	1.000	.000	$(.000)$	(1.000)
IV	.265	1.000	.000	.000	1.000
Version	χ_{2}^{2}	χ_{3}^{2}	χ_{t}^{2}	dft	χ_{0}^{2}
I	110.094	17.945	128.039	19	146.564
II	110.094	17.945	128.039	17	146.564
III	110.094	17.945	128.039	17	146.564
IV	110.094	17.945	128.039	15	146.564
I					23

(ii) Observed and predicted values.

i	ots	Pred	Obs	Pred
0	. 491	. 465	. 069	. 067
1	. 641	. 701	. 357	. 306
2	. 758	. 911	. 330	- 300
3	. 823	. 911	. 315	. 306
4	. 815	. 910	. 304	. 306
5	. 875	. 910	. 246	. 306
6	. 864	. 910	. 270	. 306
8	. 896	. 909	. 361	. 30 ́f
12	. 885	. 907	. 322	. 306
16	. 847	. 906	. 331	. 306

$$
X_{0}^{2}=\sum_{i} \frac{\left(\mathrm{Ni} \cdot \operatorname{Pi}\left(W_{1} C_{1}\right)-n i\left(W_{1} C_{1}\right)\right)^{2}}{W_{i} \operatorname{Pi}\left(W_{1} C_{1}\right)}+\ldots+\frac{\left(\mathrm{Ni}_{1} \cdot \mathrm{Pi}\left(W_{1} W_{2}\right)-n i\left(H_{1}\right)\right)^{2}}{N i \operatorname{Pi}\left(W_{1} W_{2}\right)}
$$

For each version of the model, the dearees of freedom were simply 30 less the total numiser of fitted parameters (includine c, a, p and s) of the model.

Details of the fittin: procedure are presented in Table 13 . It is clear from the table that this purticular approach was a failure. Not only was the minimum value of χ_{t}^{2} for Version I hichly sicnificant beyond all conventional values, but the frecin; of the paremeters
definine the additional spacine rocesses resulted in absolutely no overall irprovement in fit. Some idea of the ceuse of these disappointing results maybegleaned from an inspection of the predictions of the model. Clearly, when $q=0$ and $a_{2}=1$, the model predicts that $\operatorname{Pr}\left(C_{2} / W_{1}\right)$ will be a constant for non-zero values of i, but the minimum Cbi-squared prediction of .306 appears somewhat low (the pooled value of $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{T}_{1}\right)$) across all non zero value of i wes .320). It is also apparent that $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$ is consiatently overpredicted at all non-zero values of i. Thus, this procedure has resulted in the lowest possible predicted value of $\mathrm{Pi}\left(\mathrm{C}_{2} / \mathrm{M}_{1}\right)$ consistent with the data, since $\mathrm{Fi}\left(\mathrm{C}_{2} / \mathrm{C}_{2}\right)$ involves a component equal to $\mathrm{Pi}\left(\mathrm{C}_{2} / \mathrm{N}_{1}\right)$ which resuits from tose iters that were correctly guessed on T_{1}.

The consistent overpreuiction of $\operatorname{Fr}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$, even with $\mathrm{a}_{3}=0$, suegests that either the mociel is in error (so that adecuately encoded iteras at P_{2} should possess a non-zero probability of ieine forcotten on P_{2}, which is patently absured) or as is far more likel, the initial fit to $\operatorname{Pr}\left(C_{1}\right)$ resulted in an overestimate oi the parameter p. It m- $\%$ be that a lower value of p compled wit\% a somewhat hicher value of a_{0} would result in ulmost as good a fit to $\mathrm{Fr}\left(\mathrm{C}_{1}\right)$, and in a far superior fit to the conditional probubilities.

6.44 Simultaneoue fits to all the data

The rusults discussed in t'e mecoline section suecent that i. ere is no alternative but to accept t e inflation of the overall goodness of fit resultince from the unerplaned variation of $\operatorname{Pr}\left(C_{1}\right)$, ana to proceed by fittine each version of lodel 2 simultaneoucly to the forr ooserved proportions $\left.\operatorname{Pr} W_{1} \hat{C}_{2}\right), \operatorname{Pr}\left(C_{1} C_{2}\right), \operatorname{Pr}\left(W_{1} W_{2}\right), \operatorname{Pr}\left(C_{1}{ }_{2}\right)$. Conse uently, all the unconstrained parameters ial each version of the moiel were estivsted simultaneously by a process of minimisine the overall chi-sauared, χ_{0}^{2}. Parameter estimates and goodnes-of-fit statistics resulting fron this procedure are presented in Table . 14.

It is apparent from the table that Versions I and III of the model, and Versions II and IV resulted in identical fits, und indeed

TABLE 14

Results of the fits of ...del 2 to the joint data of $x x_{p} .1$.

istimsted (Constrained) Marameters

Version	c	a_{0}	a_{1}	p	s	a_{2}	q	a_{3}	r
I	.060	.438	.306	.986	.312	(1.000)	$(.000)$	$(.000)$	(1.000)
II	.856	.449	.316	.982	.297	(1.000)	$(.001)$	1.000	.953
III	.860	.438	.306	.986	.312	1.000	.000	$(.000)$	(1.000)
IV	.856	.449	.316	.982	.297	1.000	.000	1.000	.953

Version	X_{1}^{2}	X_{2}^{2}	$\underline{X} 2$	X_{0}^{2}	df	prob
I	25.253	25.500	15.600	65.520	25	$<.001$
II	28.881	17.890	15.600	61.777	23	$<.001$
III	25.253	25.500	15.600	65.520	23	$<.001$
IV	28.881	17.890	15.600	61.777	21	$<.001$

It can be seen that even when allowed to vary freely, the pararaeters
a_{2} and q were estimated to be 1 ani 0 respectively. Thus, the inclasion of the Liechanism re resentine H_{3} proüuced absolutely no improvernent in the fit. However, an improvement in the fit of the nodel was observed when a_{3} and r were allowed to vary freely. Wence, the inclusion of the mecianism wherejy lon-tetention itews ma have their encoding still further improved by $n P$, occurlime alter a sufliofent interpresentation interval resulted in a reduction in the observed value of the minimu: X_{0}^{2} from 65.520 to 61.777. Thus, apploint the result described in section 6.22 , the difference between these two values (3.743) is distributed as a Chi-3cuared with 2 dejrees of freedom. This does not rearesent a sienificant improverent in int ($p>.1$).

AEain, these results are disappointince since neither adiitional mechanism appears to account for the a parent continued improvement of T_{2} performance with internresentation spacine. Values of $\chi_{1}^{2}, \quad \chi 2$ and χ_{3}^{2} were conputed as b fore, and althoubh these values camot be
meaninefully tested, they do yield some useful inforiation. A comparison of versions I and II of the model suucests that the inclusion of the echanism representing H_{2} suistantially improved the fit of $\mathrm{Pi}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$ (see χ_{2}^{2}), did not affect the fit of $\mathrm{Pi}\left(\mathrm{C}_{2} /{ }_{2} i_{1}\right)$ (see χ_{3}^{2}), but resulted in a worsenine of the fit of $\operatorname{Pi}\left(c_{1}\right)\left(\right.$ see $\left.\chi_{1}^{2}\right)$. Tal:en in conjunction with the not unexpectedly wiehly sisnificant value of the minimar overall C..i-squarels, these results suricest that these straightforvard fits of the model may be unduly iafluenced by the noise present in the $\operatorname{Pr}\left(C_{1}\right)$ data, in tha: there clearly appea:s to be some "trade off" between the fit of the model to $\operatorname{Pr}\left(C_{1}\right)$, and its fit to the conditional probabilities. The predictions arisinc from these two fits are not particularly inter.stine in themselves, especially in the light of the results to jo discusced below, but for completeness, they are presented in Lippendix 4 .

Althouch the atiempt made to "Eet arouna" the noisiness of $\operatorname{Pr}\left(C_{1}\right)$ described in section 6.43 was unsuccessful, it is clear thet some attempt must be made to solve this problem. A elance at the equation for $\mathrm{Pi}\left(\mathrm{C}_{1}\right)$ on jage 249 will confirm that for values of the retertion interval i of 2 or more trials,

$$
\operatorname{Pi}\left(c_{1}\right)=a_{0} p^{i}+\left(1-a_{0} p^{i}\right) d
$$

so that

$$
a_{0}=\left(P i\left(c_{1}\right)-E\right) /(1-E) p^{i}
$$

It was proposed to ensure the fit of the model to $\operatorname{Pr}\left(C_{l}\right)$ by replacing the sincle parameter a_{0} ly the 10 -vector $\left(A_{0}(i)\right)$, where $A_{0}(0)=A_{0}(1)=a_{0}$, and

$$
A_{0}(i)=\left(\overline{I r}\left(C_{1}\right)-\xi\right) /(1-\xi) p^{i} \text { for } i \geqslant 2
$$

This would ensure a perfect fit of the model to $\operatorname{Pr}\left(C_{1}\right)$ at all but the first two points (when $i=0$ and $i=1$), and would also co some way towaris explaining the ungystematic variation in $\operatorname{Pr}\left(\mathrm{C}_{1}\right)$ as reflecting different avarage P_{1} encouin probabilities for the itens that were assigned to the various spacine conditions, \& fit to the four joint probabilities une er this scheme nould involve the estimation of an
additional 8 parameters (i.e. te $A_{0}(i)$ for $i \geqslant 2$), althoufb under the proposed scheme these would not be minimum Chi-syuared estimates. However, it was thought that the additional computine time necessary to fit the four versions of the modified rodel (with between 13 and 17 free parameters) would prove prohibitive, and in all probibility would result only in a marginal improvement in overall fit.

It is not proposed to describe in detail the modications to the ecruations giving the predictions of codel 2 with. the additional eight parareters, since these are botb obvious enà stratêthomard. Suffice it to say that χ_{0}^{2} was minimised under all four versions of the modified movel (which will henceforth oe called zodel 2a) and the res 11 ts are surniarized in Table 15. It should be i wediately pointed out that

TABLE 15
Results of fittine liodel $2 a$ to the joint data of Bep. I.
istimated (censtrinned) parametars.

Version	c	a_{0}	a_{1}	p	s	a_{2}	q	a_{3}	r
I	.859	.442	.308	.085	.307	(1.000)	$(.000)(.000)$	(1.000)	
II	.835	.517	.369	.963	.220	(1.000)	$(.000)$.761	.761

Version	$\mathrm{AO}(2)$	$\mathrm{AO}(3)$	$\mathrm{AO}(4)$	$\mathrm{AO}(5)$	$\mathrm{AO}(6)$	$\mathrm{AO}(5)$	$\mathrm{AO}(12)$	$\mathrm{AO}(16)$
I	.394	.349	.470	.429	.221	.453	.484	.446
II	.412	.373	.514	.479	.595	.542	.632	.638

Version	χ_{1}^{2}	χ_{2}^{2}	χ_{3}^{2}	χ_{0}^{2}	df	prob
I	. 580	20.837	15.598	37.038	17	$<.01$
II	. 911	9.263	15.598	25.789	15	$<.05$

the fit of version III was identical to that of version I, and the fit of verion IV to that of version II, and in both cases q was freely estimated to be zero. Thus, once again, the addition of the mecinanism representine the hypothesis H_{3} produced no improvement in fit whatsoever.

The fit of version I of hodel $2 a$ yielded a reduction in the minimum value of X_{0}^{2} of 28.482 in comparison with version I of

Wodel 2, which on 8 degrees o. freedom represents a significant improvement ($p<.01$). Thus, the freeine of the eigit parameters Ao(2), ..., AO(16) from their constrained value of a_{0} in "odel 2 yielded a significant improvement in fit. The mean value of these eight parameters was found to be . 443, which is very near the estimated value of $a_{0}(.442)$; this result is consistent with the hypothesis that the unsystemasic variation in $\operatorname{Pr}\left(C_{1}\right)$ was primarily due to sampline differences in the way that long-term encodable material was assigned to condition. A comparison of the respective values of X_{2}^{2} from the fits of version I of Liodel 2 and version I of adel 2 a (see Tables 14 and 15) su uests that freeing $A_{0}(2), \ldots, A_{0}(15)$ dia not greatly improve the fit of version I to $\operatorname{Pr}\left(C_{2} / C_{1}\right)$, whilst a comparison of the correspondinc values of X_{3}^{2} reveals hardly any difference in the respective fits to $\operatorname{Pr}\left(C_{2} / W_{1}\right)$. In other words, the bulk of the observed improvement in the fit of version I of wodel 2a over that of the same version of tiodel 2 appears to ave resulted from the enormous improvement in fit to $\operatorname{Pr}\left(C_{1}\right)$.

Similar comparisons of version II of Llodel 2a with version II of Hodel 2 reveal that freeing the eight parameters Ao(2),..., Ao(16) from their constrained value of a_{0} yielded a significant improvement in $\chi \chi_{0}^{2}\left(\chi^{2}=35.988, d f=8, p<.01\right)$, and the mean value of the eight free parameters $A_{0}(2), \ldots, A_{0}(16)$ was found to oe $\cdot 523$, which again did not differ significantly from the estimated value of $a_{0}(.517)$. This latter finding is also consistent with the hypothesis that the unsysteratic variation observed in the relationship between $\operatorname{Pr}\left(\mathrm{C}_{1}\right)$ and the retention interval i was primarily due to differences in the sampline probabilities that a loneterm encodable item would be assigned to any particular condition. A comparison of the two values of χ_{2}^{2} suggeste, that in the case of version II, the freeing of $A_{0}(2), \ldots, A_{0}(16)$ contributed substantially to the improvement of the fit of the moiel to $\operatorname{Zr}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$, whilst the two values of X_{3}^{2} again hardly differed. Thas, the freeine of $A_{0}(2), \ldots, A_{0}(26)$ in version II of the Liodel $2 a$ served to improve the fits of the model both to $\operatorname{Fr}\left(\mathrm{C}_{1}\right)$ and to $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$.

Comparisons ill now be made within lodel 2a, between version
I and version II. It is apparent from an examination of Table 15 that both minimum overall Chi-squared values were significant, so that in general it may be said that neither version of odel 2a provides a completely sativfactory explanation of the data of Exp I. However, this result is not too disheartenine, since an examination of χ_{1}^{2}, χ_{2}^{2} and χ_{3}^{2} suecests that the basic inadequacy of the model lies in its continued failure to provide a good sit to $\operatorname{Fr}\left(\mathrm{C}_{2} / /_{1}\right)$, since X_{3}^{2} has realained largely unchanged over all versions of the model so far examined. This point ill be discussed more fully a little later. Although version II of .odel $2 a$ appears to predict $\operatorname{Pr}\left(\tilde{c}_{2}\right)$ a little less well than version I, as a comparison of the respective values of χ_{1}^{2} reveals, version II clearly predicts $\operatorname{Fr}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$ far better than version I (of ' χ (${ }_{2}^{2}$). Consequently, the improvement in overall fit observed rith version II which is reflected in a reduction in X_{0}^{2} of 11.249, clearly results from a superior fit to $\operatorname{Fr}\left(C_{2} / C_{1}\right)$, with two degrees of freedom, the observed improvement in fit is higily significant ($\mathrm{p}<.01$). Since $\mathrm{Pi}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$ is affected ouly slichtly by $\mathrm{Pi}\left(\mathrm{C}_{2} / \mathrm{TH}_{1}\right)$ (to the extent that, for the relatively small p:oportion of items correct at T_{1} that are correctly guessed, $\mathrm{Pi}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$ will be eqidel to $\mathrm{Pi}\left(\mathrm{C}_{2} / \mathrm{M}_{1}\right)$) these results may be taken as fairly reliable evidence that version II of tiodel Ca provides a far superior account of $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$ than does version I. Versions III end IV, which include the altermative spacing mechanism, do not provide the slightest improvement in the accounts of the spacing effect represented respectively by versions I and II.

Data from Exp، I together with the corresponding values predictei by versions I and II of Hodel 2 a are presented in Table 16. The data are presented in terms of $\operatorname{Pr}\left(C_{1}\right), \operatorname{Pr}\left(C_{2} / C_{1}\right)$ and $\operatorname{Pr}\left(\mathrm{C}_{2} / \pi_{1}\right)$ rather than the four joint proportions $\operatorname{Pr}\left(\mathrm{Z}_{1} \mathrm{C}_{2}\right), \ldots, \operatorname{Pr}\left(C_{1}, W_{2}\right)$ that were actually employed in the minimum. Chi-squared procedure, since but the observed and predicted values of the joint proportions may be recovered from the components resented. Furthermore, it is felt that this particilar way

TASLE 16
Data from axp I and the correspondine values precicted by Versions I and II of liodel 2a

of presenting the results is more meaningful, in that it provides a clearer intuitive picture of the relationship bet...een the data and the various theorics. In addition, the observed and predicted values of $\operatorname{Pr}\left(\mathrm{C}_{2}\right)$ are presented, since this is the conventional way of depictine the spacing effect.

The values of $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{im}_{1}\right)$ predicted by bot: versions of lodel 2a are identical, and follo: a pat exn with interpresentation spacine that 1s very much as expected given that in each version, q घas fixed at 0 and a_{2} at 1 . In other words, the conditional probability is predicted at chance level for $i=0$, and thereafter is predicted to take a constant value (.322). The failure of versions III and IV to produce any improvement in fit strongly suegats that this formulation of the relstionship of $\operatorname{Pr}\left(C_{2} / W_{2}\right)$ with interpresentation interval is superior to a hypothesis that the sta:istic shows a gradual improvement with spacings in excess of zero. It will be rec lled that in the formulation of hodel 2a, some miscivings were expressed in regard to the assu: ptions regarding the transition probability on an F-trial from ix to iff (see 6.41). In particular, it was thought that the specific formulation adopted might lead to an underprediction of $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{N}_{1}\right)$ at shorty non-zero interpresentation intervals; this micht consequ ntly have load to an underestinition of the parameter q.

This objection was checked b_{y} fitting the four versions of a slightly modified form of the model; in this case, the probaidity of an F-trial transition from Nx to lif was set to unity, so that even with non zero values of $a, \operatorname{Pr}\left(C_{2} / \mathbb{W}_{1}\right)$ would be predicted to increase sharply from chance at an interpresentation interval of zero, and would tiereafiter shov: a far more gradual improvement with interpresentation spacine than would be redictec by Nodel $2 a$. Of course, versions I and II of this modified formould be identical to the corresponding versions of liodel $2 a$. It was found, however, that in fittin both versions III and IV of the modified model, q was ain reely estimated to be zero. Thus, even with a mechanism representin far less pronounced rate of improvemont in $\operatorname{Pr}\left(C_{2} / W_{1}\right)$ with interpresentation spacing, no improvement in fit was found over versions I and II of wociel 2a. This resilt is conclusive, and stronly suges sts that the observed variation of $\operatorname{Pr}\left(C_{2} / \mathrm{w}_{1}\right)$ ith non-zero interpresentation interval found in Lxp. I (see 5.12) could not be accounted for in terms of a gradual increase across non-zero spacines.

Conse cently, the fuilure of rodel 2a t. Satisiactorily prodict $\operatorname{Pr}\left(C_{2} /{ }_{1}{ }_{1}\right)$ is not ree rded as very import nt, in t at tis statistic cle rly does not contribute in any meanineful way to the spacine effect, and after all, the mein objective of these analyses was precisely to investigate the effects of interpresentetion spacin on T_{2} recall. It is suicested that the variation in the values of $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{ii}_{1}\right)$ may be due to differences in the sampline provabilities that an itern to which an error was iade on T_{1} in each particular spacine condition was an item that woulc have been recalled at a retention interval oî zero (and was therefore encodable on P_{2}) as opposed to an itew of the type that would lead to a ${ }^{m} 1$ error at a retention interval of zero. It is quite possicle that these latter items are always difficult to encode adoquately on P_{2}. Although it is, in theory, cuite possible to construct a codel to this effect, such an exercise appears harcly morthwhile, since it would very probably involve the postulation of adaitional parameters, and in any case would contribute very little to our understandine of the spacine effect. In other words, even were a model constructed which vas able to adequately explain trie observed variation in $\operatorname{Ir}\left(\mathrm{C}_{2} / \mathrm{N}_{1}\right)$, it is certain that the predicted variation would not be an increasin function of the inverpresentation spacin. . Woreover, such a model vould still predict the spacin effect in terms a mechanism involvine of loneretention itenc, althoū̃h its preãictions of $\operatorname{Pr}\left(C_{2} / C_{1}\right)$ would difier slightly from those of the current model to the extent that a relatively grall proportion of items that were correct on T_{1} would be guesses, and world produce T_{2} recall equal to that of items that were errors on T_{1} at the same retention interval. Horever, these small variations would be essentially "swamped" by the systematic predicted improvement in T_{2} recall with interpresentation spacine for those items that were correct on T_{1} by reason $0_{\text {? }}$ their having been recalled from memory proper, as opposed to havin been correctly guessed.

It has alread.j been pointed out that the jnprovement in overall fit observed when fitting version II of Lodel $2 a$ stems entirely fror its improved fit to $\operatorname{Pr}\left(\mathrm{O}_{2} / \mathrm{C}_{1}\right)$. The values presented in Table 16 are

FIGURE 23.

Observed values of $\operatorname{Pr}\left(\mathrm{C}_{3} / \mathrm{C}_{1}\right)$ from $\left.\mathrm{HX}_{2}\right)$. 1. and the corr sponding values predicted by versions I and II of aodel 2a.

presented in raphical form in Fiequre 23, and an examination of the figures only serves to emphasise this observation; the fit of version II to $\operatorname{Pr}\left(C_{2} / C_{1}\right)$ is clearly superior to that of version I. Thus, at first sight, it appears reasonable to conclude tat the eecianisn represented by version II (which accounts for a continued improvement in $\operatorname{Pr}\left(C_{2} / C_{1}\right)$ over interpresentation intervals in excess of 2 trials in terms of a process whercby a second presentation becomes ircreasincly effective in improving the resistance to decay of already adequately encoded items) gives a perfectly satisfactory account of the relationship of $\operatorname{Pr}\left(C_{2} / C_{1}\right)$ with interpresentation spacing.

However, it should be pointed out that in fitting Lodel 2a, there is room for considerable variation in the loneterm retention parameter p. This is because the model was fitted in suc. a way as to ensure a perfect fit to $\operatorname{Pr}\left(C_{1}\right)$ at intervals or 2 or more trials. Thus, p could take almost any value, provided that it was large enough to ensure that the estimated values of $A_{0}(i)$ dici not exceed unity, and still produce an excellent fit to $\operatorname{Pr}\left(C_{1}\right)$. In addition, identical values of $\mathrm{Pi}\left(\mathrm{C}_{2} / \mathrm{Mi}_{1}\right)$ could result wita any value of p that mas sufficiently large to allow a_{1} to assume a value of less than 1 in compensatine for the now velue of p in order to roduce identical predictions of $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{in}_{1}\right)$ to those involving the current value of p . Thus, in fitting Liodel 2a, the value of p is estimated almost entirely in terms of the fit of the model to $\operatorname{Pr}\left(C_{2} / C_{1}\right)$. Furthermore, tie value of p estimated by version II of ".odel $2 a(.963$) is the lowest value observed of such an estimate.

Thus, if the lon-term retention parameter (and hence the lone term forettine rate following a first encoding) can take any value within a fairly broad range without affectine $\operatorname{Pi}\left(C_{1}\right)$ and $\operatorname{Pi}\left(C_{2} / W_{1}\right)$, then how can one state with any certainty that a re-presentation serves to reduce this forgettine rate? For example, the additional mechanism represented by version II could ecually well be interpreted as servinc to reduce the lon-term retention arameter from 1 to .963 on a re-
presentation at siort-laf, whilst maintainine it at l on a re-presentation at lone lag (since an initial lon-terw retention parameter of 1 colld atill Eive identical predictions of $\operatorname{Fr}\left(C_{2} / W_{1}\right)$ if a_{1} were estimated tc be lower, and identical predictions of $\operatorname{Pr}\left(C_{1}\right)$ if a_{0} and $A 0(i)$ were estimated to be sinuller).

There is clearly no way of resolving this issue from a con-ideration of the model; bowever, the alternetive interpretation of the gpacine effect described above may be rejected on psycholocical Erounds. At first sieht, it appears patently absured to suegest that an additional presentation of an iter t at is currently racallable from memory could in any way operate to increase the subsequent decay rate of that item. However, it is just possible that abjects for some reason believed tiat, followine a second presentation at short lag, an item would not be subsecuently tested, and tine may therefore have treated the second presentation as an implicit "forcet" instruction (see 1.33). Nevertheless, there appears to be no convincine explanation as to why this should be the case, let alone why such 2 a effect would be more lii:ely at shorter interpresentation spacines. The fact that each subject in ixp I. was tested on 600 items suceests that even were such a misapprehension conceraing the subsecuent testine of a re-presented item initially present, then there would be ample opportunity for subjects to realise the falseness of suci a supposition.

Conser,uently, it eppears safe to conclude that the superior fint of version II of zodel $2 a$ really does reflect a continued improvement with interpresentation spacinc in the effectiveness of a second presentation in reducing the subsecuent forgettin tate of those item that are recallable from memory at the time of the re-presentation. Therefore, the fits of Model 2a have satisfactorily fulfilled the main objectives of a theoretical analysis, in that they have successfully discriminated between the various spacing hypotheses.
6.5. Discussion

The results of the theoretcal analyses described above may be

sumparised as follows:

(i) The observed variation of $\operatorname{Pr}\left(C_{1}\right)$ with retention intervals of 2 or more trials was well accounted for by a sacpline hypothesis which states that the proportions of iters that could be relatively easily memorised in a sincle presentation varied between the spacing conditions. This hypothesis wis relevant because the material assigned to each spacing condition was identical for each subject in ixp. I.
(ii) There ":as no evidence whatsoever that $\operatorname{Fr}\left(\mathrm{C}_{2} / \mathrm{Im}_{1}\right)$ increased with interpresentation spacines in excess of zero. Thus, the apparent improvement in T_{2} perfurmance with interpresentation spacines in excess of zero was not found to result from an enhancement with spacine of the effectiveness of a second presentation on items that could not be recalled at the time of the secon presentation.
(iii) Consequently, it can be concluded that the spacing effect results from an improvement in T_{2} performance with inter resentation spacin on those items $t=t$ could be correctly recailed from nemory at the time of the second presentation, i.e. on T_{1}. The observed relationship of $\operatorname{Pr}\left(\mathrm{C}_{2} / \mathrm{C}_{1}\right)$ with interpresentation spacing vas partially accounted for by the hypothesis that items that can only -e recalled from a short-tern retention state at the time of their second presentation receive no benefit frcm their second presentation. A sirmificmtly su erior account was provided by the additioaal hypothesis that with increasine interpresentation intervals, a second presentation may je increasincly effective in reducinc the subsequent mean forgetting rates of items that cen be recalled from memory at the time of the second pr.sentation.

A discussion of the psycholocical implications of these results is reserved until the next chapter. Ho ever, it does appear on the whole
that lodel $2 a$ has proved successful in establisking that the spacing effect operates over interpresentation intervals in excess of those that will be sufficient to "wipe out" s ort-termi retention effects on the second presentation, that furthemiore the spacine effect operates $0.1 y$ on those itens that can be correctly recalled at re-presentation, and that finally, the spacing effect operates via a reduction in the subseçuent forcetting rate of such items on their second presentation.

It should be pointed out that the models devloped in this chapter are not intonded to provcie a fall account of all the spacine results outlined in section 1.44. Instead, they were intended to produce a clarification of the results of sxp. I with reference to the specific hypotheses outlined at the coaclusion of Chapter Five. In this, they have been successful.

However, it is doubtful if inodel 2 could account for $t e$ interaction betineen the interpresentation and retention intersal described by Peterson, Hillner and Saltzman (1962; see FiE. 9), or for the comutativity of two interpresentation intervals in a threepresentation schedule (Bjor and Abramowitz, 1968; See 1.44). Tis is due to the fact that the model was principally designed in order to answer specific questions conceraine the results of Erp. I. In particular, the retention intervel between P_{2} and T_{2} was always 8 trisls in this study, and would therefore be suificiently long to "wipe out" shortterm retention effects at $T_{\hat{2}}$. Consecuently, the assurptions made b_{y} the model concerning the effect of a F_{2} were fairly simple, since it was only concerned with whether an iter left P_{2} in a long-retention state or not. In order to predict the results of Peterscn et al. a ariovian model might well need to inclde some kind of enhanced short-term state Wherein short-term recall might be possible over, say, four trials or so. The introduction of a third presentation into the presentation-test schedule might well provide the rodel with adiitional infor ation upon which to base an estimation of the $L U$ retention parameter. In the absence of such information, this was set to unity.

Ho:" ever, these comments are somewhat of the joint. Essentially, the arkovian models employed were intended to provide a description of the data, no a complete explanation, and although their basic structure of lone- and short-retention states and naive states may be justified by pointing to the "obvio s" parallels wit the extant data, they have obvio as s ortcominés when taten to represent, in anythine but the most superficial way, underlying psychological mechsnisms. For example, the funcamental darkovian assumptions of constant transition probabilities will prodably fail to stand up to detailed scrutiny. Although the dichotomy into short- and lon-retention states may stand up at a superficial level, it is extremely likely that some items catecorised as loneretention items are easier to rememer than others. Thus, when data is poo'ed over many zubjects, many sessions, or even many subject-sessions, it is extremely li.ely that items of varied "retention probabilities" will all se placed by the wodel in, say, the long-term state. Conseguently, the lon-term retention prooability estimated by the mociel will be too high at short retention intervals and too low at lone ones. Thus, at best, iariovian oocels can only provide an adecuate description of the data. Fortunately, in this vase, this is a 1 tiat was re uired.

Finsily, it should be re-emphasised tiat the applicution of wore complex, psycholocically-based models was neither warranted dy current theory (See 6.1), nor by the current data, wicl was clearly to "noisy" to give ruch h pe of a neaningful analysi. Zortanately, it proved possible to account for a creat deal of thie noise, but it should also be pointed out thit in addition to the faultri desien of Exp I, witch meant that the allocation of material to conditions was the same for all s'bjects, there is also a stron possibility tic.t the trials which constituted the "foreetime" or intruaine tricls in each condition difisced somewhat in composition. For oxample, it is highl; probable that intrudine presentation and test trials on other items have different effects on retention (see 1.34), and with the limited mamber of lists
employed in Exp I., it is yossible that the overall ratio of intrudine presen:ations to intridin tests differed sicnificantly from one spacing condition to another. Hor:ever, it is also possible tiat evea with the best possiblo desien, teese ratios mey differ significautly, since the list order produced by the "ra:adom" interleavin procedure ziay well be deter:incd to some extent by the prucise prosentation-test schedules that are being amployed. Thus, it is not certain t at the interleavine procedure really is as random as all that. In addition, it nay not just be intrudine presentation and test trials that differ in their effect on the retention or a fiven item; for axawle, secona presentations maj differ in effect from first resentations, and the interferine effect of a second trial on an itern may depend on tiee in erval between it and the iten's first trial, or on the difficulty of tie subject's task on that trisi.

These points empasise not only the specific eifects that may have contributad to the data in the present stuaj; many of these problems may occur in virtualiy any memory experivent. The inference to be drawn is t at sophisticated "psuciological" models may be just as misleudin; as the somevhat mone naive Lar ovia.. models when fitted to virtually an set of memor: date. Cunsequently, it is likely t at the present anal ses are no more and no less reliabl than analyses based upon mathematical models in general.

CCNCLUJICITN

The results whic. have eraereed from thic study broadiy spea, ine fall into two categories; those which are syecifically concerned with the spacine effect in paired-associste memory, and those which have implications concerniné pairei-associste memorising in eeneral. It is proposed to deal firstly with the latter catecory.

One point to emeree from the rasults of the experiments which involved stimulus recoǵnition testing (i.e. Uxpits. II anả III) pas that it enerally appeared that stimius recoenition performance alone could not account for all, or even for the ereater propcrion of, paired-associate fo gettine. Certainly it was found in Xxp. II that response recall was no better then chance following a stiwulus recognition failure on the same test trial, in agreement with the previous studies reported in section 4.13. \& sliêtly different result was found in ixp. III; althoueg response recall performance following a stimulus recosnition failure on the same test trial was far loorer than that following a correct stimulus reconition, it was sienificantly above chance level. However, recall performace following a recoenition error was not affected by retention interval, nor by the numeer of presentations, so that it was concluded that some kinà of cuessinc strategy micht ave served to inslate the level of recall performance above the theoretical chance level, since a "true" memory process would be expected to be a fected cy fuch factors.

Therefore, it was found that some recall errors could be explained in terms of stimulus forgetting. However, in $\dot{x} p$ II, it wās also found that stimus recoertition was at such a hich level that the overall recall data were almost identical to the recall data conditional upon cor ect stimulus recosnition on the same test trial. "Ithouth a Ereat proportion of recall errors in this study clearly resulted from a failure to produce an adocuate association encodin in the first place, it was found that t e proportion of recall errors civen a correct stimulus recoqnition on T_{1} exhibited the usual rel tionshiperth
retention interval; a short-term component of performince fcilowed by a more gradual decline in performance with retention interval (see 5.22). In other woris, even after short-term effects had been "wiped out", response recall penformance a peared to decline more rapidly with retention interval than did stimulus recognition.

Similar results were found in uxp.III (see 5.32 and Fizure 21). However, in this case, the results are less convincing, sicce the relatively hich false recognition rate in this study (.235) implics that stimulus recognition performaice at T_{1} in fact declined more rapidl: than an examination of $\operatorname{Pr}\left(\mathrm{O}_{1}\right)$ would succest (see Fieure 19). The data are further complicated by the fact trat the theoretical chance pro ability of a correct recall response civen a false stimulus recognition was .2 (since there were 5 possible responses), Thorefore, it was decided to estimate, at sach retention interval, the probability of a successful response retrieval (corrected for c ance) at T_{1} conditional upon a correct "trie" stimalus recognition at T_{1} (conrectad for false recognitions). The resultant estimates were .986, .47\%, . 226 .293 and .190 at retentian intervals of $0,2,4,6$ and 8 intruding triuls respectively. Clearly, the corrected data are extremely strikire, and strongly suecest that, even after short-term retention effects have been "wiped out", the rate of decay of response essoci-tions is ereater than that of stimulus recognition codes. It has thus been established that there is considerable evidence to support tine conclusion that a ereat deal of loneterm pairedu-associate response forettind cannot be explained in terms of lon-term stimalus forettinc.

These observations are of obvious relevance to any theory of paired-associate encoding, and certainly suecest t at the hypotheses outlind in sections 1.33 and 4.31 reuire some modification, in that they place too much emphasis on selective stimulus encoaing. Consecuently, the following formulation is proposed. The subject's task in encodin. a paired associate is seen principally as his having to procuve an association encodin that will be uniquely linked to the current stimulus
and to no other. Thus, on the first presentation of a psir, it is postulated that the suoject attempts to find some feature of the stimulus which will be unique to that stimulus, and to incorporate this feature in a response-evokine association coce. In decidine rich stimus aspect or aspects are best used in the association encoding, the subject may well have access to previous encodines which have certein aspects in common with the current presentation episode. In particular, it is jossible that the subject may recocnize that certain semantic aspects of tie current stimalus have been previously utilised in e different association encoding invclvin a different pair, and may therefore be motivated to seek alternative aspects of the current stivulus to use in the current associ.tion codinc. These features may not be particularly easy to ircorporate into an association code; in other moris, a similar previous encodine way have a deleverious effect on the current encocinc, and in thic way, proactive inhibition effects may be explained. In addition, it is postulated that the subject only takes previons encodins into account if he recocnises them as pertainin, to other pairs cur ently to be remembered, and this must sumely occur via the mediation of episodic aspects coman to the presentation of the previously encoded pair and the current presentstion episode. Turthermore, it is not necessary to assume that confusable previous encodincs receive additional procecsiris during the current presentation trial; injeed, it is quite probable that they do not. The postulated depencience of proactive inhioition effects on rapiuly-decaying episodic cies is certainly consistent mitht. small size of the primacy effect in PA probe studies described in section 1.33.

Retroactive inhibition is seen as a conseuence of the subject's failure to successfully take into account a conrusable prior encuding
in the riay described aoove; consequently, subsecuently pr-sented confusable pairs will compete with the encodine of the current par at recall, especially since they will probaioly share more episodic aspects with the test trial. However, when the retention interval
becomes extrenely loi, these episcdic cues are lesn likely to be present at test, so that the dominance of th: more recently presented pair wolld tend to disappear. Tris is, of course, a widely observed phenomenon described by classical interference theory as the "spontaneous recovery" of the older association.

It as alread. been explained in some detail how this type of formulation handles the resplts of "cued forgettine" studies (in section 1.33). However, the current formulation differs from that presented earlier in that is postilates that stimulue aspects \because ich are not selected for use in the association encodine may still be employed as stimulus recounition cues. In o her words, stimius recognition performance is not seen as beine based oniy on those stimulus features that are employed in the association encoding. Indeed, it may be that tie " son-associated" stimulus aspects are combined into an encoding wich "points" to those aspects employed in the association codine. This hypothesis would certainly go some way torards explaining how subjects "focus in" on a preferred functional stimulus durinë on-čoiné paired-associate leaminé (see 4.12). Finally, this hypothesis offers sn explanation of how associction codes decay more rapidly tran stimulus recoenition codes; sufficient stimuluw features may survive to guarantee correct recogiation, but tiese may not be suificiently well-integrated into an encodime wic: "piints" to the flonctional aspects of the stirulus reciared to evo a the ussociation encodine, and hence the rosponse. Conse,uently, an inappropriate stimilus aspect may be used to initiate the seerch procoss, and hence an inappropriate response may resilt. It shouid, perhaps, be stressed that althouch "non-associated" stimulus features may serve to ooint to the associated aspects in their resence, the f are not seen es sufficiently well-inteerated in eneral to support recall of the associated aspects in their absence; in other words, "on-preferred" stimulus foatures will not cenerally evoke the association encoding by themselves, so will not be sufficient for recell.

The theory outlined above adrits several urocesses by which additional practice in the form of re-presentations of the pairs to be remember may prove beneficial to subsequen: response recall perforwance almost iniependently of stimulus recogition perfornance. In the first place, they may allow extra processin, time durin. which the subject cen somehow enhance or improve the encodine of the nonpreferred stinulus features to "point" to the preferred functionsl encoding of the stimulus. Such a process nay only mareinally improve subsecuent stimulus rocoenition perform: nce. Secondiv, further presentations mak be effective in allowine the subject to enhance, deepen, elaborate or othervise improve the association ort is encoding. In contrast, it is also possible that the subject we wish to chan e the entire encoding, especially if it is thougkt to be inadecuate, or insufficiently unique, on a subsecuent presentation. Tinis might involve the selection of a new "preferred" fuctional stimulus version, the formation of a new "pointer" code, and the formstion of a new association encocine. It certainly appears that in leamine a finite PA list, the suiject may well vary his "preferred" stimulus until he is satisifed that he has a unique formulation, followin thich tie "pointer" code is refined, and only with ove"learrine" are aditional stimulus features eriployed to elacorate the association encodine (see 4.12). Finsily, of course, a re-presentation almost certanly sives the subject another chance of proc cin an essociution encodine of those pairs that were not aderuately coded on previous aresentations.

Two other results have implications concerninc pair d-associate memorizine in धenerul. Firstly, it was foun that follo.inë en rror just prior to th second presentation of a pair, recall performance at final test wes poower than racuil of a si cly-presented item at a similar retention interval in those experiments wich cmployed a fixed duration test trial. This depression in reca:l perfo mance to ivens on which an error hed been pade did not appear in Bxp. III, in which testtrial duration was subject-determined. This sucuests thet if an
encodine is i adequate on th onset of a re-presentation and te subject is avare of this inade dacy, then he uses the re-pre entation to improve and robebler eletorate ris encodine of tit Mir. T...is conclusion is based on the hypothesis that more elaborate encodin take loneer to decode during search end retrieval at test, so that with test trials of a short fixed duration, those items which are encoded more elaborately are disadvantaged.

Secondly, it was fornd in ixp.III t at the proportion of dojole recall errors tiat vere perseverations (i.c. With the same ina pro riate response beinc made on ach of the two t st trials) followinc a cormect recognition response on eac t st trial, vas no hicher than t.e propotion of perseverations when a recognition error i, as made on each test trial. Since in tiee laiter case it is likely that subjects were cuessinc on each test trial, the ereater tan chance jerseveration error level found was interureted as resuitine from a "cuessinc number" strategy, whereby some subjects may aiwajs heve fuessed the same response if they had no ilea as to the apur priate res onse on any test trial. Consecuently, when recall errors followed correct stimulus recognition on each tesi tricil, it appears that not onil: was the second recell response unli ely to be a pure fiess, but that if anythine, subjects were able to avoid perseve tions in this situation. I e implication of this observation is that subjects co:Id orten renemiver on a second test trial theit their firct tast trial response had been wron. This in turm su Eests that on a representation whici follored a correct stimulus reco nition lut a recall error, suivjects may h ve elaborated their association encolia in suck a way as to incorporate the orional inappropriate resonse with the additional inforation that thie respo se is wrone, for example "the response is not X out Y ". -ven if the extenied encoding were not able to produce Y at subsecuent tost, it micht be sufficient to enable the subject to avoid respondini X agsin, so that e could guess away from this clearly ina propriate response. Of course, it is possible tんat two parallel codins are forwed,
in such a way that the scoond encodine employes a different functional version of the stimulus; this seems quite likely, since the orieinal encodine was prone to interference or competition. In this case, the old encocine woxld be "ta eed" as inappropriate, so that if tie original functional stimulis were employed to initiate search on a subsequent test, the subject would realise we was on the wrone track, and he would therefore be able to go bac: to the stimulus again and try to find the appropriate functional version. 3oth these for ulations colld explain the ouserved depression in T_{2} recal performance follo inc a recall exror prior to a re-presen ation on a schedule involvine fixed duration test trials.

It is now proposed to deal witt those results which concern the spacine effect. It was only in ixp.I t at I_{2} performance appeared to show a continued improvement with interpresentation specincs in axcess oi those recuired to "wipe out" short-term retention eifects from P_{1} to F_{2}. It is posible that the inclasion of a stimulas recognition test in axpts. II and III somehow al erad suivjects' encodi.eg stratecies (periaps towards an inereased emphasis on stimlas encodin) in some wa: that precluded the normal spacine effect. ievertheless, the results of tiase studies suacested that recall performance at T_{2} was not affected in any systematic way by stimulus recosmition pe formance alone at T_{1}. In partichlar, there vas no evidence that T_{2} recall performance was depresced if the second presentation of an item follo ed $\varepsilon^{\prime \prime}$ short-term" stimilus recocnition. Thus, the results of t ese stradies are not concistent with twe hypothesis that the spacing effect is caused by the maintenance of encodines pith inade uate stimulus components on a seona presentation at stort interpresentetion intervals. On the other hand the results of $x p$. I suiested that the continued improvement in T_{2} performance with interpresentation spacin confined mainly to these items that were correctiy recal ed jusi prior to the second presentation.

A detailed untovisn analysis of axp. I coufirmed this suspicion.

There was no evidence whatsoever that T_{2} performance on items to which a T_{1} recall error had been made showed any systematic improvement with increasiny non-zero interpresentation in ervals. i.lthouk it appeared that itens corectly recalled just prior to a secon presenation at very short interpresentation intervals received very little benefit from the second presentation, it was found in adition that r_{2} recall on such pairs continued to improve significantly with lonser interprisentation intervals. Thus, the spacine effect appared to be confined only to those items that coild be recalled irom memory proper just prior to their second presentiction, and furthermore, it was found to operate over a rance of interpresent tion intervald in excess of that which would be predicted solely on the hypothesis that shortretention items received no benefit from a re-presentation. pinally, there was considerable evidence that the second presentation operated to increase t.e resistance to forgetting of those items that were already adequately encoded at its onset, and that it became increasin, ly effective as the inuerpres ntation interval increased. isthough the Narkovian moiel predicted some limit in the interpresen ation interval beyond which the effect of a re-presentrition would decline (iue to the fect that with: lone interpresentation in ervals, there would be sienificant lon-term forettine, so that ancreasinc proportion of correct T, responses would be cuesses' there was no evidence that this limit fell in the rance of interpresentation inservils employed in Exp.I (i.e. 2-16 trials).

These resulis are clearly consistent with sone lind of differenial encoding hypothesis, since the second presentation alnost certainly operates to produce a superior encocing of those iteras already adequately encoded at its onset. There are a numer of paycholgical rationales that could underly such a hypothesis. For example, there is an "active" hypothesis, which woid claim thet as the interpresentation interval increases, so the subject's coulidence in a recall-supporting code at P_{2} declines, so that he consequently beromes core and more
motivated to "think up" iaprovements or modifications to his current encoding. Alternatively, a more "passive" view may be taken of the subject's role. For example, it may be that the subject's encodine of a puir is to some extent determined by episodic cues or aspects available durine the presentation secuence. Thus, at slort interpiesentation intervals, there will be a great likelihood that the episodic cues available at the second presentation are very similar to those present on the first presentation, so that the subject ju t can't help thinisine of the sane encodine that he used before. On the other hand, after a lons interpresentation interval, the second presentation way occur in so different an episodic coatext to the first that the subject just can't help thinkine of new ways of encodine t e pair that nay be emplojed to elaborate is oricinal association encoding, or to replace his original encodin altogether by a better one. Althouch this passive hypothesis may appear at first sight to oo respond ritil a "multiple retrieval route" position, it sholld be stressed that tils is not the case. In other rorus, it emphssisesthe difierential aspects of second presentation encoding, but does not necessarily imply that a seconç presentation eacoding in any way provides an aljemative indepenent retrieval rouve to that provided by the oricinal encouing. On the contrary, it assumes that the ori inal encodins is available at re-presentation, and will therefore play some part in ceternining the form of the improved encodine

Unfortunately, it is not possible to discriminate between these hypotheses on the besis of the current data, and further experimentation will be necessary. An experiment involvine a recall test and a confidence ratine response would seem to offer the rost frxitful approach, and if this failed to explain the spacins effeot, it could he followed $u_{p} b_{j}$ a stidy in which the context of each preseatution of a critical item (in terns of the pairs precedin it) \#ras systematically varied in an attempt to canivulate the episodic aspects of each presentation sequence. Pinally, it should be stressed the the present experiments
do not yield any informition concemine the wa in which an oricinal encodia may be improved. Several feasible mechanisms have already been advanced as part of the paired-associate encodine theory discussed earlier in this ckapter. Eowever, this problem is not likely to be solved until we have a far ereater nderstandine of pairei-associate encodine then we have at present, and it is certainly a very dirficult area of research

To sumarize, then, the pr sent results stronely suefest that the spaciñ effect in pared-associate memory results from an increase in the effectiveness of a second presentation with increased interoresentation spacing in improvin the envodine of those rairs that are alread:" moderately well encoded in en re-presented. Althou h this conclusion supports some ind of differential encoding bypothesis, it is not at present possible to nake any inc of inference about the nature of theaifferential encodine which occurs, ho ever, this yosition is not too differ:nt from the current state of knowledge concernine spacing effects in Jrov-Peterson wemory (see section 3.33), and it is cuite possible that a similar uncerlyine rationale aplies to the spacine effects observed both in rired-associate and BromPeterson memory. In other words, althouch the nature of the encodin ${ }_{c}$ employed in the two parudigms may differ considerably, it is still possible tiat the reason why a second presentation increases in effectiveness with spacin; is common to both areas.

* (Abbreviations: IVLV $^{2}=$ Journal of Veroal Learaine and Terbal Sehaviour.

IIIP = Joumal of xperimental Fsycholo(y)
Ah:TOTSON, D (1967): Temporal factors in percention and short-term memory. Ps.choligical Bulletin, 67, 150-144.
ADAS, J.A. (1952): Narm-ap decremsnt in performance on the pursuit rotor. American Journal of Psychology, 65, 434-414.
ARCHER, E.J. (1960) : A re-avaluation of the meaninefulaess of all
possible CVO trigrams. Psycholo ical Zono ruhs, 74, (10, whole 170. 497).

models for memory ith applications to a continuous
presentation task. Journal of mithe arical Psycholow, 4, 277-300.
ATHISON, Z.C., Eni CZumsirs, E.J. (1964): A comparison of puiredassociste learnine models havin different acq isition and retention axiots. Joumal of athematical Psycholog. 1, 285-315.
hTV IMSCN, R.C., and SHIFML, R.... (1968): Human memory : a proposed systern and its control processes. In I... Spence and J.I. Spence, (Eds)., Tae Psychology of Learnini ana Ootivation: idvanoes in Research and Theory, Vol II, vew Yor, Ácadenic Press.
AVLRBACH, E., and CCRIBLL, i.S. (19,61) : Short-tem: memory in vision.
Bell System mechnicil Jourmal, 40, 30\%-323.
Sindelict i.. D., (1966a): Short-tern memory for worci secuences as a
fu.ction of acoustic, semantic and formal similarito.
Quarterly Journal of ixperimental Psycholocy, $19,36-30$. EADELCT, A.D., (1966b) : The influence of acoustic and semantic similarity on long-tern memory for vorl sequences. quarierly Journel.
of ixperimental Psychojogy, 18, 302-309.
BADDELIEY, A.D., and PATMBRSCT, 1. (1271): The ralation between short-
tern and lon-term memory. Deicish Lodical Eulletin, 27 ,
237-242.
BADMAMF, A. D., SCOM, D., DRYinat, A., and Si:Iry, J. C. (1969): Shortterm memory and the limited capacit. hyoothesis. Eritish Journal of Ysyci:010sy, 60, 51-55.
 associations in traisfer-theory . T.E.F. 58, 97-105. BA.TIG, ii. F. (1966) : Vidence for codine proces es in "rote" pairedassociate learnine. JVLVE, 5, 177-181.
 and interpair groupin in paired-associate learning. Paper read a: the Psuchonomic Jociety, iviasara Falls, Ont. 3ATIG, \%. F., BROw, S.C., and LSOT, D. (1963) : Constant vs. Varied serial order in paired-associ te learine. Psycholocical Reports, 12, 695-721
ELLL, H. \because. (1942) : Rest pauses in notor learning as relstec̀ to Snoddy's hypothesis of mental rrowth. Psjcholofical Nonotraphs, 54, No. 1.
BERNPACA, H. A. (1967a) : Stimulus learninc ard recoenition in paired-associ-te learnine J.E.F, 75, 513-519.
BTRTBACH,H. A.. (1967b) : The effects of abels in short-term memory for colours with nursery school children. Ps;chonomic Science, 7, 149-150.
BJCRK, R. A. (1966) : Learnine and short-term retention of pairedassociates in relation to specific sequences of interoresentation intervals. Technical Report iio. 136. Institutefor Lathematioal Studies in the Social soiences, Stanford University, Stanford, Ca.
BJCR:, R. A. (1970) : Positive forcettine : the noninterference of items intentionally for
 commatativity of suacessive interpresentation iatervils in
siori-term memory. Faper pr senieli at tie meeting of
the "idwest Fsycholoticul associ tion, Chicaso, ay 'ote.
BJOR., R. A. and ALTEN, T. . (1970): The spacing effect : con olidation or aitierential encoding JVLVE, 3, 507-572.

SCUSFIELD, \because. A. (1953) : The occurrence of clusterin ${ }_{\varepsilon}$ in the recall
of randomij-arranced a sociates. Journel of General
Psycrology, 49, 229-240.
BOUSFI Lu, i. .h., FUFF, C.R., and CO...ait, T.... (1964) : The developuent of constances in sequential organisation durine repeated free recall. JVIVE, 3, 489-495.
 (ed), Comition in Learmin and Zemory, New York, iitey. BRELSFORD, J.... JMr., SHIFRRI, R...., and AKKISC.....C. (1968) :

そultiple zeinforcement effects in short-tern memory. Exitish Journal of Wathematical and Statistical Fsycholocy, 21, 1-19. BRCADE NT, D.E. (1958) : Perception ani Communication, London, Pergamon. BRCiAN, J. A. (194) : The nature of set to learn and of intra-material
interferences in imrediate memory. Hurierly vomman of
Broerimental Psychology, 6, 141-148.
BRONI, S.C., and B.MYIG, i.F. (1962) : Fartial serial position co.stancy
in paired-associate learning. JVEV, 1, 42-47.
 additions of stimulus elements on paired-associate learnine. JIIT, 70, 87-93.
BU:TTTHD, ...Po, (1940) : Distribution of effort in memorizinc prose and peetry. American Journal of Psycholony, 53, 423-427.
ChLFLL, R. C., (1968): Interpresentation effects in pairedi-associate learninc. JVIVB, 7, 1030-1036.
CALVIN, J. S. (1939) : The effects of regularity of stimulation in conditioned-response learnine. Psychological Bulletin, $36,596$. CIEJTAT, V.J., STOCK. ALLL, F.E., and NCMLE, C.E., (1958): The interuction of ability and amount of prectice with stimulus and response
meaninfulness (n, m^{\prime}) in paired-associate learnine.
JIP, 56, 193-202.
COHEN, B. H., (1966): Some-or-none characteristics of coding behaviour.
JVEVB, 5, 182-187.
COLLIIS, A. L., and qUILLLAT, Li. R. (1972) : experiments on serantic memory and language comprehension. In. Gres̃e. L. (ed.), Connition in Learmine and Lemory, New York, iiley.

COOK, S. A. (1928) : The effect of various temporal arrabements of practice on the mastery of an animal maze of mocerate complexity - Arciives of Ysycholosy, New York, No.98. COO , T. W. (1944): Factors in massed and dizuributed practice. JEP 34, 325-334.
CCOPER, E. H., and PATLLEA. J. (1967): The total time hypothesis in verbal
learnine. Psychological Bulletin, 68, 221-234.
CRAI: F.I.I., (1768) : Two components in free recall. JVLVB, 7, 996-
1004.

CRAII, F.I.H., (1971): Priary memorj. 3ritish Ledical Bulletin, 27, 232-236.
CRATH, F.I.H., and LOCFART. R. . (1972): Levels of proces ine: a framework for memory search. JVLVB, 11,671-684.
CROHDER, R.G., and LORMCI, J. (1969): Precategorical acoustic storace
(Pis). Perception and Psychophysics, 5, 365-373.
DELSE, J. (1957) : Serial organization in the recall of discomected
items. Psycholocical Reports, 3, 577-582.
UCRE, LAR., and HILGBRD, E. K. (2937): Saced practice and the aaturation
hypothesis. Journal of Psycholoc, 4, 245-259.

experimentallen Psychologie . Leipziğ, Dunier and Fiublot.
ELIAS, C. S., and PERFLTII, C. ... (1973) : Encoding tas: and recognition memory : the importance of semantic codine. JIP. 99,151-156.

EPSTEIN, B. (1949): Immediate and retention effects interpolated rest periods on learnine performince. Teach. Coll. Cont. Eauc. No. 949 .

ERICKSET, S. C., (1942) : Variability of attac in rassed and distributed practice. JiP, 31, 339-345.

ESTES, Ti. K_{1}, (1955) :statistical theory of spontaneous recovery and regression. Psycholocicel Review, 62, 145-154.
ESTES, $\bar{y} . \mathrm{K}_{\text {. }}$, (1960) : Learain theory and the new "mental chemistry". Esycholosical Reviev, 67, 207-223.
ESTES, I. . . (1967) : Reinforcement in human learnin. Technicel eport 10. 125, Institute for athematical ctulies in the Social Sciences, Stanforà University, Stanford, Ca. Grifulivir, J. i.., (1974): Levels of processine in word recognition and subsequent free recall. JLie, 102, 101-105

GARIEIT, H. 3. (1940) : Variability in learnine under massed and spaced

 repetition of homographs: a test of the differential encodine h"pothesis JLB, 11, 801-30.
GLititirn (1972): Storage mechanisms in recall. In Zo er G.I. (Ed.), The Psycholocy of Lesmin and Motivation, Vol. 5 . IVeir Yori, Acedemic Press.
 recall JVLTE, 5, 351-360.
GLitzer , m., GIA JTSCS, R., and DBit, S. (1969): The removal of items from short-term storage. IV IE, 8, 435-7.
 on Eree recail JVLVB, 6, 928-935.
GLi.ZE, J. A., (1928) : The ascociation value of nonsense s.llables.
Journal o? Genetic Psychology 25, 225-269.
GRacio, J.G. (1964): Paired-associate learnine with massod and cistributad repetitions of itemis. JWT, $67,286-295$.
GRizic, J.G. (1967): Faired-associcte learnine in th short-terw wetention: nathematical analysis and data regardinc iúntification os parameters. Journal of Cathematical Psycholocy, 4, 430-472.

GRLiNC,J.G. (1969): A cognitive interpretetion of neg.tive transfer and foreetting of paired ascocietes. Eumen Perforance Centre. remorandum Report io. 9. University of -ichigan.
GREAIC, J. G., (1970a) : Conservation of iafornation processing capacity
in paired-associate mcmorizinc. JVLVB, 9, 5:1-536.
GRIIIC, J.G. (1970) : How: associations are memorized. In D.A. Iorman
(ed). Wodels of Human omory, Ierr York, Academic Press. GUTHRIE, D. Z., (1935): The Paycholoey of Leamine, Her Yor., Harper. HEBE , D. C. (194\%): The Oreanis tion of Eehavioxs, Te:" York, "iley. Hellyer, S. (1962) : Trequency of stimilus pres ntation a da chort-term decrement in recall. JLEP, 64, 650.
HERRIOT, P. (1974) : Attributes of -emory. London, ethuen.
HLITZAN, D.L. (1969a) : Apparent frequency as a function of frequency and the spacine of repetitions. Jup, $80,139-145$.
hintzian, ..L. (1969b) : Recognition time : exfects o recency, frequency, and the spacine of reptitions. Jip, 79, 192-194. HINTZATH, D.I. (1970) : Dffects of repetition and exposure duration on memory. Jip, 83, 435-44.
 for a multiple-trace hypothesis. JTP, ,8,297-306.
 of in wut, JVITV, 11, 741-749.
UINTZZAT, D.L., and SJ.Inezo,J.?., (1973); Lon-tern visual treces of visually presented words. Eullotin of the Ps, Phonomic Society, 1, $325-327$.
Horluid, c. T. (1938) : Experimentil stuaies in rote - learnine theory. III. Distribution of yractice with varine speels or syllable presentation. JSF, 23, 172-190.
HOVLLAD, C.I. (1939) : Lepperimentel studies in rote-leamino theory. V. Comparison of distrivution of ractice in serial and pairedassociate leamine. Jip, 25, 622-633. Hoviaiid, C. I. (1940) : Experimental antudies in rote-leurrine theory.VII.

Distribution of ractice with varying lenetis of list. JEP, 27, 271-284.

HCVLi D, C. I. (1949): Experimentel stuilies in rote-learnite theory..III. Districuted practice of pairci-associutes with varine rates of presentation. Jep, 39, 714-718.

HO:"E, …J.A. (1967): Consolidation in short tern memory as a function of rehearsal Ps.jchonomic Science, 7, 3:5-355.

HULL, C. L. (1943) : Principles of Dehaviour. New Yor:, appletonCentury - Crofts.

HUPHUTIS, i. G. (1940): Distributed prictice in the developraent of the conditioned eyelia reaction. Journal of General Psychoiogy, 22, 37,-385.

IZANA, C. (1966): Reinforcement - test secquences in pared-associate learning. Psy olo, ical Reponts. 18, 879-919.

IZANA, C. (2967).: Function of test trisls in aired-associnte learaing. JEP, 75, 194-209.
IZA:A, C. (1968): Effects of successive reinforcements, tests and neutral trials in paired-associate learaing. Ir. Proceedingin of the 76th Annual Convention of the American Poycholceical Association. rashington, D.C., AFA, 33-34.
IZATH, C. (1969): Lone sequences of successive tests in paired-associate accuisition. In rroceedings of the 77 th arnual convention of the American Psycholcgical Associstion. Washington ע.J., APA, 57-58.
IZANA, C. (1970): Reinforcement-test-blank acquisitir.a pro ramming under the unixed lisi desicn ir paired-associate learnine. Psychonomic Science, 19, 75-77.
IZatiA, C. (1971): The t st trial potentiating moiel. Joumal of Mathematical Fsycholcey , 8, 200-224.
IAHES, C.T. and GRIES J.G. (1567): Stimulus selection at different staces of paire-assuciate leaming. JEP, 74, 75-83. JAiSS, W. (1890): The Principles of Psychology, Iow Yor., Henry Holt \& Co.
 recall. Journel of fitnormal aná Social Peychology, 47, 818-821.
Jonisolf, T.F. (1970): The role of chuning and oreanisation in the process of recall. In bower, 0.7. (Ed). The Psicinolocit of Learnin_ end Li.tivations, Vol. 4. New York, Academic Pres.
JCitison, Nor. (1972) : Crcanisation and the concepts of a memory code. In \%elton, A.... and Nartin, E. (Eds). Codine Processes in Human Semory, inshineton D.C., inston.
JCST, A. (1897): Die Ássoriationsfestigeeit ia ibrer hbhängige eit von der Verteilung der "iederholungen. Zeitscirift Pur Psycholofie, 14, 436-472.
 Effects of reirforcenent interval on paireä-associate learaine. JEE, 73, 268-277.
YEPPEL, G. (1968): Retroactive and proactive inhibition. In Jixon, F.R. and Houton D.L. (Ads). Varbal Behaviour and General Behaviour Theory. New Jersey, Prentice-ilall. IGPPGL,G. and UNJELi.iCCD, B.J., (1962) : Proactive inhioition in shortterm retention oinsle items. JVLVD, 1, 153-161. FIETRLE, II.J. (1946) : Rroperties of learnine curves under varied distribution of practice. JiP, 36, 187-211.
KINTTZLE, د̌.J. (1949) : Abilit patterns under distributed ractice

Jien, 39, 532-537.

KLUPLE,G.A., and SHTEI, R.D., (1952): The rel tionship between two inds of inhiuition and the amount of practice. JEF, 44,355-359. KINTSCH, FI. (1S56) : Recognition learainic as a function of the lenéth of the retention interval and changes in the retention interval. Journal of Mathematical Psychology. 3, 412-433. KINTSCH, W. (1970a): Learninc, Hemory and Conceptual Processes. Item
York, "Iiley.

KIFSCH, ". (1970b) : そodas for free recall ana recognition. In Norman, D.A. (Ed). Lodels of Mman Hergur. Hew Yor Academic Press.

FIMTSCH, W., and BUSCHE E, II. (1569): Homophons and symonyms in shortterm memory. JEP, 80, 403-407.

KOPPLTAL, R.J. (1963).: Time changes in the strencth of A-B, A-C lists; spontaneous recovery? JVLVB, $2,310-319$. LADAUE, T. K. (1962) : Rate of iraplicit speech. Ferceptual Motor S.ills, 15, 646. LhTiUR T.K. (1969) : Reinforcement as consolidation. Psycholocical Reviel: $76,82-0,6$
LCESS, H. (1967). Short-term memory, word class, and sequeace of items.
JEP, 74, 556-561.
LCESS, H. (1968). Short-tern memory and item similarity. JVLV. 7, 87-92. LOESS, H. and GAUC ,IIC. (1967): Short-term memory and inter-trial interval. JVLVE, 6, 455-460.
LCミEITE de HÓ, R. (193) : Analysis of the activity of the chains of internuncial neurons. Joumal of Neurophysiology, 1, 207-244. LRGA, I. (1930): Influenca of regularly interpolated time intervals upon suvæequent leamine. Teach. Coll. Contr. Educ, Io. 438. LYN: D.O., (1914): The relation of lensth of material to time tal en for learning end the optimum distribution of time. Tournal of Educationsil Psycholow, 5, 1-9, 85-91, 155-163. LYCN, .0. (1917) : Kemory and the Learning Process. Ealtimore, Warwick and York.
NADIGAN, S.W. (1969): Intraserial repetition and codine processes in
free recall. JVLVG, 8, 82-835.
UA:DLRA, G. (1967): Vertal learring. In New Directions in Psycholocg. III.
New Yor: Holt, Rinehart and ".inston.
MAiNLLKR,G, (1972) : Organisation and recoénition. In Fulvine, E. and Donildson W.A. (Bds). Organisation of Cemory, Wew York. Academic Press.
 learning JVLVB, 5, 18-22.
whRTIV, (1967a) : Relation between stimulus recognition and pairedassociate learains. JEP, 74, 500-505.
WRAI.,E. (19670): Responses to stimuli in verbal learnine. Human
Performance Centre Kemorandum Report Wo. 3. Uriversit ${ }^{\prime}$ of Lichigan.
Lardin, E. (1967c): Stimulus recognition in aural paired-associáte learnine JVLVE, 6, 272-276. WRIIT,E. (1968a): Recognition an. correct respondiag mediated by
first letter of trieram stimuli. JVLVB, 7, 703-706.

transfer : an encodine variability bypothecis.
Pspholo ical Revicy. 75, 421-441.
Whritit E. (1971): Verbal learning theory and indepondent retrieval
phenomena. Psyci:olicical Review, 78, 314-332.
wRTIT, E. (1972): Stimulus recoaine in learnine end transfer. In
Lelton A.i. and Lartin E. (iads.) Coding Processes
in Human Memory, तeshinston D.C., inston.
CRTIT E, and ChRET,S.T. (1971) : Retrouction, recovery and stimulus
meaningfulness in the A-i, A-Er paradicm. Amoricen
Journal of Peycholocy, 84, 123-133.
WETMOS, A.il. (1963): Implications of short-term memory for a general theory of memory. JVLVE, 2, 1-21.
UELTCK, A.W. (1970): Te situation with respect to the spacinc: of repetitions and memory. JVLVI, 9, 596-606.
LELTON, A...., REIC:ER,G.... and SHULMAT, Y. ©. (1965): A distributed practice effect on procability of recall in free recall of woris. Paper presented at the Psychonomic Society, St. Louis. Cct. '66.
LELTON, a.... and SYuLAN,H.G. (1967): Further studies of a distributed practice effact on probability of recall in free recsill.

Paper presenticd at the Psjchonomic Society, Chicago, oct '7. MERYYM, C. T., and MERTLA, S. S. (1971): Stimulus encodin in the $A-A^{\prime}, A X-B$ and the $A-E r^{\prime}, A X-B$ paradiems. JVLVB, $10,681-685$. IIILER, G. A. (1956): The magical numen seven plus or minus two: some
limits on our capacity for rocessine information.
Fsvcholo ical Review, 63. 81-97.
MILVER, B. (1967) : Amnesia followine operation of the temporal lobes. In Zangwill, C.L. and withty, C.I:W. (eds) Amnesia, London, Butterworth. LURDCE. B. B. Jnr. (1963a) : Short-term retention of sincle paired associutes. JEP , 65, 433*443. 3:URDOCl, B. B. Jnr. (1963b): Interpolated recall in short term memory. JRP, 66, 525-532.
WJRUCC , E. 3. Jnr. (1963c): Short term memory and paired-associate learnine JVLVE. 2, 320-328.
MRDCCK, 3. 3. Jnr. (1964) : Proactive inhibition in short-term memory. J退, 68, 184-189.
NEISSER, U. (1967): Cogniti e Psychology. Ne:. York, inpleton-Century Crots.
NEYMAN, J. (1949): Contribution to the theory of the X^{2} test.
In Neyman J. (id). Proceedine: of the Berkeley Sympoaium on Sotheratical Statistics ana Probality. Derizeley, University of California Press.
NOBLE, C. E., (1952) : An analysis of meanin. Psycholocical Review, 59, 421-430.
OLSON, G.i.. (1969): Learnint and retention in a continuous recognition task. JEP, 81, 381-384.
PAIVIC, A. (1969) : ifental imacery in associative learning ard memory.
Psychological Revier: 76, 241-263.
PAVLCV, I.P., (1927): Condition Feflese : An Investigation of the
Fhysiolocical activity of the Cerebral Contex. London,
Oxford University Press.

PECASTHII, L. C. (1921), Zssed vs. Wistributed eiffoct in learnine . Journal of Jduc tional Psycholoci, 12, 92-97.
PETHASOV, I. a., (1963): Immediate memory : data and theory. In cofer, c.iv.
and Huserave, E.S. (Bds) Verbal Behaviour and Learnine :
Froclems and Processes. I.ev York, NCGraw-Hill.
 contiguity. JVLVE $, 1,365-371$.
 report : time between pairings and short-term retention. JIP, 64, 55?-551.

individual verbal items. JJP, 58, 193-198.
PETERBON, L. R. and PMTRSON, L.J. (1962) : "inimal paired-associate
learning. J3if, 63, 521-527.

and frequency in paired-associate learnine. JiF, 63, 396-403.
 Effect of spacing present tions on retention of a paired associute over short intervals. JIFR, 66, 206-209. POLLATSIK, A. (1969): Rehearsal,interference and spacine of practice in short-term memory. Technical Report, Haman Perfornance
Centre, University of Lichicuan.
POST.AN, L., and GREEBLCC:, r., (1967): Conditions of sue selection in t e accuisition of pained-associste lists. JIP 73, 91-100.

free recall. marterly Journal of experimenta. Pgecolocy 17, 132-138.
PCStiuis , L., and STizE, K. (1971): Encodinc variability and transfer.
imerican Journal of Psycholony, 84, 41-472.
POSTA, L. STARi, K, and FRhSiR, J., (1968) : emporal chances in interference. JVIVE, 7, 672-694.

POTAS, G.R. (1969): Distance from a massed double presentation as a
factor in paired-associate list leurning. Paper presented at the meetine of the Iidwestern Psycholoeical issociation, Chicago, -ay '69.

PCi.BLL, ...J.D. (1964): an efficient met od of findine the minimum of a function of several variables it out calculatine derivatives. Computer Journal, 7, 155-162. PIIE, .. .H. (1c28): The Psycholoug of Learnin : in advanceù Text in Rducsticnal Paycholoy. Laltimore, .ar:ici. and Yor. RAFELE, G. (193) : Nwo determinants of the effects of primacy. Anericen Iournal of Fsicholojiz, 1e, 654-657. R.Fomp, B. (1969): Short-tern stornje and loneterm store in free recall. JVLE. 8, 567-5i4.
 contrul and directed forcettine. JVLVB, 12, 14?-149. RICHADSC, ,J. (1972) : Encodin and stimuius selection in paizod-associate verbal learning. In elton a...., and wartin, J. (Eds) Codin Procegses in Human iemory, "ashineton D.C., Vinston. RU:GLHAT, D.E. (19067): The effects of interpresentation int erval on performince in a continuus gaired-associate tas. Technical Report No. 116, Institute for athemsical Stuiles in the Social Sciences, Stanfora University, Standord, Ca. RUNDUS', D. (1971): Analysis of rehearsal processes in free recall. J塊, 89, 63-77.
RU DUS, D., LCFTUS, G.R. and ATL INSOA,R.C., (1970): Immediate free recall and three-weei delayed reconnition. dVLV:, 9, 684-688. SCHEIDET, T.C., and HOUSTCT,J.I., (1969): Retroactive inhirition, cue selaction, and dagr e of learninc.anericen Jommal of Psycholog, 82, 276-279.

learning. JVLVE, 5, 42-49.
 stimalue familiarisation, response faniliarisation and pronounceability. JVLVE, 3, 139-145.

Scidnatz, ... (1975): The effect of constant v g. varied encodint und massed vg. distriouted presentitions on recsll of paired associutes. Wer:orrir and Coznition, 3, 390-394.

SHAFFIR, 7.0. , and SHCTRIN, 2.. (1972): Rehearsal and storace of visual information.JZF, 92, 292-296.

SHALLICE, T. (1967): Faper presented at the aTO advanced Study
Institute on Short-term iiemory, Carioridge.
SHILLICE, 7. and wRRLICIC., s.K. (1970): Independent fuctionine of verbal memory stores; a neuropsysholocical stuay. Guarterly Journal of ixperimental Pcycholofx, 22,2.1-273. SHEpailu, R.i., (1963): Comments on Profescor Underwood's paper. In Cofer, C.I., and Luserave, D.S. (ias) Vertal Eehaviour and Learnin, Hew Yori, wecraw-Hill.
 uncer conditions approachins a steady state. Jie, 62, 302-309. BHULNA., H.O. (1971): Sirilarity affects in short tern memory.

Psychological 3ulletin, 75, 359-415.
S I TER, 3.f. (1938): The Dehaviour of Creanisms, Wew York, appleton-Century-Crofts.
Si:CDIY, G. (1945): Evidence for a universal shock factor in leaming.
JIP, 35, 403-417.
SPERIIG, (1960): The information available in brici visual present-
ations. Psycholocical \because ono rpans, 74, To. 11.
STuT: S. B. (1971): Further investigation of retroactive inhibition
in categorized free recall. JZP, 7, 19-201.
THO..PSO: D. D... and TULVING, $2 .(1970)$: Associstive encouing and retrievsl:
weak and strone cues. JJJ, 86, 255-252.
TMORNDIE, E.L. and LORGE, I. (1944): The Teachers word Book. of 30,000
Words. Ileir York, Columida Univensity Press.

TOMinin, E.C. (1932): Furposive Behaviour in Animals anu aen. Wew York,
Century.
TRiVIS, R.C., (1937): The effect of the leneth of the rest period on ador learnine. Journal of Psycholocy, 3, 189-194.

TRLIS...nf, no.. (1964): ionitoring and storace of irrelevant messees
in selective attention. JVIVB, 3, 44,-459.
TULVLIN, (1962): Subjective organisation in free rectill of unrelated
words. Psycholocical Review, 69, 344-354.
TULVIG, E. (1964): Intratrisl and intratrial retention: notes towirds
a theory of free-recall verbal learning. Psycholo ical
Review, 71, 219-237.
TULVIIG, E. (1966): Jubjective ore゙anisation an: effects of reatition in multi-trial free-recill leamine. JV VE, 5, 193-197. TJUVIIIG, $4 .(1967$): The effects of presentation and recall of material
in free-recall learnine. TVL $6,175-184$.
TULVING, E. (1968): Theoretical issues in free recall. In Lixon, I.R. and
Horton, D.L. (Eds) Verbal Eehaviour and Generel Eehaviour
Theory, ivew Jersey, Prentice-Hall.
TULVIIG, E., and AROUCKIE, T.Y. (1963): Sources of intertrial interference
in imediate recall of paired associates. JVLVB, 1 , 321-324.
TULVIIG, E., and ARSUCKIE, T.Y. (1966): Input and output interierence in short-tera associstive memory. JEP, $72,145-150$. TULVI:G, E., and PLARLSTOTE, Z.(196j): Availability versus accessibility of information in memory for woris. JVIVE, 5, 381-391. TJLVLIC, E., and PSCTAS, J. (1971): Retroactive inhivition in free recall: inaccessibility of inforiation available in the mernory store.JEP, 87, 1-8.
UNJERMCOD, E.J. (1963): Stimulus se ection in verbal learnine. In Cofer C... and Luscrave $2 . S$. (Eds) Verbal Zehavioir ana Learninc. New York, WcGraw-Hill.
JiDDan OOD, 3.J. (1969): Dome correlates of item repetition in freerecall learnine. TVITE, 8, 83-94.

UNJilinCD, 2.J. (1970): a breakdown of the Total-Time Lan in Treerecall learning TVLVE, 9, 573-500.

UNJENA, OD, B.J., and PCSTMHI, I.(1960): Extra - experimenal sounces of interference in forsettinc; Psycholowical Review, 67, 73-95.
 Chieago, Lippincott.

WARDI:, C.J. (1923): The distribution of practice in animal learriné.
Comparative Psycholoeical onograpins, ivo. 3.
WAUGH, if.c. (1963): Imiediate memory as a finction of repetition.
JVLVI, 2, 107-112.
MAUCH, iJ.C. (1967): Eresentation time and free recall. J3P 73, 39-44. WAUGE, N.C. (1970): On the effective duration of a repeated vord.

JVLV, $9,587-595$.
WAJGi, N.C. anċ NORA, D.A. (1965): Primary memory. Psjcholo ical Zeview, 72, 89-104.
 primary memorj. JVVI, 7, 617-626.
 transfer and retroactive inkibition in the $n-3, \begin{gathered}-0\end{gathered}$ paradism. JEP, 85, 2.5-257.

Hodels of Human _emory, IJew York, Academic Press.
MICKBLGREic, W.A. (1973): The lons and t. e short of memory, Psyoholo ical 3ulletin , 80, 425-438.
WIFUER, L.F. (1935): The association value of three-place consonant syllables. Jourasi of Genetic Psycholoci, 47, 33i-360. iiv. D, G. (1972): Oreanisational processes and free recall. In Tulving, E, and Donaldson, Wai. (Eds) Orcanisetion of Eemory, New Yorl: Academic Yress.
YOUNG,J.L. (1966): Effects of intervals between reinforcements and test
trials in pairod-associate learnino. Tecinical Report No. 101 ,

Institute for Kathenatical Studies in the Social Scie ces,
Stanford University, Starford, Ca.
YOUNG,J.I. (1971): Reiaforcement-test in:ervals in paired-associate learning. Journal of Lathematical Psychology, 8, 58-80. You'tZ, A.C. (1941): in experimental evaluation of Jost's Luws.

Psycholocical Lonosrayhs, 53, No. 1.
YUi, . S. (1931): An experimental test of the law of association.JEP 14, 68-82.

APPRNDICLS.

AFPRDI: 1

(i) The pocl or 886 common worls from which the sti:alli in E ps I and II were selected.

ACHE	ACT	ADD	AGI	AII:	AIR	hLE	AIM	APE	AR:
A 2 T	ASK.	ASJ	SXL	Bicl	EAD	bag	BMIT	bath	BAI
3AR	3AR	BARU	BASI	BAT	EAY	biad	BEM	BEAT	35015
B in $^{\text {d }}$	Ebi	ELER	330	EBLL	BEID	B 3 ST	BET	bias	IID
DIDE	BIG	BİL	dild	BIT	3I2	3LIP	BLOT	BLOM	BLUR
B0.R	DOG	30.18	BOIS 2	B00K	B00T	30R!	zoss	D017	Boil
30X	30%	Brag	ERiN	ERat	Eazio	5Rİ:	IUD	SUG	3015
EUS	BUY	Chis	CnGz	Chis	Cast	Cav	CMIE	car	Cape
CAR	CARE	Case	CuT	CLLL	CiAP	Clat	CHEP	CHS	CHIN
CHIP	CECP	CHOL	CLb.	CList	CLnP	Claii	CLIP	CLOD	CLOG
CLCT	CLUB	CLUL	Cosit	COD	COHE	coc	CCIL	CoIII	CO:1 1
COITE	COP.	CORE	COST	COT	COVE	CC.,	cor	CRus	CR.a
C2Bit	CRIB	CROP	CROW ${ }^{\text {c }}$	CJE	CUSE	OUS	CUFF	Cus	Cure
CuT	CuTL	DAS	34.7	Di.	D.. P	Din	D/REC	dare	Darit
LATE	DAY	DAZE	Dinit	IEAL	DEHTIT	Dac:	DE. D	DSEP	DER
DiFT	DEUL	DH:	DEHT	DEK	DEA	dial	DICE	DII	DIG
UIL:	2II	DII: 2	DIP	DİE	2IRT	Deci	DOE	DOG	DOLL
DO2E	DOCR	DOSE	DOT	DOVE	DRAB	Diug	DRIP	DROP	DRUG
DRTSU	duck	DUEL	DUET	DULU	DU:	DU. P	DOTS	DUPE	Dus ${ }^{\text {c }}$
EAR	EPE	EDCE	Eich	EGG	2LI	~10	ERR	SVE	E.E
EYE	Pice	FHCT	Fhis	Fail	FAIR	FAKE	FaLL	FWE	FAT
Far	FLisili	PhST	FhT	FATE	Fuir	FEam	Fic	FEEL	FAT
FERT	FETD	FIG	FILL	FIL:	FIN	FIIE	FIR	FIRE	TIST
FIT	FTAG	$\mathrm{VLH}^{\text {a }}$	FuT	Mhill	FHay	FLisu	FLIP	HIT	FLOG
FLOP	FLOM	FLY	foal	Foisi.	FOE	FOG	FOIL	FOLD	rous:
FOCD	FOOL	FOOT	aCos	FOX	Friy	FRE	FRET	FROG	FRY
FUEL	Fute	FUTis	NR	Fusi	GAG	Ghis	GnP	C.MPE	C.AR
Gas	GATE	Giy	GAZ:	Ġír	G6゙in	G ${ }^{\text {cini. }}$	GFT	GIF	GIN
GIRL	GLID	GLier	GLIB	GOAL	COAT	GOLF	GORE	Grab	GRID
GRTI	GRIV	GRIP	GiIT	G:3ii	GRiJ3	GULL	gua	Gus	OUT

HACK H	HAG Hid	HAIL H	HAIR H	HALL H	HALT H	HAMS H	HAND	HARD	HARII
HAT H	HATE	HAVE HIX	HAY	HAZE H	HEAD \quad	HBAL	HEAP	HLAR	HIAT
HEED	HELP	HiNP	HEIT	HEW	HIDE H	HIKE	HILL	HIINT	HIP
HIRE	HIT	HIVE	HOE	HOG	HOLE	H015	HOOD	HoOK	HOOP
HOOT	HOP	HOPE	HOPN	HOSE	HOST	HOT	HOUR	HUB	HUG
HUGE	HULL	HOM	HUMP	HUNT	HUT	ICE	ILI	I. P	IIK
JAB	JADE	JMM	JAR	JAW	JAY	JAZZ	JESI	JET	JIB
JIBE	JIG	JOB	JoG	JOT	JOY	JUG	JUT	JUTE	KEBEL
KEEP	K LiN	KEY	KICK	KILL	KILT	XILN	KIT	LACE	LACK
LAD	LAG	LAIR	Lave	LAME	LAMP	LMNE	LAP	IARD	LASS
LAST	LATE	LAW	LAY	LEAD	LEAF	LEAK	LEAN	LIAP	LSG
LES'	LET	LIAR	LICK	LID	LIE	LIFE	LIFT	LIIE	LIIE
LINE	LIP	LIST	LIVE	LOAD	LOAD	LOB	LOCK	LOG	LOOK
LOOII	LOOP	LOOT	LOPE	LORD	LOSS	LOT	LOVE	LO:I	LJCK
LULL	LURE	MACE	WACK	12. ${ }^{\text {d }}$	NAID	NAIL	MaII	WAKE	L.LE
UAN	12AP	WARK	MAT	WATE	MAUL	MAZE	IEAD	IEAL	13EAT
MEET	MEETK	UEID	IESS	IICD	MILE	MILK	MILL	MILIT	IIITD
MINE	MINT	MIRS	IISS	MIS'	120.AT	MOB	VOCK	HOLE	
MOPE	MORE	MOSS	120ST	HOPE	HOW	MUCK	IUD	ITMC	INLE
WURK	UUTE	NAG	WMIL	NA.IE	NAP	NAPE	NAVE	NEAR	NEAT
NECK	NEED	NEST	WET	NE:	NEWT	NIB	NICE	NICK	NIP
NOD	NOTE	NUDE	NUT	NON	OAF	OAR	OAT	ODD	ODE
OIL	OLD	OPT	ORB	Oine	OWIL	OWIN	PACE	PACK	PaCT
PAD	PAGE	PAIL	PAIN	PALL	PALIU	PAN	PAITT	PARK	PART
PAS	PAST	PAT	PATH	PAVE	PAN	PAY	PEA	PEAK	PEAR
PEAT	PECK	PECL	PEER	PE	PEIT	PEIT	PERT	PEST	PET
PEW	PICK	PIE	PIG	PIKE	PILE	PILL	PIN	PIINE	PINI
PIP	PIPE	PIT	PITH	PLuN	PLAY	PLOD	PLOT	PLOY	PLug
PLUM	1 POD	POLE	POOR	R PORK	- PORT	POSE	POST	POT	PR
PREY	Y PRIM	PROD	PROP	P IRON	1 PUB	PUFF	PULL	PUNT	PUNT
PUT	QUAY	Y QUIP	Q QIT	F RACK	R RACE	E RAFT	RAG	RIGE	E
RaIL	L RAIN	N RAKE	- RAM	RANT	F RAP	RARE	- Ras	RATE	RAVE

R i＇$^{\text {a }}$	RAY	R2id	Ras	Ras	R	SET	R3IT：	REETJ	20wt
RST	RIE	RICE	RICI	RICK	RIDE	RIG	RI：	RIND	RIF
RIPE	RISE	ROAD	RCSII：	ROHR	ROB	ROBE	ROCK	RCD	ROLL
RO： P	ROCF	RCOK	ROC．：	RCCT	ROPE	ROSU	ROT	Rove	30%
RUB	RUG	RJLE	RU：\％	RUNT	RJITM	RUJSE	RUS．T	RUT	SiCR
SALD	$\mathrm{St} . \mathrm{Fe}$	Sia	SAGE	SaIL	36LT	Sinis	2nio	Saitu	
Shle	SATI	SAY	SEAL	Su4	SEAT	3－3	SE．D	3 S	S5．A
SELL	Smid	S3T	SLiw	314．215	STED	S．IL	SiIIP	SHCS	S：OP
SHOT	SiCli	SHiTh	SICK．	SID ${ }^{\text {S }}$	SIIL	SIT	SIP	SIT	SI．${ }^{\text {d }}$
SLAB	SLLH	SL． P	SLiY	SLIE	SLIL	SLIP	S Im^{m}	5LC	SLOG
SLOP	SLOT	SLO＇，＇	SLiNG	SLUT	S．IAG	SMAP	SIIP	5.03	SilO．i
Sivio	SIUG	SCis	S0ip	SOAR	SC	SOCr	SCFT	3012	SCLE
SCL	SOIV	500.1	3 C 3	3 CT	SOUL	50：\％	Smit	STA	STHY
S3Fim	STEP	ST3	STIR	STOP	STO：	STUB	STUD	STJU	STY
SJCH	SUC．	SUI ${ }^{2}$	Stis	SUHI	SUP	Sinab	SiHAT	SionP	Sunt
SWAY	SWILI	23	Thick	Tiig	7inl	Tis ${ }^{\text {a }}$	TALI	TA．${ }^{\text {S }}$	Tis
TAT	Taik	MAP	TAPE	Tin	TASK	TH	RELTH	MLTD	TwT
m＝	Teril	T2SM	TMin	TIN	TICK	TID	IIL	MIL	MILL
TILE	MIN	TIIT	TI？	TCAD	T0E	TOIL	TCLL	20：5	70．is
TCite	TOCL	702	7055	TOUR	TCis	TCY	TRAP	TRiY	TRI．
TRIP	TUB	TTJG	TUTUE	TJRil	TYPE	TTM	URIT	VALIE	Vaid
VATS	VASE	V．asT	ViT	Vidu	VLIL	VLiD		V STI	VIE，
VIITE	V0\％	Wid	TADS	WAF！	NiAG	TaGE	waIL	Whil	Waks
WaL	MajL	WAit	Wais		\％ATT	ivisp	WAVA	1.4 X	HY
TEA？	W3L	WEAR	N道	$\cdots \mathrm{FD}$	＂．馬し	＂ELT？	UEID	iis	Wİ
WIIIP	＂ICE＂	WIDE	＂HIF＇s＇	Fin	＂ILT	WINE	WIḞ	WIRE	WISE
TiIT	H2E	WCOD	700L	．．CRD	． 02 NT				

（ii）The pool of 106 30\％－ 40% arc er（ 1960 ）CVC trierams from wicic： stimuli in Exp．III were selected．

eaz	BEX	BIY	BOV	BUP	BYH	CAJ	OiP	CIG	COH
CUX	CYF	dáa	DEix	DIII	DOJ	DUY	DYV	Fha	F3ig
FIK	FOZ	Fug	FYS	GAK	GEV	Gİ	Gck	gus	GYD
JAF	J．C	JIZ	Jow	NUK	JYL	Hix	KEF	KIG	OH

KUC	KYC	MAQ	MBP	IIIJ	IOF	WJQ	IYH	NAQ	NEZ
NIR	NOF	NUK	NYG	PAZ	PEX	PIV.	POB	PUY	PYZ
QAR	QEIN	QIX	QOY	QUR	QYL	SAJ	SEH	SIY	SOZ
SUN	SYV	TAH	TEF	TIV	TOZ	TUH	TYX	WAK	VEY
VIB	VOP	VMM	WYL	WAB	WEC	WIQ	WOX	WUM	WYS
ZAB	ZET	ZIR	ZOD	ZUP	ZYG	REH	RIQ	ROJ	RUY
RYS	YAG	YEI	YIK	YOL	YUN.				

APFPNDIX 2
Overall proportions of itens fallin, into the 16 responses categories in Sxp. II (Note: There were n observations in each spacing condition),

$\frac{P_{1}-T_{1}}{L A G}$
0
4
8
12
16

$\frac{0_{2} 72}{}$	$\frac{0_{1} C_{1}}{C_{2}}$
.428	.463
.070	.373
.062	.332
.055	.332
.055	.306

$\frac{\mathrm{N}_{2} \mathrm{WI}_{2}}{.012} \quad \frac{\mathrm{~N}_{2} \mathrm{C}_{2}}{.000}$
.000 . 000
. 070
. 005
.000
$.000 \quad .000$
$.000 \quad .000$
$\begin{array}{lllll}\frac{\mathrm{P}_{1}-\mathrm{T}_{1}}{\mathrm{LAG}} & \frac{\mathrm{O}_{2} W_{2}}{0} & \frac{\mathrm{O}_{2} \mathrm{C}_{2}}{\mathrm{C}_{2}} & \frac{\mathrm{~N}_{2} \mathrm{~N}_{2}}{} & \frac{\mathrm{H}_{2} \mathrm{C}_{2}}{.002} \\ 0 & \frac{.012}{} & .005 & .000 \\ 4 & .060 & .012 & .002 & .000 \\ 8 & .078 & .033 & .000 & .000 \\ 12 & .098 & .026 & .000 & .000 \\ 16 & .095 & .036 & .000 & .000\end{array}$
$\begin{array}{lllll}\frac{P_{1}-T_{1}}{1 . . G} & \frac{O_{2} W_{2}}{1} & \frac{O_{2} C_{2}}{.000} & \frac{H_{2} W_{2}}{.000} & \frac{{ }_{2} C_{2}}{.000} \\ 0 & .000 & .000 & .000 & .000 \\ 4 & .002 & .00 & .002 & .000 \\ 8 & .007 & .000 & .000 & .000 \\ 12 & .014 & .000 & .000 & .000 \\ 16 & .012 & .002 & & \end{array}$

APP:IDIK 3

Cverall proportions of items falline into the 16 response cstescries in Exp. III. (Note: there were $n=202$ observations in each spacing condition).

$\frac{P_{1}-T_{1}}{L A S}$	$\mathrm{O}_{2}{ }^{\text {\#3 }}$	$\mathrm{O}_{2} \mathrm{C}_{2}$	$\mathrm{N}_{2} \mathrm{Hi}_{2}$	${ }^{\mathrm{ir}_{2}{ }_{2}}$
0	. 010	. 000	. 000	. 000
,	. 027	. 010	. 000	. 015
2	. 025	. 015	. 010	. 000
4	. 03	. 015	. 010	. 005
8	. 035	. 005	. 005	. 010

```
APYETDIX
```

Data from inp. I and the comespowing values predicted by versions I and II of Hodel 2.

		$\underline{\operatorname{Pr}\left(\mathrm{C}_{2}\right)}$			$\mathrm{Pr}_{\left(\mathrm{C}_{2}\right)}$	
i	Oj8	Pred I	Pred II	Obs	Pred I	Pred II
1	. 930	. 926	. 926	. 4.61	. 432	. 429
0	. 593	. 611	. 609	. 525	- 534	. 532
2	. 424	. 464	. 471	. 540	. 569	. 566
3	. 378	. 459	. 464	. 507	. 565	. 564
3	. 480	.4,3	.457	. 549	. 562	. 561
5	. 438	. 448	. 450	. 521	. 559	. 559
5	. 511	. 443	-443	. 573	. 555	. 557
8	. 442	. 432	. 429	. 597	. 549	. 552
12	. 443	. 412	. 404	. 571	. 537	. 541
16	. 394	. 394	. 390	. 534	. 525	. 530

	$\underline{\operatorname{Tr}}\left(\mathrm{C} / \mathrm{c}_{1}\right)^{2}$			$\mathrm{Pr}^{(C 2} \mathrm{C}_{2} \mathrm{H}_{1} 2$		
		Pred I	Prea II	Obs	$\xrightarrow{\text { Pred I }}$	Pred II
	. 492	. 461	. 458	. 069	. 067	. 067
0	. 641	.659	. 667	. 357	. 322	- 322
1	. 645	. 854	. 840	. 380	. 322	- 322
2	. 823	. 853	. 843	. 315	. 322	. 322
3	$\stackrel{8}{.815}$. 851	. 847	. 304	. 322	. 322
4	. 818	. 850	. 850	. 246	. 322	. 322
5	. 875	. 849	. 852	. 270	. 322	. 322
6	. 864	. 849	. 857	. 361	- 322	. 322
8	. 896	. 347		. 322	. 322	. 322
12	. 885	. 842			. 322	. 322
16	. 847	. 838	. 869	.331		

Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author's prior written consent.

[^0]:

