MATRIX RLEYENTS, CORTESPONDPNCE PRINCIPLES and line broadenting copyright of this thesis rests with its author. This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author's prior written consent.

Acknowledgements

I should like to thank Irof. I.C. Percival, Dr. D. Richards, and Dr. A.S. Dickinson for their guidance, advice, and encouragement, and the S.R.C. for providing me with financial assistance during my stay at Stirling; alsc thriks to Chris Guodenough for her excellent typing.

Table of Contents

Page
CHAPTER I INTRODUCTION 1
CHAPTER II CORRESPONDENCE PRINCIPLES
2.1 Action and angle variables 3
2.2 Bohr's correspondence principle 6
2.3 Heisenberg's correspondence principle 13
2.4 Ambiguities in the quantisation 14
Chapter ini matrix eliments
3.1 Simple Harmonic Potential 18
3.2 Morse Potential 28
3.3 Coulomb Potential 39
Transition between $n, 1, m$ states 55
Detailed comparison with quantum mechanics 60
3.4 Resumé 69
CHAPTER IV CAUSES OF LINE BROADENING 70
4.1 Natural Broadening 71
4.2 Doppler Broadening 72
4.3 Collision Broadening 73
CHAPTER V GENERALISATION OF THE CLASSICAL METHODS
5.1 The Autocorellation function treatment 87
5.2 The Classical model 88
THEORY 90
CLIAPTER VI CALCULATION OF LINE PROFJLE 94
CHAPTER VII NUMERICAL COMPUTATION OF LINE PROFILE 103
$7.1 \quad t$ integral 104
7.2 b integral 113
7.3 s integral 127
CHAPPER VIII CONCLUSION 142
APPENDIX I 14
APPENDIX II
AII. 1 Infinite Series 146
AII. 2 Split Ranges 152
AII. 3 Fourier Expansion 156
LPPENDIX III 158
REFERENCES 160

Insurouction

During the early development of quantum mechanics much use was made of what Bohr referred to as "a formal analogy between the quantum theory and the classical theory". The conceptual foundation of this "formal analogy", which he later called the "correspondence principle", was based on the assumption that the quartum theory contains classical mechanics as a liriting case. With the advent of modern quantum mechanics, tha applications of this correspondence have until recently been neglected, perhaps due to a feeling that they were not necessary or that their ranee of applicability'was too limited.

There are unfortunately many cases where the methods of quantum mechenics are too cumbersome to be used without approxinations. Fecent astrophysical investigations have for instance involved transitions with principal quanturn numbers of up to 250. If the approximationsthat have to be made beccme too restrictive a better policy could be to use an approximate method which can be used to solve the problem exactiy. This theoretical investigation is in two parts. The first summarizes the correspondence principle methods and discusses their range of validity; by applying the correspondence principle to problems whose quantum mechanical solutions are known in special cases, we can compare the analytic expressions obtained by each method. We shall show that the two results agree over a far wider range of values tian is generally realised, and that the agrement can be considerably improved by adjusting free parancters that erise naturally in the correspondence principle.

The second part considers the application of classical mechanics and the correspondence principle to the broadening of spectral lines. The observation of spectral lines involving very high principal quantum numbers has led to a resurgence of approximate methods because of the difficulty of applying quantum mechanics exactly. A survey of the existing literature showed either very formal solutions to the line broadening problem which were difficult to apply, or detailed results which had very limited validity. We shall show that our calculations agree with these accepted results in their region of validity whilst describing the line shape in the intermediate region.

In Chapter II we describe the correspondence principles we invoke. In Chanter III we obtain the solution of the motion of a particle in various potentials and calculate matrix elements and other quantities in these potentials. The potentials we consider are a harmonic potentiel, a Morse potential, and a Coulomb potential, and we compare the results of our calculation with the quantum mechanical expression where these are known. In Chapter IV we outline the main causes of spectral line broadening. We consider the limits in which various physical approximations car be made and examine in detail the work and conclusions of Lindholm, one of the foremost workers in the field of non-quantum mechanical line broadening. In Chapter V we present our theory and compare it with others in various limits, and in Chapters VI and VII we obtain line shapes which we compare with the Iindholm shapes.

CORIMSTONDE:CE PFTHCTPLES

2.1 Action and incles Variables

The classical theosy of action and amole variables is well documentod (Corben and Stehle , 1960 ; Goldstein , 1959) . Ve consider briefly perturbations of periodic syotems for which the Hamilton-Jacoli equatior: is separable in some set of coordinates. For those syrtems . the Scluröedinger equation is separable in the same coordinates .

In the case of only one degree of freedom, if q and p ane conjugate position and momentum, new conjusate variables ϕ and α cau be introduced in place of q and p such that α is a constant and ϕ is a linear function of time . These new variables are not detemined uniquely $:$ we can replace α by any function of itself and muitiply ϕ by a corresponding function of α. For convenience we chcose ϕ in such a way thet it increases by 2π durinh eny one period of the motion, in which case wo denote it by w. Let the correspendine conjugate variable be I. We call w an ansle vaxiable ard I an action variable.

We now consider in mose detail the case of a sybten with n decrees of rreedom. If now q_{k} and $p_{k}, k=1, \ldots, N$, are the ceneraliscd coordinates of position and momentum, and $H\left(q_{k}, p_{k}\right)$ is the unperturbed Haniltcmian, then

$$
p_{k}=\frac{\partial S}{\partial q_{k}}=\frac{\partial S_{k}}{\partial q_{k}}
$$

where the action function S is the solution of the Hamilton-Jacobi equation

$$
H\left(q_{k}, \frac{\partial S}{\partial q_{k}}\right)=E
$$

and

$$
S\left(q_{1}, \ldots, q_{N}\right)=\sum_{k=1}^{N} S_{k}\left(q_{k} ; c_{1}, \ldots, c_{N}\right)
$$

and c_{1}, \ldots, c_{N} are the N constants of integration.

We now define a set of action variables I_{k} by

$$
I_{k}=\frac{1}{2 \pi} \oint p_{k} d q_{k} \quad, \quad k=1 \ldots N
$$

tine integral being taken once round a complete cycle. This relation. may be solved to give us the integration constants as functions of the action variables. Thus we can write

$$
S\left(q_{1}, \ldots, q_{N}\right)=\sum_{k=1}^{N} S_{k}\left(q_{k} ; I_{1}, \ldots, I_{N}\right)
$$

and the corresponding angle variables h_{k} are defined by

$$
w_{k}=\frac{\partial S}{\partial I_{k}}=\sum_{j=1}^{N} \frac{\partial S}{\partial I_{k}} j
$$

The equations of motion in these new coordinate become

$$
\begin{aligned}
& \dot{w}_{k}=\frac{\partial H}{\partial I_{k}}=\text { constant }=\omega_{k} \\
& \mathbf{W}_{k}=\omega_{k} t+\delta_{k} \\
& \dot{I}_{k}=-\frac{\partial H}{\partial w_{k}}=0 \\
& I_{k}=\text { constant }
\end{aligned}
$$

It can be shows (Bor, 1927) that when q_{j} goes through a complete cycle the change in w_{k} is $2 \pi \delta_{k j}$, where $\delta_{k j}$ is the Kronecker-
delta function which equals 1 if $k=j$ and equals 0 otherwise. The paraneter ω_{k} is therefore the frequency of the motion, and the period is 2π. The constant δ_{k} will later be shown to be a phase factor .

In our defonition of the action variables we have used a slightly different notation from that used by most authors , but one that is more consistent with present day quantun mechanics . Ve follow the notation of Landau and Tifshitz (1960) and replace the more usual action variables J_{k} by $I_{k}=J_{k} / 2 \pi$. The angle variables now vary between 0 and 2π and are often actual ancics instead of fractions of angles .
A. though the notation micht be recent, the theory and application of action and angle variables is not now. These techniques were first introduced by Delaung in his "Théorie du Mouvement de la Luue " in 1860 , and were used extensively in the last contury in inveatigations of planetary orbits by Poincaré (1905) , Charlier (1907), and others . Their application to electron orbits however was ienored until the work of Schwarzschild (1916) and Eistein (1916), which showed how quantum mechanicel problems involvine periodic systems heve to be tied up with the Hamilton-Jacobi theory in classical mechanics . Sommerfeld then postulated definite values for the constant action variables

$$
I=\mathrm{m}
$$

where n is a non-negative integer and n is Planck's constant divided by 2π; this quantised the enersy of the gyatem and provided a set of discrete energy levels , or stationary states .
2.2 Bohr's Correcpondence Principles, enà others

A basic form of corresponoence principle was first stated by Planck when he wrote, in 1906 , : "The classical theory can be simply characterised by the fact that the quantum of action becones infinites imally small " . It is easy to show for example that Planck's (quentum mechanical) radiation formula

$$
u=\frac{8 \pi v^{2}}{c^{3}} \frac{h \nu}{\exp (h \nu / k T)-1}
$$

(in the usual notation) goes over to the (classical) RayleighJeans formula

$$
u=\frac{8 \pi v^{2}}{c^{3}} \cdot k T
$$

as

$$
h \longrightarrow 0
$$

However , it was Bohr who first fomulated a " Korrespondenprincip " which laid the conceptual foundation of the old quantum theory It deals with the formal applicability of classical mechanics to quantum mechanics for those stationary states defined at the end of the previous section. Its basis is the woll known relation, acain due to Planck, between the observed frequency ω_{nn}, of the emitted radiation from an atom and the energy E_{n} of the nth state of that atom

$$
\hbar_{\omega_{n n^{\prime}}}=\Delta E=\left(E_{n}-E_{n^{\prime}}\right)
$$

Bohr's correspondence principle relates this observed frequecy with a corresponding elassical frequency

Correspondence Principle 1
In the limit where successive staticnary states differ relatively little from each other, the observed (quantil) atomic frequencies tend to coinside with the clessical ones.

What is

$$
\begin{gathered}
\omega_{n n^{\prime}} \simeq s \omega \\
\theta=n-n^{\prime}
\end{gathered}
$$

ds $|e| \ll n, n^{\prime}$

Bohr also predicted the approximate intensity of spontaneousily emitted radiation. If $A_{n n}$ i is the spontancous transition probability then

Correspondence Principle 2

The mean power spontaneously emitted as rảiativa a.t any such frequency tends to coincide with the comeesponding; classical power emisaion

$$
A_{n n} \Delta E=W_{s}
$$

The correspondence is thus between the frequency components of the power, W_{g}, and of the energy, and not the total energy . The principle was extended to absorption of radiation by Van Vleck (1924) by using the relation between Einstein's A and B coefficients, and was extended further to the effect of an electric field from any source, including a passing charged particle. A correspondence principle for collision processes can then be defined (e.g. Percival and Richards, 1970-1971).

Bofore this, the correspondence principle had been incorrectily

Correspondence Prinaiple 1
In the limit where successive stationary states differ relatively little from each other, the observed (quantil) atonic frequencies tend to coincide with the classical ones.

That is

$$
\begin{gathered}
\omega_{n n^{\prime}} \simeq B \omega \\
s=n-n^{\prime}
\end{gathered}
$$

ds $|e| \ll n, n^{\prime}$

Bohr also predicted the approximate intensity of spontaneouciy emitted radiation. If A_{nn}, is the spontancous transition probability then

Correspondence Principle 2
The mean power spontaneously emitted as railation e.t any such frequency tends to coincide with the correspondine: classical power emission

$$
A_{r n} \Delta E=W_{s}
$$

The correspondence is thus between the frequency components of the power, W_{s}, and of the energy, and not the total enerey . The principle was extended to absorption of radiation by Van Vleck (1924) by using the relation between Einstein's A and B coefficients, and was extended further to the effeot of an electric field from any source, including a passing charged particle. A correspondence principle for collision processes can then be defined (e.g. Percival and Richards, 1970-1971).
applied. The difficulty is that whereas the final quantum states are discrete, in classical mechanics all dynamical variables have a continuous range of values. A density of states method was originally developed to deal lith this problem; we define a differential cross section $\bar{\sigma} \sigma / \partial \Delta E$ with respect to energy transfer from the state n to another state $n '$, (figure 1). If $\partial o / \partial \Delta E$ is nearly constant over values of ΔE corresponding to several neighbouring final excited states n^{\prime} it is possible to obtain an unambiguous excitation cross section

$$
\sigma\left(n \rightarrow n^{\prime}\right)=\int \alpha \Delta E \frac{\partial \sigma}{\partial \Delta E}
$$

the limits of integration corresponding to $\Delta E=n^{\prime}-1, n^{\prime}$, or $\Delta E=n^{\prime}, n^{\prime}+1$, or any other interval in the neighbourhood of n^{\prime}. Thus

$$
\sigma\left(n \rightarrow n^{\prime}\right)=\left|\frac{\partial \Delta E}{\partial r w^{\prime}}\right| \frac{\partial \sigma}{\partial \Delta E}
$$

Where ΔE is now the energy requires to excite the atom from the state n to the state n^{\prime}, and

$$
\left|\frac{\partial \Delta E}{\partial n^{\prime}}\right|=\frac{2 N R y}{n^{\prime 3}}
$$

is the mean energy between states about n^{\prime}, or the inverse of the density of states per unit energy range -

Note that this concept requires that $\partial \sigma / \partial \Delta \mathrm{E}$ varies little with ΔE. When $\Delta E($ or $\Delta n)$ io sal, this is no longer true, and this "naive" correcpondence principle, which will also be called the "density of states" correspondence principle , is thus

This naive correapondence principle fails because the wrong correspondence is made between the quantum mechanical and the classical system. It supposes thet if the final classical exitation enerey $\triangle E$ lies between two energies E_{n}, (corresponding to a state n^{\prime}) and $E_{n^{\prime}+1}$ (corresponding to a state $n^{\prime}+1$) then the classical exitation corresponds to a quantum mechanical excitation to a level n^{\prime} (or $n^{\prime}+1$, since we require $n^{\prime} \gg 1$). Fut this is not the only way to derive quantal resulte from classical theory. Percival and Richards (1967) showed that the correct correspondence was between the frequency components of the energy and not the total energy .

Both the classical theory of emission/aboorption of radiation (Ladau and Lifshitz , 1962) and the classical perturbation theory of collisions (Fowler, 1925) depend on the Fouxier expansion of the motion of the systeni . For instance, if $r(t)$ is a position coordinate, it can be expanded in the form

$$
r(t)=\sum_{s=-\infty}^{+\infty} r_{s} \exp (i s w t)
$$

where r_{B} and r_{-3} are the $\pm s$ th Fouricr cocfficients of r and eive rise to emission and absorption at a frequency su . Similarly, the energy ΔE^{C} transferred to the atom in a collision can be expresced as a sum over terms ΔE_{s}^{c}

$$
\Delta E^{c}=\sum_{s=-\infty}^{+\infty} \Delta E_{s}^{c}
$$

This leads to a new correspondence principle for collision induced transitions,

Correspondence Principle 3
The mean net energy transferred to an atom by a passing charged particle due to upward and downard transitions $n-n '$ tends to coincide with the mean net energy transferxed according to classical theory fxom independent Fourier components of order s and $-s$, provided the perturbation of the classical orbit is small and the probability of transition from the initial state is small

By the first requirement we mean that classical perturbation theory should be valid ; the second requires that quantum mechanical perturbation theory should be valid. The two are not the same . Their range of validity is different, and classical perturbation theory can be invoked in rogions where quantum nechanical. perturbation theory cannot, for instance in the case of small changes in the quantum numbers which do not significantly change the classical orbit .

Applying the above principle, and using detailed balance, Percival and Richards obtained a collision induced transition probability which, when integrated over impact parameter, produced a cross section which included a logarithmic term, in agreement with the quantum mecharical result . This shows why previous epplications of classical mechanics to atomic scattering problems had given incorrect cross sections. In ail of them the Fourier components had been treated as a single entity . E , whereas in fact each component contributes to a different process, and different components contribute to the same-process .
2.3 Heisenbere's Correspondence Principle

The history of present day quantum mechanics is complicated (Jammer, 1966), but its foundations were laid by Heisenberg . By applying the principle that only observalles should appear in a dynamical systen describing atomic pheromena, and since quantum mechanical matrix elements and classical Fourier components describe the same physical observables, he was able to deduce properties of quantum mechanical matrices through the correspondence principle.

Heisenberg's correspondence principle is most simply stated for one dimenoional periodic motion of a particle with fundamental frequency ω and quantun number n. Any function of the classical position r, say $F^{c}(x)$, is also periodic and can be expressed as a Fourier series

$$
F^{c}(x)=\sum_{s=-\infty}^{+\infty} F_{s}^{c} \exp (\text { isht })
$$

Then Hoisenberg's correspondence principle is that in the appropriate limit,

$$
\left\langle n^{\prime}\right| F(x)|n\rangle=F_{s}^{c}, \quad s=n^{\prime}-n
$$

Where the Dirac notation for the quantal matrix elements has been used and where the state vectors are eigenfunctions of the unperturbed Hamiltonian H

$$
H|n\rangle=E(n)|n\rangle
$$

2.4 mbiguities in the quantisation

The development of the old quantum theory was stimulated by research in spectroscopy . When Palmer found, in 1885 , that all the then known hydrocrenic lines were predicted by the formula

$$
\nu=\operatorname{Rgc}\left(n_{2}^{-2}-n_{1}^{-2}\right)
$$

many attempts were made to derive this formula theoretically. In 1913 Bohr derived it by three different methods. In his second derivation he assumed a general relationship between the emitted energy E_{n} due to the formation of a stationary state and the frequency of revolution of the electron

$$
E_{n}=f(n) \hbar \omega
$$

where $f(n)$ is an yet undetermined function of the integer n. On the basis of classical principles, Bohr obtained

$$
E_{n}=\frac{\pi^{2} m e^{4}}{2 h^{3} f^{2}}
$$

(in the usual notation) . Hence since

$$
E_{n_{2}}-E_{n_{1}}=h \nabla
$$

then

$$
v=\frac{\pi^{2} m e^{4}}{2 h^{3}}\left\{f^{-2}\left(n_{2}\right) \ldots f^{-2}\left(n_{1}\right)\right\}
$$

To obtain the functional dependence of f on n, Bohr had to rely on heuristic arguinents and take recourse to the structure of the Balmer formula itself, in which the variable factor had the form
$\left(n_{2}^{-2}-n_{1}^{-2}\right)$. To obtain such a factor, he concluded that $f(n)=c n$, c being a constant to be determined. Io obtain the value of c, he considered a transition between two successive stationary states corresponding to $n_{1}=n$ and $n_{2}=n-1$, and obtained for the frequency of the radiation emitted

$$
\vee=\frac{\pi^{2} m e^{4}}{2 c^{2} h^{3}} \frac{2 n-1}{n^{2}(n-1)^{2}}
$$

and for the frequencies of revolution of the electron before and after the eqission ,

$$
\omega_{n}=\frac{\pi^{2} m e^{4}}{2 c^{3} n^{3}} \quad \cdot \omega_{n-1}=\frac{\pi^{2} m c^{4}}{2 c^{3} n^{3}(n-1)^{3}}
$$

" If n is great, the zatio between the frequency before ard after the enisalon will be very nearly equal to 1 ; and according to oxdinary electrodynamics we should expect that the ratio between the frequency of radiation and the frequency of revolution also is very nearly equal to 1 . This condition will only be satisfied if $c=\frac{1}{2}$. "Thus

$$
E_{n}=\frac{1}{2} n \pi \omega
$$

The choice $f(n)=\frac{1}{2} n$ was therefore made not because of a priori theoretical considerations but because its asymptotic form produced results which egreed with observations at high values of n -

We now wish to quantize the action variable I in terms of Planck's constant . Somnerfeld essumed that
but while this choice is unambiguous for bound states, there is some logical difficulty in interpreting it for transitions between two states n_{1} and n_{2}. Presumably

$$
I=f\left(n_{1}, n_{2}\right) n
$$

but should one choose $I=n_{1} \hbar$, or $I=n_{2} \hbar$, or $I=\frac{1}{2}\left(n_{1}+n_{2}\right) \pi$? Of course in the limit where n_{1} and n_{2} are both large and differ little fron each other the question is irrelevant since any form which had the correct asymptotic behaviour would be satisfactory. The question is extremely important if the correspondence principle is to be applied away from this limit, with for instance $n_{1}=1$ and $n_{2}=2$.

Althongh arguments may be put forward for using the initial or the final state parameters, the most reasonable sugfestion would seem to be to use the aribmetic mean of these two quantities, whilst in no way assuming an "intermediate" state defined by that mean to exist during a transition. The limit necessarily ioes not distinguish between the two parameters n_{1} and n_{2}, and choosins their average gives them both equal weight. We shall show that letting

$$
I=\left(n+\frac{1}{2} s\right) n
$$

with $n_{1}=n$ and $n_{2}=n+s$, good agreement is obtained for high values of n between results obtained using classical mechanics and the correspondence principle and results obtained using quantum mechanics .

A more ambitious and fruitful approach is to compare correspondence and quantal results for various low values of n and to choose

$I=n_{c}{ }^{\hbar}$

where $n_{c}=f\left(n_{1}, n_{2}\right)$ and is chosen so as to provide the best possible agroment between the two results at theso low n values. Any such choice must tend asymplotically to n as $n \rightarrow \infty$ and $s / n \rightarrow 0$.

$$
I=n_{c} \bar{n}
$$

where $n_{c}=f\left(n_{1}, n_{2}\right)$ and is chosen so as to provide the best possible aseernent between the two results at these low n values. Any such chnice must tend asymplotically to n as $n \rightarrow \infty$ and $s / n \rightarrow 0$.

CHAPTER III

MATRIX ELEMENTS
3.1 Simple Ilarmonic Potential

We consider in detail the application of the results quoted in the previous chapter to the case of a one dimensional harmonic potential. We recall that

$$
I=\frac{1}{2 \pi} \oint_{j} p \mathrm{dq}
$$

and

$$
w=\frac{\partial S}{\partial I}=\frac{\partial}{\partial I} \int p d q
$$

For this potential, for a particle of mass m, the Hamiltonian

$$
H=\frac{p^{2}}{2 m}+\frac{3}{2 m} \omega^{2} q^{2}
$$

and since the forces are conservative and the total energy must remain constant

$$
p=\sqrt{2 m\left(H-\frac{1}{i} m \Delta^{2} q^{2}\right)}
$$

and

$$
w=\sin ^{-1}\left(\frac{F^{-}}{\sqrt{2 I}} q\right)+\text { constant }
$$

Since

$$
w=\omega t+\text { constant }
$$

the previous equation can be inverted to sive

$$
q=\sqrt{\frac{2 I}{m \omega}} \sin (\omega t+\delta)
$$

with δ a phase factor to be determined by the starting conditions . This trivial solution of the motion of a particle under the influence of a bimple harsonic potertial has been obtalred uaing the methods of classical mechanics.

Suppose we now wish to investigate the behaviour of a ouantum mechanicil podicle in a quantum mechanical iarmonic potential, and require for instance transition anplitudes from a particular state. To find these we need matrix elements for those transitions. In the case of a simple namonic potential these can easily be calculated quantum mechanically from first principles, but according to heisenberg's form of the correspondence principle they can also be deduced by equatine the matrix clements to an appropriate Fourier coefficient,

$$
\begin{aligned}
& \langle n| q|n+s\rangle \simeq q_{s} \\
& q_{s}=\frac{\omega}{2 \pi} \int_{0}^{2 \pi / \omega} e^{-i s \omega t} q(t) d t
\end{aligned}
$$

We now wish to fix the value of the phase factor δ. Since quantum mechanically we are generilly only interested in the modulus squared of the complex quantities we calculate, we can only compare matrix elements and Fourier transforms to vithin a phase ractor . For convenience, in order that they have the sane phase, we set δ to $\pi / 2$ so that

$$
q(t)=\sqrt{\frac{2 I}{m \omega}} \cos (\omega t)
$$

and we find that the only non-zero $q_{\bar{B}}$ are those correspondine to
a change in the quantion number of ± 1,

$$
\begin{array}{ll}
q_{s}=\left(\frac{I}{2 m \omega}\right)^{\frac{1}{2}} & , \\
q_{s}= \pm 1 \\
q_{s} & , \quad s \neq \pm 1
\end{array}
$$

To equate this with the quantum mechanical matrix elements it is necessary to quantise the action variable I . As indicated in the previous chapter, there is no unique way of doing tilis, so we let $I=n_{c}{ }^{\hbar}$, with n_{c} an as yet undetemined function of n and s which may initielly be chosen to be $n_{c}=n+\frac{3}{2}$. Suinstitutinis for I and lettine q_{s} equal the matrix eleisent for q,

$$
\begin{aligned}
& \langle n| q|n+3\rangle=\left(\frac{n_{c} \hbar}{2 m{ }^{n}}\right)^{\frac{1}{2}}, \quad s= \pm 1 \\
& \langle n| q|n+s\rangle=0 \quad, \quad s \neq \pm 1
\end{aligned}
$$

To check the validity of Heisenberg's correspondence principle, we can compare the matrix elements above with those calculated directly from quantum mechanics. We need first the harmonic oscillator wavefunctions u_{n} obtained by solvinc Schroedinser's equation

$$
-\frac{n^{2}}{2 m} \frac{d^{2} u_{n}}{d q^{2}}+\frac{2}{2} m \omega^{2} q^{2} u_{n}=E_{n} u_{n}
$$

The wavefunction u_{n} has the well known form

$$
u_{n}=b^{\frac{1}{2}}\left(\pi^{\frac{3}{2}} 2^{n} n\right)^{-\frac{1}{2}} \exp \left(-\frac{1}{2} b^{2} q^{2}\right) \quad H_{n}(b q)
$$

where $H_{n}(b q)$ is the $n t h$ liemitian polynomial and $b=\sqrt{m \omega \sqrt{H}}$. The matrix element of the position $\&$ is proportional to the integral
which can be evaluated to give

$$
\begin{aligned}
& \langle n| q|n+1\rangle=\left(\frac{(n+1) \pi}{2 m \omega}\right)^{\frac{1}{2}}, \\
& \langle n| q|n-1\rangle=\left(\frac{n \sqrt{2}}{2 m \omega}\right)^{\frac{1}{2}} . \\
& \langle n| q|n+\infty\rangle=0, \quad s \frac{1}{F} \pm 1
\end{aligned}
$$

Thus the quantal result and the correspondence result are essentially the same ; if we choose $n_{c}=n+\frac{1}{2} s$ their ratio is $1+s / 2 n$, which is mall for large $n \gg 1$ and small. s of ocder unity . However this choice of n_{c} does not distinesish between upward and dowaward trensitions and juplies that the transitions $n \rightarrow n+1$ and $n+1 \rightarrow n$ produce identical results, in agreement with the cuantal results . A better choice for n_{c} in this case is $n_{c}=\max (n, n+s)$, which provides corleapondence results identical to the quantum mectarical ones.

One of the advantages of using the correspondence principle to evialuate matrix elements is that, having solved the equation of motion of the particle in the potential under consideration , it is relatively simple to calculate the matrix element of any function of that position. This involves integrals of the form

$$
\int d t e^{-i s \omega t} f(q(t))
$$

The equivalent quantur mechanioal method involves solvine Schroedinger's equation for the wavefunction u_{n} and evaluating integrals of the form

$$
\int d q u_{n}^{*}(q) u_{n+3}(q) f(q)
$$

which are in general more difficult to evaluate. We can for instance evaluate the matrix elements of higher powers of q and obtain a general equation for the Fourier transform of q^{k}, k being some positive intecer ,

$$
\langle n| q^{k}|n+s\rangle=\left(\frac{\pi n}{\frac{c}{2 m \omega}}\right)^{k / 2} \frac{k!}{\left(\frac{k-3}{2}\right)!\left(\frac{k+s}{2}\right)!}
$$

with the following selection mule

$$
s=k-21 \quad 1=0,1,2, \ldots, k
$$

One consequence of this selection mule is that the mean value of q^{k} is cero if k is odd. This was first noticed quantum mechanically by Bell and Guegenhein in 1936 in their calculations of mean values of dipole moments. We see here that it is but a special case of a more general selection rule.

There is no known equivalent quantum mechanical formula for the matrix element of q^{k}, but given a value of k the appropriate integral. con be calculated using for example generating functions for the Hermitian polynomials. Table 1 shows results for the first few values of k. Comparing the matrix elements obtained using the correspondence principle with those obtained using quantum mechanics we find that, the t, are very similar for high values of n and low values of a, as predicted by the correspondence principle. However we also find that using the substitution

$$
\left(n_{c}\right)^{s}=\frac{(n+s)!}{n!}
$$

the two sets of results are identical for $k=1,2,3$ and for all matrix clements of the form $\langle n| q^{k}|n \pm k\rangle$. We shell wake use of this substitution later and shall refer to it as the "factorial" substitution. For small values of s and large values of n comparca to unity , a careful expansion leads to

$$
n_{c}=n+\frac{1}{2} s+\frac{1}{2}
$$

so that for $\varepsilon=0$

$$
n_{c}=n+\frac{1}{2}
$$

This substitution leads to a mean value of q^{2} which is identical with the quantum mechanical one. The mean value of q^{1} obtained is proportional to ($n^{2}+n+\frac{1}{4}$) whereas the quantum mechanically calculated mean value is proportional to $\left(n^{2}+n+\frac{1}{2}\right)$. For $n=1$, well outaide the region of validity of the correspordence principle, these two mean values agree to 10%; for $n=10$ they agree to 0.2%. It is not understood why some correspondence matrix elements and their quantum mechanical counterparts are identical while the rest are only very similar and nearly equal . An explanation may lie in the work of Norcliffe and Percival on correspondence identities, (1968,1969).

A similar procedure yields matrix e]ements of the conjugate momentun

$$
p=\frac{m d a}{d t}=m(2 I \omega)^{\frac{1}{3}} \sin (\omega t)
$$

from which

$$
\left.\langle n| p^{k}|n+3\rangle=i^{2 k-8} \frac{d^{k} k}{\left(\frac{1}{2} n\right.} c^{\pi \omega}\right)^{\frac{3}{2} k} \frac{k!}{\left(\frac{k-3}{2}\right)!\left(\frac{k+9}{2}\right)!}
$$

with the restriction on s that

$$
B=k-21 \quad, \quad 1=0,1,2, \ldots, k
$$

The agreement with the quantum mechanically calculated matrix elements is identical With the agreement of matrix elements of q^{k} described above .

More interesting perhaps is the calculation of matrix elements of products of position and momentum. All equations now have to be written in teams of Poisson brackets since quanturn mechanically we are dealing with non-comnting operators. In going from classical mechanics to quantum mechanics and vice versa we replace p by -in $\partial / d q$, write the classical Hamiltonian equations in terns of Poisson brackets, and replace the Poisson brackets by commuter bracl.cts,

$$
\{A, B\} \leftrightarrow \frac{1}{i \hbar}[A, B]
$$

(Note that the algebraic properties of Poisson brackets and commutator brackets are identical .) For all contact transformations involving canonical variables Q_{i} and P_{i} the following relations hold for the Poisson brackets,

$$
\begin{aligned}
& \left\{Q_{i}, P_{j}\right\}=\delta_{i j} \\
& \left\{Q_{i}, Q_{j}\right\}=0 \\
& \left\{P_{i}, P_{j}\right\}=0
\end{aligned}
$$

Thus if we are looking at the mean value of pq we have the special
case that quanturn mechanically

$$
\langle n|[p, Q]|n\rangle=-i n
$$

Which should be compared with if times the Fourier ccefficient of F, q

$$
\langle n|\{p, q\}|n\rangle=-1
$$

This applies especieilly to the calculation of the mean value of $\mathrm{pq} \cdot$ For " $\neq 0$, we find that classjcally

$$
\begin{array}{ll}
\langle n| p q|n+s\rangle= \pm i \pi r_{c} & , \quad s= \pm 2 \\
\langle n| p q|n+s\rangle=0, & s \neq \pm 2
\end{array}
$$

Using the substitution $n_{c}=n+\frac{1}{2} s+\frac{1}{2}$, this is in exact abreement with the quantur mechanical result.

The analysis described in this section can be extended indefinitely to matrix elements of any function of p or q, which may be difficult to evaluate using quantum mechanics ; for example the matrix elements of q^{a} or $\exp ($ iap $)$, where a is not necessarily a positive intezcr

$$
\begin{aligned}
& \langle n| q^{a}|n+s\rangle=\left(\frac{\hbar n}{2 m} c\right)^{\frac{1}{2} a} \frac{\Gamma(a+1)}{\left.\Gamma\left(\frac{a+s}{2}+1\right)^{\Gamma(} \frac{a-s}{2}+1\right)} \\
& \langle n| e^{i a \dot{p}}|n+s\rangle=J_{s}\left(a \sqrt{\frac{2 \pi}{m} n_{c}}\right)
\end{aligned}
$$

with $J_{a}(x)$ the Bessel function of order s -

The results presented in this section have been used by Clark and Dickinson (1971) who used the correspondence principle for strongly coupled states (Percival and Richards, 1970) to obtain approximate transition probabilities for a forced harmonic oscillator. They formally and numerically showed that the correspondence principle results have a much larger range of validity than those obtained using first order quantum mechanical perturbation theory, even for $0 \rightarrow 1$ transitions.

3.2 Horse Potential

The Morse potential is one of the best approximations for all values of the radial coordinate q of a diatomic molecule. It is a onedimensional potential which may be transformedwith the radial part of the Coulomb potential for a particular angular momentum by the transform $q-q_{e} \rightarrow \log (r)$, where q_{e} is the equilibrium value of q. The Morse potential is defined by

$$
v(q)=D\left(1-e^{-a\left(q-q_{e}\right)}\right)^{2}
$$

The values of D, a, and q_{c} are assumed known. The parameter D indicates the depth of the potential and the parameter a indicates its range (FiE. 2).

We apply a contact transformetion S to the systen such that T, the new conjubate momentum,is a constant of the motion and the new coordinate , k , is given by $\partial \mathrm{S} / \partial \mathrm{II}$. The new conjugate momentum is defined by

$$
I=\frac{1}{2 \pi} \delta p d q
$$

For convenience, we define the following quantities :

$$
Q=q-q_{e} ; b^{2}=\frac{E}{D} ; x=1-e^{-Q Q}
$$

Substituting for p and q in the acove equation,

$$
I=\frac{(2 m D)^{\frac{1}{2}}}{2 \pi} \oint\left(b^{2}-x^{2}\right)^{\frac{1}{2}} d Q
$$

Fig. 2
from which

$$
I=(2 m D)^{\frac{1}{2}} \frac{1}{a}\left(1-\sqrt{1-b^{2}}\right)
$$

We know that $I=n_{c}{ }^{n}$; define $t=(2 m D)^{\frac{1}{2}} / 2 \pi$, then

$$
1-b^{2}=\left(1-\frac{n}{t}\right)^{2}
$$

or

$$
\frac{E}{D}=\frac{n_{\bar{t}}^{c}}{}\left(2-\frac{n}{\bar{t}^{c}}\right)
$$

The energy E refers to the energy of the nth bound state, and therefore $E<D$. The parameter t then lias a simple physical interpretation ; since $E<D$, t nust be greater than the maximum muber of bound states the potential will support. Since when n_{c} reaches this maximum value $E \simeq D$, t must be of oxder, but greatex than, the number of bound states the potential will support.

We can obtain from Herzberg (1950) an expression for E derived quaritum mechanically

$$
E=a \hbar \sqrt{\frac{D}{2 m}}\left(n+\frac{1}{2}\right)-\frac{a^{2} n^{2}}{2 m}\left(n+\frac{1}{2}\right)^{2}
$$

Replacing $n+\frac{1}{2}$ by n_{c} this is identical. to the expresgion obtained usine the correspondence principle.

It is now possible to obtain values for the frequency ω and for W.

$$
\omega=\frac{\partial E}{\partial I}=\frac{a^{2} n}{m}\left(t-n_{c}\right)
$$

Since

$$
S=\int p(I) d q
$$

then

$$
w=\frac{d S}{\partial I}=\left(1-b^{2}\right)^{\frac{1}{2}} \int\left(-y^{2}+y^{2} b^{2}+2 y-1\right)^{-\frac{1}{2}} d y
$$

where we have substituted $\mathrm{y}=\exp (\mathrm{aQ})$. Thus

$$
\sin (w)=b^{-1}\left\{\left(1-b^{2}\right) \exp (a Q)-1\right\}
$$

and finally the position coordinate Q is given by

$$
a Q=\log (1+b \sin (w))-\log (1-b)
$$

(We use the symbol log rather than in to prevent any confusion with the quantum numbers used later in the text.). The position coordinate is a periodic function of \boldsymbol{H} and can therefore be expunded in a Fourier series

$$
a Q=\sum_{5} B_{s} \exp (i s w)
$$

whose coefficients are given by

$$
\begin{aligned}
B_{B} & =\int_{0}^{2 \pi} \frac{i Q}{2 \pi} \exp (-i s w) d w \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \exp (-i B w) \log (1+b \sin (w)) d w
\end{aligned}
$$

To evaluate the integral, we use conplex variables and let $z=-i e^{-i w}$. Then

$$
B_{B}=\frac{-i^{s-1}}{2 \pi} \int_{C} z^{s-1} \log \left\{\frac{b}{2 z}\left(z^{2}+\frac{2 z}{b}+1\right)\right\} d z
$$

The log ts:m splits into three parts, leading to

$$
\begin{aligned}
B_{s}= & -\frac{i^{s-1}}{2 \pi} \int_{c} z^{s-1} \log \left(\frac{b}{2}\right) d z \\
& +\frac{i^{s-1}}{2 \pi} \int_{c} z^{s-1} \log (z) d z \\
& -\frac{i^{s-1}}{2 \pi} \int_{c} z^{s-1} \log \left(z^{2}+\frac{2 z}{b}+1\right) \\
= & I_{1}+I_{2}+I_{3}
\end{aligned}
$$

The firsi temu, I_{1}, is eacro. To calculate I_{2}, cut alone the positive real axis from 0 to 1 . Above the cut, $z=x+i$ and $\log (z)=\log (x)$, whilet below the cut $z=x-1$ and $\log (z)=\log (x)+2 i \pi$ Gince there are no singularities in the contour indicated (Fig 2a) we find that

$$
I_{2}=\frac{i^{s}}{s}
$$

'ro calculate I_{3} we note that only' one of the roots of the quadratic lies inside the unit circle (Fig. 2b) so that I_{3} can be oimplified to

$$
I_{3}=-\frac{i^{s-1}}{2 \pi} \int z^{B-1} \log (z-c) d z
$$

whore c is the root of the quadratic that lies within the unit circle. The form of I_{3} is similar to that of $I_{\hat{2}}$ ard we find

$$
I_{3}=\frac{i^{3}}{B}\left(c^{3}-1\right)
$$

Fig $2 a$

Fig 26
contours for I_{2} and I_{3}
with

$$
\begin{aligned}
c & =-b^{-1}+\left(b^{-2}-1\right)^{\frac{1}{2}} \\
& =\left(\frac{n_{c}}{2 t-n_{c}}\right)^{\frac{1}{2}}
\end{aligned}
$$

Collecting results, the Fourier coefficient B_{s} is efiven by

$$
B_{B}=\frac{i^{B}}{s}\left\{\frac{n_{c}}{2 t-n_{c}}\right\}^{s / 2}
$$

We now invoke Heisenberg's correspondence principle and equate B_{s} with the matrix elenent of $a Q$ for a transition between states n and $n+s$,

$$
\langle n| a Q|n+s\rangle=\frac{i^{s}}{s}\left\{n_{c}^{s} \frac{1}{\left(2 t-n_{c}\right)^{s}}\right\}^{\frac{1}{2}}
$$

This formula can be compared with that obtained quantum mecharicelly by Hermen and Schuler (1953)
$\langle n| a Q|n+s\rangle=-\frac{1}{3}\left\{\frac{(n+s)!}{n!} \frac{1}{\prod_{k=0}(2 t-n-s+k)}\right\}^{\frac{1}{2}}\left\{\frac{\left(t-n-s-\frac{1}{2}\right)\left(t-n-\frac{1}{2}\right)}{(t-n)-(s-2)}\right\}^{\frac{1}{2}}$

For $\mathrm{a} \ll-n-\frac{1}{3}$, the second $\left\}^{\frac{1}{2}}\right.$ will tend to unity, and in general there is cood agrement between the two formulae except when n_{c} or $n_{c}+s$ is close to t. As in the case of the Harmonic potential, very rood aereement is obtained by letting $n_{c}=(n+s)!/ n!$ in which case the two formulae become identical as s, n<<t, aince in this limit the purticle executes simple harmonic motion.

For $s=0$, the mean value of $a Q$ is

$$
\langle n| a Q|n\rangle=\log \left(1+\frac{n_{c}}{2 t}\right)
$$

with

$$
n_{c}=n+\frac{1}{2}
$$

Momentur in the Morse potential

The equation for the momentum can be obtained by differentiating that for the position and multiplying by a mass factor, m .

$$
p=\frac{m b w}{a} \frac{\cos (w)}{1+b \sin (w)}
$$

This can be expanded in a Fourier series whose coefficients cen be calculated by contour interration. Equating these coefficients with the matrix elements of p,

$$
\langle n| p|n+B\rangle=-i^{B-1} \frac{m b}{2 a \pi} \int \frac{\left(z^{2}-1\right) z^{B-1}}{(z-c)(z-1 / c)} d z
$$

There is a pole of order 1 at $z=c$, and when $s=0$ there is a further pole of order 1 at $z=0$, so that

$$
\langle n| p|n+\beta\rangle=.-j^{\theta-1} \frac{m \omega}{a} \omega\left\{\frac{n_{c}}{2 t-n_{c}}\right\}^{\frac{1}{2} s}\left(1-\delta_{0, s}\right)
$$

with $\delta_{0, s}=1$ if $s=0$ and 0 otherwise. The matrix elements of p and Q are in fact related by

```
<n|p|n+s\rangle= ins\omega<n|Q|n+s\rangle
```

and tinis relation is often used in quantum mechanics to obtain the matrix element of the momentum .

Or more interest in quantim mechanics are the matrix elenents of monentum squared. An application of the correspondence principle J.eads to

$$
\langle n| p^{2}|n+s\rangle=\frac{-i^{s-1}}{2 \pi} \frac{m^{2} w^{2}}{a^{2}} \int_{C} \frac{\left(z^{2}-1\right)^{2} z^{s-1}}{(z-c)^{2}(z-1 / c)^{2}} d z
$$

from which, substituting for ω,

$$
\langle n| p^{2}|n+s\rangle=-i^{s-1} a^{2} \hbar^{2}\left\{\frac{n_{c}}{2 t-n_{c}}\right\}^{\frac{1}{2} s}\left(t-n_{c}\right)\left\{t(s-1)-n_{c} s+\delta_{0, s}\left(t-n_{c}\right)\right\}
$$

Quantun mechanically, the eigenfunctions of the Morse potential are conveniently expressed as

$$
u_{n}=N_{n}^{-\frac{1}{2}} y^{-\frac{1}{2}} M_{t, t-n-\frac{1}{2}}(y)
$$

where

$$
\begin{aligned}
& y=2 t e^{-a Q} \\
& N_{n}=\frac{\Gamma(n+1) \Pi(2 t-2 n) \Pi(2 t-2 n-1)}{a \Gamma(2 t-n)}
\end{aligned}
$$

and the $M_{t, u}(y)$ is a Whittaker runction (Slater, 1960). Using the integrala given by Slater . Greenawalt and Dickinson derived (1969) an expression for the matrix element of $d^{2} / d q^{2}$, which , inserting a factor of $\frac{l}{2}$ which was erroneously onitted from their published formula, can be written as

$$
\left.\left.\begin{array}{rl}
\langle n| \frac{d^{2}}{d q} 2
\end{array} n+s\right\rangle=(-1)^{s} \frac{1}{2} a \frac{\Gamma(2 t-2 n) \Gamma(2 t-2 n-2 a)}{\left(N_{n} H n+s\right)^{\frac{1}{2}} \Gamma(2 t-n)} \Gamma(1+s+1) \quad(2 n+1) \delta_{0, s}\right\}
$$

When $a=0$, ned $n_{c}=n+\frac{1}{2}$, the correspondence principle and quantum mechanics provide identical expressions for the mean value

$$
\langle n| p^{2}|n\rangle=-a^{2} n^{2}\left(t-1 n-\frac{1}{2}\right)\left(n+\frac{1}{2}\right)
$$

For non-diasconal elements, the quantum mechanical formula can be olnplified and compared with the ecmeopordence principle one, each being denoted by the euperanripis q and c respectively

$$
\begin{aligned}
& \text { * }\left\{t(0-1)-s\left(n+\frac{1}{2} s+\frac{1}{2}\right)\right\} \\
& \langle n| p^{2}|n+0\rangle^{c}=-i^{2-1} a^{2} \pi^{2}\left\{n_{c}^{s} \quad\left(t-n_{c}\right)^{2}\right. \\
& *\left\{t(\xi-1)-\sin _{c}\right\}
\end{aligned}
$$

A term by tenn comparison of the two formulae snows that they both rave the same functional dependence on n, s, t; for $s<n$, the factorial substitution for n_{c}, or its $l o w$ is expancion $n=n+\frac{1}{2} \sigma-\frac{2}{2}$, both give acmecment to at least, $s /(t-n)$, and better for $n<\frac{1}{2} t$. Figure 3 shows the excellent agreement for $\theta=1$ and various values of n, t and illustrates how the correspondence principle result starts to disagree with the quantum mechanical one when $n+B$ is of order t.

3.3 Coulomb potential

We now consider in detail the application of the correspondence principle to the motion of an electron in a central field, and in particular in a Coulomb potential.

The quantum mechanical problem has been exaustively investigated ; consider only the radial part of the Coulomb wave equation

$$
-\frac{h^{2}}{2 \mu} \frac{1}{r^{2}} \cdot \frac{d}{d r}\left\{r^{2} \frac{d R}{d t}\right\}-\frac{z^{2}}{x} R+\frac{1(\eta+1) h^{2}}{2 \mu r^{2}} R=E R
$$

and

$$
E=E_{n}=\frac{-k\left(Z e^{2}\right)^{2}}{2 h^{2} n^{2}}
$$

for a nucleus of charge $z e$ and and electron of reduced mass fr and charge -e. The solution to the Schroedinger equation is civen in terms of Laguerre polynomials

$$
R_{n, 1}(r) \propto e^{-\frac{1}{2} r_{i}} x_{i}^{1} L_{n+1}^{21+1}(x) \quad, r_{1}=\left\{\frac{-8 \mu \epsilon}{\hbar^{2}}\right\}^{1 / 2} r
$$

and we are interested in matrix elenents of the foum

$$
\langle n| F(x)|n+\theta\rangle=\int_{0}^{\infty} x^{2} R_{n, 1}(x) F(x) R_{n+s, 1}(x) d x
$$

with $F(r)$ sone general function of r.

The equivalent classical problem consistis of first solving the equation of motion of the electron. This was done by Born in 1927 . Using polar coordinates $r, 0$, $\$$, the kinetic enercy T is

$$
T=\frac{2}{2} h\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2}(\dot{\theta}) \dot{\phi}^{2}\right)
$$

or ciltemativeiy using conjufate momenta

$$
\begin{aligned}
& p_{r}=\mu \dot{r} \\
& p_{\theta}=\mu r^{2} \dot{\theta} \\
& p_{\phi}=\mu r^{2} \sin ^{2}(\theta) \dot{\phi}
\end{aligned}
$$

we can vrite

$$
T=\frac{1}{2} \mu^{-1}\left(p_{r}^{2}+r^{-2} p_{\theta}^{2}+r^{-2} \sin ^{-2}(\theta) p_{\phi}^{2}\right)
$$

Since the Hamiltonian II is time independent,

$$
H=E=T+V(r)
$$

and writing

$$
S=S_{r}(r)+S_{\theta}(\theta)+S_{p}(\phi)
$$

the Hemilton Jacobi equation

$$
\left\{\frac{\partial S}{\partial r}\right\}^{2}+r^{-2}\left\{\frac{\partial S}{\partial \theta}\right\}^{2}+r^{-2} \sin ^{-2}(\theta)\left\{\frac{\partial S}{\partial \phi}\right\}^{2}+2 \mu\{v(r)-E\}=0
$$

The equivalent classical problem consists of first solving the equation of motion of the elcctron. This was done by born in 1927 . Using polar coordinates x, θ, ϕ, the kinetic energy T is

$$
T=\frac{1}{2} h\left(\dot{s}^{2}+r^{2} \theta^{2}+r^{2} \sin ^{2}(\theta) \dot{\phi}^{2}\right)
$$

or illematively using conjufate momenta

$$
\begin{aligned}
& p_{x}=p^{\dot{I}} \\
& p_{\theta}=p x^{2} \dot{\theta} \\
& p_{\phi}=\psi^{2} \sin ^{2}(\theta) \quad \dot{\phi}
\end{aligned}
$$

we can vrite

$$
m=\frac{1}{2} r^{-1}\left(p_{r}^{2}+r^{-2} p_{\theta}^{2}+r^{-2} \sin ^{-2}(\theta) p_{p}^{2}\right)
$$

Since the Hamiltonian H is time independent,

$$
H=E=T+V(r)
$$

and viriting

$$
S=S_{r}(r)+S_{\theta}(\theta)+S_{\phi}(\phi)
$$

the Hamilton Jacobi equation

$$
\left[\frac{\partial S}{\partial r}\right\}^{2}+r^{-2}\left\{\frac{\partial S}{\partial \theta}\right\}^{2}+r^{-2} \sin ^{-2}(\theta)\left[\frac{\partial S}{\partial \phi}\right\}^{2}+2 \mu\{v(r)-E\}=0
$$

splits into three differential equations, with solutions

$$
\begin{aligned}
& \frac{d S_{4}}{d \phi}=P_{\psi}=M \\
& \frac{d S_{\theta}}{d \theta}=P_{0}=\left\{L^{2}-M^{2} \sin ^{-2} \theta\right\}^{\frac{1}{2}} \\
& \frac{d S r}{d r}=P r=\left\{2 \mu(E-V)-L^{2} r^{-2}\right\}^{\frac{1}{2}}
\end{aligned}
$$

with L and M integration constants. In fact

$$
M=\mu r^{2} \sin ^{2} \theta \dot{\phi}
$$

is the angular momentum about the polar axis (the line $\theta=0$) and

$$
\begin{aligned}
L & =\mu r\left\{(r \dot{\theta})^{2}+(r \sin \theta \dot{\phi})^{2}\right\}^{\frac{1}{2}} \\
& =\mu|r \times r|
\end{aligned}
$$

is the magnitude of the resultant angular momentum. Since the system is not subject to external forces, the orbit of the electron lies in a plane; this plane is inclined at an angle α to the (r, ϕ) plane, with

$$
M=L \cos (x)
$$

Note that the requirement that $\mathrm{pr}, \mathrm{p}_{\theta}, \mathrm{p}_{\phi}$ are real places constraints on θ and $(E-V)$. There are no restrictions on ϕ, which is a periodic function of time. The condition that

$$
\left\{L^{2}-M^{2} \sin ^{-2} \theta\right\}^{\frac{1}{2}}
$$

be real requires that

$$
|\sin \theta| \geqslant M / L
$$

so θ performs a libration about $\theta=\pi / 2$ with limits $\pm \alpha$, so that $\theta_{\min }=\pi / 2-\alpha, \theta_{\max }=\pi / 2+\alpha$.

The requirement that

$$
2 r^{(E-V)-L^{2} r^{-2}}
$$

be real, and the characteristics of that function, determine the motion in the potential. Since we are interested in the Coulomb potential, we shall only consider attractive fields. $V(r)$ is then negative, and E may be positive or negative. The detailed behaviour of the radicant, and the location of its zeros, will depend on the sign of E, the behaviour of $V(r)$ as $r \rightarrow 0$ and $r \rightarrow \infty$, and the value of L. Thus if $E=0$, and $V(r) \propto-r^{-k}$, the orbits will get infinitely close to the centre of force if $k>2$. If $k \leqslant 2$, there exist bound orbits corresponding to solutions of the Hamilton-Jacobi equation, in which case we can apply the methods developed for periodic systems,

We calculate the actions $I_{r}, I_{\theta}, I_{\phi}$ corresponding to $\mathrm{pr}, \mathrm{p}_{\theta}, \mathrm{p}_{\phi}$.

$$
I_{\phi}=(2 \pi)^{-1} \quad \oint P_{\phi} d \phi
$$

$$
\therefore \quad I_{\phi} \neq M
$$

Since p_{θ} is only real for $\theta_{\min }<\theta<\theta_{\max }$,

$$
\begin{aligned}
I_{\theta} & =1 / \pi \int_{\theta_{\min }}^{\theta_{\max }} \mathrm{p}_{\theta} \mathrm{d} \theta \\
& =2 / \pi \int_{\theta}^{\pi}\left\{L^{2}-\mathrm{M}^{2} \sin ^{-2} \theta\right\}^{\frac{1}{2}} d \theta
\end{aligned}
$$

Substituting $u=\sin ^{2} \theta$,

$$
\left.I_{\theta}=1 / \pi \int \frac{L^{2} u-M^{2}}{1-u}\right\}^{\frac{1}{2}} \frac{d u}{u}
$$

the limits being $(M / L)^{2}$ and 1 . To perform this integral we notice that replacing u by u^{-1} changes the sign and interchanges L and M,
which shows that I_{θ} is a function of $(L-M)$. Furthermore, when $M=0$,

$$
\begin{aligned}
& I_{\theta}=L \\
\therefore \quad I_{\theta} & =L-M
\end{aligned}
$$

To work out I_{r},

$$
I_{r}=1 / 2 \pi \quad \oint \quad\left\{2 \mu(E-V)-\left(I_{\theta}+I_{\phi}\right)^{2} r^{-2}\right\}^{\frac{1}{2}} d r
$$

we need detailed Inowledge of $V(r)$, to calculate the behaviour of the energy E as a function of the $I^{\prime} s$, which we will later quantize. We therefore look at the simplest attractive potential which is proportional to $r^{-\mathrm{k}}, \mathrm{k} \leqslant 2$:

$$
V(r)=-\frac{\text { constant }}{r}
$$

If the constant is set to $Z e^{2}$, the potential defines the mutual attraction between a nucleus of charge $Z e$ and an electron of charge e.

Substituting for V and using complex integration,

$$
I_{r}=\frac{\mu^{\frac{1}{2}} Z e^{2}}{(-2 \mathrm{E})^{\frac{1}{2}}} \cdot I_{\theta}-I_{\phi}
$$

so that

$$
E=-\frac{\mu z^{2} e^{4}}{2\left(I_{r}+I_{\theta}+I_{\phi}\right)^{2}}
$$

We see that the motion is degenerate, since the energy is independent of both L and M, the total angular momentum and its resultant magnitude. Following Born, we define new variables I_{1}, I_{2}, I_{3}, and W_{1}, W_{2}, W_{3}, such that

$$
\begin{array}{ll}
I_{1}=I_{r}+I_{\theta}+I_{\phi}, & w_{1}=w_{r} \\
I_{2}=I_{\theta}+I_{\phi} & , \quad w_{2}=w_{\theta}-w_{r} \\
I_{3}=I_{\phi} & , \quad w_{3}=w_{\phi}-w_{\theta}
\end{array}
$$

Then, for a given atom, I_{1} uniquely defines the energy, I_{2} uniquely defines the angular momentum, and I_{3} the component of angular momentum along the polar axis;

$$
\begin{aligned}
& E=-\frac{r^{2} e^{4}}{2 I_{1}^{2}} \\
& L=I_{2} \\
& M=I_{3}
\end{aligned}
$$

we now quantize all three of these actions,

$$
\begin{aligned}
& I_{1}=n \hbar \\
& I_{2}=1 \hbar \\
& I_{3}=m \hbar
\end{aligned}
$$

To obtain an equation of motion for the bound particle, we use

$$
\begin{aligned}
w_{r}=w_{1}= & \frac{\partial S}{\partial I_{1}} \\
\text { i.e. } w_{1} & =\int \frac{\partial p r}{\partial I_{1}} d r \\
& =\int \frac{\mu \omega_{1}}{\left\{2 \mu(V-E)-\frac{I_{2}{ }^{2}}{r^{2}}\right\}^{\frac{I}{2}}}
\end{aligned}
$$

with $\omega_{1}=\partial E / \partial I_{1}$, so that

$$
d t=\frac{d w}{w_{1}}=\frac{r}{\left\{2 \mu(V-E)-\frac{I_{2}^{2}}{r^{2}}\right\}^{\frac{1}{2}}-d r}
$$

which would give us r as a function of time. However, it is more convenient to first consider the motion as a function of the radial distance r and an angle ψ in the plane of the motion. Since the ansular momentum is I_{2},

$$
\mu r^{2} d \psi=I_{2} d t
$$

using which we can eliminate $d t$ from the equation of motion,

$$
\frac{d \psi}{d r}=\frac{I_{2}}{r^{2}\left\{-2 \mu E+\frac{2 r-Z e^{2}}{r}-\frac{I_{2}^{2}}{r^{2}}\right\}^{\frac{1}{2}}}
$$

Integration gives

$$
\psi-\psi_{0}=\cos ^{-1}\left\{\frac{I_{2}^{2}-\mu \mathrm{Ze}^{2} r}{r\left(\mu^{2} z^{2} e^{L_{1}}-2 \mu E I_{2}^{2}\right)^{1 / 2}}\right\}
$$

If ve write

$$
d=\frac{I_{2}{ }^{2}}{p Z e^{2}} ; \quad \epsilon^{2}=1+\frac{2 E I_{2}{ }^{2}}{\mu Z^{2} e^{4}}
$$

then

$$
r=\frac{d}{1+\epsilon \cos \left(Y-Y_{0}\right)}
$$

which is the equation of an ellipse, with eccentricity ϵ and semilatus rectum d, and a focal point at the origin of the coordinates.

The eccentricity can be more conveniently expressed in terms of the quantum numbers 1 and n.

$$
\epsilon^{2}=1-\frac{1^{2}}{n^{2}}
$$

and can be used to evaluate another useful property of the ellipse,
the semi-major aris a given by

$$
a=\frac{d}{1-\epsilon^{2}}=\frac{I_{1}^{2}}{\mu 2 e^{2}}
$$

Before finally proceeding to the calculation of matrix elements we return to the calculation of the motion as a function of time. We find that

$$
\left.\begin{array}{l}
w_{1}=\frac{1}{2 \pi} \int \frac{\mu r w_{1} d r}{\left.\left[-2 \mu E\left\{a(1+\epsilon)-r^{2}\right\}\{r-a(1-\epsilon)\}\right]\right]^{\frac{1}{2}}} \\
r=a(1-\epsilon \cos u), \text { gives } \\
w_{1}=u-\epsilon \sin u=w_{1} t
\end{array}\right\}
$$

To sumarize the results obtained, the energy of the motion is

$$
E=-\frac{k z^{2} e^{4}}{2 I_{1}{ }^{2}},
$$

the motion is confined to an ellipse of eccentricity

$$
\epsilon^{2}=1-\frac{1^{2}}{n^{2}},
$$

and seminnajor axds

$$
a=\frac{I_{1}{ }^{2}}{\mu Z e^{2}}
$$

and the normal to the plane of the ellipse is inclined at an anele α to the polar 4×1 s of the r 0ϕ plane, with

$$
\cos (\alpha)=\frac{m}{1}
$$

$$
=\frac{a^{k}}{2 \pi} \int_{0}^{2 \pi}(1-e \cos u)^{k+1} d u
$$

Hencefortr, for convenience, we change to units in which

$$
\hbar=1=e=\mu
$$

and consider hydrogen, for which $Z=1$. Then

$$
\overline{r^{k}}=\frac{n^{2 k}}{2 i l} \int_{0}^{2 \pi}(1-\epsilon \cos u)^{k+1} d u
$$

For $k=-1$,

$$
r^{-1}=n^{-2}
$$

Which can be used to verify the virial theorem that the mean value of the potential energy is equal to twice the total energy:

$$
\overline{\mathrm{V}}=\overline{-r^{-1}}=-\mathrm{n}^{-2}=2 \mathrm{E}
$$

This proof of the virial theorem using the correspondence is identical to the quantum merhanical proof since quantum mechanically
$\overline{r^{-1}}=n^{-2}$ also. For higher values of kb this identity of results breaks down, although as expected the results are similar for high values of n and 1 . Thus

$$
\begin{aligned}
& \bar{r}_{c}=\frac{1}{2}\left(3 n^{2}-1^{2}\right) \\
& \bar{r}_{Q}=\frac{1}{2}\left(3 n^{2}-1(1+1)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \overline{r^{-2}} c=\frac{1}{n^{3} 1} \\
& \overline{r^{-2}} Q_{Q}=\frac{1}{n^{3}\left(1+\frac{2}{2}\right)}
\end{aligned}
$$

Table 2 shows that this agreement holds for increasing values of $|k|$. In general, for $k \geqslant-1$,

$$
\overline{r^{k}}=n^{2 k} \sum_{m=0} \frac{(k+1)!e^{2 m}}{(k+1-2 m)!} \frac{1}{4^{m} m!m!}
$$

the upper limit of the sum being the integer part of $(k+1) / 2$. For $k \leqslant-2$, it is more convenient to rewrite

$$
r^{-1}=I^{-2}(1+\epsilon \cos \psi)
$$

and integrate with respect to ψ

$$
\overline{r^{-k}}=n^{-3} 1^{3-2 k} \quad \frac{1}{2 \pi} \int_{0}^{2 \pi}(1+\epsilon \cos \psi)^{k-2} d \psi
$$

(Alternatively, we can substitute $\tan \Psi=(1+\epsilon)^{\frac{2}{2}} \tan \left(\frac{1}{2} u\right)(1-\epsilon)^{-\frac{1}{2}}$

Since odd powers of the cosine integrate to zero over one cycle, the result is essentially similar to that for $\overline{r^{k-3}}$,

$$
\overline{r^{-k}}=n^{-3} 1^{3-2 k} \sum_{m=0} \frac{(k-2)!e^{3 m}}{(k-2-2 m)!} \frac{1}{4^{m!} m!m!}
$$

Wic thus have the unexpected result that for high n and 1

$$
\overline{r^{k}}=(n l)^{3+2 k} \overline{r^{-k-3}}
$$

Quantum mechanically, (Bethe and Salpeter, 1957)

$$
\overline{r^{k}}=\left(\frac{n}{2}\right)^{k} \quad \frac{J_{n+1}^{k+1}, 21+1}{J_{n+1,21+1}^{\prime}}
$$

\bar{r}	$\frac{2}{2}\left(3 n^{2}-1^{2}\right)$	$\frac{1}{2}\left(3 n^{2}-1(1+1)\right)$
$\overline{r^{2}}$	$\frac{n^{2}}{2}\left(5 n^{2}-31^{2}\right)$	$\frac{n^{2}}{2}\left(5 n^{2}-31(1+1)+1\right)$
$\overline{r^{3}}$	$\frac{n^{2}}{8}\left(35 n^{4}-30 n^{2} 1^{2}+3 t^{4}\right)$	$\frac{n^{2}}{8}\left(35 n^{2}\left(n^{2}-1\right)-30 n^{2}(1+2)(1-1)+3(1+2)(1+1) 1(1-1)\right)$
$\overline{r^{4}}$	$\frac{n^{4}}{8}\left(63 n^{4}-70 n^{2} 1^{2}+151^{4}\right)$	$\frac{n^{4}}{8}\left(63 n^{4}-35 n^{2}\left(21^{2}+21-3\right)+51(1+1)\left(31^{2}+31+10\right)+12\right)$
$\overline{r^{-1}}$	$\frac{1}{n^{2}}$	$\frac{1}{n^{2}}$
$\overline{r^{-2}}$	$\frac{1}{n^{3} 1}$	$\frac{1}{n^{3}\left(1+\frac{1}{2}\right)}$
$\overline{r^{-3}}$	$\frac{1}{n^{3} 1^{3}}$	$\frac{1}{n^{3}(1+1)\left(1+\frac{2}{2}\right) 1}$
r^{-4}	$\frac{\left(3 n^{2}-2^{2}\right)}{2 n^{5}+2}$	$\frac{\left(3 n^{2}-1(1+1)\right)}{2 n^{2}\left(1+\frac{3}{2}\right)(1+1)\left(1+\frac{2}{2}\right) 1\left(1-\frac{2}{2}\right)}$

Table 2
where $J_{x, y}^{z}$ is a function whose value depends on whether z is greater than on less then zero. For $z \geqslant 0$,

$$
j_{x, y}^{z}=(-1)^{z} \frac{x!}{(x-y)!} z!\sum_{i=0}^{z}(-1)^{i}\binom{z}{i}\binom{x+i}{z}\binom{x+i-y}{z}
$$

and

$$
J_{n+1}^{\top}, 21+1=\frac{(n+1)!}{(n-1-1)!} \quad 2 n
$$

and for $z<0$, letting $s=-z-1$,

$$
j_{x, y}^{z}=\frac{x!}{(x-y)(s+1)!} \sum_{j=0}^{s}(-1)^{s-j} \frac{\binom{s}{j}\binom{x+j-y}{s}}{\binom{y+s-j}{s+1}}
$$

The quantum mechanjical expression implies no direct relation between positive and negative powers of r, yet table $\mathbf{2}$ demonstrates that such a relationship does in fact exist for high values of 1 , at least for low powers of r. (Note that the mean value of r° is 1).

However, Blanchard (1974) has recently shown that quantum mechenically the mean values of powers of r are related by

$$
\overline{r^{-k-2}}=\left(\frac{1}{2} n\right)^{-2 k-1} \frac{(21-k)!}{(21+1+k)!} \quad \overline{r^{k-1}}
$$

for

$$
0 \leq k \leq 21
$$

For any value of k, as 1 becomes large, the factorials can be expanded and provide the correspondence principle relation. In fact both these formulae can be generalised to non-integer values of k. The correspondence principle leads to the same form,

$$
\overline{r^{\beta}}=(\mathrm{nl})^{3+2 \beta} \overline{r^{-\beta-3}}
$$

and quantum mechanically

$$
\overline{r^{\beta}}=\left(\frac{1}{2} n\right)^{3+2 \beta} \frac{r(21+3+\beta)}{\Gamma(21-\beta)} \quad \overline{r^{-\beta-3}}
$$

for any β. These are again essentially the same for high values of -1.

Classically, we can also find the mean values of the orthogonal coordinates ξ and η. These will define the electrical centre of gravity of the bound electron. We find that

$$
\bar{\xi}=-\frac{3}{2} \epsilon a
$$

and

$$
\bar{\eta}=0
$$

Since the electron is moving in an ellipse with the proton at one focus at (0,0) and the other focus at ($-2 \epsilon a, 0$), the electrical centre of gravity is therefore on the major axis halfway between the midpoint and that focus not occupied by the proton.

Having solved the equation of motion, we can just as easily evaluate matrix elements in which the principal quantum number changes from n to $\mathrm{n}+\mathrm{s}$. It is convenient to work in dimensionless units (r / a), $(\xi / a),(\eta / a)$. We expand these in Fourier series

$$
\begin{aligned}
& r / a=1-\epsilon \cos u=\sum_{s} A_{s} e^{i s \omega t} \\
& \xi / a=\cos u-\epsilon=\sum_{s} B_{s} e^{i s \omega t} \\
& \eta / a=\left(1-e^{2}\right)^{\frac{1}{2}} \sin u=\sum_{s} C_{s} e^{i s \omega t}
\end{aligned}
$$

with

$$
\begin{aligned}
& A_{s}=\frac{\omega}{2 \pi} \int_{0}^{2 \pi / \omega}(1-\epsilon \cos u)^{2} \cdot e^{-i s \pi t} d t \\
& B_{s}=\frac{\omega}{2 \pi} \int_{0}^{2 \pi / \omega}(1-\epsilon \cos u)(\cos u-t) e^{-i s \omega t} d t \\
& C_{s}=\frac{\omega}{2 \pi} \int_{0}^{2 \pi / \omega}(1-\epsilon \cos u)\left(1-e^{2}\right)^{\frac{1}{2}} \sin u e^{-i \sin t} d t .
\end{aligned}
$$

Substituting

$$
\omega \cdot t=u-e \sin u
$$

and using the integral definition of a Bessel Function $J_{s}(x)$

$$
J_{s}(x)=\frac{1}{2 \pi} \int_{0}^{2 \pi} d u \quad \exp (-i s u+i x \sin u)
$$

we find that

$$
\begin{aligned}
& A_{s}=\frac{-\epsilon}{s} J_{s}^{\prime}(s c) \\
& B_{s}=\frac{1}{s} J_{s}^{\prime}(s \epsilon) \\
& C_{s}=i \frac{\left(1-\epsilon^{2}\right)^{\frac{1}{2}}}{s \in} J_{s}(s \epsilon)
\end{aligned}
$$

where the primes denote differentiation with respect to se:
Apylying Heisenberg's correspondence principle,

$$
\begin{aligned}
& \langle n| r|n+s\rangle=\frac{-a c}{s} J_{s}^{\prime}(s \epsilon) \\
& \langle n| \xi|n+s\rangle=\frac{a}{s} J_{s}^{\prime}(s \epsilon) \\
& \langle n| \eta|n+s\rangle=i a \frac{\left(1-\epsilon^{2}\right)^{\frac{1}{2}} J_{s}(s \epsilon)}{s t}
\end{aligned}
$$

Matrix elements of higher orders of r, ξ, η, have been evaluated. For any positive integer k,
$\langle n| r^{k-1}|n+s\rangle=a^{k-1} \sum_{p=0}^{k} \sum_{l=0}^{p}\binom{k}{p}\binom{p}{1}\binom{-\epsilon}{2}^{p} J_{3-p+21}(p)(s e)$
With $J_{s}(\mathrm{p})(\mathrm{x})$ the pth derivative of the Besscl. function with respect to x. For negative values of k, the upper limit in the first sum becomes infinite.

This solution for a ceneral power of r provides a way of obtaining inatilix elements of any function of r which can be expanded in a marer series, thus

$$
\begin{aligned}
\langle n| e^{\alpha r}|n+s\rangle & =\langle n| \sum_{k=2}^{\infty} \frac{(\alpha r)^{k-1}}{(k-1)!}|\cdot n+s\rangle \\
& \left.=\sum_{k=2}^{\infty} \frac{(a \alpha)^{k-1}}{(k-1)!} \sum_{p=0}^{k}\binom{k}{p}(-\epsilon)^{p}\right)^{p} \sum_{l=0}^{p}\binom{p}{1} J_{S-p+2 l}(p)(s \epsilon)
\end{aligned}
$$

In this case the integration can also be carried out. directly and a result obtained in a closed form, if $s>\alpha a$. Let $\alpha a=t$.

$$
\begin{aligned}
\langle n| e^{\alpha r}|n+s\rangle & =\frac{1}{2 \pi} \int_{0}^{2 \pi} d u(1-\epsilon \cos u) e^{t(1-\epsilon \cos u)} e^{-i s u+i \sin \sin u} \\
& =\frac{e^{t}}{2 \pi} \int_{0}^{2 \pi} d u\left(1-(\cos u) e^{-i s u} e^{i x \sin (u+\delta)}\right.
\end{aligned}
$$

$$
\text { with } x^{2}=\epsilon^{2}\left(s^{2}-a^{2}\right) ; \exp (2 i \delta)=\frac{s-t}{s+t}
$$

Redefining a new variable equal to $(u+\delta)$ and integrating,

$$
\langle n| e^{\alpha r}|n+s\rangle=\frac{\epsilon^{2} t}{x} e^{t}\left(\frac{s-t}{s+t}\right)^{s / 2}\left\{J_{s}{ }^{1}(x)-\frac{t}{x} J_{s}(x)\right\}
$$

For $s=0$, the mean value of $e^{\alpha r}$ is obtained in terms of the modified Bessel functions $I_{0}(x)$ and $I_{1}(x)$ by

$$
\langle n| e^{\alpha r}|n\rangle=e^{t}\left\{I_{0}(\epsilon t)+I_{1}(\epsilon t)\right\}
$$

We have thus shown that in the case of the Coulomb potential, as with the simple hamonic potential and the Morse potential, the correspondence principle can be used to obtain matrix elements which are in good agreement with available quantum mechanically calculated matrix elements, although much simpler in form. In the cases where no quantum mechanical results are available, it would therefore be expected that the correspondence principle results a re good approximations to the exact solutions.

Tranitions between n, l, m states

The previous section concerned transitions only between the principal quantum numbers n. To consider transitions between n, l, m states it is convenient to define a new or thogonal coordinate systom. The previous equations defined the motion of the bound electron in the plame of itis ellipse. The orientation of the ellipse and its coordinates ξ and η can be in turn described by three cartesian coordinates x, y, z by means of Euler angles. We use the Euler angles and transformation matrices defined by Goldstein, the ξ and η coordinates bejng, Goldstein's x^{\prime} and y^{\prime} coordinates. The z axis forms au angle θ with the angular momentum vector, (and $\cos \theta=\mathrm{m} / \mathrm{l}$), the r axis forms an angle of ϕ with the line of nodes which in turn forms an angle ψ with the perihelion. Applying the transformation matrix to ξ and η,

$$
\begin{aligned}
& x / a=D(\cos u-\epsilon)+E \sqrt{1-\epsilon^{2}} \sin u \\
& y / a=F(\cos u-\epsilon)+G \sqrt{1-\epsilon^{2}} \sin u \\
& z / a=H(\cos u-\epsilon)+K \sqrt{1-\epsilon^{2}} \sin u
\end{aligned}
$$

kith

$$
\begin{aligned}
& D=\cos \psi \cos \phi-\cos \theta \sin \phi \sin \psi \\
& H=\cos \psi \sin \phi+\cos \theta \cos \phi \sin \psi \\
& H=\sin \theta \sin \psi \\
& E=-\sin \psi \cos \phi-\cos \theta \sin \phi \cos \psi \\
& G=-\sin \psi \sin \phi+\cos \theta \cos \phi \cos \psi \\
& K=\sin 0 \cos \psi .
\end{aligned}
$$

To chtain the matrix elements of these coordinates, we expand them in a triphe fourice serics involving $\Delta n(S), \Delta l, \Delta m$ and theix
 obtained by integrating over the three angles, although the toriplo intogral does not always have to be explicitly performed. Consider
the equation for the z coordinate. Since $\cos \theta=m / 1$, then

$$
z=a\left\{1-\frac{m^{2}}{1^{2}}\right\}^{\frac{1}{2}} \quad\left\{\sin \psi(\cos u-\epsilon)+\frac{1}{n} \cos \psi \sin u\right\}
$$

Writing this as an expansion in w, ψ, ϕ,

$$
z=\sum_{\Delta n} \sum_{\Delta l} \sum_{\Delta m}{ }_{z}^{n, \Delta n, l+\Delta l, m+\Delta m} e^{n+\Delta n w e^{i} \Delta l \psi} e^{i \Delta m \phi}
$$

We see first that since z is not a function of ϕ the only nonzero coefficients are those for which

$$
\Delta m=0
$$

Similarly, we require

$$
\Delta l= \pm 1
$$

and we have selection rules for the matrix clements. Since there is no simple relation between w and $u(w=u-\epsilon \sin u)$ we still have to evaluate the integral over w. Finally, applying Heisenberg's correspondence principle,

$$
\langle n, 1, m| z|n+s, 1+\Delta l, m\rangle=-\Delta l \frac{i a}{2 s}\left\{1 \frac{-m^{2}}{1^{2}}\right\}^{\frac{1}{2}} \quad\left\{J_{s}^{\prime}(s c)+\Delta 1 \cdot \frac{1}{n \in} J_{s}(s \in)\right\}
$$

for $\Delta I= \pm 1$.

Following the same procedure for the x and y coordinates, the following selection rules apply

$$
\begin{aligned}
& \Delta m= \pm 1 \\
& \Delta I= \pm 1
\end{aligned}
$$

Collecting results,
$\langle n, 7, m| x|n+s, 1+\Delta I, m+\Delta \cdot n\rangle=\frac{\Delta 1}{4}\left\{1+\frac{\Delta m \cdot m}{\Delta l \cdot 1}\right\} \mathrm{R}_{n, 1}^{n+5,1+\Delta l}$
$\langle n, 1, m| v \mid n+\Omega, 1+\Delta], m+\Delta m\rangle=-1 \frac{\Delta m \Delta I}{4}\left\{1+\frac{\Delta m \cdot m}{\Delta 1 \cdot 1}\right\} n_{n, 1}^{n+\pi, 1+\Delta I}$
$\langle n, 1, n|:|n+3,1+\therefore 1, m\rangle=-\frac{j}{2}\left\{1-\frac{m^{2}}{1^{2}}\right\}^{\frac{1}{2}} 11_{n, 1}^{n+3}, 1+\Delta l$
where

$$
R_{n, l}^{n+s}, I+\Delta l=\Delta I \frac{a}{s}\left\{J_{s}^{\prime}(s \in)+\Delta I \frac{\sqrt{1-c^{2}}}{\epsilon} J_{s}^{\prime}(s \in)\right\}
$$

will be shom to be the dipole moment, for $s \neq 0$, and

$$
\mathrm{R}_{\mathrm{n}, 1}^{\mathrm{n}, 1+\Delta 1}=\frac{3}{2} \in \mathrm{a}
$$

for $s=0$.

Since we are dealing with transitions between different states, the meaning and the value of the eccentricity \in have both become ambiguous. The eccentricity for a state $(n, 1)$ is $\left(1-1^{2} / n^{2}\right)^{\frac{1}{2}}$ and that for a state $(n+s, I+\Delta I)$ is $\left(1-(1+\Delta l)^{2} /(n+s)^{2}\right)^{\frac{1}{2}}$. The value of the eccentricity that is to be used in dealing with transitions between these two states can be thought of as some sort of average between these two eccentricities, or as the eccentricity of some average state. This second course is more convenient and is consistent with the work already carried out. We define the eccentricity to be

$$
\epsilon^{2}=1-\frac{I_{c}^{2}}{n_{c}^{2}}
$$

and choose I_{c} and n_{c} by comparing correspondence principle results for simple cases with equivalent quantum mechanical results. The value of n_{c} might be expected to arise from some average of the two states n and $n+s$. We could with equal justification choose
${ }^{n} c=n+s / 2$ which would lead to an average angular momentum, or

$$
n_{c}=\left\{\frac{n^{2}(n+s)^{2}}{n+s / 2}\right\}^{\frac{1}{3}}
$$

Which would lead to an average frequency, or

$$
n_{c}=\frac{n(n+s)}{n+s / 2}
$$

which would lead to an average velocity (since the velocity is inversely proportional to n), or any other value of \dot{n}_{c}. The correspondence principle is valid for a high enough value of n whatever choice is made, but as will be shown later it can also be applied to surprisingly low values of n if the choice

$$
n_{c}=\frac{n(n+s)}{n+s / 2}
$$

is made. For l_{c}, the best choice is more difficult to find as it is in some sense a second order effect, and depends on the correct choice having been made for n_{c}. We can, however, look at the case $s=0$, when we know from the mean values of powers of r that $n_{c}=n$. For $s=0$, the dipole moment

$$
\begin{aligned}
\mathrm{R}_{\mathrm{n}, \mathrm{I}}^{\mathrm{n}, I+\Delta I} & =\frac{3}{2} \in \mathrm{a} \\
& =\frac{3}{2} n\left(\mathrm{n}^{2}-I_{\mathrm{c}}^{2}\right)^{\frac{1}{2}}
\end{aligned}
$$

The quantum mechanical value (Bethe and Salpeter)

$$
\mathrm{R}_{\mathrm{n}, \mathrm{I}}^{\mathrm{n}, I+\Delta I}=\frac{3}{2} \mathrm{n}\left(\mathrm{n}^{2}-1 q^{2}\right)^{\frac{1}{2}}
$$

with $\quad \dot{q}=\max (1,1+\Delta l)$,
which implies that $l_{c}=\max (1,1+\Delta l)$, at least for $s=0$.

For off-diagonal elements comparison between quantal and correspondence principle results is more difficult. The general formula is obtained as an integral over Associated Daguerre functions, and we shall just. quote the closed form formula obtained by Gordon (1929), in atomic units.
$R_{n, 1}^{n+s, 1-1}=\frac{(-1)^{n-1}}{4(21-1)!} \quad\left\{\frac{(n+1)!(n+s+1-1)!}{(n-1-1)!(n+s-1)!}\right\}^{\frac{1}{2}} \quad \frac{(\ln (n+s))^{1+1} s^{2 n+s-21-2}}{(2 n+5)^{2 n+s}}$
$X\left\{F\left(-n+1+1,-n-s+1,21 ;-\frac{\ln (n+s)}{s^{2}}\right)\right.$

$$
\left.-\frac{s^{2}}{(2 n+s)^{2}} F\left(-n+1-1,-n-s+1,21 ;-\frac{\ln (n+s)}{2}\right)\right\}
$$

with F the hypergeometric function defined by

$$
F(i, j, k ; x)=\sum_{m} \frac{i(i+1)(i+2) \ldots(i+m-1) j(j+1) \ldots(j+m-1)}{k(k+1) \ldots(k+m-1)} \cdot \frac{x^{m}}{m!}
$$

We recall that the result obtained using the correspondence principle is

$$
R_{n, 1}^{n+s, 1-1}=-\frac{1}{s}\left\{J_{s}^{\prime}(s \epsilon)-\frac{\sqrt{1-\epsilon^{2}}}{\epsilon} J_{s}(s \epsilon)\right\}
$$

with $\epsilon^{2}=1-\frac{1_{c}{ }^{2}}{n_{c}{ }^{2}}$

Detailod comparison with quantum mechanical result

We compare the matrix elements obtained using the correspondence principles with those obtained using quantum mecharics in two stages. We first examine their dependence on the dipole moment, then compare the two expressions for the dipole moment. Bethe and Salpeter quote values for the matrix elements of $x+i y, x-i y$, and z, in terms of the dipole moment. The selection rules are identical to those obtained using the correspondence principle, and they are all equal to some coefficient times the dipole moment. Table 3 compares the values of these coefficionts (squared) for all the allowed transitions. We see that for higher values of 1 the two sets are essentially the sarce, and that in general the ratio of the quantal coefficient to the correspondence coefficient is of the form

$$
\frac{1^{2}}{\left(1^{2}-\frac{3}{4}\right)} \frac{\left(1-m+\frac{3}{2}\right)^{2}-\frac{1}{4}}{(1-m+1)^{2}}
$$

In table 3 we have used the substitution $l_{c}=\max (1, l+\Delta I)$ indicated from the previous section, and simply set $m_{c}=m$. Careful consideration of the coefficients may lead to other rules عiving better agreement, but these have the advantage of simplicity.

Thu best available numerical values of the squares of the quantum mechanical radial integral $R_{n, 1}^{n ' l '}$ appear to be those calculated by Gron et al (1957). They tabulate results for the allowed transitions from any lower state n, l to any upper state n^{\prime}, l^{\prime} for all values of n and n^{\prime} less than 21. Previous calculations had either been inancurate or too restricted, and the value of a wide ranging accurate calculation was suggested to the nuthors by M.J. Scaton. Their quostod numerical values are to six sitenificant figures.

Table 3

For numerical calculations of the correspondence principle result it is convenient to use the property of Bessel functions that

$$
\begin{aligned}
& 2 J_{s}^{\prime}(s \epsilon)=J_{s-1}(s \epsilon)-J_{s+1}(s \in) \\
& \frac{2}{s \epsilon} J_{s}(s \epsilon)=J_{s-1}(s \in)+J_{s+1}(s \in)
\end{aligned}
$$

and rowrite

$$
\left.\begin{array}{rl}
\mathrm{R}_{\mathrm{nl}}^{\mathrm{n}^{\prime} l^{\prime}}= & \frac{\mathrm{n}_{\mathrm{c}}^{2}}{2 \mathrm{~s}} \Delta l\left\{\left(1+\Delta 1 I_{\mathrm{c}}\right)\right. \\
\mathrm{n}_{\mathrm{c}} & J_{\mathrm{s}-1}(\mathrm{~s} \in) \\
& -\left(1-\Delta l \frac{I_{c}}{n_{c}}\right.
\end{array} J_{s+1}(\mathrm{sc})\right\}
$$

Table 4 compares values of $\left(R_{n l}^{n \prime \prime}\right)^{\prime}$ calculated using $n_{c}=n+\frac{1}{2} s$ and $n_{c}=n(n+s) /\left(n+\frac{1}{2} s\right)$ with the quantum mechanical result. The following points emerge:
(1) For fixed 1,1', the difference between the two sets of values decreases as n increases. This is just Bohr's correspondence principle. The percentage difference decreases roughly as n^{2}. The difference is considerably smaller for $n_{c}=n(n+s) /\left(n+\frac{1}{2} s\right)$ than for $n_{c}=n+\frac{1}{2} s$, as would be expected since that choice of ${ }^{n}$ c was originally made to obtain good agreement with quantum mechanics.
(2) For fixed n, n^{\prime}, the percentage difference decreased with decreasing 1 , the worst errors occuring when $1=n-1$. This is because the classical perturbation of the orbit of the electron is greatest when 1 changes from $n-1$ to $n-2$, since the eccentricity of the orbit is $\epsilon^{2}=1-1^{2} / n^{2}$. (Green et al also admit that their checking procedure for high values of 1 was not as valid as that for low values of 1).

Iransition	Quantum value	Corres. value $n+\frac{1}{2} s$	$\left(\frac{Q}{C}-1\right) \%$	Corres. value $n(n+s) /\left(n+\frac{1}{2} s\right)$	\%
$2 \mathrm{~s}-3 \mathrm{p}$	9.3931	11.022	17.3	9.7203	3.48
3s-4p	29.914	32.527	8.74	30.374	1.54
$45-5 p$	72.553	76.395	5.30	73.181	0.865
$5 s-6 p$	149.18	154.49	3.56	150.00	0.552
$6 \mathrm{~s}-7 \mathrm{p}$	274.19	281.22	2.56	275.25	0.385
. $7 \mathrm{~s}-8 \mathrm{p}$	464.53	473.51	1.93	465.85	0.284
8s-9p	739.69	750.86	1.51	741.29	0.217
9s-10p	1121.7	1135.3	1.21	! 123.6	0.171
10s-11p	1635.0	1651.3	0.996	1637.3	0.139
11 s -12p	2306.8	2326.0	0.834	2309.5	0.116
12s-13p	3166.7	3189.1	0.707	3169.8	0.0969
13s-14p	4246.9	4272.7	0.702	4250.4	0.0832
14s-15p	5582.0	5611.4	0.527	$5586 \cdot 0$	0.0710
15s-16p	7209.3	7242.6	$0 \cdot 462$	7213.8	0.0625
16s-17p	9168.7	9206.1	0.414	9173.6	0.0539
17s-18p	11502	11544	0.363	11508	0.0476
18s-19p	14255	14301	0.325	14261	0.0428
19s-29p	17474	17525	0.293	17481	0.0389
$4 s-5 p$	72.553	76.395	5.30	73.181	0.865
4p-5d	121.86	127.86	4.92	123.18	1.083
$4 d-5 f$	197.83	207.00	4.64	200.46	1.33
$(13,7)-(20,8)$	39.51	47.18	19.4	37.96	-3.93
Table 4					

(3) Restricting $\mathrm{s} / \mathrm{n}<1$ and $(\mathrm{l}+1) / \mathrm{n}<1$, the worst disagreements found were of order 10\%. Applying the stricter condition that $s(1+1) / n<1$ all differences were less than 3.5%. Since a strict interpretation of the correspondence principle would imply that the two sets of results should only agree for $\mathrm{s} / \mathrm{n} \ll 1$, the agreement for these (relatively) low values of n is excellent.

We can also compare sums of intensities obtained from the correspondence principle and from quantum mechanics:
(1) Adding the intensities of a transition from a state nlm to all substates m^{1} of a state $n^{1} I^{1} m^{1}$ for all directions of pdarization.
of the emitted radiation

$$
\begin{aligned}
\sum_{m}^{1}\left|r_{n l m}^{n^{1} 1^{1} m^{1}}\right|^{2}= & \mid x_{n l m}^{\left.n^{1} 1_{m+1}^{1}\right|^{2}+\left|x_{n l m}^{n^{1} 1^{1} m-1}\right|^{2}+\left|y_{n l m}^{n^{1} 1^{1} m+1}\right|^{2}} \\
& +\left|y_{n l m}^{n^{1} 1^{1} m-1}\right|^{2}+\left|z_{n \cdot m}^{n^{1} 1^{1} m}\right|^{2} \\
= & \frac{1}{2}\left|R_{n 1}^{n^{1} 1^{1}}\right|^{2}
\end{aligned}
$$

from the correspondence principle, and

$$
\begin{aligned}
& \sum_{m^{1}}\left|r_{n l m}^{n^{1} 1+1 m^{1}}\right|^{2}=\frac{1+1}{21+1}\left|\cdot R_{n l}^{n^{1} 1+1}\right|^{2} \\
& \sum_{m^{1}}\left|r_{n l m}^{1} 1-1 m^{1}\right|^{2}=\frac{1}{21+1}\left|R_{n l}^{n^{1} 1-1}\right|^{2}
\end{aligned}
$$

from quantum mechanics. In all cases the sum over m^{1} is independent of m, and all formulae agree with each other in the limit of large 1. Since the lifetime of a state depends
on the intensity of transitions out of it, this implies that the lifetime is independent of a state's magnetic quantum number and depends only on the values of n and 1. This was known in quantum mechanics but we have shown that it can be deduced by applying classical mechanics and the correspondence principle.
(2) For a fired direction of polarization, the sum of the intensities "over all values of m (i.e. over all the Zeeman components of a spectral line),

$$
\sum_{m}\left|z_{n l m}^{n^{1} 1-1 m}\right|^{2}=\cdot \frac{2}{4}\left|R_{n l}^{n^{1} 1-1}\right|^{2} \sum_{m}\left(1-\frac{m^{2}}{1^{2}}\right.
$$

$$
=\frac{1}{121}(21+1)(21-1)\left|R_{n 1}^{n^{1} 1-1}\right|^{2}
$$

$$
=\frac{1}{2 L_{1} 1}(21+1)\left(l_{4} 1+1\right)\left|\cdot n_{n 1}^{n^{1} 1^{1}}\right|
$$

from the correspondence principle results, and

$$
\begin{aligned}
\sum_{m}\left|n_{n 1 m}^{1} 1-1 m\right|^{2} & =\sum_{m m}\left|x_{n l m}^{n^{1} 1-1 m^{1}}\right|^{2} \\
& =\sum_{m m}\left|y_{n 1 m}^{n^{1} 1-1 m^{1}}\right|^{2} \\
& =\frac{1}{3}\left|R_{n 1}^{n^{1} 1-1}\right|^{2}
\end{aligned}
$$

from quantum mechanics. Again the asymptotic values for large 1 are equal.
(3) The correspondence principle gives a similar result to quantum nechanics for the sum over all $\mathrm{m}, \mathrm{m}^{1}$ and all directions of. polarization:

$$
\sum_{m m}^{1}\left|r_{n l m}^{\left.n^{1} 1_{m}^{1}\right|^{1}}\right|^{2}=\left(1+\frac{1}{2}\right)\left|R_{n l}^{n^{1} 1^{1}}\right|^{2}
$$

as opposed to

$$
\sum_{n=1}\left|r_{n l m}^{n^{1} I-1 m^{1}}\right|^{2}=I\left|\cdot R_{n l}^{n^{1} 1-1}\right|^{2}
$$

Oscillator Strengths

An immediate use of the matrix elements evaluated above can be found in the calculation of osciilator strengths between highly excited states. Besides being useful quantities in themselves they provide further checks on the accuracy of the correspondence principle.

The definition of the oscillator strength for a transition between a state $n, 1$ and a state $n^{1} 1^{1}$ is (Bethe and Saltpeter)

$$
f_{n l}^{n^{1} 1}=\frac{2}{3} \omega_{n}^{1} n \sum_{m}^{1}\left|n_{n l m}^{1} m^{1}\right|^{2}
$$

with

$$
\omega_{n} 1_{n}=E_{n} 1-E_{n}
$$

or alternatively

$$
w_{n} 1_{n} \simeq s w
$$

Substituting for the matrix elements of x, y, z, and summing over the final n^{1} states we obtain

$$
f_{n l}^{n+s, 1+\Delta I}=\frac{1}{3 s} \quad n_{c}\left\{J_{s}^{1}(s \epsilon)+\Delta l \frac{\sqrt{1-\epsilon^{2}}}{\epsilon} \quad J_{s}(s \in)^{2}\right\}
$$

foms-ing over initial 1 states and surming over final 1^{1} states, we find
the average oscillator strength for a transition between two states defined by n and n^{1} :

$$
f_{\mathrm{m}} 1=\frac{4}{3} \frac{n_{\mathrm{c}}}{s^{2}} \quad J_{\mathrm{s}}(\mathrm{~s}) \quad \mathrm{J}_{\mathrm{s}}^{1}(\mathrm{~s})
$$

Wo compare this with other calculations it is convenient to define

$$
M(s)=\frac{4}{3} \frac{J_{S}(s) J_{s}^{1}(s)}{s^{2}}
$$

Thus

$$
f_{n n} 1=n_{c} \quad M(s)
$$

and we have chosen

$$
n_{c}=n(n+s) /\left(n+\frac{1}{2} s\right)
$$

Alternative calculations have led to

$$
\begin{array}{lll}
f_{n n} 1 & =n M(s) & \text { (Mezger) } \\
f_{n n} 1 & =\left(n+\frac{3}{2} s\right) M(s) & \text { (Menzel) } \\
f_{n, n-1}= & n \frac{1}{6} & \text { (Kardashev) } \\
f_{n n} 1 & =\frac{(n+s)^{2}}{n+\frac{8}{2}} & M(s)
\end{array} \text { (Percival and Richardi) }
$$

The Percival and Richards result was obtained by requiring that the corrospendence principle result should obey detailed balance.

We have shown that for the three potentials considered in detail classical mechanics and the correspondence principle can provide results which are valid not only in the limit of high quantum numbers, as is generally known, but also for low quantum numbers. We have concentrated on calculating quantities whose quantum mechanical values are known so that comparisons between the two could be made, and we have shown that although any reasonable choice of n_{c} would produce results which have the same form as the quantum mechanical ones a more careful choice of n_{c} can produce agreement for low quantum numbers, even for $\mathrm{n}=1$.

Having shown the ability of classical methods to cope with problems which are usually solved using quantum mechanics we next consider a case which has yet to be solved exactly quantum mechanically, the observed broadening of spectral lines of high quantum number emitted from laboratory or astrophysical plasma.

CHAPTER IV

CAUSES OF LINE BROADENING

Fundamental factors governing the width of spectral lines are natural broadening, Doppler broadening, and pressure broadening. We shall consider these in that order, but first we briefly mention factors which may contribute to the observed breadth of a spectral line.
a) Ail spectrometers will produce lines of finite width, even for monochromatic radiation. This is the only mention we shall make of the detection of spectral lines, and in what follows we implicitly assume that the resolving power of any apparatus used is such that the "instrumental width" is negligible compared with widths arising from other causes.
b) Radiation emitted in the body of a gas may suffer partial absorption on its passage through the gas. In consequence of Kirchoff's laws, the more intense portions of the line will be more strongly absorbed so that the centre of the line will be weakened compared with the wings of the line. This is known as "self absorption" and to ignore it we assume that the light has come through an optically thin layer of gas.
c) For absorption lines, the intensity distribution $I(w)$ depends on the thickness of the layer of gas (d) according to

$$
I(w, d)=I_{0} \exp (-Q(w) d)
$$

with I_{0} a constant, and $a(w)$ the absorption coefficient. For small values of d, the line profile is proportional to the absorption coefficient, and the following will apply to absorption lines from optically thin layers.

CAUSES OF LINE BROADENING

Fundamental factors governing the width of spectral lines are natural broadening, Doppler broadening, and pressure broadening. We shall consider these in that order, but first we briefly mention factors which may contribute to the observed breadth of a spectral line.
a) All spectrometers will produce lines of finite width, even for monochromatic radiation. This is the only mention we shall make of the detection of spectral lines, and in what follows we implicitly assume that the resolving power of any apparatus used is such that the "instrumental width" is negligible compared with widths arising from other causes.
b) Radiation emitted in the body of a gas may suffer partial absorption on its passage through the gas. In consequence of Kirchoff's laws, the more intense portions of the line will be more strongly absorbed so that the centre of the line will be weakened compared with the wings of the line. This is known as "self absorption" and to ignore it we assume that the light has come through an optically thin layer of gas.
c) For absorption lines, the intensity distribution $I(w)$ depends on the thickness of the layer of gas (d) according to

$$
I(w, d)=I_{0} \exp (-a(w) d)
$$

with I_{0} a constant, and $a(w)$ the absorption coefficient. For small values of d, the line profile is proportional to the absorption coefficient, and the following will apply to absorption lines from optically thin layers.

This is present in all spectral lines and can be explained either in terms of classical theory or in terms of quantum mechanics. Classically, it is due to the damping of the oscillator because of loss of energy by radiation, and is thus alternatively called radiation broadening. The rate of decay of energy of a classical electron oscillator is

$$
E(t)=E_{0} \exp (-b t)
$$

with the decay constant b given by

$$
b=2 e^{2} w_{0}^{2} / 3 n c^{3}
$$

for charge e, frequency w_{0}, and mass m. A Fourier expansion of the damped wave train leads to

$$
I(w)=I\left(w_{0}\right) \frac{b}{\left(w-w_{0}\right)^{2}+(b)^{2}}
$$

A useful quantity in line broadening is the width of the spectral line at half the maxdmum intensity. For brevity we call this the halfwidth, whie'for natural broadening is equal to b, measured in radians per secand. In terms of w, it is numericaliy equal to $1.17 \times 10^{-12} \mathrm{~cm}$, 0 or 0.000117 A .

Quantum mechanically, the broadening is explained by the uncertainty principle. Since exdted states only have a finite lifetime their energy levels will be diffuse, and thus radiation fram those levels will be broadened. The same line shape is obtained but the constant b is now the sum of the decay constants of the initial and final states, $b_{i}+b_{f}$. These are inversely proportional to the lifetimes of atoms in the two states, and are therefore proportional to the uncertainty in the energy levels. The half width is thus equal to the sum of the widths of the energy levels associated with the ine.

For the special case of strong resonance lines, those associated with the ground state with a decay constant of zero, when the oscillator strength is 1 , the half width obtained quantum mechanically is equal to that obtained classically.

Radiation broadening is usually negligible, though its effects on the wings of spectral lines are sometimes noticeable.

4. 2 Doppler Broadening

Translational motion of the radiating atom leads to a line broadening which Rayleigh first demonstrated as due to the Doppler effect.

Consider an atom emitting radiation of wavelength λ, and moving with velocity v in the line of sight of an observer. The Doppler effect means that the observer will receive radiation of wavelength λ^{\prime}, with

$$
\lambda^{\prime}=\lambda(1-v / c)
$$

assuming that $v \ll c$, so that

$$
\nu^{2}=\lambda^{2}(\Delta v)^{2}
$$

The distribution of velocities in the line of sight is given by the Maxwellian distribution exp $\left(-m v^{2} / 2 k T\right)$, with k the Boltzmann constant, and T the temperature in degrees Kelvin. We can consider λ to be the wavelength corresponding to the line centre, and ΔV as the frequency difference between the centre and the frequency whose displacement corresponds to the velocity \boldsymbol{v}. Then

$$
I(w)=I_{0} \exp \left(-m \lambda^{2}(\Delta j)^{2} / 2 \mathrm{kT}\right)
$$

Lord Rayleigh (F.W. Strutt) proved the above and showed that the half width is given by

Doppler half-wiaths will therefore be more important at higher temperatures, and we shall show that they can also be expected to dominate at low pressures.
4.3 Collision broadening

We now consider the broadening of spectral lines emitted by high temperature laboratory and astrophysical plasmas, mediums which are strongly ionized but have no net charge. We examine the development of the theory in chronological order.

Michelson, 1895

Michelson began his consideration of line broadening by reviewing the hypotheses which had been put forward to account for line broadening:

1. As a consequence of Kirchhoff's law "the ratio of brightness of two imnediately contiguous portions of a discontinuous, bright-line spectrum constantly decreases, if the number of luminous strata is multiplied or if the coefficient of absorption of the single stratum is increased, until the value is reached which, for the same wave-length and the same temperature, corresponds to the ratio in the continuous spectrum of a body completely opaque for the given thickness.
2. The direct modification of the period of the vibrating atoms in consequence of presence of neighbouring molecules.
3. The exponential diminution in amplitude of the vibrations due to communication of energy to the surrounding medium, or to other causes.
4. The change in wave-length due to the Doppler effect of the component of the velocity of the Fibrating atom in the line of sight.

To these the following causes may be added:
5. The limitation of the number of regular vibrations by more or less abrupt changes of phase amplitude or place of vibration, caused by collisions.
6. The possible variations in the properties of the atoms within such narrow limits as to escape detection by other than spectroscopic observations.

Although conceding that cause 4 (Doppler broadening) was "the chief if not the only effective cause in operation when the density of the radiating body is low", he concluded that causes $1,3,4$, and 6 together are insufficient to account for the observed effects of line broadening. Cause 2 we shall call statistical broadening and will consider later. Cause 5 has been called velocity broadening, impact broadening, interruption broadening and, the term we shall use, collision broadening, and is Michelson's major contribution to the theory.

Consider Fig. 4. The circles represent perturbing (broadening) atoms whilst the arrow represents the trajectory at the centre of the emitter through the perturbers. Michelson used billiard bail atoms so that a collision is deemed to have taken place when the separation of the emitter and broadener centres is less than the sum of their atomic radil. Michelson assumed collisions had the following effect:

A collision has just occurred between points "a" and "b". The radiating atom emits coherent radiation from "b" to "c", when another collision occurs. No more coherent radiation is emitted until "d". However, the radiation emitted after "d" is completely incoherent with that emitted between "b" and."c". This is the crux of the argument. If, t is now the time taken between "b" and "c", we have a wave train of finite length $t x$ velocity of light. We recall that the Fourier analysis used in the previous section is a way of expressing finite wave trains in terms of an infinite number of wave trains of

To these the following causes may be added:
5. The limitation of the number of regular vibrations by more or less abrupt changes of phase amplitude or place of vibration, caused by collisions.
6. The possible variations in the properties of the atoms within such narrow limits as to escape detection by other than spectroscopic observations.

Although conceding that cause 4 (Doppler broadening) was"the chief if not the only effective cause in operation when the density of the radiating body is low", he concluded that causes $1,3,4$, and 6 together are insuffient to account for the observed effects of line broadening. Cause 2 we shall call statistical broadening and will consider later. Cause 5 has been called velocity broadening, impact broadening, interruption broadening and, the term we shall use, collision broadening, and is Michelson's major contribution to the theory.

Consider Fig. 4. The circles represent perturbing (broadening) atoms whilst the arrow represents the trajectory at the centre of the emitter through the perturbers. Michelson used billiard ball atoms so that a collision is deemed to have taken place when the separation of the emitter and broadener centres is less than the sum of their atomic radii. Michelson assumed collisions had the following effect:

A collision has just occurred between points "a" and "b". The radiating atom emits coherent radiation from "b" to "c", when another collision occurs. No more coherent radiation is emitted until "d". However, the radiation emitted after "d" is completely incoherent with that emitted between "b" and "c". This is the crux of the argument. If t is now the time taken between "b" and "c", we have a wave train of finite length $t \%$ velocity of light. We recall that the Fourier analysis used in the previous section is a way of expressing finite wave trains in terms of an infinite number of wave trains of

To these the following causes may be added:
5. The limitation of the number of regular vibrations by more or less abrupt changes of phase amplitude or place of vibration, caused by collisions.
6. The possible variations in the properties of the atoms within such narrow limits as to escape detection by other than spectroscopic observations.

Although conceding that cause 4 (Doppler broadening) was "the chief if not the only effective cause in operation when the density of the radiating body is low", he concluded that causes $1,3,4$, and 6 together are insufficient to account for the observed effects of line broadening. Cause 2 we shall call statistical broadening and will consider later. Cause 5 has been called velocity broadening, impact broadening, interruption broadening and, the term we shall use, collision broadening, and is Michelson's major contribution to the theory.

Consider Fig. 4. The circles represent perturbing (broadening) atoms whilst the arrow represents the trajectory at the centre of the emitter through the perturbers. Michelson used billiard ball atoms so that a collision is deemed to have taken place when the separation of the emitter and broadener centres is less than the sum of their atomic radii. Michelson assumed collisions had the following effect:

A collision has just occurred between points "a" and "b". The radiating atom emits coherent radiation fram "b" to "c", when another collision occurs. No more coherent radiation is emitted until "d". However, the radiation emitted after "d" is completely incoherent With that emitted between " b " and, "c". This is the crux of the argument. If t is now the time taken between "b" and "c", we have a wave train of finite length $t x$ velocity of light. We recall that the Fourier analysis used in the previous section is a way of expressing finite wave trains in terms of an infinite number of wave tratns of

Fig 4
Illustration of michelson: model

Fig Aa
model used in this work
infinite length. To obtain the relative magnitude of each of these infinite wave trains we calculate

$$
\begin{aligned}
J(w) & =\text { constantxhael } \int_{0}^{t} \exp \left(i\left(w-w_{0}\right) t^{\prime}\right) d t^{\prime} \\
& =\text { constant } x{\sin \left(\left(w-w_{0}\right) t\right)}_{\left(w-w_{0}\right)}
\end{aligned}
$$

We now suppose that this amplitude function represents the spectral line. Since intensity is always associated with the square of the amplitude, Michelson assumed that the intensity distribution within the line was given by
$I(w)=$ constant $x \frac{\sin ^{2}\left(\left(w-w_{0}\right) t\right)}{\left(w-w_{0}\right)^{2}}$
If all the velocities and all the free paths were equal, this expression should provide the widths of the spectral line. Taking this to be the separation of the minima to either side of the maximum, Michelson obtained a width of $\lambda^{2} v / c^{2} t$. For a particular line of hydrogen, he calculated a numerical value of 0.057 tenth-meter (sic) compared with his experimental value of 0.16 tenth-meter, an agreement to within an order of magnitude, which is excellent considering the simplicity of the theory. Not fully satisfied with this result, he CElculated an approximation to Rayleighs Doppler broadening formula and added the width he obtained from it to his own to obtain a width 0 . $\lambda(3 c t+\lambda) v / c^{2} t$, which overestimates the width to be 0.22 tenthmeter but provides better agreement with experiment.

Lurentz, 1906

Wleven years later, Lorentz removed one of the critical essumptions of Michelson's, namely that the intercollision times were all equal. His model was the same, a classical oscillator radiating undemped waves of frequency w_{0} until it is suddenly interrupted by a collision. After the collision radiation is resumed with the seme frequency but With a completely arbitrary phase relative to the phase before the
collision. For an intercollision time of t, this leads to the expression for $J(w)$. Lorentz then reasoned that the probability of collision in time t obeys an exponential law, ($1 / \tau$) $\exp (-t / 飞)$ for a mean intercollision time τ. The radiation therefore consists of a set of wave trains whose finite lengths have an exponential distribution. The intensity is given by integrating over this distribution,

$$
\begin{aligned}
I(w) & =\text { constant } \int_{0}^{\infty}|J(\omega, t)|^{2} \exp (-t / \tau) d t \\
& =\text { constant } \frac{1}{\left(w-w_{0}\right)^{2}+(1 / z)^{2}}
\end{aligned}
$$

This is the Lorentz line shape. Its half-width is equal to the collision frequency, which is generally found to be experimentally true. Since the collision frequency can be equated to $N . q v$, with N the number density of perturbers, q the collision cross-section and v their velocity (mean or r.m.s.), this width is thus proportional to the pressure at a constant temperature.

Lenz, 1924; Weisskopf, 1932

Contemporarily with the development of the correspondence principle and with the rise of quantum mechanics, a feeling arose that the Iorentz and Michelson theories could not be expected to survive quantum mechanics. However, beginning with Lenz'appeal to correspondences in 1924, a large number of authors have devoted themselves to showing the incorrectness of this viewpoint.

The first development concerns the definition of the cross-section q. In the Michelson model the atoru was'considered to be a hard billiard ball with a fixed diameter defining the cross-section. A collision between two "billiard balls" would only occur if the separation of their centres was less than the sum of their radil. Now we would
expect that short range forces, say van der Wails, between the broadener and the emitter would exert some influence on the broadening of a spectral line before a collision in the above sense occurs. This influence can be expected to manifest itself by a phase change in the emitted radiation as the two bodies approach one another. Weisskopf suggested an "optical collision diameter" within which a collision could be considered to have taken place, and which we now define. Consider the angular frequency w_{0}, which in the Michelson theory was a constant, unchanged unill 2 collision destroyed it. However if we now assume some sort of action at a distance, this frequency will no longer be constant but will change with time as the radiator and the perturber approach each other and enter the range of this force. If this force is some function of the emitter/ perturber separation, say $\nabla(r)$, then, setting $k=1$,

$$
\begin{aligned}
w_{0}(t) t & =w_{0} t+\int_{0}^{t} V(r) d t^{\prime} \\
& =w_{0} t+\eta(t)
\end{aligned}
$$

where w_{o} is the original frequency in the absence of any force and $\eta(t)$ is the change in the phase of the vibration due to the perturbation. The latter quantity was used by Weisskopf to define a collision: A collision has been undergone by the emitter when the in as of the emitted radiation has changed by 1 , i.e. when $\eta \geqslant 1$.

We are assuming binary collisions and straight line trajectories, so that at any time only two bodies are "colliding" in the sense above, and that the path of the perturber re. active to the emitter is a straight line. Then

$$
\begin{aligned}
\eta(t) & =\int_{0}^{t} V(r) d t^{\prime} \\
& =\int_{t_{0}}^{t_{0}+t} V\left(\sqrt{b^{2}+v^{\prime 2} t^{\prime 2}}\right) d t^{\prime}
\end{aligned}
$$

where b is the impact parameter, v is the velocity of the perturber relative to the emitter, and t, is the time from some arbitrary origin (Fig. 4a). The criterion $\eta b 1$ then defines for a flxed velocity a critical impact parameter, b_{c}. Since in general a smaller impact parameter leads to a greater value of η (since ∇ is usually inversely proportional to r) then the relation $\eta \geqslant 1$ defines a b_{c} below which all impacts broaden the line. The quantity πb_{c}^{2} then replaces the Iorentz cross-section andis called the "optical" cross section. of course the choice of the value 1 was completely arbitrary, but having chosen a critical phase this leads to a critical impact paraneter and an optical cross-section, which need not be related to the Iorentz cross-section.

We have now described the Lenz-Weisskopf modifications to the MichelsonIorentz theory. The results obtained from these are valid within a limited region, at low pressures and at frequencies near the line center. The reasons for these restrictions are two of the approximations we have made:
(1) Binary Collisions. By considering each collision to involve only two bodies, we are neglecting the influence of other perturbers on the collision. We are not only completely ignoring all perturbers which do not approach closer than the critical collision radius but also assuming that there is never more than one perturber within the collision "sphere". This approximation will break down at higher pressures.
(2) Zero collision time. The effects of very close collisions are also ignored in the sense that as soon as a perturber approaches within b_{c} of the emitter a collision is deemed to have occurred. No consideration is given to the magnitude of the canange in phase - η, and all η 's are concidered to be 1 . This will restrict the theory to the line contres if
we assume that the large frequency shifts associated with the line wings are due to large changes in the phase.

We next consider attempts to widen this range of applicability. Lenz first attempted to remove approximation (2), but only with partial success. The next major improvement was due to Lindholm.

Iindholm, 1938

We shall return to the Iindholm theory in the next chapter, but we first present the concepts behind his method. The idea seems to have been originally put forward by Lenz but was developed by Lindholm.

We recall that we can write

Since $I(w) \ll|J(w)|^{2}$
then $I(w) \alpha \int_{-\infty}^{+\infty} \operatorname{exp-i}\left\{\left(\omega_{-\infty}\right)\left(t^{*}-t^{\prime}\right)+\eta\left(t^{*}\right)-\eta\left(t^{\prime}\right)\right\} d t^{\prime} d t t^{*}$
$=\int_{-\infty}^{+\infty} \exp -i\left\{\left(\omega-\omega_{0}\right) t\right\} d t \int_{-\infty}^{+\infty} \operatorname{exp-i}\left\{\eta\left(t+t^{\prime}\right)-\eta\left(t^{\prime}\right)\right\} d t^{\prime}$

The integral over t^{\prime} is a time average over t^{\prime} and according to Boltamann's ergodic hypothesis can be replaced by a mean over a statistical distribution<exp-i $\left\{\eta\left(t+t^{\prime}\right)-\eta\left(t^{\prime}\right)\right\}>$. To calculate this mean we suppose that in a collision only a finite number of phase changes can occur, and for convenience we arbitrarily set this number to 2, η a and η b. Suppose we have A collisions of type "an" and B collisions of type "b". Then

$$
\left.\eta\left(t+t^{\prime}\right)-\eta^{\prime} t^{\prime}\right)=A q_{a}+B \eta_{b}
$$

The collision cross-section q is made up of two differential crosssections,

$$
q=q_{a}+q_{b}
$$

and the probability that A collisions of type $"_{a}{ }^{\prime \prime}$ and B collisions of type "b" occur in a time interval t is

$$
\left(\frac { (q _ { a }) } { (q) } \frac { (q } { b } _ { (q) } ^ { (q) } \frac { 1 } { A ! B ! } \left(\frac{t}{(z)}{ }^{A+B} \exp (-t / z)\right.\right.
$$

Then

$$
\left\langle\operatorname{exp-i}\left\{\eta\left(t+t^{\prime}\right)-\eta\left(t^{\prime}\right)\right]\right\rangle=\sum_{A} \sum_{B}\left(\frac{q_{a}}{q}\right)^{A}\left(\frac{q_{b}}{q}\right)^{B} \frac{r}{A!B!}\left(\frac{t}{z}\right)^{A+B} \exp (-t \mid z) \exp -i\left(A \eta_{z}+B \eta_{b}\right)
$$

and since

$$
\sum_{A=0}^{\infty}\left\{\frac{q_{a}}{q} \frac{t}{z} \exp i \eta_{a}\right\}^{A} \frac{1}{A!}=\exp \left\{\frac{q_{a}}{q} \frac{t}{t} \exp i \eta_{a}\right\}
$$

we obtain

$$
\left\langle\operatorname{exp-i}\left\{\eta\left(t+t^{\prime}\right)-\eta\left(t^{\prime}\right)\right\}\right\rangle=\exp \left\{\frac{t}{q t}\left(q_{a} \exp -\eta_{a}+q_{b} \operatorname{axp}-q_{b}\right)-\frac{t}{\tau}\right\}
$$

A more general expression for any number of phase changes can be obtained by the same method

$$
\left\langle\exp -i\left\{\eta\left(t+t^{\prime}\right)-\eta\left(t^{\prime}\right)\right\}\right\rangle=\exp \left\{\frac{t}{t} \sum_{i} \frac{q_{i}}{q}\left(\exp -i \eta_{i}-1\right)\right\}
$$

If we define

$$
\begin{aligned}
& \alpha=\frac{1}{q} \sum_{i} \frac{q_{i}}{q}\left(\cos \eta_{i}-1\right) \\
& \beta=\frac{1}{q} \sum_{i} \frac{q_{i}}{q} \sin \eta_{i}
\end{aligned}
$$

the line inteusily is

$$
\begin{aligned}
I(w) & =\int_{-\infty}^{+\infty} \exp -i\left\{\left(w-w_{0}\right) t\right\} \exp \{(\alpha-i \beta) t\} d t \\
& =\frac{\text { constant }}{\left(w-w_{0}+\beta\right)^{2}+\alpha^{2}}
\end{aligned}
$$

This is the fundamental result due to Lindholm. It has a Lorentzian shape but exhibits a feature not found in Lorentz's profile, a shift of the whole spectral line by an amount β, a shift which is experimentaily observable. This shift was obtained by considering "weak" collisions, that is collisions which individually do not cause a phase change greater than 1, but which have a cumulative effect on the emitter. For a fixed velocity these are caused by collisions With large impact parameter, $b>b_{c}$.

Iindholm and Unsold both showed why ignoring distant collisions led to no line shift for the case of short range forces, $V(r) a r^{-6}$. The explanation also holds for long range potential, and at this stage can best be explained by reference to Fig. 5. The area under the upper curve is a measure of the broadening, the area under the lower curve is a measure of the shift. By only condidering the area to the left of $\eta=1$ the simple theory obtains most of the broadening, but the shift is due to values of η much less than 1.

Iindholm, 1946

Lindholm next considered the effect of including effects arising from the duration of the collision. Whereas the change in phase as a function of time had previously been considered a step function being zero up to a time t when it immediately rose to a fixed quantity, Lindholm investigated the way in which the function rose from zero to this constant. As he had previously consdered "Incomplote" phase changes, i.e. phase changes with $\eta<1$, he now coneidered "incomplete"

collision times.

Figure 6 is due to Lindholm. The five arrows represent the five general types of collisions he examined. The time interval t will be used to define a value of $\eta(t)$ and we shall call the "time of interest". Collision 1 last for time t_{1}, but does not occur during the "time of interest" and is therefore ignored. Collisions 2 and 5, lasting t_{2} and t_{5}, occur partly within the time of interest, and that part of the time ($t_{2}-x$ and y) is included in the calculation. Collision 4 occurs wholly within t and is wholly included, whereas. collision 3 is only included for a time t. A phase change per unit time, k_{i}, is defined so that for a collision 1 starting within a time interval $d x$ and lasting t_{i} the total phase change is

$$
k_{1} Q\left(t_{1}-x\right)
$$

where

$$
\begin{array}{ll}
Q\left(t_{i}-x\right)=0 & \text { for } t_{i}-x<0 \\
Q\left(t_{i}-x\right)=t_{i}-x & \text { for } 0<t_{i}-x<t \\
Q\left(t_{i}-x\right)=t & \text { for } t<t_{i}-x
\end{array}
$$

On the previous models, collisions were considered as points in time and a collision was said to have occurred if that point fell within the time interval t.

Defining $N(x, i)$ to be the number of collisions of type 1 originating during the interval dx , the collisions will contribute the factor

$$
\exp -1\left(N(x, i) k_{i} Q\left(t_{i}-x\right)\right)
$$

to the mean of expi $\left(\eta\left(t^{\prime}+t\right)-\eta\left(t^{\prime}\right)\right)$. Generalizing this expression and by analogy to his treatment of "partial" phases, he obtained

$\xrightarrow{(1)} \longrightarrow$
(2)

(3)

Figure 6
Classification of Collisions according to Lindholm

$$
\begin{aligned}
& \left\langle\operatorname{sen}\left[\eta\left(t^{\prime}-t\right)^{\prime}-\eta\left(t^{\prime}\right)\right]\right\rangle=\sum_{N\left(x_{1}, 1\right)} \ldots \sum_{N\left(x_{1}, i\right)} \ldots \sum_{N\left(r_{2}, i\right)} \ldots \sum_{N\left(x_{j}, i\right)} \ldots \sum_{N\left(y_{0}, i\right)} \ldots \prod_{i} \prod_{d x_{j}} d y_{i} \\
& \times \frac{1}{N\left(x_{j} i\right)!\exp \left(d x_{j} / z\right)}\left(\frac{q_{k}}{q} \frac{d x_{j}}{z}\right)^{N\left(y_{, i}\right)} \frac{1}{N\left(y_{e}, i\right)!\exp \left(d y_{e} / z\right)}\left(\frac{q_{i}}{q} \frac{d y_{l}}{z}\right)^{N\left(y_{l}, i\right)} \\
& x \operatorname{exp-i}\left\{N\left(x_{j}, i\right) k_{i} Q\left(t_{i}-x\right),+N\left(y_{l}, i\right) k_{i} Q\left(t_{i}-y\right)\right\}
\end{aligned}
$$

Formulae for line profiles have only been obtained from this equation for van der Waals forces in limits of high and low pressures, where they show asymmetry in the shape of the line. For high pressures, agreement was obtained with the "statistical" result of Margenau (see Appendix 1), and at low pressure two different equations were obtained for the red and blue wings of the line. The red wing decayed as $\left(W-w_{0}\right)^{-3 / 2}$ as had been calculated by Kuhn and by Margenau, and in agreement with the experimental results of tuhn's. In the blue wing A dependence of $\left(w-w_{0}\right)^{-7 / 2}$ was obthined, in agracment with measuremente by Minkowsled.

CAAPTER
generalization of the classical methods
5.1 The Autocorrelation function treatment

We recall that

$$
\begin{aligned}
I(w)= & \text { constant } \times \int_{-\infty}^{+\infty} \exp -i\left\{\left(\omega-\omega_{0}\right) t\right\} d t \\
& x \int_{-\infty}^{+\infty} \exp -1\left\{\eta\left(t+t^{\prime}\right)=\eta\left(t^{\prime}\right)\right\} d t^{\prime}
\end{aligned}
$$

A convenient way of writing this is

$$
\begin{aligned}
& I(w)=\text { corstant } x \int_{-\infty}^{+\infty} \exp -1\left\{\left(w-w_{0}\right) s\right\} \phi(s) d s \\
& \phi(s)=\int_{-\infty}^{+\infty} \exp -i\left\{q^{\left(s+t^{\prime}\right)-} q^{\left(t^{\prime}\right)}\right\} d t^{\prime}
\end{aligned}
$$

The function $\phi(s)$ was first called the "correlation function" by Foley and is now much used in quantum mechanical treatments, where it is called the "autocorrelation function". It is large when $s=0$ and decreases with increasing s. Speaking unscientifically, it is a measure of how much the atom "remembers" its previous state and of how quickly it "forgets".

According to the Ergodic theorem the integral over t' can be replaced by an average over a statistical distribution, so that Lindholm's method in fact involved calculating the autocorrelation function. We note that if we can write $\ln \phi(s) \quad$ - As $+i \sin$ (with A and B both real) then the line profile will be Lorentzian with a width of A and a shift of B. If $\ln \phi(s)$ has a more complicated dependence on s, an asymetric profile is obtained.
5.2 The Classical model

We consider the interaction between a hydrogenic atom and a passing charged particle. We neglect "back reaction" from the atom to the particle, so that the particle trajectory is described by a straight line. We define the distance of closest approach to be the impact parameter, b, and assign a constant velocity ∇ to the particle. To define the collision uniquely in time we also define a time of closest approach, t_{0}, that is the time at which the particle was at a distance b from the atom.

The set of parameters (b, v, t_{o}) define a unique collision. In a plasma the atoms undergo many such coslisions. Since the number of radiators is usually a small fraction of the total number of particles, the average distance between radiators will be large enough so that any interaction between them can be ignored. In the manner of smith.etal we can regard the system as a large number of non-interacting cells, each cell containing one radiator and a large number of perturbers undergoing collisions with it, each collision defined by a set of parameters (b, v, t_{o}).

The theory presented here suffers from one major restriction in that we only consider collisions which do not significantly change the state of the atom. We restrict ourselves to cases which involve no change in the principal quantum number n, but allow small proportional changes in the angular quantum number 1 since these do not greatly affect the phase of the motion and only cause slight distortion in the electron orbit. We do not consider the case of $n-2$ and 1 changing from 0 to 1 , which completely changes the shape of the orbit. We are thus dealing with classical perturbation theory as opposed to quantum mechanical perturbation theory which does not allow any change in any of the quantum numbers.

It is known that in certain cases, for instance for small impact parameters, the atomic states are completely disrupted by strong collisions. However it is as yet impossible to provide a general theory which would include the effect of impact parameters of the same order of magnitude as the Bohr radius of the atom, especially for the weakly bound electrons in highly excited states. This would involve a classical three-body problem for a quantum mechanical interweaving of wavefunctions) which might be solved by Monte-Carlo simulations of the collisions, as investigated by Banks et al(1969). These strong collisions cause a total disruption of the phase of the emitter and can be treated individually by the theory of Lorentz.

Since we do not claim that this theory is valid for $b \rightarrow 0$, we can make the following assumptions:
(1) The orientation of the classical atom with respect to the trajectory of the perturber does not need to be considered.
(2) The interaction between the emitter and the perturber can be represented by the first term in a multipole expansion, i.e. the dipole approximation is made.
(3) The electric field due to the perturber is uniform over the atom.

We shall show in the following sections that although the value of b does determine what physical approxdmations can be made, more critical parameters are the product and the ratio of the impact parameter and velocity.

THEORY

We now define two new variables, and let

$$
\Delta \eta(s)=\eta(t+s)-\eta^{(t)}
$$

so that $\Delta_{q}(s)$ is the change in $\eta(t)$ after a time s (we recall that $\eta(t)$ is the change in the phase after a time t) and we choose $p(\Delta q)$ to be the probability of that phase change $\Delta \eta$ occuring in. the time interval s. Then the autocorellation function can be written

$$
\phi(s)=\int_{-\infty}^{+\infty} d \Delta_{\eta} p\left(\Delta_{\eta}\right) \exp -i \Delta \eta
$$

Let X be a variable or a set of variables which define a unique collision, and let $\alpha_{x}=P(X) d X$ be the probability that a collision defined by \mathbb{X} occurs in the interval $d X$ and nowhere else. Since X defines a unique collision it also defines a unique $\Delta \eta_{x}(s)$ so that the probability of that collision causing a phase change is

$$
p_{x}\left(\Delta_{\eta}\right)=\left(1-\alpha_{x}\right) \delta\left(\Delta_{\eta}\right)+\alpha_{x} \delta\left(\Delta_{\eta}-\Delta_{\eta_{x}}(s)\right)
$$

The autocorellation function for that X collision is then given by

$$
\phi_{x}(s)=\left(1-\alpha_{x}\right)+\alpha_{x} \exp -\left\{i \Delta_{\eta_{x}}(s)\right\}
$$

We now wish to consider the cumulative effect of different collisions. We make the simplest assumption, that collisions are "additive" in that the total phase shift caused by a series of collisions is given by the sum of the phase shifts which would have been caused by each of the collisions occurring singly. We do not require the collisions to be sudden and not to overlap in time, but only assume that the perturbers do not interact with each other and that consecutive
collisions permute. The resultant probability $p(\Delta \eta)$ of a final phase shift Δ_{η} occurring due to different X collisions is the convolution of the individual probabilities $\rho_{x}(\Delta \eta)$, and since the Fourier transform of a convolution is the product of each of the Fourier transforms

$$
\phi(s)=\prod_{x} \phi_{x}(s)
$$

or

$$
\begin{aligned}
\ln \phi(s) & =\sum_{x} \ln \phi_{x}(s) \\
& =\sum_{x} \ln \left\{1-\alpha_{x}+\alpha_{x} \exp -\left[i \Delta_{\eta_{x}}(s)\right]\right\}
\end{aligned}
$$

This can be rewritten in a more convenient form. By adjusting the interval $X_{,} \alpha_{x}$ can be made as small as necessary, and we can write

$$
\ln \phi(s)=\sum_{x} \alpha_{x}\left\{\exp -\left[1 \Delta_{x}(s)\right]-1\right\}
$$

so that, replacing the sur over X by an integral,

$$
\ln \phi(s)=\int d x P(x)\left\{\exp -\left[1 \Delta q_{x}(s)\right]-1\right\}
$$

with the line intensity related to $\phi(s)$ by

$$
I(w)=\text { constant } \int_{0}^{\infty} d s \exp -[i \Delta w s] \quad \phi(s)
$$

we now calculate A_{q}.

Without loss of generality, using the definition of η, we recall that $h=1$ and redefine

$$
\begin{gathered}
\Delta \eta(s)=\eta(t+s)-\eta(t) \\
\text { to be } \eta(s)
\end{gathered}
$$

and define

$$
\eta_{x}(s)=\int_{0}^{s} d t \Delta w_{x}(t)
$$

In general, the form of $\Delta w_{x}(t)$ may not be simple. However we are mailing a dipole approximation and therefore set it proportional to
the local electric field at the emitting atom. (We are implicitly assuming that the field is uniform over the atom, in keeping with our requirement of large impact parameter.) Then where c is the fore constant and we have set $X=\left(b, v, t_{0}\right)$, this leads to a value for the phase shift of

$$
\eta^{(s)}=\frac{c}{b v}\left\{\arctan \left[\frac{v}{b}\left(t_{0}+s\right)\right]-\arctan \left[\frac{v t_{0}}{b}\right]\right\}
$$

Similar expressions for $\eta(s)$ can be obtained using the same assumptions for shorter range potentials.

Since t_{0} is only defined to an arbitrary additive constant, we can define a new t_{0} to he $t_{0}+\frac{1}{2} s$. We also introduce a parameter, a, whose significance will become apparent later:

$$
a=\frac{c}{2 b v}
$$

Then

$$
\eta(s)=2 a\left\{\arctan \left[\frac{v}{b}\left(t_{0}+\frac{1}{2} s\right)\right]-\arctan \left[\frac{v}{b}\left(t_{0}-\frac{1}{2} s\right)\right]\right\}
$$

This expression for $\eta(s)$ can be further simplifled by combining the two arctens. Care has to be taken since there is a cut in the arctan plane, and depending on the relative values of t_{0}, s, and v / o it is possible to move from one sheet to another. To allow for this we write

$$
\begin{aligned}
& \eta(s)=2 a \arctan \left\{\frac{S}{1+T^{2}-\frac{2}{2} S^{2}}\right\}+2 a \pi \cdot H \\
& S=\frac{V s}{b}, T=\frac{V t}{b}
\end{aligned}
$$

and H is a step function with values

$$
\begin{aligned}
H & =0,1+T^{2}-\frac{3}{3} S^{2} \geqslant 0 \\
& =1, \quad 1+T^{2}-\frac{3 S^{2}}{2}<0
\end{aligned}
$$

The presence of the step function is a major source of difficulty in computing actual line profiles from the analysis presented above and it is sometimes more useful to consider the form of η which involves the two arctans.

Summarizing, the line profile is given by the following set of equations:

$$
\begin{aligned}
& I(w)=\text { constant } \int_{0}^{\infty} d s \phi(s) \exp +i \Delta w s \\
& \ln \phi(s)=4 \pi N v \int_{0}^{\infty} b d b \int_{0}^{\infty} d t .\{\exp (-i \eta)-1\} \\
& \eta=2 a\left\{\arctan \left(T+\frac{1}{2} S\right)-\arctan \left(T-\frac{1}{2} S\right)\right\} \\
& a=\frac{c}{2 b v}, T=\frac{v t}{b} 0, S=\frac{v s}{b}
\end{aligned}
$$

In addition to the previously mentioned assumptions, we have replaced what should have been an average over a Maxwellian distribution over velocities by a mean (or root mean square) velocity v. Although this assumption is not necessary for the model, it is in keeping with the feelings and the experience of most workers in the field (private communications). The probability $P(X)$ has thus been replaced by $P(b) P\left(t_{0}\right)$, and

$$
\begin{aligned}
& P\left(t_{0}\right) d t_{0}=\frac{i t}{\tau} \\
& P(b) d h=\frac{2 \pi b d b}{q}
\end{aligned}
$$

for a mean intercollision time ε and a total collision cross-section q. Since the collision frequency $1 / \tau$. Nvq for a density N, the two probabilitigs can be combined to give the quoted result.
caiculation of line profile

We first show that the result obtained reduces to the well know expressions of the impact and the statistical theory in the appropriate limits.

For small values of v, we would expect to obtain the statistical shape which arises from assuming fixed perturbers. Setting $r^{2}=b^{2}+v^{2} t_{0}^{2}$, so that r is the perturber/emitter separation at $\mathrm{t}=0$, then letting $\mathrm{V} \rightarrow 0$,

$$
\ln \phi(s)=4 \pi N \int_{0}^{\infty} r^{2} d r \quad\{\exp -i \eta-1\}
$$

and in this case

$$
\eta=\frac{c s}{r^{2}}
$$

This is the statistical result obtained by Margenau, and which is valid in the line wings. We note that although it is obtained by setting $v=0$, a sufficient requirement is that $v^{2} s^{2} \ll 4\left(v^{2} t_{0}{ }^{2}+b^{2}\right)$, i.e. $S^{2} \ll 4\left(T^{2}+1\right)$ and that $v s b \ll b^{2}+\nabla^{2} t^{2}$, i.e. $S \ll\left(T^{2}+1\right)$, which will occur when V is small, s is amall, or b is large. A sufficient requirement for the validity of the statistical approximation is thus that the distance travelled during the time of interest (s) should be small compared with the impact parameter.

For $\mathrm{v} \rightarrow \infty$, the Lindholm result is obtained. Again the limit is strictly defined in terms of S and T. If

$$
|S| \ll\left|1+T^{2}-\frac{4}{2} S^{2}\right|
$$

then

$$
\begin{aligned}
\ln \phi(s) & =4 \pi N v \int_{0}^{\infty} b d b \int_{0}^{\infty} d t_{0}\{\exp (-i \eta)-1\} \\
\eta & =2 a \pi \quad, t_{0} \leq \frac{1}{2} s \\
& =0 \quad, t_{0}>\frac{1}{2} s
\end{aligned}
$$

so that

$$
\ln \phi(s)=2 \pi N v s \int_{0}^{\infty} b d b\{\exp (-2 i a \pi)-1\}
$$

which is the Lindholm result.

It is instructive to examine a plot of η as a function of t_{0} for various values of s (Figs.7). The Lindholm approximation is a step function of height $2 a \pi$ terminating at $t_{0}=\frac{1}{2} s$ (curve a). The Len result replaces the sudden chop to zero by a steep slope (curve b), and the Lindholm variation of the Len result (curve c) is an adjustment of the slope until agreement is obtained with the statistical limit. All three seem at first to be reasonable approximations to the exact result (curve d) although the only exact agreemont is at $t_{0}=0$ and $t_{0}=\frac{+}{2} s$ (since the function is symmetric about $t_{0}=0$). As s increases, the exact curve approximates more and more to a step function, and agreement with the approximation improves. We shall show, however, that as the parameter a increases, the increase in the height of the function shows fundamental failings in these approximations.

We start by attempting to evaluate $\ln \phi(s)$ by nonnumerical "analytical" techniques. We define

$$
\ln \phi(s, b)=\int_{0}^{\infty} d t_{i}\{\exp (-1 \eta)-1\}
$$

and try to evaluate $\ln \phi(\mathrm{s}, \mathrm{b})$ followed by

$$
\ln \phi(s)=\int_{0}^{\infty} b d b \ln \phi(s, b) \cdot 4 \pi N v
$$

W) use the trigonometric property

$$
\exp (-2 i x) \equiv 1-\frac{2 i \tan x}{1+i \tan x}
$$

so that since

$$
\eta(s)=2 a \arctan \left\{\frac{s}{1+T^{2}-\frac{2}{4} S^{2}}\right\}+2 a \pi H
$$

ther

$$
\exp (-i q)=\left\{1-\frac{2 i S}{1+T^{2}-\frac{1}{4} S^{2}+i S}\right\}^{a} \quad \exp (-2 a i \nexists H)
$$

If a is integer, we can use a polynomial expansion to obtain

$$
\exp (-i \eta)=\sum_{m=0}^{a}\binom{a}{m}\left\{\frac{-2 i S}{1+T^{2}-\frac{1}{4} S^{2}+i S}\right\}^{m}
$$

and

$$
\left.\left.\ln \phi(s, b)=\sum_{m=1}^{a}\binom{a}{m} \int_{0}^{\infty} d t_{0} \right\rvert\, \frac{-2 i S}{1+T^{2}-\frac{1}{i} S^{2}+i S}\right\}^{m}
$$

which can be solved using contour integration

$$
\begin{array}{r}
\begin{array}{r}
\ln \phi(s, b)= \\
\left.\frac{i b}{v} \sum_{m=1}^{a}\binom{a}{m} \frac{(-2 i S)^{m}}{(m-1}\right)^{m}\left[\begin{array}{l}
\left(\frac{d}{d T}\right)^{m-1}
\end{array} \frac{1}{\left(T+i-\frac{1}{2} S\right)^{m}}\right] \\
\text { at } T=i-\frac{1}{2} S \\
\text { i.e. } \quad \ln \phi(s, b)=-\pi \frac{i b}{v m} \sum_{i}^{a}\binom{a}{m} \frac{(2 m-2)!}{(m-1)!(n-1)!} \frac{(2 i S)^{m}}{(2 i-S)^{2 m-1}}
\end{array}
\end{array}
$$

This is exact, in that it follows directly from the definition of η for the special case of integer values of the parameter a.

For non integer values of a, we can still carry out an infinite expansion. This is done in Appendix 2 and the "integer" solution is shown to be a special case of a more general solution which unfortunately is of little practical use, due partily to very slow
convergence. The exact "integer" solution however is of use as a test of any other expression which may be obtained for $\ln \phi(s, b)$.

Aftor numerous vain attempts, it was decided that there was no general closcd form exact solution for $\ln \phi(s, b)$. As $\ln \phi(s, b)$ was proportional to a function of only a and S, the limiting behaviour as a and S tended to 0 or ∞ were examined.

For small values of a, and for smalls $/ 1+T^{2}-\frac{1}{4} S^{2}$,
$a \arctan \left\{\frac{S}{1+T^{2}-\frac{1}{3} S^{2}}\right\} \bumpeq \arctan \left\{\frac{a S}{1+T^{2}-\frac{1}{4} S^{2}}\right\}$

Then

$$
\begin{aligned}
\ln \phi(s, b) & \Omega-\int_{0}^{\infty} d t_{0} \frac{2 a i S}{1+T^{2}-\frac{t}{4} S^{2}+2 a i S} \\
& =\frac{b}{v} \frac{2 \pi a S}{2 i-a S}
\end{aligned}
$$

The factor b arises since we are integrating a function of T with r spect to t_{0}. Alternative expansions for small a reduce to the alove expression. We could for instance consider an expansion for small 1. Starting from

$$
\ln \phi(s, b)=\int_{0}^{0} d t_{0}\left\{\exp \left[-i c \int_{0}^{j} \frac{d t}{b^{2}+v^{2}\left(t_{0}+t\right)^{2}}\right]-1\right\}
$$

Un expand the exponential and reverse the order of integration

$$
\begin{aligned}
\ln \phi(s, b)= & -i c \int_{0}^{s} d t \int_{0}^{\infty} d t_{0} \frac{1}{b^{2}+v^{2}\left(t+t_{0}\right)^{2}} \\
& -c^{2} \int_{0}^{s} \int_{0}^{\infty} d t_{1} d t_{2} \int_{0}^{\infty} d t_{0} \frac{1}{b^{2}+v^{2}\left(t_{1}+t_{0}\right)^{2}} \frac{1}{b^{2}+v^{2}\left(t_{2}+t_{0}\right)^{2}}
\end{aligned}
$$

After somb analysis this leads to

$$
\ln \phi(s, b)=-1 a / s-2 \pi a^{2} \frac{b}{v}\left\{s \arctan \left(\frac{1}{2} s\right)-\ln \left(1+\frac{3}{4} s^{2}\right)\right\}
$$

For small values of S and aS both these approximations reduce to

$$
\ln \phi(s, b)=-i a \Pi s-\frac{\Pi}{2} a^{2} s^{2} \frac{b}{v}
$$

We can show that for small s the "integer a" solution reduces to this expression. Let

$$
X=\frac{2 i S}{(2 i-5)^{2}}=\frac{-8 S^{2}-8 i S+2 i S^{3}}{\left(4+S^{2}\right)^{2}}
$$

then

$$
\ln \phi(s, b)=\pi \frac{i b}{v}(s-2 i) \quad\left\{a x+a(a-1) x^{2}+a(a-1)(a-2) X^{3} \cdots\right\}
$$

for integer a, where the ratio of the mth term to the ($m-1$) is

$$
2 \frac{(a-m+1)(2 m-3) x}{m(m-1)} x \quad, m \neq 1
$$

This is exact for integer values of a. This expression also holds true for small value of a, although the number of terms become infinite. For small $s, x \bumpeq-\frac{1}{2}\left(i S+s^{2}\right)$, and

$$
x^{m} \bumpeq\left(\frac{1}{2}\right)^{m}(-1)^{m}\left\{(i S)^{m}+m S^{2}(i S)^{m-1}\right\}
$$

so that

$$
\begin{array}{r}
\ln \phi(s, b)=\pi \frac{i b}{v}(s-2 i)\left\{\frac{a}{2}\left(i S-s^{2}\right)+\frac{a}{4}(a-1)\left(+2 i s^{3}-s^{2}\right)+\frac{a}{3}(a-1)(a-2)\right. \\
\left.\left(+i S^{3}+3 s^{4}\right) \cdots\right\}
\end{array}
$$

noting that each term has some cancellation with its successor. Having checked for convergence, the required result is obtained.

For large values of S , the Lindholm approximation is obtained. If $S \geqslant 2 \sqrt{1+T^{2}}$, and $S \gg 1$, (which Lindholm effectively replaced by $S \geqslant 2 T)$

$$
\begin{array}{ll}
\eta(s) \bumpeq 2 a \pi, & s \geqslant 2 \sqrt{1+T^{2}} \\
\eta(s) \bumpeq 0 & \text { otherwise }
\end{array}
$$

so that

$$
\ln \phi(s, b)=\frac{b}{v}\{\exp (-2 i a \eta)-1\} \sqrt{\frac{s^{2}}{4}-1}
$$

or, since S is large

$$
\ln \phi(s, b)=\{\exp (-2 i a \nexists)-1\} \quad \frac{1}{2} s
$$

This unfortunately does not agree with the exact "integer a" solution, since it is zero for all integer values of a. The reason is that a complete expansion of η for large values of S is

$$
\begin{aligned}
\eta(s) & \approx 2 a \lambda-\frac{4 a}{S}\left\{1+T^{2}-\frac{1}{4} S^{2}\right\} \quad, \quad T^{2} \leqslant \frac{1}{4} S^{2}-1 \\
& \approx \frac{4 a S}{1+T^{2}-\frac{1}{4} S^{2}} \quad . \quad T^{2}>\frac{2}{4} S^{2}-1
\end{aligned}
$$

Since we then consider an integrand of $\exp (-i \eta)-1$, it is insufficient to only take the dominant term in the first expansion whenever the value of a is close to an integer. In those regions, the lindholm approxination breaks down. Further, since we are considering trigonometric functions, there is no guarantee that that contribution to the integral arising from large values of T will not contribuie significantly. By taking these extra terms into account, better appa ximations can be obtained for high values of S .

By combining the various limiting cases for high and low S and a, and by other approximations, integrable forms of $\ln \phi(s, b)$ can be obtained which lead to analytic expressions for $\ln \phi(s)$ which were numerically integrated to give line profiles. These profiles were unaccoptable since they exhibited spurious "satellite" lines between the line centre and the line wings. The "satellites" were due to the crude way in which the asymptotic expansions for a, S-on (say η_{∞}) and a, $S \rightarrow 0$ (say η_{0}) were extrapolated back to intermediatc regions. This was checked by examining the totally differont line shates which weje oblained using different extrapolation techniques
one in which η was chosen to be η_{0} until $\eta_{0}=\eta_{0}$ when η was set to η_{0}, the other in which

$$
\eta=\frac{10.100}{20+200}
$$

It was therefore dccided that any method which did not produce satisfactory results for intermediate values of a and S would produce spectral lines which although satisfactory in the wings and in the centre, were rrong in the intermediate region. Since the behaviour of a line over the whole profile was the purpose of this investigation, and since it was felt that no way could be found to produce a general analytical expression for $\ln \phi(s)$, the problem had to be solved on a computer.

MMERICAL COMPUTATION OF LIIV PROFILE

Most of the computing was carried out on a CDC 7600, after attempts on an Elliot 4100. Various programs were written to calculate ti.e triple integral

$$
\begin{aligned}
& I= \\
& \ln \phi(s)=4 \pi N v \int_{0}^{\infty} \exp (-i \Delta w s) \phi(s) d s \\
& \operatorname{In} \phi(s, b)=\int_{0}^{\infty}\{\exp (-i / \ell)-1\} d t, \\
& \eta=2 a\left\{\arctan \left(T+\frac{1}{2} S\right)-\arctan \left(T-\frac{1}{2} S\right)\right\} \\
& a=\frac{c}{2 \dot{b}}, \quad T=\frac{v t}{b}, \quad S=\frac{v s}{\dot{b}}
\end{aligned}
$$

In practice it was found that the imaginary part of the integral over the impact parameter could diverge as $b \rightarrow \infty$, and in those cases the upper limit of b was replaced by $b_{\text {max }}$, whose value will be discussed later.

The integral was evaluated by defining a new variable

$$
x=\frac{u}{u+t}
$$

The parameter u was varied to check the sersitivity of the integrating method, since the value of in $\rho(s, b)$ should be independent of the value of u. The limits of integration became (0,1), and an n-point Gaussian quadrature method was used. For selected values of a and S, n was varied from 4 to 20 , and an optimum value of 12 was chosen as using more points changed the value of the integral by less than about 5\%. Varying the value of u from 0.1 to 1 to 10 caused
negligible change. The alternative form of η combining the two arctangents was found to be computationally 20% faster andwas therefore used.

The numerical values obtained provided an integrand for the b integral which was non-osciilatory and which was easily integrated and checked to an accuracy of better than a few percent. A trapezoidal rule technique was used to calculate the Fourier transform, and obtain a line profile. Unfortunately the resuiling line profiles did not agree with the known and accepted shapes in the centre and in the wings. The three integrals were then checked simultaneous, inter alia by varyingu and n, and it was belatedily realised that since we are dealing in the Fourier transform with terms which involve the sine and cosine of in $\phi(s)$, it is essential to calculate In $\phi(s)$ extremely accurately when the imaginary part of In $\phi(s)$ is much greater than 1. To obtain an accuracy of 10% in the line shape we need to calculate $\{\ln \hat{C}(s)$ modulus $2 \pi\}$ to better than 10% and not in $\phi(s)$ itseif. This was found to be impossible for large values of a, even using hundreds of points in the Gaussian quacfature. The program was therefore abandoned and was only used as a check in the relevant regions for the next suite of programs. The new programs were wititen with the aim oi obtaining a value of $\ln \phi(s)$ accurate to the linit of the single length precision of the computer, i.e. to about 13 significant figures.

7.1 t integral

We first discuss the physical significance of the dimensionless parameters a, S, and 7 . Since t is the time of closestapproach, $v t$ is the distance between the perturber's position at $t a 0$ and its point of closest approach. T is then the ratio of this distance
to the impact parameter and is the tangent of the angle subtended at the atom'by the distance covered between times 0 and t. (Fig. 4a). The distance travelled during the time of interest (the autocorellation time s) is vs, and S is the ratio of that distance to the impact parameter. The value of the paramoter a indicates tho streneth of the collision and its effect on the atom. As the impact parameter and the velocity decrease, so a increases, and the collisions becote more violent.

In calculating in $\phi(s, b)$ we use as a check the various approximations derived above for small and large value of a and S We are also helped by the fact that given a and S the phase shift η is bounded

$$
0 \leqslant \eta \leqslant 2 a \pi
$$

and

$0 \leqslant \eta \leqslant 2 a \arctan (S)$, if $T^{2}>2 S^{2}-1$
or $\quad 0 \leqslant 2 a S$, if $\quad S<1$

Difficuities arise when a is large since we are then trying to evaluate a highly oscillatory function, the number of oscillations being approximately equal to a (Fig. 8). For fixed v and c, these anse from smallb, and on physical grounds we are not interested in the behaviour of $\ln \phi(s, b)$ as $b \rightarrow 0$ since all the assumptions on which the model is based become invalid. Since we are claiming that the small b region does not contribute significantly to the broadening, all that we require is that $\mathrm{as} \mathrm{b} \longrightarrow 0$, In $\phi(s, b)$ should be smooth and continuous.

If the impact parameter is such that a $\gg 1$, we cannot approximate the arctangent, since any small approximation we make will be multiplied by a, and may become significant. If, for example, we expand the arctangent to an accuracy of 1 part in 10^{3}, and if a $\sim 10^{3}$, tine value obtained for $\sin (\eta)$ will be meaningless. In

Fig8 a

$$
\square
$$

fact we must continue integrating at least until $t \geqslant t_{\text {max. }}$, where $\eta<1$ for all $t>t_{\max }$. For $S>2$ this immediately requires

$$
T^{2}>\frac{1}{4} S^{2}-1
$$

If we define $t_{\max }$ by requiring that $\eta \ll 1$ for all $t>t_{\max }$, we can expand $\exp (-i \eta)$ and evaluate

$$
\left.\int_{\max }^{\infty}\{-i\}-\frac{1}{2} \eta^{2}\right\} d t
$$

Alternatively the following series of approximations can be made:
i) If $T^{2} \gg\left|1-\frac{1}{4} S^{2}\right|$

$$
\eta \Omega 2 a \arctan \left\{\frac{S}{T^{2}}-\left(1-\frac{1}{T} S^{2}\right) \frac{S}{T^{4}}+\left(1-\frac{1}{4} S^{2}\right)^{2} \frac{S}{T^{6}} \cdots \cdots\right\}
$$

ii) If also $T^{2} \gg S$ (which would normally follow)

$$
\eta \simeq \frac{2 a S}{T^{2}}-\left(1-\frac{1}{2} S^{2}\right) \frac{2 a S}{T^{4}}+\cdots \cdot
$$

iii) If further $T^{2}>2 a S$

$$
\exp (-i \eta)-1 \simeq-\frac{2 i a S}{T^{2}}+\left(1-\frac{1}{1} S^{2}\right) \frac{2 i a S}{T^{4}}-\frac{2 a^{2} S^{2}}{T^{4}} \cdots \cdot
$$

so that if

$$
\frac{\mathrm{v}^{2} t^{2}}{\mathrm{~b}^{2}} \equiv \mathrm{~T}_{\max }^{2}>\max \left\{\left|1-\frac{\mathrm{s}^{2}}{4}\right| \quad, \mathrm{s}, 2 \mathrm{a},\right\}
$$

where $\max \{x, y, z\}$ means the greatest of x, y, z, then

$$
\int_{t_{\max }}^{\infty}\left(e^{-i \eta}-1\right) d t=\frac{-2 i a s}{T_{\max }}-\frac{2 b a^{2} s^{2}}{3 V_{\max }^{S}}
$$

The integral was evaluated numerically and the results compared with the expression above. They were found to agree exactly if a high enough value of $t_{\max }$ was used. A sufficiently high and a useful value of $t_{\max }$ was obtained from

$$
T_{\max }^{2}=\left|1-\frac{2}{2} S^{2}\right|+S+2 a S
$$

Obtaining the value of the integral from $t_{\max }$ to infinity does not remove the difficulty associated with large values of a, but means we can concentrate on the region about $t=\frac{1}{2} s$, where the difficulties arise. It also meane that we have a bound on the integral over t, since

$$
(-2-i) t_{\max } \leqslant \int_{0}^{t_{\max }} d t\{\exp (-i \eta)-1\} \leqslant i t_{\max }
$$

against which we can check the numerical integration. This bound is of no use in calcultating line shapes, since it is only a bound on $\ln \phi(s)$ and not on $\sin \phi(s)$.

We can also obtain a cut-off for large b. We recall that one of the low a and S approximations consisted of expanding exp (-i $)$ as 1 - i $\eta-\eta^{2}$. Although it wasn't explicitly stated at the time this requires $\eta \ll 1$. Since $\eta \leqslant 2$ aSja sufficient condition for the expansion to be valid is that
$2 \mathrm{aS} \ll 1$.
Alternatively, since $\eta \leqslant 2 \mathrm{a} \Pi$, a sufficient condition also is $2 \mathrm{a} \pi \ll 1$.

Neither of these criteria depend on t, and rewriting them in terms of b and s, cs $\ll b^{2}$ and $c \pi \ll b v$, we see that there exists $a b$ beyond which the approximations will be valid. Thus for some $b>$ some $b_{\text {max }}$, the integral over t need not be evaluated numerically. Since we already have an analytic approximation for $t>t_{\max }$, we need oniy evaluate the t integral over a finite range, (Fig q)

To carry out the numerical integration, it was decided as a matter of policy to use a simple numerical integration technique whose behaviour cowld easily be checked at each stage, rather than a sophisticated package whose behaviour when faced with an unusual function could be unpredictable. A combination of Simpson's rule and Newton's rule was used. If n equidistant points were used to estimate the value of the integral, one method used all the even points, the other used all the odd ones, and the two estimates were checked for consistency. Since the oscillations generally occurred in the range ($0, s$), this range was split into N parts and integrated as described above. This was repeated for the intervals (8,28), $(2 s, 3 s)$, etc., until $t>t_{\text {max }}$, or until further steps ceased to contribute significantly to the sum of the previous steps.

This method was checked for the special case a $=1$, since if it could not cope with a single pdak or oscijlation it would be unable to cope with more. For a - 1 it was found unsatisfactory since one of the two methods missed the peak at t - $s / 2$ when N was odd, and
thus disagreed with the other, and both missed the peak when N was even, and thus gave an unrealistic estinate. The procedure was therefore repeated using steps ($0, \frac{1}{2} s$), ($\frac{1}{2} s, s$), ($\left.s, 1 \frac{1}{2} s\right)$, etc. By checking with the exact integer a expression and with the small s approximation this was found to give reasonably good resulte: for $a=1, b=0.5, v=9$, and ralues of s ranging from 0 to 10, agreement was obtained to at least 5 significant figures using 500 points per step. For $s>10$, the incorrect asymptotic behaviour was obtained, for the following reason. Consider the real part of the integral; this has a single sharp peak at $t=s / 2$ whose.halfwidth is inversely proportional to some function of s. The "peak" value is -2 , the function being of order $8 / 5$ or less elsewhere. Any Simpson-type integration technique using a step size of $-5 / 2(\mathrm{~N}-1)$ would therefore provide an estimate of order $-s /(N-1)$ for the value of the integral for large s instead of the asymptotic value of $\pi / 9$.

The third procedure was to take a greater number of steps in the intervals ($0, \frac{1}{2} s^{\prime}$ and ($\frac{1}{2} s 0$) than in the remaining intervals. Using 4,000 steps in each of the first two intervals and 600 in each of the subsequent intervals, agreement was obtained to 4 figures for values of s up to $s=100$. The difficulty arose from the presence in the imaginary part of the integrand of two close peaks, one of height +1 and the other of height -1 , both peaks having similar shapes. Although the accuracy obtained was more than sufficient for $a=9$, in view of the earlier arguments a more accurate method was felt to be needed for the imaginary part.

Procedure number 4 tried to overcome the cancellation problems by getting as short a step size as possible close to $t=\frac{1}{2} s$, where the sharpest oscillations occurred. As in number 3, two different step sizes $N 1$ and N2 were used for $t \leqslant s$ and $t>s$, but now the
intervals ($\left.\frac{1}{2} s-s / 2(N-1), \frac{1}{2} s\right)$ and ($\left.\frac{1}{2} s, \frac{1}{2} s+s / 2(N-1)\right)$ were combined and split into N3 steps, and N1 was varied until most of the severe oscillations occurred in this region. A further refinement was to use $N L$ steps when t became large (in practice $t>4 \delta$) to save computing time.

The final program used the following number of steps in each interval:

from t	$=0$ to $t=\frac{1}{2} s(1-1 / 300)$: 299 steps
from t	$=\frac{1}{2} s(1-1 / 300)$ to $t=\frac{1}{2} s(1+1 / 300)$: 7000 steps
from t	$=\frac{1}{2} s(1+1 / 300)$ to $t=s$: 299 steps
from t	$=s$ to to $t=3 \mathrm{~s} / 2$: 200 steps
from t	$=3 \mathrm{~s} / 2$ to $\mathrm{t}=2 \mathrm{~s}$: 200 steps
	"	"
	" "	"
	11	"
from t	$=4 s$ to $t=9 \mathrm{~s} / 2$: 50 steps
	" "	1
	"	"
	"	"

This proceeded until either $t>t_{\max }$ or until the series converged, which usually occurred within the first 30 steps. This gave results which agreed with the integer a result to better than $\%$ for $s=10^{5}$, by which time cancellation was occurring to four figures (by which we mean that if we summed the positive and negative parts of the integral separately, the leading 4 figures were identical). The number of steps chosen only proved insufficient when s reached 10^{9} when rounding and cancellation effects dominated. As will be shown later, we are not very interested in these high values of s , and for s of the order of 100 , or less, agreement was obtained to at least 11 significant figures. Again, as the value of the parameter a
increased, the number of oscillations increased proportionally, and since at least about 4 quadrature points were required per oscillation a limit was reached with the above number of steps when a $>10^{3}, s \gg 1$. Above these values, progressive loss of accuracy was observed.

To verify that the errors encountered when accuracy was finally lost were only due to computational limitations, a limited number of trial runs were initiated using 20,000 steps. This improved the agreement for high s and high a, but proved expensive in C.P.U. time. For small values of a, no problems arose and considerably fewer steps were used.

?.2 b integral

The integration over t produces a smoothly varying function of b which is non-oscillatory and well behaved. We now require

$$
\ln \phi(s)=4 \pi N_{v} \int_{c}^{\infty} \ln \phi(s, b) b d b
$$

We can consider the behaviour in both limits, as $b \rightarrow 0$ and as $b \rightarrow \infty$. For large b, we can approximate the imaginary part of In $P(s, b)$ whenever one of two conditions is satisfied. For small S and small aS,

$$
\operatorname{Imag}\{\ln \phi(s, b)\} \quad=-\Pi \text { as }
$$

The same expression is obtained for small values of 2 al 1 , which is a sufficient condition to expand exp (-i η). Rewriting this in terms of c, b, v, s

$$
\operatorname{Imag}\{\ln \phi(\mathrm{s}, \mathrm{~b})\}=\frac{-\eta \mathrm{cs}}{2 \mathrm{bv}}
$$

either if b>sv

$$
\text { and } b^{2} \gg \frac{1}{2} s c
$$

or if $\quad b \gg \pi c / v$

It was checked numerically that whenever the value of the impact parameter was greater than 10 times the least of either c / v or $s(v+c)$, the imaginary part was accurately represented by the approximation (even though $s(v+c)$ is dimensionally incorrect).

The imaginary part of the integral thus diverges as $b \rightarrow \infty$, and we need to introduce a cut-off, B. The value of the cut-off fcllows from the way we set up the model by splitting up the gas or plasma into separate cells each containing one emitter and a large number of perturbers. The potential therefore has a mean maximum range of $n^{-1 / 3}$. We could also choose a value of $\left(\frac{4 \pi n}{3}\right)^{-1 / 3}$, this being the radius of a sphere with a volume equal to the mean volume per emitter (Margenau and Lewis). Ideally, the final line shape should not depend critically on the choice of this cut-off.

At this stage of the problem, we have two impact parameter of interest: one ($\mathrm{b}_{\max }$) beyond which in $\phi(\mathrm{s}, \mathrm{b})$ can be represented by a simple analytic function, another (B) beyond which the impact parameter integral need not be carried out. After evaluating $\ln \phi(s)$ we will integrate trigonometric functions of

$$
\operatorname{Imag}\{\ln \phi(s)\}+\Delta w s
$$

Large values of B will give rise to severe oscillations. To remove these we evaluate

$$
\operatorname{Imag} \int_{b_{\max }}^{B} \ln \phi(s, b) b d b=-\frac{\eta_{c s}}{2 v} \quad\left(B-b_{\max }\right)
$$

and redefine without change of notation

$$
\Delta w=w-w_{0}+2 \pi^{2} M_{C B}
$$

so that the functions we need to evaluate are trigonometric functions of
$4 \pi N v \operatorname{Imag}\left\{\int_{0}^{b} \max \ln \phi(s, b) b d b\right\}+2 \pi^{2} H_{c b_{\max }} s-\Delta w s$ which hopefully will be well behaved.

The real part of $\ln \phi(s)$ is obtained in a similar manner. If b $>10 \mathrm{c} / \mathrm{v}$,

Real $\ln \phi(s, b)=\frac{-\pi c^{2}}{2 b v^{3}}\left\{\frac{s v}{b} \arctan \left(\frac{s v}{2 b}\right)-\ln \left(1+\frac{s^{2} v^{2}}{4 b^{2}}\right)\right\}$.

If $b>10 s(v+c)$ this can be further simplified to

$$
\text { Real } \ln \phi(s, b)=-\frac{\pi c^{2} s^{2}}{8 b^{3} v}
$$

which can be integrated analytically. We thus write for the real part

$$
\ln \phi(s)=4 \pi N v \int_{0}^{10 s(v+c)} \ln \phi(s, b) b d b+\frac{\pi^{2} c^{2} N s}{20(v+c)}
$$

If $10 c / v \leqslant b \leqslant 10 s(v+c)$, the approximate form of $\ln \phi(s, b)$ in this region is inserted in the integral. Note that unlike most other theories, including Lindholm's, we do not need to make an impact parameter cut-off for the real part of $\ln \phi(s)$.

For small b the integrals become difficult to evaluate numerically, and we need approximations for $\ln \phi(s, b)$. These approximations need not be too accurate since $\ln \phi(s, b)$ is multiplied by b and their product will not contribute greatly to the integral for small b. There are two approximations available, depending on the relative
values of s, v, c and b. If $s v<2 b$ and if $c \Pi \ll b v$, we can expand $\exp (-i \eta)$ as before and obtain

$$
\ln \phi(s, b)=\frac{-i \pi c s}{2 b v}-\frac{\pi c^{2} s^{2}}{8 b^{3} v}
$$

However as $b \longrightarrow 0$ for fixed s, v, c, for small enough b neither of these conditions will be satisfied. For b << sv we could use the Lindholm approximation

$$
\ln \phi(s, b)=\frac{1}{2} s \quad\left\{\cos \left(\frac{c \pi}{b v}\right)-1\right\}-\frac{1}{2} i s \quad \sin \left(\frac{c \pi}{b v}\right)
$$

but we have shown that the Lindholm result is only valid in very limited circumstances and is completely wrong whenever $c / 2 b v$ is integer. There are in fact three ranges of t in which approximations can be made:
i) If $t \rightarrow 0$, then

$$
\eta=\frac{4 c}{s v^{2}}+\frac{c \pi}{b v} H
$$

where H is a step function whose value is 0 if $c / 2 b v$ is integer, and 1 otherwise, i.e.

$$
\begin{aligned}
& \eta \simeq \frac{c \pi}{b v} \text { for non-integer } c / 2 b v \\
& \eta \simeq \frac{4 c}{s v} 2 \text { for integer } c / 2 b v
\end{aligned}
$$

(The Lindholm result is $\eta=c \neq / b v$ for all values of $c, v, b, s)$
ii) when $t \rightarrow \frac{1}{2} s$,

$$
\eta=\frac{c \pi}{2 b v}
$$

iii) when $t \rightarrow \infty$,

$$
\left\{\simeq \frac{c s}{v^{2}}\left\{\frac{b^{2}}{v^{2}}-\frac{s^{2}}{4}+t^{2}\right\}^{-1}\right.
$$

There is some justification in the implicit assumption made by Einkion anc Lerz that this region does not contritute significantly to the vaiue of the whole integral. Since η is smail we can expand ti.e exponential so that that part of in $\varphi(s, b)$ arising from large t is

$$
-i \frac{c y}{v^{2}} \int_{j}^{\infty} d t\left\{\frac{b^{2}}{v^{2}}-\frac{s^{2}}{4}+t^{2}\right\}^{-1}-\int_{y}^{\infty} d t\left\{\frac{b^{2}}{v^{2}}-\frac{s^{2}}{4}+t^{2}\right\} \frac{c^{2} s^{2}}{2 v^{4}}
$$

where the Iower limit y is greater than but of orcer $\frac{1}{2} s$. The integral gives

$$
\left\{\frac{-i}{y}-\frac{1}{3 y^{3}} \frac{c s}{2 v^{2}}\right\} \frac{c}{v^{2}}
$$

ant the j tern vends to zero as s and y tend to ∞. However the criterion for innoring this contribution is not that it should tend to zero but that it should be smaller than the contrioution from the rest of the range. For $b \ll c / 2 r$ these two criteria are not always the same.

Since the requirement $s v \ll b$ is always satisfied for fixed s, b as $v \rightarrow 0$, the approximation based on that requirement leads to a "statistical" resuit. If c $n<b v$ we can start with the Lindholm approximation, which we expand,

$$
\ln \phi(s, b)_{\text {IINDHOLM }}=\frac{-i \prod c s}{2 v \dot{v}}-\frac{\pi^{2} c^{2} s}{40^{2} v^{2}}
$$

c.f.

$$
\ln \phi(s, b)_{\text {STAT. }}=\frac{-i \pi c s}{2 v b}-\frac{\pi c^{2} s^{2}}{P_{b}^{3} v}
$$

We note that whilst the imeginary parts are identical, the real patco differ, one being proportional to s, the othor to s^{2}. The roason for this is as follows. Since $c \pi / b v \ll 1$, $\exp (-i \eta)$ can be expanded in both cases and the integration carried out exactiy to and order in η to give

$$
\ln \phi(s, b)=-\frac{\pi c^{2}}{2 b v^{3}}\left\{\frac{s v}{b} \arctan \left(\frac{s v}{2 b}\right)-\ln \left(1+\frac{s^{2} v^{2}}{4 b^{2}}\right)\right\}-\frac{i / / c s}{2 b v}
$$

The imaginery part is thus independent of any approximation based on the value of sv / b. The behaviour of the real part is at first odd, since for $s v \ll b$ it recluces to the statistical result, but for sV $\geqslant \mathrm{b}$ it does not reduce to the Iindhoin result. This latter result is only obtained by ignoring the logarithmic term and by replacing the arctangent by 相, which means that the logarithric terms must be due to the invalid assumptions made by Iindholm and must have arisen fron the terms he ignored but which we did not. Since this tem appears to made a significent contribution to In $\hat{p}(s, b)$ for $c \pi \ll b v$, attempts were made to obtain an analytic approximation valid over a wider range. After unsuccesfill attempts to obtain. one directly, the roal part of the integral was evaluated numerically for various vaiues of c,y,s and different analytic forms wore fitted to the calculated points using least squares. A good fit was obtained using a general form

$$
I=-x_{1} a \quad x_{2} s\left(1-\cos \left(2 a \pi+x_{3}\right)\right)
$$

As before $a=c / 2 b v$ and $S=s v / b$. The values of x_{1}, x_{2}, x_{3} are to be determined by the optimisation, and $I=2 v / \pi b$. Real In $\phi(s, b)$. The best fits were for the following choices for $x_{1}, x_{2} x_{3}$;

$$
\begin{aligned}
& I=-1.23 a-0.08 a(1-\cos (2 a \pi+0.3 \pi)), S=a \\
& I=-2.5 a-2.4 \text { a }(1-\cos (2 a \pi+0.4 \pi)), S=10 a \\
& I=-4 \quad a-30 a(1-\cos (2 a \pi) \quad, S=100 a
\end{aligned}
$$

c.f.

$$
I_{L}+I_{\text {int }}=-4 a-31 a(1-\cos (2 a \pi)) \quad, \quad S \gg a .
$$

where I_{L} and $I_{\text {int }}$ are the corresponding "Lindholm" and "integer a" solutions. There is strong justification for choosing $I_{L}+I_{\text {int }}$ as an approximation to I, apart from the agreement for $S>a>1$, since whenever a is close to an integer value $I_{\text {int }}>I_{L}$ and if a is not nearly integer $I_{L} \gg I_{\text {int }}$, so that $I_{\text {int }}+I_{L}$ will agree with the unknown exact solution over most of the range $b \rightarrow 0$. The combination $I_{L}+I_{\text {int }}$ has the further advantage that if we use a stricter definition of I_{L},
where H is 1 for $s>2$ and 0 otherwise, then $I_{\text {int }}+I_{L}$ has the correct asymptotic behaviour as $a \rightarrow 0$ and $S \rightarrow 0$,

$$
\frac{\pi b}{2 v}\left\{I_{L}+I_{i n t}\right\}=-\frac{i \Pi c s}{2 b v}-\frac{\prod c^{2} s^{2}}{8 b^{3} v}
$$

in exact agreement with the statistical limit . We therefore claim that

$$
\begin{aligned}
I=\left\{\frac{3}{4} s^{2}-1\right\}^{\frac{1}{2}}\{ & \{\exp (-2 i a n)-1\} H \\
& \frac{-b \prod i}{v} \sum_{m=1}^{\infty}\binom{a}{m} \frac{(2 m-\lambda)!}{(m-1)!(m-1)!} \frac{(2 i S)^{m}}{(2 i s)^{2 m-1}}
\end{aligned}
$$

and this expression, or approximations to it, are valid as $b \rightarrow 0$.

Flgure 10 shows the various methods used to estimate in $\phi(s)$ and the regions in which they were used, as a function of b and s . The numerical integration over b was carried out using the same combination of Simpson's ruale and Newton's method as in the t integral, although this was later changed to using just Simpson's rule to speed
b

Fig 10

Regions in which approximations to I are used

$F_{\text {ig }} 10$

Regions in which approximations to I are used
the computation. Only 40 steps were needed, the step sizes being chosen so that the first point was at $b=0$ and the second was at b large enough so that severe oscillations did not occur. The results were compared and contrasted with those obtained in the statistical limit and in the Lindholm limit. The agreement with the statistical limit was poor away from the av $=0$ limit (egg. for $c \simeq 1, v \simeq 1$, agreement was only obtained for $s<10^{-3}$). Better agreement was obtained as expected if the only approximation made for low suv was to expand the arctangent so that

$$
\eta=\frac{c s}{b^{2}-\frac{1}{4} s^{2} v^{2}+t^{2} v^{2}}
$$

There was little agreement with the Lindholm result. The real part of the Iindholm limit diverged logarithmically as b tended to infinity, unlike our result which was well behaved. If we slightly relax our strict definition of I_{L} and let

$$
I_{L}=\frac{s v}{2 b}\left\{\exp \left(\frac{(-i c \eta)}{b v}\right)-1\right\} \cdot H
$$

which is zero for $\frac{1}{2} s v \geqslant b$, we are effectively introducing a cut off which is not chosen arbitrarily but which follows from the approximation that has been made. Then

$$
\operatorname{Real}[\ln \phi(s)]=\frac{2 \Pi^{2} c^{2} s M}{2 v}\left\{C i(u)-\frac{\sin (u)}{u}-\frac{(1-\cos (u)}{u^{2}}\right\}
$$ where $C i$ is the cosine integral function and $u=2 \pi \mathrm{c} / \mathrm{sv}^{2}$. A similar expression is obtained for the imaginary part of $\ln \phi(s)$. If $u<1$, the trigonometric function can be expanded and

$$
\begin{aligned}
& \text { Real }\{\ln \phi(s)\}=\frac{-2 \pi^{3} c^{2} s N}{v}\left\{0.99278+\ln u+\frac{u^{2}}{24}+O\left(u^{3}\right)\right\} \\
& \text { Imag }\{\ln \phi(s)\}=-\frac{\left.\pi^{3} c^{2} s\right)}{v}\left\{\frac{1}{u}-\frac{1}{4}+\frac{u}{2}+O\left(u^{2}\right)\right\}
\end{aligned}
$$

If Eristeati of incosing a cut-off at $b=\frac{\text { bist me haci just chosen }}{3}$ save zt-off B, then $u=\eta \mathrm{c} / \mathrm{NB}$ and the ore equatsans above sue Ejesticai to the solution ootained by Lisdioin and quated 7 Yangerau aru ievis. (One exception is that witere we cttain the =uericai vaive 0.993 which is zuier's nuber $\frac{i}{2}$, Xargeman and Jeris quote 0.923 . This could be a printing error in their paper; the criginai they quote from is indhoin's inesis in yppsaia). The acivantage of replacing u by a constant is that $L(s)$ bescmes Fropertionai to s sc that a Lorentaian line is obtaired with width and shift equal to the real and inaginary parts of $\ln \mathrm{f}$ (s). The insajrantage is that the shift is directly proportionai to a cutoff raxius whose definition is arbitrary. Our more careful derivation of a indhojetype approximation does not depend on any arbitrary cut-off, but since u is now a function of s the line prorlie must ce evaiuated numerically.

For $u<1$ we thus used the approxinations for $\ln \phi(s)$ given above having checked them against the exact expression. For u>1 it was found quiciker to evaluate $\ln \phi(s)$ numerically than to calculate tine exponential integral functions accurately enough. The two methods however produced the same results, which was a check on the accuracy of the numerical integration.

Figures 11 shows the real and imaginary parts of $\ln \phi(s)$ obtained using I, I_{s} and I_{L} for the special case $\nabla=9, c=9,4 \pi N_{V}=1$. The "exact" numerical integration agrees with the low s "statistical" result to about 1% for $s \vee<1$, although the latter has the incorrect asymptotic behsoiour as $8-81$. There is little agreement with Lindhdm except as $s \rightarrow \infty$

Real "exact" $\rightarrow-4 \cdot 4 山 s+5 \cdot 2 \quad, \quad s \rightarrow \infty$

Real "Lindholm" - 4.59 s

If instead of choosing a cut-off at $b=\frac{1}{2} s v$ we had just chosen sane cut-off B, then $u=\eta c / v B$ and the two equations above are identical to the solution obtained by Lindholm and quoted by Margenau and Lewis. (One exception is that where we obtain the numerical value 0.993 which is Euler's number $+\frac{1}{2}$, Margenau and Lewis quote 0.923 . This could be a printing error in their paper; the original they quote from is Lindholm's thesis in Uppsala). The advantage of replacing u by a constant is that $\ln \phi(s)$ becomes proportional to s so that a Lorentzian line is obtained with width and shift equal to the real and imaginary parts of $\ln \phi(s)$. The disadvantage is that the shift is directly proportional to a cutoff radius whose definition is arbitrary. Our more careful derivation of a Lindholm-type approxdmation does not depend on any arbitrary cut-off, but since u is now a function of s the line profile must be evaluated numerically.

For $u<1$ we thus used the approximations for $\ln \phi(s)$ given above having checked them against the exact expression. For u>1 it was found quicker to evaluate $\ln \phi(s)$ numerically than to calculate the exponential integral functions accurately enough. The two methods however produced the same results, which was a check on the accuracy of the numerical integration.

Figures 11 shows the real and imaginary parts of $\ln \phi(s)$ obtained using I, I_{s} and I_{L} for the special case $v=9, c=9,4 \pi N_{V}=1$. The "exact" numerical integration agrees with the low s "statistical" result to about 1% for $\mathrm{sv}<1$, although the latter has the incorrect asymptotic behaviour as $s \rightarrow 1$. There is little agreement with Lindhdm except as $: \rightarrow \infty$

```
Real nexact" }\longrightarrow-4\cdot4山\mp@code{*}+5\cdot2,\quads->
```

Real "Lindholm" - 4 •59s

Fig 11 a

Fig llb
Detail of 11 a around $s=0$

Fig ll
Detail of 11 a arround $s=0$

Fig ils
Detail of $11 a$ around $s=0$

Fig $11 c$

Fin II

```
Imag "exact" = - 3.46 s+3.1 , s->\infty
Imag "Lindholm" = - 3.15 s
```

which is consistent with our claim that I is made up of two parts, I_{L} and $I_{\text {int }}$.

We see that there is no overlap region in which the impact theory and the statistical theory can be merged in some way, since there is no region in which their $\ln \phi(s)$ agree, even in shape, with each other and with the exact solution. Thus any attempt to construct an autocorellation function by using approximations valid for the impact and for the statistical limits defined above will be incorrect for intermediate values oif s and will produce incorrect line profiles.

7.3 s integral

The value of $\ln \phi(s)$ was calculated for various values of s, for fixed c, N, and s. These values were stored and used to calculate the Fourier transform

$$
I(w)=\int_{0}^{\infty} \exp (-i \Delta w s) \quad \phi(s) d s
$$

with

$$
\Delta w=w-w_{0}+2 \pi^{2} \mathrm{NcB} .
$$

The function in $\phi(s)$ was only calculated for $s \leqslant{ }^{s}$ max* For s greater than some value $s_{\text {max }}$, In $\phi(s)$ became asymptotic

$$
\ln \phi(s)=d+e s
$$

where d and e are complex constants which depend on v, c, N. That part of the Fourier transform from $s_{\text {max }}$ to inflinity was easily evaluated,

$$
\int_{a_{\max }}^{\infty} \exp (-i \Delta w s) \cdot \phi(s) d s=\frac{-\exp \left\{d+e s_{\max }-i A^{W} s_{\max }\right\}}{\theta-i \Delta W}
$$

which was added to the numerically calculated integral from 0 to $s_{\text {max. }}$ In practice, 5 max was chosen to be 20 , and for all the cases considered the total contribution from $s_{\max }$ to infinity was at least 10 orders of magnitude smaller than that from 0 to $s_{\text {max }}$.

Figures 12 show the profiles obtained. They are all for particular values of $v=c=9$ and for varying values of $4 \pi \mathrm{Nv}$. Curves were also obtained for $v=1$ and 0.1 , and for $c=0.9$ and exhibited similar behaviour. The horizontal axis has been normalised so that the peak occurs in the same place and represents the shift from $w_{0}-2 \pi^{2} \mathrm{HcB}$ divided by $4 \pi \mathrm{Nv}$. On the same axes are plotted a Iindholm curve of the same physical characteristic.

For the lower densities N, the calculated profiles are wider than the Lindholm ones, the relative difference in the widths increasing as the density decreases, for fixed temperature. The opposite happens as the density increases and the Lindholm profiles cverestimate the widths.

Figure 13 shows that the curves normalised to the same intensity show the slight asymmetry in the calculated profile which arises from the non-linear behaviour of in $\phi(s)$ on s. Figure 14 shows the shifts in more detail and shows the similurity in the curves near the peak. The anomalous behaviour of the calculated shapes starting at a distance of about twice the half-width from the centre arises from numerical errors in the calculation of the Fourier transform. These can be reduced by increasing the computational time. The findholm profiles in Figures 12 and 13 were obtained by plotting a Lorentzian profile with a width and shift given by Lindholm. Figure 15 shows five curves comparing this Lorentzian profile with a Iindholm profile calculated using the same integration procedure as that for our

Fig $12 a$

Fig 126

Fig12c

Fig $12 d$

Fig 12 f

จ

Firg $12 h$

$\mathrm{Fig}^{12} \mathrm{j}$

Fig^{13}

Fig 14

profile. Curve (a) is our profile calculated numerically by the method already described. Curve (c) is our profile evaluated using more quadrature points in each of the numerical integrations. We see that as expected curve (c) stays positive over a greater range than curve (a) and that within that range it is in better agreement with the Lorentzian Lindholm curve (e). This curve (e) was obtained directly from the normalised analytic expression for a Lorentzian profile, $1 /\left\{(\Delta w \text {-shift })^{2}+(w i d t h)^{2}\right\}$ with the shift and width obtained from Lindholm's formulae. To check that the oscillations in curves (a) and (c) were due to the numerical integration and were not intrinsic to our ،theory we substituted the Lindholm phase shifts (n) in place of ours in the numerical integration programs and calculated "numerical" Lindholm profiles. These are shown as curves (b) and (d). Curves (b) used the same number of quadrature points as curve (a), and curve (d) the same as curve (c). We note that curves (b) and (d) diverge from each other and from the "analytic" curve (e) approximately as far out of the line centre as curves (a) and (c). Curve (b) then oscillates approximately in phase with curve (a) and curve (d) shows similar behaviour to curve (c). The oscillations in curves (b) and (d) must arise from inaccuracy in the numerical integration in the far wings of the fine, and by implication the oscillations in (a) and (c) must be due to the same reason.

As $\Delta w \rightarrow \infty$, the integrand will oscillate with a frequency of approximately $2 \pi / \Delta w$, and the step size in the s integrand must get correspondingly smaller, which limits the accuracy obtainable in the far wings. However, we have already shown that in the wings of the line our exact solution tends to the statistical limit, so that the behaviour of the line wings as well as in the centre and in the intermediate regions.

CHAPTER VIII

CONCLUSION

In the first part of this work we considered the application of classical mechanics to the motion of a particle in a simple Harmonic, a Yorse, and a Coulamb potential. We then applied two correspondence principles to obtain approximations to various quantum mechanical matrix elements in these potentials. We made use of the ambiguity in the correspondence principle definition of n_{c} to show that although the simplest (?) choice $n_{c}=n+\frac{1}{2} s$ produced results which might be acceptable in the absence of quantum mechanical results for n of order 5 and above, and $s<n$, a heuristically chosen expression for n_{c} for each potential produced results which could be used for all values of n. For the Coulomb potential we further calculated quantities such as the dipole moment and the oscillator strength which, apart from showing agreement with their quantum mechanical counterparts, are relatively simple in form and should be used for high quantum numbers where the quantum mechanical calculations are cumbersone and tabulated values are not available.

In the second part we applied classical methods to the broadening of spectral lines. We presented a general theory valid for high quantum numbers (Appendix III) whenever classical perturbation theory was valid. This has a wider range of validity than quantum mechanical line broadening theories which assume quantum mechanical perturbation theory. The theory reduces in the line wings to the statistical result of Margenau, but its behaviour in the line centre shows severe limitations in the work of Lindholm. Working in terms of the
autocorellation function we showed that our results tended to the statistical result as $s \rightarrow 0$ and to an asymptote with a similar though not identical gradient as Lindholms as $s \rightarrow \infty$.

The line profiles obtained were compared with the Lorentzian Lindholm profile and the half-widths were found to be far. more sensitive to the physical parameters of temperature and pressure than the Lindholm theory would indicate.

APPFNDIX I

STATISTICAL THEORY

The problem of the broadening of spectral lines due to the presence of perturbers can be approached from a different direction. The radiating atom is in an external field. A spectral line arising from a transition between energy levels E_{2} and E_{1} has a frequency proportional to $E_{2}-E_{1}$. In the presence of an external field each of these energy levels changes. In the presence of only one perturber they are functions of the atom/perturber separation, and the radiation frequency thus depends on this separation. If the perturbers are quasi-static (i.e. do not significantly change their position during any time of interest) then it is possible to calculate the probability of various perturber distributions, and hence obtain the frequency associated with each distribution.

In a series of papers in the 1930's Margenau developed the Statistical theory from the general qualitative arguments above to a sophisticated detailed theory. In 1955, with Meyerott, he showed the formal similarity between his theory and an alternative approach hy Huitzmark. The Holtzmark theory is well described in the review paper of Margenau and Iewis, but the Margenau theory is best described in the original papers.

For one perturber, the result obtained was, for a volume V,

$$
\phi(s)=1-\frac{1}{\nabla} \int_{0}^{R}\{\exp (-i \Delta \omega(r) s)-1\} 4 \pi r^{2} d r
$$

and for NV perturbers,

$$
\ln \phi(s)=4 \pi N \int_{0}^{\infty}\{\exp (-i \Delta u(r) s)-1\} r^{2} d r .
$$

In the wings of a line, when the static approximation is valid, the probability of finding a particle near the atom is small, and it may be a reasonable approximation to consider only the interaction with the closest perturber. This is the "nearest neighbour" approximation. The probability of finding one particle in the interval $d r$ and no particles within r is

$$
w(r) d r=\exp \left(-4 / 3 \pi r^{3} N\right) \quad N 4 \pi r^{2} d r
$$

Choosing $\Delta \omega_{0}$ to be the mean shift corresponding to the average interparticle separation $n^{-1 / 3}$, it can be shown that the profile is

$$
I(w)=\frac{1}{k}\left(\frac{\Delta \omega_{0}}{\Delta \omega_{0}}\right)^{(k+3) / k} \exp \left\{-\left(\frac{\Delta \omega_{0}}{\Delta \omega}\right)^{3 / k}\right\} \frac{1}{\Delta \omega_{0}}
$$

for $\Delta \omega=c / r^{k}$. This formula is found to be correct sufficiently far in the line wings.

APPRNDIX II

AII. 1 Infinite Series

We outline here attempts to obtain analytic forms of $\ln \phi(s, b)$ and $\ln \phi(s)$. We first evaluate

$$
\begin{aligned}
\ln \phi(\mathrm{s}, \mathrm{~b}) & =\int_{0}^{\infty} d t_{0}\{\exp (-i \eta)-1\} \\
\eta & =2 \mathrm{a}\left\{\arctan \left(\frac{\mathrm{~S}}{1+\mathrm{T}^{2}-\frac{1}{4} \mathrm{~s}^{2}}\right)+\mathrm{H} \pi\right\} \\
\mathrm{S} & =\frac{\mathrm{vs}}{\mathrm{~b}}, \quad \mathrm{~T}=\frac{\mathrm{vt}}{\mathrm{~b}}, \quad \mathrm{a}=\frac{\mathrm{c}}{2 \mathrm{bv}} \\
\mathrm{H} & =1 \text { if } 1+\mathrm{T}^{2}-\frac{\dot{i}_{4}}{4} \mathrm{~S}^{2}<0 \\
& =0 \text { otherwise. }
\end{aligned}
$$

Using the fact that

$$
\exp (-2 i x)=1-\frac{2 i \tan (x)}{1+i \tan (x)}
$$

we can write

$$
\exp (-i \eta)=\left\{1-\frac{2 i S}{1+T^{2}-\frac{1}{4} S^{2}+i S}\right\}^{a} \quad \exp (-2 i a \pi H)
$$

This can be expanded in a series which is infinite for non-integer values of "a", but has "a" terms if "a" is integer. (The convergence of the infinite series has to be established by considering the real and imaginary parts separately, each part being made up of two infinite series). So,

APFENDIX II

AII. 1 Infinite Series

We outline here attempts to obtain analytic forms of $\ln \phi(s, b)$ and in $\phi(s)$. We first evaluate

$$
\begin{aligned}
& \ln \phi(s, b)=\int_{c}^{\infty} d t_{0}\{\exp (-i \eta)-1\} \\
& \eta=2 a\left\{\arctan \left(\frac{s}{1+T^{2}-\frac{1}{d} S^{2}}\right)+H \pi\right\} \\
& S=\frac{v S}{b}, T=\frac{v t}{b} 0, a=\frac{c}{2 b v} \\
& H=1 \text { if } 1+T^{2}-\frac{\dot{b}_{4} S^{2}<0}{} \\
&=0 \text { otherwise. }
\end{aligned}
$$

Using the fact that

$$
\exp (-2 i x)=1-\frac{2 i \tan (x)}{1+i \tan (x)}
$$

we can write

$$
\exp (-i \eta)=\left\{1-\frac{2 i S}{1+T^{2}-\frac{1}{4} S^{2}+i S}\right\}^{a} \quad \exp (-2 i a \pi H)
$$

This can be expanded in a series which is infinite for non-integer values of "a", but has "a" terms if "a" is integer. (The convargence of the infinite series has to be established by considering the real and imacinary parts separately, each part being made up of two infinite series). So,

APPENDIX II

AII. 1 Infinite Series

We outline here attempts to obtain analytic forms of $\ln \phi(s, b)$ and $\ln \phi(s)$. We first evaluate

$$
\begin{aligned}
\ln \phi(s, b) & =\int_{c}^{\infty} d t_{0}\{\exp (-i \eta)-1\} \\
\eta & =2 a\left\{\arctan \left(\frac{s}{1+T^{2}-\frac{1}{3} S^{2}}\right)+H \pi\right\} \\
S & =\frac{v s}{b}, T=\frac{v t}{b} O, \quad a=\frac{c}{2 b v} \\
H & =1 \text { if } 1+T^{2}-\frac{i_{4}}{4} S^{2}<0 \\
& =0 \text { otherwise. }
\end{aligned}
$$

Using the fact that

$$
\exp (-2 i x)=1-\frac{2 j \cdot \tan (x)}{1+i \tan (x)}
$$

we can write

$$
\exp (-i \eta)=\left\{1-\frac{2 i S}{1+T^{2}-\frac{1}{4} S^{2}+i S}\right\}^{a} \quad \exp (-2 i a \pi H)
$$

This can be expanded in a series which is infinite for non-integer values of "a", but has "a" terms if "a" is integer. (The convergence of the infinjte series has to be established by considering the real and imacinary parts separately, each part being made up of two infinite series). So,

$$
\begin{aligned}
\ln \phi(s, b) & =\int_{0}^{\infty} d t_{0}\{\exp (-2 i a \pi H)-1\} \\
& +\int_{c}^{\infty} d t_{0} \exp (-2 i a \pi H)<_{m=1}^{\infty}\binom{a}{m}\left\{\frac{-2 i S}{1+T^{2}-\frac{1}{4} S^{2}+i S}\right\}^{m}
\end{aligned}
$$

which can be written

$$
\begin{aligned}
\ln \phi(s, b) & =\left(\frac{1}{4} S^{2}-1\right)^{\frac{1}{2}} H\left(\frac{1}{4} S^{2}-1\right)\{\exp (-2 i a \pi)-1\} \\
& +\sum_{m=1}\binom{a}{m} \int_{0}^{\infty} d t t_{0}^{0} \frac{(-2 i S)^{\dot{m}}}{\left(1+T^{2}-\frac{1}{4} S^{2}+i S\right)^{m}} \\
& +\sum_{m=1}\binom{a}{m}\{\exp (-2 i a \pi)-1\} H\left(\frac{1}{4} S^{2}-1\right) \int_{0}^{\sqrt{4} S^{2}-1} d t_{0} \frac{(-2 i S)^{m}}{\left(1+T^{2}-\frac{1}{4} S^{2}+i S\right)^{m}}
\end{aligned}
$$

with $H\left(\frac{J}{4} S^{2}-1\right)=1$ if $S>2$

$$
=0 \text { if } S \leqslant 2
$$

We shall refer to the first term as the "Lindholm" term\& L, to the second as the "Integer" term, I, and to the third as the cross term, X.

We note that the "Lindholm" term only reduces to the equation obtained by Lindholm for $S \gg 2$; it differs in that it is zero whenever S is less than 2. The integer term has been evaluated in the main text,

$$
I=2 \pi \sum_{m=1}\binom{a}{m} \frac{(2 m-2)!}{(m-1)!(m-1)!} \quad \frac{(2 i S)^{m}}{(2 i-S)^{2 m-1}}
$$

we call this term "integer" because it is the only non-zero term when "a" is integer. When "a" is not integer, we can approximate the infinite series by a closed form approximation. Since

$$
\frac{2 i a S}{(2 i-S)}\left\{1+\frac{2 i S}{(2 i-S)^{2}}\right\}^{a-1}=\sum_{m=1}\binom{a}{m} \frac{m(2 i S)^{m}}{(2 i-S)^{2 m-1}}
$$

which only differs from I in the factor m compared with
$(2 m-2)!/(m-1)!(m-1)!$ (these take the values $1,2,3,4, \ldots$ as opposed to $1,2,6,20$) we use this as an approximation to I. The disagreement for higher orders of m will only be significant whenever S is approximately 2.

The pros term can be written in terms of $X(m)$ where

$$
\begin{aligned}
x & =\sum_{m=1}\binom{a}{m}\left\{(\operatorname{xpp}(-2 i a \pi)-1\} H\left(\frac{1}{4} S^{2}-1\right) \quad x(m),\right. \\
x(m) & =\int_{0}^{\sqrt{\frac{1}{4} S^{2}-1}} d t_{0} \frac{(-2 i S)^{m}}{\left(1+T^{2}-\frac{1}{4} S^{2}+i S\right)^{m}}
\end{aligned}
$$

and $\quad X(1)=\left\{\frac{-2 i S}{S-2 i}\right\}\left\{\frac{1}{2} \ln \left(-1+\frac{1}{2} S^{2}+\frac{1}{2} S^{2} \sqrt{\left.1-4 / S^{2}\right)}-i \arctan \right.\right.$

$\left.\left(\sqrt{\frac{2}{3} S^{2}-1}\right)\right\}$

$$
X(2)=\frac{8 i S}{(s-2 i)^{2}} \sqrt{\frac{2}{2} S^{2}-1}-\frac{2 i S}{(s-2 i)^{2}} \quad x(1)
$$

and it can be shown that

$$
\begin{aligned}
& x(m)=H\left(\frac{1}{4} s^{2}-1\right) \sqrt{\frac{1}{4} s^{2}-1}\{\exp (-2 i a \pi)-1\} \sum_{m=1}\binom{a}{m} 2^{m} H(2-m) \\
& x \sum_{k=0}^{m-2} \frac{(2 m-3)!!}{(2 m-3-2 k)!!} \frac{(m-k-2)!}{(m-1)!} \quad\left\{\frac{-2 i s}{(s-2 i)^{2}}\right\}^{k}
\end{aligned}
$$

$$
+X(1) H\left(\frac{1}{4} S^{2}-1\right)\{\exp (-2 i a \pi)-1\} \sum_{m=1}\binom{a}{m} \frac{(2 m-3)!!}{(m-1)!}\left\{\frac{4 i S)^{m-1}}{\left.(S-2 i)^{2}\right\}}\right.
$$

Our claim that $\ln \phi(s, b)$ could be written as a sum of the "integer" and the "Lindholm" term will be justified if tho cross term is small when $S>2$. The check was not made due to the difficulty in evaluating

X numerically, and the greater difficulty in estimating it
analytically.

Having obtained a complete exact solution to $\ln \phi(\mathrm{s}, \mathrm{b})$, we next try to integrate it with respect to b^{2}; we write

$$
\begin{aligned}
& \text { In } \phi(s)=4 \pi N v\left(I_{b}+I_{b}+X_{b}\right), \\
& I_{b}=\int_{0}^{\infty} b d b I \\
& I_{b}=\int_{0}^{\infty} b d b I \\
& X_{b}=\int_{0}^{\infty} b d b x
\end{aligned}
$$

No significant progress was made with X_{b}.
After some analysis, we can obtain the real and imaginary parts of I_{b}

$$
\begin{aligned}
\text { Real }\left\{L_{b}\right\}= & -\frac{(c \pi)^{3}}{v} \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k} \frac{u^{2 k-2}}{(2 k+2)!}\left\{\left[\sum_{n=0}^{k}(-1)^{n+1} \frac{(2 n+1)!}{u^{2 n+1}}\right] \cos u\right. \\
& -\left[\sum_{n=0}^{k}(-i)^{n+1} \frac{(2 n)!}{u^{2 n}}\right] \sin u-u\left(i(u)+(2 k+1)!\frac{(-1)^{k}}{u^{2 k+1}}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{Imag}\left\{I_{b}\right\}= & -\left(\frac{c \pi}{v}\right)^{3} \sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k} \frac{u^{2 k-2}}{(2 k+2)!}\left\{\left[\sum_{n=0}^{k}(-1)^{n+1} \frac{(2 n)!}{u^{2 n}}\right] \cos u\right. \\
& \left.-\left[\sum_{k=0}^{\infty}(-1)^{n+1} \frac{(2 n+1)!}{u^{2 n+1}}\right] \sin u-u \operatorname{si}(u)\right\}
\end{aligned}
$$

with $u=\frac{2 c \pi}{s v^{2}}$

These expressions can be written in various ways, and asymptotic
forms can be obtained using the limiting approximations for the Sine and Cosine integral functions, $\mathrm{Si}(x)$ and $\mathrm{Ci}(x)$. Since, as $u \rightarrow \infty$

$$
u C_{i}(u) \approx\left[\sum_{n=0}^{\infty}(-1)^{n+1} \frac{(2 n+1)!}{u^{2 n+1}}\right] \cos u-\left[\sum_{n=0}^{\infty}(-1)^{n+1} \frac{(2 n)!}{u^{2 n}}\right] \sin u
$$

we can express the then dominant term in the expression for Real $\left\{L_{b}\right\}$ as

$$
\operatorname{Real}\left\{L_{b}\right\}=\left(\frac{\mathrm{c} \pi}{v}\right)^{3} \frac{1}{3 u^{3}}, \quad u \rightarrow \infty, s \rightarrow 0
$$

and similarly

$$
\begin{aligned}
& \text { Real }\left\{L_{b}\right\}=-\left(\frac{c \cdot \pi}{v}\right)^{3} \ln \left(\frac{1}{u}\right) \cdot \frac{1}{2 u}, u \rightarrow 0, s \rightarrow \infty \\
& \operatorname{Imag}\left\{L_{b}\right\}=-\left(\frac{c \pi}{v}\right)^{3} \frac{\pi}{4 u^{2}}, \quad u \rightarrow 0, s \rightarrow \infty
\end{aligned}
$$

The imaginary part of I_{b} has no simple expression in the limit $s \rightarrow 0$. We reiterate an important advantage of this general solution over Lindholm's: we have not had to introduce ad hoc cut-offs in the impact parameter since a cut-off is implicit in the presence of $H\left(\frac{1}{4} S^{2}-1\right)$ in the solution for $\ln \phi(s, b)$.

The solution of I_{b} depends on integrating

$$
\begin{aligned}
& I_{b}=\sum_{m=1}^{\infty} A_{m} \int_{0}^{\infty} \frac{d x}{x^{4}} \frac{(x / u)^{m}}{(2 i-x / u)^{2 m-1}}\binom{x}{m} \\
& A_{m}=\left(\frac{c \pi}{v}\right)^{3}(i u)^{m-1} \frac{(2 m-2)!}{(m-1)!(m-1)!}
\end{aligned}
$$

which was done for $m=1,2,3,4$. The series generated appeared very slow to converge, and at this stage the entire approach was abandonned.

AIT. 2 Split Ranges

The major stumbling block in many approaches was the different behaviour of the integrand in different regions. A method was developed to consider the integral as a sum of integrals over different ranges.

Writing the integrand in the form

$$
\begin{aligned}
& \left\{1-\frac{2 i X}{1+i X}\right\}^{a} \exp \{-2 i a \pi H\} \\
& X=S /\left(1+T^{2}-\frac{1}{4} S^{2}\right)
\end{aligned}
$$

the criterion for using a binomial expansion is that

$$
\frac{3 S^{2}}{\left(1+T^{2}-\frac{1}{3} S^{2}\right)^{2}}<1
$$

This will be satisfied if $S<4-2 \sqrt{3}$ for all values of T. If S lies between $4 \pm 2 \sqrt{3}$ it will not be satisfied if

$$
\frac{2}{4} s^{2}-1+\sqrt{3} s \geqslant T^{2}
$$

and if $S \geqslant 4+2 \sqrt{3}$ it will not be satisfied if

$$
\frac{1}{4} S^{2}-1+\sqrt{3} S \geqslant T^{2} \geqslant \frac{1}{4} S^{2}+1-\sqrt{3} S
$$

We therefore consider $\ln \phi(s, b)$ for three ranges of S,

$$
\begin{aligned}
& S<4-2 \sqrt{3} \\
& 4-2 \sqrt{3} \leq S<4+2 \sqrt{3} \\
& 4+2 \sqrt{3} \leq S
\end{aligned}
$$

We consider these in order.
(i) $S<4-2 \sqrt{3}$

In this case we obtain what we have called the "integer a" solution.
(ii) $4-2 \sqrt{3} \leqslant S<4+2 \sqrt{3}$
$\cdot \ln \phi(s, b)=\frac{b}{v}\left\{I_{1}+I_{2}\right\}$
$I_{1}=\int_{0}^{y} \frac{v}{b} d t\left\{e^{-i \eta}-1\right\}$
$I_{2}=\int_{y}^{\infty} \frac{v d t}{b} \sum_{m=1}^{\infty}\binom{a}{m}\left\{\frac{-2 i S}{1+T^{2}-\frac{1}{4} S^{2}+i S}\right\}^{m}$
and $y=\left\{\frac{1}{4} S^{2}-1+\sqrt{3} s\right\}^{\frac{1}{2}}$.

The value of y is 0 when $S=4-2 \sqrt{3}$. We find that

$$
\begin{aligned}
I_{2}= & \sum_{m=1}^{\infty}\binom{a}{m}(-2 i S)^{m}\left\{\frac{(2 m-2)!}{(m-1)!(m-1)!} \frac{2}{(2 i-S)^{2 m-1}}\left[\pi+\arctan \left(y+\frac{1}{2} i y s\right)\right]\right. \\
& +H(m-2) y \cdot \sum_{k=0}^{m-2} \frac{(2 m-3)!!}{(2 m-2 k-3)!!} \frac{(m-k-2)!}{(m-1)!} \frac{1}{2^{k+1}} \frac{1}{\left(\frac{2}{4} S^{2}-1+i S\right)^{k+1}} \\
& \left.+\frac{1}{(\sqrt{3} S+i S)^{m-k-1}}\right\}
\end{aligned}
$$

In evaluating I_{2} we have to consider three more ranges of S. If $2<S<4+2 \sqrt{3}$,

$$
\begin{aligned}
I_{2}= & \sum_{m}\binom{a}{m}(-2 i S)^{m} \sum_{\mathbf{k}}\binom{-m}{k}\left\{1-\frac{1}{i} S^{2}+i S\right\}^{-m-k} \frac{1}{2 k+1}\left\{\left(\frac{1}{4} s^{2}-1\right)^{k+\frac{1}{2}}\right. \\
& \left.x(\exp (-2 i a \pi)-1)+L_{1}^{k+\frac{1}{2}}\right\} \\
& +\sum_{m}\binom{a}{m}(-2 i S)^{m} \sum_{k}\left(\begin{array}{c}
\left.-\frac{m}{k}\right)\left\{1-1-1 S^{2}+i S\right\}^{k} \frac{1}{1-2 n-2 k}\left\{L_{2}^{-m \cdot k+\frac{1}{2}}-L_{1}^{-m-k+\frac{1}{2}}\right\} \\
\end{array}\right. \\
& -L_{2}^{\frac{1}{2}}
\end{aligned}
$$

If $2 / \sqrt{3}<S<2$

$$
\begin{aligned}
I_{2}= & \sum\binom{a}{m}(-2 i S)^{m} \sum_{k}\binom{-m}{k}\left\{1-\frac{1}{4} S^{2}+i S\right\}^{-m-k} \frac{1}{2 k+1} L_{1}^{k+\frac{1}{2}} \\
& +\sum\binom{a}{m}(-2 i S)^{m} \sum_{k}\binom{-m}{k}\left\{1-\frac{1}{4} S^{2}+i S\right\}^{k} \frac{1}{1-2 m-2 k}\left\{L_{2}^{-m \cdot-k-\frac{1}{2}}-L_{1}^{-m-k-\frac{1}{2}}\right\} \\
& -L_{2}^{\frac{1}{2}}
\end{aligned}
$$

and if $4-2 \sqrt{3}<5<2 / \sqrt{3}$

$$
\begin{aligned}
I_{2}= & \sum\binom{a}{m}(-2 i S)^{m} \sum_{k}\binom{-m}{k}\left\{1-\frac{1}{4} S^{2}+i S\right\}^{-m-k} \frac{1}{2 k+1} L_{2}^{k+\frac{1}{2}} \\
& -L_{2}^{\frac{1}{2}}
\end{aligned}
$$

In all these equations L_{1} and L_{2} are limits of integration,

$$
\begin{aligned}
& L_{1}=1+\frac{1}{2} s^{2} \\
& L_{2}=\frac{1}{4} s^{2}-1+\sqrt{3} s=y^{2}
\end{aligned}
$$

(iii) $4+2 \sqrt{3} \leqslant 5$

As we have done in the previous case, we consider $\ln \phi(s)$ as a sum of integrals over different ranges.

$$
\begin{aligned}
& \ln \phi(s, b)=\int_{L^{\frac{1}{2}}}^{\frac{b}{v}}\left(J_{1}+J_{2}+J_{3}\right) \\
& J_{1}=\frac{r}{b_{0}} \int_{L_{3}^{\frac{1}{2}}}^{\frac{L^{2}}{2}} d t \operatorname{Exp} \\
& J_{2}=\frac{r}{L_{2}^{2}} \int^{\frac{2}{2}} d t\{\exp (-i \eta)-1\}
\end{aligned}
$$

$$
J_{3}=\int_{L_{2}^{\frac{2}{2}}}^{\infty} d t \operatorname{Exp}
$$

where Exp indicates that a binomial expansion can be used, and

$$
L_{3}{ }^{2}=\frac{1}{3} S^{2}-1-\sqrt{3} S
$$

The expressions for $\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}$ are as follows:

$$
\begin{aligned}
& J_{1}=-e^{2 i a \pi} \sum_{m=1}^{\infty}\binom{a}{m}(-2 i S)^{m}\left\{\frac{(2 m-2)!}{(m-1)!(m-1)!} \frac{2}{(2 i+S)^{2 m-1}} \arctan \left[(1+i S) L_{3}^{\frac{1}{2}}\right]\right. \\
& +\frac{L_{3}}{\frac{1}{2}}\left(\sum_{k=0}^{m-2} \cdot \frac{(2 m-1)!!}{(2 m-2 k-3)!!} \frac{(m-k-2)!}{(m-1)!} \frac{2^{k-1}}{(2 i+5)^{2 k} k+2} \frac{1}{(i-\sqrt{3})^{m-k-1}} *\right. \\
& \left.\frac{1}{s^{m-k-1}}\right\} \\
& J_{3}=\sum_{m=1}^{\infty}\binom{a}{m}(-2 i S)^{m} I_{2} \\
& J_{2}=\sum_{m=0}^{\infty}\binom{a}{m}(-2 i S)^{m} \sum_{k=0}^{\infty}\binom{m}{k}\left(1-\frac{1}{4} S^{2}+i S\right)^{-m-k} \frac{1}{2 k+1}\left\{\left(\frac{1}{4} S^{2}-1\right)^{k+\frac{1}{2}}\left(e^{2 i a T i}-1\right)\right. \\
& \left.+L_{1}{ }^{\mathrm{k}+\frac{1}{2}}-\mathrm{L}_{3}{ }^{\mathrm{k}+\frac{1}{2}}\right\} \\
& +\sum_{m=0}^{\infty}\binom{a}{m}(-2 i S)^{m} \sum_{k=0}^{\infty}\binom{m}{k}\left(1-\frac{1}{4} S^{2}+i S\right)^{k} \frac{1}{-2 m-2 k+1}\left\{L_{2}{ }^{-m-k+\frac{1}{2}}-L_{1}{ }^{-m-k+\frac{1}{2}}\right\} \\
& +\left\{L_{3}{ }^{\frac{1}{2}}-L_{2}{ }^{\frac{1}{2}}\right\}
\end{aligned}
$$

After some numerical and analytical attempts to evaluate $\ln \phi(s)$, this attempt was also abandonned.

AII. 3 Fourier Expansion

The last method we shall describe was in some ways the most successful even though it did not lead to an expression for $\phi(s)$. Since much of the work previously described used Fourier expansion, we expanded

$$
\exp (-i a X)=\sum_{n} A_{n}(a) \exp (-i n X)
$$

with

$$
X=2 \arctan \left(T+\frac{3}{2} S\right)-2 \arctan \left(T-\frac{1}{2} S\right)
$$

from which

$$
\exp (-i a X)-1=\sum_{n} \frac{\sin (n-a) \pi}{(n-a) \pi}\{\exp (-i n X)-1\}
$$

and we now have än infinite series of what we called "integer a" solutions.

Useful approximations can be made by writing a $=N-\epsilon$, with $0 \leqslant \epsilon \leqslant 1$. Then

$$
\exp (-i \alpha X)-1=\sum_{n}(-1)^{n-N} \frac{\sin \in \pi}{(n-N+\epsilon) \pi}\{\exp (-i n X)-1\}
$$

The approximation we make is to assume, perhaps incorrectly, that the dominant terms in the expansion are those for which ($n-N+\epsilon$) is snall, so that the orily terms we select from the expansion are those corresponding to $\mathrm{n}=\mathrm{N}$ and $\mathrm{n}=\mathrm{N}-1$,
i.e. $\exp (-i a x)-1= \pm \frac{\sin \epsilon \pi}{\epsilon \pi}\{\exp (-i N X)-1\} \pm \frac{\sin \epsilon \pi}{(1-\epsilon) \pi}\{\exp (-i(N-1) X)-1\}$

$$
\begin{aligned}
& \text { and } \\
& \ln \phi(s, b)= \pm 2 \pi i \frac{b}{v} \sum_{m=1}^{N}\binom{N}{m} \frac{(2 m-2)!}{(m-1)!(m-1)!} \frac{(2 i S)^{m}}{(2 i-S)^{2 m-1}} \\
& \pm 2 \pi i \frac{b}{v} \sum_{m=1}^{N-1}\binom{N-1}{m} \frac{(2 m-2)!}{(m-1)!(m-1)!} \frac{(2 i S)^{m}}{(2 i-S)^{2 m-1}}
\end{aligned}
$$

Although this solution appears simple, there are difficulties arising from the definition of N , and the initial assumption cannot be rigorously justified if \in is about $\frac{1}{2}$.

$$
\begin{aligned}
& \text { and } \\
& \text { In } \phi(s, b)= \pm 2 \pi i \frac{b}{v} \sum_{m=1}^{N}\binom{N}{m} \frac{(2 m-2)!}{(m-1)!(m-1)!} \frac{(2 i S)^{m}}{(2 i-S)^{2 m-1}} \\
& \pm 2 \pi_{i} \frac{b}{v} \sum_{m=1}^{N-1}\binom{N-1}{m} \frac{(2 m-2)!}{(m-1)!(m-1)!} \frac{(2 i S)^{m}}{(2 i-S)^{2 m-1}}
\end{aligned}
$$

Although this solution appears simple, there are difficulties arising
from the definition of N, and the initial assumption cannot be rigorously justified if \in is about $\frac{1}{2}$.

APPENDIX III

Regions of ralidity and Merging of Spectral Lines

Apart from the approxinations mentioned in the text, the line profiles obtained will cease to have any meaning for high enough values of n. Highly excited states have relatively small energy separation, and broadening of the levels causes them to merge.

This merging of states was first considered by Inglis and Teller (1932), and their method was revised and commented on by Unsold (1948). We have shown that for hydrogen the energy levels are given by

$$
E_{n}=\frac{-e^{2}}{2 a_{0} n^{2}}
$$

where a_{0} is the first Bohr radius, so that the separation of energy levels for high n is

$$
\Delta E_{n}=\frac{e^{2}}{a_{0} n^{3}}
$$

When the splitting is of the order of $\frac{1}{2} \Delta E_{n}$, the levels will merge.

In the case of statistical broadening, the splitting in the linear Stark effect for the extreme components is

$$
3 / 2 e a_{0} n^{2} F
$$

for a field F. The electric field is generally assumed small, and Inglis and Teller chose an ionic field of $3 \cdot 7 e^{2} n^{2 / 3}$ and obtained the following oquation for the highest observable state $n_{\text {max }}$

$$
\log _{10} N=23.3-7.5 \log _{10} n_{\max }
$$

(This formula has often been used to determine the ion density N). They also showed that starting with the Lindholm approximation and substituting

$$
c=\frac{e^{2} a_{0} n^{2}}{\hbar}
$$

and

$$
m v^{2}=3 k T,
$$

the effect of electrons has to be taken into consideration when

$$
T<\frac{5 \times 10^{5} K}{n_{\max }}
$$

(although this criterion should be treated with some caution, based as it is on the Lindholm calculations). There will thus be a limit dependent on temperature and density beyond which no spectral lines will be observed.

Before this limit is reached, one of the major approximaitins in the theory may break down. Using cross sections obtained from the correspondence principle, G. Feach has shown in some unpublished work that beyond a certain quantum number, inelastic collisions will dominate the line broadening process. This value of the quantum number also depends on the physical situation, but for the cases considered was of order 100 or less.

- References

BALMER, J.J., Verhandlungen Natur-Gesselschaft, Basel, 1885
banks, D., PERCIVAL, I.C., and VALENTINE, N.A., Proc. VIth IPFAC,
(Cambridge, Mass : MIT
Press) 1969 Press) 1969
BELLL, R.P., and GUGGENHETM, E.A., Trans. Faraday Sou., 32, 1013-7, 1936 BETHE, H.A. and SALPETER, E.E., Handbuch Physik (Berlin : Julius Springer) -
BLANChard, P., J. Phys B. Atom-Molec. Phys., I, 993-1005, 1974
BOKR, N., The theory of spectra and atomic constitutions (Londoia : C.U.P.) 1923
SUurces of quantum mechanics, Ed. B.L. Van der Waerden,
(Amsterdam : North Holland) 1967
BORN, M., The mechanics of the atom, (Iondon : G. Bell and Sons) 1927
CHARLTER, c.v.L., Mechanik des Himmels (Leipzig : Veit) 1907
CLARK, A.P., and DICKINSOV, A.S., J. Phys. B. Atom.Molec. Phys., $\begin{array}{r}\text { L, } \\ \text { L112-6, } \\ \text { 19-1 }\end{array}$
CORBEN, H.C., and STEHLE, P., Classical Mechanics, (New York : J. Wiley and Sons), 1960
DELAUNEY, C.E., Theorie du Movement de la Lune (Paris) 1860-1867
EPSTEIN, P.S., Ann. Physik, 50, 489-520, 1916 Ann. Physik, 51, 168-188, 1916
FOLEY, H.M., Phys. Rev., 69, 616, 1946 Phys. Rev., 73, 259, 1948
Pruc. Cone. Phil Soc , 22,
Fouller , R.H., Proc Comib. Phil Soc., 23, 793, 1925
GOLDSTEIN, H., Classical Mechanics, (Reading, Mass. : Addison-Wesley) 1959
GORDON, W., Ann. d. Physik, 2, 1031, 1929
GREEN, L.C., RUSH, P.P., and ChANDLER, C.D., Astr. J. Suppl., $\begin{gathered}\text { N25, } 3 \text {, } 37-4^{7}, 1957\end{gathered}$
Greleawait, E.M., and DICkinson, A.S., J.Molec. Spectrosc., 30 , 427-36, 1969
HETSHANERG, W., The physical principles of quartum theory (New York : Dover)hidiman, r.C., and SCHuLrR, K.E., J. Chem.Phys., 21, 373-L, 1953
Herzbirg, G., Spectra of diatomic molecules (Now York : Van Nostrand) 1950

HOLI'ZMARK, J.,
Ann. Physik, 58, 577, 1919
Physik 2., 20, 162, 1919
Physik Z., 25, 73, 1924
2. Physik, 34, 722, 1925

INGLIS, D.R. and TELLER, E., Astrophys J., 90, 439, 1939
JAMMER, M, The conceptual foundation of quantum mechanics (New York : McGraw Hill) 1966

KAFDASHEV, P.K., Astrophys. Z., 36, 838, 1959
KINGSTON, A.E., and LAUER, J.E., Proc. Phys. Soc., B7, 399, 1966
Froc. Phys. Soc., 88, 587, 1966
KUHN, H., Phil.Mag., 18, 987, 1934
——Proc. Roy. Soc. (London), A158, 212, 1937
LANDAU, L.D., and LIFSHITZ, E.M., Course on theoretical physics,
Volume 1, (Oxford : Pergamon Press), 1960
Volume 2, (Osfurt : Pergamen Press), 1962
LeNZ, W., Z. Physik, 25, 299-311, 1924
Z. Physik, 80, 423, 1933

LINDHOLM, E.; Z. Physik, 109, 223, 1938
Z. Physik, 113, 596, 1939
__ Dissertation, Upsala, 1942
— Arkiv. Mat. Astron. Fysik, 28A, No. 3, 1942
—_ Arkiv. Mat. Astron. Fysik, 32A, No. 17, 1946
LORENTZ, H., Pron. Amsterdam Acad. Sci., 8, 591, 1906
MARGENAU, H., Phys. Rev., 40, 387, 1932
—— Phys. Rev., 43, 129, 1933
——Pnys. Rev., 崖, 931, 1933
——_ Phys. Rev., 48, 755, 1935

MARGENAU, H., and LEWIS, M., Rev. Mod. Phys., 31, 569-615, 1959
MARGENAU, H. and MEYEROTT, R., Phys. Rev., 29, 1851, 1955
MENZEL, D.H., Nature, 218, 756-7, 1968
MEZGER, P.G., Sommerfeld memorial symposium, Eds F. Bopp and H. Kleinpoppen, (Ansterdam : North Holland) 1968
MICIELSON, A.A., Astrophys. J., 2, 251, 1895
——nil Mag, 31, 338, 1891
$\longrightarrow \quad$ Phil Mar, 34, 280, 1892

- MINKOWSKI, R., Z. Physik, L5, 16, 1929
Z. Physik, 93, 731, 1935

NORCLIFFE, A., and PERCIVAL, I.C., J. Phys.B. Atom.Molec Phys.,
1, 774-83, 1968
J. Fhys.B. Atom.Molec Phys.,

1, 784-94, 1968
NORCLIFFE, A., PERCIVAL, I.C., and ROBERTS, M., J. Phys.B. Atom.Molec Phys., 2, $578-589,1969$
\qquad
J. Phys.B. Atom.Molec Phys., 2, 590-602, 1969

NORCLIFFE, A., J. Phys.B. Atom Molec Phys., 4, 143-152, 1971
PERCIVAL, I.C., and RICHARDS, D., Froc. Phys. Soc., 22, 311-318, 1967

PLANCK, M., . Vorleswingen liber die theorie der Warmestrahlung
(Leipzig : Barth) 1906
——Theory of heat radiation (New York : Dover) 1959
POINCARE, H., Ieģons de Mecaniques Célestes (Paris : Gauthier-Villars) 1905
PUISSON, S.D., J: Ecole Polytechnique, 8, 266-344, 1809
RAYLETGH , Phil. Mag., 27, 298, 1889
KAYLEIG!I-JEANS : RAYLETGH, the theory of sound (London : MacMillan) 1877, 1929 JEANS, J.H., Phil. Mag., 10, 91-98, 1905

SEATON, M.J., Proc. Phys. Soc., 79, 1105, 1962
SCHROEDINGER, E., Ann. Physik, 72, 361-376, 489-527, 1926
——Ann. Physik, 80, 43i-490, 1926
Ann. Physik, 81, 109-1 37, 1926
SCIWARZCHILD, K., Berliner Berichte, 548-568, 1916
SLATFR, J.C., Quantum mechanics of Atomic Structure (New York : McGraw Hill) 1960
SMITH, E.W., VIDAL, C R., and corper, J., J Res NBS. T3A, 4. 389,1969
SOMMELFELD, A., Phys. Z., 12, 1057-1066, 1911
STAbler, a.c., Phys Rer. 133 , A1268, 1964

UNSÖLD, A., Viertel. Astron. Ges., 78, 213, 1943
\qquad Z. Astrophys, 24, 355, 1948
—_ Fhysik der Sternatmosphären, (Berlin: Springer - Verlag) 1955
VAN VLECK, J.H., Phys. Rev., 24, 330-346, 347-365, 1924
van vLeck and margenaut, Phys. Rev., 76, 1211, 1949
WEISSKOPF, P., Z. Physik, 75, 287, 1932
\qquad 7. Physik 77, 398, 1932
——P Physik 2., 34, 1, 1933
WILSON, E.B., DECIUS, J.C., and CROSS, D.C., Molecuiar Vibrations, (New Yorle : McGraw Hill) 1955

Review papers on Line Broadening

UNSÖLD, A., "Physik der Sternatmosphären", (Berlin : Springer-Verlag) 1955 Chen, s., and tareo, M., Rev. Mod. Phys., 29, '0, 1957

BREIRNE, R.G., Rev. Mod. Phys., 29, 94, 195?
margenau, h., and LEwIS, M., Rev. Mod. Phys., 31, 569, 1959
BoIM, K.H., In "Stellar Atmospheres", Ed. J.L. Greenstein, (Chicago : Univ. Chicago Press) 1960

TRAVING, G., "Liber die Theorie der Druckverbreiterung von Spektrallinien" (Karlsruhe : Braun) 1960

BREETE, R.G., "The shift and shape of spectral lines" (London : Pergamon Press) 1961
baranger, M., In "Atomic and Molecular Processes", Ed. D.R. Bates, (New York : Academic Press) 1962

BREENS, R.G., In "Handbuch der Physik", XxvIT, (Berlin : Springer-Verlac) 1964 GRIEv, H.R., In "Plasma Spectroscopy", (New York : McGraw Hill) 1964 SOBBIMAN, I.I., "Theory of Atomic Spectra" (Moscow) 1964 WIPSE, W.L., In "Plasma diagnostic techniques" (London : Academic Press) 1955, VAN REGEMOR'HR, H., Ann. Rev. of Astron. and Astrop., 3, 71, 1965 COOPFR, J., in "Lectures in theoretical physics", 11, Boulder, 1965 traving, G., In "Plasma diagnostics", (Ansterdem : North Holland) 1968

VAN REGMORTELR, H., Jn "Alons and Molocujes in Astrophysics", Edis T.R. Carson and M.J. Roberts, (Tonton : Acadomic Presis) 1972
J. Phys. B: Atom. Molec. Phys., Vol. 5, July 1972. Printed in Great Britain. © 1972

Matrix elements and correspondence principles

PF NACCACHE
Department of Physics, University of Stirling, Stirling, Scotland

MS received 9 September 1971

Abstract

Heisenberg's form of the correspondence principle for non-relativistic matrix elements has been used to evaluate matrix elements for various potentials. These are compared with available quantum mechanical results to check the general validity of the use of classical mechanics and correspondence principles in the derivation of quantum mechanical expressions.

Using a one dimensional harmonic oscillator potential, matrix elements of the form $\langle n| q^{m}|n+s\rangle$ and $\langle n| p^{n}|n+s\rangle$ are worked out. A Morse potential is then ι onsidered and the matrix elements for position, momentum, and kinetic energy are eviluated. Using a Coulomb potential a similar procedure is used for functions of various po ition coordinates, from which dipole and quadrupole moments from transitions between n, I states are calculated.

The agreement with quantum mechanics is found to be generally good, and in some cases identical results are obtained.

1. Introduction

There are many problems in the physics of excited states which have no exact analytic solutions. For highly excited states, we can apply the correspondence principle and use classical mechanics. The classical solution will tend to the exact quantum mechanical solution in the limit of high quantum number (n), but there is some uncertainty as to the exact range of validity of this approximation, and its application to intermediate or even low quantum numbers is not a priori justified.

The purpose of this paper is to examine this range of validity and to demonstrate how correspondence principle solutions can be used away from the high n limit, so that classical techniques may be used more effectively where no exact quantum mechanical solutions are available. Of course detailed comparisons between quantum and correspondence solutions can only be made when both are known, so we consider here cases where exact quantum solutions are available, derive the correspondence solution, and compare the two over a wide range of quantum numbers.

Section 2 is a brief introduction to the standard classical theories and to the correspondence principles used. In $\S 3$, this theory is applied to a one-dimensional harmonic oscillator potential to evaluate matrix elements of various powers of position and momentum. In $\S 4$ this is repeated for a Morse potential and in $\S 5$ for a Coulomb potential. At all stages results are compared with available quantum mechanical results. Section 6 is a summary of the comparisons.

2. Theory

The classical theory of action and aingle variables is well documented (Corben and Stehle 1960. Goldstein 1959), if q and p are the initial values of position and momentum, then

$$
\begin{align*}
& I=\frac{1}{2 \pi} \oint p \mathrm{~d} q \tag{1}\\
& u=\frac{\partial}{\partial I} \int p(I) \mathrm{d} q . \tag{2}
\end{align*}
$$

We follow the notation of Landau and Lifshitz (1960) and replace the usual action variable J by $J=J / 2 \pi$. The angle variable w^{\prime} then varies between 0 and 2π and $\omega=\omega t+$ constant, ω being the classical frequency.

Sommerfeld assumed that

$$
\begin{equation*}
I=n h \tag{3}
\end{equation*}
$$

with $n=$ integer, so that the energy of the system is quantized. The second fundamental assumption of the old quantum theory (see Jammer 1966), formulated by Bohr, is that in the limı where successive stationary states differ little from each other,

$$
\begin{equation*}
\omega_{m n}=\frac{\left(E_{n}-E_{n^{\prime}}\right)}{h} \rightarrow s \omega \tag{4}
\end{equation*}
$$

where $\omega_{n n}$ is the observed quantal frequency, and $s=n^{\prime}-n$. A few years later, Heisen-

- berg (1949) made a similar correspondence between matrix elements and Fourier coefficients.

If we expand

$$
\begin{equation*}
q(t)=\sum_{s} q_{s} \mathrm{e}^{\text {isot }} \tag{5}
\end{equation*}
$$

then Heisenberg's form of correspondence is that

$$
\langle n| q(t)|n+s\rangle=q_{s} .
$$

In general, equation (4) is only true in the limit of high n and low s. It is a question of practical importance as to whether or not there exists a more accurate approximation than is afforded by the classical limit. A fruitful approach is to notice that the limit necessarily does not distinguish between initial and final parameters, and to employ an ad hoc approximation that does. Any such attempt must of course be in agreement with the physical situation under consideration, and this problem in the case of the Coulomb potential has been investigated by Wentzel (1924) and more recently by Biedenharn and Brussaard (1965). Thus, for a transition between two states with quantum numbers n and $n+s$, the quantizing equation becomes

$$
I=n_{c} h
$$

and

$$
n_{c}=f(n, n+s) .
$$

We shall show that good agreement is obtained for high n values between quantum mechanical and correspondence matrix elements by letting

$$
\begin{equation*}
n_{x}=n+\frac{1}{2} s \tag{6}
\end{equation*}
$$

however, much better results are obtained over a large range of n values by comparing the correspondence and quantal results for simple cases at low n values, and adjusting n_{c} to agree at these low values. This particular choice of n_{c} will vary from potential to potential, but for each potential will give better agreement than equation (6). In some cases, a judicious choice of n_{c} reproduces quantal results for all values of n.

3. Simple harmonic potential

For a one-dimensional harmonic potential, $E=\omega I$, and

$$
\begin{equation*}
q=\left(\frac{2 l}{\omega}\right)^{1 / 2} \cos \omega t \tag{7}
\end{equation*}
$$

Comparing equations (5) and (7), we infer that the only non-zero Fourier components are those with $s= \pm 1$, that is,

$$
\langle n| q|n+1\rangle=\langle n| q|n-1\rangle=\left(\frac{h \mu}{2 \omega} n_{c}\right)^{1 / 2}
$$

This does not distinguish between upward and downward transitions, and would mean that the transitions $\langle n+1| \rightarrow|n\rangle$ and $\langle n| \rightarrow|n-1\rangle$ produced identical results, which is certainly false. Thus, on physical grounds, the substitution for n_{c} will have to differentiate between upward and downward transitions. Equation (7) can be raised to any integer power λ; for a general $\lambda>0$, a similar procedure results in

$$
\langle n| q^{\lambda}|n+s\rangle=\left(\frac{h \mu}{2 \omega} n_{c}\right)^{\lambda / 2} \frac{\lambda!}{\left\{\frac{1}{2}(\lambda-s)\right\}!\left\{\frac{1}{2}(\lambda+s)\right\}!}
$$

with the values of s restricted to

$$
s=\lambda-2 j \quad j=0,1, \ldots \lambda
$$

The simple harmonic oscillator is symmetric in position and conjugate momentum, p. The latter can be obtained by differentiating equation (7) with respect to time, and the correspondence matrix element is

$$
\begin{equation*}
\langle n| p^{\lambda}|n+s\rangle=i^{2 \lambda-s} \mu^{\lambda}\left(\frac{h \omega}{2} n_{c}\right\}^{\lambda / 2} \frac{\lambda!}{\left\{\frac{1}{2}(\lambda-s)\right\}!\left\{\frac{1}{2}(\lambda+s)\right\}!} \tag{8}
\end{equation*}
$$

with similar restrictions on s and λ. We now have to define n_{c} in terms of n and s, and this definition is very much an individual matter. There is an infinite class of valid definitions which produce results which obcy Bohr's correspondence principle and agree with quantum mechanics in the limit $s / n \rightarrow 0$; the theory does not tell us which to choose to obtain results away from this limit. The simplest choice would be to let n_{c} equal the mean of n and $n+s$, that is,

$$
n_{\mathrm{c}}=n+\frac{1}{2} s
$$

From table 1, we see that using this substitution the quantal and correspondence results agree to $\sim(50 / n) \%$.

We now use a pragmatic approach and choose the substitution which gives the best agreement with quantum mechanics over the whole matrix. Comparing in table I
(n values by comparing
n values, and adjusting Il vary from potential to in equation (6). In some l values of n.
ero Fourier components
hsitions, and would mean dentical results, which is or n_{c} will have to differ(7) can be raised to any Its in
conjugate momentum, p. respect to time, and the
in terms of n and s, and an infinite class of valid dence principle and agree ot tell us which to choose would be to let n_{c} equal
hil correspondence results
stitution which gives the ix. Comparing in table 1

Table 1. Comparison of correspondence and quantum mechanical values for the matrix elements of $p^{1}, \lambda=1,2,3,4 . A=i \mu \nmid\{h \omega)^{1 / 2}$. The substitution $\left(n_{c}\right)^{4}=(n+s)!/ n!, s \neq 0$; $n_{c}=n+\frac{1}{2}, s=0$, gives identical results for all terms except the three marked (*)

Matrix element	Correspondence value	Quantum mechanical value
$\begin{aligned} & \langle n\| p\|n+1\rangle \\ & \langle n\| p\|n-1\rangle \end{aligned}$	$\begin{array}{r} A n_{c}^{1 / 2} \\ -A n_{\mathrm{c}}^{1 / 2} \end{array}$	$\begin{aligned} & A(n+1)^{1 / 2} \\ & A(n)^{1 / 2} \end{aligned}$
$\begin{aligned} & \langle n\| p^{2}\|n+2\rangle \\ & \langle n\| p^{2}\|n\rangle \\ & \langle n\| p^{2}\|n-2\rangle \end{aligned}$	$\begin{gathered} A^{2} n_{c} \\ -2 A^{2} n_{c} \\ A^{2} n_{c} \end{gathered}$	$\begin{aligned} & A^{2}\{(n+1)(n+2)\}^{1 / 2} \\ & -2 A^{2}\left(n+\frac{1}{2}\right) \\ & A^{2}\{n(n-1)\}^{1 / 2} \end{aligned}$
$\begin{aligned} & \langle n\| p^{4}\|n+3\rangle \\ & \langle n\| p^{3}\|n+1\rangle \\ & \langle n\| p^{3}\|n-1\rangle \\ & \langle n\| p^{3}\|n-3\rangle \end{aligned}$	$\begin{gathered} A^{3} n_{c}^{3 / 2} \\ -3 A^{3} n_{v}^{3 / 2} \\ 3 A^{3} n^{3 / 2} \\ -A^{3} n_{\mathrm{c}}^{3 / 2} \end{gathered}$	$\begin{aligned} & A^{3}\{(n+1)(n+2)(n+3)\}^{1 / 2} \\ - & 3 A^{3}(n+1)^{3 / 2} \\ & 3 A^{2} n^{3 / 2} \\ - & A^{3}\{n(n-1)(n-2)\}^{1 / 2} \end{aligned}$
$\begin{aligned} & \langle n\| p^{4}\|n+4\rangle \\ & *\langle n\| p^{4}\|n+2\rangle \\ & *\langle n\| p^{4}\|n\rangle \\ & *\langle n\| p^{4}\|n-2\rangle \\ & \langle n\| p^{4}\|n-4\rangle \end{aligned}$	$\begin{gathered} A^{4} n_{c}^{2} \\ -4 A^{4} n_{c}^{2} \\ 6 A^{4} n_{c}^{2} \\ -4 A^{4} n_{c}^{2} \\ A^{4} n_{c}^{2} \end{gathered}$	$\begin{aligned} & A^{4}\{(n+1)(n+2)(n+3)(n+4)\}^{1 / 2} \\ & \left.\left.-4 A^{4}\left(n+\frac{1}{5}\right)\right\}(n+1)(n+2)\right\}^{1+2} \\ & 6 A^{4}\left(n^{2}+n+\frac{1}{2}\right) \\ & -4 A^{4}\left(n-\frac{1}{2}\right)\{m(n-1)\}^{1 / 2} \\ & \left.A^{4}\{n-1)(n-2)(n-3)\right\}^{12} \end{aligned}$

the correspondence matrix elements with the quantum mechanical ones (Wilson et al insel we find that the best choice is

$$
\begin{equation*}
n_{c}^{s}=\frac{(n+s)!}{n!} \quad s \neq 0 \tag{9a}
\end{equation*}
$$

Expanding this for $s / n \rightarrow 0$,

$$
n_{\mathrm{c}}=n+\frac{1}{2} s+\frac{1}{2}
$$

that is.

$$
\begin{equation*}
n_{\mathrm{c}}=n+\frac{1}{2} \quad s=0 \tag{9b}
\end{equation*}
$$

S.1 tituting equations ($9 a$) and ($9 b$) in equation (8) for $\lambda=1,2,3$, the two sets of results are identical for all values of n and s, that is, the two matrices are identical. For $\lambda \geqslant 4$, only elements of the form $\langle n| p^{2}|n \pm \lambda\rangle$ are identical; the rest agree to $\left\langle 50 / n^{2} \%\right.$. For example, $\langle n| p^{4}|n\rangle_{Q}=6 A^{4}\left(n^{2}+n+\frac{1}{2}\right)$, whereas $\langle n| p^{4}|n\rangle_{c}=6 A^{4}\left(n^{2}+n+\frac{1}{4}\right)$; for $n=10$, these agree to 0.226%. (This was first noticed by Bell and Guggenheim (1936) in their calculations of mean values of dipole moments.) It is not yet understood why some correspondence matrix elements and their quantum mechanical counterparts are identical, and others are only nearly equal. The explanation probably involves correspondence identities (Norcliffe and Percival 1968a, b).

The results of this paper have been used by Clark and Dickinson (1971), who used the correspondence principle for strongly coupled states (Percival and Richards 1970c) to obtain approximate transition probabilities for a forced harmonic oscillator. They formally and numerically show that the correspundence principle result has a much larger range of validity than the first order perturbation approximation. even for $0 \rightarrow 1$ transitions.
4. Morse potential

The Morse potential is one of the best approximations for all values of q for the diatomic molecule. It is a one-dimensional potential defined by

$$
V(q)=D\left[1-\exp \left\{-a\left(q-q_{e}\right)\right\}\right]^{2}
$$

D being the dissuciation energy, a a constant, and q_{e} corresponding to the bottom of the potential well.

If the energy of thic sysiem is E_{n}, and we define $t=a^{-1} h^{-1}(2 \mu D)^{1 / 2}$ then

$$
1-\frac{E_{n}}{D}=\left(1-\frac{n_{\mathrm{c}}}{t}\right)^{2}
$$

that is

$$
\frac{E_{n}}{D}=\frac{n_{c}}{t}\left(2-\frac{n_{c}}{t}\right) .
$$

The parameter t is in fact a number of the order of (but greater than) the maximum number of bound states the potential will support. As in the case of the harmonic oscillator, replacing n_{c} by $n+\frac{1}{2}$ gives the quota result (Herzberg 1950).

The frequency ω is found to be

$$
\omega=a^{2} h \mu^{-1}\left(t-n_{c}\right) .
$$

Defining Q to be the displacement from the bottom of the potential well. that is, $Q=q-q_{c}$, we find tha:

$$
\begin{equation*}
u Q=\ln \left(1+\sqrt{\frac{E}{D}} \sin w\right)^{\prime}-\ln \left(1-\frac{E}{D}\right) \tag{10}
\end{equation*}
$$

Thus Q is a periodic function of w, and can be expanded in a Fourier series, the coelficients of which are

$$
\begin{equation*}
\langle n| Q|n+s\rangle=\frac{-i^{s}}{a s}\left(n_{c}^{s} \frac{1}{\left(2 t-n_{c}\right)^{s}}\right)^{1 / 2} . \tag{11}
\end{equation*}
$$

Herman and Schuler (1953) used quantum mechanics to obtain this matrix element. and their expression can be written in the form

$$
\begin{align*}
\langle n| Q|n+s\rangle=\frac{-1}{a s} & \left(\frac{(n+s)!}{n!} \frac{(2 t-n-1-s)!}{(2 t-n-1)!}\right)^{1 / 2} \\
& \times\left(\frac{\left(t-n-s-\frac{1}{2}\right)\left(t-n-\frac{1}{2}\right)}{\left\{(t-n-s) / 2^{-1 / 2}\right\}\left\{(t-n-s) / 2^{-1 / 2}\right\}}\right)^{1 / 2} . \tag{12}
\end{align*}
$$

For $s \ll t-n$, the last ($)^{1 / 2}$ tends to unity. Table 2 compares correspondence and quantum mechanical values of $\left.a^{2} s^{2}|\langle n| Q| n+s\right\rangle\left.\right|^{2}$, for $t=50$, that is, for a potential with about 48 bound states. The correspondence matrix elements are first calculated using a mean value for n_{c}; comparison with the quantum mechanical values shows that there is an order of magnitude agreement for large s / n, which improves considerably when $s / n<1$.
values of q for the diatomic
nding to the bottom of the
${ }^{1}(2 \mu D)^{1 / 2}$ then
eater than) the maximum the case of the harmonic rg 1950)
potential well, that is,

Fourier seties, the coeffi-
ain this trix element,
$\left.2^{-1 / 2\}}\right)^{1 / 2}$.
es correspondence and that is, for a potential ents are first calculated nical values shows that improves considerably

Comparingequations(11) and (12), it would seem reasonable to choose, for a particular value of n_{c}, that from equation ($9 a$). This was the particular value chosen for the harmonic potential. Table 2 shows that much better agreement is obtained if equation (9a) is used.

Table 2. Comparison of quantum mechanical and correspondence values of $\left.a^{2} s^{2}|\langle n| Q| n+s\right\rangle\left.\right|^{2}$ in a Morse potential, with $t=50$

Transition $n \rightarrow n+s$	Quantum mechanical value	Correspondence value $n_{s}=n+s / 2$	Percentage difference	Correspondencs value $\left(n_{s} s^{s}=(n+s)!/ n!\right.$	Percentage difference
$1-2$	0.020406	0.015228	340	0020408	-0.0109
$3-4$	0.041662	0036269	14.9	0041667	-0.0118
$7-8$	0.086944	0081081	7.23	0.86957	-0.0142
$15-16$	0.19044	0.18343	3.82	0.19048	-0.0216
$1-4$	26272×10^{-5}	1.6858×10^{-5}	55.8	2.6203×10^{-s}	0.266
$1-12$	1.053×10^{-13}	1.833×10^{-13}	-42.5	0.963×10^{-13}	9.37
$3-6$	1.398×10^{-4}	1.046×10^{-4}	33.6	1.397×10^{-4}	0.1131
$5-10$	4.575×10^{-6}	3.504×10^{-6}	30.5	4.557×10^{-6}	0.397

4.1. Momentum in Morse potential

The conjugate momentum p can be simply obtained by differentiating equation (10) with respect to time. If $\alpha^{2}=E / D$, that is $\alpha<1$,

$$
p=\frac{\mu \alpha \omega}{a} \frac{\cos w}{1+\alpha \sin w}
$$

the Fourier transform of which gives

$$
\begin{aligned}
\langle n| p|n+s\rangle & =\mathrm{i}^{s-2} \frac{\mu \omega}{a}\left(\frac{n_{\mathrm{c}}}{2 t-n_{\mathrm{s}}}\right)^{s / 2} & & s \neq 0 \\
& =0 & & s=0 .
\end{aligned}
$$

The matrix of p^{2} is of more inierest, and the correspondence matrix elements for p^{2} can be compared with the quantum mechanical results of Greenwalt and Dickinson $(1969) t$. For diagonal elements we find that the two expressions are identical, that is we have a correspondence identity:

$$
\langle n| p^{2}|n\rangle=a^{2} \hbar^{2} n_{c}\left(t-n_{c}\right) \quad n_{c}=n+\frac{1}{2}
$$

For off diagonal elements the quantal expression can be simplified and written in the form

$$
\begin{aligned}
&\langle n| p^{2}|n+s\rangle_{Q}=\left\{(-1)^{s} a^{2} \hbar^{2}\left(\frac{(n+s)}{n!}\right)^{1 / 2}\right\} \\
& \times\left(\left(t-n-\frac{1}{2}\right)\left(t-n-s-\frac{1}{2}\right) \frac{(2 t-n-s-1)!}{(2 t-n-1)!}\right)^{1 / 2} \\
& \times\left(t(s-1)-s\left(n+\frac{1}{2}+\frac{1}{2} s\right)\right.
\end{aligned}
$$

[^0]which can be compared with the correspondence expression
$$
\langle n| p^{2}|n+s\rangle_{\mathrm{c}}=\left[(-\mathrm{i})^{s} a^{2} \hbar^{2} n_{\mathrm{c}}^{s / 2}\right]\left(\left(t-n_{\mathrm{c}}\right)\left(t-n_{\mathrm{c}}\right) \frac{1}{\left(2 t-n_{\mathrm{c}}\right)^{s}}\right)^{1 / 2}\left(t(s-1)-s n_{\mathrm{c}}\right)
$$

We could use the 'mean value' n_{c}, and equation $(9 a)$ as usual gives a good agreement However, it was found that once the terms in the square bracket had been equated even better agreement was obtained by using the expansion of equation ($9 a$),

$$
n_{\mathrm{c}}=n+\frac{1}{2} s+\frac{1}{2} .
$$

Figure 1 shows the agreement between the two equations wien this course of action is followed. The agreement is surprisingly good for $s / n \gg 1$.

Figure 1. Percentage difference between quantum mechanical and adjusted correspondence matrix elements for momentum squared in a Morse potential. plotted against the final quanlum number. The initial quantum number $=1$ and the percentage $=(C-Q . C) \times 100$

5. Coulomb potential

We now consider the case of an atom consisting of a nucleus of infinite mass, of charge $6 e$, only one electron, and with quantum numbers n, l, m. The electron deseribes an ellipse of semi-axis $a\left(=a_{0} n^{2}\right)$ (Born 1927) with the nucleus at one of the foci. The eccentric anomaly, u is defined by

$$
r(f)=a(1-c \cos u)
$$

r being the distance from the nucleus to the electron, and the eccentricity defined by

$$
\begin{equation*}
\epsilon^{2}=1-\frac{l^{2}}{n^{2}} . \tag{13}
\end{equation*}
$$

Then

$$
w=u-\epsilon \sin u
$$

We shall consider transitions between n, l, m levels. A function ol tiace independent variables, describing a system with three degrees of freedom, can be expanded into a three-dimensional Fourier series. By analogy with the previous potentials, we expand the position coordinates (x, y, z) in the angle variables u, ψ, and ϕ (see Born), that is,

$$
x(w, \psi, \phi)=\sum_{s, \Delta l, \Delta m} x_{, ., m}^{n+s, l+\Delta l, m+\Delta m} \operatorname{exp~i(sw+\Delta l\psi +\Delta m\phi)}
$$

etc, then obtain the matrix element for the transition by evaluating the Fourier coefficients. The properties of the integrals give selection rules for Δl and Δm :

For the x and y coefficients

$$
\Delta l= \pm 1 \quad \Delta m= \pm 1
$$

for the z coefficient

$$
\Delta l= \pm 1 \quad \Delta m=0 .
$$

The three matrix elements can be written in the form

$$
\begin{align*}
& \langle n, l, m| x|n+s, l+\Delta l, m+\Delta n\rangle=\frac{\Delta l}{4}\left(1+\frac{\Delta m m}{\Delta l l}\right) R_{n, l}^{n+\varepsilon, l+\Delta l} \\
& \langle n, l, m| y|n+s, l+\Delta l, m+\Delta m\rangle=-i \Delta m \frac{\Delta l}{4}\left(1+\frac{\Delta n m}{\Delta l l}\right) R_{n, l}^{n+s, l+\Delta l} \tag{14}\\
& \langle n, l, m| z|n+s, l+\Delta l, m\rangle=-\frac{1}{2}\left(1-\frac{m^{2}}{l^{2}}\right)^{1 / 2} R_{n, l}^{n+s, l+\Delta l}
\end{align*}
$$

where

$$
\begin{equation*}
R_{n, t}^{n+s, l+\Delta t}=a \frac{\Delta l}{s}\left(J_{s}^{\prime}(s \varepsilon)+\Delta i-\frac{\left(1-\epsilon^{2}\right)^{1 / 2}}{\epsilon} \cdot J_{s}(s \varepsilon)\right) \tag{15}
\end{equation*}
$$

is the dipole moment between states n, l and $n+s, l+\Delta l$. The s entricity is now

$$
\epsilon^{2}=1-\frac{l_{c}^{2}}{n_{c}^{2}}
$$

and l_{c} and n_{c} have yet to be defined. There are again an infinite number of valid choices, and choosing $l_{c}=l, n_{c}=\bar{n}$ gives results which are close to the quantum mechanical ones. A heuristic approach leads to

$$
\begin{aligned}
& l_{\mathrm{c}}=\max (l, l+\Delta l) \\
& n_{\mathrm{c}}=n(n+s) /\left(n+\frac{1}{2} s\right)
\end{aligned}
$$

as these provide good agreement between quantal and correspondence results for higher values of $\Delta I / l$ and $\Delta n / n$.

For $s=0$, the matrix elements for x, y, z are again given by equation (14), this time with

$$
R_{n, 1}^{n, l+\Delta t}=\frac{3}{2} \epsilon a
$$

that is

$$
R_{n, 1}^{n, 1-1}=R_{n, 1-1}^{n, l}=\frac{3}{2} n\left(n^{2}-l^{2}\right)^{1 / 2} .
$$

This is identical to the quantum mechanical result (Bethe and Salpeter 1957).

5.1. Oscillator strengths

The matrix elements for x, y, z can be used in the determination of $\int_{n, i}^{n} r^{r}$, the oscillator strengths between highly excited states for hydrogenic atoms. For the x component

$$
\left(f_{n, i}^{n_{n}^{\prime}, I}\right)=\frac{2 \mu}{3 h} \omega_{n^{\prime} n}\left(\left.\left.\sum_{m}|\langle n, i, m| x| n^{\prime}\left|m^{\prime}\right\rangle\right|^{2}\right|_{\substack{\text { averaged } \\ \text { over } m}}\right.
$$

where the frequency of the emitted radiation is given by equation (4), and the classical frequency ω by

$$
\omega=\frac{4 \pi R y}{n_{c}^{3}} .
$$

Summing the x, y, z components,

$$
f_{n, l}^{n+, l l+\Delta t}=\frac{n_{c}}{3 s}\left(J_{s}^{\prime}(s \epsilon)+\Delta l^{\left(1-c^{2}\right)^{1 / 2}} \frac{J_{s}(s \epsilon)}{\epsilon}\right)^{2} .
$$

Tu check the validity of this equation, we can work out the averaged oscillator strength, $\overline{f_{n n}}$, by summing over final $/$ states and averaging over initial / states; this average can then be compared with independently obtained results. Summing and averaging.

$$
\begin{equation*}
\overline{J_{n n}^{\prime n}} \simeq \frac{4}{3} n_{c} \frac{J_{s}(s) J_{s}^{\prime}(s)}{s^{2}} \tag{16}
\end{equation*}
$$

If we let $n_{\mathrm{c}}=n$, this is just the result obtained by Mezger (1968). About the same time, Menzel (1968) worked out an asymptotic quantum mechanical expression,

$$
\overline{f_{n i n}^{\prime \prime}}=\frac{4}{3}\left(n+\frac{3}{2} s\right) \frac{J_{j}(s) J_{s}^{\prime}(s)}{s^{2}}
$$

To obtain detailed balancing. we use a method outlined by Percival and Richards (1970a) and multiply the right hand side of equation (16) by ($1+s / n$), so that

$$
\overline{f_{n n}}=\frac{4}{3} \frac{(n+s)^{2}}{n+(s / 2)} \frac{J_{s}(s) J_{s}^{\prime}(s)}{s^{2}}
$$

which is the result quoted by Percival and Richards (1970b). and which has the same asymptotic behaviour as the Menzel result.
by equation (14), this time

Salpeter 1957).
ion of $\int_{n, i}^{n}$, the oscillator For the x component

Ition (4), and the classical
raged oscillator strength,
states: this average can ing and averaging.

About the same time, expression,

Pcrcival and Richards s / n), so that
d which has the same

Table 3. Comparison of correspondence and quantum mechanical numerical values of varous dipote moments squared for a Coulomb potential

Transition	Quantum mechanical	Correspondence value $n_{c}=n+s / 2$	Percentage difference	Correspondence value $n_{c}=n(n+s) /\left(n+\frac{1}{2}\right)$	Percentage difference
2s-3p	9.393	11.022	17.31	9.720	3.48
$4 \mathrm{~s}-5 \mathrm{p}$	72.553	76.395	5.30	73.181	$0.86(5)$
$6 \mathrm{~s}-7 \mathrm{p}$	274.19	281.22	2.56	275.25	$0.3815)$
$4 \mathrm{p}-5 \mathrm{~d}$	121.86	127.86	4.92	123.18	1.083
$4 \mathrm{~d}-5 f$	197.83	207.00	4.64	200.46	1.33
$(13,7)(20,8)$	39.51	47.18	19.4	37.96	-3.93

5.2. Numerical comparison with yuantum theory

For numerical calculations, equation (15) is best written as

$$
R_{n!}^{n+s, l+\Delta l}=\frac{n_{c}^{2}}{2 s} \Delta l\left\{\left(1+\Delta l \frac{l_{\mathrm{c}}}{n_{\mathrm{c}}}\right) J_{s-1}(s \epsilon)-\left(1-\Delta l \frac{l_{\mathrm{c}}}{n_{\mathrm{c}}}\right) J_{s+1}(s \epsilon)\right\} .
$$

Numerical values of $\left(R_{n, t}^{n+s, i+\Delta t}\right)^{2}$ were computed using $n_{\mathrm{c}}=n(n+s) /\left(n+\frac{1}{2} s\right)$ and compared with the quantum mechanical results of Green et al(1957) which were for all values of $n, n+s \leqslant 20$. The following points emerged :
(i) The difference between the two sets of values decreased as s / n decreased, $/$ remaining constant. This is just Bohr's correspondence principle.
(ii) This difference also decreased with decreasing l / n, that is, as the eccentricity increased, for fixed s. The worst errors occurred for the highest transitions, that is, when $l=n-1: 6 g-10 f$ is less than 1% out whereas $6 h-10 g$ is 13% out.

If we apply the strict condition that $s(l+1) / n<1$, the greatest difference should be less than 3.5% for all values of n. If we only restrict $s / n<1$ and $(l+1) / n<1$, differences of 10% may be found amongst the higher s / n and $(l+1) / n$ values. In general, there is good agreement for high values of n.

5.3. Quadrupole moments

The complete expansion of the radiation field produced by a system of moving charges contains not only terms described as electric dipole radiation but also terms described as electric quadrupole, octupole, ... radiation. These too can be evaluated using the correspondence principle. The matrix elements for quadrupole radiation are of the form

$$
-\langle n, l, m| x y|n+s, l+\Delta l, m+\Delta m\rangle .
$$

The selection rules for the quantum numbers l and m follow from equation (13) in a similar way as that for dipole radiation. For the $x y$ elements, for example,

$$
\begin{aligned}
& \Delta l=0, \pm 2 \\
& \Delta m= \pm 2
\end{aligned}
$$

for $\Delta l=0, \Delta m= \pm 2$,

$$
\langle n, l, m| x y|n+s, l, m \pm 2\rangle= \pm\left(1-\frac{m^{2}}{l^{2}}\right) \frac{J_{s}(s \in)}{s^{2}}
$$

for $\Delta l= \pm 2 . \Delta m= \pm 2$

$$
\begin{aligned}
\langle n, l, m| x y|n+s, l+\Delta l, m+\Delta m\rangle=\frac{1}{s e^{2}} & \left.\frac{2}{\Delta m} \left\lvert\, 1+\frac{\Delta m}{\Delta l} \frac{m}{l}\right.\right)^{2} \\
& \times\left(\frac{\left(1-(\epsilon / 2)^{2}\right)}{\epsilon} J_{s}(s \epsilon)-s\left(1-\epsilon^{2}\right) J_{s}^{\prime}(s \epsilon)\right) \\
& +\left(1-\epsilon^{2}\right)^{1 / 2} \frac{1}{s \epsilon^{2}} \frac{4}{\Delta m \Delta l}\left(1-\frac{m}{l}\right)^{2} \\
& \times\left(\frac{s\left(1-\epsilon^{2}\right)}{\epsilon} J_{s}(s \epsilon)-J_{s}^{\prime}(s \epsilon)\right) .
\end{aligned}
$$

As mentioned above, higher order terms could also be evaluated by this method if they were required.

6. Conclusion

Classical mechanics has been used in conjunction with Bohr and Heisenberg's form of the correspondence pronciples to derive matrix elements of position and momentum in various potentials. In the case of off diagonal elements, the quantization condition is not well defined. If the quantizing number used in the classical equations is equated to the mean of the upper and lower quantum numbers of the transition, results are obtained which agree with available quantum mechanical results for $s / n \ll 1$, but which are inaccurate for $s / n \sim 1$. Better results are obtained by comparing analytic or numerical values of certain simple quantum expressions with their classical counterparts, and choosing n_{c} to give good agreement between the two. This particular choice of n_{c} varies from potential to potential : in the case of the harmonic and Morse potentials (which are closely related for low n), we chose $\left(n_{c}\right)^{s}=(n+s)!/ n!$, whereas in the case of the Coulomb potentials good results were obtained using $n_{c}=n(n+s) /\left(n+\frac{1}{2} s\right)$.

The success of the above theory in obtaining valid results for these three potentials seems to indicate that this technique could be applied to any potential for which formal quantum mechanical solutions are difficult to obtain, for high values of n. The disagreement with the exact quantum mechanical solution should be at most of order s / n, using $n_{c}=n+\frac{1}{2} s$, and far less than this if a particular value for n_{c} is found for the potential. The results obtained should be much more accurate for high n values than those obtained by the usual extrapolation techniques.

Acknowledgments

The author would like to thank Professor I C Percival and Dr D Richards for very helpful discussions, and the Science Research Council for a Research Studentship.

References

Bell R P and Guggenheim E A 1936 Trans. Faraduy Soc. 3210137
Rethe H A and Salpeter E E 1957 Quantum mechanics of one and lwo electron atoms Handh. Phys.

Biedenhaarn I C and Brussaard D J 1965 Coulomb Excitation (London: Oxford University Press) Bohr N 1923 The theory of spectra and atomic constitutions (London: Cambridge University Press)
$\left.\frac{m}{l}\right)^{2}$
$\left.\left(s^{2}\right) J_{s}(s \epsilon)-s\left(1-\epsilon^{2}\right) J_{s}^{\prime}(s \epsilon)\right)$

$$
\left\lvert\, \frac{1}{s \epsilon^{2}} \frac{4}{\Delta m \Delta l}\left(1-\frac{m}{l}\right)^{2}\right.
$$

$$
J_{s}(s \epsilon)-J_{s}^{\prime}(s \epsilon)
$$

d by this method if they
d Heisenberg's form of tion and rnomentum in fantization condition is equations is equated to E. 1 , results are obtained din $n \ll 1$, but which are g analytic or numerical sical counterparts, and fular choice of n_{c} varies lorse potentials (which reas in the case of the s)/($\left.n+\frac{1}{2} s\right)$.
-these three potentials ential for which formal values of n. The disd be at most of order for n_{c} is found for the for high n values than

D Richards for very arch Studentship.

- 1967 Sources of Quantum Mechanics Ed B L Van der Waerden (Amsterdam: North-Holland) Born M 1927 The Mechanics of the Atom (London: G Bell and Sons)
Clark A P and Dickinson A S 1971 J. Phys. B: Atom. molec. Phys. 4 LI 12-6
Corben H C and Stehle P 1960 Classical Mechanics (New York: John Wiley and Sons)
Dupree A K and Goldberg 1970 Ann. Rev. Astron. Ap. 8 231-44
Green L C, Rush P P and Chandler C D 1957 Astrophys. J. Suppl. N. 253 37-47
Greenawalt E M and Dickinson A S 1969 J. Molec. Specirosc. 31 427-36
Goldstein H 1959 Classical Mechanics (Reading, Mass.: Addison-Wesley)
Heisenberg W 1949 The physical principles of quantum theory (New York: Dover)
Hermann R C and Schuler K E 1953 J. chem. Phys. 21 373-4
Herzberg G 1950 Spectra of diatomic molecules (New York: Van Nostrand)
Jammer M 1966 The conceptual foundation of quantum mechanics (New York: McGraw-Hill)
Landau L D and Lifshitz E M 1960 Course on Theoretical Physics Vol 1 Mechanics (Oxford: Pergamon Press)
Menzel D H 1968 Nature 218 756-7
Mezger P G 1968 The Sommerfeld Memorial symposium, eds F Bopp and H Kleinpoppen (Amsterdam: North-Holland)
Norcliffe A and Percival I C 1968a J. Phys. B: Atom. molec. Phys. 1774-83
—— 1968b J. Phys. B: Atom. molec. Phys. 1 784-94
Percival I C and Richards D 1970a J. Phys. B: Atom. molec. Phys. 315-28
-_ 1970b Astrophys. Lell. 4 235-7
1970c J. Phys. B: Atom. molec. Phys. 3 1035-45
Watson G N 1944 A treatise on the theory of Bessel functions (Cambridge University Press)
Wentzel G 1924 Z Phys. 27257
Wilson E B, Decius J C and Cross P C 1955 Molecular Vibrations (New York: McGraw-Hill)

Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its zuthor and that no quotation from the thesis and no information derived from it may be published without the author's prior written consent.

[^0]: - A factor of, has been omitted from one term of equation (6) of that paper, as confirmed by A S Dickinson (private communication).

