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CHAPTER I

INTRODUCTION

During the early development of quantum mechanics much use was made 

of what Bohr referred to as "a fornai analogy between the quantum 

theory and the classical theory". The conceptual_foundation of this 

"formal analogy", which he later called the "correspondence principle", 

was based on the assumption that the quantum theory contains classical 

mechanics as a limiting case. With the advent of modern quantum 

mechanics, the applications of this correspondence have until recently 

been neglected, perhaps due to a feeling that they were not necessary 

or that their range of applicability'was too limited.

There are unfortunately many cases where the methods of quantum 
mechanics are too cumbersome to be used without approximations.

Recent astrophysical investigations have for instance involved transitions 

with principal quantum numbers of up to 2$0. If the approximations that 

have to be made become too restrictive a better policy could be to use 

an approximate method which can be used to solve the problem exactly.

This theoretical investigation is in two parts. The first summarizes 

the correspondence principle methods and discusses their range of 

validity; by applying the correspondence principle to problems whose 

quantum mechanical solutions are known in special cases, we can 

compare the analytic expressions obtained by each method. We shall 

show that the two results agree over a far wider range of values than 

is generally realised, and that the agreement can be considerably 

improved by adjusting free parameters that arise naturally in the 

correspondence principle.



The second pert considers the application of classical mechanics and

the correspondence principle to the broadening of spectral line;

The observation of spectral lines involving very high principal quantum

numbers has led to a resurgence of approximate methods because of the

difficulty of applying quantum mechanics exactly. A survey of the

existing literature showed either very formal solutions to the line

broadening problem which were difficult to apply, or detailed results

which had very limited validity. Vie shall show that our calculations

agree with these accepted results in their region of validity whilst

describing the line shape in the intermediate region

In Chapter II we describe the correspondence principles we invoke

In Chapter III wo obtain the solution of the motion of a particle in 

various potentials and calculate matrix elements and other quantities 

in these potentials. The potentials we consider are a harmonic potential, 

a Morse potential, and a Coulomb potential, and we compare the results 

of our calculation with the quantum mechanical expression where these 

are known. In Chapter IV we outline the main causes of spectral line 

broadening. We consider the limits in which various physical approxi

mations car. be made and examine in detail the work and conclusions of

lindholm, one of the foremost workers in the field of non-quantum

mechanical line broadening. In Chapter V we present our theory and

compare it with others in various limits, and in Chapters VI and VII 

vre obtain line shapes which we compare with the Lindholm shapes.

(
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CHAPTER II

CORBJESFONDEN CE PRINCIPLES 

2<1 Action and Angles Variables

The classical theory of action and angle variables is veil documented 

( Corben and Stehle , 1960 ; Goldstein , 1959 ) • We consider briefly 

perturbations of periodic systems for which the Hamilton-Jacobi equation 

is separable in some set of coordinates . For those systems ,. the 

Schrdedinger equation is separable in the same coordinates .

In the case of only one degree of freedom , if q and p are conjugate 

position and momentum , new conjugate variables jfc and can be introduced, 

in place of q and p such that <*. is a constant and p  is a linear function 

of time . These new variables are not determined uniquely : we can 

replace ex by any function of itself and multiply (p  by a corresponding 

function of cC . For convenience we choose in such a way that it 

increases by 2if during any one period of the motion , in which case we 

denote it by w . Let the corresponding conjugate variable be I . We 

call w an angle variable and I an action variable .

We now consider in more detail the case of a system with N degrees of 

freedom . If now qk and p̂ . , k = 1,...,N , are the generalised

coordinates of position end momentum , and H (Qjc»Pjj) the unperturbed 

Hamiltonian , then



where the action function S is the solution of the Hamilton-Jacobi

equation

and

H. ( V ^ S  ) = E 
aq.

s(q^»• • • »q̂ j) = A q , \ c . .... c )
and Cm « • « • *c>T are the N constants of integration •1 N

We now define a set of action variables by

1_ ^ Pk dqk k = 1...IJ

the integral being taken once round a complete cycle . This relation 

may be solved to give us the integration constants as functions of the 

action variables . Thus we can write

S(q< « • • • »qjj) ~ ^  ^ k ^ k ’ 
k-\

and the corresponding angle variables w, are defined by

ò S = 3 S
a> î . ¿>1

s '
4

The equations of motion in these new coordinates become

= constantV,. = 3 H =K

wk “ t  + ^k

i. SS*. C> H =k

h
n  constant

It can be shown ( Born , 1927 ) that' when q^ goes through a complete 

cycle the change in w^ i3 2 Tff^j > where  ̂ kj is the Kronecker-



delta function which equals 1 if k = j and equals 0 otherwise .

The parameter is therefore the frequency of the motion , and 

the period is 2TT . The constant S ̂  will later he shown to be a 

phase factor .

In our definition of the action variables we have used a slightly 

different notation from that used by most authors , but one that is 

more consistent with present day quantum mechanics . Ve follow the 

notation of Landau and lAfshitz (i960) and replace the more usual 

action variables by 1^ = / 2Tf . The angle variables now vary

between 0 and 2'll" and are often actual angles instead of fractions 

of angles .

Although the notation might be recent , the theory and application of 

action and angle variables is not new . These techniques were first 

introduced by Delaunw^in his " Theorie du Mouvement de la Lune " in 

I860 , and were used extensively in the last century in investigations 

of planetary orbits by Poincare (1905) , Charlier (1907) » end others . 

Their application to electron orbits however was ignored until the 

work of Schwarzschild (1916) and Epstein (1916) , which showed how 

quantum mechanical problems involving periodic systems have to be 

tied up with ths Hamilton-Jacobi theory in classical mechanics • 

Sommerfeld then postulated definite values for the constant action 

variables
I — nil

where n is a non-negative integer and "fl is Planck's constant 

divided by 2tT ; this quantised the energy of the system and provided 

a set of discrete energy levels t or stationary states •



2.2 Bohr's Correspondence Principles . and others

A basic form of correspondence principle was firat stated by Planck 

when he wrote , in 1906 , : " The classical theory can be simply 

characterised by the fact that the quantum of action becomes infinites imslly 

small " . It is easy to show for example that Planck's (quantum 

mechanical ) radiation formula

u  = ______h - 9 ______
c3 exp^/kT) - 1

( in the usual notation ) goes over to the (classical ) Rayleigh- 

Jeans formula

u  = 8-tiv1 . kT 

as h — > 0

However , it was Bohr who first formulated a " Korrespondenprincip " 

which laid the conceptual foundation of the old quantum theory .

It deals with the formal applicability of classical mechanics to 

quantum mechanics for those stationary states defined at the end 

of the previous section . Its basis is the well known relation , 

again due to Planck , between the observed frequency 1̂  , of the

emitted radiation from an atom and the energy Efi of the nth state 

of that atom

^ n n '  " " (En " V *

Bolir's correspondence principle relates this observed frequecy 

with a corresponding classical frequency
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In the limit where successive stationary states differ 

relatively little from each other , the observed ( quanted ) 

atomic frequencies tend to coincide with the classical ones .
That is

Correspondence Principle 1

s ui

s = n- n'

d s  l e I «  n , n'

Bohr also predicted the approximate intensity of spontaneously

emitted radiation . If A , is the spontaneous transition probability

then

Correspondence Principle 2

The mean power spontaneously emitted as radiation at any 

such frequency tends to coincide with the corresponding 

classical povrer emission

The correspondence is thus between the frequency components of

the power , V , and of the energy , and not the total energy . s
The principle was extended to absorption of radiation by Van Vleck 

( 1924 ) by using the relation between Einstein's A and B 

coefficients , said was extended further to the effect of an 

electric field from any source , including a passing charged 

particle . A correspondence principle for collision processes 

can then be defined ( e.g. Percival

Before this , the correspondence principle had been incorrectly



1

In the limit where successive stationary states differ 

relatively little from each other , the observed ( quanted ) 

atomic frequencies tend to coincide with the classical ones .
Tint is

Correspondence Prinoiple 1

s u>

s = n- n'

els \ e I «  n , n'

Bohr also predicted the approximate intensity of spontaneously

emitted radiation . If is the spontaneous transition probability

then

Correspondence Principle 2

The mean power spontaneously emitted as radiation at any 

such frequency tends to coincide with the corresponding 

classical power emission

The correspondence is thus between the frequency components of

the power , W , and of the energy , and not the total energy . s
The principle was extended to absorption of radiation by Van Vleck 

( 1924 ) by using the relation between Einstein's A and B 

coefficients , and was extended further to the effect Qf an 

electric field from any source , including a passing charged 

particle . A correspondence principle for collision processes 
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applied . The difficulty is that wheread the final quantum states 

are discrete , in classical mechanics all dynamical variables have 

a continuous range of values . A density of states method was 

originally developed to deal with this problem ; we define a 

differential cross section o’o' /<5&E with respect to energy 

transfer from the state n to another state n* , ( figure 1 ) . 

If ¿>0 is nearly constant over values of A E  corresponding

to several neighbouring final excited states n 1 it is possible 

to obtain an unambiguous excitation cross section

Cr oL A  £ ¿»o'. 
c

the limits of integration corresponding to A  E = n ’ - 1 , n* , 

or AE  = n ’ , n* + 1 , or any other interval in the neighbourhood 

of n 1 , Thus
è) A £

cr(^ ^  J a d r J

I

where A E  is now the energy required to excite the atom from 

the state n to the state n' ,and

£ A E

is the mean energy between states about n' , or the inverse of 

the density of states per unit energy range .

Kote that this concept requires that varies little

with A E »When A  E ( or A  n ) ip small , this is no longer true , 

and this "naive" correspondence principle , which will also be 

called the "density of states" correspondence principle , is thus
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restricted, to

n , n' ,1 &. n | »  1

which is not the same as Bohr's correspondence principle which 

requires that

n , n' »  |A n |

and which is not valid in the strong coupling region (Stabler , 1964 ) 

n  , n' »  |&n | /v 1 .

This density of states interpretation has a more serious defect in 

that it predicts an incorrect asymptotic high energy cross-section »

For sufficiently high incident particle energies the Eethe-Bom 

approximation is valid and provides the quantum mechanical cross 

section given by Seaton ( 1962 ) and Kingston and Lauer ( 1966 » b )

o' n->n’ ) = A In E + fi 
E E

(Vie shall use the superscript q to describe a quantum mechanical 

quantity and the superscript o to denote a classical or correspondence 

principle one ) . We would expect to be able to derive a similar 

excitation cross section using classical mechanics and the correspondence 

principle , Unfortunately , a direct application of this "naive" 

correspondence principle gives f as a high energy asymptotic form ,

er °( n-»n' ) = 1 
E

The logarithmic term , which dominates at high enough energies , is

absent



This naive correspondence principle fails because the wrong 

correspondence is made between the quantum mechanical and the 

classical system . It supposes thet if the final classical eimitation 

energy (s. E lies between two energies E , ( corresponding to

a state n' ) and En ,+1 (corresponding to a state n'+1 ) then 

the classical excitation corresponds to a quantum mechanical excitation 

to a level n' (or n'+1 , since we require n'>>l) .But this is not 

the only way to derive quantal results from classical theory .

Percival and Richards (196T) showed that the correct correspondence 

was between the frequency components of the energy and not the 

total energy .

Both the classical theory of emission/absorption of radiation 

(landau and Lifshitz , 1962) and the classical perturbation 

theory of collisions (Fowler , 1925) depend on the Fourier 

expansion of the motion of the system . For instance , if r(t) 

is a position coordinate , it can be expanded in the form

where r and r are the +s th Fourier coefficients of r s -s —
and give rise to emission and absorption at a frequency sW . 

Similarly , the energy A  transferred to the atom in a collision

This leads to a new correspondence principle for collision induced 

transitions ,

r(t) = £  rg exp(iswt)

can.be expressed as a sub over terms & E°



The mean net energy transferred to an atoin by a passing 

charged particle due to upward and downward transitions 

n - n' tends to coincide with the mean net energy 

transferred according to classical theory from independent 

Fourier components of order s and -s , provided the 
perturbation of the classical orbit is small and the 

probability of transition from the initial state is small

By the first requirement we mean that classical perturbation theory 

should be valid ; the second requires that quantum mechanical 

perturbation theory should be valid . The two are not the same . 

Their range of validity is different , and classical perturbation 

theory can be invoked in regions where quantum mechanical 

perturbation theory cannot , for instance in the case of small 

changes in the quantum numbers which do not significantly change 

the classical orbit ,

Correspondence Principle 3

Applying the above principe , and using detailed balance ( Percival 

and Richards obtained a collision induced transition probability 

which , when integrated over impact parameter , produced a cross 

section which included a logarithmic term , in agreement with 

the quantum mechanical result . This shows why previous applications 

of classical mechanics to atomic scattering problems had given 

incorrect cross sections . In all of them the Fourier components 

had been treated as a single entity .E , whereas in fact each 

component contributes to a différent process , and different components 

contribute to the same-process ,



2.3 Heisenberg' s Correspondence Principle

The history of present day quantum mechanics is complicated 

(Jammer , 1966) , hut its foundations were laid by Heisenberg .

By applying the principle that only observables should appear 

in a dynamical system describing atomic phenomena , and since 

quantum mechanical matrix elements and classical Fourier 

components describe the same physical observables , he was able 

to deduce properties of quantum mechanical matrices through the 

correspondence principle .

Heisenberg's correspondence principle is most simply stated for 

one dimensional periodic motion of a particle with fundamental 

frequency kb and quantum number n . Any function of the classical 

position 1' , say FC(r) , is also periodic and can be expressed as 

a Fourier series

Then Heisenberg's correspondence principle is that in the appropriate 

limit ,

where the Dirac notation for the quantal matrix elements has been 

used and where the state vectors are eigenfunctions of the unperturbed 

Hamiltonian H ,

<n ' |F(r)|n> = F °  }  s = rv' -  irv

H In ) = E(n) 1 n>



2.4 Ambiguities in the quantisation

The development of the old quantum theory was stimulated by research 

in spectroscopy . When Balraer found , in 1885 > that all the then 

known hydrogenic lines were predicted by the formula

many attempts were made to derive this formula theoretically . In 

1913 Bohr derived it by three different methods . In hi3 second 

derivation he assumed a general relationship between the emitted 

energy Er  due to the formation of a stationary state and the 

frequency of revolution of the electron

where f(n) is an yet undetermined function of the integer n . 

On the basis of classical principles , Bohr obtained

( in the usual notation ) . Hence since

To obtain the functional dependence of f on n , Bohr had to rely 

on heuristic arguments and take recourse to the structure of the 

Balmer formula itself , in which the variable factor had the form

9

E ■ f (n) iiu)n x ' 9

then

2h
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—-2 —2( n“‘~ - r i j  ) . To obtain such a factor , he concluded that f(n)=cn , 

c being a constant to be determined. . To obtain the value of c , he 

considered a transition between two successive stationary states 

corresponding to = n and n^ = n-1 , and obtained for the 

frequency of the radiation emitted

<f = lT2me4 2n - 1 ,
2c2h3 n2(n - 1)2

and for the frequencies cf revolution of the electron before and 

after the emission ,

ai = IT "me4 , u) 1 = 1f2me4
2c3h5n5 2c*h5(n - 1)3

" If n is great , the ratio between the frequency before and after 

the emission will be very nearly equal to 1 j and according to 

ordinary electrodynamics we should expect that the ratio between 

the frequency of radiation and the frequency of revolution also is 

very nearly equal to 1 . This condition will only be satisfied if 

c = £  , " Thus

= ^ n J l *o .

The choice f(n) = -¿n was therefore made not because of a priori 

theoretical considerations but because its asymptotic form produced 

results which agreed with observations at high values of n .

We now wish to quantize the action variable I in terms of Planck's 

constant . Sommerfeld assumed that

I E fit



but while this choice is unambiguous for bound states , there is some 

logical difficulty in interpreting it for transitions between two 

states n.j and n^ . Presumably

I = f(n1tn2)-h ,

but should one choose I = n ^  , or I = , or I = ^(n1 + n2) 1T ?

Of course in the limit where and n2 are both large and differ 

little from each other the question is irrelevant since any fona which 

had the correct asymptotic behaviour would be satisfactory . The 

question is extremely important if the correspondence principle is 

to he applied away from this limit , with for instance n^ = .1 and 

n2 = 2 .

Although arguments may be put forward for using the initial or the 

final state parameters , the most reasonable suggestion would seem 

to be to use the arithmetic mean of these two quantities , whilst in 

no way assuming an "intermediate" state defined by that mean to 

exist during a transition , The limit necessarily does not distinguish 

between the two parameters n^ and n2 , and choosing their average 

gives them both equal weight . We shall show that letting

I = (n+Js)W

with n^ = n and n2 = n+s , good agreement is obtained for high 

values of n between results obtained using classical mechanics and 

the correspondence principle and results obtained using quantum 

mechanics .

A more ambitious and fruitful approach is to compare correspondence 

and quantal results for various low values of n and to choose



I s n Sc

v/here nc = f(h.j ,n.p and is chosen so as to provide the best possible 

agreement between the two results at these low n values . Any such 

choice must tend asymptotically to n as n ^ =  and s/n-?0 .



uhere r»c - f^n^,n,() and ia chosen so as to provide the best possible 

agreement between the two results at these low n values . Any such 

choice must tend asymptotically to n as n-^° and s/n-?0 .



CHAPTER III

MATRIX ELEMENTS

Simple Harmonic Potential

y
We consider in detail the application of th‘e results quoted in the 

previous chapter to the case of a one dimensional harmonic potential . 

We recall that

I = 1 <fc p dq
2-rt J

and

w = o>s = & f p dq
Al dl J

For this potential , for a particle of mass m , the Hamiltonian

2 2 2 H = p + i m u q
2m

and since the forces are conservative and the total energy must remain 

constant

p = J2m ( H  - i rao2q2)

and

sin-1 ( ImZ q ) + constant . 
J2I

Since

w = i^t + constant

the previous equation can be inverted to give



q = [EL sin(i~>t + S) 
J m iA

with £ a phase factor to he determined by the starting conditions ,

This trivial solution of the motion of a particle under the influence 

of a simple harmonic potential has been obtained using the methods of 

classical mechanics .

Suppose we now wish to investigate the behaviour of a quantum mechanical 

in a quantum mechanical iiarmonic potential , and require for instance 

transition amplitudes from a particular state . To find these we need 

matrix elements for those transitions . In the case of a simple harmonic 

potential these can easily be calculated quantum mechanically from 

first principles , but according to Heisenberg's form of the correspondence 

principle they can also be deduced by equating the matrix elements to 

an appropriate Fourier (

< n l q l n+s >  ~  qQ

e-iout ¿.j.

I'l

f
Y/e now wish to fix the value of the phase factor S' . Since quantum 

mechanically we are generally only interested in the modulus squared 

of the complex quantities we calculate , we can only compare matrix 

elements and Fourier transforms to within a phase factor . For 

convenience , in order that they have the same phase , we set & to 

T^/2 so that

q(t) 3(^t)

and we find that the only non-zero q are those corresponding to.O

I

i  i m W ’i
1 1 • •

M i
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a change in the quail lum number of +1 ,

a
(

a = +1

a 0 a ^ ¿1

To equate this with the quantum mechanical matrix elementa it is

necessary to quantise the action variable I . As indicated in the

previous chapter , there is no unique way of doing this , so we let

I = ncli , with nc an as yet undetermined function of n and a

which may initially be chosen to be n^ - n+Js . Substituting for

I and letting q equal the matrix element for q , s

To check eWevalidity of Heisenberg's correspondence principle , we can 

compare the matrix elements above with those calculated directly from 

quantum mechanics . Me need first the harmonic oscillator wavefunctions 

u^ obtained by solving Schroedinger's equation

- L  1-Jl + ^ 2q2un = En Un 
2m dq2

The wavefunction u has the well known form

The matrix element of the position q is proportional to the integral

n | q I n+s^ = 8 = +1

n l q l m-s> rx 0 s £  +1

n

b^ (rr̂ 2nn exp(-ib‘-q2) Hn(bq)

where Hn(bq) is the nth Hermitian polynomial and



su

which can be evaluated to give

< n  I q I n+1>

<in I q I n-1 ̂

<^n | q I n+s^> = 0

Thua the quantal resuit and the correspondence result are essentially

tho same ; if we choose no = n+^s their ratio is 1 + s/2n ,

which is small for large n^l and small s of order unity . However

this choice of n does not distinguish between upward and downward c
transitions and implies that the transitions n-^n+1 and n+1->ri

produce identical results , in agreement with the quantal results .

A better choice for n in this case is n = max(n,n+s) , which c c
provides correspondence results identical to the quantum mechanical 

ones .

One of the advantages of using the correspondence principle to 

evaluate matrix elements is that , having solved the equation of 

motion of the particle in the potential under consideration , it is 

relatively simple to calculate the matrix element of any function 

of that position . This involves integrals of the form

The equivalent quantum mechanioal method involves solving Schroedinger's 

equation for the wavefunction u^ and evaluating integrals of the

fdt e~istit f(q(t))

form



4?.

which are in general more difficult to evaluate . We can for instance 

evaluate the matrix elements of higher powers of q and obtain a

s = k ~ 21 , 1 = 0,1,2,. ...,k

One consequence of this selection rule is that the mean value of

by Bell and Guggenheim in 1936 in their calculations of mean values 

of dipole moments . We see here that it is but a special case of a 

more general selection rule .

There is no known equivalent quantum mechanical formula for the matrix

be calculated using for example generating functions for the Hemitian 

polynomials . Table 1 shows results for the first few values of k . 

Comparing the matrix elements obtained using the correspondence 

principle with those obtained using quantum mechanics ve find that 

the t o are very similar for high values of n and low values oi s , 

as predicted by the correspondence principle • However we also find 

that using the substitution

general equation for tho Fourier transform of q , k being some

positive integer

with the following selection rule

Irq is .zero if k is odd . This was first noticed quantum mechanically

element of qk , but given a value of k the appropriate integral can

= (n + B-Ì •
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the two sets of results are identical for k = 1,2,3 and for all
1cmatrix elements of the form < n  | a | n+k >  . Ve shall make use

of this substitution later and shall refer to it as the "factorial" 

substitution . For small values of s and large values of n 

compared to unity , a careful expansion leads to

nQ = n + is + i

so that for s = 0

n = n + ic *

This substitution leads to a mean value of q which is identical 

with the quantum mechanical one . The mean value of c/' obtained 

is proportional to (n +-n + £) whereas the quantum mechanically 

calculated mean value is proportional to (n + n + i) . For n = 1 , 

well outside the region of validity of the correspondence principle , 

these two mean values agree to 10 % ; for n - 10 they agree to 0.2 %  ,  

It is not understood why some correspondence matrix elements and their 

quantum mechanical counterparts are identical while the rest are only 

very similar and nearly equal . An explanation may lie in the work 

of Norcliffe and Percival on correspondence identities }

A similar procedure yields matrix elements of the conjugate momentum

p a  mdq re m^2Iu)^ oin( t) 
dt

from which

<Tn | Pk I n+s> «= (£nc1Iv)^k ____k!

( ¥ ) ( ¥ ) !



with the restriction on s that

s = k - 21 , 1 -= 0,1,2,.... ,k

The agreement with the quantum mechanically calculated matrix elements 

is identical vrith the agreement of matrix elements of q described 

above .

More interesting perhaps is the calculation of matrix elements of 

products of position and momentum . All equations now have to be 

written in terms of Poisson brackets since quantum mechanically we 

are dealing with non-commuting operators . In going from classical 

mechanics to quantum mechanics and vice versa we replace p by 

-itr , write the classical Hamiltonian equation.3 in terms of

Poisson brackets , and replace the Poisson brackets by commutator 

brackets ,

«  i_ £a,b]  
t J ' it!

(Koto that the algebraic properties of Poisson brackets and commutator 

brackets are identical .) For all contact transformations involving 

canonical variables and P^ the following l’elations hold for

the Poi3son brackets ,

K ,Qj] = 0

M  = 0
Thus if we are looking at the mean value of pq we have the special



case that quantum mechanically

| C p,< U | n "7 = -iE

which should he compared vdth iTT time3 the Fourier of p,q

< n  11?*1!] I n >  = -1

This applies especially to the calculation of the mean value of pq . 

For r  0 , we find that classically

<n I pa l n+s7 = ¿iKn ’ , s = +2

<Cn (pq l n+s7 = 0 ,  a £  ± 2

Using the substitution nc = n + £s \  , this is in exact agreement

with the quantum mechanical result .

Tho analysis described in this section can be extended indefinitely 

to matrix elements of any function of p or q , which may be difficult 

to evaluate using quantum mechanics $ for example the matrix elements 

of qa or exp(iap) , where a is not necessarily a positive 

integer

<Tn |qa I n+s7 = /lH?cV a _______________

C n l e iap\n+s> - ■ J ( a p J o )
V m

with J (x) the Bessel function of order s ♦B ' * • .



The results presented in this section have been used by Clark and 

Dickinson (1971) who used the correspondence principle for strongly 

coupled states (Percival and Richards, 1970) to obtain approximate 

transition probabilities for a forced harmonic oscillator. They 

formally and numerically showed that the correspondence principle 

results have a much larger range of validity than those obtained 

using first order quantum mechanical perturbation theory, even for

0 -> 1 transitions.



v> ,2 Morse Potential

The Morse potential is one of the best approximations for all values 

of the radial coordinate q of a diatomic molecule . It is a one- 

dimensional potential which may he transfoimedwith the radial part 

of the Coulomb potential for a particular angular momentum by the 

transform q-q^ log(r) , where qg is the equilibrium value of 

q . The Morse potential is defined by

The values of D , a , and qe are assumed known . The parameter D 

indicates the depth of thè potential and the parameter a indicates 

its range (Fig. 2. ) .

We apply a contact transformation S to the system such that I. , the 

new conjugate momentum,is a constant of the motion and the new 

coordinate , v , is given by <is/dl . The new conjugate momentum is 

defined by

V(q) = D ( 1 - e-a(q"qe) f

For convenience , we define the following quantities :

Q = 1-<le ! b'2 = E j x = 1 - e
D

-aQ

Substituting for p and q in the above equation ,





•JO

from which

a

Vo know that I = n̂ Ti ; define t = (2mD)^/aR then

1 - b2 = ( 1 - n )2

or

The energy E refers to the energy of the nth bound, state , and 

therefore E < D  . The parameter t then las a simple physical 

interpretation ; since E< D , t must be greater than the maximum 

number of bound states the potential will support • Since when n^ 

reaches tliis maximum value EcvD > t mu3t be of order ,but greater 

than , the number of bound states the potential will support .

Ve can obtain from Herzberg (1950) 311 expression for E derived 

quantum mechanically

Replacing n+J by n this is identical to the expression obtained c
using the correspondence principle .

It is now possible to obtain values for the frequency and for w .

E



' l l

Since

then

S = J*p(l) dq

v = ¿s g ( 1 - t>2 Ÿ ' [ ( -y2 + y2b2 + 2y - 1 Y *  dy 
dl J

where we have substituted y = expfaQ.) . Thus

sin(w) a  b*"̂  1 - b^ ) exp(aQ) - 1|

and finally the position coordinate Q is given by

aQ = log(l + h sin(w) ) - log(l-b)

(V/e use the symbol log rather than In to prevent any confusion 

with the quantum numbers used later in the text. ) . The position 

coordinate is a periodic function of w and can therefore be expanded 

in a Fourier series

aC* " £  Bs exp(isw)

whose coefficients are given by 
atr

a raft exp(-isw)
2ir

dw

w .
isw) log(l + b sin(w)) dw1_  |*exp(-:

To evaluate the integral « we use complex variables and let z = . -iw -ie

Then



The log term splits into three parts , leading to

z2 + + 1)
b*

The first term , 1^ , is zero . To calculate lg , cut along the 

positive real axis from 0 to 1 . Above the cut , z = x + i and 

log(z) = log(x) , whilst below the cut 8 = x t i  and log(s) - log(x)+2iTi 

Since there are no singularities in the contour indicated (Pig 2a) 

we find that

To calculate 1^ we note that only one of the roots of the quadratic 

lies inside the unit circle (Fig* 2b) so that 1^ can be simplified to

I b  - i°~ 1 zs_1 log(z-c) dz
3 “  J

where c is the root of the quadratic that lies within the unit 
I is similar to that of I„ and we find
5 *circle The form of
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with

- b- 1  + (b-2  - 1 )^

2t-n

Collecting resulta , the Fourier coefficient" B is given by• s

B = iS ( nc 
e s /2t-n

\ s / 2

We now invoke Heisenberg's correspondence principle and equate Sg 

with the matrix element of aQ for a transition between states n 

and n + s ,

<  n I aQ. 1 n+s/'

This formula can be compared with that obtained quantum mechanically 

by Herman and Schuler (1955)

< n  I aQ ln+s> ftn+s)! 1 . i ‘; ( ( t-n-E-'1 ) ( t-n— ^
1 n T  M  2 t-n-s+k ) j ^ (t-n-gà-J) J

For s«  t-n-̂ t , the second will tend to unity « and in general

there is good agreement between the two formulae except when or

n +s is close to t , As in the case of the Harmonic potential ,
s

very good agreement is obtained by letting nc = (n+s)J/n I in which 

case the two formulae become identical as SjjKvt , sinee in this limit 

the particle executes simple harmonic, motion .



For s = 0 , the mean value of aQ is

< n  1 aQ l n >  = log(l + \  )
2t

3 r
i

with nc = n + i

Momentum in the Morse potential

The equation for the momentum can be obtained by differentiating 

that for the position and multiplying by a mass factor , m .

p = mbto cos(w)
a 1 + b sin(w)

This can be expanded in a Fourier series whose coefficients can 

be calculated by contour integration . Equating these coefficients 

with the matrix elements of p ,

<i n l p I n+s> ia_1 mbyj P(ẑ -l) z1
2a TT J  (z-c) (z-

s-1
w

dz

There is a pole of order 1 at z = c , and when s = 0 there is 

a further pole of order 1 at z *= 0 , so that

<£n Ip l n+s y  = .-*iB "* m t-t f j c j l  (1- £, )
a ¿2t-nc J ’

with r • = 1 if s = 0 and 0 otherwise . The matrix elements °0,3
of p and Q, are in fact related by

• I p l n+s'7 = imstO^n l Q I n+s"^

Mir
2 t m  liu. •

rj vrm-



and this relation is often used in quantum mechanics to obtain the 

matrix element of the momentum .

Of more interest in quantum mechanics are the matrix elements of 

momentum squared . An application of the correspondence principle 

leads to

y  I 2 * y  . S—1 ? 2 i f  2  ̂\2 s-1 ,< n I p | n+s >  = -i m w  < (z -1) z dz
21T 2 I / \ 2 f  ■,/ \2a J  (z-c) (z-1/c)

from which , substituting for uO ,

j i 2 i w . s—1<n I p l n+s / = - 1 a V  (t-no)|t(s-l) - ncs + i0>s(t-nc)^

Quantum mechanically , the eigenfunctions of the Morse potential are 

conveniently expressed as

where

2t e -aQ

N = r(n+1 )TT 2t-2n )T7 2t-2n-1 )
n ■aT\2t-nJ

and the M. (y) is a Whittaker function (Slater,i960) . Using thetyU •
integrals given by Slater , Greenawalt and Dickinson derived (1969) an

2 2expression for the matrix element of d /dq , which , inserting a 

factor of i  which was erroneously omitted from their published 

formula , can be written as

A



' i ï

< >  |âî2 |n+s y  = (-1 )a £a F(2t-2n)T7gt-gn-2a)H n+s+1 )
da ( V U ?  r(2t-n)

* Tt(s-1+ j  -  j i : : ( 2riK.n 1J + ¿(2n+l)S^B ?

When o = 0 , and n = n + 5 , the correspondence principle and

quantum mechanics .provi.de identical expressions for the mean value

<C.n Ip2 I n y  (-t-n-A)(n+J )

For non-diagonal elements , the quantum mechanical formula can he 

simplified and compared with the correspondence principle one , each 

being denoted by the superscripts q and c respectively

<n Ip2 l n+3 ^ q = ( -1 )P"a2K2 T(rH-s)i (t-n-;;) (t-n-s-d) 2t-n-s ^
l  ni -p iSt-n)

* ^t(o-l) - sin+'js+ijj5

<  n I p2 I n-i-â 0 = -i"~1 a2R2 na

* ^ t(a-l) - sncj

(2t-\)'

A term by term comparison of the two formulae shows that they both

have the same functional dependence.on n,s,t ; for s < n  , the

factorial substitution for n , or its low a expansion n = n+ls-i-J ,c ^
both give ¡agreement to at least s/(t-n) , and better for n<-|t .

Figure 3 shows the excellent agreement for s = 1 and Various valves 

of n,t and illustrates how the correspondence principle result starts 

to disagree with the quantum mechanical one- when n+s is oi order t .

I

1 I

— -  ■ -X. ■ ' .. sStt- &  " ■:
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* u



and correspondence



Coulomb potential

V'o now consider in detail the application of the correspondence 

principle to the motion of an electron in a central field , and 

in particular in a Coulomb potential .

The quantum mechanical problem has been exaustively investigated ; 

consider only the radial part of the Coulomb wave equation

for a nucleus of charge Ze and and electron of reduced mass j* 

and charge -e . The solution to the Schroedinger equation is given 

in terras of Laguerre polynomials

Ze2 R +  l(l-il)h2K = ER

and

E = E *= n

R i (r) «£ en,l.
r, *

and we are interested in matrix elements of the foim

0

with E(r) some general function of r .



The equivalent classical problem consists of first solving the equation 

of motion of the electron . This was done by Born in 192} . Using polar 

coordinates r, 0  ,  , the kinetic energy T is

T = a(^( r2 + r2#2 + r2sin2(6)f>̂  )

or alternatively using conjugate momenta

Pr -

• r2 6

we can write

p = |*r2sin2(6) $

= Py + r"2p2 + r“2sin"2(í)p2 )

Since the Hamiltonian H is time independent ,

H = E = T + V(r)

and v.'riting

S = Sr(r) + 5 e ( 0 )  + Sf(+)

the Hamilton Jacobi equation

+ r"2Bin"2( 0 ) j V 2 + 2^{v(r) - s j -  0



The equivalent classical problem consists of first solving the equation 

of motion of the electron . This was done by Born in 192} . Using polar 

coordinates r, £>,<(', the kinetic energy T .is

Ms

: i

T = £ r2 + r2#2 + r2sin2(£)f^ )

or alternatively using conjugate momenta

Pr =

ve can vrite

pe = e

p = nr'sin2(6)
4’ 1

* f 1( P r - % 2 + r - W 2(,)pf2 J

Since the Hamiltonian II is time independent ,

II = E = T + V(r)

and v/riting

S «= Sr(r) + S e ( 6 )  + S ^ )

the Hamilton Jacobi equation

>S1* + r " W  ♦ r-2si,r2( C ) M 2 4 2 ̂ fv(r) - e ]= 0

» V s ly. __ ..



splits into three differential equations, vrlth solutions

with L and M integration constants. In fact

is the angular momentum about the polar axis (the line 6 -  o) and

(rG) ' + (rsin© <(> )

is the magnitude of the resultant angular momentum. Since the system 

is not subject to external forces, the orbit of the electron lies in 

a plane5 this plane is inclined at an angle ot to the (r ,4 ) plan’,

Note that the requirement that pr, p̂  , p̂  are 

on © and (E-V). There are no restrictions on 

function of time. The condition that

be real requires that

so performs a libration about Q - N/2 with limits

■ 
'«-
--
-



Hie requirement that

be real, and the characteristics of that function, determine the

motion in the potential. Since we are interested in the Coulomb

potential, we shall only consider attractive fields. V(r) is then 

negative, and E may be positive or negative. The detailed behaviour

of the radicant, and the location of its zeros, will depend on the

sign of E, the behaviour of V(r) as r — » 0 and r — » »o , and the
— kvalue of L. Thus if E = 0, and V(r) of. - r , the orbits will

get infinitely close to the centre of force if k > 2 ,If tc <2 , 

bound orbits corresponding to solutions of the Hamilton-Jacobi equation, 

in which case we can apply the methods developed for periodic systems.

I. corresponding to pr, p^ ,We calculate

max
max

min

Substituting

we noticethe limits being (M/L)? and I . To perform this integral 

that replacing u by u  ̂ changes the sign and interchange



which shows that I is a function of (L Furthermore, when

v;e need detailed knowledge of V(r), to calculate the behaviour of

the energy E as a function of the I's, which we will later quantize

We therefore look at the simplest attractive potential which is

proportional to r

constant

If the constant is set to Z e £, the potential defines the mutual 

attraction between a nucleus of charge ¿ e  and an electron of charge

Substituting for V and using complex integration,

We see that the motion is degenerate, since the energy is independent 

of both L and M, the total angular momentum and its resultant magnitude 

Following Born, wo define new variables 1  ̂ , Ig > I3 > m d  wi > ^ 2  ’



*1 = I + r 9 W1 = wr

Z2 = To + 9 W2

n

S ' “ S 9 W3 =

Then, for a given atom, I 1 uniquely defines the energy, I2 uniquely 

defines the angular momentum, and 1 ^ the component of angular momentum

.along the polar axis;

„ -̂ 2 UE = - K- e
2

L = 

M =

we now quantize all three of these actions,

I1 = nVv

■=

To obtain an equation of motion for the bound particle, we use

T TÎ1



which would give us r as a function of time. However, it is more 

c o n v e n ie n t  to first consider the motion as a function of the radial 

distance r and an angle "H" in the plane of the motion. Since the 

angular momentum is I^,

I* r^d'H- = Ig dt

using which we can eliminate dt from the equation of motion,

dY =
j-2 |~E + 2 t-Ze2 - Ig 
I r —

r

Integration gives

'H' -'Y = coso
-1 I2 - >̂Ze r

( f V . 1* -  2

If we write

d =
* Ze

then

j. -- d
1 + € c o s (y : - \ Q )

which is the equation of an ellipse, with eccentricity C and semi 

latus rectum d, and a focal, point at the origin of the coordinate

The eccentricity can be more conveniently expressed in terms of the 

quantum numbers 1 and n.

,2 . -i 2

and can be used to evaluate another useful property of the ellipse,

i h H i a & L



I2a = d = >

i the semi-major axis a given by

1-e fZe

Before finally proceeding to the calculation of matrix elements we 

return to the calculation of the motion as a function of time. We

find' that

2/7

Letting

[ r  wi dr

J o *  î a(1 + i 1

r = a(1 - t cos u) , gives

w^ = u - 6 sin u = K1 t

r(t), (with r(0) = perihilion)

To summarize the results obtained, the energy of the motion is

21,

the motion is confined to an ellipse of eccentricity

e2 = 1 - i2

and semi-major axis

a - I,2
j * .  Ze2

and the normal to the plane of the ellipse is inclined at an angle ^ 

Lo the polar axis of the r 0 ̂  plane, with

cos (f i ) = m 
1

•ids*:/feu».



The motion evolves through time as

= a (1 - g cos u)

with W 1 t *• ^  * sin u

"e^
~ T

•1 - r - i i
ii1

(the last being Kepler's 3rd law),

I1 = n^- .

Furthermore, defining a new set of rectangular coordinates ^ and 

such that £ is along the major axis of the ellipse and the origin

is at the centre of force,

£ = a(cos u - £,)

, 2 \ Vto = a (_1 - e ) sin u.

We are now in a position to use the results obtained above via the 

correspondence principle to obtain results of physical interest which 

can be compared with the results obtained from quantum mechanics. As 

indicated before, there are few quantum mechanical results which can 

be calculated for high values of n, say for n.v 100. We therefore 

compare the correspondence principle results with quantum mechanical 

ones for the lowest values of n, well away from the region of validity 

0'’ the correspondence principle.

Wo start by evaluating the mean values of various powers of r. These

are easily calculated from

dt



k r 1 '  W i
TH J (1 - t COS u) du

oJ

Henceforth, for convenience, we change to u n i t s  in which

tv 1
* r

and consider hydrogen, for which Z = 1. Then

r 2il

2D k

k 2kr = n k+1(1 - e cos u) ' du.

For k = -1,
“ T -2r = n

which can be used to verify the virial theorem that the mean value 

of the potential energy is equal to twice the total energy!

V = -r"1 = -n-2 = 2E

This proof of the virial theorem using the correspondence is identical 

to the quantum mechanical proof since quantum mechanically

r_l = n2 also. For higher values of|k(, this identity of re suits 

breaks down, although as expected the results are similar for high

values of n and 1. Thus

rc “ *\  (3n2 - l2)

and

rQ “ \  (3n2 - 1(1 + 1))

-2 1r = iC TnJl

-2
n^(l + J)



Table Z shows that this agreement holds for increasing values of

1,

(k + 1)1 e2™ 1
<k + 1 ' ^  k m mi ml

the upper limit of the sum being the integer part of (k + 1)/2. 

For k ^ -2, it is more convenient to rewrite

r”  ̂ = l-2 (1. + e cos Y  )

and integrate with respect to 't'
tv

r"k _ n "3 13-2k 1 l (1 + e cos^)k 2 i t
jTn J

(Alternatively, we can substitute tan Y  = (1 + t)': tan (|u) (t-£)

jk| . In general, for k >, -

""I? 2k >r—r = n ;
m = o

Since odd powers of the cosine integrate to zero over one cycle,
. k-3the result is essentially similar to t h a l o r  i ,

T 7r n-3 l3-2k
, . 2m(k-2)l £ 
tk -2  -  2nD !

We thus have the unexpected result that for high n and 1

rk = (nl)3+2k

Quantum mechanically, (Bethe

-k-3r

and Salpeter, 19^7)

kr V l .  21+1

Jn+1, 21+1





is a function whose value depends on whether?, is greate:where J.

letting s

(x-y)(s+l)t

The quantum mechanical expression implies no direct relation between 

positive and negative powers of r, yet table i  demonstrates that such 

a relationship does in fact exist for high values of 1, at least for
0 A

low powers of r. (Note that the mean value of r is 1).

However, Blanchard (1 9 7 h ) has recently shown that quantum mechanically 

the mean values of powers of r are related by

and quantum mechanically



for m y  f 1 • These are again essentially the same for high values of

•1.

C lassica lly , we can also find the mean values of the orthogonal 

coordinates £ and ^  . These will define the electrical centre of 

gravity of the bound electron. We find that

1  = -3 6 a
2

and
i  = 0

Si

Since the electron is moving in an ellipse with the proton at one 

focus at (o,o) and the other focus at (-2ea, o), the electrical centre 

of gravity is therefore on the major axis halfway between the midpoint 

and that focus not occupied by the proton.

o



S-J

S u b s t i t u t i n g

ort = u - <? sin u

and using the integral definition of a Bessel Function J _(x)

,2V
Js(x) du exp(-isu + ix sin u)

find that

A = - €  J (sc)

B = 1 J (se )
B S 5

C = i 0  -c2y  J (*■ )

where the primes denote differentiation with respect to s<t.- 

Applying Heisenberg's correspondence principle,

<n(r\n + s >  = -afc <JS (se )
s ->

<n\£\n + s> ■= a Jg (se)

<n\ *\n + s> ■= ia 0  - 6 2.̂  Js ( 
 ̂ s 6

»« )

Matrix elements of higher orders of r, }  , •(_ , have been evaluated.

For any positive integer k,

<̂ n \r^  ̂\ n + s'? ■= a^^
i  £  ©e)( r)P

ja! !t':
w M

Ü!

with Js(p)(x) the pth derivative of the Bessel function with respect 

to x. For negative values of k, the upper limit in the first sum 

becomes infinite.

This solution for a general power of r provides a way of obtaining 

matrix elements of any function of r which can be expanded in a

power series, thus I

j«, Hi: k



In this case the integration can also be carried out directly and 

a result obtained in a closed form , if s *> « a. Let o/a = +..

•isu + iscsinu

ccos u

exp(2iS) = s-t 
s+t

Redefining a new variable equal to (u + ̂  ) and integrating

s ~ o, the mean value of o ' is obtained, in terms of the modified

Bessel functions 1 (x) and I1 (x) by

We have thus shown that in the case of the Coulomb potential, as with 

the simple harmonic potential and the Morse potential, the correspondence 

principle can be used to obtain matrix elements which are in good 

agreement with available quantum mechanically calculated matrix 

elements, although much simpler in form. In the cases where no quantum 

mechanical results are available, it would therefore bo expected that 

the correspondence principle results 4ro good approximations to the 

exact solutions.



jr ; i t.i ons between n ,l,m states

The previous section concerned transitions only between the principal 

quantum numbers n. To consider transitions between n,l,m states it 

is convenient to define a new orthogonal coordinate system. The 

previous equations defined the motion of the bound electron in the 

plane of its ellipse. The orientation of the ellipse and its co

ordinates £ and >^can be in turn described by three cartesian co

ordinates x,y,z by means of Euler angles. We use the Euler angles 

and transformation matrices defined by Goldstein, the £ and ^  co
ordinates being Goldstein's x ' and y 1 coordinates. The -z.axis forms 

an angle G with the angular momentum vector, (and eos 0 = m/l), the

x axis forms an angle of (j> with the line of nodes which in turn forms 

an angle V with the perihelion. Applying the transformation matrix

to  ̂and n ,

To obtain the m a t r i x  elem e n t s  o f  these coordinates, w e  expand the m  

a triple Fourier series i n v o l v i n g  a n  (a S )> A m  wkI thclr

x/a

y/a c F (cos u  - t )

z/a c H (cos u  - e )

wit!,

D  = cos Y  cos § - c o s  0 sin 4> sin Y  

F *-• cos Y  sin <{> + c o s  0  cos $> sin Y  

H = sir. G sin Y
E - -sin y  cos § - cos G sin ^ cos Y  

G -sin Y  sin $ cos 0 cos $> c o s y

K *= sin 0 c o s y  •

associated angle variables w, Y  » (j). The Fourier coefficients nro 

■ee angles, alth o u g h  the triple
Consi dor



i l

Writing this as a n  e x p a n s i o n  in w, >  ,

We see first that s ince z is  n o t  a function of <j> the only non-zero

coefficients are t h o s e  for w h i c h

A  m = 0

Similarly, we r e q u i r e

Al = + 1

and we have s e l e c t i o n  r u l e s  for the m a t r i x  elements. Since there is 

no simple r e l a t i o n  b e t w e e n  w  and u  (w = u - e s i n  u) we still have 

to evaluate the i n t e g r a l  over w. Finally, applying Heisenberg s

correspondence principle, 

^n,l,m|z|n+s, 1+ ¿>1, m~> Jsl(sé } *1.1
n<=

js(se )

for Al = ' -  1 .

T, , +he x  and y  coordinates, the following
Following the same p r o cedure for the y

selection rules a p p l y

+ -A m  = - 1
+ n , A1 “ - 1

Collecting r e s u l t s ,  

<Tn,l,m(x|n+s, 1+  A l ,  m+  A m ">
„n+s, 1+ Al K -, n,l

(n,l,m|y|n+s, 1+  Al, m+

. 1 nn+s,
-i Am Al ) 1 + £— 4 ^  n,l

?:m7
,,n+3,a nn,l

1+ A l

<n,l,mlz|n+8, 1+ A l, m>
1+ Al





which ’."uld lead to ari average velocity (since the velocity is

inver ly proportional to n), or any other value of ri . Thec
c o r r e . 'p o n d e r i le  principle is valid for a high enough value of n 

whatever choice is made, but as will be shown later it can also be 

applied to surprisingly low values of n if the choice

is made. For 1 , the best choice is more difficult to find as it is
in some sense a second order effect, and depends on the correct

choice having been made for n . We can, however, look at the case

0, when we know from the mean values of powers of r that

o, the dipole moment

The quantum mechanical value (Bethe and Salpeter)

max

which irr,plies that 1 max

off-diagonal elements comparison between quantal and correspondence 

principle results is more difficult. The general formula is obtained 

an integral over Associated Laguorre functions, and wo shall just^ 

quote the closed form formula obtained by Gordon (1929), in atomic

(n+l)1 (n+s+1-1 ) ll
(n-1-1)! (n+s-l7T)



:ult obtained u s i n g  the correspondence princxple

Rn+s,l-1 = _i \ J ' (st) - Js(s€ ) \
n,l s l 8 t

X
ml



Detailcomparison with quantum mechanical result

We compare the matrix elements obtained using the correspondence 

principles with those obtained using quantum mechanics in two stages.

We first examine their dependence on the dipole moment, then compare 

the two expressions for the dipole moment. Bethe and Salpeter quote 
values for the matrix elements of x + iy, x - iy, and z, in terms of 

the dipole moment. The selection rules are identical to those 

obtained using the correspondence principle, and they are all equal 

to some coefficient times the dipole moment. Table 3 compares the 

values of these coefficients (squared) for all the allowed transitions. 

Wo see that for higher values of 1 the two sets are essentially the 

same, and that in general the ratio of the quantal coefficient to the 

correspondence coefficient is of the form

2 3 2
1 (l-m+2) - £

(1 ?4 ) (l-m+ L f

In table 3 we have used the substitution 1 ■ - max (1,1+ Al)o
indicated from the previous section, and simply set mc = m.

Careful consideration of the coefficients may lead to other rules 

giving better agreement, but these have the advantage of simplicity.

Th best available numerical values of the squares of the quantum 

mechanical radial integral Rn '1 ' appear to be those calculated by 

Gl oil et al (1957). They tabulate results for the allowed transitions 

from any lower state n,l to any upper state n f, l f for all values of 

ft ftnd n ’ less than 21 • Previous calculations had either been in

accurate or too restricted, and the value of a wide ranging accurate 

calculation was suggested to the authors by M.J. Seaton. Their 

quoted numerical values are to six significant figures.



Table 3



for numerical calculations of the correspondence principle result 

it is convenient to use the property of Bessel functions that

and rewrite

(1) For fixed 1,1 the difference between the two sets of values

decreases as n increases. This is just Bohr's correspondence
2principle. The percentage difference decreases roughly as n 

The difference is considerably smaller for n = n(n+s) / (n-

as would be expected since that choice of

n was originally made to obtain good agreement with quantum

mechanic

For fixed n, n 1, the percentage difference decreased with 

decreasing 1, the worst errors occuring when 1 - n-1 . This

is because the classical perturbation of the orbit of the 

electron is greatest when 1 changes from n-1 to n-2, since the 

eccentricity of the orbit is c.' c 1 - 1 /ri . (Green et al 
also admit that their chocking procedure for high values of 1 

was not os valid as that for low values of 1).



Transition
Quantum
value

Corres.
value
n+|s

Corres.
value

. n(n+s)/(n+^s)
*

2s-3p 9.3931 11.022 1 7 . 3 9 .7 2 0 3 3-1*8

3s-Up 29-911* 32.527 8 .71* 30.371* 1.51*

!*s-5p 72.553 76.395 5 .3 0 73.181 0.865

5s-6p 11*9.18 151*. 1*9 3.56 1 5 0 .OO O .5 5 2

6s-7p 271*.19 281.22 2.56 275.25 0.385

•7s-8p 1*61*.53 1*73.51 1.93 1*65.85 O.28I*

8s-9p 739.69 7 5 0 .8 6 1 . 5 1 71*1.29 0.217

9s—10p 1121.7 1 1 3 5 . 3 ' 1.21 1123.6 0 .1 7 1

10s—11p 1635.0 1 6 5 1 .3 O .9 9 6 1637.3 O .1 3 9

11 s-12p 2 3 0 6 .8 2 3 2 6 .O 0.831* 2 3 0 9 .5 0.116

12 s—13p 3166.7 3 189.1 O .7 0 7 3169.8 0-0969

13s-1lip 1*21*6.9 1*272.7 0.702 1*250.1* 0-0832

1l*s-1 5p 5582.0 5611.1* 0-527 5586-0 0-0710

I5s-i6p 7209.3 721*2.6 0 -1*62 7 2 1 3 .8 O.O6 25

16s—17p 9168.7 9206.1 0.1*11* 9 1 7 3 .6 0.0539

17s—18p 1 1 5 0 2 1151*1* 0 .3 6 3 1 1 5 0 8 0.01*76

18s—19p 11*255 11*301 0 .3 2 5 11*261 0.01*28

19s-?0p 171*71* 17525 0.293 171*81 O.O389

Us-5p 72.553 76.395 5 .3O 73.181 0.865

l*p-5d 121.86 127.86 It.92 123.18 1 .0 8 3

l*d-5f 197.83 2 0 7.OO 1* .61* 200.1*6 1.33

03,7)-(20,8) 3 9 .5 1 1*7.16 19.1* 37.96 -3.93

Ta-bl«. if-



Restricting s/n <" 1 and (1+1 )/n < 1, the worst disagreements 

found were of order 10%' . Applying the stricter condition 

that s(l+1)/n < 1 all differences were less than ?>•$%■ Since

a strict interpretatit̂ n of the correspondence principle would
imply that the two sets of results should only agree for 

s/n ¿<- 1 > the agreement for these (relatively) low values of

n is excellent

We can also compare stuns of intensities obtained from the correspondence

principle and from quantum mechanics:
(1) Adding the intensities of a transition from a state nlm to all 

1 1 1 1substates m of a state n l m  for.all directions of pdarization

of the emitted radiation

from the correspondence principle,

from quantum mechanics. In all cases the sum over m is 

independent of m, and all formulae agree with each other in 

the limit of large 1. Since the lifetime of a state depend



on the intensity of transitions out of it, this implies that 

the lifetime is independent of a states magnetic quantum number 

and depends only on the values of n and 1. This was known in 

quantum mechanics but we have shown' that it can be deduced by 

applying classical mechanics and the correspondence principle.

(2) For a fixed direction of polarization, the sum of the intensities 

'over all values of m (i.e. over all the Zeeman components of a 

spectral line),

= 1 
121

(21+1) (21-1) A 1
111

2

n
1m,m

1,1 1n 1 m
Xnlm

2 1,1 1 n 1 .m
ynlm

2

V  2
=  1 ( 2 1 + 1 )  ( i * i + i )  ;r ^

2U

from the correspondence principle results, and
2

1-, ,n 1-1 m
5nlm r

mm

n"' 1-1 m 
xnlm

mm

n1l-1
ynlm
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.̂.„.iTlj7 over initial 1 states and summing over final 1 states, we find

To compare this with other calculations i t  is convenient to define

(Mezger)

(Menzel)

(Kardashev)

(Percival and Ri char d$

*»• Percival and Richards result was obtained by requiring that the 

correspondence principle result should obey detailed balance.
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l)i Resiime

We have shown that for the three potentials considered in detail 

classical mechanics and the correspondence principle can provide 

results which are valid not only in the limit of high quantum 

numbers, as is  generally known, but also for low quantum numbers.

We have concentrated on calculating quantities whose quantum 

mechanical values are known so that comparisons between the two 

could be made, and we have shown that although any reasonable choice 

of n̂  would produce results which have the same form as the quantum 

mechanical ones a more careful choice of nQ can produce agreement 

for low quantum numbers, even for n = 1 .

Having shown the ability of classical methods to cope with problems 

which are usually solved using quantum mechanics we next consider 

a case which has yet to be solved exactly quantum mechanically, the 

observed broadening of spectral lines of high quantum number emitted 

from laboratory or astrophysical plasma.



CHAPTER IV

CAUSES OF LINE BROADENING

Fundamental factors governing the width of spectral lines are natural 

broadening, Doppler broadening, and pressure broadening. We 

consider these in that order, but first we briefly mention factors 

which may contribute to the observed breadth of a spectral line.

a) All spectrometers will produce lines of finite width, even for 

monochromatic radiation. This is the only mention we shall 

make of the detection of spectral lines, and in what follows 

we implicitly assume that the resolving power of any apparatus 

used is  such that the "instrumental width" is negligible compared 

with widths arising from other causes.

b) Radiation emitted in the body of a gas may suffer partial 

absorption on its  passage through the gas. In consequence of 

Kirchoff's laws, the more intense portions of the line w ill be 

more strongly absorbed so that the centre of the line will be 

weakened compared with the wings o f the line. This is known 

as "self absorption" and to ignore i t  we assume that the light 

has come through an optically thin layer of gas.

c) For absorption lines, the intensity distribution I(w) depends 

on the thickness of the layer of gas (d) according to

I(w,d) -  IQ exp (-a(w)d)
with Iq a constant, and a(w) the absorption coefficient. For 

small values o f d, the line profile is  proportional to the 

absorption coefficient, and the following will apply to 

absorption lines from optically thin layers.
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CAUSES OF LINE BROADENING

Fundamental factors governing the width of spectral lines are natural 

broadening, Doppler broadening, and pressure broadening. We shall 

consider these in that order, but first we briefly mention factors 

which may contribute to the observed breadth of a spectral line.

a) All spectrometers w ill produce lines of finite width, even for 

monochromatic radiation. This is  the only mention we shall 

make of the detection of spectral lines, and in what follows 

we implicitly assume that the resolving power of any apparatus 

used is such that the "instrumental width" is negligible compared 

with widths arising from other causes.

b) Radiation emitted in the body of a gas may suffer partial 

absorption on its passage through the gas. In consequence of 

Kirchoff's laws, the more intense portions of the line w ill be 

more strongly absorbed so that the centre of the line will be 

weakened compared with the wings o f the line. This is  known 

as "self absorption" and to ignore i t  we assume that the light 

has come through an optically thin layer of gas.

c) For absorption lines, the intensity distribution I(w) depends 

on the thickness of the layer of gas (d) according to
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with I a constant, and a(w) the absorption coefficient. Foro
small values of d, the line profile is proportional to the 

absorption coefficient, and tjie following w ill apply to 

absorption lines from optically thin layers.
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li.1 Natural Broadening

This is present in a ll spectral lines and can be explained either 

in terms of classical theory or in terms of quantum mechanics. 

Classically, i t  is due to the damping of the oscillator because of 

loss of energy by radiation, and is thus alternatively called 

radiation broadening. The rate of decay of energy of a classical 

electron oscillator is

E(t) E ( - fete}

with the decay constant b given by

b = 2ê ŵ /3mĉ

for charge e, frequency w q, and mass m. A Fourier expansion of the 

damped wave train leads to

I(w) = I(w_) ,.,b
° (w-wo)’S V (,b)Z

A useful quantity in line broadening is the width of the spectral lino.

at half the maximum intensity. For brevity we call this the half-

width,^hii'ifor natural broadening is equal to b, measured in radians
-12per second. In terms of w, i t  is  numerically equal to 1 -17 x 10 cm,

o
or 0-000117 A.

Quantum mechanically, the broadening is explained by the uncertainty 

principle. Since exited states only have a finite lifetime their 

energy levels w ill be diffuse, and thus radiation from those levels 

will be broadened. The same line shape is  obtained but the constant 

b is now the sum of the decay constants of the initial and final 

states, b̂  + b^. These are inversely proportional to the lifetimes 

of atoms in the two states, and are therefore proportional to the 

uncertainty in the energy levels. The half width is thus equal to 
the sum of the widths of the energy levels associated with the line.



For the special case of strong resonance lines, those associated with 

the ground state with a decay constant of zero, when the oscillator 

strength is 1, the half width obtained quantum mechanically is equal 

to that obtained classically.

Radiation broadening is usually negligible, though its  effects on the 
wings of spectral lines are sometimes noticeable.

b . 2  Doppler Broadening

Translational motion of the radiating atom leads to a line broadening 

which Rayleigh f ir s t  demonstrated as due to the Doppler effect.

Consider an atom emitting radiation of wavelength X, and moving with 

velocity v in the line of sight of an observer. The Doppler effect 
means that the observer will receive radiation of wavelength X ,

with

X “ X (1 -V /c )  

assuming that v «  c, so that

The distribution o f velocities in the line of sight is given by the
p

Maxwellian distribution exp (-mv /2fcT), with k the Boltzmann constant, 

and T the temperature in degrees Kelvin. We can consider X to be 

the wavelength corresponding to the line centre, and as the 

frequency difference between the centre and the frequency whose 

displacement corresponds to the velocity "v* . Then

I(w) « IQ exp (-mA (,®/) /2kT)

lord Rayleigh (F.W. Strutt) proved the above and showed that the half 
width is  given by

¡2kTln2ji2
J
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Doppler half-widths will therefore be more important at higher 

temperatures, and we shall show that they can also be expected to

dominate at low pressures.

U.3 Collision broadening

We now consider the broadening o f spectral lines emitted by high 

temperature laboratory and astrophysical plasmas, mediums which are 

strongly ionized but have no net charge. Vfe examine the development 

of the theory in chronological order.

Michelson, 1895

Michelson began his consideration of line broadening by reviewing 

the hypotheses which had been put forward to account for line 

broadening:
it

1. As a consequence of Kirchhoff's law "the ratio of brightness 

of two immediately contiguous portions of a discontinuous, 

bright-line spectrum constantly decreases, i f  the number of 

luminous strata is multiplied or i f  the coefficient of absorption 

of the single stratum is  increased, until the value is reached 

which, for the same wave-length and the same temperature, 

corresponds to the ratio in the continuous spectrum of a body 

completely opaque for the given thickness.

2. The direct modification of the period o f the vibrating atoms 

in consequence of presence of neighbouring molecules.

3. The exponential diminution in amplitude of the vibrations 

due to communication o f energy to the surrounding medium, 

or to other causes.

1*. The change in wave-length’due to the Doppler effect of the 

component of the velocity of the vibrating atom in the line 

of sight.



5. The limitation of the number of regular vibrations by 

more or less abrupt changes of phase amplitude or place of 

vibration, caused by collisions.

6. The possible variations in the properties of the atoms within 

such narrow limits as to escape detection by other than 

spectroscopic observations.

Although conceding that cause 1* (Doppler broadening) was "the chief 

i f  not the only effective cause in operation when the density of the 

radiating body is  low", he concluded that causes 1,3,U, and 6 together 

are insufficient to account for the observed effects of line broadening. 

Cause 2 we shall call statistical broadening and will consider later. 

Cause 5 has been called velocity broadening, impact broadening, 

interruption broadening and, the term we shall use, collision broadening, 

and is Michelson's major contribution to the theory.

Consider Fig. 4 . The circles represent perturbing (broadening) atoms

whilst the arrow represents the trajectory at the centre of the emitter

through the perturbers. Michelson used billiard ball atoms so that

a collision is  deemed to have taken place when the separation of the

emitter and broadener centres is less than the sum of their atomic

radii. Michelson assumed collisions had the following effect:

A collision has just occurred between points "a" and "b".

The radiating atom emits coherent radiation from "b" to "c", when

another collision occurs. No more coherent radiation is  emitted until

"d". However, the radiation emitted after "d" is completely incoherent

with that emitted between "b" and "c". This is the crux of the»
argument. If t is  now the time taken between "b" and "c", we have a 

wave train of finite length t X velocity of light. We recall that 

the Fourier analysis used in the previous section is  a way of expressing 
finite wave trains in terms of an infinite number of wave trains of

To these the following causes may be added:



The limitation of the number of regular vibrations by 

more or less abrupt changes of phase amplitude or place of 

vibration, caused by collisions.

6. The possible variations in the properties of the atoms within 

such narrow limits as to escape detection by other than 

spectroscopic observations.

Although conceding that cause U (Doppler broadening) was "the chief 

i f  not the only effective cause in operation when the density of the 

radiating body is  low", he concluded that causes 1 , 3 , 14.» and 6 together 

are insufficient to account for the observed effects of line broadening. 

Cause 2 we shall call statistical broadening and will consider later. 

Cause 5 has been called velocity broadening, impact broadening, 

interruption broadening and, the term we shall use, collision broadening, 

and is MLchelson's major contribution to the theory.

Consider Fig. 4 . The circles represent perturbing (broadening) atoms

whilst the arrow represents the trajectory at the centre of the emitter

through the perturbers. Michelson used billiard ball atoms so that

a collision is  deemed to have taken place when the separation of the

emitter and broadener centres is less than the sum of their atomic

radii. Michelson assumed collisions had the following effect:

A collision has just occurred between points "a" and "b".

The radiating atom emits coherent radiation from "b" to "c", when

another collision occurs. No more coherent radiation is  emitted until

"d". However, the radiation emitted after "d" is completely incoherent

with that emitted between "b" and "c". This is the crux of the
*

argument. If t is  now the time taken between "b" and "c", we have a 

wave train of finite length t X velocity of light. We recall that 

the Fourier analysis used in the previous section is  a way of expressing 
finite wave trains in terms of an infinite number of wave trains of

To these the following causes may be added:



The limitation of the number of regular vibrations by 

more or less abrupt changes of phase amplitude or place of 

vibration, caused by collisions.

6. The possible variations in the properties of the atoms within 

such narrow limits as to escape detection by other than
•i .

spectroscopic observations.

Although conceding that cause !i (Doppler broadening) was "the chief 

i f  not the only effective cause in operation when the density of the 

radiating body is  low", he concluded that causes 1,3,U, and 6 together 

are insufficient to account for the observed effects of line broadening. 

Cause 2 we shall call statistical broadening and will consider later. 

Cause 5 has been called velocity broadening, impact broadening, 

interruption broadening and, the term we shall use, collision broadening, 

and is Michelson's major contribution to the theory.

Consider Fig. 4 . The circles represent perturbing (broadening) atoms 

whilst the arrow represents the trajectory at the centre of the emitter 

through the perturbers. Michelson used billiard ball atoms so that 

a collision is  deemed to have taken place when the separation of the 

emitter and broadener centres is less than the sum of their atomic 

radii. Michelson assumed collisions had the following effect:

A collision has just occurred between points "a" and "b".

The radiating atom emits coherent radiation from "b" to "c", when 

another collision occurs. No more coherent radiation is  emitted until 

"d". However, the radiation emitted after "d" is completely incoherent 

with that emitted between "b" and "c". This is  the crux of the 

argument. If t is now the time taken between "b" and "c", we have a 

wave train of finite length t x velocity of light. ' We recall that 

the Fourier analysis used in the previous section is  a way of expressing 
finite wave trains in terms of an Infinite number of wave trains of

To these the following causes may be added:
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infinite length. To obtain the relative magnitude of each of these 

infinite wave trains we calculate^

J(w) = c o n s t a n t * e x p  (i(w-WQ )tl) dt'

= constant x sin ((w-w )t)

We now suppose that this amplitude function represents the spectral 

line. Since intensity is always associated with the square of the 

amplitude, Michelson assumed that the intensity distribution within

the line was given by
2I(w) “ constant x sin ((w-w^U)

(w- wq)2

If all the velocities and a ll the free paths were equal, this expression 

should provide the widths of the spectral line. Taking this to be the 

separation of the minima to either side of the maximum, Michelson
.a oobtained a width of A 'V/c t . For a particular line of hydrogen, 

he calculated a numerical value of 0-057 tenth-meter (sic) compared 

with his experimental value o f 0-16 tenth-me ter, an agreement to 

within an order o f magnitude, which is  excellent considering the 

simplicity of the theory. Not fully satisfied with this result, he 

calculated an approximation to Rayleighs Doppler broadening formula 

2nd added the width he obtained from i t  to his own to obtain a width 

of \  (let *^yc2t , which overestimates the width to be 0-22 tenth- 

mater but provides better agreement with experiment.

lorentz, 1906

Eleven years later, Lorentz removed one of the critical assumptions
i

°f Michelson's, namely that the intercollision times were a ll equal.
»

His model was the same, a classical oscillator radiating undamped 

waves of frequency w until i t  is sudden  ̂ interrupted by a collision. 

After the collision radiation is  resumed with the sane frequency but 
with a completely arbitrary phase relative to the phase before the



collision. For an intercollision time of t , this leads to the 

expression for J(w). Lorentz then reasoned that the probability 

of collision in time t obeys an exponential law, ( */"V ) exp ( -b/'k  }  

for a mean intercollision timet , The radiation therefore consists 

of a set of wave trains whose finite lengths have an exponential 

distribution. The intensity is given by integrating over this 

distribution,
I(w) = constant j \ 7  Cw>b) \  ^  C 'fc/t}

■ constant ______ 1_______
(w-wQ)2 + ( ' / t ) 2

This is the Lorentz line shape. Its half-width is equal to the 

collision frequency, which is  generally found to be experimentally 

true. Since the collision frequency can be equated to (J.qv, withtJ. 

the number density of perturbers, q the collision cross-section and 

v their velocity (mean or r.m .s.), this width is thus proportional 

to the pressure at a constant temperature.

lenz, 1921*; Weisskopf, 1932

Contemporarily with the development of the correspondence principle 

and with the rise of quantum mechanics, a feeling arose that the 

Lorentz and Michelson theories could not be expected to survive 

quantum mechanics. However, beginning with Lenz> appeal to corres

pondences in 1921*, a large number of authors have devoted themselves 

to showing the incorrectness of this viewpoint.

The first development concerns the definition of the cross-section q 

la the Michelson model the atom was’ considered to be a hard billiard 

ball with a fixed diameter defining the cross-section. A collision 

between two "billiard balls" would only occur i f  the separation of 

their centres was less than the sum of their radii. Now we would



expect that short range forces, say van der Waals, between the 

broadener and the emitter would exert some influence on the 

broadening of a spectral line before a collision in the above sense 

occurs. This influence can be expected to manifest itse lf by a 

phase change in the emitted radiation as the two bodies approach one 

another. Weisskopf suggested an "optical collision diameter" within 

which a collision could be considered to have taken place, and which 

we now define. Consider the angular frequency wq ,  which in the 

Michelson theory was a constant, unchanged wiA 3. collision destroyed 

it. However i f  we now assume some sort of action at a distance, this 

frequency will no longer be constant but will change with time as 

the radiator and the perturber approach each other and enter the 

range of this force. I f  this force is some function of the emitter/ 

perturber separation, say V(r), then

where w q is the original frequency in the absence of any force and 

 ̂(fc) is the change in the phase of the vibration due to the 

perturbation. The latter quantity was used by Weisskopf to define 

a collision: A collision has been undergone by the emitter when the

We are assuming binary collisions and straight line trajectories, 

so that at any time only two bodies are "colliding" in the sense 

above, and that the path o f the perturber relative to the emitter 

is a straight line. Then

■ w bo

■ '•->« cÇ the emitted radiation has changed by 1 , i .e . when 0 ^ 1 .



where b is  the impact parameter, v is the velocity of the perturber 

relative to the emitter, and t, is  the time from some arbitrary 

origin (Fig. 4a) . The criterion then defines for a fixed velocity 

a critical impact parameter, bc . Since in general a smaller impact 

parameter leads to a greater value of since V is usually inversely

proportional to r) then the relation ijVl defines a bQ below which
2all impacts broaden the line. The quantity 77 bQ then replaces the 

Lorentz cross-section and is called the "optical" cross section. Of 

course the choice of the value 1 was completely arbitrary, but having 

chosen a critical phase this leads to a critical impact parameter 

and an optical cross-section, which need not be related to the Lorentz 

cross-section.

We have now described the Lenz-Weisskopf mocttficatt.onsto the Michelsan- 

Lorentz theory. The results obtained from these are valid within a 

limited region, at low pressures and at frequencies near the line 

center. The reasons for these restrictions are two of the approximations 

we have made:

(1) Binary Collisions. By considering each collision to involve 

only two bodies, we are neglecting the influence of other 

perturbers on the collision. We are not only completely 

ignoring all perturbers which do not approach closer than 

the critical collision radius but also assuming that there

is never more than one perturber within the collision "sphere". 

This approximation w ill break down at higher pressures.

(2) Zero collision time. The effects of very close collisions

are also ignored in the sense that as soon as a perturber 

approaches within bQ of the emitter a collision is  deemed to 

have occurred. No consideration is  given to the magnitude 

of the cnange in phase * ̂   ̂ and a ll are considered to

be 1. This w ill restrict the theory to the line centres If



we assume that the large frequency shifts associated with 

the line wings are due to large changes in the phase.

We next caisider attempts to widen this range of applicability. Lenz 

first attempted to remove approximation (2), but only with partial 

success. The next major improvement was due to Idndholm.

Lindholm, 1938

We shall return to the Lindholm theory in the next chapter, but we 

first present the concepts behind his method. The idea seems to 

have been originally put forward by Lenz but was developed by Lindholm.

We recall that we can writet-.OOTfiO 1 Jb
J(w) \ exp-i ♦ 1^0 J

Since I(w) < | 7(w M l

«») « j j  j Cw-woHt-t') * \then

 ̂50

The integral over t ' is  a tine average over t ' and according to 

Boltzmann's ergodic hypothesis can be replaced by a mean over a 
statistical distribution/exp-i j^(t+t) -  ^ ( t 1)] >  . To calculate 

this mean we suppose that in a collision only a finite number of 

phase changes can occur, and for convenience we arbitrarily set this 

number to 2, ^a and *|b. Suppose we have A collisions of type "a" 

and B collisions of type "b". Then
f

i^(t+t‘ ) -  < (̂t‘ ) -  A|a + B^b



«<

qa * qb

The collision cross-section q is  made up of two differential cross-

sections,

q
and the probability that A collisions of type "a" and B collisions 

of type "b" occur in a time interval t is

A B A+B
(^a) (% ) _J__ (t) exp ( - t / t  )
(q) (q) A1BI (l)

Then

< - > • ) i t  * * r

and since

I  { c  I  n i - f  i-! -

we obtain

^ exp-i j ^  V T ‘i) *]

A more general expression for any number of phase changes can be

obtained by the same method

< exp-;| ^tut ^  f * *

If we define

i ZT ( tos *],• "• } 
T: ; °v

/a " ^  ^  U t ;

l

r



constant
(w- wq y  )2 + oi2

This is the fundamental result due to Iindholm. It has a Lorentzian 

shape but exhibits a feature not found in Lorentz's profile, a shift 

of the whole spectral line by an amount ^  , a shift which is  experi

mentally observable. This shift was obtained by considering "weak" 

collisions, that is  collisions which individually do not cause a 

phase change greater than 1, but which have a cumulative effect on 

the emitter. For a fixed velocity these are caused by collisions 

with large impact parameter, b> bc .

Iindholm and Unsold both showed why ignoring distant collisions led 

to no line shift for the case of short range forces, V(r)« r .

The explanation also holds for long range potential, and at this 

stage can best be explained by reference to Fig. 5". The area under 

the upper curve is a measure of the broadening, the area under the 

lower curve is a measure of the shift. By only considering the area 
to the left of -  1 the simple theory obtains most of the broadening 
but the shift is  due to values of ^ much less than 1.

Iindholm, 191*6

Iindholm next considered the effect of Including effects arising from 
the duration o f the collision. Whereas the change in phase as a 
function of time had previously been considered a step function being 
zero up to a time t when it  iranediately rose to a fixed quantity, 

lindholm investigated the way in which the function rose from zero to 
this constant. As he had previously considered "incomplete" phase 
changes, i .e .  phase changes with n< 1, he now considered "incomplete"
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collision times.

Figure i> is due to Lindholm. The five arrows represent the five 

general types of collisions he examined. The time Interval t will

interest". Collision 1 last for time t 1, but does not occur during 

the "time of interest" and is  therefore ignored. Collisions 2 and

that part of the time (t^-x and y) is included in the calculation. 

Collision ii occurs wholly within t and is wholly included, whereas • 

collision 3 is only included for a time t . A phase change per unit 

time, k ,̂ is defined so that for a collision i  starting within a 

time interval dx and lasting t^ the total phase change is

On the previous models, collisions were considered as points in time 

and a collision was said to have occurred i f  that point fe ll  within 

the time interval t.

Defining N(x,i) to be the number of collisions of type i  originating 

during the interval dx, the collisions w ill contribute the factor

exp-i(N(x,i) QC^-x))

to the mean of expi( ^ (t'+t) -  <̂ (i')). Generalizing this expression 

and by analogy to his treatment of "partial" phases, he obtained

be used to define a value shall call the "time of

5, lasting t  ̂ and t^, occur partly within the time of interest, and

ki

where QCt -̂x) » 0 for t^-x < 0

Qitj-x) -  tj-x  f o r O< t i -x<t

Q(t^-x) » t for t < t^ x
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Formulae for line profiles have only been obtained from this equation 
for van der Waals forces in limits of high and low pressures, where 
they show asymmetry in the shape of the line. For high pressures, 
agreement was obtained with the "statistical" result of Margenau (see 
Appendix 1), and at low pressure two different equations were obtained 
for the red and blue wings of the line. The red wing decayed as 
(w- wq ) “ j /  as had been calculated by Kuhn and by Margenau, and In 
agreement with the experimental results of Kuhn's. In the blue wing 
a dependence of (w-w0)”^  was obtained, In agreement with measure
ments by Minkowski.
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CHAPTER V

GENERALIZATION OF THE CLASSICAL METHODS

5.1 The Autocorrelation function treatment

We recall that

I(w) j I («*  J At"

T ( t+ f ) - dt'

A convenient way of writing this is
S *5

I(w) “ constant x | exp-i j (w-wQ)sj ^)(s) ds
* 30

<j>(s) - j exp-i||(s+t')- (̂t')j dt'

The function (|(s) was first called the "correlation function" by 
Foley and is now much used in quantum mechanical treatments, where 

it  is called the "autocorrelation function". It is  large when s ■ 0 

and decreases with increasing s. Speaking unscientifically, i t  is  

a measure of how much the atom "remembers" its previous state and of 

how quickly it  "forgets".

According to the Ergodic theorem the integral over t '  can be replaced 

by an average over a statistical distribution, so that Lindholm1s 

method in fact involved calculating the autocorrelation function.

We note that i f  we can write In (|>(s) “ " As + IBs (with A and B

both real) then the line profile will be Lorentzian with a width of 

A and a shift of B. I f  ln<^(s) has a more complicated dependence 

on s, an asymmetric profile is obtained.

\



ft.2 The Classical model

We consider the interaction between a hydrogenic atom and a passing 

charged particle. We neglect "back reaction" from the atom to the 

particle, so that the particle trajectory is described by a straight 

line. We define the distance of closest approach to be the impact 

parameter, b, and assign a constant velocity v to the particle. To 

define the collision uniquely in time we also define a time of closest 

approach, tQ, that is  the time at which the particle was at a distance 

b from the atom.

The set of parameters (b, v, tQ) define a unique collision. In a 

plasma the atoms undergo many such collisions. Since the number of 

radiators is usually a small fraction of the total number of particles, 

the average distance between radiators will be large enough so that 

any interaction between them can be ignored. In the manner of Snith^ <A 

we can regard the system as a large number of non-interacting cells, 

each cell containing one radiator and a large number of perturbers 

undergoing collisions with i t ,  each collision defined by a set of 

parameters (b, v, tQ).

The theory presented here suffers from one major restriction in that 

we only consider collisions which do not significantly change the 

state of the atom. We restrict ourselves to cases which involve no 

change in the principal quantum number n, but allow small proportional 

changes in the angular quantum number 1 since these do not greatly • 

affect the phase of the motion and only cause slight distortion in 

the electron orbit. We do not consider the case of n * 2 and 1 

changing from 0 to 1, which completely changes the shape of the orbit. 

We are thus dealing with classical perturbation theory as opposed to 

quantum mechanical perturbation theory which does not allow any change 

in any of the quantum numbers.

A



It is known that in certain cases, for instance for small impact 

parameters, the atomic states are completely disrupted by strong 

collisions. However i t  is  as yet impossible to provide a general 

theory which would include the effect of impact parameters of the 

same order of magnitude as the Bohr radius of the atom, especially 

for the weakly bound electrons in highly 8<oW states. This would 
involve a classical three-body problem (or a quantum mechanical 

interweaving of wave fun cti ons) which might be solved by Monte-Carlo 

simulations of the collisions, as investigated by Banks et al(1969). 

These strong collisions cause a total disruption of the phase of the 

emitter and can be treated individually by the theory of Lorentz.

Since we do not claim that this theory is valid for b —5>0, we can 

make the following assumptions;

(1) The orientation of the classical atom with respect to the 

trajectory of the perturber does not need to be considered.

(2) The interaction between the emitter and the perturber can be 

represented by the first term in a multipole expansion, i .e . the 

dipole approximation is  made.

(3) The electric fie ld  due to the perturber is  uniform over the atom.

We shall show in the following sections that although the value of 

b does determine what physical approximations can be made, more 

critical parameters are the product and the ratio of the intact 

parameter and velocity.



THEORY

We now define two new variables, and let

so that fi>ij(s) is  the change in <|(t) after a time s (we recall that 

■n (t) is the change in the phase after a time t) and we choose

the time interval s. Then the autocorellation function can be written

Let X be a variable or a set of variables which define a unique 

collision, and let =* P(A)ctX be the probability that a collision 

defined by X occurs in the interval dX and nowhere else. Since X 

defines a unique collision it  also defines a unique A/|^(s) so that 

the probability of that collision causing a phase change 

is

The autocorellation function for that X collision is then given by

We now wish to consider the cumulative effect of different collisions. 
We make the simplest assumption, that collisions are *additive" in 

that the total phase shift caused by a series of collisions is  given 

by the sum of the phase shifts which would have been caused by each 

of the collisions occurring singly. We do not require the collisions 

to be sudden and not to overlap in time, but only assume that the 

perturbers do not interact with each other and that consecutive

be the probability of that phase change A^occuring in



collisions permute. The resultant probability p  ( of a final

phase shift occurring due to different X collisicns is  the 

convolution of the individual probabilities ¿>i}) > and since the 

Fourier transform of a convolution is  the product of each of the 

Fourier transforms

<t>(s) ■ 1 J  <̂x (s)

In (j)(s) - ^  In <(>x(s)
or

n
X I n j l - ^ ^  e x p - f i^ is ) ]  ]

This can be rewritten in a more convenient form. By adjusting the 

interval(ty, can be made as small as } and we can

write

ln(^(s) » ^  ^ exp-^i ̂ x (s)] - 1

so that, replacing the sum over X by an integral,

In <̂ (s) -  'j dx P 00 | exp i  A|x (s)j -  1*̂

with the line intensity related to ty(s) by
*0

I(w) ■ constant \ ds exp-^iAwsj ^(s) 
oJ

we now calculate

Without loss o f generality, using the definition of  ̂ <tcc\\ XWV'V* \

&ij(s) -  ^(t+s) - (t)

and

rjjs)

0x(b) -   ̂ dt Awx(t’)

In general, the form of Aw^Rt) may not be simple. However we are 
■making a dipole approximation and therefore set it proportional to



the local electric fie ld  at the emitting atom. (We are implicitly 

assuming that the fie ld  is  uniform over the atom, in keeping with

constant and we have set X =* (b, v, tQ)̂  this leads to a value for 

the phase shift of

assumptions for shorter range potentials.

Since t is only defined to an arbitrary additive constant, we can

This expression for rĵ (s) can be further simplified by combining the 

two arctans. Care has to be taken since there is a cut in the arctan 

plane, and depending on the relative values of tQ, s, and v/b i t  is 

possible to move from one sheet to another. To allow for this we 

write

ri(s) ■ 2a arctan \  S  \ + 2a 77 • H
L |VT235S?)

S ■ vs , T ■ vt
b V

and H is a step function with values

our requirement of large impact parameter.) Then where c is

Similar expressions for can be obtained using the same

define a new tQ Uhe tQ+ Js. We also introduce a parameter, a, 

whose significance w ill become apparent later:

a = c
2bv

Then

2a . arctan
-

H - 0 9 1 + T2 -  Ŝ2 > 0 

1 + T2 -  $S2 < 01 9



The presence of the step function is a major source of difficulty- 

in computing actual line profiles from the analysis presented above 

and it  is sometimes more useful to consider the form of ^ which 

involves the two arc tans.

Summarizing, the line profile is  given by the following set of

equations s

a = c , T = vt , S = vs 
2bv b b

In addition to the previously mentioned assumptions, we have replaced 

what should have been an average over a Maxwellian distribution over 

velocities by a mean (or root mean square) velocity v. Although this 

assumption is not necessary for the model, i t  is in keeping with the 

feelings and the experience of most workers in the field (private 

communications). The p r o b a b i l i t y P ( X )  has thus been replaced by

I(w) = constant

? (b) ?  (tQ), and

P(toMt.- t o .

p(b)AV>» 2 77 bdb
q

for a mean intercollision time "k and a total collision cross-section 

q. Since the collision frequency 1 /t  « Nvq for a density N, the 

two probabilities can be combined to give the quoted result.



CHAPTER VI

CALCULATION OF LINE PROFILE

We first show that the result obtained reduces to the well known 

expressions of the impact and the statistical theory in the appropriate

limits.

For small values of v, we would expect to obtain the statistical

shape which arises from assuming fixed perturbers. Setting 
2 2 2 2r ■ b + v tQ , so that r is  the perturber/emitter separation at 

t ■ 0, then letting v 0,

This is the statistical result obtained by Margenau, and which is 

valid in the line wings. We note that although i t  is  obtained by

which will occur when v is  small, s is small, or b is  large. A 

sufficient requirement for the validity of the statistical approx

imation is  thus that the distance travelled during the time of 

interest (s) should be small compared with the impact parameter.

For v —c  °o, the IAndholm result is  obtained. Again the limit is 

strictly defined in terms of S and T. I f

and iii this case

q ■ cs
V. 2

2 2 2 2 2setting v = 0, a sufficient requirement is that v s  «  l*(v to + b ),

i .e . S24r i*(T2 + 1) and that vsb «  b2 + v2t2, i .e . 5 «  (T2 + 1),

\ S | <<T | 1 ♦ T2 - *S2



O o

^  - 2a 77 , t 0  c  is

« 0  , to > Js

so that

which is the Lindholm result.

It is instinctive to examine a plot of ^  as a function of tQ for 

various values of s (Fig>. 7). The Lindholm approximation is a step 

function of height 2a77 terminating at tQ ■ Js (curve a). The 
Lenz result replaces the sudden chop to zero by a steep slope (curve 

b), and the Lindholm variation of the Lenz result (curve c) is an 

adjustment of the slope until agreement is obtained with the 

statistical limit. All three seem atfirst to be reasonable approx

imations to the exact result (curve d) although the only exact agree

ment is at t - o  and t ■ ^is (since the function is symmetric o o
about t » o). As s increases, the exact curve approximates more

and more to a step function, and agreement with the approximation 

improves. We shall show, however, that as the parameter a increases, 

the increase in the height of the function shows fundamental failings 

in these approximations.

We start by attempting to evaluate ln^>(s) by non-numerical "analytical" 

techniques. We define

In (j)(s,b) - ) dt
o °

and try to evaluate In f i ( s,b) followed by



Plot of n  V.s. T for different values of S

« Ü H r .
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tfo use the trigonometric property-

exp (-2ix) =  1 - 2itan x
1+itan x

so that since

^(s) = 2a arctan J_____S + 2aJJ H
2  -, 2 1 1 + T - JS ;

ther

exp (- i ^  ) 1 - 2iS
p O !

1 + T -iS + iS
exp (-2ai77H)

If a is integer, we can use a polynomial expansion to obtain
fl W\

exp (- i£ ) = ( * )  f----- ^ -----I
1 m = o V m [l + T2 - iS2 + iS )

and

In
a *°

t<s-b) ' 'ET (*l r°m = 1 ' /
-2iS

1 + T2 -iS2 + iS

which can be solved using contour integration 

In (|>(s,b) = 7i ib y l a) (~2iS)m I (i.)"'1 1
' v m -1  v m ' Tiâ-ïl '• L(dT) (T+i-iS)”

at T = i-

i.e. In &(s,b) = - '~ïï ib , (  a \ ___ (2m-2) (?i£)
v m = 1 l̂ m / (m-1 ) ! (m-1 ) ! (2i-Ç»)2m-^

This is exact, in that it follows directly from the definition of 

lor the special case of integer values of the parameter a.

for non integer values of a, we can still cari’y out an infinite 

expansion. This is done in Appendix 2 and the "integer" solution 

is shown to be a special case of a more general solution which 

unfortunately is of little practical use, due partly to very slow

HiW
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convergence. The exact "integer" solution however is of use as a 

test of any other expression which may be obtained for In (|)(s,b̂ ).

After numerous vain attempts, it was decided that there was no general 

closed form exact solution for In <^(s,b). As In ^>(s,b) was proportional 
to a function of only a and S, the limiting behaviour as a and S tended 

to 0 or °o were examined.

2 2For small values of a, and for smallS/1 + T -  \ S  ,

a arctan arctan aS
Il + T2 -+S2 . 1 + T2 -iS2

Then

In <|(s,b) 2aiS
1 + T2 - |S2+U«ÙS

“ b 377 aS 
v 2i —  aS

The factor b arises since we are integrating a function of T with 
vr< opect to tQ . Alternative expansions for small a reduce to the 

above expression. We could for instance consider an expansion for 

small ^ . Starting from

In (|(s,b) l*«. f - r - r Ä — t!
J  0 l L  ° b2 ♦ v (t_ + t) J(t N o

expand the exponential and reverse the order of integration

1t<*b) - -ic r dt r dtj  °

it  'dt̂ dtg

b2 + v (t + to )£

1

0 b2 ♦ v2(tl ♦ t0)2 b2 ♦ v2 ( y t /  ||ft
After some analysis this leads to

In |)(s,b) » — l u l l s  -  % 7 Ja2b j S arctan (^S) - In (1 +
À - i



For small values of S and aS both these approximations reduce to

tfe can show that for small s the "integer a" solution reduces to

this expression

for integei a, where the ratio of the mth term to the (m-1) is

This is exact for integer values of a. This expression also holds 

true for small value of a, although the number of terms become

infinite. For small S, X =2r-J(iS *S‘ )> a"d

Havingnoting that each term has some cancellation with its successor 

checked for convergence, the required result is obtained.

the Lindholm approximation is obtained. If 

1, (which Lindholm effectively replaced by
orge values of

otherwise

rr
ow

gr
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soihat

In (j(s,b) = b jexp(-2ia7] ) - J~S2 - 1

or, since S is large

In (j)(s,b) = |exp(-2ia/7) - iT J-

This unfortunately does not agree with the exact "integer a" solution, 

since it is zero for all integer values of a. The reason is that 

a complete expansion of 'J for large values of S is

Since we then consider an integrand of exp(-i 0 ) - 1, it is insufficient 

to only take the" dominant term in the first expansion whenever the 

value of a is close to an integer. In those regions, the Idndholm 

approximation breaks down. Further, since we are considering 

trigonometric functions, there is no guarantee that that contribution 

to tiie integral arising from large values of T will not contribute 

significantly. By taking these extra terms into account, better 

approximations can be obtained for high values of S.

fy combining the various limiting cases for high and low S and a, 

ar.i by other approximations, integrable forms of In (j)(s,b) can be 
obtained which lead to analytic expressions for In <j)(s) which were 

numerically integrated to give line profiles. These profiles were 
unacceptable since they exhibited spurious "satellite" lines between 

the lino centre and the line wings. The "satellites" were due to 

the crude way in which the asymptotic expansions for a,S -e>o¿ (say / y , ) 

and a,S — 1> 0 (say ) were extrapolated back to intermediate 

ref',ions. This was checked by examining the totally different- line 

shapes which were obtained using different extrapolation techniques

2 a f l  -  ] ja
S

O P
T >  -  1

1 + T2 - -|S2



one in which ^ was chosen to be ^  until '[„='1“’ when ^  was set 

to n , the other in which

n - ' ¡  o. ' ]  '■*>

It was therefore decided that any method which did not produce satis

factory results for intermediate values of a and S would produce 
spectral lines which although satisfactory in the wings and in the 

centre, were wrong in the intermediate region. Since the behaviour 

of a line over the whole profile was the purpose of this investigation, 

and since it was felt that no way could be found to produce a general 

analytical expression for In <j>(s), the problem had to be solved on a

(Oi

computer.



CHAPTER VII

NUMERICAL COMPUTATION OF LINE PROFILE

Most of the computing was carried out on a CDC 7600, after attempts 

on an Elliot IflOO. Various programs were written to calculate the 
triple integral

„•o
I = j exp (-iAws) <J)(s) ds

o
fIn <j)(s) = 24.71 k/v j bdb In Q(s,b)

O

In (J(s^b) = j /exp(-id ) - 11 dt,
o'' l *-

p
^  = 2a J arctan (T + ¿S) - arctan (T - Js)

a = c 
2bv

T = vt 
b

S = vs 
b

In practice it was found that the imaginary part of the integral over 

the impact parameter could diverge as b — #» , and in those cases
the upper limit of b was replaced by whose value will be

discussed later.

The integral was evaluated by defining a new variable

u + t

The parameter u was varied to check the sensitivity of the integrating 

method, since thevalue of In p(s,b) should be independent of the 

value of u. The limits of integration became (0,1), and an n-point 

Gaussian quadiature method was used. For selected values of a and 

S, n was varied from li to 20, and an optimum value of 12 was chosen 

as using more points changed the value of the integral by less than 

about $% . Varying the value of u from 0 • 1 to 1 to 10 caused



negligible change. The alternative form of combining the two 

arctangents was found to be computationally 20% faster a4was 

therefore used.

The numerical values obtained provided an integrand for the b 

integral which was non-osciilatory and which was easily integrated 
and checked to an accuracy of better than a few percent. A 

trapezoidal rule technique was used to calculate the Fourier 

transform, and obtain a line profile. Unfortunately the resulting 

line profiles did not agree with the known and accepted shapes in 

the centre and in the wings. The three integrals were then checked 

simultaneous, inter alia by w j ' ^ u  and n, and it was belatedly 

realised that since we o-rs. dealing in the Fourier transform with 

terms which involve the sine and cosine of in cj) (s), it is essential 

to calculate In ¡}(s) extremely accurately when the imaginary part 

of In cj(s) is much greater than 1. To obtain an accuracy of 10* 

in the line shape we need to calculate jin G(s) modulus 2 71^  

to better than 10* and not In )̂(s) itself. This was found to be 

impossible for large values of a, even using hundreds of points in 
the Gaussian quadrature. The program was therefore abandoned and 

was only used as a check in the relevant regions for the next suite of 

programs. The new programs were written with the aim of obtaining 

a value of In (j(s) accurate to the limit of the single length precision 

of the computer, i.e. to about 13 significant figures.

7.1 t integral

We first discuss the physical significance of the dimensionless 

parameters a, S, and T. Since t is the time of closestapproach, vt 

is the distance between the perturbers position at t ** 0 and its

point of closest approach. T is then the ratio of this distance



ior

to the impact parameter and is the tangent of the angle subtended 

at the atom'by the distance covered between times 0 and t. (Fig. Vi.

The distance travelled during the time of interest (the autocorel- 

lation time s) is vs, and S is the ratio of that distance to the 

impact parameter. The value of the parameter a indicates the strength 

of the collision and its effect on the atom. As the impact parameter 

and the velocity decrease, so a increases, and the collisions become 

more violent.

In calculating In 6(s,b) we use as a check the various approximations 

derived above for small and large value of a and We are also 

helped by the fact that given a and £ the phase shift rt is bounded

0 £  ^  <  2a 7?
and

0
1

2a arctan (S)
O p

, if T >  +S -

or 0
* 1

£ 2a j> , if S <  i

Difficulties arise when a is large since we are then trying to 

evaluate a highly oscillatory function, the number of oscillations 

being approximately equal to a (Tig. ’S ) . For fixed v and c, fcV\e»e «-r-nt 

Wovn and on physical grounds we are not interested in the

behaviour of In <|>(s,b) as b — ^ 0 since all the assumptions on which 

the "model is based become invalid. Since we are claiming that the 

small b region does not contribute significantly to the broadening, 

all that we require is that as b — 3» 0, In (j)(s,b) should be smooth 

and continuous.

If the impact parameter is such that a "5̂  1 , we cannot approximate 
the arctangent, since any small approximation we make will be 
multiplied by a, and may become significant. If, for example, we 

expand the arctangent to an accuracy of 1 part in 10"̂ , and if 
a c^ 10"3, the value'Obtained for sin (<1 ) will be meaningless. In
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To carry out the numerical integration, it was decided as a matter 

of policy to use a simple numerical integration technique whose 

behaviour could easily be checked at each stage, rather than a 

sophisticated package whose behaviour when faced with an unusual 

function could be unpredictable. A combination of Simpson's rule 

and Newton's rule was used. If n equidistant points were used to 

estimate the value of the integral, one method used all the even 

points, the other used all the odd ones, and the two estimates were 

checked for consistency. Since the oscillations generally occurred 

in the range (o,s), this range was split into N parts and integrated 

as described above. This was repeated for the intervals (s,2s),
(2s,3s), etc., until t >t , or until further steps ceased to 

contribute significantly to the sum of the previous steps.

This method was checked for the special case a - 1, since if it

could not cope with a single pe’ak or oscillation it would be unable 

to cope with more. For a » 1 it was found unsatisfactory since one 

of the two methods missed the peak at t ■ s/2 when N was odd, and

JU k



thus disagreed with the other, and both missed the peak when H was 

even, and thus gave an unrealistic estimate. The procedure was 

therefore repeated using steps (o, Js), (Js,s), (s,1^s), etc.

By checking with the exact integer a expression and with the small 

s approximation this was found to give reasonably good results: 

for a = 1, b = 0-5, v = 9, and values of s ranging from 0 to

10, agreement was obtained to at least $ significant figures using 

900 points per step. For s > 10, the incorrect asymptotic behaviour 

was obtained, for the following reason. Consider the real part of 

the integral; this has a single sharp peak at t = s/2 whose, half

width is inversely proportional to some function of s. The "peak" 

value is -2, the function being of order 8/s or less elsewhere.

Any Simpson-type integration technique using a step size of -$/2(N-1) 
would therefore provide an estimate of order -s/(N-1) for the value 

of the integral for large S instead of the asymptotic value of '¡7/9.

The third procedure was to take a greater number of steps in the 

intervals (0,-gs'' and (Js 0) than in the remaining intervals. Using 

li,000 steps in each of the first two intervals and 600 in each of 

the subsequent intervals, agreement was obtained to U figures for 

values of s up to s = 100. The difficulty arose from the presence

in the imaginary part of the integrand of two close peaks, one of 

height +1 and the other of height -1, both peaks having similar 

shapes. Although the accuracy obtained was more than sufficient for 

a = 1, in view of the earlier arguments a more accurate method was

felt to be needed for the imaginary part.

Procedure number 1; tried to overcome the cancellation problems by 
getting as short a step size as possible close to t=^s , where the 

sharpest oscillations occurred. As in number 3, two different 

step sizes N1 and N2 were used for t i s and t ~> s, but now the
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intervals (gs - s/2(N-1), -js) and (Js, Js + s/2 (N-1 ))were combined 

and split into N3 steps, and N1 was varied until most of the severe 

oscillations occurred in this region. A further refinement was to 

use Nii steps when t became large (in practice t ~> 1*5) to save 

computing time.

The final program used the following number of steps in each interval:

from t = 0 to t = |s(l - 1/300) : 299 steps

from t = £s(1 - 1/300) to t = |s(1 + 1/300) : 7000 steps

from t = ■|s(1 + 1/300) to t = s : 299 steps
from t = s to to t = 3s/2 : 200 steps

from t = 3s/2 to t = 2s : 200 steps
II II II

If tl II

II II II

from t = ks to t = 9s/2 : 50 steps
II 11 II

II ti II

It ti II

This proceeded until either t > t or until the series converged,max
which usually occurred within the first 30 steps. This gave results 

which agreed with the integer a result to better than l % for s = 10^,

by which time cancellation was occurring to four figures (by which 

we mean that if we summed the positive and negative parts of the 

integral separately, the leading 1* figures were identical). The
9number of steps chosen only proved insufficient when s reached 10 

when rounding and cancellation effects dominated. As will be shown 
later, we are not very interested in these high values of s, and for 

s of the order of 100, or less, agreement was obtained to at least 

11 significant figures. Again, as the value of the parameter a



increased, the number of oscillations increased proportionally, 

and since at least about I4. quadrature points were required per 

oscillation a limit was reached with the above number of steps when

was observed.

To verify that the errors encountered when accuracy was finally 

lost were only due to computational limitations, a limited number 

of trial runs were initiated using 20,000 steps. This improved 

the agreement for high s and high a, but proved expensive in C.P.U. 

time. For small values of a, no problems arose and considerably 
fewer steps were used.

7.2 b integral

The integration over t produces a smoothly varying function of b 

which is non-oscillatory and well behaved. We now require

We can consider the behaviour in both limits, as b —eo and as 

b — o <0 . For large b, we can approximate the imaginary part of

In p(s,b) whenever one of two conditions is satisfied. For small 

S and small aS,

The same expression is obtained for small values of 2ail , which 
is a sufficient condition to expand exp (-i<| ). Rewriting this in 

terms of c,b,v,s

3a >10 , s » l .  Above these values, progressive loss of accuracy

In <{)(s) = h T W v j In (^(s,b)bdb
c

Imag

either if b >> sv



or if b 7)c/v

It was checked numerically that whenever the value of the impact 

parameter was greater than 10 times the least of either c/v or

approximation (even though s(v + c) is dimensionally incorrect).

The imaginary part of the integral thus diverges as b - 0 , and

we need to introduce a cut-off, B. The value of the cut-off follows 

from the way we set up the model by splitting up the gas or plasma 

into separate cells each containing one emitter and a large number

of perturbers. The potential therefore has a mean maximum range
-1 /3 1 /3of n . W e  could also choose a value of , this being

the radius of a sphere with a volume equal tothe mean volume per 

emitter (Margenau and Lewis). Ideally, the final line shape should 

not depend critically on the choice of this cut-off.

At this stage of the problem, we have two impact parameter of

a simple analytic function, another (B) beyond which the impact 

parameter integral need not be carried out. After evaluating 

In <j)(s) we will integrate trigonometric functions of

Large values of B will give rise to severe oscillations. To remove 

these we evaluate

s(v + c), the imaginary part was accurately represented by the

interest: one (bmax) beyond which In ( ¡ ) ( s ,b ) can be represented by

Imag j In <{>(s) j + Aws

B





values of s,v,c and b. If sv £  2b and if c f l  4iC bv, we can expand

However as b —<> o for fixed s,v,c, for small enough b neither of 

these conditions will be satisfied. For b sv we could use the 

Lindholm approximation

but we have shown that the Lindholm result is only valid in very 

limited circumstances and is completely wrong whenever c/2bv is 

integer.There are in fact three ranges of t in which approximations 

can be made:

i) If t -k O, then

where H is.a step function whose value is 0 if c/lbv is integer, 

and T otherwise, i.e.

« 77 for non-integer c/2bv

In <̂ (s,b) = -i 7? cs 
2bv

77 2 2I I c s

for integer c/2bv

(The Lindholm result is » c //bv for all values of 

c,v,b,s)

ii) when t



w h e n  t —

/) ~ cs J ,2b
2 lV v 2V

2 ,2+ t v
)

There is some justification in the implicit assumption made by 

Lindholm and Lenz that this region does not contribute significantly

to the value of the whole integral.. Since is small

the exponential so that that part of In Ç(s,b) arising

is

J* n -1
f , r,2 2 2 r -  f  dt r , 2-i cv \ dt ; b - s + t J o ■

J J I “ 2
1 3 l v

s2 + t'

-2
2 \

where the lower limit y is greater than but of order fs. The 

integral gives

1 ci
hv3 V )  *ly 3y 2

tv te.cn-. tends to zero as s and y tend to . However the criterion
J

for ignoring this contribution is not that it should tend to zero 

but that it should be smaller than the contribution from the rest 

of the range. For b «  c/2v these two criteria are not always the 

same.

Since the requirement sv «  b is always satisfied for fixed s , b 

as v-s 0, the approximation based on that requirement leads to a 

"statistical" result. If oil < bv we can start with the Lindholm 

approximation, which we expand,

In $(s,b) LINDHOIM =
. _ ,2 2-i V es - 7 1  c s
2vb ,.22ho v





where 1̂  and I^^are the corresponding "Lindholm" and "integer a" 

solutions. There is strong justification for choosing 1̂  + 

as an approximation to I, apart from the agreement for S »  a > 1, 

since whenever a is close to an integer value t> 1̂  and i f  a

is not nearly integer 1  ̂ "$> 1^^, so that I^nt + 1̂  will agree 

with the unknown exact solution over most of the range b~* 0.

The combination IT + I. . has the further advantage that i f  we useli int
a stricter definition of 1 ,̂

h = {^ 2 " 11 2 [ exp (-2ia7) ) " 1 j  ' H »

where H is  1 for s">2 and 0 otherwise, then 1^^ + 1̂  has the 

correct asymptotic behaviour as a -*o  and S -» 0,

—  f I, + I. i il cs - 17c
^  l L ^ 3  -2bT fr

2 2 s
$b3v

in exact agreement with the statistical limit 

claim that 1
I = | iS2 -  1  ̂ |exp(-2ia/7 ) -

We therefore

-M l V *  f»)  , (?"-*■)». ( 2is)m
v  — 1 Vm ' (m-1 ) l (m-1 ) ! (2i S)2”1-1

m=1

and this expression, or approximations to i t ,  are v«.''A as b —*0 .

figure 10 shows the various methods used to estimate In )̂(s) and 

the regions in which they were used, as a function of b and s. The 

numerical integration over b was carried out using the same 

combination of Simpson's rule and Newton's method as in the t integral, 

although this was later changed to using just Simpson's rule to speed







the computation. Only 1*0 steps were needed, the step sizes being 

chosen so that the first point was at b a o and the second was 

at b large enough so that severe oscillations did not occur. The 

results were compared and contrasted with those obtained in the 

statistical limit and in the Lindholm limit. The agreement with 

the statistical limit was poor away from the sv = o limit (e.g. 

for c £- 1, v ir 1, agreement was only obtained for s < 10- ^). Better 

agreement was obtained as expected i f  the only approximation made 

for low sv was to expand the arctangent so that

l ,2 ,„2 2 722b -jS v + t v

There was little  agreement with the lindholm result. The real 

part of the Lindholm limit diverged logarithmically as b tended to 

infinity, unlike our result which was well behaved. If we slightly 

relax our strict definition e_f 1̂  and let

sv ) exp (—ic 17 ) -  1 l • 
2b | ( bv ) J

which is  zero for ^sv > b, we are effectively introducing a cut off 

which is  not chosen arbitrarily but which follows from the approximation 

that has been made. Then

Real In 2 T12c2sH Ì Ci (u) -  sin(u) - (l-cos(u) \ 
2v I u u2 J

where Ci is the cosine integral function and u <* 2/7 c/sv . A 

similar expression is  obtained for the imaginary part of In ^(s). 

I f u < 1, the trigonometric function can be expanded and



V

m  :
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— uistead o f  choosing a cut-off at b » f s v  we had just chosen 

sace cut-off B, then u * ¡} c / v S  and the taro equations atone are

identical to the solution obtained by Lindholn and quoted 'ey 

Xarger.au and Lewis, (tee exception is that where we obtain the 

numerical value 0-993 which is Buler's comber *f, Kargenau and 

lewis quote 0*923. This could be a printing error in their paper; 

the original they quote from is Idndboljt's thesis in Cpps&la).

The advantage of replacing u by a constant is  that In t f ( s )  becomes 

proportional to s sc that a Lorentzian line is  obtained with width 

and shift equal to the real and imaginary parts o f In $(s). The 

disadvantage is that the shift is  directly proportional to a cut

off radius whose definition is arbitrary, ter mere careful derivation 

of a lindholn-type approximation does not depend on any arbitrary 

cut-off, but since u is  now a function of s the line profile mist 

be evaluated msoerically.

For u < 1 we thus used the approximations for In $(s) given above 

having checked them against the exact expression. For u )  1 i t  was 

found quicker to evaluate In () (s) numerically than to calculate 

the exponential integral functions accurately enough. The two 

methods however produced the same results, which was a check on the 

accuracy of the numerical integration.

Figures 11 shows the real and imaginary parts of In $(s) obtained 

using I, Ig and IL for the special case v = 9, c » 9, l*77wv » 1.

The "exact" numerical integration agrees with the low s "statistical" 

result to about 1 % for sv < 1, although the latter has the incorrect 

asymptotic behaviour as s->l . TWtrt it Wttle. a>̂ oee»\C''lr LmtUieim

Real "exact" -  li*U*8 ♦ 5-2

Rea l  "Idndholm" - U'S9b

-'r ■■■*
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If instead of choosing a cut-off at b = ¿sv we had just chosen 

sane cut-off B, then u = [7 c/vB and the two equations above are

identical to the solution obtained by Idndholm and quoted by 

Margenau and lewis. (One exception is that where we obtain the 

numerical value 0-993 which is Euler's number +J, Margenau and 

lewis quote 0• 923- This could be a printing error in their paperj 

the original they quote from is Lindholm's thesis in Uppsala).

The advantage o f replacing u by a constant is  that In § ( s )  becomes 

proportional to s so that a Lorentzian line is  obtained with width 

and shift equal to the real and imaginary parts of In <Ks). The 

disadvantage is  that the shift is  directly proportional to a cut

off radius whose definition is arbitrary. Our more careful derivation 

of a Idndholm-type approximation does not depend on any arbitrary 

cut-off, but since u is  now a function of s the line profile must 

be evaluated numerically.

For u (1  we thus used the approximations for In <t>(s) given above 

having checked them against the exact expression. For u )  1 it  was 

found quicker to evaluate In t>(s) numerically than to calculate 

the exponential integral functions accurately enough. The two 

methods however produced the same results, which was a check on the 

accuracy of the numerical integration.

Figures 11 shows the real and imaginary parts of In $(s) obtained 

using I, I s and IL for the special case v = 9, c = 9, liWv = 1. •

The "exact" numerical integration agrees with the low s "statistical" 

result to about 1Ji for sv< 1, although the latter has the incorrect 

asymptotic behaviour as s->l • Thtre \s little, ay**-*'wiH-> LincÛ o!m
hi f -• <o

Real "exact" — -© - U'iUts + 5*2 , S -* -

Real "Lindholm" “ - U ’ & B
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Imag "exact" =■ - 3*1*6 s * 3*1 , s

Imag "IAndholm" = - 3*15 s

which is consistent with our claim that 1 is made up of two parts,

IT and I. , .L int

We see that there is no overlap region in which the impact theory 

and the statistical theory can be merged in some way, since there 

is no region in which their In |)(s) agree, even in shape, with each 

other and with the exact solution. Thus any attempt to construct ' 

an autocorellation function by using approximations valid for the 

impact and for the statistical limits defined above will be incorrect 

for intermediate values of s and will produce incorrect line profiles.

7.3 s integral

The value of In ty(s) was calculated for various values of s, for 

fixed c, W, and s. These values were stored and used to calculate 

the Fourier transform

with

I(w) » | expfiAws) ty(s) ds

A w  « w - w t  2 71 ̂HcB. o

The function In ty(s) was only calculated for s i  fimax* For 8

greater than some value S , In >̂(s) became asymptoticmax

In $(s) d + es

where d and e are complex constants which depend on v,c,VJ. That 

part of the Fourier transform from smax to infinity was easily

evaluated, 
- «o

exp (-1 Aws) • <fc(s) ds - -exp [ d + esmax- iA|rsmax}
e - i A w

^ a x
Ifi!



which was added to the numerically calculated integral from 0 to smax.
In practice, £-max was chosen to be 20, and for all the cases

considered the total contribution from s to infinity was at leastmax
10 orders of magnitude smaller than that from 0 to i max

Figures 12 show the profiles obtained. They are all for particular 

values of v = c = ^  and for varying values of 1*1) Hv. Curves 

were also obtained for v = 1 and 0"1, and for c = 0*9 and 

exhibited similar behaviour. The horizontal axis has been normalised 

so that the peak occurs in the same place and represents the shift 

from w q - 2 77 Ht 6  divided by 1*17 Hv. On the same axes are plotted 

a Iindholm curve of the same physical characteristic.

For the lower densities H, the calculated profiles are wider than 

the Idndholm ones, the relative difference in the widths increasing 

as the density decreases, for fixed temperature. The opposite happens 

as the density increases and the Idndholm profiles overestimate the 

widths.

Figure 13 shows that the curves normalised to the same intensity 

show the slight asymmetry in the calculated profile which arises from 

the non-linear behaviour of In <J)(s) on s. Figure 11* shows the shifts 

in more detail and shows the similarity in the curves near the peak.

The anomalous behaviour of the calculated shapes starting at a distance 

of about twice the half-width from the centre arises from numerical 

errors in the calculation of the Fourier transform. These can be 

reduced by increasing the computational time. The Idndholm profiles 

in Figures 12 and 13 were obtained by plotting a Lorentzian profile 

with a width and shift given by Iindholm. Figure 15 shows five 

curves comparing this Lorentzian profile with a Idndholm profile 

calculated using the same integration procedure as that for our



i

(V)

A



R
O
F
I
L
E

4/7AA/ - e ex oo

I





RC
F 

I L
E

4/A1̂ -

G_

i

O 04 ÖO

F if i ^



•SUe



P
R
O
F
I
L
E

^ ¿/AAr -  o  o \

A

ou_->

I



= o  o x

Tk»* ' * ° r

L rvc\Wo ' ̂

-JO.00 c.oo
>>—  QKEGR

20.00





P
R
O
F
I
L
E

4-Z7/t'v -  o i

f

1

O  - U3
=r ~

oo
=r

or\l
rn

ori*
rsi

. OMEGA







P
R
O
 F

IL
O=r

oC\J

i

T V vA vO<*r

OO

O
OD

», --- • I---------r5~I '-d.no -M.00 0.00
OMEGA



;ni j
o
s



i 4l * '1

profile. Curve (a) is our profile calculated numerically by the method 

already described. Curve (c) is our profile evaluated using more 

quadrature points in each of the numerical integrations. We see that 

as expected curve (c) stays positive over a greater range than curve 

(a) and that within that range it is in better agreement with the 

Lorentzian Lindholm curve (e). This curve (e) was obtained directly from 

the normalised analytic expression for a Lorentzian profile, 

l/{(Aw-shift) + (width) } with the shift and width obtained from 

Lindholm's formulae. To check that the oscillations in curves (a) and 

(c) were due to the numerical integration and were not intrinsic to our 

-theory we substituted the Lindholm phase shifts (n) in place of ours in 

the numerical integration programs and calculated "numerical"

Lindhalm profiles. These are shown as curves (b) and (d). Curves (b) 

used the same number of quadrature points as curve (a), and curve (d) 

the same as curve (c). We note that curves (b) and (d) diverge from 

each other and from the "analytic" curve (e) approximately as far out 

of the line centre as curves (a) and (c). Curve (b) then oscillates 

approximately in phase with curve (a) and curve (d) shows similar 

behaviour to curve (c).’ The oscillations in curves (b) and (d) must 

arise from inaccuracy in the numerical integration in the far wings of the 

line, and by implication the oscillations in (a) and (c) must be due 

to the same reason.

As Aw -*■ co, the integrand will oscillate with a frequency of 

approximately 2tt/Aw , and the step size in the s integrand must get 

correspondingly smaller, which limits the accuracy obtainable in the far 

wings. However, we have already shown that in the wings of the line 

our exact solution tends to the statistical limit, so that the behaviour 

of the line wings as well as in the centre and in the intermediate 

regions.

1 1

r



CHAPTER VIII

CONCLUSION .

In the first part of this work we considered the application of 

classical mechanics to the motion of a particle in a simple Harmonic, 

a l£orse, and a Coulomb potential. We then applied two correspondence 

principles to obtain approximations to various quantum mechanical 

matrix elements in these potentials. Vie made use of the ambiguity- 

in the correspondence principle definition of nc to show that 

although the simplest (?) choice n = n-+ Js produced results which 

might be acceptable in the absence of quantum mechanical results for 

n of order and above, and s < n, a heuristically chosen expression 
for no for each potential produced results which could be used for 

all values of n. For the Coulomb potential wc further calculated 

quantities such as the dipole moment and the oscillator strength 

which, apart from showing agreement with their quantum mechanical 

counterparts, are relatively simple in form and should be used for 

high quantum numbers where the quantum mechanical calculations are 

cumbersome and tabulated values are not available.

In the second part we applied classical methods to the broadening 

of spectral lines. We presented a general theory valid for high 

quantum numbers (Appendix III) whenever classical perturbation theory 

was valid. This has a wider range of validity than quantum mechanical 
line broadening theories which assume quantum mechanical perturbation 

theory. The theory reduces in the line wings to the statistical 

result of Margenau, but its behaviour in the line centre shows 

severe limitations in the work of Lindholm. Working in terms of the



autocorellation function we showed that our results tended to the 

statistical result as s - y  o and to an asymptote with a similar 

though- not identical gradient as Lindholms as s -^o* .

The line profiles obtained were compared with the Lorentzian Iindholm 

profile and the half-widths were found to be far. more sensitive to 

the physical parameters of temperature and pressure than the Iindholm 

theory would indicate.



APPENDIX I

STATISTICAL THEORY

The problem of the broadening of spectral lines due to the presence 

of perturbers can be approached from a different direction. The 

radiating atom is in an external field. A spectral line arising 

from a transition between energy levels Eg and E.̂ has a frequency 

proportional to Eg - E^ . In the presence of an external field each 

of these energy levels changes. In the presence of only one perturber 
they are functions of the atom/perturber separation, and the radiation 

frequency thus depends on this separation. If the perturbers are 

quasi-static (i.e. do not significantly change their position during 

any time of inte'rest) then it is possible to calculate the probability 

of various perturber distributions, and hence obtain the frequency 

associated with each distribution. .

In a series of papers in the 1930's Margenau developed the Statistical 

theory from the general qualitative arguments above to a sophisticated 

detailed theory. In 19$$, with Meyerott, he showed the formal 

similarity between his theory and an alternative approach hy Huitzmark. 

The Holtzmark theory is well described in the review paper of Margenau 

and Lewis, but the Margenau theory is best described in the original

papers.
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For one perturber, the result obtained was , Vex- «. V ,
R

0(s) = 1 expC-iA^Cr) s) - 1 f tiTfr dr

and for 11V perturbers,
oo

In $ ( i )  f  i*lTN ^ exp (-i£>uXr)s) - 1 ̂  r^ dr.

In the wings of a line, when the static approximation is valid, 
the probability of finding a particle near the atom is small, and 

it may be a reasonable approximation to consider only the interaction 

with the closest perturber. This is the "nearest neighbour" approx- . 

imation. The probability of finding one particle in the interval 

dr and no particles within r is

2w(r) dr = exp (-l^Tfr^) N iffTr dr

Choosing A uj>o to be the mean shift corresponding to the average inter

particle separation n it can be shown that the profile is

»■ n a n *  - m i  *
for &u> = c/rk . This formula is found to be correct sufficiently

far in the line wings.



APPENDIX II

AII.1 Infinite Series

We outline here attempts to obtain analytic forms of In 0(s,b) and 

In 0(s). We first evaluate
ci

S = vs , T = vt , a = c 
b b""° 2bv

H = 1 if 1 + T2 - I S 2 <  0

- 0 otherwise.

Using the fact that

exp (-2ix) = 1 - 2itan(x)
• 1 + itan(x)

we can write

exp (-i^ )
1 + T

2iS
5 - i s 2 + iS.

exp (-2ialTH)

This can be expanded in a series which is infinite for non-integer 

values of "a", but has "a" terms if "a" is integer. (The convergence 

of the infinite series has to be established by considering the real 
and imaginary parts separately, each part being made up of two infinite 

series). So,



APPENDIX II

AII.1 Infinite Series

We outline here attempts to obtain analytic forms of In 0(s,b) and 

In 0(s). We first evaluate

In ji(s,b) = I dtQ ) exp (-i^ 
c

= 2a arctan / S >ru
1 ( 1 + T2 -is2,

s = vs , T = vt , 
b F °

a = c
2bv

H = 1 if 1 + T2 - i*S2 < 0

. 0 otherwise.

Using the fact that

exp (-2ix) = 1 - 2itan(x)
1 + itan(x)

we can write

exp (-i^ ) = Si - 2iS T exp (-2iaTTH)
l  1 +‘ T2 - iS2 + is)

This can be expanded in a series which is infinite for non-integer 

values of "a", but has "a" terms if "a" is integer. (The convergence 

of the infinite series has to be established by considering the real 
and imaginary parts separately, each part being made up of two infinite 

series). So,



APPENDIX II

AH.1 Infinite Series

I At

We outline here attempts to obtain analytic forms of In 0(s,b) and 

In 0(s). We first evaluate

In /(s,b) = J  dto exp (-i^ ) -1
c

= 2a i arctan (  S
( 1 + T2 - i S '

S = vs , T = vt , a
b F °

H = 1 if 1 + T2 - iS2 < 0

= 0 otherwise.

Using the fact that

exp (-2ix) = 1 - 2itan(x)
1 + itan(x)

we can irrite

exp (-in ) = y1 - ___
( 1 +'

2iS
T2 - iS2 + iS,

exp (-2ialTH)

This can be expanded in a series which is infinite for non-integer 

values of "a", but has "a" terms if "a" is integer. (The convergence 

of the infinite series has to be established by considering the real 

and imaginary parts separately, each part being made up of two infinite 

series). So,
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In (fi(s,b) = J dtQ  ̂ exp(-2iaifH) -1̂
O

+ f  dt exp(-2iaTT H) 2  /"^Vi__________-2iS 1
° m=1 il + T2 - iS2 + is)

which canU written

On (t(s,b) = Q S 2 -  1 )'' H(^S2 - 1) ^exp(-2iair) - l2

, , dt (-2iS)W
m=i V m y  ̂ I 0 m2' 712(1 + T - AS + iS)

Jis^
(f m)iexp(-2ialT) - 1J  H(̂ 2 - 1) j dto -

m_1 ^ J J l  (1+T2-iS2+iSf

with H(^S -1) = 1 if 5 y  2 

= 0 if $ ^  2

We shall refer to the first term as the "Lindholm" term^ L, to the 

second as the "Integer" term, I, and .to the third as the cross tern, X.

Vie note that the "Lindholm" term only reduces to the equation obtained 
by Lindholm for S »  2; it differs in that it is zero whenever S is 

less than 2. The integer term has been evaluated in the main text,

1 = (2aS)m
^ ' (m-1 ) l (m-1 ) ! f2i-Si2m_1(2Ì-S)4

we call this term " integer because it is the only non-zero term 

when ,fan is integer. When f,a” is not. integer* we can approximate the 

infinite series by a closed form approximation. Since

2iaS y  1 + 2iS ? - m(2iS)mTH^sy ( T2l3s)2i  (ii-S)2™“1



which only differs from I in the factor m compared with 

(2m-2)!/(m-1)!(m-1 )l (these take the values 1, 2, 3> U> .... as 

opposed to 1, 2, 6, 20) we use this as an approximation to I. The 

disagreement for higher orders of m will only be significant when

ever S is approximately 2.

The rcross term can be written in terms of X(m) where

x = * £ , /^)Lp(-2iair) - i | H(is2 - 1) X(m),
m=1 V—u—  J

F -1 '
X(m) = C  dt (~2iS)m

(1 + T2 - iS2 + iS)m

and

o
X(1) =^~-2is| ^iln(-1 + is2 + is2 J 1-it/s2) -i arctan (J+S2 - 1 ^

X(2) = 8iS
(S-2i)2 r>

S" - 1 - 2iS X(1)
(S-2i)2

and it can be shown that

X(m) = H(^S2-1) JiS2-1 ^exp(-2ia-rr) - ^  H(2-ir

m-2
X ^  (2m-3) 1! (m-k-2)!

k=o (2m-3-2k)'.! (m-1) I
-2iS l  

(S-2i)2J

+ x(1) H(i-S2-1) T  exp(-2ia-rT) - 1? 2
‘ J m=1 ((S-2i )2J

Our claim that In $(s,b) could be written as a sum of the "integer" 

and the "Iindholm" term will be justified if the cross term is small 
when S > 2. The check was not made due to the difficulty in evaluating



X numerically, and the greater difficulty in estimating it 

analytically.

Having obtained a complete exact solution to In 0(s,b), we next try
2to integrate it with respect to b ; we write

In 5>(s) = itlTNv (Ib + 1^ + 3^) ,

\  -

OO

bdb I

\

ooJ bdb L
o ©4

- X bdb X

No significant progress was made with X^.

After some analysis, we can obtain the real and imaginary parts of

Real \  i l  - -(elf)3 ¿ ' ( f t . » f ! ^  f f e  W i l lin>) T  f r o  / Ln=o 2n+1 .

£  (-i)n+1 (2n)i
n=o _ 2n

sin u - u(i(u) + (2k+1)l 1-1 )
"2k+1u

and

Imag h i - - &

£  (-i)n+1
2n + 1k=o

sin u - u Si(u)

= 2cTTwith u



IVD ■

These expressions can be written in various ways, and asymptotic 

forms can be obtained using the limiting approximations for the Sine 

and Cosine integral functions, Si(x) and Ci(x). Since, as u —

£  (-1)n+1 (2n+1 ) 1
n=o 2n+1

(-1 )n+1 (2n) ] sinuCi(u) rür

we can express the then dominant term in the expression for Real^L^j-

Real

and similarly

Real

s — ^ 0
3u-

# )  iù '

T[_
i»U2

0, s — 5 oo

0, s ■

The imaginary part of has no simple expression in the limit s—9 0.

We reiterate an important advantage of this general solution over

Lindholm's: we have not had to introduce ad hoc cut-offs in the impact
2

parameter since a cut-off is implicit in the presence of H(̂ -S -1) 

in the solution for In ^5(s,b).

The solution of Ib depends on integrating
COO ✓'''

\  fm= i r
dx (x/u) 

o ?  (2i-x/u)2m

fcjr)3 ( i u f 1 (an-2l L —
l v / (m-1 ) l (m-1 ) 1

f X)
rr l

I



which was done for m = ' \ , 2 , 3 , h -  The series generated appeared very 

slow to converge, and at this stage the entire approach was abandonned.



u~x

AII.2 Split Ranges

The major stumbling block in many approaches was the different 

behaviour of the integrand in different regions. A method was 

developed to consider the integral as a sum of integrals over 

different ranges.

Writing the integrand in the form

\  1 - 2iX 
[ 1+iX

X = S/(1 + T2 - %S2)

the criterion for using a binomial expansion is that

3S2 <  1
0  ♦ T2 - AS2)2

This will be satisfied if S<1* - 2 ^ 3  for all values of T. If 

S lies between lj f 2 J~3 it will not be satisfied if

iS2 - 1 + S > T2

and if S > 1* + 2 J~3 it will not be satisfied if

JS? - 1 + S »  T2 iS2 + 1 - J5" S

We therefore consider In ^(s5b) for three ranges of S,

>  < k  -  2 |3

l * - 2 j 3 $ ? <  2i + 2 { 7

li + 2J3 i s



We consider these in order.

(i) S  < h  -  2<iT
In this case we obtain what vie have called the "integer a" 

solution.

(ii) U - 2 J3 6'S< U ♦ 2J7
* In 0(s,b) = fe ^  Z1 + I2 J

I, - f  ydt j V 1? - l]

and y

The value of y is 0 when S = ii - 2 - f j .  Vie find that

1. = £?  / a )  (-2iS)m r  (2m-2)'.
2 ¿¡=1  ̂n ' ( (in—1 ) '. (m-1 )!(_ (m-1)'. (m-1)! (2i_s)2m_1 -

Tf+ arctan (y+JiyJ)n i
'J

m-2
+ H(m-2) y' (2m-3) (m-k-2)'. 1 1______

k=o (2m-2k-3)U (m-15 J ^  (¿S2-1 +iS)k+1

( n s +is )m- k- 1 j

In evaluating I? we have to consider three more ranges of S. If

v-m-k
, ^ a s 2-i)k+|

2 < S < l i  + 2f3,

in K

x (exp(-2ia'TT) - 1) + Lk

* £ © < -> "  K #  - *  * “ f ^ l * * *  < ' k4]|

i



I f*

If 2/ 0  < 5 < 2

% ■ t  £ ) < - * &  ?f t i  - ̂ -m-k

2k+1
k + i-

+2 G) (-21s) $  ^  [«r* 4- c k-*j

and i f  1* -  2 I T  <  h < 2 /  I T

h - f 0 < - ™ r e (•;)[ ’ '^ * 4 '
-m-k

_L _
2k+1

In all these equations and are limits of integration,

l 2 = K  - 1 + U  S = y

(iii) it + 2 I T ¿ S
As we have done in the previous case, we consider In s) as a 

sum of integrals over different ranges.

In ^(s,b) = h (J-j + Jg + J^)

. T '
J. = £  I dt Exp
1 b° 4

J2 = £  f  dt j '  ex p (-i^ ) -  i j

A A



where Exp indicates that a binomial expansion can be used, and

L 2 = pS2 - 1 - 43 $.

The expressions for , Jg> are as. follows:

= _e2ia_rr 5 ^  / a\ (-2iS)m T  (2m-2)i
W  ¿(m-1 )'*. (iri-TTT

m-2
+ L *  £ ?  ■ (2m-1 ) I (m-k-2 ) 2
(2m-1)^ f Y  k=o (2m-2k-3) '• '• V O T  (2i+S)2k+2 (i-43)m"k_1

1

ST'-k-1

-2iS)m I.

¿  f ‘ )  (-21 s)m ¿  ft) <lV.lS)-"-k _L_ f(is2-, )**i(lUir-1 :
k=í> V k ' 2k+1 /,

•ib* - l247

After some nnmerleal and analytical attempts to evaluate In ÿi(s), this

attempt was also abandonned.



All .3 Fourier Expansion

The last method we shall describe was in some ways the most successful 

even though it did not lead to an expression for fi(s). Since much 

of the work previously described u-sed Fourier expansion, we expanded

exp(-iaX) = An (a) exP(“inX)
n

with X = 2 arctan (T+|S) - 2 arctan (T -Js)

from which

exu(-iaX) - 1 = ”>  SinCn-ajTT ) exp(-inX) - 1
%  ' (n-a) tF I

and we now have an infinite series of what we called "integer a" 

solutions.

Useful approximations can be made by writing a = N -£, with 

0 $ 6 {  1 . Then

exp (-iaX) - 1 = P  (-1 )n_N sin£ir f  exp (-inX) - 1 l
n (n-N+e )ir t J

The approximation we make is to assume, perhaps incorrectly* that 

the dominant terms in the expansion are those for which (n-N+£) is 

small, so that the only terms we select from the expansion are those 

corresponding to n = N and n = N - 1,

i.e. exu(-iaX) - 1 = -  sineff Texp(-iNX)-1 / - sinSlT ^exp(-i(N-1 )X) -
erf l  J ^ i r i



I

and

In ^5(s,b) - 2TT1 b 2  (
v  m=1 '>•

( 2 m - 2 ) l (2iS)
v 1rii=1 "Cn-1) l (m-1) I (2i_s)2m-1

N-1
- 2lTi b ( N_1) (2m-2)! (2iS)m

v m=1 V m (m-1 ) 1 (m-1)! (2i_s)2m_1

Although this solution appears simple, there are difficulties arising 

from the definition of N, and the initial assumption cannot be 

rigorously justified if €  is about



<

and

In ^(s,b) = - 2fTi b (l) (2m-2)! (2iS):
v m=1 ^ '  (m-1 ) 1 (m-1) 1 (2i-S) 2m-1

N-1
-  2Tii b (N_1) (2m-2)i (2iS)m

v m=1 m (m-1) l (m-1)! (2i-S)2m_1

Although this solution appears simple, there are difficulties arising 

from the definition of N, and the initial assumption cannot be 

rigorously justified if € . is about J .



APPENDIX III

Regions of validity and Merging of Spectral Lines

Apart from the approximations mentioned in the text, the line profiles 

obtained will cease to have any meaning for high enough values of n. 

Highly excited states have relatively small energy separation, and 

broadening of the levels causes them to merge.

This merging of states was first considered by Inglis and Teller (1939), 

and their method was revised and commented on by Unsold (I9I4.8) . We 

have shown that for hydrogen the energy levels are given by

where a is the first Bohr radius, so that the separation of energy

When the splitting is of the order of jAE^, the levels will merge.

In the case of statistical broadening, the splitting in the linear 

Stark effect for the extreme components is

for a field F. The electric field is generally assumed small, and

o
levels for high n is

2e

o

2 2/3Inglis and Teller chose an ionic field of 3-7 e n and obtained 

the following equation forthe highest observable state nmax,

log1 0 N - 23-3 - 7-5 log10 nmax



(This formula has often been used to determine the ion density N). 

They also showed that starting with the Lindholm approximation and 

substituting

2 2c = e a n o
■h

and

mv2 = 3IcT ,

the effect of electrons lias to be taken into consideration when

T <  £ x 10^ K
nmax

(although this criterion should be treated with some caution, based 

as it is on the Lindholm calculations). There will thus be a limit 

dependent on temperature and density beyond which no spectral lines 

will be observed.

Before this limit is reached, one of the major approximati >ns in .he 

theory may break down. Using cross sections obtained from the 

correspondence principle, G. Peach has shown in some unpublished work 

that beyond a certain quantum number, inelastic collisions will 

dominate the line broadening process. This value of the quantum 

number also depends on the physical situation, but for the cases 

considered was of order 100 or less.
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M atrix elements and correspondence principles

P F N A C C A C H E
D e p a r t m e n t  o f  P h y s ic s ,  U n iv e r s i t y  o f  S ti r l i n g ,  S ti r l in g ,  S c o t l a n d

M S  re c e iv e d  9  S e p te m b e r  1971

A b s t r a c t .  H e is e n b e r g ’s f o r m  o f  th e  c o r r e s p o n d e n c e  p r in c ip l e  f o r  n o n - r e l a t i v i s t i c  m a t r ix  

e le m e n ts  h a s  b e e n  u s e d  t o  e v a l u a t e  m a t r i x  e le m e n ts  f o r  v a r io u s  p o t e n t i a l s .  T h e s e  a r e  

c o m p a r e d  w ith  a v a i la b l e  q u a n t u m  m e c h a n ic a l  r e s u lts  t o  c h e c k  th e  g e n e r a l  v a l id i ty  o f  th e  

u se  o f  c la s s ic a l  m e c h a n ic s  a n d  c o r r e s p o n d e n c e  p r in c ip le s  in  t h e  d e r iv a t io n  o f  q u a n t u m  

m e c h a n ic a l  e x p r e s s io n s .

U s in g  a  o n e  d i m e n s i o n a l  h a r m o n i c  o s c i l l a to r  p o t e n t i a l ,  m a t r i x  e le m e n ts  o f  th e  f o r m  

< n |^ m|n  +  5> a n d  (n\pm\n + s} a r e  w o r k e d  o u t .  A  M o r s e  p o t e n t i a l  is  t h e n  c o n s id e r e d  a n d  

th e  m a t r ix  e le m e n ts  f o r  p o s i t i o n ,  m o m e n tu m ,  a n d  k in e t ic  e n e r g y  a r e  e v a lu a t e d .  U s in g  a  

C o u lo m b  p o te n t i a l  a  s i m i l a r  p r o c e d u r e  is  u s e d  f o r  f u n c t io n s  o f  v a r io u s  p o r t i o n  c o o r d in a t e s ,  

f r o m  w h ic h  d ip o le  a n d  q u a d r u p o le  m o m e n t s  f r o m  t r a n s i t i o n s  b e tw e e n  n, I s t a t e s  a r e  

c a lc u la te d .

T h e  a g r e e m e n t  w i th  q u a n t u m  m e c h a n ic s  is  fo u n d  t o  b e  g e n e r a l l y  g o o d ,  a n d  in  s o m e  

c a s e s  id e n t ic a l  r e s u l t s  a r e  o b t a i n e d .

1. Introduction

There are many problems in the physics of excited states which have no exact analytic 
solutions. For highly excited states, we can apply the correspondence principle and 
use classical mechanics. The classical solution will tend io the exact quantum mechanical 
solution in the limit of high quantum number («), but there is some uncertainty as to 
the exact range of validity of this approximation, and its application to intermediate or 
even low quantum numbers is not a priori justified.

The purpose of this paper is to examine this range of validity and to demonstrate 
how correspondence principle solutions can be used away from the high n limit, so 
that classical techniques may be used more effectively where no exact quantum mech
anical solutions are available. Of course detailed comparisons between quantum and 
correspondence solutions can only be made when both are known, so we consider here 
cases where exact quantum solutions are available, derive the correspondence solution, 
and compare the two over a wide range of quantum numbers.

Section 2 is a brief introduction to the standard classical theories and to the corres
pondence principles used. In § 3, this theory is applied to a one-dimensional harmonic 
oscillator potential to evaluate matrix elements of various powers of position and 
momentum. In §4 this is repeated for a Morse potential and in § 5 for a Coulomb 
potential. At all stages results are compared with available quantum mechanical 
results. Section 6 is a summary of the comparisons.
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2. Theory

The classical theory of action and angle variables is well documented (Corben and 
Stehle 1960, Goldstein 1959), i iq and p are the initial values of position and momentum, 
then

' 2nj)pdq ( 1)

3T II C pii) dq. (2)
W e  follow the notation of Landau and Lifshitz (1960) and replace the usual action 
variable J  by J  =  J/2n . The angle variable tv then varies between 0 and 2n and 
w =  tot +  constant, w being the classical frequency.

Sommerfeld assumed that
/ = nh (3)

with n =  integer, so that the energy of the system is quantized. The second fundamental 
assumpfon of the old quantum theory (see Jammer 1966), formulated by Bohr, is that 
in the limit where successive stationary states differ little from each other,

(£„-£„■)
w nn = -------- ---------------*. SW

h
(4)

where w„„ is the observed quanta! frequency, and s =  n' — n. A  few years later, Heisen
berg (1949) made a similar correspondence between matrix elements and Fourier 
coefficients.

If we expand

<?(») = <5)
S

then Heisenberg’s form of correspondence is that 
<n|q(()|iH-s> =  q s.

In general, equation (4) is only true in the limit of high n and low s. It is a question of 
practical importance as to whether or not there exists a more accurate approximation 
than is afforded by the classical limit. A  fruitful approach is to notice that the limit 
necessarily does not distinguish between initial and final parameters, and to employ 
an ad hoc approximation that does. Any such attempt must of course be in agreement 
with the physical situation under consideration, and this problem in the case of the 
Coulomb potential has been investigated by Wentzel (1924) and more recently by 
Biedenharn and Brussaard (1965). Thus, for a transition between two states with 
quantum numbers n and n +  s, the quantizing equation becomes

and
I =  nch

nc =  f in , fi +  s).
W e  shall show that good agreement is obtained for high n values between quantum 
mechanical and correspondence matrix elements by letting

n, = n+ 2* (6 )
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however, much better results are obtained over a large range of n values by comparing 
the correspondence and quantal results for simple cases at low n values, and adjusting 
nc to agree at these low values. This particular choice of nc will vary from potential to 
potential, but for each potential will give better agreement than equation (6). In some 
cases, a judicious choice of nc reproduces quantal results for all values of n.

3. Simple harmonic potential

For a one dimensional harmonic potential, E =  tol, and 

/ 2/\1/2= cos ait. (7)

Comparing equations (5) and (7), we infer that the only non-zero Fourier components 
are those with s =  +  1, that is,

<n|q|n+l> = <n|q|n-l> == |^ncJ

This does not distinguish between upward and downward transitions, and would mean 
that the transitions <n+ 1| -» |n> and <n| -* |n—  1) produced identical results, which is 
certainly false. Thus, on physical grounds, the substitution for ne will have to differ
entiate between upward and downward transitions. Equation (7) can be raised to any 
integer power A; for a general 2 >  0, a similar procedure results in

I hp \2,2<«|q'i|n +  s> = 2!
\2<u cl {}U -S)}!{}U + S)}!

with the values of s restricted to

s = 2 — 2j  j  =  0,1,... 2.

The simple harmonic oscillator is symmetric in position and conjugate momentum, p. 
The latter can be obtained by differentiating equation (7) with respect to time, and the 
correspondence matrix element is

</i|p2|n +  s> =  i2 I hw \ 2/2 2 !
(8)\ 2 ‘I {K2-*)}!{fc2 + s)}!

with simi'ar restrictions on s and 2. W e  now have to define nc in terms of ii and s, and 
this definition is very much an individual matter. There is an infinite class of valid 
definitions which produce results which obey Bohr's correspondence principle and agree 
with quantum mechanics in the limit s/n -> 0; the theory does not tell us which to choose 
to obtain results away from this limit. The simplest choice would be to let nc equal 
the mean of n and n +  s, that is,

n c =  n +  is.

From table 1, we see that using this substitution the quantal and correspondence results 
agree to ~(50/n)%.

W e  now use a pragmatic approach and choose the substitution which gives the 
best agreement with quantum mechanics over the whole matrix. Comparing in table I

Exp

that



f
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f̂ n values by comparing 
i n values, and adjusting

[II vary from potential to n equation (6). In some 
I values of n.

(7)

lero Fourier components

hsitions, and would mean 
Identical results, which is 
|or nc will have to differ- 
i (7) can be raised to any 
Its in

[conjugate momentum, p. 
i respect to time, and the

h n  (8)s)}!
c in terms of n and s, and 
an infinite class of valid 
dence principle and agree 
lot tell us which to choose 
would be to let nc equal

td correspondence results

stitution which gives the 
ix. Comparing in table 1

T a b le  1 . C o m p a r i s o n  o f  c o r r e s p o n d e n c e  a n d  q u a n tu m  m e c h a n ic a l  v a l u e s  fo r  th e  m a tr ix  

e l e m e n t s  o f  p \  2  =  1 , 2 , 3 , 4 . A = i /d d ii .» )1 1 T h e  s u b s t i t u t i o n  (n cg  =  (n  +  s ) ! /n ! ,  s 2  0 ;  

n e =  n  +  }, s = 0 ,  g iv e s  id e n t ic a l  r e s u l t s  f o r  a l l  t e r m s  e x c e p t  th e  t h r e e  m a r k e d  ( • )

M a t r ix  e le m e n t C o r r e s p o n d e n c e  v a lu e  Q u a n tu m  m e c h a n ic a l  v a lu e

< n |p (n  +  l> An'J1 Ain+l)'12
< n | p | n - l > -An'J2 Ain)'12

< n |p J |n  +  2> A2nc 4 : ((n  +  l ) ( n  +  2 )} 1/2

- 2  A \ - 2 / t 2(n  +  i )

< n |p ' | n - 2 > A2nc / P i n t n - I ) ) 1' 1

< n j / r jn - i - 3 > A2Hn+ l l ( n  +  2 ) (n  +  3 )} 1/2

< n |p J |n  +  l> - 3 - 3 / t J( n + l ) 3' 2

< n |p 3| n -  1> JA\l12 3  A2n112
< " lp Jl " - 3 > -A’nl12 — /43{n(« — l) (n  — 2 ) } 1/2

< n | p >  +  4 > A'n] ¿ ‘ ( ( n + l K n  +  y i n  +  S H n - M ) ! 1' 2

* < u |p * |u  +  2 > - 4  A‘nl - 4 / t 4(n  +  j ) ( ( n + l ) ( n  +  2 ) ) ' 2

* < n |p 4|n > 6  A‘n2 6A*(n2 +n + \)
* < n |p 4|n  -  2> - 4 / t X - 4 / t 4( n - | ) { n < n — l ) } 1' 2

< „ |p ‘ ln  — 4 > A'nl a ' J n f n -  l ) ( n - 2 K n  — 3 ) ) 1 2

the correspondence matrix elements with the quantum mechanical ones (Wilson et al 

toest we find that the best choice is

s #  0. (9a)

Expanding this for s/n -» 0, 

nc = n + is + i
that is.

nc =  n +  i s =  0. m

S" tituting equations (9a) and (96) in equation (8) for X =  1,2,3, the two sets of results 
. are identical for all values of n and s, that is, the two matrices are identical. For X >  4, 
only elements of the form <n|pJ|it±^) are identical: the rest agree to <50/n2 %. For 
example, <n|p4|n)e =  6/t4(n2 + n + f), whereas <n|p4|n>c =  6d4(n2 +  n + j); for n =  10, 
these agree to 0-226%. (This was first noticed by Bell and Guggenheim (1936) in their 
calculations of mean values of dipole moments.) It is not yet understood why some 
correspondence matrix elements and their quantum mechanical counterparts are 
identical, and others are only nearly equal. The explanation probably involves cor
respondence identities (Norclifle and Percival 1968a, b).

The results of this paper have been used by Clark and Dickinson (1971), who used 
the correspondence principle for strongly coupled states (Percival and Richards 1970c) 
to obtain approximate transition probabilities for a forced harmonic oscillator. They 
formally and numerically show that the correspondence principle result has a much 
larger range of validity than the first order perturbation approximation, even for 0 -* I 
transitions.

' k
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4. Morse potential

The Morse potential is one of the best approximations for all values ofq for the diatomic 
molecule. It is a one-dimensional potential defined by

Y(q) = D[l-exp [~a(q-qc)\]2
D being the dissociation energy, a a constant, and </c corresponding to the bottom of the 
potential well.

If the energy of the system is E „, and we define l = a~ ‘h~l(2/tD)t/2 then

that is

The parameter t is in fact a number of the order of (but greater than) the maximum 
number of bound states the potential will support. As in the case of the harmonic 
oscillator, replacing nc by n +  j gives the quota result (Herzberg 1950).

The frequency to is found to be

to =  a 2h fi~ ‘ ( l - n c).

Defining Q to be the displacement from the bottom of the potential well, that is, 
Q =  q - i t , , we find that I

aQ  =  ln( 1 + V  osi0 w) ( 10)

Thus Q is a periodic function of w, and can be expanded in a Fourier series, the coeffi
cients of which are

<n|<?|n + S> = —  k - -- J
as \ (21 - n J I

( 11)

Herman and Schuler (1953) used quantum mechanics to obtain this matrix element, 
and their expression can be written in the form

' ' as \ n! (2f —  n —  1)1
(t-n —  s —  j)(t —  n —  j)

\{(f-n-s)/2 1,2}{(r-it-s)/2 ( 12 )

For s «  f-n, the last ( )l/2 tends to unity. Table 2 compares correspondence and 
quantum mechanical values of u2s2|<n|Q|n +  s>|2, for l =  50. that is, for a potential 
with about 48 bound states. The correspondence matrix elements are first calculated 
using a mean value for nc : comparison with the quantum mechanical values shows that 
there is an order of magnitude agreement for large s/n, which improves considerably 
when s/n <  1.
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Comparingequations( 11 (and ( 12), it would seem reasonable tochoose, for a particular 
value of nc, that from equation (9a). This was the particular value chosen for the har
monic potential. Table 2 shows that much better agreement is obtained if equation (9a) 
is used.

T a b le  2 . C o m p a r i s o n  o f  q u a n t u m  m e c h a n ic a l  a n d  c o r r e s p o n d e n c e  v a lu e s  o f a 2s 2|< n |@ |n  +  s ) | 2 

in  a  M o r s e  p o t e n t i a l ,  w i th  t = 50

T r a n s i t i o n  Q u a n t u m  

n -* n + s m e c h a n ic a l  

v a lu e

C o r r e s p o n d e n c e

v a lu e

nr =  n + s / 2

P e r c e n ta g e

d if fe re n c e

C o r r e s p o n d e n c e

v a lu e

(n..y = (n  +  s ) ! /n !

P e r c e n ta g e

d if f e r e n c e

1 -2 0 0 2 0 4 0 6 0 0 1 5 2 2 8 3 4 0 0 0 2 0 4 0 8 - 0 - 0 1 0 9

3 4 0 0 4 1 6 6 2 0 0 3 6 2 6 9 14-9 0 0 4 1 6 6 7 - 0 - 0 1 1 8

7 - 8 0 0 8 6 9 4 4 0 0 8 1 0 8 1 7-23 0 -8 6 9 5 7 - 0 - 0 1 4 2

1 5 -1 6 0 1 9 0 4 4 0  18 3 4 3 3-82 0 -1 9 0 4 8 - 0 - 0 2 1 6

1 -4 2 6 2 7 2 x  10 5 1 -6858 x  10 “ 55-8 2 -6 2 0 3  x  1 0 “ 0 -2 6 6

1 -1 2 1-053  x  1 0 “ 13 1-833 x  1 0 “ 3 - 4 2 - 5 0 -9 6 3  x  1 0 ' 13 9 -3 7

3 - 6 1-398 x  1 0 “ l - 0 4 6 x  1 0 “ 33-6 1-397  x  10 “ 0 -1131

5 - 1 0 4 -5 7 5  x  1 0 “ 3 -5 0 4  x  1 0 “ 30-5 4 -5 5 7  x  10 “ 0 -3 9 7

4 .1. Momentum in M orse potential

The conjugate momentum p can be simply obtained by differentiating equation (10) 
with respect to time. If a2 =  E/D, that is a <  1,

pano cos w 
a 1+asinw

the Fourier transform of which gives 

<n|p|n +  s> =  i 

= 0
a \ 2 t - n .

s /  0 

s =  0.
The matrix of p 2 is of more interest, and the correspondence matrix elements for p 2 
can be compared with the quantum mechanical results of Greenwalt and Dickinson 
(1969)+. For diagonal elements we find that the two expressions are identical, that is 
we have a correspondence identity:

Olp2|n> =  a2h2nc(t-nc) nc = n + i-
For off diagonal elements the quantal expression can be simplified and written in the form

(n +  sj
<n|p2|n +  s>u -  |(- \ )sa2h2 (" ±

, , . (2t — n —s — 1)!
x|(i-«-i)(l-"-*-i) ji

lt 1/2

x ( t ( s - l ) - s ( n  +  j  + js )

t A  f a c to r  o f  j h a s  b e e n  o m i t t e d  f r o m  o n e  t e r m  o f  e q u a t io n  (6 )  o f  t h a t  p a p e r ,  a s  c o n f ir m e d  b y  A  S  D ic k in s o n  

( p r iv a t e  c o m m u n ic a t io n ) .
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which can be compared with the correspondence expression

1 l1'1

W e  could use the ‘mean value' nc, and equation (9a) as usual gives a good agreement. 
However, it was found that once the terms in the square bracket had been equated, 
even better agreement was obtained by using the expansion of equation (9a),

Figure I shows the agreement between the two equations when this course of action is 
followed. The agreement is surprisingly good for s/n »  1.

5. Coulomb potential

W e  now consider the case of an atom consisting of a nucleus of infinite mass, of charge 
Z e , only one electron, and with quantum numbers n, I, m. The electron describes an 
ellipse of semi-axis a( =  a0/i2) (Born 1927) with the nucleus at one of the foci. Thecccentric 
anomaly, ii is defined by

nc — n + j s + j .

H g u r e  1. P e r c e n ta g e  d i f f e r e n c e  b e tw e e n  q u a n t u m  m e c h a n ic a l  a n d  a d j u s t e d  c o r r e s p o n d e n c e  

m a t r ix  e le m e n ts  fo r  m o m e n t u m  s q u a r e d  in  a  M o r s e  p o t e n t i a l ,  p l o t t e d  a g a in s t  th e  f in a l 

q u a n t u m  n u m b e r .  T h e  i n i t i a l  q u a n t u m  n u m b e r  =  I a n d  th e  p e r c e n t a g e  =  (C-Q/C)x 100.

r ( / )  =  ( / ( I  - C C O S  U)
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1 \ ' i *
n j )  (,(i~  l)-snc).

1 gives a good agreement, 
acket had been equated, 
f equation (9a),

n this course of action is

a n d  a d j u s t e d  c o r r e s p o n d e n c e  

ia l ,  p lo t te d  a g a i n s t  t h e  fin a l 

- r c e n t a g e  -  (C-Q/C| x  100.

i

r being the distance from the nucleus to the electron, and e the eccentricity defined by
l 1e2 = 1 (13)

Then

W e  shall consider transitions between n, /, in levels. A  function ol tii.ee independent 
variables, describing a system with three degrees of freedom, can be expanded into a 
three-dimensional Fourier series. By analogy with the previous potentials, we expand 
the position coordinates (x, y, z) in the angle variables ». i//, and ij> (see Born), that is,

x(w, iji, (f>) =  Y. xüt- + i,'m ’A" exp i(sw +  Mil; +  Am<t>) 
s .A I,  Am

etc, then obtain the matrix element for the transition by evaluating the Fourier coeffi
cients. The properties of the integrals give selection rules for A / and Am :

For the x  and y coefficients

A l =  ±  1 A m  =  ±  1 
for the z coefficient

A l =  ±  1 A m  =  0.
The three matrix elements can be written in the form

<n,f,m|x|n +  s,/ +  A/,m +  A m >  =  ~  ( ' + ^ 7) .̂1 !''+4'

where

<n,/, m|y|n +  s,/+A/, m  +  A m >  = 4 \ All J -

<n, f, m|z|n +  s, /+ A/, m >  =  - - I l — ^ 1

Al (1-t2)1'2
=  a — J 's(s<) +  A l ---- — J s(st)

(14)

(15)

is the dipole moment between states n, / and n +  s , l  +  AI. The ;c entricity is now

infinite mass, of charge 
e electron describes an 
f the foci. The eccentric

and lc and nc have yet to be defined. There are again an infinite number of valid choices, 
and choosing /c =  /, ne =  n gives results which are close to the quantum mechanical 
ones. A heuristic approach leads to

lc =  max(/,/ +  A/) 
nc = n(n + s)/(n + }s)

as these provide good agreement between quantal and correspondence results for 
higher values of Al/I and An/n.
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For s =  0, the matrix elements for x, y, z are again given by equation (14), this time
with

that is

d h .1+ 41  _  3,„K«.i = i«a

Rtf"1 = Rtf., = |n(n2-f2)1'2.
This is identical to the quantum mechanical result (Bethe and Salpeter 1957).

5 .1 . Oscillator strengths

The matrix elements for x, y, i  can be used in the determination of f " f ,  the oscillator 
strengths between highly excited states for hydrogemc atoms. For the x component

' ”  /  over m

where the frequency of the emitted radiation is given by equation (4), and the classical 
frequency w by

4irRy

Summing the x, y, z components,

/:r-,+4‘ = g l ^ o + A / ^ p ^ y » ) 1.

To check the validity of this equation, we can work out the averaged oscillator strength, 
/«•', by summing over final I states and averaging over initial / states; this average can 
then be compared with independently obtained results. Summing and averaging.

4 j j s u m
Jnn — -ĵc _2 (16)

If we let nc — n, this is just the result obtained by Mezger (1968). About the same time, 
Menzel (1968) worked out an asymptotic quantum mechanical expression,

T . = 5<»+i*)^ji^ .

To obtain detailed balancing, we use a method outlined by Percival and Richards 
(1970a) and multiply the right hand side of equation (16) by (I +s/n), so that

7 “  = 4 *n + s)2 Jjs)J'Jls)
" " 3 n + (s/2) s2

which is the result quoted by Percival and Richards (1970b). and which has the same 
asymptotic behaviour as the Menzel result.
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T a b le  3 . C o m p a r i s o n  o f  c o r r e s p o n d e n c e  a n d  q u a n t u m  m e c h a n ic a l  n u m e r i c a l  v a lu e s  o f  

v a r io u s  d ip o le  m o m e n t s  s q u a r e d  fo r  a  C o u lo m b  p o te n t i a l

T r a n s i t i o n Q u a n t u m

m e c h a n ic a l

C o r r e s p o n d e n c e  P e r c e n ta g e  

v a lu e  d if fe re n c e  

nc =  n +  s /2

C o r r e s p o n d e n c e

v a lu e

nc =  n(n +  s )/(n  +  $) •

P e r c e n ta g e

d if fe re n c e

2 s - 3 p 9-393 11-022 17-31 9 -7 2 0 3-48
4 s - 5 p 72-553 7 6 -3 9 5 5 -30 73-181 0 8 6 ( 5 )
6 s - 7 p 27 4 -1 9 2 8 1 -2 2 2-56 2 7 5 -2 5 0-38 (5 )
4 p - 5 d 121-86 127-86 4-92 123-18 1-083
4 d - 5 f 197-83 2 0 7 -0 0 4-64 2 0 0 -4 6 1-33
( 1 3 . 7 H 2 0 . 8 ) 39-51 4 7 -1 8 19-4 3 7 -9 6 - 3 - 9 3

5.2. Num erical comparison with quantum theory

For numerical calculations, equation (15) is best written as

1  v{(. , ( ^  i-vi).,,.

Numerical values of (R^}*•' *sl)2 were computed using nc =  n(n +  s)/(n +  js)and compared 
with the quantum mechanical results of Green et al (1957) which were for all values of 
n. n + s  $  20. The following points emerged :

(i) The difference between the two sets of values decreased as s/n decreased, 1 remain
ing constant. This is just Bohr’s correspondence principle.

(ii) This difference also decreased with decreasing l/n, that is, as the eccentricity 
increased, for fixed s. The worst errors occurred for the highest transitions, that is, 
when I =  n — I : 6 g -  10/is less than 1 %  out whereas 6 h -  lOg is 13% out.

If we apply the strict condition that s(! + l)/n <  1, the greatest difference should be less 
than 3-5% for all values of n. If we  only restrict s/n <  land(/+l)/n< 1, differences of 
10% may be found amongst the higher s/n and (1+ l)/n values. In general, there is good 
agreement for high values of n.

5.3. Quadrupole moments

The complete expansion of the radiation field produced by a system of moving charges 
contains not only terms described as electric dipole radiation but also terms described 
as electric quadrupole, octupole,... radiation. These too can be evaluated using the 
correspondence principle. The matrix elements for quadrupole radiation are of the form

<n,/, m|xy|n +  s,/ + A/,m +  Am).
The selection rules for the quantum numbers I and m  follow from equation (13) in a 
similar way as that for dipole radiation. For the x y elements, for example,

Af =  0, ± 2  
A m  =  ± 2

for A / =  0, A m  =  ±  2,

<n,l,m\xy\n +  s , l ,m ± 2 >  =  ±  11 —  “ 3^
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for A/ =  ±2, A m  =  ± 2
1 2 / A m  m \ 2

s i2 Am\ +  A / / / 
/(1 -(c/2)2)

+(t-f-r2!1'2 1 4
s i2 AmAll1 /

As mentioned above, higher order terms could also be evaluated by this method if they 
were required.

6. Conclusion

Classical mechanics has been used in conjunction with Bohr and Heisenberg’s form of 
the correspondence principles to derive matrix elements of position and momentum in 
various potentials. In the case of off diagonal elements, the quantization condition is 
not well defined. If the quantizing number used in the classical equations is equated to 
the mean of the upper and lower quantum numbers of the transition, results are obtained 
which agree with available quantum mechanical results for s/n «  1, but which are 
inaccurate for s/n — I. Better results are obtained by comparing analytic or numerical 
values of certain simple quantum expressions with their classical counterparts, and 
choosing nc to give good agreement between the two. This particular choice of nc varies 
from potential to potential: in the case of the harmonic and Morse potentials (which 
are closely related for low n), we chose (nc)‘ =  (n +  s)!/nl, whereas in the case of the 
Coulomb potentials good results were obtained using nc =  n(n +  s)/(n+ js).

The success of the above theory in obtaining valid results for these three potentials 
seems to indicate that this technique could be applied to any potential for which formal 
quantum mechanical solutions are difficult to obtain, for high values of n. The dis
agreement with the exact quantum mechanical solution should be at most of order 
s/n, using nc =  n + js, and far less than this if a particular value for nc is found for the 
potential. The results obtained should be much more accurate for high n values than 
those obtained by the usual extrapolation techniques.
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