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A B S T R A C T

Bovine tuberculosis (bTB) is one of the most complex, persistent and controversial problems

facing the British cattle industry. For the last 20 years, increasing incidence rates have resulted

in bTB becoming endemic in much of England (especially the southwest). Imperfect control

strategies used to mitigate bTB effects often lead to cyclic disease behaviour, where once a

farm is cleared of bTB infected cattle, the disease will continue to remerge some time later. This

thesis explores one of bTB’s primary open questions, what are the quantitative proportions

each pathway contributes to persistent reinfection? The current data sets regarding residual

disease are imperfect due to data gaps, high variability in disease parameters, and conflicts

between data sets. These factors obscure the actual underlying mechanics of bTB within a

herd, preventing the construction of optimal control strategies.

This thesis uses mathematical modelling to examine the primary disease mechanisms that

result in residual disease remaining on a farm; latency, wildlife reservoir, and environmental

contamination. Each of these disease mechanisms forms a chapter of the thesis, by focusing on

each mechanism we can understand how they affect disease dynamics. After examining these

mechanisms separately, this thesis considers their combined effect by numerically simulating

bTB within a herd.

The first mathematical model investigates how imperfect testing and bTB’s long latency

period permits infection to remain on the farm. The highly variable latency period suggests

that cattle may potentially be infected years before becoming infectious themselves. Addition-

ally, imperfect disease diagnostic tools permit further transmission, as undiagnosed infected

hosts may further spread bTB before being discovered and removed. The mathematical models

derived from examining this mechanism uses a non-markovian exposure period, extending

the exponentially distributed parameters to the Erlang distribution. The highly flexible and

adjustable Erlang distribution means that we can further incorporate the variable nature of

the latency period by adjusting the number of exposure compartments. In this chapter, we

construct the SEnTIRC model and perform mathematical analysis on the associated set of

differential equations, examining the long term behaviour of solutions, system equilibria, and

the threshold value for the system (R0). Afterwhich, we further extend the SEnTIRC model,

creating the SEnTmIRC model, which has Erlang distributed parameters for the entire latency

period. Lastly, this chapter finishes by exploring how altering the latency period distribution
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affects the long term disease dynamics of our model.

The next mechanism examined through mathematical modelling is wildlife reservoirs,

exploring how they affect inter-herd disease dynamics. The interconnected disease dynamics

between a herd and wildlife reservoirs create a continuous cycle of unobserved spill-over

and spill-back between the two populations. This chapter studies this relationship through

the construction of a multi-host system. The analysis of this model is similar to the previous

chapter, as we examine the long term behaviour of solutions, system equilibria, and the

threshold value for the system (R0). However, the interconnected system dynamics permit the

system to backward bifurcate, a cumbersome phenomenon from a public health and control

perspective. If the system undergoes backward bifurcation, the normal threshold (R0) of the

system may not be enough to reduce the disease presence, as a further critical threshold

is created. Further control measures must therefore be implemented to reduce the disease

dynamics under this new lower threshold value. The nature and feasibility of backward

bifurcation are therefore explored and discussed for this disease wildlife model.

The last mechanism explored is bTB’s environmental contamination and its effect on disease

transmission within the farm. The bacterium M. bovis can contaminate soil, troughs, cattle feed,

hay, and various other materials for substantial periods of time. Even though the ecological

literature heavily discusses environmental contamination, especially from the perspective of

how the wildlife reservoirs and cattle interact, very little of the modelling literature discusses

this component. This chapter poses and analyses a mathematical model incorporating en-

vironmental contamination as a component. Similar to the previous models, this model is

analysed in terms of its long term behaviour of solutions, system equilibria, and the threshold

value for the system (R0), where numerical simulations are also presented to give a more

complete representation of the model dynamics.

The last model uses simulation techniques to investigate how the different model mech-

anisms expressed throughout this thesis work in conjunction. The other mechanisms were

contemplated and considered through the lens of dynamical systems. If all model mechanisms

were considered in conjunction, the resulting complexity of the set of differential equations

would make the system very complicated to analyse, if not impossible, with currently avail-

able methods. However, through the use of simulations and their techniques, much of the

underlying complexity can be mitigated. This simulation model explores three main research

themes; badger contribution, culling rate, and residual disease. This simulation examines

the associated wildlife reservoir’s contribution to disease dynamics by considering how the

system reacts if the wildlife reservoir is fully and partially excluded. The following section

examines how the testing and detection strategy works by varying the test sensitivity and the
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associated culling rate. Lastly, we attempt to quantify the different pathways in which residue

disease is left on the farm.

Governments and Public Health officials can only construct optimal control strategies by

completely understanding how bTB spreads and transmits. Quantifying these mechanisms

will shed further light on these residual disease pathways, providing researchers with a clearer

understanding of how to best mitigate bTB’s effect. Only through the construction of better

control mechanisms can we possibly eradicate the most complex, persistent and controversial

problems facing the British cattle industry.
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Part I

I N T R O D U C T I O N



1
I N T R O D U C T I O N

1.1 reservoir systems

By the nature of disease evolution, it is advantageous for pathogens to infect multiple spe-

cies. As infecting interconnected species, a disease can replicate and spread to previously

unattainable susceptible hosts populations. This evolutionary advantage is believed to be

why cross-species diseases are so prevalent, 61.6% of all human pathogens and 77.3% of all

domestic livestock pathogens [1]. Similarly, the OIE (World Organisation for Animal Health)

have also stated that 57 out of 70 diseases that cause the most significant impact internationally

are these multi-host pathogens [2].

Epidemiologists need to understand the dynamics of infectious diseases in complex multi-

host communities, in order to mitigate disease threats to public health, conservation efforts,

and the global economy [3]. The CDC and the WHO indicate that this research will be vital to

tackle the increasing number of new emerging diseases [4]. In light of antibiotic resistance,

demographic changes, societal behaviour patterns, changes in ecology, and climate change,

both institutions predict emerging diseases will become an increasing cause for concern [2].

These changes force native and foreign species to interact, enabling existing and newly evolved

pathogens to emerge, into increasingly fragile ecological environments.

Cross-species pathogens pose complex challenges for complete disease eradication, espe-

cially where these species interact [5]. The interconnected disease dynamics between two

populations may maintain the disease; as infection can spill-over and spill-back between

the two distinct populations ("target population" and "reservoir"). If we consider the main

population of concern as the target population, then a reservoir can be abstractly defined as:

“one or more epidemiologically connected populations or environments in which

the pathogen can be permanently maintained and from which infection is trans-

mitted to the defined target population” [6].

Disease reservoirs play an essential role in maintaining multiple disease worldwide [7] and

subsequently prevent the function of numerous disease control strategies [8], as gathering

inter-species interaction data is impractical due to its inherent complexities [9], making reser-

voirs intrinsically difficult to identify. In many diverse situations, even when diseases are
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assumed to be maintained by reservoirs, the exact wildlife species involved are rarely identi-

fied [6]. For example, the Ebola virus is an emerging disease in various regions and researchers

strongly believe a yet unidentified reservoir has caused this spread and maintenance [10].

Once a reservoir population is identified, controlling the wildlife reservoir is often imprac-

tical; merely observing the population can prove challenging enough. This lack of disease

surveillance within the reservoir population(s) facilitates a continuous unobserved cycle of

spill-over and spill-back between the target population and the reservoir. Reservoirs therefore

mask the true routes of infection by acting as a secure hidden source connected to the target

population, consistently maintaining the disease. Moreover, reservoirs provide a hidden con-

tagion pathway, as their interconnected nature also bridges different target sub-populations [6].

What tools do we have to mitigate the effects of the reservoir population? Ecologists and

environmental agencies suggest governing officials have three main policy strategies available

at their disposal; target control, decoupling control, and reservoir control [6]. Target control

should be policy managers first protocol, where intervention is directed solely towards the

target population. The main advantages of this approach are that we require no knowledge

of complicated reservoir dynamics and usually can exert a more substantial influence over

the target population. The next available tool is decoupling strategies, these aim to reduce

cross-species interactions by enhancing environmental biosecurity measures (e.g. fences to

reduce interactions). Lastly, policy makers may impose reservoir controls, which refers to the

reduction of disease within the reservoir (e.g. culling/vaccination programmes).

To avoid unforeseen consequences, reservoir control should only be implemented when the

reservoir structure, function, and interdependent dynamics are understood fully. However, if

surveillance is poorly managed drastic actions are often taken to prevent an epidemic in the

target population. Examples include: in Hong Kong (1998 & 2001) several million chickens

were slaughtered to prevent a projected Influenza A virus outbreak [11], in Malaysia (1999) 1

million pigs were slaughtered due to the Nipah virus [12], and in 2001 the United Kingdom

culled several million cattle to prevent a foot and mouth outbreak [13].

Under proper epidemiological governance, Haydon et al. proposed that the following three

questions are answered before a combination of decoupling strategies and reservoir controls

are implemented on wildlife reservoirs [6];

1. Is the transmission cycle wholly understood, including all reservoir populations?

2. Are the ramifications of the proposed interference comprehensively understood?
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3. Does cost-benefit analysis indicate that the proposed actions have economic benefits,

when considering the cost of culling and any required future interventions?

Haydon et al. argue that failure to answer these questions fully may lead to dire adverse

consequences. For example, carnivore culling in Canada resulted in exploding moose and

deer populations, where the subsequent grazing pressure and habitat damage had significant

knock-on effects for the local ecological balance [8]. The resultant ecological damage required

significant financial and conservation efforts, exceeding any financial benefits of the cull [14].

These questions force responsible parties to consider the associated disadvantages of culling

programmes; hunting limitation, temporary effects if not sustained, increased dispersal and

migration due to social disruptions, and compensatory reproduction [4]. These mitigating

factors usually making such culling strategies disappointingly inefficient [8]. Culling a reser-

voir may temporarily reduce the spill-over and spill-back between the reservoir and target

population by reducing their interactions, however, culling often increases the overall disease

proportion within the reservoir population, as the resulting heightened migration causes an

increase in inter-reservoir interactions. Hence, as the reservoir population grows, so does the

disease proportion, intensifying the disease presence within the reservoir. Public officials must

therefore be very considerate when culling a species, as the practice is often both expensive,

ethically and ecologically unacceptable. However, even with proper diligence in constructing

the culling regime structure, results are still far from reliable [8].

In summary, disease reservoirs exacerbate nearly all forms of disease transmission. By acting

as an undetected source, reservoirs increase the target population’s disease persistence and

inhibit control strategies. Proposed reservoir control strategies must be exact and considered,

otherwise they can have inefficient or even contrary results. As a result of humanity’s de-

structive actions, the global burden of cross-species disease systems will become progressively

more severe [4]. To prevent this increased mortality and morbidity will require a multi-faceted

approach from Biologists, Veterinary professionals, Ecologists, Modellers, Biostatisticians,

Public Health officials, and Policy Makers.

This thesis aims to develop mathematical models to understand the underlying dynamics

of these systems through the lens of bovine tuberculosis within the British cattle industry.

However, there are a multitude of reservoir systems out there; why has this specific system

been chosen?

Bovine tuberculosis (bTB) is one of the most complex, persistent and controversial problems

facing the British cattle industry, resulting in the slaughter of around 45,000 cattle each year

[15]. The estimated average UK economic fallout has been costed at around £120 million

each year since 2010. The cattle industry directly losses around £50 million through livestock
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culling, liquidity issues, veternairy bills, and other associated cost [15]. The UK government

incurs the remaining £70 million, where the majority of this costs takes the form farm

reimbursement, farm subsidies, and testing costs [15]. The disease’s complexity is derived from

various compounding characteristics; long latency period, poor test sensitivity, environmental

contamination, and high cattle trading migration; each of these complicating characteristics

work in synergy to obscure the underlying disease dynamics. The remainder of this chapter

will focus on bovine tuberculosis within the UK cattle industry, describing the current situation

and discussing how these complicating characteristics impede disease surveillance and current

control strategies.

1.2 bovine tuberculosis

Bovine tuberculosis (bTB) is a chronic respiratory disease induced by members of the Myco-

bacterium tuberculosis complex, predominately Mycobacterium bovis (M. bovis). This worldwide

zoonotic pathogen infects a vast range of animals (practically all mammals) [16], however,

cattle constitute the largest reservoir and primary source of infection for humans [17]. Other

domesticated ruminates (e.g. sheep and goats) and wildlife species (e.g. wild boars, deer, and

badgers) are also susceptible and commonly act as reservoirs themselves [18]. This contagious

disease can be transmitted either directly or indirectly; direct transmission occurs when a host

inhales infected aerosol (fomites), usually expelled by infectious agents exhaling or coughing

[19]. Whereas indirect transmission results from a host interacting with contaminated material,

usually through ingestion in the case of cattle [20].

Most developed countries have managed to mitigate or eliminate bovine TB from their cattle

population, or have at least contained the disease to a limited number of regions. However,

complete eradication of bTB is complicated by wildlife reservoirs maintaining the disease;

European badgers in the UK [16], white-tailed deer in pockets of the USA [21] and brushtail

possums in New Zealand [22], conversely, in many developing countries infection remains

a severe and systemic problem for animal and human health with various factors fuelling

this disparity; limited surveillance and control strategies, consumption of contaminated food

sources, and inadequate public health facilities [23]. The regions experiencing the highest

incidence of bovine tuberculosis throughout the world are within Africa and Asia (especially

sub-Saharan Africa [24]. Moreover, agricultural professionals in these regions are at a notably

higher risk, particularly if the occupation involves direct contact with cattle; farmers, milk-

maids, abattoirs workers, or butchers [25]. Worryingly over the last decade, the number of

animals and human cases in these regions have grown exponentially year on year [26].
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1.2.1 Mycobacterium Bovis

The causal agent for bovine tuberculosis (bTB) is Mycobacterium bovis, which is one member of

the Mycobacterium tuberculosis complex. Below are the most notable species and subspecies

with their primary host populations in brackets; M. tuberculosis (humans - Worldwide), M.

canettii (Humans - Horn of Africa), M. africanum (Humans - West Africa), M. pinnipedii (Seals),

M. microti (Voles and other small rodents) and M. caprae (goats, cattle and other ruminants)

[27]. 1 Mycobacterium bovis is not the only causal agent of bovine tuberculosis, as in central

Europe M. caprae has caused bTB, albeit significantly fewer cases when compared to M.

bovis. However, M. caprae does not constitute an obstacle to disease control, as it presents

similarly to M. bovis and the same diagnostic test will identify the host as a positive reactor [29].

Mycobacterium bovis predominately infects cattle but does induce natural cases in humans,

although this number is significantly higher in developing countries that consume raw meats

and unpasteurised milk [30]. Whereas, for human cases the most notable member of the My-

cobacterium tuberculosis complex is M. tuberculosis itself. This pathogen induces a staggeringly

high number of tuberculosis cases and is endemic in various regions worldwide [31]. Cur-

rently, M. tuberculosis is estimated to have infected one-quarter of the global population [32],

although 20 years ago this number was closer to one-third [33]. Even though M. tuberculosis

has a low mortality rate, due to the high incidence rate the disease still causes 1.18 million

human deaths per year (2019), making it the 13
th most common cause of death worldwide [34].

Both M. bovis and M. tuberculosis pathogens induce a slow and progressive disease with

similar clinical symptoms: a general state of illness, persistent cough, high temperature,

pneumonia, weight loss, tiredness, fatigue, and eventually death [35]. One fundamental

characteristic of tuberculosis progression is its extensive variability in the observed latency

period, where the disease may remain dormant for years before becoming active [32]. As

bTB progresses within the host, granulomas develop within the host respiratory system [35].

These lesions allow the disease to persist and continually replicates M. bovis, infecting the

host further. Theoretically, tuberculous lesions can form in most body tissues, however, these

lesions are predominately found in the upper respiratory system, lungs’ interior, and lymph

nodes (especially in the thorax) but can also be found in the intestines, liver, spleen, pleura,

and peritoneum [36]. In most cases, tuberculosis is a chronic disease and can be burdensome

to identify by clinical symptoms alone. Infected hosts may shed the bacteria before the appear-

ance of clinical signs; even in advanced cases where lesions have formed in multiple organs,

1 Interestingly, only recently have both M. caprae and M. pinnipedi been distinguished from M. bovis. Gene sequencing

technology (16S rRNA) is a tool to identify bacteria at the species level and differentiate between closely related

bacterial species. Microbiologists managed to distinguish between these two strains but found the strains have

identical 16s RNA sequences with over 99.9% of their genome sequenced [28].
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clinical symptoms may still be lacking [36].

1.3 public health significance

From a public health perspective, M. tuberculosis induces the majority of human cases world-

wide but M. bovis still poses a risk to human health within specific regions of the developing

world. Researchers estimated that M. bovis induces around 3.1% of the total human tubercu-

losis cases globally [37]. However, this statistic has a high regional dependency, as similar

estimations predict that M. bovis contributes to less than 1% of total cases in developed nations,

whereas this may be as high as 30% in developing countries (particularly sub-Saharan Africa;

Tanzania, Nigeria, and Ethiopia) [30]. What causes this disparity between developing and

developed nations?

1.3.1 Developed Countries

Most developed countries have managed to mitigate or eliminated bovine TB from their live-

stock populations through enforcing safeguards; systematic surveillance projects, regular meat

inspection, and the pasteurisation of dairy products. These simple measures have managed to

reduce the risk of infection to humans substantially, only a few occupations remain at risk;

farmers, veterinary workers, abattoir workers, and butchers [38]. Besides farmers, the next

occupation at most risk is abattoir workers (especially meat handlers) [16]. Previously em-

ployees have contracted tuberculosis through inhalation of aerosols or accidental inoculation

via skin contact while processing contaminated carcasses [16]. Nevertheless, cases in these

occupations are still rare and continually declining due to informational campaigns regarding

the zoonotic risks of bovine tuberculosis [39]. Furthermore, in light of increasing bTB cases

among cattle in the United Kingdom, the Food Standards Agency have implemented new

measures to monitor meat contamination [40]. The Food Standards Agency stress that the

cooking process purges M. bovis from meat and the public health risk is minimal. As according

to the Food Standards Agency there are "no known cases where TB has been transmitted

through eating meat and the risk of infection from eating meat, even if raw or undercooked,

remains extremely low." [40].
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1.3.2 Developing Countries

In the developing world, M. bovis is still a prominent public health risk for both animals and

humans [41]. As we shall see, this disparity in disease incidence rates can be attributed to a

lack of resources to prevent disease transmission, differing husbandry and cultural practices,

and other compounding public health problems.

In developing countries, many regions and communities simply do not have the technology,

finances or required labour to achieve disease surveillance, never mind combat TB’s effects.

For this reason, the preventative measures enacted in developed countries such as systematic

testing, regular meat inspection, and pasteurisation of dairy products are rarely accomplished

[42]. The second major contributing factor which increases exposure is differing husbandry

and cultural practices. Worldwide, most humans contract bTB by interacting with cattle, other

domesticated ruminates (e.g. sheep and goats), and wildlife species (e.g. wild boars, deer, and

badgers). Community exposure risk is therefore intrinsically higher in regions which share

communal living spaces with livestock or if regional cuisine contains dishes with soured milk,

raw and exotic meats [26]. In addition, the factors compound with differences in wildlife

density and behaviour, average health and sanitation, and labour-intensive farming, meaning

that virtually all of the population is at risk of infection [43].

Additionally, tuberculosis is only one of the various public health problems facing develop-

ing countries. If multiple diseases are endemic they may co-infect hosts, exacerbating infection

dynamics. A particularly apt example is HIV and tuberculosis, as these pathogens form a

deadly human syndemic, acting in synergy to magnify the burden of disease [44]. HIV and

tuberculosis is the quintessential example of this behaviour, the immune deficiency caused by

HIV increase both the susceptibility and chance of tuberculosis becoming active [44]. This dual

co-infection proliferates both diseases and further weakens the population. This behaviour is

particularly apparent in sub-Saharan Africa, where there exists a strong positive correlation

between both cases and deaths of tuberculosis patients with HIVs [44].

The myriad of differences presented here illustrates why M. bovis still constitutes a severe

public health risk in the developing world (particularly in Africa). Conversely, in developed

countries the number of human cases are significantly lower [38], as these countries have

the available resources to actively managed the disease. Undoubtedly, there exists a strong

relationship between a country’s relative wealth and its effectiveness in disease management.

In the following section, we shall discuss how the disease affects nations’ economies, where

again, this discussion is divided between the developing and developed countries.
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1.4 incidence rates and economics

1.4.1 Incidence rates in Developed Countries

In most developed countries the number of zoonotic TB cases are minimal, as most have either

managed to eradicate or at least control bTB within their cattle populations [45]. The low

public health risk associated with reduced infection rates has led developed countries to focus

on restricting trade from infected herds and extending surveillance programs (both national

and international).

Figure 1.1: The current OTF status of European countries with associated incident percentages of herds

and regions.

The European Union requires all countries to follow specific requirements if some of their

farms are not "Officially Tuberculosis Free" (OTF). As of 2020, table 1.1 shows that eleven

countries still have non-OTF farms [46]. Out of these eleven countries, seven have no regions

declared bTB free; Bulgaria, Croatia, Cyprus, Greece, Ireland, Malta, and Romania. Whereas

in the other four countries bTB is only endemic in specific regions; Italy, Spain, Portugal and

the United Kingdom [46].

The legislation of the European Union requires all countries with non-OTF farms to

impose tuberculosis eradication programs that operate according to a specific framework.

Following this mandate, farms with livestock must test their whole cattle herd using the single

intradermal comparative cervical tuberculin test (SICCT) routinely, usually at least once a year

[47]. The SICCT test and other diagnostics factors will be discussed in detail in section 1.7.

Under the following conditions a farm will lose its OTF status; failure to follow regulations, a
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single positive reactor is discovered, or M. bovis is identified in cultures grown from suspicious

lesions discovered at the abattoir [48]. If any of these criteria are met, a farm is categorised

as OTFW (OTF-withdrawn). Once a farm has lost its OTF status, they are prohibited from

participating in livestock trading for any purpose (buying or selling). In order to regain the

OTF status, a farm must pass two consecutive whole herd tests within a 60 days period [49].

The associated cost of surveillance and maintenance of bTB in some European countries

has been criticised by governments [46], especially if there is little history of bTB. However,

various studies have indicated that bTB would become endemic once again in historically

active regions without such measures [46].

1.4.2 Incidence rates in Developing Countries

Calculating the economic impact of human bTB in developing countries is exceptionally

troublesome to measure accurately due to unreliable and inconsistent datasets [24]. The exact

impact may be difficult to determine, however research indicates that bTB and other systemic

diseases have a high associated economic burden for developing countries [30]. From a public

health point of view, high workforce morbidity rates cause significant economic inefficiencies

that developing countries could repurpose associated health expenditure funds; treatment

costs, health workers wages, prescriptions, medical equipment, etc [30]. Other economic

benefits would also result from reducing morbidity rates; for example, improved average

health quality would positively influence workforce productivity [26].

While there is much discussion in the literature regarding the severe economic burden to

the agricultural sector [24], [41], [23], lacking the availability of a reliable and cost-effective

diagnostic test, true incidence levels among cattle herds remain obscured [24]. With little

confidence in the accuracy of our current estimates of cattle incidence rates, accurate costs

of the disease cannot be achieved. Even from the limited surveillance accomplished, current

estimates of prevalence levels vary considerably; for example, in central Africa, bTB prevalence

rates range from 0.2% to 19.9% [23]. Nonetheless, even though exact incidence rates are not

known explicitly, virtually all literature indicates that M. bovis and its effects are at least

prevalent in all major livestock-producing developing countries, especially in sub-Saharan

Africa [41], [26].

1.5 reservoirs

Species and subspecies within the M. tuberculosis complex tend to infect a single primary host

population [27]. In humans, infections are produced by M. tuberculosis, M. canettii, and M.

africanum [27]. Similarly in animal populations, seals are infected by M. pinnipedii, voles by
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M. microti, and goats/sheep by M. caprae [50], [27]. However, Mycobacteria bovis is somewhat

unique in its ability to infect a vast number of hosts effectively, its extensive host range consists

of domesticated livestock (notably ruminants, e.g. sheep, goats, buffalo, and deer) and wildlife

species (e.g. badgers, boar, possums, greater kudu, warthog, and lechwe) [51]. There are

documented cases where other tuberculosis species have infected other animal species, yet it

is rare for the disease to be maintained out-with their primary host population [51]. In the

above examples, bTB cases are not just spill-over from cattle populations, instead M. bovis

is maintained within these populations [51]. Importantly, the inherent isolation exhibited

between these host species is unlikely to indicate cross-species adaption, rather particular

strains of M. bovis have crossed into these different species [52].

It is becoming increasingly apparent from bTB eradication programs worldwide (North

America, Spain, New Zealand, and Australia) that implemented control mechanics not ad-

dressing the reservoir population are ineffective at eradicating the disease [53]. In order to

eradicate bTB, governments must design and execute adequate control mechanics which

tackle both the disease in the target population and the reservoir population.

A particularly apt example of this phenomenon is the badger’s wildlife reservoir in the

United Kingdom and the Republic of Ireland. Badgers are currently the only documented

wildlife reservoir and are considered the main barriers preventing the eradication of bTB

among livestock populations [54]. The same European Union regulation has reduced incidence

in most European Union countries, however, within the UK, average number of cases have been

increasing year on year from the 1970’s [55]. Infected badgers presents complex challenges to

disease eradication in the UK, as they can live asymptomatically throughout their natural lives

and shed M. bovis through their urine, faeces, sputum and saliva [18]. The disease poses no

obstacles to either breeding or migration, therefore it will likely spread bTB to other badgers

and cattle. Once a badger within a sett becomes infected, it is not long until the infection

spreads to the remaining members due to the close and confined nature of badger burrows

[54]. Transmission is also likely between neighbouring badger setts because of badgers strong

territorial nature, as during territorial disputes biting exchanges a high bacterial load [20].

Therefore, badgers exhibit prototypical behaviour associated with a reservoir. Once a badger

is infected, it begins spreading the disease among the local reservoir population, from there it

spreads to both the target population and to further subsets of the badger population.

1.6 epidemiology

Transmission of bovine tuberculosis occurs when bacteria aerosols are exhaled directly from

an infected host’s respiratory tract. These aerosols linger in the air as contaminated fine dust
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particles (fomite particles); susceptible hosts’ respiratory systems then become exposed after

inhaling the pathogen [56]. Analogously, bTB may also be contracted by ingesting contamin-

ated material as sputum and salvia contaminate the surrounding objects and the environment

[56]. After initial exposure a host is classified as infectious once they begin exhaling the

pathogen, which requires lesions to form in a host’s lungs and lymph nodes. Statistics from

abattoir inspection studies suggest that between 40% and 73% of all reactors have lung lesions,

although it is believed that this percentage is much higher as many of such lesions are too

small to be identified by the human eye [57]. Moreover, the location of these lesions also plays

an essential role in transmission, as further laboratory examination of carcasses found that

around one-fifth of positive reactors shed M. bovis primarily from their upper respiratory

tract [56]. These cattle play an important role in disease transmission and are referred to as

superspreaders, as hosts are more likely to shed M. bovis in both frequency and quantities

[56].

After contracting bTB the rate at which the disease progresses is highly variable with

various risk factors, as the disease may take a few weeks to a lifetime for clinical signs to

manifest [58]. As the reactivation of latent bTB may occur years after initial infection [59],

this grants the opportunity for bTB to spread throughout a herd unnoticed before the onset

of clinical signs appears. The latency effect of bTB therefore obscures disease dynamics and

contributes to one of the main unanswered questions facing disease eradication:

On a farm recently categorised as OTF, do subsequent breakdowns result from an

adjacent badger reservoir or from an undiagnosed latent infected cattle (originating

from the farm or undetected cattle introduced via inter-farm trade)?

Due to the poor sensitivity and specificity, modern diagnostic tools do not allow us to

rule out the existence of unidentified infectious cattle remaining in the herd after testing [43].

However, what the literature does suggests is that high volume livestock trading, proximity to

an infected wildlife reservoir, and remaining undiagnosed cattle all play an integral role in

the disease dynamics [60][61]. Unfortunately, the relative percentage effect that each of these

contributes still remains unknown and without these percentages, policy makers will continue

to implement imperfect disease control strategies.

1.6.1 Transmission

As the last section indicates, there still exists some unanswered questions within the literature

regarding transmission. Another such critical question is what percentage of hosts contract the

disease through inhalation or ingestion? The OIE states that worldwide, bTB among cattle is
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mainly a respiratory disease and subsequently contracted as such [62]. Transmission therefore

must primarily result from direct and sustained contact with an infectious host. The opposite

view is that indirect transmission also plays a vital role, defined as ingestion or inhalation of

contaminants from materials such as herd feed, troughs, other farm equipment, and pastures

[20]. Direct contact transmission constituted the vast majority of transmissions [63][62], which

is evident throughout the modelling literature as most only consider direct contacts [64],

[65]. However, this belief has recently been called into question, especially regarding how

the disease spreads between herd and reservoir. Several more recent observational studies

have shown that badgers and cattle tend to avoid each other [54], [66]. If badgers and cattle

interact so infrequently, how is the dual dynamics of spill-over and spill-back maintained? An

increasing amount of research implies that badgers and cattle interact indirectly through the

shared environment [66]. Researchers have therefore been considering, if contamination of the

shared medium may facilitate the spread of disease between these species, is the same true

for cattle?

Much of the previous epidemiological and modelling literature does not adequately in-

corporate the idea of the shared environment into the conceptual notion of a reservoir. The

environmental contamination is an important mechanic in the spread of bTB, as it obfuscates

actual underlying dynamics, facilitating future infections even after complete removal of all

infectious cattle. This disagreement within the literature is a still an active area of research

with various open questions remaining.

1.6.1.1 Cattle to Cattle Transmission

The most prolific transmission pathway for spreading bTB throughout a herd is cattle to

cattle transmission, as according to the analyses presented in [17], 94.3 % of all UK bTB cases

result from cattle to cattle transmission. The remaining 5.7% of cases are as a result of wildlife

reservoirs. Cattle to cattle transmission is comprised of the following components; within-herd

transmission (at both pasture and housing), over the fence transmission, livestock trading

transmission, vertical disease transmission, and environmental contamination [17]. Each of

these factors plays an essential role in disease transmission, nevertheless most bTB cases are

contracted on the farm from infected individual(s) within the herd, either through direct

contact or environmental contamination.

Alluded to earlier, there is currently a debate on the proportion of the disease transmitted

between cattle through ingestion or inhalation. Until somewhat recently, indirect transmission

was not considered a contributing factor and was believed to be a rare occurrence. Although,

as reservoirs transmission occurs through a shared medium [66], some open questions have
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begun to arise. The majority of papers addressing this dispute have indicated that indirect

transmission plays an important role but direct transmission between cattle is still far more

likely. However as there is still little quantitative evidence regarding the exact percentage each

contributes, the debate is ongoing. The primary reasons supporting the direct transmission

pathway are; the reduced bacterial load required for infection and the location of lesions

found during cattle necropsies [48], [9]. Researchers have demonstrated experimentally that

fewer bacilli are needed to transmit the disease via inhalation, in contrast to the much higher

bacterial load needed to transmit the disease through ingestion [20]. Furthermore, statistics

from abattoir investigations indicated the distribution of contagious lesions are predominantly

confined to the upper respiratory system indicating infections occur through inhalation [67].

Although, lesion detection preformed by the human eye are unreliable, further laboratory

investigations are required to quantify the distribution [48].

1.6.1.2 Inter-farm Dynamics

How then does infection spread from farm to farm? The main two transmission pathways are

over the fence infection transmission or cattle movement due to livestock trading.

Over the fence refers to infection jumping from one farm to another, either through cattle

interacting directly at farm boundaries or by airborne transmission. Several studies have

demonstrated that farms are at an increased risk of infection depending on the proximity

to contagious premises [19]. It is common practice for farms in both the UK and Ireland to

share a boundary with adjacent herds, presenting a potential risk of cross-infection [19],[17].

In Ireland, around a quarter of incidents (23% - 25%) were attributed to this cross-infection at

boundaries [17]. Moreover, farms adjacent to a contagious herd were four times more likely to

sustain bTB themselves [17]. Similarly in Northern Ireland, around 40% of breakdowns were

attributed to the presence of a neighbouring herd experiencing a breakdown [17].

The second main mechanism is cattle trading, the literature suggests the current high volume

of trading facilitates the spread of bTB both nationally and internationally [23]. Moreover, cattle

trade is averagely increasing year on year within the EU at both a national and international

level [68]. By utilising molecular epidemiology techniques, phenotype studies have indicated

that cattle movements are the root cause of most breakdowns in previously unaffected herds

[69]. Before legislation enforcing coupled pre-movement and post-movement testing, cattle

sold from high incident areas in England to Scotland (bTB free) were around four times more

likely to induce a breakdown than those from other herds [69]. Cattle movements have the

additional hazard of being the only transmission mechanism with the ability to transport

the disease long distances, granting the disease the opportunity to become endemic within
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new regions. This phenomenon was demonstrated after the foot-and-mouth outbreak within

the UK in 2001. Nationwide restocking transported bTB infected cattle to new previously

unaffected susceptible herds, allowing bTB a foothold in new regions and in many of these

regions the disease still persists currently [18].

In 2006-2009, APHA (animal and plant health agency) implemented changes in UK cattle

trading legislation, requiring pre-movement and post-movement testing. Similar legislation

(Council Directive 64/432/EEC) has since been introduced within the European Union. As

a result of this new legislation, the associated risk of cattle movements on bTB levels has

been substantially reduced in the UK and EU [70][68]. However, with current diagnostic

tools we currently cannot concretely say an individual cow is free from bTB at the point of

trade [17] as current screening tests for bTB focus on testing of herds rather than individuals

[68]. Hence, cattle movements will continue to propagate the spread of bTB until we develop

improved screening techniques. Newer EU trade agreements attempt to minimise exposure

by increasingly utilising concepts like regionalisation, zoning, and compartmentalisation as

principles of disease control [68], however, this only mitigates bTB transmission and does not

prevent it entirely.

1.6.1.3 Vertical disease transmission

Vertical disease transmission (VDT) is defined inconsistently within the literature, certain

definitions only refer to transmission from mother to offspring during either pregnancy or

childbirth. Whereas other definitions also consider short-term post-parturition infections

related to the mother’s behaviour (pseudo-vertical disease transmission). Vertical disease

transmission (VDT) is not a significant factor for the transmission of bTB in the UK [16]. A

large cohort study in Northern Ireland results indicate that there exists no statistical evidence

that a positive reactor’s offspring are more likely to become infected themselves [71].

Conversely, pseudo-VDT is a prominent infection route worldwide, as calves may become

infected by drinking contaminated milk directly from their mothers. Direct udder-feeding

is still common in the developing world and is one of the main reasons for their relatively

higher incidence rates [72]. Alternatively, in most developed countries (including the UK),

the pseudo-VDT pathway has been all but eradicated, as newborn heifers are separated from

their mothers at birth and are kept separate until their first calving [73]. Additionally, calves

are supplied with a substitute feed instead of cow’s milk [74], both of these measures prevent

the risk of pseudo-vertical disease transmission.
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1.6.1.4 Wildlife Reservoir

In both the UK and Ireland, the European badger (Meles meles) is the main reservoir for bTB

and is often noted as the main obstacle in eradicating bTB in domesticated livestock [73].

Badgers play an essential role in the inter-farm community dynamics of bTB and this claim

has been well documented in the literature utilising molecular testing techniques [75]. Whole

Genome Sequencing (WGS) is increasingly being used to study the forensic epidemiology

of bacterial pathogens, as these diagnostic tools are especially useful when analysing unob-

served reservoir populations [76]. As WGS techniques allows epidemiologists to glean insight

about the reservoir indirectly. Phenotype studies indicate that bTB is continuously in a state

of spilling over and spilling back between the target population and reservoir [75]. Their

results indicate that 40% of the badger samples taken were indistinguishable from the sample

sequenced in cattle, implying close inter-community spreading occurs [76]. In the same study,

no sequenced sample from badgers were more than four mutational steps away from the

nearest reactor cow. As discussed previously, only 5.7% of infections in cattle are as a result

of badger interaction, although notably, these new cattle cases are estimated to subsequently

generate around 52% of the total bTB cases observed [17].

Evidently, badgers transmit M. bovis to cattle and there is strong observational evidence

indicating that cattle likewise transmit M. bovis to badgers [77]. Despite this, numerous uncer-

tainties and inconsistencies remain with such findings. Various studies have indicated that

direct contact between badger and cattle is infrequent [63], [78]. For the most part, both badger

and cattle tend to avoid each other [79],[66]. For example, ecologists used a combination

of GPS monitoring collars and contact collars in [66] to examine the underlying interaction

between badgers and cattle. Across four sites, the researchers monitored 421 collared cattle for

a total of 8551 collar days, 53 contact-collared badgers for 8308 collar days, and 54 GPS-collared

badgers for 7176 days. They found no direct contact between cattle and badgers during the

entire study, where direct contact is the required distance for the aerosol transmission to occur

(proximity of 1.5 m) [66]. What makes this mutual avoidance even more striking is that the

same study also concluded that badgers preferred habitat is in fact cattle pastures [66]. Clearly,

inter-population spread between badgers and cattle is more likely to occur through the shared

environmental landscape, rather than direct contact.

1.6.1.5 Environmental Contamination

The previous GPS monitoring collars and contact collars study [66] suggests direct trans-

mission may be rare, where some ecologists have went as far to even suggest non-existent
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[80]. How then does the disease contamination result in cross species inter-community spread?

M. bovis can survive in the environment as fine dust particles or it may contaminate either

pastures or water sources [20]. If M. bovis undergoes aerosolisation, it has been demonstrated

experimentally that these contaminated aerosols linger in the air for 12-24 hours and is

resistant to associated environmental decay [19]. Furthermore, this infection interval is ex-

pected to be considerably longer if cattle are housed permanently indoors, due to the poor

ventilation associated with housing pens [20]. The estimated decay rate of bTB contaminants

in some environmental matrix (e.g. feed, hay, soil, or water) is exceptionally variable, lasting

anywhere between a couple of days to two years [16]. Contamination of these environmental

matrices occurs by infected cattle excreting M.bovis through their urine, faeces, saliva, nasal

secretion, and sputum [19]. One USA (Michigan) study found that M. bovis remains viable

and pathogenic for 88 days in soil and 58 days in both water and hay [62]. Whereas similar

studies in the UK have found the bacteria may remain present in pastures and soils for around

six months [79]. The survival and persistence of M. bovis rises in other mediums such as

faeces (8-9 months) and dry cattle feed (9 months) when stored indoors [79],[19]. The different

time intervals are likely due to the UK climate, multiple studies have found that tubercle

bacilli best survive in cool, shaded, and moist environments [20]. Under laboratory conditions,

researchers have demonstrated that M. bovis remains viable up to twice as long if within a

shaded environment [16]. Consequentially, similar field studies imply longer survival times

during the winter months; GB [79], New Zealand [81], Michigan [62], and Australia [82].

Contamination of drinking water has also been identified as a typical transmission pathway

between local wildlife and cattle (white-tailed deer in the USA [83] and boar in Spain [84]). In-

fected hosts shed M. bovis through nasal and oral secretion into communal water sources, often

supporting reservoir and target population interaction. In the UK, communal water sources

are not considered a significant risk factor in reservoir and target population interaction,

as most cattle drink from self-contained troughs. However, livestock troughs have yet to be

examined thoroughly in the literature and may be a more substantial source of contamination

than currently thought. Defra suggests that troughs may be contaminated by saliva and

sputum, advising regular cleaning and disinfection of water troughs and avoiding stagnation

if possible [85]. Furthermore, in separate advice regarding badger biosecurity measures, Defra

suggests raising water troughs to at least 80cm to prevent badger contamination [16]. Defra

advises similar measures should be implemented regarding feeder rings, as these have also

been suggested as a potential source of contamination [16].
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1.6.2 Transmission Summary

Effective management of infectious disease relies upon fully understanding the mechanisms

behind how a particular pathogen transmits. Lacking a comprehensive understanding of

the primary infectious routes, public health officials may implement ineffective management

strategies endangering the lives of humans, domestic livestock and local wildlife. Unfortu-

nately, discovering an accurate quantitative description of the transmission mechanisms have

yet to be fully achieved due to various discussed complications [65]. The main transmission

pathways are known; cattle to cattle transmission, inter-farm transmission, wildlife reservoir,

and environmental transmission, however, the exact percentage that each contribute still

eludes researchers. Without a clearer conceptual picture of bovine tuberculosis transmission

and persistence, public health officials will not be able to fully control or eradicate bovine

tuberculosis from the UK cattle industry.

1.6.3 Risk Factors

In an epidemiological context, susceptible refers to an individual within a population that

could potentially become infectious [86]. What makes such an individual more susceptible

or resistant remains unclear, as there is relatively limited knowledge about susceptibility at

a granular level. Below we shall discuss the general factors associated with variability and

resistance of bTB broadly in two main themes; animal level and herd management level.

1.6.3.1 Animal level

genetics, sex, breed and farm type Through the study of genetic engineering, re-

searchers are striving to determine what proportion of a host’s susceptibility/resistance is as

a result of the host’s genetic makeup. With this knowledge, scientists could isolate which gene

variations result in this resistance and subsequently create a breeding program to mitigate bTB

within the cattle population [18]. The genetic differences within species seem to be responsible

for significant variation in the heritability of susceptibility to bTB [87]. UK and Ireland studies

have examined the genetic variation of dairy cattle population (mainly Holstein Friesian pure

breeds or mixed breeds) and found that between 16% and 18% of variance in bTB resistance

was estimated to be heritable when diagnosed with the SICCT test [88]. Comparatively, less is

known regarding beef cattle due to the lack of investigation, although one Irish study found

similar variation among the various beef breeds and estimated the heritability of susceptibility

to be 13% [89].
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Many open questions regarding how bovine tuberculosis resistance differs between the

sexes remain, the different functions and husbandry practises between the sexes prevents the

construction of informative comparisons. These inherent differences are compounded when

we consider farm management type between dairy cattle or beef cattle. As bulls and steers

(castrated males) are only used within the beef farming industry, comparatively in the UK,

most dairy cows and heifers never even interact with males as they are inseminated artificially

[90].

Dairy cattle tend to experience elevated incident rates due to higher herd density, contact

rates, and average life expectancy [91]. Researchers believe that these differences are respons-

ible for the higher incidence rates exhibited in dairy cattle herds [91], as comparatively, dairy

cattle older than two years are 40% more likely to be infected compared to similar beef cattle

[91]. At the same time, young calves on either a dairy herd or beef herd experienced a similar

level of infection [91]. As a result of these differences, the majority of the literature suggests

that on average males experience lower level of incidences of bTB [91], [92] and ,[93] however,

none of the papers noted above, considered for the differing function and husbandry practises

between the sexes. Therefore, currently this literature does not demonstrate any intrinsic

difference in susceptibility to bTB between male and female livestock.

maturity, health , and behaviour One consistent thread throughout the literature

is that cattle’s relative risk and susceptibility increase with age [91]. UK surveillance data

suggests that the relationship between incidents and age increases monotonically for the first

24-36 months, after which incident rates begin to level off [91]. This relationship arises from

the fact that cattle past the age of three are more sensitive to the SICCT test, increasing the

likelihood of detection [91]. The positive correlation between incidents and longevity most

likely arises from prolonged exposure to routes of infection; within-herd infection, wildlife

reservoir infection, and environmental contamination. The longer a host lives, the higher the

probability of contracting the disease and overcoming the variable latency period. Additionally

as cattle reach late adulthood their susceptibility increases due to a weakening of their cellular

immunity response [94]. However, this weakening effect is not as pronounced compared to

humans as livestock rarely reach their nature longevity [94].

Cattle’s immune response directly affects their susceptibility and is conditional on various

factors, not just age. Poor nutritional conditions can suppress a cattle immune system, increas-

ing the susceptibility to bTB and the likelihood that latent bTB activates [87]. Poor health also

negatively affects diagnostic tools, as there exists a positive correlation between responsiveness

to the SICCT test and body condition index in lactating Holstein-Friesian UK dairy cows [95],

implying cattle with a more susceptible disposition are less likely to respond to the SICCT
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test accurately. On the other hand, two separate Irish studies concluded there existed no

significant differences in cattle susceptibility if fed either an energy-restricted or unrestricted

diet [96],[97]. Further research is required to discover the immunological consequences that

nutritional and body conditions have on susceptibility.

The host constitution is not the only factor at play, as host behaviour similarly has a

profound effect on susceptibility. Throughout the different stages of maturity in the cattle

life cycle, their inter-host and environmental contact networks vary tremendously. Cattle

are inquisitive by nature, particularly calves and younger dominant cows will examine and

investigate new objects in their surroundings [98]. Observational studies have shown these

cattle were most likely to approach badgers and possible contamination sources (e.g. badger

latrines) [63]. This pattern also holds true for inter-host connections, UK studies using contact

data loggers have shown that younger adults have the highest number of connections with

other cattle [63]. The heterogeneous characteristic of contact networks has a profound effect

on cattle susceptibility, as seen in a New Zealand study, which found that 86% of positive

reactors originated from the herd’s top 20% most interconnected cattle [98].

1.6.3.2 Herd-level

herd characteristics The literature is virtually unanimously agreed that incidence

rates of bTB increase as herd size does; this holds true regardless of geographical region or

relative local prevalence [99]. Dynamic modelling has shown that as herd size grows, so does

the number of potential within-herd connections, increasing the opportunity for transmission

to occur [100]. Consequentially, numerous papers indicate a positive correlation between herd

size and the likelihood of a breakdown. However, herd size is not an independent factor

but rather it constitutes various other positively correlated contributing risk factors; farm

management style, farm acreage, neighbouring farms, geographical location, livestock density

and trade movements [16]. This umbrella term of herd size may then be misleading, as these

constituting factors are more likely to induce a varied number of cases in different scenarios.

For example, farms with the largest herd size often have the highest herd density; under

cramped conditions livestock are in contact for prolonged periods of time which exacerbates

bTB transmission. Alternatively, due to the imperfect sensitivity and specificity of the dia-

gnostic test, false-positive diagnosis increases with herd size, increasing the likelihood of a

breakdown irrespective of incidence levels within the farm.

The farm production type also influences the same risk combination seen by the proxy of

herd size, as comparatively, dairy herds have a higher risk of infection than beef herds [101].

Many of the same underlying factors contributing to herd size are more frequently found

in the dairy herd management style; elevated herd size, herd density, trading volume, and
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contact per day [16]. A UK study using surveillance data found that most of the supplementary

incidence of bTB in dairy farm compared to beef farms could be attributed to increased herd

size and location of dairy herds within the UK [100].

farm management Understanding the relationship between transmission and suscept-

ibility allows farmers to implement ’good’ farm management. Organising and operating a

farm with proper disease prevention has been shown to maximise animal welfare, production

and profits [102], as good farm management and a high standard of hygiene may prevent

or reduce the risk of having a herd breakdown [18]. In a UK study, farms exhibiting poor

management techniques were at an enhanced risk of having persistent breakdowns. This

study specifically highlighted the following issues; wildlife reservoirs having access to farm

buildings and feed stores, cattle grazing at pasture margins, and badger activity in pastures

[20]. Recently, the role of farm management is more apparent due to "big agriculture"; large

farming conglomerates have increased their market share over the last 30 years [103]. These

farms tend to be poorly managed from a disease mitigation point of view, as these herds tend

to have increased contact rates and stress levels, increasing overall herd susceptibility [103].

1.6.4 Risk Factors Summary

This section demonstrates that the various risk factors associated with bTB are complex and

interwoven. Differing herd elements have a profound effect on bTB’s disease progression,

where independent cattle characteristics are not the only factor affecting bTB’s expression, the

farm type and management style also contribute. Hence, the individual risk factors affecting a

singular farm vary tremendously from farm to farm. The UK control strategy should therefore

not be designed broadly but instead, control strategies should be individually tailored for

each farm’s differing risk factors.

1.7 diagnostics

How do we determine if a cow is infected with bovine tuberculosis? As we shall see, the

accurate detection of bTB in cattle remains exceptionally challenging. The imperfect nature

of current diagnostic tools play an integral role in the high level of persistence seen in the

southwest of England’s dairy farms [104]. At present, there exists no singular test available

with the ability to accurately identify all infectious hosts within a herd [105]. Most surveillance

programs within the wider developed world rely solely on two main detection pathways;

whole herd testing using the tuberculin skin test (TST) and abattoir examination of carcasses

for symptomatic lesions [106]. Where suspected lesions are subsequently confirmed for M.

21



bovis by growing bacterial cultures [43],[100]. In this section, we shall illustrate the associated

weaknesses of the different available tests; tuberculin skin test, Gamma-interferon assay, post-

mortem investigations, and lastly, we shall discuss a vaccine and its effects on diagnostics.

1.7.1 Tuberculin Skin Test

Under European Union Legislation, there are only two legally approved diagnostic tests

permitted to detect bTB within cattle; Gamma-interferon assay and the Tuberculin Skin Test

(TST) (Mantoux Test). However, the inherent advantages of TST’s relatively low cost and

ease of administration has led to it becoming the international standard test for conducting

whole-herd tests [107]. The test works by eliciting a delayed hypersensitivity reaction to an

intradermal injection consisting of bovine tuberculin, which is a protein synthesised from

mycobacterial cultures [108]. If the host’s immune system recognises the tuberculin antigens,

the infected host’s body mounts an inflammatory response and begins swelling at the injection

site. Inflammation peaks between 2-3 days later and rapidly declines thereafter [106]. If a

host is bTB free, the host body is not sensitive to bovine tuberculin and therefore elicits no

local inflammatory response. By examining the injection site, members of the veterinarian

profession can distinguish if a host is infected or not.

There are two primary forms of the TST, either the single intradermal skin test or the

single intradermal comparative tuberculin test (SICCT test). The single intradermal skin test

injects one dose of M. bovis tuberculin, whereas, the single intradermal comparative tuberculin

test (SICCT) compares the host’s different responses to two injections (one injection of M.

bovis tuberculin and M. avium tuberculin) [105]. The SICCT test is standard in the UK as it

facilitates the differentiation of hosts infected with M. bovis or hosts infected with another

mycobacterium [106]. The UK national eradication program runs in accordance with the

European Union Council Directive 64/432/EEC (EU,1980), which regulates the TST test

boundary for determining when a host is a positive reactor. Under this legislation, a host is

considered a positive reactor for the SICCT test if the inflammation response is at least 4mm

greater than the reaction at the avian tuberculin injection site [109]. An inconclusive result

refers to an inflammatory response between 1 to 4 mm and such cattle must be retested [109].

If one host is inconclusive twice or more, the host is deemed a positive reactor [109]. The

level of inflammation recorded during the SICCT test is indicative of the severity of disease

progression within the host, as hosts that react strongly to the SICCT test tend to have visible

disease markers discovered during post-mortem examination [110].

Within the literature, it is generally accepted that newly infected hosts will remain undetec-

ted using SICCT for some time [101]. Under experimental conditions cattle were inoculated
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with the M. bovis pathogen, three weeks after initial exposure some cattle began being posit-

ively identified by the SICCT test [111]. Similarly, official OIE guidelines state that for SICCT

test to detect infected hosts, there is between a three to six week development period before the

delayed hypersensitivity reaction will occur [111]. Although various authors have expressed

dubiety in these time frames, suggesting further study into the factors affecting the incubation

period is required [18]. For example, there are numerous cases of bTB becoming active years

after initial infection [112]. Therefore, there still remains extreme variations in the required

duration period before test results are reliable.

In addition to these findings, extensive evidence indicates that the SICCT test may become

ineffective and even unresponsive to chronically inflicted hosts [16]. Livestock with advanced

cases of bTB may become so immunocompromised that their body fails to produce an inflam-

matory response. Cattle in this stage are classified as anergic hosts and their lack of reaction

effectively nullifying the SICCT test results. However, anergic hosts are rarely discovered

within developed countries, as earlier surveillance programs will likely detect such hosts

before they become anergic [16].

Often within high incidence areas, once cases of bTB are detected within a farm, the infec-

tion typically persists [113]. Infected herds must be continually retested until they successfully

complete two consecutive whole-herd tests that are clear of reactors and are within 60 of each

other [18]. Often with each subsequent whole herd test, new unidentified infected hosts are

discovered [113]. However, recent research indicates that the inter-testing interval plays a vital

role in the sensitivity of the SICCT test. If infected cattle undergo two consecutive tests a short

time apart, the second test often fails to detect bTB [114]. The desensitisation of the test is

most intense in the first seven days after administration [114], although, some studies state

that such mitigation effects on test sensitivity are only diminished after 60 days [114]. Other

studies have suggested this weakening effect has a prolonged residual effect, especially on

borderline cases [115]. Moreover, recent work has indicated that enforcing a minimum 60

day inter-test interval, which many researchers have suggested, would not be sufficient to

mitigate the effects [115]. As laboratory experiments and observational data have shown that

continually testing at a 60 day interval leads to desensitisation of future tests [115].

As numerous compounding factors may adversely affect the SICCT test’s inherent reliability,

estimating the associated sensitivity has proven to be challenging [108]. The varied range of

cattle breeds creates difficulties in sampling, as no easily accessible subset of cattle would

provide an accurate proxy for the entire worldwide cattle population. Estimating test sensitiv-

ity for cattle from one particular area may vary significantly in different areas or countries,

especially those with differing farm management styles, husbandry practises, reservoir popu-
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lations, etc [105]. To truly determine the average sensitivity for the entire cattle population

of the UK, a larger cross-sectional sample of cattle would be required to be simultaneously

tested. After which, the entire sample would have to be slaughtered so that post-mortem

investigations could accurately verify these test results. By developing mycobacterial cultures

for these hosts, we could accurately determine the test’s sensitivity. Although, even with

the high confidence attached to post-mortem investigation, no test is perfect, these test im-

perfections would introduce systematic errors into our predicted sensitivity. Such studies

have been completed, although the sample sizes are often far too small or focus on dairy

cattle from high incidence areas. The results of these studies are inconsistent and provide a

considerable variation in estimated sensitivity, ranging from 51% to 89% under the standard

SICCT interpretation [116].

There exists a secondary classification procedure for the SICCT test referred to as "severe

interpretation", where a host is identified as a positive reactor if they only react to the bovine

tuberculin or if there is a 2mm discrepancy between the bovine tuberculin and avian tuberculin

injection sites [18]. However, by employing the severe interpretation, we increase the SICCT

sensitivity at the detriment of specificity. For example, one study estimated the standard

tests sensitivity to be within the range 70% to 89% and under the severe interpretation, this

range increased to be between 78% to 91% [18]. However, in the same study, the SICCT’s

specificity reduced from 99.98 ± 0.004% to 99.91 ± 0.013% [18]. Undeniably, using the

severe interpretation would increase the number of cattle detected considerably, although the

subsequent numbers of false positives reactors culled would be impractical.

1.7.2 Gamma-interferon assay

Gamma-interferon blood assay is the second test approved by the EU directive 64/432 annexe

B [117], designed to act as a supplementary test to the TST. When used in conjunction with

the tuberculin skin test (TST) it enhances the likelihood of detecting TB-infected hosts [105].

The gamma-interferon test is based on measuring the emission levels of a cytokine called

’interferon gamma’ (IFNγ). IFNγ is emitted from infected cattle’s white blood cells when stim-

ulated with bovine and avian tuberculins (the same as used in the tuberculin skin test) [118].

The associated level of IFNγ emitted determines if the host is considered as a positive reactor.

Where a host is considered a positive reactor if their blood samples emit a comparatively

higher level of IFNγ in response to bovine tuberculin compared to avian tuberculin [118].

The true strength of the gamma-interferon test is its ability to detect bTB earlier and with

significantly higher sensitivity [105]. The gamma-interferon test is able to detect infection in

the first 2-5 weeks, often before the host has become infectious [67]. For example, a Northern
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Ireland study discovered IFNγ positive animals were at a significantly higher risk of failing

a subsequent SICCT, indicating IFNγ ability to identify early-stage infections [119]. The

IFNγ test sensitivity is also favourable, researchers estimate the sensitivity ranges from 73%

to 100% (median 87.6%) [120]. By the quantitative nature of the IFNγ test, results are more

objective and no longer clouded by differing test interpretations often seen in TST test data [43].

The IFNγ test has numerous advantages compared to the TST test, however, there are also

various disadvantages; cost, complexity, and specificity. The inherent complexity in the IFNγ

testing procedure makes it an expensive test. For example, the requirement for cultures to be

developed under laboratory conditions within 24 hours drives up procedural costs. Another

disadvantage is the reduction in specificity, with some researchers indicating IFNγ testing

specificity range is from 85% to 99.6% (median 96.6%) [120]. The significant reduction in

specificity when compared to the SICCT (standard interpretation), would therefore lead to the

slaughter of an unacceptably high number of false-positive hosts.

Considering the associated cost-benefit analysis of both tests, researchers advise parallel

testing to utilise both test’s advantages. Implementing IFNγ as an ancillary test can optimally

detect infections improving overall sensitivity, specificity and detection interval. Moreover,

parallel testing increases the general diagnostic sensitivity, identifying otherwise undetected

hosts [105]. In a similar fashion, other epidemiological studies have demonstrated that the

ancillary use of gamma-interferon test in parallel to SICCT can reduce the proportion of

false-negative outcomes (i.e. non-reactor cases) from the SICCT [121]. Lastly, parallel tests

allow earlier detection at the expense of specificity. However, if suspected cattle are isolated

and removed before becoming sources of infection, we reduce the likelihood of persistent

herd breakdowns [67].

1.7.3 Post-mortem Investigations

The few inconsistent clinical markers of bovine tuberculosis make a diagnosis via clinical

examination extremely challenging [122]. Direct detection of the pathogen can only be accur-

ately achieved during a post-mortem investigation, where suspected infected tissue can be

sampled. Positive identification of the organism is accomplished through either cultivating

bacterial cultures or molecular techniques such as polymerase chain reaction (PCR). In the

UK, PCR tests are used much less frequently due to their relatively poor performance in terms

of sensitivity, specificity, and reliability [122].

Although both techniques may fail to detect M. bovis directly due to poor sampling, samples

with low organism numbers may not develop sufficiently or sample contaminants may prevent
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efficient PCR reactions [123]. Increasing the number of samples using multiple lesion locations

may increase the likelihood of detection, however this approach may be impractical due to

both time and financial constraints [122]. Another reason post-mortem investigations may

fail to successfully diagnose bTB is the pathological lesions must be visible to the sample.

Lesions may be absent or too small to detect with the naked eye, introducing uncertainty into

subsequent results [123].

1.7.4 Vaccination

There are currently numerous proposed bTB vaccines for cattle on the market, however

experimental trials have concluded that the best available is the BCG vaccine (bacille Calmette-

Guerin) [124]. This vaccine induces antibodies through inoculation of a live attenuated strain

of M. bovis, the immunological response against this weakened antigen provides the antibodies

which prevent future infections [125]. The results from cattle trials show variable efficacy,

where the differences in vaccine variability are attributed to differing vaccine formulations,

inoculation entry points, and exposure to environmental mycobacteria [125].

The BCG vaccine is currently not in use in the UK, not because of financial constraints as

one may expect, but rather the vaccines legality. Currently under EU legislation it is illegal to

vaccinate cattle2, as it compromises the diagnostic powers of other immunological tests. As the

vaccine is comprised of live M. bovis, the resultant antibodies would interact with the tuber-

culin used in both the tuberculin skin test and gamma-interferon test [124]. Therefore, either

of these diagnostic tools would no longer be able to distinguish between BCG vaccinated cattle

and infected cattle. Development of other diagnostic tests hope to circumvent this problem,

the so-called DIVA antigens (differential diagnosis of infected individuals from vaccinated

individuals) are being designed with the ability to distinguish between BCG vaccinated and

infected cattle [126]. As these new diagnostic tools are still in development, they may help in

future but researchers believe they are at least five years off (not including the associated time

to become EU and internationally approved) [16].

If administered to wildlife reservoirs, vaccines are predicted to have a higher impact in a

more reasonable time frame [125], although to date very few studies have examined the effect

of vaccination in badgers. The studies which have examined badger vaccination do generally

note a reduction in incidence rates among the badger population and therefore vaccines would

reduce the risk to the cattle population [127]. The most comprehensive source of wildlife

2 The UK in all likelihood will continue to follow the EU laws, even though they officially left the EU on the 31st of

January 2020. As the UK exports most of its cattle products to the EU, failure to comply with EU legislation may

result in associated barriers or tariffs.
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vaccination examinations is from the simulation model literature. Several regionally specific

simulations do indicate a radical reduction of bTB incidences within the badger population

[128]. However, there is a small caveat regarding simulations; if simulations fail to account for

any unforeseen possible future outcomes their predictions may be wildly wrong. Therefore,

researchers must be very considered before implementing wildlife vaccines while only using

simulation evidence as justification.

1.7.5 Diagnostics Summary

From a diagnostic point of view, both the tuberculin skin test (TST) and the Gamma-interferon

test (IFNγ) suffer from insufficiently quantified sensitivity and specificity. Moreover, the

current quantitative estimates predict an overall poor sensitivity (51% to 89%). The available

tests fail to provide a sufficiently high standard of accuracy, especially regarding sensitivity,

facilitating a persistent cycle of reinfections that obscures the true routes of transmission.

A breakthrough in either diagnostic tests or cattle vaccination will provide an invaluable

tool for the eradication of bovine tuberculosis. However, in the shorter term researchers

should focus their attention on badger vaccinations and their ramifications. As the current

literature implies this could be an effective measure of mitigating bTB, by decoupling the

inter-population dynamics of the UK’s cattle and badger populations.

1.8 bovine tuberculosis in the united kingdom

Bovine tuberculosis (bTB) is one of the most complex, persistent and controversial inter-species

diseases facing the UK governments and the wider British cattle industry, costing the country

an estimated £120 million per year [129]. Despite continual implementation of large scale and

expensive control mechanics since the 1950s, both the United Kingdom (UK) and Ireland have

failed to eradicate the disease. In the last 35 years, bovine tuberculosis (bTB) incidences have

been exponentially growing within the UK and is now endemic in the majority of southwest

England and south Wales. Researchers have only partially explained this growth and various

questions remain open. The obscurity surrounding transmission pathways and high associated

government expense has led to this issue becoming highly politicised, making it burdensome

to implement new scientifically accurate policies [18]. In this section we examine the disease’s

origin, first from a global prospective and later we focus on the UK. What effect did bTB have

on the UK’s history and how did the disease become endemic?
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1.8.1 History of Bovine Tuberculosis

The exact origin of bovine tuberculosis is hard to pinpoint due to the disease’s age, as tuber-

culosis has been discovered in remains from over 9,000 years ago (predating written records).

The first mention of tuberculosis originate from classical antiquity (8th century BC - 6th century

AD), stating that the disease had been present in the Mediterranean peninsula for aeons [39].

Historians believe that bTB originated in the Mediterranean peninsula or the Horn of Africa,

first spreading slowly to northern regions of Italy, then to western Europe (including the

United Kingdom). The disease was later spread globally through European colonialism [130].

The first substantial scientific study of tuberculosis began in late nineteenth century, where

in 1881, the great scientific figure Robert Koch3 discovered that "tubercle bacillus" is the

leading cause of tuberculosis in humans [124]. The term "tuberculosis" is even derived from

its namesake "tubercle", which are nodules formed in an infected host’s lymph nodes [124].

The corresponding causal bacterium that causes tuberculosis in cattle (M. bovis) was then sub-

sequently discovered in 1898. However, biologists were aware of tuberculosis in an ecological

setting before the discovery of M. bovis [39]; Dr Duncan Hutcheon made the first documented

record of tuberculosis in animals in 1880
4 [131],[124].

1.8.2 History of Bovine Tuberculosis in the United Kingdom

Historically, tuberculosis has greatly impacted public health in the UK, especially during

the industrialisation era when incident rates exploded [132]. As urbanisation began, hu-

mans moved into large cities where conditions were crowded and insanitary, providing

fertile ground for the disease to grow [132]. One compounding factor was the consump-

tion of contaminated milk, as ingesting unpasteurised milk was commonplace at the time

(especially in preadolescents and children) [55],[132]. The milk’s high bacterial load led to

acute cases that were often fatal in children and the elderly [133]. Studies have shown that

in this period, there existed a strong correlation between human and cattle infection levels [41].

3 Robert Koch made many great scientific discoveries through his lifetime and is one of the principal founders of

modern bacteriology.
4 Dr D. Hutcheon was a pioneering Colonial Veterinary Surgeon in South Africa, who elucidated many previously

unidentified diseases in livestock.
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However, the continued spill-over from the infected cattle into the UK populace began to

decline after 1935, with the invention of pasteurisation and the tuberculin skin test (TST)5

[55]. Pasteurisation eradicates bacteria from contaminated milk by rapidly heating the milk

for only a short period of time. By the 1960s, when this practice had became enshrined in

law, the causal transmission pathway of contaminated milk had virtually been eliminated [43].

Similarly, the TST enabled the government to begin screening cattle, through routine testing

the disease could start to be controlled.

The TST has undergone continual refinement in its formulation and standardisation, which

has significantly influenced how the test is interpreted and administered. Nevertheless, the

basic fundamentals of the TST remain unchanged and it is still the main tool used for sur-

veillance today. When first implemented in the late 1930’s/early 1940’s the UK was currently

engaged in World War II, therefore it was deemed impracticable to cull all identified reactors

[45]. Alternatively, the government set up a voluntary scheme ("attested herd scheme") to

mitigate the disease’s spread and identify uninfected herds [49]. Farmers within the scheme

would voluntarily eradicate bTB from their herds leading to complete eradication in certain

regions. The scheme had progressively started to successfully manage the disease and was

slowing further spread [49]. However, after a period the uptake of the voluntary scheme had

begun to slow, especially as certain regions resisted compliance [49].

Throughout the 1950s, the government changed its previous strategy and began enforcing

scheme membership for farms within certain regions [49]. These actions and regulatory

changes culminated in 1960, when the government required all farms to become "attested" by

the 1
st of October (i.e. all cattle herds were subjected to regular tuberculin skin tests, where

all positive reactors were subsequently culled) [49]. In conjunction with these new measures,

the government began enforcing herd depopulation on farms with either unacceptably high

incidence rates or persistent reinfections [16]. The test and slaughter strategy had a profound

effect on bTB within the UK, progressively reducing incident rates, where in the 1970s and

early 1980s bTB had nearly been eradicated [16]. Incidence rates in the UK fell sharply in

a reasonably short period; in 1961 nearly 15,000 positive reactors were slaughtered (16.2

reactors per 10,000 TST’s) and by 1982 this number was slashed to just 569 (2.3 reactors

per 10,000 TST’s) [49]. Throughout the 1970s, at some time all herds in the UK had been

cleared of bTB, although unfortunately, these farms were not all clear at the same time [55].

Persistent regional infection in Cornwall and Gloucestershire prevented eradication, despite

5 The test was first developed in 1909 by Austrian scientist Clemins von Pirquet. This work predominately built on

Robert Koch’s discovery that infected hosts exhibit tuberculin hypersensitivity, which is the core mechanism the test

depends on [134].
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the continued implementation of more frequent whole herd tests [55],[135].

In the 1970s, the perspective surrounding persistent reinfection changed, as the wild

Eurasian badgers (Meles meles) were identified as potential reservoirs for the disease [135].

This paradigm shift altered the focus onto badgers; could they contribute or even cause these

persistent regional infections? This new attitude persuaded the UK government to act, from

1973 to 1998 the current control strategies were augmented with successive wildlife culling,

intended to curtail the reservoir population in areas of persistent reinfection. Despite all these

control strategies, incidence rates began creeping up in the mid to late 1980s. In particular

regions, the reinfection cycle became increasingly onerous to deal with, infections seem to

persist and resisted eradication. By the 1990s, the annual increase of cases had grown to

around 18%, consequentially the government commissioned the Krebs report to determine the

role of badgers in bTB transmission [55]. The report recommended a large-scale field trial of

badger culling, so the government implemented the Randomised Badger Culling Trials (RBCT).

The trial’s aim was to quantify badger’s contribution to bTB infections and elucidate the

effects of reservoir depopulation. The RBCT subsequently ran for the next decade (1998-2007),

incurring a £50 million taxpayer cost [55]. The findings of the study were published in June

2007 and the report explicitly stated that:

“The sum of evidence strongly supports the view that, in Britain, badgers are a

significant source of infection in cattle. Most of this evidence is indirect, consisting

of correlations rather than demonstrations of cause and effect; but in total the

available evidence, including the effects of completely removing badgers from

certain areas, is compelling. ” [136]

The results of the 10-year "randomised badger culling trials" showed that widespread

coordinated culls of thousands of badgers resulted in a 16% reduction in new infections [136].

The Krebs report has been highly controversial with many wildlife advocates and scientists

disputing its findings [43],[16]. One of the loudest voices of opposition is Professor Lord John

Krebs, who was the government adviser responsible for the initial scientific review in the

1990s. Lord Krebs said the trial evidence should be interpreted as an argument against culling;

“ The trial evidence should be interpreted as an argument against culling. You cull

intensively for at least four years, you will have a net benefit of reducing TB in

cattle of 12% to 16%. So you leave 85% of the problem still there, having gone to a

huge amount of trouble to kill a huge number of badgers. ” [137]

and

“It doesn’t seem to be an effective way of controlling the disease” [137]
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Lord Krebs has since amplified voices within the scientific community, echoing the opinion

that the development of a vaccine was crucial in the long term. Furthermore, better "biosecur-

ity" measures would decouple cattle and badger interaction in the short term and prevent

further reinfections [136],[137].

The bTB situation worsened in 2001, as the foot and mouth epidemic (FMD) started spread-

ing rapidly around the country. Whole herds were slaughtered to prevent further spread and

during this time bTB testing was temporarily suspended [138]. The high levels of undiagnosed

bTB in conjunction with the restocking of FMD affected herds from high incidence areas led to

a 24% increase in positive reactor identified the following year [138]. From 2001 the number of

incidences began to grow exponentially, reaching around 40,000 positive reactors slaughtered

in 2008. Since this period, incidence rates have fluctuated but remain relatively constant, with

39,243 cattle slaughtered out of 9,050,158 tests administered in the 12 months from June 2020

to June 2021 [139].

What does the situation look like in 2022? Once again, bovine tuberculosis is endemic

in much of the southwest of England and south Wales [139]. In an effort to meet the UK

target to be “Officially Bovine Tuberculosis Free (OTF) status for England by 2038”, current

government control strategies are being augmented with another set of local badger culls.

However, researchers and invested parties have questioned the basis for these culls, expressing

claims that these measures have been implemented on political grounds rather than on

epidemiological [140]. Only time will tell the effects these badger culls have. What we

can say with some certainty is bovine tuberculosis is a complex disease and without a

change in strategy, new diagnostic tools, vaccine discovery, or an enhanced understanding of

transmission pathways, bTB is likely to remain problematic for many years to come.
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Table 1.1 Summary Timeline

1880 Tuberculosis in animals was first referenced in South Africa by veterinary

surgeon Dr Duncan Hutcheon.

1881 Robert Koch discovered tubercle bacillus was the main cause of tuberculosis

in humans.

1898 The corresponding causal bacterium agent (M. bovis) which induces

tuberculosis in cattle was discovered.

1909 The test was first developed in 1909 by Austrian scientist Clemins von Pirquet.

This work predominately built on Robert Koch’s discovery that infected hosts

exhibit tuberculin hypersensitivity, which is the core mechanism the test

depends on [134].

1935 The invention of pasteurisation began eradicating M. bovis from contaminated

milk. As pasteurisation became more commonplace it began eliminating this

transmission pathway.

1935 The tuberculin skin test (TST) began to be used as a screening tool in the

United Kingdom.

1940 The voluntary "attested herd scheme" was implemented. This scheme

encouraged and supported farmers in their attempt to eradicate bovine

tuberculosis from within their own herds.

1960 By the 1st October, all of the UK became "attested", legally requiring all cattle

herds to be regularly tested using the tuberculin skin testing (TST), where any

positive reactors identified were immediately slaughtered.

1971 M. bovis was detected in a wild Eurasian badger on a Gloucestershire farm.

This discovery fundamentally changed the perspective surrounding persistent

reinfections and the infection cycle of bovine tuberculosis.

1973 Badger culling strategies began being implemented in conjunction with cattle

test and slaughter regimes.

1982 Herds with high infections or persistent infections were depopulated. The

measures resulted in the lowest recorded incidence rates of bovine

tuberculosis, only 569 positive reactors were discovered (or 2.3 positive

reactors per 10000 tests).
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Table 1.2 Summary Timeline

1998 From the Kerb’s report, the RBCT (randomised badger culling trial) was set

up to quantify the impact of badgers on disease incidence levels.

2001 Due to foot and mouth outbreak all tuberculin skin test were suspended and

numerous herds were culled to prevent spread. The high volume of cattle

trading in the next year, attempting to repopulate culled herds, led to a 24%

increase in positive reactors identified in 2002. From here, the number of

incidences began to grow exponentially year on year.

2007 The RBCT report explicitly stated that badgers contribute to the infection

cycle and that they increased infection persistence.

2009 The whole of Scotland became official bTB free (OTF).

2012 The think tank (Bow Group) urged the government to reconsider its plans to

cull thousands of badgers to control bovine TB, stating the findings of RBCT

report implies culling does not work. Their report consisted of a foreword by

singer Brian May and contributions from many leading tuberculosis scientists

(including Lord Krebs).

2012 UK MPs vote to abandon badger culls entirely (147 to 28).

2013 Two new pilot badger culls go ahead in the summer of 2013 in Somerset and

Gloucestershire.

2020 Badger culls were expanded, leading to the slaughter of over 100,000 badgers.

Activist groups widely condemn this expansion due to the lack of science.

This action results in the UK government admitting failings and saying they

shall focus more on vaccination in future.
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1.9 summary and thesis objectives

Bovine tuberculosis is one of the complex and costly diseases facing the UK, posing signi-

ficant challenges to the cattle industry, veterinary profession, UK government, and scientific

community. Throughout this literature review, we have described and examined the various

associated risk factors, diagnostic tools, and transmission pathways of bovine tuberculosis

in the UK cattle industry. In recent years, there have been tremendous breakthroughs in our

understanding of the disease progression cycle and diagnostic performance factors. Although,

many open questions still remain. The most crucial open questions that prevent disease

eradication are connected to the continuous cycle of reinfection exhibited within many herds.

Once a herd is deemed OTF, what causes the resurgence of bTB within the herd? Various

uncertainties mask the true infection transmission routes, these prevent researchers from fully

understanding disease resurgence. These ambiguous factors come in three primary forms:

1. Imperfect Diagnostics Tools: The standard diagnostic test’s low sensitivity and high

variability in the latency periods mask infection sources. Subsequent herd breakdowns

may result from previous infections, as latency cattle may become infectious years after

initial exposure. Additionally, the imperfect diagnostic tools permit the importing of

undiagnosed cattle through livestock trading, improving testing capabilities would

therefore reduce inter-herd transmission.

2. Wildlife Reservoir: If a herd has a connected wildlife reservoir, it may act as a disease

source, maintaining the disease and infecting new hosts. This continuous spillover from

the wildlife population causes persistent reinfections.

3. Environmental Transmission: If infected hosts have contaminated the environment,

new hosts may continue to be infected even after successfully removing all infected

hosts from the farm.

Each of these factors; imperfect diagnostics, wildlife reservoir, and environmental contamin-

ation, play an integral role in the transmission of bovine tuberculosis in the UK cattle industry,

although the interconnected relationship between evidence, uncertainty, and risk makes it

nearly impossible to tell what each factor contributes. Each of these factors forms a central

theme of this thesis, where each chapter develops a further understanding of these factors in

further detail.
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1.9.1 Thesis Objectives

The structure of this thesis is as follows:

In chapter two, we review the history of mathematical epidemiology, examining what types

of modelling techniques exist and how they are used to understand disease transmission

dynamics. After which, we discuss the various theorems, definitions, and mathematical tools

required to illustrate the dynamics behind the epidemiological models constructed in this

thesis. Particularly, we focus on the factors that affect the behaviour of long term solutions;

basic reproduction number, disease-free equilibria, endemic equilibrium, and their stability.

In chapter three, we examine the role of bTB’s highly variable latency period in persist-

ent breakdowns. This chapter extends the SETIR model, the standard prototypical disease

dynamic model for bovine tuberculosis, by incorporating more exposure compartments.

Through augmenting the SETIR model, we alter how the system incorporates its latency

period, changing the distribution from an exponential distribution to the Erlang distribution.

This highly flexible distribution allows the incorporation of more realistic exposure periods. In

total, this chapter analyses three different systems, each an extension of the previous. Firstly,

to illustrate the basic fundamental properties of the prototypical model, we examine the

SE1E2TIRC model 3.1. The next system extends the exposure compartment of the system

(E) to incorporate Erlang distributed parameters (SEnTIR model 3.3). The next extension

is similar, the new SEnTIR model is further extended such that the entire latency period

(exposed E and test sensitive T) has Erlang distributed parameters. Each extension enables the

modeller to incorporate more complexity and realism.

In chapter four, we examine the role of the wildlife reservoir in bTB’s transmission dy-

namics by constructing and analysing a mathematical model. The model’s demographics

are constrained, such that both species are analysed at their respective equilibriums. In this

multi-host system, we consider the spill-over and spill-back between a herd and wildlife

reservoir, analysing this model’s long term solutions and the system properties which affect

their behaviour; basic reproduction number, disease-free equilibria, endemic equilibrium, and

stability. Moreover, the analysis discusses the backward bifurcation present in the model’s

dynamics, where we discuss the conditions in which the backward bifurcation exists and the

feasibility of these conditions.

In chapter five, we explore the biological contamination properties of bovine tuberculosis

in bTB’s transmission dynamics by constructing the SETIB model. As we will discuss in the

literature review, infected cattle shed fomites and infect not just each other but they also
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contaminate the environment. This contamination of soil, troughs, cattle feed, hay, and various

other materials have an incredibly variable decay rate. This chapter extends the basic SETIR

model by incorporating a compartment for the background environmental contamination.

This multi-transmission pathway model considers both direct cattle to cattle transmission

and infections from the contaminated environment B(t). The fundamental properties of this

model are analysed; disease-free equilibrium, endemic equilibrium, the basic reproductive

number, and the long term behaviour of our solutions. After which, we examine the SETIB

system with bTB parameters through numerical analysis, comparing and contrasting how

the system dynamics alter when examining different environmental contamination parameters.

In chapter six, we explore how the different model mechanics expressed throughout this

thesis work in conjunction with each other. The other thesis chapters contemplated and con-

sidered models through the lens of dynamical systems. However, the underlying complexity

of considering all mechanisms simultaneously would be incredibly difficult to analyse. In

order to mitigate much of the underlying complexity, we instead use simulation techniques.

In this simulation, we examine three main research themes: wildlife reservoir’s contribution,

testing and detection strategy, and persistent reinfections. The first section considers persistent

reinfections, using system parameters from the literature we aim to quantify the contribution

proportions of each different mechanic (e.g. latency, wildlife reservoir, and environmental

contamination). The second section examines badger’s contribution by investigating the

change in dynamics by fully and partially excluding the wildlife reservoir from the farm,

representing how the disease dynamics are affected by a farm increasing bio-security measures.

In chapter seven, we summarise all the findings throughout this thesis and conclude with a

critical discussion of this thesis’ limitations and possible future directions. The focus is on how

the results and modelling approaches from this thesis can be used to support the development

of more sophisticated epidemiological models in the future.
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2
M AT H E M AT I C A L T O O L S A N D F R A M E W O R K

2.1 introduction

Through formulating our epidemiological models in the language of mathematics, models can

be scientifically analysed and studied. However, to understand these epidemiological models,

various theorems, definitions, concepts, and mathematical tools are required. This chapter

begins by discussing epidemiological modelling; what types of modelling techniques exist?

How are these models used to understand disease dynamics and improve control strategies?

Afterwards, this chapter reviews the required mathematical theory used throughout this

thesis. This description shall centre around the general mathematical epidemiology frame-

work of non-linear dynamical systems, in which our models are constructed, discussing their

dynamics, basic reproduction number, equilibria, and stability.

2.2 a brief history of mathematical epidemiology

Infectious diseases have been an unpleasant part of everyday life as long as humans and

animals have roamed the earth. Most diseases go by unnoticed or cause relatively minor issues

(e.g. the common cold) with no long-term detrimental damage. However, other infectious

diseases can be substantially worse, causing discomfort, distress, disability, or even death.

Human history is littered with various examples of diseases causing death and destruction

on an unprecedented scale. For example, the estimated death toll of the bubonic plague in

Europe was between 25-50 million (around 35% of Europe’s total population) [141]. Similarly,

historians indicate that in the 14th century a combination of smallpox, salmonella enterica,

and other diseases eradicated around 15 million Aztecs in 5 years (around 80% of the total

population) [142].

Even since the turn of the millennium, there have been multiple disease outbreaks; foot-

and-mouth, SARS, influenza, and Ebola, although these diseases pale in comparison to

COVID-19 [143]. In December 2019, the first identified human case occurred in Wuhan (China)

and from there the coronavirus spread worldwide [143]. The World Health Organisation

(WHO) has since declared COVID-19 a pandemic [143], resulting in 515,192,979 cases and has

killed 6,254,140 people globally as of the 9/05/2022 [143]. The COVID-19 zoonosis stands for
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"coronavirus disease 2019" and is an infectious disease caused by the RNA virus, "severe acute

respiratory syndrome coronavirus 2" (SARS-CoV-2)1.

These risks to public health have been a strong motivator for humans to understand how

infectious diseases are transmitted. How do diseases spread throughout a community? What

factors influence the prevalence of a disease? By comprehending how a disease spreads, hu-

mans aspire to control disease transmission or at least mitigate the detrimental health effects.

Mathematical epidemiology has been incrementally developed from this need, predominately

over the last century. This field has evolved from a few overly simplified modelling techniques

into the complex and technical field we see today.

The founder of mathematical epidemiology is widely regarded as Daniel Bernoulli, 2 who

in 1760 developed a model to show that inoculation against smallpox would improve the

life expectancy of the general population [145]. This model was a monumental milestone in

mathematical epidemiology, although excluding work by John Snow (1855)3 and William

Farr (1840)4 this research went quiet until the twentieth century, as the underlying theory of

disease mechanics such as germ theory, were still under development.

At the beginning of the twentieth-century mathematical epidemiology began to develop, as

several breakthroughs in the theory of differential equations facilitated the construction of

deterministic modelling. In 1906, Hamer used this new theory to postulate a fundamental

tenet of mathematical epidemiology, the mass-action principle [146]. This principle relates

the disease incidence rate in a fixed population to the number of current cases (I), the

number of susceptible people (S), and the infection transmission parameter (β). The infection

transmission parameter β is the average number of contacts per person per time, multiplied

by the probability of disease transmission during a single contact.

1 Initially researchers believed it originated in bats, although in February 2020 a virus sample obtained from a sunda

pangolin implied they were the species of origin. The virus sample collected from the pangolin had a viral nucleic

acid sequence "99% identical" to SARS-CoV-2. [144]
2 Some historians dispute Bernoulli as the founder of mathematical epidemiology, as around a century earlier J. Graunt

(the founder of demography) conducted the first empirical analysis of an epidemic. Using data from London’s Bill

of Mortality, he estimated the death rates of diseases using basic statistical analysis. Despite this, most dispute this

claim due to the empirical nature of Graunt’s research. Bernoulli’s approach was different, as it attempted to model

smallpox through mathematical formulation. From this theoretical viewpoint, Bernoulli tried to understand the

underlying disease mechanics.
3 John Snow identified the transmission mechanics of cholera through the use of data collection and construction

of the first dot map. The dot map identified the location of cholera cases, which illustrated that cases seemed to

cluster around specific water pumps. By petitioning the council to remove the handle, he saved lives and proved his

hypothesis: cholera is spread via water.
4 Through fitting normal curves to epidemic data, Farr was able to predict disease numbers for an upcoming quarter.

Farr could then distinguish between average case numbers and an upcoming outbreak.
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dI

dt
= βSI

The mass-action principle is still a fundamental assumption made in numerous determin-

istic models today [64].

In 1911, R. Ross and G. Macdonald developed the first vector-host model to study malaria

transmission and discussed its threshold properties [147]. The initial formulation of this

model used probabilistic arguments, however, their model is intrinsically deterministic as

given a particular initial condition, all future states can be calculated for this original state.

In 1927, this model was generalised by Kermack and McKendrick, who developed the first

compartmental model that separated individuals into three compartments; susceptible (S),

infectious (I), and removed R5 [148]. Their general SIR epidemic model is represented by the

following non-linear system of ordinary differential equations

dS
dt

= −βSI

dI
dt

= βSI− γI

dR
dt

= γI

where S(t), I(t),R(t) denotes the number of susceptible, infected, and removed with respect

to time t. A typical individual starts within the susceptible category and remains so until

successfully infected. The rate individuals become infected is then assumed to follow the

mass-action principle and hence susceptible individuals become infected according to the

β parameter. Similarly, infected individuals transition to the removed compartment (R) at

the recovery rate γ, where this transitional parameters represent the proportion of infected

individuals recovering or dying from the disease per unit of time. 6

These models constructed by Ross, MacDonald, Kermack, and McKendrick initiated a

flurry of advances, developing mathematical epidemiology from its initial empirical approach

towards the mathematical rigours and analytical field we see today. Epidemiological models

constructed in this quantitative framework allowed researchers to investigate the underlying

disease transmission mechanics. Given appropriate data to estimate model parameters (e.g.

contact rates, removal rates, birth, and death rates), researchers can use these simplistic models

5 The removed compartment R may represent individuals that have recovered from the disease and are no longer

susceptible. However, it may also represent removed individuals who have succumbed to the disease.
6 An alternative view is that these transitional parameters control the average length of time an individual spends in

the infectious state. This length of time is a random variable according to an exponential distribution with γ as its

rate parameter. Hence, the expected time an individual remains within the infectious compartment is 1
γ .
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to estimate the long term behaviour of these systems.

The development of mathematical epidemiology slowed during the second world war,

afterwards research continued throughout the subsequent decades, albeit at a slower pace. In

the 1980s, mathematical epidemiology underwent a resurgence, breakthroughs in other fields

such as dynamical systems, graph theory, and computer science unlocked other techniques

that could extend and enhance models. This rejuvenation is widely regarded to have occurred

due to three parallel developments:

1. Significant developments in pure mathematics sparked exciting work not just in math-

ematical epidemiology but also modelling theory as a whole. Mathematical ideas from

differential geometry, topology, and algebra were amalgamated with the pre-existing

theory of non-linear dynamical systems to produce a wave of theoretical developments.

New ideas related to chaos, strange attractors, and fractals caused subsequent advances

in applied mathematics.

2. The development of computer science and the adoption of digital computers provided

researchers with a plethora of new techniques. Researchers could now use computers to

numerically analyse problems that were previously intractable to standard mathematical

techniques. Moreover, the development of computers opened up a whole new field of

enquiry for mathematical epidemiology, as they provided researchers with the ability to

simulate complex systems. Furthermore, digital computers meant that scientific data

could now be collected, processed, and proliferated significantly quicker.

3. Enhanced computer power also spurred significant development in various supporting

fields, most notably computers revolutionised graph theory. Graphs or the more modern

term "networks" were now able to be generated and analysed with millions of nodes, a

feat that would not have been possible previously.

These developments allowed researchers to investigate a wide range of phenomena, incor-

porating more realism and complexity into their models:

• Host Heterogeneity models: Models incorporating age-structure, host-vector models,

multi-group models and non-Markovian models.

• Spatial Models: Models incorporating graph theory, patch models, and non-linear

reaction-diffusion equations.

• Stochastic Models: Models framed as probabilistic models, branching processes models,

stochastic ODE and PDE models, and numerical simulations.

Mathematical epidemiologists armed with both the new theoretical and previously exist-

ent theory made great strides in tackling pandemics such as AIDS, malaria and smallpox
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[86]. The enhanced predictive powers of mathematical modelling informed policymakers,

allowing them to implement informed and effective control strategies. A particular poignant

demonstration comes from Somalia in 1977, where after a concerted effort by the academic

community and W.H.O, the last known natural case of smallpox was treated [149],[150].

Previously, smallpox was an acutely painful and debilitating disease, resulting in extensive

scarring and occasionally blindness [149],[150]. In the last 100 years of its existence, it is

estimated to have killed 500 million people [150]. In the 1980s, the World Health Organisation

(W.H.O) certified the global eradication of smallpox, and this is widely regarded as one of the

greatest achievements of humankind.

In the 21st century, mathematical modelling of infectious diseases is a matter of compromise.

With the invention of new techniques and methodologies researchers are afforded more

options, allowing them to construct more bespoke and complex models for specific diseases.

Especially with the advent of computational models, it is possible to perform large scale

complex simulations of an entire epidemic. Therefore, it is now up to the researcher whether

a disease is better understood computationally, deterministically, spatially, stochastically, etc.

This does not come without drawbacks, as in a perfect world, incorporating more realism

would produce better models. However, in the real world, model complexity causes problems;

either the model’s complexity masks the system’s underlying causal relations or the models

are mathematically intractable.

Simplistic models that focus solely on primary disease transmission mechanics may sacrifice

accuracy and predictive power due to the exclusion of such secondary effects. Yet, their

simplicity allows researchers to analytically describe the fundamental principles that guide

disease transmission. Understanding these characteristics allow us to broadly articulate "When

will an epidemic occur?", "How large will the epidemic be?" and "How long may it last?"

Fundamentally the researcher will always be restrained, as no matter how suitable a particular

model is for a given disease, the researcher must always consider will the results be both

mathematically traceable and interpretable? Therefore, researchers must always construct

models with the right amount of complexity, where the relative balance depends on the

individual questions being asked.

2.3 mathematical epidemiological models : non-linear differential equa-

tions framework

The required mathematical theory used throughout this thesis is discussed within this section,

focusing on the mathematical framework of non-linear dynamical systems and how they are
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constructed. First, the dynamical framework of differential equations and their properties are

discussed; well posed, feasibility region, non-autonomous systems and species demographics.

Afterwards, these non-linear dynamical systems are examined in terms of their dynamics;

system attractors, stability, and bifurcation.

2.3.1 Non-linear Dynamical Systems and their associated Qualitative Behaviour

Dynamical systems abstractly model how a system in a given state will evolve over time

provided it follows certain rules, described by either a set of differential equations or difference

equations. Abstractly, a state is defined by a n-tuple whose elements are real numbers (a

vector) often conceptualised as a point in an associated state space (geometrical manifold). This

thesis (unless otherwise stated) exclusively focuses on dynamical systems whose evolution is

governed by a set of continuously deterministic differential equations of the form:

dx

dt
= ẋ = f(x, t;µ) (2.1)

Where x is some open set in the n-dimensional real coordinate space (i.e. x ∈ U ⊂ Rn). Our

independent variable t is constrained to the one dimensional case t ∈ R1. Similarly, µ is some

open set in the q-dimensional real coordinate space (i.e. µ ∈ V ⊂ Rp), where q represent the

number of parameters of our associated system. A solution to a given dynamical system is a

map x:

x : I→ Rn,

t 7→ x(t)

Where some interval I ⊂ Rn is "mapped" into Rn, such that x(t) satisfies the associate set of

differential equations. A geometric integration of this map x is a curve in Rn and then our

dynamical system represents the associated tangent vector corresponding to every point in the

curve. The phase space of our dynamical system is the space of its dependent variables (i.e.

Rn)7. The goal of dynamic system theory is to understand the geometry of solution curves in

the phase space.

2.3.1.1 Well Posed

For a system to be both mathematically valid and biologically significant, the system must be

well-posed. The mathematical term well-posed means that for a given system, a unique solu-

7 In many applications the phase space of a dynamical system is more general that Rn; spherical, cylindrical or toroidal.

Throughout this thesis, the set of phase spaces will be restricted to open sets in Rn representing the possible n

parameter values.
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tion must exist and the solution’s behaviour changes continuously with the initial conditions.

The well-posed requirement is vital for several theorems used throughout this thesis. Without

this requirement, the consequences may be detrimental to the system’s long-term predictions

and contradict much of the underlying system’s biological properties.

The methodology used throughout this thesis is standard within the literature, by showing

a function is Lipschitz continuous (see below) then the ODE dx
dt = f(x, t;µ) can be solved

uniquely for any initial condition (at least locally). Lets us examine these in more formal

language:

Definition 2.3.1 Let D ∈ R×Rn be a closed rectangle with (t0,y0) ∈ D. Let f : D → Rn be a

function that is continuous in t and Lipschitz continuous in x. Hence for our equations;

x ′(t) = f(x, t;µ), where x(t0) = x0.

there exists some ϵ > 0 such that the initial value problem has a unique solution x(t) on the interval

[t0 − ε, t0 + ε].

Where a real-valued function is defined as Lipschitz continuous if:

Definition 2.3.2 A real-valued function f : R → R is called Lipschitz continuous if there exists a

positive real constant K such that, for all real x1 and x2,

|f(x1) − f(x2)| ⩽ K|x1 − x2|

This is a particularly useful property, as it implies that every function that has a bounded

first derivative is Lipschitz continuous. By the nature of these mathematical epidemiological

systems the population demographics inherently are bounded, as a result we can use the total

bound for the population as our constant K.

Similarly, since population demographics are inherently bounded, there often exists a

bounded positive invariant region, where trajectories of the system are attracted.

Definition 2.3.3 Let ẋ = f(x, t;µ) be a dynamical system, where x(t, x0) is a trajectory, and x0 is

the initial point. A set Ω is said to be positively invariant if x0 ∈ Ω implies that x(t, x0) ∈ Ω ∀t ⩾ 0

This is important as for a system to be biologically sound, solutions originating from non-

negative initial conditions must remain non-negative for all future time. As in these systems,

dependent variables represent physical quantities of hosts such as humans, badgers, or cattle.

This requirement restricts the biologically unrealistic possibility of a negative number of cattle
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within a herd.

In other words, once a trajectory of the system enters Ω, it will never leave it again.

Throughout this thesis we shall restrict our analysis to the positive invariant Ω, which we

shall refer to as feasibility regions.

2.3.1.2 Non-Autonomous System: Species Demographics

In general, many epidemiological models do not explicitly incorporate species demographics;

such models require the disease to work on a much shorter time scale (e.g. influenza).

Omitting species’ demographics requires the disease to operate on a shorter time scale than

the interval in which demographics alter. However, if the disease operates in a time frame

more comparable to the host’s lifespan, then species demographic must be incorporated.

As the incubation period of bTB may last up to 7 years [43], then the demography of the

population cannot be ignored. This thesis predominantly incorporates species’ demographics

using the simplified logistic model (see [86]), assuming that a herd has constant births and

proportional deaths. Hence,

dN(t)

dt
= Λ− µN(t)

As a result, all models used throughout this thesis are systems of non-autonomous differen-

tial equations. A system of differential equations dx
dt = f(x, t;µ) is defined as non-autonomous

if the f(x, t;µ) explicitly depends on time t. Non-autonomous systems tend to be more difficult

to analyse and are often not subject to the theory of autonomous systems. To circumvent

this increased complexity, the associated limiting system is considered instead. If a system

depends only on time through the overall population dynamics function N(t) and has a

limit as time goes to infinity (namely N(t) =⇒ Λ
µ ), then the reduced limiting system can

be examined instead. Non-autonomous systems with an autonomous limiting system are

called asymptotically autonomous; these reduced systems are often easier to solve and are still

informative from the point of view of the dynamics. Although, when do the global dynamics

of the asymptotically autonomous represent the original non-autonomous system.

Theorem 2.3.1 Assume that dx
dt = f(x, t;µ) is a non-autonomous system such that x ∈ Rn and

y = g(y) is the limiting autonomous system. Let Ω be the Ω-limit set of a forward bounded solution x

of the non-autonomous system. Assume that there exists a neighbourhood of Ω that contains at most

finitely many equilibria of the autonomous system. Then the following trichotomy holds:

1. Ω consists of the equilibrium of the autonomous system.
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2. Ω is a union of periodic orbits of the autonomous system and possible centres that are surrounded

by periodic orbits of the autonomous system lying in Ω.

3. Ω contains equilibria of the autonomous system that are cyclically chained to each other in Ω by

orbits of the autonomous system.

If the non-autonomous system is uniformly bounded, then the above theorem implies

that the Ω-limit set of the non-autonomous system can be understood through analysing

the Ω-limit set of the autonomous system. As a result, this thesis focuses on analysing the

asymptotically autonomous versions of our non-autonomous systems.

2.3.2 Attractors and their Stability

An important concept in the discussion of deterministic non-linear dynamical systems is an

attractor. An attractor is a geometric object embedded within the phase space that attracts all

trajectories with a given domain. The prototypical attractor is that of an equilibrium x(t) ∈ Rn,

where roughly speaking, an equilibrium is a point in the phase space such that it will remain

stationary for all time t. More precisely, for the dynamical system ẋ = f(x, t;µ), then the rate

that the dynamical system variables change at a equilibrium point x is zero (i.e. f(x, t;µ) = 0

for all time t). An equilibrium x(t) is said to be stable if solutions that are sufficiently close to

the equilibrium remain close to x(t) for all future time t. Stable equilibria x(t) are described

as asymptotically stable if these sufficiently close solutions do not just remain close but rather

converge to the equilibrium x(t) as time tends to infinity t→∞.

An example of a more complex attractor is a stable limit cycle, this is a closed curve C in the

phase space in which trajectories both inside and outside approach C. These stable limit cycle

exhibit periodic behaviour, where there exist some period t0 such that x(t+ t0) = x(t) for all

time t ∈ R. For more detailed definitions for attractors, limit cycles, equilibria, and stability

see [151].

2.3.2.1 Determining Stability

Let x ∈ Rn be a given equilibrium point for a n dimensional dynamical system. In order to

understand the nature of the solutions local to x, the equilibrium point’s stability must be

determined. By understanding how the attractors affect the phase space, insight into the long

term behaviour of our solutions and dynamics are gained.

The classical method to determine stability is construct a new solution x(t) by introducing

a small perturbation ϵ(t) = (ϵ1, ϵ2, . . . , ϵn)(t) at the equilibrium x, hence the solution can be

defined as x(t) = (x1, x2, . . . , xn)(t), where xi(t) = xi(t) + ϵi(t) for all i ∈ n. By determining
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if this small perturbation either grows or decays gives insight into the local dynamics. Starting

with the general definition of a dynamical system definition,

dx
dt

= ẋ = f(x, t)

The system can be linearised via a Taylor expansion to produce the following approximation,

dϵ

dt
≈ f(x, t) +Df(x, t) · (x − x)

Where f(x, t) = 0 for all t, as it is an equilibrium point and by definition x − x = ϵ. Thus,

dϵ

dt
≈ Df(x, t) · ϵ

Where Df(x, t) denotes the Jacobian Matrix J of f(x, t) evaluated at the equilibrium x.

The equilibrium point x is then stable if all eigenvalues of the Jacobian Matrix J have

negative real parts, as all sufficiently close trajectories will therefore approach the equilibrium

point. If on the other hand, there exists an eigenvalue with a positive real part, then the system

is considered unstable.

An important caveat is the behaviour of our original dynamical system must match the

behaviour of our new linearised system. The Hartman Grobman theorem implies this is true

as long as the equilibrium point x is hyperbolic, where an equilibrium point is hyperbolic

if and only if all eigenvalues of the linearised system do not lie on the imaginary axis (i.e.

Re(λi) ̸= 0, ∀i ∈ {1, . . . , n}). If this condition is met, then the equilibrium’s phase space is

topologically equivalent to the phase space of the linearised system [151]. Hence, this implies

the linearised system will realistically capture the qualitative patterns of behaviour of the

original non-linear system and consequently the stability behaviour of our equilibrium point

x.

2.3.2.2 Routh-Hurwitz Criterion

As described above, the signs of the eigenvalues of the linearised system determine the

stability of an equilibrium point. Therefore, the roots of the nth-degree characteristic polyno-

mial of our given system must be determined to give the eigenvalues. For higher dimension

systems (particularly for n > 4), factoring the polynomial can be challenging; as there is

no methodology to deduce the roots of the polynomial unless it is in very specific forms8.

8 As Galois theory has shown that there is no explicit formula to factor the roots of a quintic polynomial (polynomial

of degree 5) or any other polynomial with a higher degree.
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However, the Routh-Hurwitz criterion determines the sign of the roots without calculating

the roots themselves, thus, circumventing this complication.

Definition 2.3.4 For a given nth-degree polynomial with real coefficients P(λ),

P(λ) = λn + a1λ
n−1 + · · ·+ an−1λ+ an

Where a Hurwitz matrix (H) of the coefficients ai of the characteristic polynomial is defined as:

H1 = (a1) , H2 =

 a1 1

a3 a2

 , H3 =


a1 1 0

a3 a2 a1

a5 a4 a3


Therefore, the nth dimensional Hurwitz matrix can be defined as follows:

Hn =



a1 1 0 0 · · · 0

a3 a2 a1 1 · · · 0

a5 a4 a3 a2 · · · 0

...
...

...
...

. . .
...

0 0 0 0 · · · an


Theorem 2.3.2 The Routh-Hurwitz Criteria states that all roots of the polynomial P(λ) are negative

or have a negative real part if and only if the determinants of every Hurwitz matrices are positive,

∆Hj > 0, for j = 1,. . . ,n.

For the proof, see the original paper by Adolph Hurwitz from 1895 [152]. This criterion

implies all eigenvalues are negative if all coefficients of the polynomial are positive, ai > 0

for all i = 1, . . . ,n and all secondary conditions are met. Table 2.1 gives the additional

requirements for polynomials of degrees three to five, which ensure the roots are either

negative or have negative real parts.

n Routh-Hurwitz criterion additional conditions

3 a1a2 > a3

4 a1a2a3 > a2
3 + a2

1a4

5 a1a2a3 > a2
3 + a2

1a4,

(a1a4 − a5)
(
a1a2a3 − a2

3 − a2
1a4

)
> a5 (a1a2 − a3)

2 + a1a
2
5

Table 2.1: Routh-Hurwitz criteria for polynomials of degree 5 and under.
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2.3.2.3 Lyapunov Functions

An alternative approach to determining the stability of an equilibrium point is the indirect

method of Lyapunov. A particular strength of this method is that the equilibrium points

are not required to be hyperbolic. The basic idea of the method is given a n-dimensional

vector field, an equilibrium point x is stable if there exists a neighbourhood U around x, such

that orbits starting inside U will remain so for all positive time t9. The theory progresses by

showing that the vector field of the boundary of our neighbourhood U is either tangential to

the boundary or is directed inwards toward our equilibrium x. As this boundary U is con-

stricted and shrunk down onto x, the vector field should continue to point inward or tangential.

More concretely, let our potential Lyapunov function, V(x) define a scalar-valued function

(i.e. V : U→ R1 for some domain U ⊂ Rn.) which is at least C1 (zero and first derivatives are

continuous). Where the function should be zero at the equilibrium point V(x) = 0. Otherwise

the function should be a constant V(x) = C, where C form a closed curve containing x

for different values of C. Therefore our scalar-valued function should be positive in some

neighbourhood U around x (i.e. V(x) > 0, ∀x ∈ U).

Now by taking the gradient of our scalar-valued function V , then we obtain a vector which

is perpendicular to the tangent curve, ∇V , whose direction is pointing towards increasing V

along each curve V = C. Therefore, to ensure solution vector’s point tangential or inwards

toward to the boundary U, then we require,

∇V(x) · ẋ ⩽ 0

Theorem 2.3.3 Consider the following vector field:

ẋ = f(x) x ∈ Rn

Where x is an equilibrium point in our vector space. If there exist a Lyapunov function V : U→ R,

that is C1 function defined on a neighbourhood U around x such that;

1. V(x) = 0 and V(x) > 0 ∀ x ∈ U− {x}

2. V̇(x) ⩽ 0 ∀ x ∈ U− {x}

Then x is stable. Lastly if in condition 2, the derivative of the scalar-valued function is strictly

negative V̇(x) ⩽ 0, ∀x ∈ U− {x} then x is asymptotically stable.

9 Throughout much of the literature, the definitions of orbit and trajectory are often conflated. An orbit of a point x0 is

the set of points in the phase space that lies on a trajectory passing through x0. In contrast, a trajectory is a function

x(t) that represents the solution of a differential equation starting from the initial condition x0. Hence, a trajectory

is a function that has an orbit as an image set.
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The original proof can be found in [153], however, for a more modern and succinct proof

see [151].

2.3.2.4 Mathematical Epidemiology Equilibrium

These equilibria play an essential role in the long term disease dynamic of many mathematical

epidemiological systems. In mathematical epidemiology there are specific names for certain

equilibria; disease free equilibrium (DFE) and endemic equilibrium (EE).

Definition 2.3.5 The disease free equilibrium (DFE) represents the system where there is no disease

present in the system.

Definition 2.3.6 The endemic equilibrium (EE) represents the system in which there is some disease

present in the system.

For example, let us consider the non-linear SIR model discussed earlier, where a host can be

either susceptible S(t), infected I(t), or removed (R). Therefore, if this system had 100 hosts

the disease free equilibrium would be DFE = (S, I,R) = (100, 0, 0). Whereas, the endemic

equilibrium represents the system with some positive number of infected host (I ⩾ 0), for

example EE = (S, I,R) = (78, 10, 12).

2.3.2.5 Frequency vs Density Dependence Infection Rates

The infection transmission parameter β is the average number of contacts per person per time

c, multiplied by the probability of disease transmission during a single contact Ptransmission.

β = c× Ptransmission
dI

dt
= βSI

The infection transmission parameter β does come in different forms, particularly when

considering how β varies with time. There exist two main forms density-dependent transmis-

sion and frequency-dependent transmission.

Density dependence transmission considers how the system dynamics alter as the pop-

ulation changes over time. For example, in various epidemiological systems if the number

of people in a certain area doubled, so to would the number of contacts c per unit time,

increasing disease transmission. Therefore, in density-dependent transmission, the per capita

contact rate c between susceptible (S) and infected (I) individuals depends on the population

density.
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Whereas in frequency-dependent transmission, the per capita contact rate c between sus-

ceptible (S) and infected (I) individuals does not depend on the population density. Frequency-

dependent is therefore often used to model the spread of sexually transmitted diseases,

vector-borne diseases, and in general populations with a heterogeneous contact structure REF.

These two different philosophies represent the two extremes and various other constructions

for the effective contact parameter c exist that are somewhere between the two. It’s then up to

the individual modeller to analyse disease data and select the appropriate contact form for

that specific disease.

In the subsequent subsection 2.3.1.2, we discuss how this thesis focuses on asymptotically

autonomous versions of the non-autonomous systems analysed in this thesis. As a result, our

systems do not consider how our model dynamics vary in time, therefore, both the frequency

and density-dependent formulation for the infection transmission parameter are equivalent

[154].

2.3.3 Bifurcation and the Basic Reproductive Number R0

After describing both the disease-free equilibrium (DFE) and the endemic equilibrium (EE), a

natural question arises: for a given initial condition, when will the system approach either

the DFE or the EE? This question depends on the fundamental epidemiological concept

of the Basic Reproductive Number R0. Comprehending the concept of R0 will allow us to

understand the stability of our equilibrium and when it changes, as the basic reproductive

number R0 gives the point in which the system bifurcates between two different system

behaviours.

2.3.3.1 Basic Reproduction Number R0

The basic reproductive number (R0) is a fundamental concept of epidemiological systems and

is defined in an epidemiological setting as follows:

Definition 2.3.7 The basic reproduction number R0 is a dimensionless quantity defined as the expected

number of secondary cases produced by a single (typical) infectious individual in a completely susceptible

population.

The R0 of a specific epidemic system is comprised of the system parameters, however

generally speaking, it will be composed of the following factors in some form:
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R0 ∝
(

infection
contact

)
×
(

contact
time

)
×
(

time
infection

)
R0 ∝ τ × c × d

where,

• τ is the transmission rate (i.e. the probability of an infected host successfully passing the

infection to a susceptible host during contact).

• c is the average contact rate between susceptible and infected individuals.

• d is the average duration of a host’s infectious period.

In the last century, during the development of mathematical epidemiology, it has become

apparent that understanding R0 and its effects on epidemic systems is crucial in allowing

researchers to control and mitigate epidemics. As R0 acts as a bifurcation point for a system,

it generally determines which of the following behaviour will occur.

If R0 > 1 =⇒ The number of infected will tend to increase, as each infected will

pass the disease onto more than one other individual on average.

If R0 < 1 =⇒ The number of infected will tend to decrease, as each infected will

pass the disease onto less than one other individual on average.

2.3.3.2 Calculating R0: Next Generation Matrix

In the literature, there are a myriad of different techniques to calculate R0. For simple models

with few heterogeneous features, the R0 can be calculated by examining the associated Jac-

obian for the system. The Jacobian approach works well for models in which the necessary

and sufficient conditions for the stability of the Jacobian can be reduced to a single condition.

The Jacobian method often fails mathematically in more complex systems, particularly ones

with substantial heterogeneity included, such as multiple types of infected hosts or multiple

heterogeneous populations.

As an alternative, the next-generation matrix was introduced by Diekmann and Heesterbeek

in the 1990s [155]. This technique defines R0 as a demographic process, where new infections

are regarded as offspring produced from consecutive generations of infected individuals. If

subsequent generations are growing in size, that signifies an epidemic. The rate at which each

successive generation grows is the mathematical characterisation of R0.
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Therefore, for compartmental models where different types of hosts are considered in

discrete categories, one can define a matrix that relates the number of newly infected in-

dividuals to the various compartments. This approach is the basis for the next generation

matrix FV−1, where the reproduction number R0 is then defined as the spectral radius of the

next-generation matrix.

Definition 2.3.8 Let σ(FV−1) = {λ1, . . . , λn} be the (real or complex) eigenvalues of a matrix

FV−1 ∈ Cn×n, then its spectral radius ρ(FV−1) is defined as the maximum of the absolute values of

the eigenvalues:

ρ(FV−1) = sup{|λ| : λ ∈ σ(FV−1)}

For example, let there exist some system where there are two discrete types of infected hosts;

population one and population two (e.g. Mosquitoes and humans, men and women, or as in

this thesis, cattle and badgers). The next-generation matrix (FV−1) entries aij ∈ FV−1
n×n are

simply the system’s reproduction number only considering each population separately.

FV−1 =

 R11 R21

R12 R22


Hence, the entry R11 is the expected number of secondary infections in population one

caused by a singular infected individual within population one, again assuming that popula-

tion one is entirely susceptible. Similarly, the entry R12 is the expected number of secondary

infections in population two caused by a singular infected individual in population one.

Hence, each element of FV−1
n×n is a reproduction number in and of itself (see [86] for more

information).

2.3.3.3 Calculation of the Next Generation Matrix

Various techniques have been developed to derive the next generation matrix from com-

partmental models (e.g. Castillo-Chavez, Feng and Huang approach [156]). Predominately,

these techniques augment the Van den Driessche and Watmough approach [157] (e.g. by

incorporating incubation stages, where hosts have been infected but are not yet infectious).

This thesis predominately uses the Van den Driessche and Watmough approach [157] to

construct the next-generation matrix.

the van den driessche and watmough approach The Van den Driessche and

Watmough approach begins by separating an arbitrary epidemiological system into two
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categories; one category represents non-infected individuals (y), and the second category

represents infectious individuals (x).

1. First step: Reformulate our original dynamical system into the following format;

ẋi = fi(x, y) = Fi(x, y) − Vi(x, y)

ẏj = gj(x, y)

The following functions Fi(x, y) and Vi(x, y) represents new infections and remaining

transitional terms respectfully. Although please note, the decomposition of our system

into the following form is not unique and this can lead to a slightly different inter-

pretation of the basic reproduction number being produced. Before continuing with

this explanation, our system of ordinary differential equations must meet the following

conditions;

• Fi(0, y) = 0, meaning that all new infections are in fact secondary infections. This

rules out the option of hosts becoming infected spontaneously.

• Fi(x, y) ⩾ 0 for all x, y ⩾ 0 Similarly, this condition enforces infections are a

continuous process and do not vanish from the system.

• Vi(0, y) = 0 for y ⩾ 0 and i ∈ {1, 2, . . . ,n}. This states that no individuals migrate

between compartments unless there is disease present within the system.

• Vi(x, y) ⩽ 0 whenever xi = 0 for all i ∈ {1, 2, . . . ,n}. This condition implies that if

no new infection occurs, transitional compartment must reduce in size.

•
∑n

i=1 Vi(x, y) ⩾ 0 for all x, y ⩾ 0, hence the total outflow of infected compartments

is positive.

2. Second step: lets assume for the disease free system ẏ = g(0, y) there exists a disease

free equilibrium DFE = (0,y0). Where all solutions with initial conditions of the form

(0, y) approach the DFE = (0,y0) as time t→∞.

3. Third step: Determine the following two matrices F and V

F =

[
∂Fi(0,y0)

∂xj

]
and V =

[
∂Vi(0,y0)

∂xj

]
where these matrices are the linearisations of our system around the disease free

equilibrium DFE = (0,y0).

4. Fourth step: The last step in this methodology is to obtain the spectral radius of the next

generation matrix FV−1, giving us the basic reproduction formulation R0. Therefore,

the basic reproductive number is defined as the following,

R0 = ρ(FV−1)
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The above description has outlined the Van den Driessche and Watmough approach, used

to find the next generation matrix and the basic reproductive number for the system. For a

detailed proof of this theorem see the following Diekmann, Heesterbeek, and Metz paper [155].

Although, let us briefly outline the underlying mechanics which makes this work. Recall, by

the Hartman Grobman theorem, the system behaviour near equilibrium points is determined

by the eigenvalues of the linearised system, evaluated at the equilibrium point (Jacobian).

Moreover, if all the corresponding eigenvalues of the Jacobian all have negative real parts,

then the system is stable near the equilibrium point. Conversely, if any eigenvalue of the

Jacobian has positive real parts then the system is said to be unstable.

The Diekmann, Heesterbeek, and Metz paper [155] proves there exists an equivalence

between the spectral bound of the original linearised system m(F−V) and the spectral radius

of the next generation matrix FV−1.

Theorem 2.3.4 The spectral bound of the linearized matrix m(F− V) evaluated at the disease free

equilibrium DFE sign is determined by the spectral radius of the next generation matrix ρ(FV−1) . As

there exists the following correspondence:

1. m(F− V) < 0 if and only if ρ(FV−1) < 1

2. m(F− V) > 0 if and only if ρ((FV−1) > 1

Where the spectral bound is defined as follows:

Definition 2.3.9 The spectral bound of a matrix A is denoted by

m(A) = sup{Re(λ) : λ ∈ σ(A)}

Where σ(A) is the spectrum of the matrix A (i.e. Matrix A’s set of eigenvalues σ(A) = {|λ1|, . . . , |λn|)

and Re(λ)} is the real component of the eigenvalue. Hence, the spectral bound of a matrix is the

maximum real part of the matrix’s spectrum.

Recall, the spectral radius of a matrix is the largest absolute value of its eigenvalues.

As the above theorem demonstrates, ρ(FV−1) behaves precisely as the threshold property

generally associated with the basic reproductive number. For example, consider a system

in which ρ(FV−1) < 1, this implies the spectral bound of matrix m(F− V) < 0 meaning all

corresponding eigenvalues are negative. This implies that the DFE is locally asymptotically

stable due to the real part of all eigenvalues being negative. For a more detailed analysis of

the next-generation matrix and a proof of the above theorem, please see [86].
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In summary, R0 was defined as the number of secondary infections that one infective

host individual will produce in an entirely susceptible host population during its typical

infected lifespan. The concept of the next-generation approach is different, as it defines

the reproduction number as the number of secondary infections generated per stage. The

next generation matrix approach means it is now possible to construct a threshold quantity

R0 for a multitude of systems, where previous simpler techniques would have failed. The

disadvantage of the next-generation approach is that the reproduction number obtained

through this technique is often harder to interpret biologically.

2.3.4 Bifurcations

The qualitative structure of dynamical systems can change as parameters are varied, partic-

ularly in higher dimensional systems, equilibrium points can change their stability. These

behavioural changes in the dynamics are referred to as "bifurcation" and the associated para-

meter values in which they occur are called "bifurcation points". In many epidemiological

systems there exist only one bifurcation point (when the basic reproductive number equals

one R0 = 1), if the basic reproductive number is above that point the disease free equilibrium

(DFE) becomes unstable and the endemic equilibrium (EE) becomes stable.

There are multiple types of bifurcations; however, this thesis shall only describe relevant

bifurcations; transcritical bifurcation and backward bifurcation.

2.3.4.1 Transcritical Bifurcation

Transcritical bifurcations in dynamical system are characterised by the behaviour that a par-

ticular equilibrium point exists for all parameter values. For example in most mathematical

epidemiological systems, there shall always exist a disease-free equilibrium (DFE) point

relating to zero infection. This principle holds for the majority of epidemiological systems, as

if there are no infectious hosts in the system, then how can any new hosts become infected?

Let us consider the following example of a dynamical system10:

Transcritical Bifurcation’s Normal Form:

ẋ = rx− x2

10 This example is in fact the normal form for a transcritical bifurcation. All systems that undergo a transcritical

bifurcation are locally topologically equivalent to this normal form, when considered locally around the equilibrium

point.
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Figure 2.1: Diagram of a transcritical bifurcation, where r represents the parameter shift through a

bifurcation point occurring at r = 0. In this diagram, black dots represent a stable equilibrium,

white dots represent unstable, and both black and white represent semi-stable. As we can

see in figure (A) (when r < 0), the equilibrium point at the origin is stable and there exist

an unstable equilibrium point in the negative domain. As our parameter r approaches zero,

these two equilibrium points become closer and closer together. Figure (B) represents the

system when r = 0, as this demonstrates, the two equilibrium points merge and become one

semi-stable equilibrium point at the bifurcation point. The last figure (C), represents how

the system changes as r increases past zero. Now the equilibrium point at the origin is now

unstable and a stable equilibrium point exists in the positive domain.

The above figure and equation demonstrate that for all values of r the vector field has a

constant equilibrium point at x = 0. More specifically, if r is increased through its bifurc-

ation point (r = 0) the stability of our two equilibrium points switch. As r continues to

increase through zero and becomes positive r > 0, a new stable equilibrium point appears in

the positive domain, removing the previous unstable equilibrium point in the negative domain.

2.3.4.2 Backward Bifurcation

Transcritical bifurcations are not the only type of bifurcation that occurs in mathematical

epidemiology models, there exist models which ”backward bifurcate”. In these systems, two

endemic equilibrium (EE) exists before the system has reached its bifurcation point (R0 = 1)

for a range of basic reproductive values R0 values. If we define R∗
0 as the critical point in

which two endemic equilibria exist, such that these equilibria no longer exist for any basic

reproductive number lower than R∗
0. Consequentially, there exist two endemic equilibria

within the following range:

R∗
0 < R0 < 1

Typically, one of these endemic equilibria (EE) is stable and the other is unstable. There

exist fundamental differences between systems that undergo transcritical bifurcations and
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backward bifurcations11. As can be seen in the following example, backward bifurcation can

have serious consequences related to disease control.

Consider the canonical example of a backward bifurcation:

ẋ = rx+ x3 − x5

In this bifurcation, the competing growth rates of our different polynomial powers generate

the behaviour demonstrated in the bifurcation diagram below, where the arrows indicate the

direction of travel for our system trajectories as r and x vary.

Figure 2.2: The bifurcation diagram associated with a higher order backward bifurcation.

For small x and negative r < 0, the origin is locally stable and two branches extended

backwards representing unstable fixed points. Although as x increases, the quintic power x5

becomes dominant, resulting in these branches curving and becoming stable at r = rs.

Transcritical bifurcations and backward bifurcations demonstrate quantitatively different

dynamics. The main differences between these two bifurcations are the following:

1. Under a transcritical bifurcation, the system can have two globally attracting equilibria

depending if R0 is above or below one (the disease-free equilibrium (DFE) and the

endemic equilibrium (EE)). Whereas, if a system backward bifurcates and is within the

range R∗
0 < R0 < 1 then there exists three equilibria; two stable equilibria (DFE and

EE1) with a second unstable endemic equilibrium (EE2). The second unstable endemic

equilibrium EE2 exists on the boundary of attraction between the other two stable

equilibria (DFE and EE1). As a result, systems that backward bifurcate can only ever be

locally stable in the range R∗
0 < R0 < 1.

11 Note on naming convention, there exist a myriad of different names given to super-critical and sub-critical pitchfork

bifurcations due to the numerous areas of application of dynamical systems. On the whole, super-critical and sub-

critical pitchfork bifurcations are more standard than their forward and backward counterparts. However, this thesis

shall use the name transcritical and backward bifurcation to remain consistent with the mathematical epidemiology

literature.
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2. Under a transcritical bifurcation, the endemic equilibrium is created continuously,

whereas a backward bifurcation exhibits qualitatively different behaviour. Within the

interval where multiple equilibria exist R∗
0 < R0 < 1, the system may jump from

the origin to the non-zero stable equilibrium point (EE1) if the system experiences a

perturbation of significant enough magnitude to move the system above the unstable

equilibrium EE2. Additionally, as the basic reproductive number increases past unity

(R0 > 1), the system will discontinuously jump from the stable origin point to the higher

amplitude equilibrium point (EE1).

From a control theory perspective, backward bifurcations are more problematic to manage

as given a sufficiently large perturbation in R∗
0 < R0 < 1 or if R0 > 1 the system will jump to

the other stable endemic equilibrium point (EE). After which the basic reproductive number

R0 must be reduced further, it now must reduce past the original threshold of 1 to R∗
0 before

the system returns to the disease free equilibrium (DFE).

Paradoxically, this behaviour is typical in systems that incorporate imperfect vaccination

[158], [159], [160]. Whereas the same systems that exclude the vaccination effects have a

transcritical bifurcation. The existence of backward bifurcation are common in the following

literature threads;

• Models incorporating exogenous re-infection [161].

• Models including public health campaigns to improve the education of numerous

sexually transmitted diseases [162].

• Models incorporating resistance and immunity mechanisms [163].

• Models that incorporate multi-group mechanisms, especially those with asymmetries

between groups [164].

2.4 conclusion

This chapter has reviewed the history of mathematical epidemiology, examining what types

of modelling techniques exist and how they are used to understand the disease transmission

dynamics. From there, we discussed the various theorems, definitions, concepts, and mathem-

atical tools to illustrate how the dynamical system framework models epidemiological systems.

Particularly, we focused on the factors that affect the behaviour of long terms solutions; basic

reproduction number, disease-free equilibria, endemic equilibrium, and their stability. This

chapter has given us the required mathematical theory to present the various mathematical

models constructed throughout this thesis.
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Part II

M Y C O N T R I B U T I O N



3
C H A P T E R 3 : B O V I N E T U B E R C U L O S I S ’ L AT E N C Y P E R I O D

P R O P E RT I E S

3.1 introduction

In this chapter, we examine the standard foundational description of the infection cycle used

throughout the literature, the SETIRC model [64]. This model captures the essential features

of bovine tuberculosis (bTB) transmission within a herd of susceptible cattle, which many

other researchers have extended and built upon [165]. In the standard SETIRC model, hosts

can exist in one of six distinct compartments; Susceptible (S(t)), Exposed (E(t)), Test Sensitive

(T(t)), Infectious (I(t)), Relapsed (R(t)), or Culled (C(t)). The SETIRC model, like all models,

is built upon various underlying assumptions and through investigating these assumptions

we aim to extend and improve the model. This chapter explores bTB’s highly variable latency

period and examines how the SETIRC model incorporates this latency mechanic. After which,

we directly develop upon this SETIRC epidemiological model by augmenting its latency

mechanic, altering the mechanic to incorporate more realistic latency distribution periods.

Understanding this new augmented model will provide further insights into the role latency

plays in the spread of bovine tuberculosis disease in the UK cattle industry.

In the SETIRC model, the latency mechanic consists of two compartments Exposed (E(t))

and Test Sensitive (T(t)) that are each controlled by exponentially distributed parameters. As

we shall discuss, exponentially distributed parameters imperfectly capture the underlying

latency period distribution, instead, the latency transmission interval time can be modelled

to follow an Erlang distribution, a more flexible and adaptable family of distributions. In

our extension, the SETIRC model’s exposure period distribution is adapted to fit the Erlang

distribution by increasing the number of exposure compartments. This augmented model

more accurately captures the highly variable time required for an exposed individual to

progress to clinical disease and become infectious.

The first section of this chapter briefly discusses the SETIRC model, explaining how the

system’s differential equations are constructed and how they model bTB’s infection cycle.

The next section examines bTB’s highly variable latency interval, discussing the underlying

biological factors that influence this period and the literature’s discourse regarding the latency

interval range. After which, we examine and improve upon the underlying latency mechanic
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of the SETIRC model. Firstly, we discuss the advantages and disadvantages of exponentially

distributed parameters in the original SETIRC model, illustrating how they imperfectly cap-

ture bTB’s disease dynamics. Secondly, we introduce the Erlang distribution and illustrate

why this distribution more accurately incorporates the underlying biology of bTB.

In order to demonstrate how changing the latency distribution alters the system dynamics

three separate models are introduced and subsequently contrasted. Firstly, a model similar to

the SETIRC model based on a paper by Agusto et al. [64] is adapted and discussed, namely

the SE1E2TIRC model. The mathematical analysis focuses on the system’s equilibria, stability,

basic reproductive number, and bifurcation type. The first extension of this model considers

how the system will change if the exposed compartment E(t) has an Erlang distributed

inter-compartment period (referred to as the SEnTIRC model). The last model further extends

the SEnTIRC model, where now both the exposure and test compartment have an Erlang

distributed inter-compartment period (referred to as the SEnTmIRC model). In the last section

of this chapter, we compare and contrast the different systems, focusing on how altering the

number of latency compartments changes the system dynamics.

3.2 brief description of the setirc model

A brief introduction into the SETIRC model goes as follows; the model’s cattle population is

comprised of six distinct compartments; Susceptible S(t), Exposed E(t), Test Sensitive T(t),

Infectious I(t), Relapse R(t), and Culled C(t). The susceptible compartment S(t) represents

disease-free and healthy cattle that may contract the disease in the future. After cattle contract

the disease, two separate compartments represent the substantial incubation period of the bTB;

exposed compartment E(t) and test sensitive compartment T(t). The host’s first compartment

after being infected is exposed E(t), at which time the SICCT test cannot detect the host’s bTB

antigens. After some time, the host then transitions to the second incubation compartment

test sensitive T(t), at which point the host has had sufficient immunological activity for the

SICCT test to positively identify them.

The next stage in the infection cycle is infectious I(t), where the host will begin infecting

other cattle with bovine tuberculosis (bTB). However, the literature suggests that infectious

individuals are only intermittently infectious [166], and a sufficient immunological response

may suppress the disease for short periods [165]. Therefore, hosts will transfer to the non-

infectious relapse compartment (R(t)) intermittently. Hosts will therefore begin oscillating

between these two states until removed from the system; infectious (I(t)) and relapse (R(t)).
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Throughout the entire infectious cycle, cattle undergo regular SICCT testing in accordance

with the current UK surveillance and detection strategy. The cull rate of this strategy depends

on their current infection state, where cattle in the test sensitive (T(t)), infectious (I(t)), and

relapse (R(t)) compartments will be detected as positive reactors and culled at rate τ2. Al-

though the SICCT test’s imperfect specificity can return a false positive result, therefore cattle

in the other compartments will also be culled at rate τ1.

The herd’s total cattle population (N(t)) is conserved and maintained at constant by recruit-

ing new hosts Λ (e.g. births or livestock purchasing), where we assume all recruited hosts

are susceptible. These newly recruited hosts replace the natural removals that occur with the

herd at a rate µ (e.g. deaths and livestock selling), which occurs regardless of the infection

stage. However, cattle detected and culled through testing are not replenished immediately,

as this assumption allows the proposed model to obtain the relative population portion of

culled cattle and circumvent the additional complexity associated with species demographics.

Therefore, cattle that have been culled are still counted in the herd total cattle population

(N(t)) and are removed at the same rate µ.

For a more in-depth discussion of the original model, please see [64], although further

discussion of the model’s differential equations will be given in section 3.4.2. Before discussing

the underlying latency mechanics of the different models, let us first discuss and inspect the

complicating latency factors associated with bTB.

3.3 the complex nature of bovine tuberculosis latency period

There is an extensive discussion regarding the bTB latency period in the literature, although

the exact quantitative ranges of the latency period distribution are still largely uncertain [58]. A

significant proportion of bTB’s modelling papers often derived latency parameter values from

a paper indicating the total latency range is between 87-226 days [167]. However, numerous

prominent biological researchers refute this upper bound, stating that the upper range of

226 days under-represents extreme cases [168]. For example, researchers have demonstrated

experimentally that bovine tuberculosis may remain dormant for at least seven years [167],

[169]. As most commercial cattle are permitted only to live between five and six years, this

implies cattle may remain in the exposed stage for their entire lives [170].

Biologists suggest that the significant variation in exposure times is due to Mycobacteria

bovis biological make-up, as it grants the bacterium the ability to remain dormant for extended

periods of time [171]. Under laboratory conditions, M. bovis may enter a dormant state that

is both biochemically and morphologically distinct from its respective growing states [172].
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Biologists and other veterinarian researchers widely believe this behaviour occurs in so-called

"wild" M. bovis as well [172]. In this dormant state, cattle’s immune system controls further

growth and prevents clinical symptoms from developing [171]. Bovine tuberculosis remains

dormant until the cattle enter a state of immuno-suppression, at which point the disease

begins growing and can no longer be contained by the host’s intrinsic defences [171]. Once bTB

has activated, the literature suggests the time taken to achieve maximum immune response is

within the range of 8 to 65 days [173],[65]. Influential factors that weaken the immune system

further alter the variation seen within the latency period (e.g. stress, pregnancy, lactation, age,

and poor nutrition) [16]. The literature also distinguishes the following factors as significant;

route of infection, herd-level demographics, and breed [105]. These compounding factors

exemplify the difficulty in accurately measuring the extensive latency period distribution

associated with bovine tuberculosis infected cattle.

However, researchers are starting to become more confident in the little knowledge they do

have regarding the latency period distribution. For example, more recent research into the

highly variable latency period has shown it exhibits the heavy-tailed phenomena, meaning

that its probability distribution tails are not exponentially bounded [93]. Similarly, more recent

longitudinal studies have illustrated that extreme cases are more common than previously

believed [112].

This section has demonstrated the complex nature of bTB’s latency period and highlighted

some of the compounding factors adding to this complexity. How then does the SETIRC

model incorporate this highly dependent system mechanic? The next subsection of this chapter

examines this question in detail by exploring the underlying assumptions of this latency

mechanic, illustrating why exponentially distributed parameters are so frequently used and

highlighting their advantages and disadvantages.

3.3.1 Models and their Underlying Assumptions

As with all mathematical models, their construction requires a series of assumptions to be

made. In the case of the SETIRC model and in general, most mathematical epidemiological

models have at least one of the following assumptions:

1. Infection occurs through horizontal transmission; hosts infect each other through direct

connections. Secondly, infection occurs according to the mass action principle, where

the rate susceptible hosts acquire the disease is given by the force of infection λ = βI
N ,

controlled by the effective transmission rate β.
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2. The population of hosts are homogeneously mixed, where all individuals are equally

likely to connect regardless of individual traits or current classification.

3. Infection is only maintained in the system and no outside sources are considered (i.e.

this assumption requires all entering recruited hosts to be susceptible).

4. Infection is usually only considered to originate from one population instead of be-

ing considered a multi-host system, excluding infection entering from a nearby sub-

population. This approach is common in bTB modelling, as some models ignore the

effects of a wildlife reservoir.

5. Models incorporating species demographics only consider the total population remain-

ing at a constant, where the variation of the total population over time is disregarded.

6. Individuals progress from the different compartments proportional to the population

size. For instance in the SETIRC model, the rate at which hosts progress from the

exposed compartment (E(t)) to the test sensitive compartment (T(t)) occurs at rate γE(t).

As we shall see, the linear recovery rate γ implies that the host’s recovery time occurs

according to an exponential distribution.

For researchers to draw relevant conclusions about the usability of a model, they require

reliable information regarding the model’s associated assumptions. Each of the above as-

sumptions will differ from the actual underlying dynamics in a particular fashion; further

examination and improvement of these assumptions can more accurately capture the underly-

ing disease dynamics.

The next subsection focuses on number six of our assumptions list, exponentially distrib-

uted parameters. As shall be demonstrated, in the SETIRC system exponentially distributed

parameters are used to control the length of time the host remains in a compartment. We shall

examine how exponentially distributed parameters incorporate the bTB highly latency variab-

ility. Furthermore, in the subsequent section we examine how the system can be augmented

to incorporate more realism.

3.3.2 Exponential Distributed Parameters

The exponential distribution is a widely used continuous distribution used to model the time

elapsed between two events. In the underlying structure of the SETIRC model, the rate at

which cattle progress through the exposed stage is controlled by the latency parameter γ,

where γE gives the proportion of hosts transferring to the next compartment per unit time. A

consequence of this assumption is exposed hosts transition to the test sensitive compartment
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in accordance with the exponential cumulative probability distribution. In the following

section, we shall show how the proportional removal of an exposed individual by a scale

parameter leads to these exponentially distributed parameters.

Let us consider the following differential equation, similarly to the SETIRC system in which

hosts are only removed from a compartment according to the γ parameter.

dE(t)

dt
= −γE(t)

After solving the differential equation, the number of exposed hosts within this compartment

at time t is given by,

E(t) = E0e
−γt Where E(0) = E0 for t= 0

The expression e−γt gives the proportion of the population that remains in the exposed

compartment E(t) after some time t, as E(t)
E0

= e−γt.

In the language of probability, the probability a host remains in the exposed compartment

at time t ⩾ 0 given that they were in the compartment at time t = 0 is given by e−γt. The

probability distribution F(t) given below represents the probability that a host progresses to

the next compartment in the time interval [0, t).

F(t) =


1− e−γt, for t ⩾ 0

0, for t < 0

This probability distribution F(t) is in fact, the exponential cumulative probability distribu-

tion., therefore, we can now see that the assumption of proportional removal rates is the same

as assuming that the exposure time interval has an exponential distribution.

Using this information, we can determine that the expected time interval hosts remain in the

exposed compartment. Firstly, the probability density function of the exponential distribution

(f(t) = d
dtF(t)) is given by:

f(t) =


γe−γt, for t ⩾ 0

0, for t < 0

Therefore, the average exposure time interval is

E =

∫∞
−∞ tf(t)dt =

1

γ

meaning that the expected time interval that hosts remain in the exposed compartment is 1
γ .
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Even though the exponential distribution is frequently used throughout the mathematical

epidemiological literature, it is not fully biological realistic due to various reasons. For ex-

ample, the exponential distribution’s memoryless property implies that the remaining time

in the exposed stage is independent of entry time, which is unrealistic in terms of disease

progression. If this was true, a host exposed a long time ago would have the same expected

progression time as a newly exposed host.

A more accurate description would be to measure the real probability density function (pdf)

of the exposure period and include this explicitly in the model. However, solving an ODE

system with a built-in arbitrary distribution is a difficult task; therefore, we approximate the

true probability density function (pdf) with a linear combination of Erlang distributions 1.

3.3.3 Erlang distributed Parameters

The SETIRC model’s latency mechanic can therefore be augmented by changing its exposure

latency period from being exponentially distributed to Erlang distributed. This change in dis-

tribution is achieved by sub-dividing the exposure compartment E(t) into n sub-stages, where

each sub-stage has the same disease progression parameter γ. This subdivision transforms

the latent exposure period into an Erlang distributed parameter, a highly flexible distribution

which is better suited to mimic a variety of biologically continuous delays. Let us now examine

the Erlang distribution, what makes this distribution better suited?

The Erlang distribution is a two-parameter family of continuous probability distributions

that is a special case of the well-known gamma distribution. The Erlang distribution discretises

the gamma distribution, meaning that the shape parameter of the Erlang distribution is

restricted to some positive number K (i.e. K ∈ N). The probability density function of the

Erlang distribution is given by:

g(t;K,γ) =


γKtK−1e−γt

(K−1)! for t,γ ⩾ 0, for K ∈N

0 for t < 0.

The parameter K is called the shape parameter and represents the number of exposed

compartments in the system. The γ parameter is the rate parameter and it controls the average

period of time that hosts remain in one singular exposure compartment. By adjusting the

two Erlang distribution parameters (γ and K), we can more accurately incorporate the true

exposure distribution.

1 For more information on how to incorporate an arbitrary exposed time distribution into the SETIRC model, Driessche

et al. analysed a similar model using an arbitrary exposed time distribution in their paper[165].
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Under the Erlang distrubtion, the expected time interval in which the hosts remain exposed

is given by:

E =

∫∞
−∞ tg(t)dt =

K

γ

The Erlang distribution is a generalisation of the exponential distribution, as the Erlang

distribution is simply the sum of K independent exponential variables with mean 1
γ each,

where if K = 1, the Erlang distribution simplifies to the exponential distribution. Therefore,

we can augment our model by incorporating more exposure compartments in the SETIRC

system, further capturing the inherent latency sensitivity seen with the bovine tuberculosis

disease in the UK cattle industry.

In the next three sections we introduce three separate models, namely the SE1E2TIRC model,

SEnTIRC model, and the SEnTmIRC model. First the SE1E2TIRC model is constructed, which

is similar to the SETIRC model and is based on a paper by Agusto et al. [64] is adapted and

discussed. The next model we consider is the SEnTIRC model, this extends the system such

that the exposure compartment E(t) has an Erlang distributed inter-compartment period. The

next model extends the system once more, where now both the exposure and test compartment

are fitted with Erlang distributed inter-compartment periods (referred to as the SEnTmIRC

model).

3.4 sE1E2tirc system

This section introduces the SE1E2TIRC model, which captures the fundamental characteristic

of how bTB spreads among a herd of cattle. Where this model is similar to the SETIRC model,

however, instead of just regurgitating similar analysis, we introduce the first extension towards

Erlang distributed parameters (i.e. instead of a singular exposure compartment (E(t)), there

are two (E(t)1 and E(t)2)). The model is first developed and constructed in the framework of

differential equations, where the analysis begins by discussing the system’s feasibility region

and the well-posed nature of solutions. From here the analysis discusses this system’s long

term dynamic of solutions; focusing on the system’s equilibria, stability, and basic reproductive

number.

3.4.1 Mathematical Model Formulation

The inter-herd disease dynamics are described using a cattle population compartmental model,

where the total cattle population at time t is denoted by N(t) and cattle are separated into the

following mutually distinct compartments; Susceptible S(t), Exposed E1(t) and E2(t), Test
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sensitive T(t), Infectious I(t), Relapse R(t) or Culled C(t). Therefore, the species’ population

dynamics that govern the number of cattle within the herd are constrained as follows:

N(t) = S(t) + E1(t) + E2(t) + T(t) + I(t) + R(t) +C(t)

The herd’s total cattle population is conserved and maintained at constant by recruiting

new hosts Λ (i.e. births or livestock purchasing), where we assume all recruited hosts are

susceptible. These new recruited hosts replace the natural removals (deaths and livestock

selling) that occur at a rate µ regardless of the infection stage. Therefore, the total host

population changes according to the following simplified logistic differential equation:

dN(t)

dt
= Λ− µ(S(t) + E1(t) + E2(t) + T(t) + I(t) + R(t) +C(t)) = Λ− µN(t)

The susceptible compartment S(t) represents disease-free and healthy cattle that may

succumb to the disease in future. After accounting for newly recruited cattle Λ and natural

deaths µ, the susceptible host population is reduced by susceptible cattle contracting the

disease. Infections occur according to the mass action principle, where the rate susceptible

acquire the disease is given the force of infection λ = βI
N that is controlled by the effective

transmission rate β. Further reduction occurs by the culling of cattle that return a false positive

result on the SICCT test, the rate at which false-positive reactors are culled is τ1. Therefore,

the rate of change for the susceptible population is modelled by the continuous non-linear

differential equation:

dS

dt
= Λ−

βI

N
S− (µ+ τ1)S

The exposed compartment represents cattle who have yet to mount a sufficient immune

response to the M. bovis bacterium to be successfully detected by the SICCT test. The exposure

period is augmented from the original SETIRC model, in our new SE1E2TIRC model the

exposure period has two separate compartments, E1(t) and E2(t), where they both have the

same removal rate γ. Similarly to the susceptible compartment S(t), the exposed compartments

(E1(t) and E2(t)) are reduced by natural deaths µ(t) and false-positive test reactors τ1(t).

Hence, the differential equations controlling the exposed compartments are given by:

dE1

dt
=

βI

N
S− (µ+ τ1 + γ)E1

dE2

dt
= γE1 − (µ+ τ1 + γ)E2

The test sensitive population T(t) is increased by those progressing from the second exposed

compartment E2(t). The population is reduced by natural death µ and cattle progressing

to the infectious stage, which occurs at rate σ. In the test sensitive compartment T(t) the

behaviour differs from the previously exposed compartments, as these cattle are considered

to have mounted a sufficient immune response to be detected successfully by the SICCT test.
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Therefore, the SICCT test can detect test sensitive cattle and hence they are subsequently

culled and removed at rate τ2.

dT

dt
= γE2 − (µ+ τ2 + σ)T

The last two active states a host can enter are infectious I(t) and relapse R(t), where hosts

exhibit oscillatory behaviour, cycling between these two compartments (I(t) and R(t)). As

cattle progress into the infectious compartment I(t), the infectious population is reduced by

natural deaths µ, testing τ2, and cattle progressing to the relapse compartment R(t) at rate

v. However, relapse cattle R(t) may return to the infectious compartment I(t) and hence the

infectious population gains the relapsing hosts occurring at rate α.

dI

dt
= σT +αR− (µ+ τ2 + v)I

Relapse host progress from being infectious at rate v and are removed according to natural

deaths µ, relapsing hosts α, and positive reactors τ2.

dR

dt
= vI− (µ+ τ2 +α)R

Lastly, all cattle that have tested positive, regardless of whether they are actual positive

reactors or false-positive reactors, progress to the culled compartment C(t). This compartment

illustrates the resulting economic damage to a herd, where similarly, cattle in the compartment

are removed at the same rate as natural deaths µ. This methodology restricts the population

to a constant, reducing demographic system complexity.

dC

dt
= τ1(S+ E1 + E2) + τ2(T + I+ R) − µC

To summarise, this SE1E2TIRC model encapsulates a simplified representation of the

transmission dynamics of bTB in a single herd. Above, we have formulated the system where

each compartment’s governing differential equation has been given. The differential equations

have been collected below with the associated flow diagram.
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3.4.2 SE1E2TIRC System’s Differential Equations

dS

dt
= Λ−

βI

N
S− (µ+ τ1)S

dE1

dt
=

βI

N
S− (µ+ τ1 + γ)E1

dE2

dt
= γE1 − (µ+ τ1 + γ)E2

dT

dt
= γE2 − (µ+ τ2 + σ)T

dI

dt
= σT +αR− (µ+ τ2 + v)I

dR

dt
= vI− (µ+ τ2 +α)R

dC

dt
= τ1(S+ E1 + E2) + τ2(T + I+ R) − µC

(3.1)

Figure 3.1: Flow chart of the transmission dynamics of the SE1E2TIRC model.

3.4.3 Mathematical Model Properties

Let us now investigate the model properties of the SE1E2TIRC system. In this section, we shall

demonstrate the well posed nature of solutions and construct the system feasibility region.

Theorem 3.4.1 All solutions for our SE1E2TIRC system 3.1 which have initial conditions originating

within R7
+ are bounded.

R7
+ = {N(S,E1,E2, T , I,R,C)|S ⩾ 0,E1 ⩾ 0,E2 ⩾ 0, T ⩾ 0, I ⩾ 0,R ⩾ 0,C ⩾ 0}

Proof 3.4.1 Let N
(
S(t),E1(t),E2(t), T(t), I(t),R(t),C(t)

)
be an arbitrary solution of the SE1E2TIRC

system 3.1 with a non-negative initial conditions. The population of the herd is given by N(t), where

N(t) = S(t) + E1(t) + E2(t) + T(t) + I(t) + R(t) +C(t)

Hence,

dN

dt
= Λ− µ(S+ E1 + E2 + T + I+ R+C) = Λ− µN(t)

By Grönwall lemma, if x(t) is a function satisfying dx
dt ⩽ ax+ b, where x(0) = x0 and both a and

b are constants, then for all time t ⩾ 0:

x(t) ⩽ x0e
at +

b

a

(
eat − 1

)
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therefore,

0 ⩽ N
(
S(t),E1(t),E2(t), T(t), I(t),R(t),C(t)

)
⩽

Λ

µ

(
1− e−µt

)
+N(0)e−µt

Hence,

0 ⩽ lim sup
t→∞ N(t) ⩽

Λ

µ

Therefore all solutions of the SE1E2TIRC system 3.1 that originate in R7
+ are attracted to the

following positive invariant region,

Ω =
{
N(S,E1,E2, T , I,R,C) ∈ R7

+ | N ⩽
Λ

µ

}
The SE1E2TIRC system 3.1 is therefore bounded, additionally, since the limit of the supremum of

N(t) is independent of the initial conditions then the system is uniformly bounded. As all solutions

beginning in our positive invariant region Ω are trapped there, the analysis will be restricted to this

feasibility region.

Now that we have shown that solutions are uniformly bounded, the next stage is to show

that the SE1E2TIRC model’s solutions are well posed (i.e. exist and are unique depending on

initial conditions).

Theorem 3.4.2 The SE1E2TIRC system’s (3.1) solutions are well posed.

Proof 3.4.2 As the right hand side of system 3.1 are continuously differentiable functions on

R7
+ = {N(S,E1,E2, T , I,R,C) | S ⩾ 0,E1 ⩾ 0,E2 ⩾ 0, T ⩾ 0, I ⩾ 0,R ⩾ 0,C ⩾ 0}

and as the above theorem indicates, the first derivative of our system is uniformly bounded. This

condition implies that the system equation are Lipschitz continuous and with this condition, we can

apply the Picard Lindelöf theorem that proves unique solutions exists for the SE1E2TIRC system 3.1.

The SE1E2TIRC model is therefore well posed and any solution with initial conditions

originating in Ω will remain in this feasibility region for all future time. Now, lets turn our

attention the the system equilibrium and the basic reproductive number that bifurcates the

system.

3.4.4 Disease free equilibrium DFE and the Basic Reproductive Number R0

In this section we discuss the disease free equilibrium DFE and the associated basic reproduct-

ive number R0 of the system. After first examining the disease free equilibrium DFE, from

here we derive the system’s basic reproductive number R0. The basic reproductive number
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R0 then permits us to discuss the stability of the disease free equilibrium DFE. Where we

show both locally and globally that if R0 < 1 then solutions are asymptotically attracted to

the disease free equilibrium DFE.

The disease-free equilibrium DFE represents the system absent of disease and therefore for

the SE1E2TIRC system 3.1, the DFE is given by:

DFE = (S,E1,E2, T , I,R,C) =

(
Λ

µ
, 0, 0, 0, 0, 0, 0

)

Where the over line notation denote that the compartment is at equilibrium (e.g. S represents

the susceptible compartment at equilibrium). As we are examining the limiting system of

this system, we assume that the total population of the herd is at Λ
µ at time equal to zero (i.e.

N(t) = Λ
µ when t = 0). Therefore, this make sense that the disease-free equilibrium DFE, the

entire herd consists only of susceptible hosts.

Let us now determine the basic reproductive number R0 for the SE1E2TIRC system, by

using the Van den Driesche and Watmough approach to generate the next generation matrix.

Theorem 3.4.3 For the given SE1E2TIRC system 3.1, where initial conditions originate in the

positively invariant set Ω, the basic reproductive number is:

R0 =
βγ2σκ4

κ21κ2(κ3κ4 − vα)

Proof 3.4.3 The basic reproductive number R0 is calculated using the Van den Driesche and Wat-

mough approach, which has been extensively discussed in section 2.3.3.3 and therefore this analysis

shall be condensed.

The basic reproductive number R0 is the spectral radius of the next generation matrix given by

FV−1, hence the basic reproductive number is the following:

R0 = ρ(FV−1)

Let us now generate the matrices F and V for SE1E2TIRC system. Recall these matrices are generated

from the linearization of the system equations evaluated at the disease free equilibrium (DFE). Where

the two matrices F and V decouple the system, as matrix F’s elements are only the parameters which

induce new infections and the matrix V’s elements are all other parameters. These matrices for the

SE1E2TIRC system have been calculated below:
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F =



0 0 0 β 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


and V =



k1 0 0 0 0 0

−γ k1 0 0 0 0

0 −γ k2 0 0 0

0 0 −σ k3 −α 0

0 0 0 −v k4 0

−τ1 −τ1 −τ2 −τ2 −τ2 µ


Where the infectious category is considered to be E1,E2,T ,I,R,C and is calculated in this order. A

quick note of notation, in this analysis the following expression have been used:

κ0 = (µ+ τ1) κ1 = (µ+ τ1 + γ) κ2 = (µ+ τ2 + σ) κ3 = (µ+ τ2 + v) κ4 = (µ+ τ2 +α)

These expression originate from the differential equations, where each represent the non-infectious

compartment removal parameters. For example, κ0 represents the non-infectious compartment removal

parameters for the susceptible compartment, which are natural death parameter µ and false positive

culling rate τ1.

The next generation matrix FV−1 for the SE1E2TIRC system is therefore defined as follows:

FV−1 =



βγ2σκ4

κ2
1κ2(κ3κ4−vα)

βγσκ4
κ1κ2(κ3κ4−vα)

βσκ4
κ2(κ3κ4−vα)

βκ4
(κ3κ4−vα)

βα
(κ3κ4−vα) 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


By the properties of eigenvalues, clearly the R0 for the SE1E2TIRC system is defined as:

R0 = ρ(FV−1) =
βγ2σκ4

κ21κ2(κ3κ4 − vα)

By the properties of the next generation matrix, we have shown that given the basic

reproductive number is less than unity (R0 < 1) then the disease free equilibrium DFE

is locally asymptotically stable. However, as the remaining of this section will show this

analysis can be extended, as given that our basic reproductive number is less than unity (i.e.

R0 < 1), then the following theorem proves all solutions in the feasibility region Ω are globally

asymptotically attracted to the DFE.

Theorem 3.4.4 For the given SE1E2TIRC system 3.1, where initial conditions originate in the

positively invariant set Ω, the disease free equilibrium DFE is globally asymptotically stable (GAS) in

Ω whenever R0 < 1.
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Proof 3.4.4 Theorem shall be proved by the existence of the following Lyapunov function:

F =

(
βγσκ4

)
E1 +

(
βσκ1κ4

)
E2 +

(
βσ

κ21κ4

γ

)
T +

(
β
κ21κ2κ4

γ

)
I+

(
β
ακ21κ2

γ

)
R

Where as we shall demonstrate, that dF
dt ⩽ 0 for R0 < 1 which implies the system is globally

asymptotically stable (GAS).

dF

dt
=

(
βγσκ4

)
Ė1 +

(
βσκ1κ4

)
Ė2 +

(
βσ

κ21κ4

γ

)
Ṫ +

(
β
κ21κ2κ4

γ

)
İ+

(
β
ακ21κ2

γ

)
Ṙ

= βγσκ4

(
βI

N
S− κ1E1

)
+βσκ1κ4

(
γE1 − κ1E2

)
+βσ

κ21κ4

γ

(
γE2 − κ2T

)
+β

κ21κ2κ4

γ

(
σT +αR− κ3I

)
+β

ακ21κ2

γ

(
vI− κ4R

)
After collecting the different variables of our system together and rearranging terms, we obtain the

following:

dF

dt
= βγσκ4

(
βI

N
S

)
+ E1

(
βσγκ1κ4 −βσγκ1κ4

)
+ E2

(
βσκ21κ4 −βσκ21κ4

)
+ T

(
βσ

κ21κ2κ4

γ
−βσ

κ21κ2κ4

γ

)
+ I

(
βαv

κ21κ2

γ
−β

κ21κ2κ3κ4

γ

)
+ R

(
αβ

κ21κ2κ4

γ
−αβ

κ21κ2κ4

γ

)
= βγσκ4

(
βI

N
S

)
+ I

(
βαv

κ21κ2

γ
−β

κ21κ2κ3κ4

γ

)
=

(
βγσκ4

(
S

N

)
+

κ21κ2

γ

(
αv− κ3κ4

))
βI

=
κ21κ2

γ
(κ3κ4 −αv)

(
R0

(
S

N

)
− 1

)
βI

⩽ κ1κ2(κ3κ4 −αv)
(
R0 − 1

)
βI

Where if we examine our the following term κ3κ4 −αv, we can see that it is always positive. As if we

input the other variable expressions for κ3 and κ4, we obtain the following:

κ3κ4 −αv = (µ+ τ2 + v)(µ+ τ2 +α) −αv = (µ+ τ2 + v)(µ+ τ2) +α(µ+ τ2) > 0

Therefore, our Lyapunov function is negative if our basic reproductive number is less than one (i.e.

Ḟ ⩽ 0 for R0 < 1, as S ⩽ N in Ω). This Lyapunov function has shown that the DFE is globally

asymptotically stable (GAS) if Ḟ < 0 then it remains to show when Ḟ = 0.

Notice that Ḟ = 0 if and only is I = 0 or SR0 = N. Given that our initial condition are in Ω and as

our model parameters are non-negative, then it follows from the system differential equations 3.1, that

if I = 0, this implies (E1,E2, T ,R,C)→ (0, 0, 0, 0, 0) as t→∞. Hence, as the total population N(t)

is a conserved quantity, then S→ N and C→ 0 as t→∞. Thereby the LaSalle’s invariance principle,

Ḟ = 0 implies that system 3.1’s disease free equilibrium DFE is asymptotically stable. Hence, as this is

true for both I > 0 and I = 0, the disease free equilibrium DFE is globally asymptotically stable (GAS)

in Ω whenever R0 < 1.
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3.4.5 Endemic Equilibrium and its Stability

Let us now consider the SE1E2TIRC model’s system dynamics when the basic reproductive

number is greater than unity (i.e. R0 > 1), what does this mean for the long term solutions?

As we shall show in this section, solutions are globally attracted to the endemic equilibrium

(EE). Where the endemic equilibrium represents disease being maintained in the system at

a particular endemic level, that continuously depends on system parameters. The definition

of the endemic equilibrium (EE = (S,E1,E2, T , I,R,C)) for the SE1E2TIRC system 3.1 is given

below:

E1 =
λ∗∗

κ1
S, E2 =

γ

κ1
E1, T =

γ

κ2
E2, I =

σ(
vα
κ4

− κ3
)T , R =

v

κ4
I

C =
τ1
µ

(
S+ E1 + E2

)
+

τ2
µ

(
T + I+ R

)
At the endemic equilibrium, the force of infection for the SE1E2TIRC system 3.1 is denoted

by the following expression:

λ∗∗ =
βI

N

The equilibrium points of a system are simply obtained from considering the entire

SE1E2TIRC system at rest (i.e. Ṡ = 0, Ė1 = 0, . . . ,C(t) = 0). The endemic equilibrium for the

SE1E2TIRC system can be expressed explicitly as:

S =
Λ

(λ∗∗ + κ0)

E1 =
1

κ1

(
λ∗∗Λ

(λ∗∗ + κ0)

)

E2 =
γ

κ21

(
λ∗∗Λ

(λ∗∗ + κ0)

)

T =
γ2

κ2κ
2
1

(
λ∗∗Λ

(λ∗∗ + κ0)

)

I =

(
κ4σ

κ4κ3 −αv

)(
γ2

κ2κ
2
1

)(
λ∗∗Λ

(λ∗∗ + κ0)

)

R =

(
vσ

κ4κ3 −αv

)(
γ2

κ2κ
2
1

)(
λ∗∗Λ

(λ∗∗ + κ0)

)

C =
τ1
µ

(
1+

λ∗∗

κ1
+

γλ∗∗

κ21

)(
Λ

(λ∗∗ + κ0)

)

+
τ2
µ

(
1+

κ4σ

κ3κ4 −αv
+

vσ

κ3κ4 −αv

)(
γ2

κ2κ
2
1

)(
λ∗∗Λ

(λ∗∗ + κ0)

)

(3.2)

Now through the use of Lyapunov functions, we shall prove the globally asymptotically

stable (GAS) nature of the SE1E2TIRC system’s solutions.
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Theorem 3.4.5 For the given SE1E2TIRC system 3.1, where initial conditions originate in the

positively invariant set Ω, the endemic equilibrium EE is globally asymptotically stable (GAS) in Ω

whenever R0 > 1.

Proof 3.4.5 If the basic reproductive number is above unity (R0 > 1) then our unique endemic equi-

librium exists (EE) and the following non-linear Lyapunov function proves it is globally asymptotically

stable (GAS).

F = S

(
S

S
− ln

S

S

)
+ E1

(
E1

E1

− ln
E1

E1

)
+

κ1
γ
E2

(
E2

E2

− ln
E2

E2

)
+

κ21
γ2

T

(
T

T
− ln

T

T

)
+

κ21κ2

γ2σ
I

(
I

I
− ln

I

I

)
+

(
κ21κ2κ3

γ2σv
−

βS

Nv

)
R

(
R

R
− ln

R

R

)
Therefore, the differentiated Lyapunov Function is given by:

Ḟ =

(
1−

S

S

)
Ṡ+

(
1−

E1

E1

)
Ė1 +

κ1
γ

(
1−

E2

E2

)
Ė2 +

κ21
γ2

(
1−

T

T

)
Ṫ +

κ21κ2

γ2σ

(
1−

I

I

)
İ

+

(
κ21κ2κ3

γ2σv
−

βS

Nv

)(
1−

R

R

)
Ṙ

By expanding the brackets we obtain the following:

Ḟ = Ṡ−

(
S

S

)
Ṡ

+ Ė1 −

(
E1

E1

)
Ė1

+
κ1
γ
Ė2 −

κ1
γ

(
E2

E2

)
Ė2

+
κ21
γ2

Ṫ −
κ21
γ2

(
T

T

)
Ṫ

+
κ1κ2
γ2σ

İ−
κ1κ2
γ2σ

(
I

I

)
İ

+

(
κ21κ2κ3

γ2σv
−

βS

Nv

)
Ṙ−

(
κ21κ2κ4

γ2σv
−

βS

Nv

)(
R

R

)
Ṙ

Therefore, let us define the following sub-functions, Ḟ1 and Ḟ2, that when added together equal to

our original Lyapunov function F.

Ḟ = Ḟ1 + Ḟ2

Where,

Ḟ1 =
βIS

N
−

βIS

N
+ Ė1 +

κ1
γ
Ė2 +

κ21
γ2

Ṫ +
κ21κ2

γ2σ
İ+

(
κ21κ2κ3

γ2σv
−

βS

Nv

)
Ṙ

Ḟ2 = Ṡ−

(
S

S

)
Ṡ−

βIS

N
+

βIS

N
−

(
E1

E1

)
Ė1−

κ1
γ

(
E2

E2

)
Ė2−

κ21
γ2

(
T

T

)
Ṫ −

κ21κ2

γ2σ

(
I

I

)
İ−

(
κ21κ2κ3

γ2σv
−

βS

Nv

)(
R

R

)
Ṙ

Lets begin to analyse Ḟ2. The first part of our analysis is to show the following equality holds:

Ṡ−

(
S

S

)
Ṡ−

βIS

N
+

βIS

N
=

βIS

N

(
1−

S

S

)
+ κ0S

(
2−

S

S
−

S

S

)
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If you consider the susceptible compartment S(t) at the equilibrium (EE) we obtain the following

expression for the recruitment parameter, Λ = βSI
N + κ0S, using this we can obtain the expression:

Ṡ−

(
S

S

)
Ṡ−

βIS

N
+

βIS

N
=

(
Λ−

βIS

N
− κ0S

)
−

(
Λ

(
S

S

)
−

βIS

N
− κ0S

)
−

βIS

N
+

βIS

N

=

(
βSI

N
+ κ0S− κ0S

)
−

(
βSI

N

(
S

S

)
− κ0S

(
S

S

)
− κ0S

)
=

βSI

N

(
1−

S

S

)
+ κ0S

(
2−

S

S
−

S

S

)
Using the above expression, our sub-Lyapunov function Ḟ2 becomes the following:

Ḟ2 =
βIS

N

(
1−

S

S

)
+ κ0S

(
2−

S

S
−

S

S

)
−

(
E1

E1

)
Ė1 −

κ1
γ

(
E2

E2

)
Ė2 −

κ21
γ2

(
T

T

)
Ṫ

−
κ21κ2

γ2σ

(
I

I

)
İ−

(
κ21κ2κ3

γ2σv
−

βS

Nv

)(
R

R

)
Ṙ

From considering our system of differential equations at equilibrium, we obtain the following

equalities that will aid our analysis.

κ1E1 =
βSI

N
, κ1E2 = γE1, κ2T = γE2, κ3I = αR+ σT , vI = κ4R

Using these equalities and substituting the respective differential equations, the following relations

can be obtained:

−

(
E1

E1

)
Ė1 =

βIS

N

(
1−

E1

E1

S

S

I

I

)
−
κ1
γ

(
E2

E2

)
Ė2 =

βIS

N

(
1−

E2

E2

E1

E1

)
−
κ21
γ2

(
T

T

)
Ṫ =

βIS

N

(
1−

T

T

E2

E2

)
−
κ21κ2

γ2σ
İ =

βIS

N

(
1−

I

I

T

T

)
+

κ21κ2α

γ2σ
R

(
1−

I

I

R

R

)
−

(
κ21κ2κ3

γ2σv
−

βS

Nv

)(
R

R

)
Ṙ =

κ1κ2α

γ2σ
R

(
1−

I

I

R

R

)
Therefore, after substituting in the above expressions, our sub-function Ḟ2 can be written in the

following form:

Ḟ2 =
βIS

N

(
5−

S

S
−

E1

E1

S

S

I

I
−

E2

E2

E1

E1

−
T

T

E2

E2

−
I

I

T

T

)
+

κ21κ2α

γ2σ
R

(
2−

I

I

R

R
−

I

I

R

R

)
+ κ0S

(
2−

S

S
−

S

S

)
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Lets now consider our other sub-function Ḟ1 where using the equalities from above, the following

relationship is attained:

κ21κ2κ3κ4

γ2σv
R =

κ21κ2κ3

γ2σ
I =

κ21κ2

γ2σ

(
αR+ σT

)
=

κ21κ2α

γ2σ
R+

κ21κ2

γ2
T =

κ21κ2α

γ2σ
R+

βSI

N

=
κ21κ2α

γ2σ
R+

βS

Nv
κ4R

With this expression in hand, we can use it to show that the sub-function is equal to zero (Ḟ1 = 0).

Ḟ1 = Ė1 +
κ1
γ
Ė2 +

κ21
γ2

Ṫ +
κ21κ2

γ2σ
İ+

(
κ1κ2κ3
γ2σv

−
βS

Nv

)
Ṙ+

βIS

N
−

βIS

N

=
βIS

N
−

βIS

N
+ E1

(
κ1
γ
γ− κ1

)
+ E2

(
κ21
γ2

γ−
κ1
γ
κ1

)
+ T

(
κ21κ2

γ2σ
σ−

κ21κ2

γ2

)
+ I

(
κ21κ2κ3

γ2σv
v−

κ21κ2κ3

γ2σ
−

βS

Nv
v+

βS

N

)
+ R

(
−

κ21κ2κ3κ4

γ2σv
+

κ21κ2α

γ2σ
+

βS

Nv
κ4

)
= R

(
−

κ21κ2κ3κ4

γ2σv
+

κ21κ2α

γ2σ
+

βS

Nv
κ4

)
=

(
R

R

)(
−

κ21κ2κ3κ4

γ2σv
R+

κ21κ2α

γ2σ
R+

βS

Nv
κ4R

)
= 0

Therefore, the original Lyapunov function Ḟ that is given by Ḟ = Ḟ1 + Ḟ2 has the following form:

Ḟ =
βIS

N

(
5−

S

S
−

E1

E1

S

S

I

I
−

E2

E2

E1

E1

−
T

T

E2

E2

−
I

I

T

T

)
+

κ21κ2α

γ2σ
R

(
2−

I

I

R

R
−

I

I

R

R

)
+ κ0S

(
2−

S

S
−

S

S

)
Using the fact that the arithmetic mean is greater than or equal to the geometric mean, the following

inequalities hold:

5−
S

S
−

E1

E1

S

S

I

I
−

E2

E2

E1

E1

−
T

T

E2

E2

−
I

I

T

T
⩽ 0

2−
I

I

R

R
−

I

I

R

R
⩽ 0

2−
S

S
−

S

S
⩽ 0

For example, given that the arithmetic mean is greater than or equal to the geometric mean this implies,

S

2
+

S

2
⩾
√
SS

S2 + S
2
+ 2SS ⩾ 4SS

S

S
+

S

S
⩾ 2
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Clearly, this implies that 2− S
S
− S

S ⩽ 0.

The above Lyapunov function Ḟ < 0 therefore shows that given that the model parameters are

non-negative and given initial conditions are in Ω, then the unique endemic equilibrium EE is globally

asymptotically stable (GAS) when it exists (i.e. when R0 > 1).

3.4.6 Conclusion

For the SE1E2TIRC system 3.1, where initial conditions originate in the positively invariant

set Ω, the dynamics and equilibrium of the system are completely determined by the basic

reproductive number R0. Where the entire long term behaviour of the SE1E2TIRC system can

be defined as follows:

• If R0 < 1, all solutions within the feasibility region Ω asymptotically approach the

disease free equilibrium (DFE).

• If on the other hand R0 > 1, all solutions within Ω \DFE approach the unique endemic

equilibrium (EE).

3.5 generalising the mathematical model

Let us now consider and analyse the generalised SEnTIRC model where this model incor-

porates Erlang distributed exposure latency periods. The inter-herd disease dynamics are

described using a cattle population compartmental model similar to the SE1E2TIRC system.

However, instead of two exposure compartments there exists an arbitrary number of exposure

compartments (n). Through better encapsulating this highly variable latency period, we can

examine and understand what effect latency has on model predictions.

3.5.1 Mathematical Model Formulation

In the following section, we define the non-linear differential equations of the SEnTIRC system.

By incorporating more exposure compartments the total cattle population N(t) at time t is

now governed by the following population constraint:

N(t) = S(t) +

n∑
i=1

Ei(t) + T(t) + I(t) + R(t) +C(t)

The differential equations governing the generalised SEnTIRC remain the same as the

SE1E2TIRC system, except for the exposure compartment E and the culled compartment C.
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When cattle first become exposed and progress into the first exposed compartment E1, the

differential equation has the following form:

dE1

dt
=

βI

N
S− (µ+ τ1 + γ)E1

However, now cattle progress through another n− 1 exposure compartments (E2,. . . , En),

where each compartment progression occurs according to the same parameter γ. In each

exposure compartment, host are still removed due to natural deaths µ and false-positive test

reactors τ1, hence, the differential equations controlling the other exposure compartments are

given by:

dEi

dt
= γEi−1 − (µ+ τ1 + γ)Ei Where i ∈ 2, 3, . . . ,n

The culled compartment C(t) differential equation must also be altered to accommodate

these new exposure compartments.

dC

dt
= τ1

(
S+

n∑
i=1

Ei

)
+ τ2(T + I+ R) − µC

The SEnTIRC set of non-linear differential equations are therefore defined as follows:

dS

dt
= Λ−

βI

N
S− (µ+ τ1)S

dE1

dt
=

βI

N
S− (µ+ τ1 + γ)E1

dE2

dt
= γE1 − (µ+ τ1 + γ)E2

...

dEn

dt
= γEn−1 − (µ+ τ1 + γ)En

dT

dt
= γEn − (µ+ τ2 + σ)T

dI

dt
= σT +αR− (µ+ τ2 + v)I

dR

dt
= vI− (µ+ τ2 +α)I

dC

dt
= τ1

(
S+

n∑
i=1

Ei

)
+ τ2(T + I+ R) − µC

(3.3)
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Figure 3.2: Flow chart of the transmission dynamics of the SEnTIRC model.

In the following subsection, similar analysis shall be preformed for the SEnTIRC model, as

was performed for the SE1E2TIRC model. First we examine the model properties, proving

that the system’s solutions for the augmented system (SEnTIRC) are still well posed. The

analysis then leads on to the exploration of the long term solutions behaviour, investigating

this system’s basic reproductive number (R0) and system equilibria (DFE and EE).

3.5.2 Mathematical Model Properties

Let us now investigate the model properties of the SEnTIRC system. In this section, we shall

demonstrate the well posed nature of solutions and construct the system feasibility region.

Theorem 3.5.1 All solutions for our SEnTIRC system 3.3 which have initial conditions originating

in Rn+5
+ are bounded.

Rn+5
+ = {N(S,E1, . . . ,En, T , I,R,C) | S ⩾ 0,Ei ⩾ 0, T ⩾ 0, I ⩾ 0,R ⩾ 0,C ⩾ 0,∀i ∈ {1, . . . ,n}}

Proof 3.5.1 Let N
(
S(t),E1(t), . . . ,En(t), T(t), I(t),R(t),C(t)

)
be an arbitrary solution of the SEnTIRC

system 3.3 with non-negative initial conditions. The population of the herd is given by N(t), where

N(t) = S(t) +

n∑
i=1

Ei(t) + T(t) + I(t) + R(t) +C(t)

Hence, the rate of change of the herd population is given by,

dN

dt
= Λ− µ

(
S+

n∑
i=1

Ei(t) + T + I+ R+C

)
= Λ− µN(t)

By Grönwall lemma, if x(t) is a function satisfying dx
dt ⩽ ax+ b, where x(0) = x0 and both a and

b are constants, then for all time t ⩾ 0:

x(t) ⩽ x0e
at +

b

a

(
eat − 1

)
Therefore, our cattle population for the system is bounded as follows:

0 ⩽ N
(
S(t),E1(t), . . . ,En(t), T(t), I(t),R(t),C(t)

)
⩽

Λ

µ

(
1− e−µt

)
+N(0)e−µt
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This implies that all long term solutions for the SEnTIRC system 3.3 are bounded by the herds

population at equilibrium (i.e. N = Λ
µ )

0 ⩽ lim sup
t→∞ N(t) ⩽

Λ

µ

Therefore all solutions of the system 3.3 that originate in Rn+5
+ are attracted to the following positive

invariant region:

Ωn =
{
N(S,E1, . . . ,En, T , I,R,C) ∈ Rn+5

+

∣∣ N ⩽
Λ

µ

}
The SEnTIRC system 3.3 is therefore bounded, additionally, since the limit of supN(t) is

independent of the initial conditions then the system is uniformly bounded. Now that we

have shown that solutions are uniformly bounded, the next stage is to show that the SEnTIRC

model solutions are well posed (i.e. exist and are unique depending on initial conditions).

Theorem 3.5.2 The SEnTIRC system (3.3) is well posed.

Proof 3.5.2 As the right hand side of system 3.3 are continuously differentiable functions on the

domain:

Rn+5
+ = {N(S,E1, . . . ,En, T , I,R,C)

∣∣ S ⩾ 0,Ei ⩾ 0, T ⩾ 0, I ⩾ 0,R ⩾ 0,C ⩾ 0,∀i ∈ {1, . . . ,n}}

and as the above theorem indicates that the first derivative of our system is uniformly bounded. This

condition implies that the system equation are Lipschitz continuous and with this condition, we can

apply the Picard Lindelöf theorem that proves unique solutions exist for the SEnTIRC system 3.3.

The SEnTIRC model is therefore well posed and any solution with initial conditions

originating in Ωn will remain in this feasibility region for all future time. Now, lets turn our

attention the the system equilibrium and the basic reproductive number that bifurcates the

system.

3.5.3 Disease free equilibrium DFE and the Basic Reproductive Number R0

In this section we discuss the disease free equilibrium DFE and the associated basic repro-

ductive number R0 of the SEnTIRC system. Where we begin by first examining the disease

free equilibrium DFE, from here we derive the system’s basic reproductive number. The basic

reproductive number then permits us to discuss the stability of the disease free equilibrium

DFE, where we show both locally and globally that if R0 < 1 then solutions are asymptotically

attracted to the disease free equilibrium DFE.
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The disease free equilibrium DFE represents the system absent of disease and is the same

for the SEnTIRC system 3.3 as it was for the SE1E2TIRC system. The entire herd consists of

only susceptible cattle at the DFE, hence the disease free equilibrium DFE is given by:

DFE = (S,E1, . . . ,En, T , I,R,C) =
(Λ
µ

, 0, 0, . . . , 0
)

Let us now determine the basic reproductive number R0 for the system by using the Van

den Driesche and Watmough approach to generate the next generation matrix.

Theorem 3.5.3 For the given SEnTIRC system 3.3, where initial conditions originate in the positively

invariant set Ωn, the basic reproductive number is:

R0 =
γn

κn1

(
βσκ4

κ2(κ3κ4 − vα)

)
Proof 3.5.3 The basic reproductive number R0 is calculated by the Van den Driesche and Watmough

approach. This method has been extensively discussed in section 2.3.3.3 and therefore this analysis shall

be condensed.

The basic reproductive number R0 is the spectral radius of the next generation matrix given by

FV−1, hence the basic reproductive number is denoted by:

R0 = ρ(FV−1)

Where the matrices F and V are generated from the linearisation of the system equations evaluated

at the disease free equilibrium. Where the two matrices F and V decouple the system, as matrix F’s

elements are only the parameters which induce new infections and the matrix V’s elements are all

other parameters. However, lets consider the form that the F matrix takes for our arbitrary system

that has n-dimensional latency compartments (SEnTIRC). If the matrix order is considered to be

E1, . . . ,En, T , I,R,C then the matrix F will be a n+ 4 dimensional square matrix. However, as there

exists only a single infection transmission pathway (cattle to cattle) in the F matrix, it has the following

simple formula,

F[i,j] =


β if i=1 and j=n+2

0 otherwise

This simply formula confirms that all new infectious enter into the first row, which corresponds to the

exposure compartment E1.

F =



0 . . . 0 β 0 0

0 . . . 0 0 0 0

...
...

...
...

...
...

0 0 0 0 0 0


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Therefore, as there only exists one non-zero element of matrix F, the next generational matrix FV−1 will

consist entirely of one row of V−1. As the only non-zero element (β) of F is positioned at F[1,n+ 2]

this implies the next generation matrix will consist of β times the n+ 2 row of the inverse of matrix V.

Hence, the next generation matrix has the following form:

FV−1 = β



V−1
[n+2,1] V−1

[n+2,2] . . . V−1
[n+2,n+4]

0 0 . . . 0

...
...

...
...

0 0 0 0


By the properties of eigenvalues, if the next generation matrix FV−1 has the above form then the

spectral radius of this matrix FV−1 is given by the first element of the next generation matrix (i.e.

ρ(FV−1) = a11 ∈ FV−1). This element corresponds to the the first element of the n+ 2 row of the

inverse of matrix V and hence, the basic reproductive number for the system R0 is given by:

R0 = ρ(FV−1) = βV−1
[n+2,1]

Lets us now turn our focus to generating the inverse of the matrix V. First, let us begin by comment-

ing on the last row of our matrix V, this corresponds to the cull compartment and it wont effect the

n+ 2 row of the inverse of matrix V. As a result, we will excluded this row to reduce matrix size in

this discussion.

In our analysis of matrix V, we consider the matrix in an associated block form, where a block matrix

is a matrix whose elements are themselves matrices, which are called sub-matrices. By allowing a matrix

to be viewed at different levels of abstraction, the block matrix viewpoint enables more transparent

proofs of results. Let us first define our matrix V as a block matrix, consisting of 4 sub-matrices, namely

A,B,C,D.

V =

 A B

C D


Where the sub-matrix A represents the transfer between the exposure compartments and the test

sensitive compartments. As a result, the matrix is a n+ 1 dimension square matrix, that is in lower

triangular form.
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A =



κ1 0 0

−γ κ1 0

0 −γ κ1

. . .

κ1 0 0

−γ κ1 0

0 −γ κ2



A[i,j] =



κ1 if i = j ∀i, j ∈ {1, . . . ,n}

κ2 if i = j = n+ 1

−γ if i = j+ 1

0 otherwise

The sub-matrix B represents the transfer (excluding new infectious hosts) of hosts coming from either

the infectious or relapse compartments to the exposure and test sensitive compartments. As the system

of differential equations for the SEnTIRC system 3.3 show, no such transfer occur. Therefore, it should

be clear to see that the sub-matrix B is a zero matrix of dimensions [n+ 1, 2]:

B =


0 0

...
...

0 0


The sub-matrix C represents the transfer of hosts from the exposure and test sensitive compartments

to either infectious or relapse compartments. Through examining the SEnTIRC differential equations,

it can be seen that this only occurs when host progress from the test sensitive T compartment to the

infectious compartment I. Therefore, the sub-matrix C has only one non-zero element σ at the position

[1,n+ 1].

C =

 0 . . . 0 −σ

0 . . . 0 0

 C[i,j] =


−σ if i = 1 and j = n+ 1

0 otherwise

Lastly the sub-matrix D represents the transfer between the infectious or relapse compartments.

Through examining the SEnTIRC differential equations, it can be seen that the sub-matrix D has the

following form:

D =

 κ3 −α

−v κ4


In this block form, the next step in the analysis is to use a standard block form inversion, where the

following formula allows us to obtain the inverse for our matrix V.

Theorem 3.5.4 Let A ∈ Fn×n,B ∈ Fn×m,C ∈ Fm×n, and D ∈ Fm×m. If A and D−CA−1B

are non-singular, then the following formula holds:
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V−1 =

 A B

C D


−1

=

 A−1 + A−1B
(

D − CA−1B
)−1

CA−1 −A−1B
(

D − CA−1B
)−1

−
(

D − CA−1B
)−1

CA−1
(

D − CA−1B
)−1


For a proof of this statement please see [174]. As our block matrix B is the zero matrix, therefore we

must show that A and D are non-singular for this formula to hold, which will be completed in this

analysis. Additional as the block matrix B is the zero matrix, this above condition can be simplified to

the following:

V−1 =

 A B

C D


−1

=

 A−1 0

−DCA−1 D−1


Therefore, let us begin by constructing the inverses for the our defined sub-matrices A,D to construct

A−1,D−1, and −DCA−1.

By the properties of matrices, the inverses of our sub-matrix A is defined as follows:

A =



κ1 0 0

−γ κ1 0

0 −γ κ1

. . .

κ1 0 0

−γ κ1 0

0 −γ κ2



and A−1 =



1
κ1

0 0 . . . 0

γ

κ2
1

1
κ1

0
...

γ2

κ3
1

γ

κ2
1

1
κ1

. . .
... 1

κ1
0

γn

κn
1 κ2

. . . γ
κ1κ2

1
κ2


Where this inverse can easily be verified and can be proven using straight forward induction.

The next sub-matrix we find the inverse for is D:

D =

 κ3 −α

−v κ4

 and D−1 =
1

κ4κ3 − vα

 κ4 α

v κ3


Now that we have the inverse for both our sub-matrices A and D, the next step in obtaining the next

generation matrix is to calculate −D−1CA−1. The first step in acquiring −D−1CA−1 is to calculate

−D−1C. Simple matrix multiplication demonstrates that −D−1C is given by:

−D−1C =
1

κ4κ3 − vα

 0 . . . 0 κ4σ

0 . . . 0 vσ


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Hence,

−D−1CA−1 =
1

κ4κ3 − vα


γn

κn
1 κ2

κ4σ
γn−1

κn−1
1 κ2

κ4σ . . . κ4σ
κ2

γn

κn
1 κ2

vσ γn−1

κn−1
1 κ2

vσ . . . vσ
κ2


Therefore, this last result is the final step in calculating the next inverse of our matrix V, therefore

we are finally able to calculate the next generation matrix FV−1. As discussed previous the next

generation matrix consists of the n+ 2 row of the inverse of V, therefore it consists of the first row of

both −D−1CA−1 and D−1.

FV−1 =
β

κ4κ3 − vα



γn

κn
1 κ2

κ4σ
γn−1

κn−1
1 κ2

κ4σ . . . κ4σ
κ2

κ4
β

α
β

0 0 . . . 0 0 0

...
...

. . .
...

...
...

0 0 0 0 0 0


Finally by the products of eigenvalues, the spectral radius of the next generation matrix is clearly its

first element and hence the basic reproductive number for the SEnTIRC system 3.3 is as follows:

R0 = ρ(FV−1) =

(
γn

κn1 κ2

)
βκ4σ

κ4κ3 − vα

The basic reproductive number R0 for the given n dimensional SEnTIRC system correctly

corresponds to the basic reproductive number for the SE1E2TIRC system given earlier and

the SETIRC model given in [64]. The expression for the n dimensional system makes intuitive

sense as well, because as the system grows the basic reproductive system is only alter by

increasing the number of γ
κ1

expressions in front of the previous basic reproductive number.

The γ
κ1

expression represents the proportion of cattle that will make it to the next exposure

compartment, therefore the basic reproductive number must incorporate this expression.

We have therefore shown that given the basic reproductive number is less than unity (R0 < 1)

then the disease free equilibrium DFE is locally asymptotically stable. In the remaining of this

section, we explore the globally asymptotically stable nature of all solutions in the feasibility

region Ωn given that R0 < 1.

Theorem 3.5.5 For the given SEnTIRC system 3.3, where initial conditions originate in the positively

invariant set Ωn, the disease free equilibrium DFE is globally asymptotically stable (GAS) in Ωn

whenever R0 < 1.

Proof 3.5.4 This theorem shall be proved by the existence of the following Lyapunov function:

F =

n∑
i=1

XiEi +Xn+1T +Xn+2I+Xn+3R
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Where the expressions X1,X2, . . . ,Xn+3 are defined as follows:

Xi = βσκ4
κi−1
1

γi−2
∀i ∈ {1, . . . ,n+ 1}

Xn+2 = βκ2κ4
κn1

γn−1

Xn+3 = βκ2α
κn1

γn−1

Let us now differentiate our Lyapunov function F with respect to time. After expanding the Lyapunov

function and some rearrangement, we obtain F in the following form:

Ḟ = X1βI

(
S

N

)
+

n∑
i=1

(
γXi+1 − κ1Xi

)
Ei +

(
σXn+2 − κ2Xn+1

)
T

+

(
vXn+3 − κ3Xn+2

)
I+

(
αXn+2 − κ4Xn+3

)
R

As a result of our choice of Xi expressions, the following expressions are equal to zero.

n∑
i=1

(
γXi+1 − κ1Xi

)
Ei = 0 as γXi+1 = βσκ4

(
κi1

γi−2

)
= κ1Xi ∀i ∈ {1, . . . ,n}(

σXn+2 − κ2Xn+1

)
T = 0 as σXn+2 = βσκ2κ4

(
κn1

γn−1

)
= κ2Xn+1(

αXn+2 − κ4Xn+3

)
R = 0 as αXn+2 = βακ2κ4

(
κn1

γn−1

)
= κ4Xn+3

Therefore, our function Ḟ can be simplified to the following form:

Ḟ = X1βI

(
S

N

)
+

(
vXn+3 − κ3Xn+2

)
I

The next step in the analysis is to enter our system parameter values instead of the Xi parameters.

After doing so the Lyapunov function has the following form:

Ḟ =

(
βγσκ4

(
S

N

)
+ κ2(αv− κ3κ4)

(
κn1

γn−1

))
βI

= κ2(κ3κ4 −αv)

(
κn1

γn−1

)(
βσκ4γ

n

κn1 κ2(κ3κ4 −αv)

(
S

N

)
− 1

)
βI

= κ2(κ3κ4 −αv)

(
κn1

γn−1

)(
R0

(
S

N

)
− 1

)
βI

⩽ κ2(κ3κ4 −αv)

(
κn1

γn−1

)(
R0 − 1

)
βI

Where as show in the previous analysis of the SE1E2TIRC model, the term κ3κ4 − αv is always

positive.

κ3κ4 −αv = (µ+ τ2 + v)(µ+ τ2 +α) −αv = (µ+ τ2 + v)(µ+ τ2) +α(µ+ τ2) > 0
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Our Lyapunov function is negative if our basic reproductive number is less than one (i.e. Ḟ ⩽ 0

for R0 < 1, as S ⩽ N in Ωn). Therefore, this Lyapunov function shows that the DFE is globally

asymptotically stable (GAS) if the basic reproductive number is less than one (R0 < 1).

3.5.4 Endemic Equilibrium and its Stability

Let now examine the dynamics when the basic reproductive number is greater than unity

(i.e. R0 > 1), what does this mean for the long term solutions? As we shall show in this

section, solutions are globally attracted to the endemic equilibrium (EE). Where the endemic

equilibrium represents the disease being maintained in the system at a particular endemic level,

that continuous depends on system parameters. The definition of the endemic equilibrium for

the SEnTIRC system 3.3 is given below:

EE = (S,E1, . . . ,En, T , I,R,C)

S =
Λ

(λ∗∗ + κ0)
, Ei =

γi−1

κi1
λ∗∗S, T =

γ

κ2
En, I =

σ(
κ3 − vα

κ4

)T , R =
v

κ4
I

C =
τ1
µ

(
S+

n∑
i=1

Ei

)
+

τ2
µ

(
T + I+ R

)
At the endemic equilibrium, the force of infection for the SEnTIRC system 3.3 is denoted by

the following expression:

λ∗∗ =
βI

N

This endemic equilibrium for the SEnTIRC system can be expressed explicitly as:

EE = (S,E1, . . . ,En, T , I,R,C)

S =
Λ

(λ∗∗ + κ0)

Ei =
γ

κ1
Ei−1 =

γi−1

κi−1
1

E1 =
γi−1

κi1

(
λ∗∗Λ

λ∗∗ + κ0

)

T =
γn

κn1 κ2

(
λ∗∗Λ

λ∗∗ + κ0

)

I =

(
κ4σ

κ4κ3 −αv

)
T =

(
κ4σ

κ4κ3 −αv

)(
γn

κn1 κ2

)(
λ∗∗Λ

λ∗∗ + κ0

)

R =

(
vσ

κ4κ3 −αv

)
T =

(
vσ

κ4κ3 −αv

)(
γn

κn1 κ2

)(
λ∗∗Λ

λ∗∗ + κ0

)

C =
τ1
µ

(
1+ λ∗∗

n∑
i=1

γi−1

κi1

)(
Λ

λ∗∗ + κ0

)
+

τ2
µ

(
1+

σ(κ4 + v)

κ4κ3 −αv

)(
γn

κ2κ
n
1

)(
λ∗∗Λ

λ∗∗ + κ0

)
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Where, the following parameter are described the same as before:

κ0 = (µ+ τ1) κ1 = (µ+ τ1 + γ) κ2 = (µ+ τ2 + σ) κ3 = (µ+ τ2 + v) κ4 = (µ+ τ2 +α)

Similarly to the previous analysis, let us now determine the stability condition of the

endemic equilibrium (EE) through the use of Lyapunov functions.

Theorem 3.5.6 For the given SEnTIRC system 3.3, where initial conditions originate in the positively

invariant set Ωn, the endemic equilibrium EE is globally asymptotically stable (GAS) in Ω whenever

R0 > 1.

Proof 3.5.5 If the basic reproductive number is above unity (R0 > 1) then our unique endemic equi-

librium exists (EE) and the following non-linear Lyapunov function proves it is globally asymptotically

stable (GAS).

F = S

(
S

S
− ln

S

S

)
+

n∑
i=1

(
ki−1
1

γi−1

)
Ei

(
Ei

Ei

− ln
Ei

Ei

)
+

κn1
γn

T

(
T

T
− ln

T

T

)

+
κn1 κ2

γnσ
I

(
I

I
− ln

I

I

)
+

(
κn1
γn

κ2κ3
σv

−
βS

Nv

)
R

(
R

R
− ln

R

R

)
Therefore, the differentiated Lyapunov Function is given by:

Ḟ =

(
1−

S

S

)
Ṡ+

n∑
i=1

(
κi−1
1

γi−1

)(
1−

Ei

Ei

)
Ėi+

κn1
γn

(
1−

T

T

)
Ṫ +

κn1 κ2

γnσ

(
1−

I

I

)
İ+

(
κn1 κ2κ3

γnσv
−

βS

Nv

)(
1−

R

R

)
Ṙ

By expanding the brackets we obtain,

Ḟ = Ṡ−

(
S

S

)
Ṡ

+

n∑
i=1

(
κi−1
1

γi−1

)
Ėi −

n∑
i=1

(
κi−1
1

γi−1

)(
Ei

Ei

)
Ėi

+
κn1
γn

Ṫ −
κn1
γn

(
T

T

)
Ṫ

+
κn1 κ2

γnσ
İ−

κn1 κ2

γnσ

(
I

I

)
İ

+

(
κn1 κ2κ3

γnσv
−

βS

Nv

)
Ṙ−

(
κn1 κ2κ4

γnσv
−

βS

Nv

)(
R

R

)
Ṙ

Lets define the following sub-functions, Ḟ1 and Ḟ2.

Ḟ = Ḟ1 + Ḟ2

Ḟ1 =
βIS

N
−

βIS

N
+

n∑
i=1

(
κi−1
1

γi−1

)
Ėi +

κn1
γn

Ṫ +
κn1 κ2

γnσ
İ+

(
κn1 κ2κ3

γnσv
−

βS

Nv

)
Ṙ
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Ḟ2 = Ṡ−

(
S

S

)
Ṡ−

βIS

N
+

βIS

N
−

n∑
i=1

(
κi−1
1

γi−1

)(
Ei

Ei

)
Ėi−

κn1
γn

(
T

T

)
Ṫ −

κn1 κ2

γnσ

(
I

I

)
İ−

(
κn1 κ2κ3

γnσv
−

βS

Nv

)(
R

R

)
Ṙ

Lets begin to analyse Ḟ2. As shown in the analysis of the SE1E2TIRC model, the following equality

holds:

Ṡ−

(
S

S

)
Ṡ−

βIS

N
+

βIS

N
=

βIS

N

(
1−

S

S

)
+ κ0S

(
2−

S

S
−

S

S

)
Hence,

Ḟ2 =
βIS

N

(
1−

S

S

)
+κ0S

(
2−

S

S
−

S

S

)
−

n∑
i=1

(
κi−1
1

γi−1

)(
Ei

Ei

)
Ėi−

κ21
γ2

(
T

T

)
Ṫ −

κ21κ2

γ2σ

(
I

I

)
İ−

(
κ21κ2κ3

γ2σv
−

βS

Nv

)(
R

R

)
Ṙ

The following equalities will aid our analysis.

κ1E1 =
βSI

N
,

(
κi1

γi−1

)
Ei =

(
κi−1
1

γi−1

)(
κ1Ei

)
=

(
κi−1
1

γi−1

)(
γEi−1

)
= κ1E1 =

βSI

N

κ2T =

(
κn1

γn−1

)
En, κ3I = αR+ σT , vI = κ4R

Using these equalities, the following relations can be obtained:

−

(
E1

E1

)
Ė1 =

βIS

N

(
1−

E1

E1

S

S

I

I

)
−
κi−1
1

γi−1

(
Ei

Ei

)
Ėi =

βIS

N

(
1−

Ei

Ei

Ei−1

Ei−1

)
−
κn1
γn

(
T

T

)
Ṫ =

βIS

N

(
1−

T

T

En

En

)
−
κn1 κ2

γnσ
İ =

βIS

N

(
1−

I

I

T

T

)
+

κn1 κ2α

γnσ
R

(
1−

I

I

R

R

)
−

(
κn1 κ2κ3

γnσv
−

βS

Nv

)(
R

R

)
Ṙ =

κn1 κ2α

γnσ
R

(
1−

I

I

R

R

)
Therefore, our sub-function Ḟ2 can be written in the following form:

Ḟ2 =
βIS

N

(
n+ 3−

S

S
−

n−1∑
i=2

Ei

Ei

Ei−1

Ei−1

−
En

En

T

T
−

T

T

En

En

−
I

I

T

T

)

+
κn1 κ2α

γnσ
R

(
2−

I

I

R

R
−

I

I

R

R

)
+ κ0S

(
2−

S

S
−

S

S

)
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Lets now consider our other sub-function Ḟ1. Using the equalities from above, the same relationship

from the analysis of the SE1E2TIRC model is attained:

κn1 κ2κ3κ4

γnσv
R =

κn1 κ2α

γnσ
R+

βS

Nv
κ4R

This is used below to show that the sub-function is equal to zero (Ḟ1 = 0).

Ḟ1 =
βIS

N
−

βIS

N
+

n∑
i=1

(
κi−1
1

γi−1

)
Ėi +

(
κn1
γn

)
Ṫ +

(
κn1 κ2

γnσ

)
İ+

(
κn1 κ2κ3

γnσv
−

βS

Nv

)
Ṙ

= −
βIS

N
+

(
βIS

N
− κ1E1

)
+

n∑
i=2

(
κi−1
1

γi−1

)(
γEi−1 − κ1Ei

)

+

(
κn1
γn

)(
γEn − κ2T

)
+

(
κn1 κ2

γnσ

)(
σT +αR− κ3I

)
+

βIS

N
+

(
κn1 κ2κ3

γnσv
−

βS

Nv

)(
vT − κ4R

)
=

n∑
i=1

Ei

(
κi−1
1

γi−1

)(
κ1
γ
γ− κ1

)
+ T

(
κn1
γn

)(
κ2
σ
σ− κ2

)

I

(
κn1 κ2κ3

γnσv
v−

κn1 κ2κ3

γnσ
−

βS

Nv
v+

βS

N

)
+ R

(
−

κn1 κ2κ3κ4

γnσv
R+

κn1 κ2α

γnσ
R+

βS

Nv
κ4R

)
= R

(
R

R

)(
−

κn1 κ2κ3κ4

γnσv
R+

κn1 κ2α

γnσ
R+

βS

Nv
κ4R

)
= 0

Therefore, the original Lyapunov function Ḟ such that Ḟ = Ḟ1 + Ḟ2, is the following:

Ḟ =
βIS

N

(
n+ 3−

S

S
−

n−1∑
i=2

Ei

Ei

Ei−1

Ei−1

−
En

En

T

T
−

T

T

En

En

−
I

I

T

T

)

+
κn1 κ2α

γnσ
R

(
2−

I

I

R

R
−

I

I

R

R

)
+ κ0S

(
2−

S

S
−

S

S

)
Using the fact that the arithmetic mean is greater than or equal to the geometric mean, the following

inequalities hold:

n+ 3−
S

S
−

n−1∑
i=2

Ei

Ei

Ei−1

Ei−1

−
En

En

T

T
−

T

T

En

En

−
I

I

T

T
⩽ 0

2−
I

I

R

R
−

I

I

R

R
⩽ 0

2−
S

S
−

S

S
⩽ 0

The above Lyapunov function is negative (Ḟ < 0), therefore this shows that given that the model para-

meters are non-negative and given initial conditions are in Ωn, then the unique endemic equilibrium

EE is globally asymptotically stable (GAS) when it exists (i.e. when R0 > 1).
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3.5.5 SEnTIRC Model Summary

In this section we have examined the latency mechanic of the SEnTIRC system 3.3. By aug-

menting this model, we have altered the system’s latency period distribution, changing from

the exponential distribution to the Erlang distribution. This highly flexible distribution further

incorporates bTB’s extensive latency period into the model.

So far in this chapter we have analysed two different systems, namely the SE1E2TIRC 3.1

system and the SEnTIRC system 3.3. In this analysis we have shown that for any system, no

matter the number of exposure compartment n, long term solution’s behaviour are completely

determined by the basic reproductive number R0. Where given initial conditions originate in

the positively invariant set Ωn, either one of two states occur:

• For R0 < 1, all solutions within Ωn approach the disease free equilibrium (DFE).

• For R0 > 1, all solutions within Ωn \DFE approach the unique endemic equilibrium

(EE).

3.6 bovine tuberculosis’ sEnTm
irc model extension

In the previous sections, we examined the bTB latency mechanic and extended the SETIRC

model into the SEnTIRC model. However, the most natural question arises: "Why has only

the exposed compartment been extended?". To fully explore how the latency period affects

the bTB transmission, we must extend the test sensitive compartment in a similar fashion.

This section aims to directly develop the previous SEnTIRC epidemiological model into the

SEnTmIRC epidemiological model by further amending its latency mechanic. However, as the

nature of this extension (i.e. the SEnTIRC system to the SEnTmIRC system) is very similar to

the previous extension (SE1E2TIRC system to the SEnTIRC system), therefore, so too is the

underlying analysis. In this section, we perform the same analysis for the SEnTmIRC system

as was completed for the previous SEnTIRC system however the proofs of this analysis are

attached as an appendix due to their similarity to the previous section’s analysis. The proofs

of all theorems can be found in appendix A.

Therefore, this section consists of a brief description of the SEnTmIRC system, describing

the associated differential equations and giving a schematic representation of the system. After-

which, the analysis of the SEnTmIRC model is summarised and similarly to the SEnTIRC
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model, each of our equilibrium (DFE and EE) are globally attractive depending on the

system’s R0.

3.6.1 Mathematical Model Formulation

Let us now consider and analyse the generalised SEnTmIRC model that further augments

the latency mechanic, incorporating Erlang distributed test sensitive latency periods. The

inter-herd disease dynamics used to describe a cattle population compartmental model are

similar to the SEnTIRC model. However, instead of a singular test sensitive compartment

there exists an arbitrary number of test sensitive compartments (m). This model augmentation

further incorporates the highly variable total latency period by allowing the modeller to

incorporate a more realistic latency distribution.

3.6.2 SEnTmIRC system’s differential equations

In this section we define the non-linear differential equations of the SEnTmIRC system. The

total cattle population N(t) at time t is now governed by the following population constraint:

N(t) = S(t) +

n∑
i=1

Ei(t) +

m∑
j=1

Tj(t) + I(t) + R(t) +C(t)

The differential equations governing the generalised SEnTmIRC remain the same as the

SEnTIRC system, except for the test sensitive compartment T and the culling compartment C.

When cattle first become test sensitive after the n different exposure compartments, they

progress into the first of m test sensitive compartment T1. Where the differential equation has

the following form:

dT1
dt

= γEn − (µ+ τ2 + σ)T1

However, now cattle progress through another m− 1 test sensitive compartments (T2,. . . ,

Tm), where each compartment progression occurs according to the same parameter σ. In each

test sensitive compartment, host are still removed due to natural deaths µ and positive test

reactors τ2. Hence, the differential equations controlling the other test sensitive compartments

are given by:

dTj

dt
= σTj−1 − (µ+ τ2 + σ)Tj Where j ∈ 2, 3, . . . ,m

The culled compartment C(t) differential equation must also be altered to accommodate

the new test sensitive compartments.
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dC

dt
= τ1

(
S+

n∑
i=1

Ei

)
+ τ2

( m∑
j=1

Tj + I+ R

)
− µC

The SEnTmIRC set of non-linear differential equations are therefore defined as follows:

dS

dt
= Λ−

βI

N
S− (µ+ τ1)S

dE1

dt
=

βI

N
S− (µ+ τ1 + γ)E1

dE2

dt
= γE1 − (µ+ τ1 + γ)E2

...

dEn

dt
= γEn−1 − (µ+ τ1 + γ)En

dT1
dt

= γEn − (µ+ τ2 + σ)T1

dT2
dt

= σT1 − (µ+ τ2 + σ)T2

...

dTm

dt
= γTm−1 − (µ+ τ2 + γ)Tm

dI

dt
= σTm +αR− (µ+ τ2 + v)I

dR

dt
= vI− (µ+ τ2 +α)I

dC

dt
= τ1

(
S+

n∑
i=1

Ei

)
+ τ2

( m∑
j=1

Tj + I+ R

)
− µC

(3.4)

Figure 3.3: Flow chart of the transmission dynamics of the SEnTmIRC model.

3.7 sEnTm
irc mathematical analysis summary

In this section we summarise all analysis for the SEnTmIRC system, exploring the long term

behaviour of solutions, investigating the system’s basic reproductive number (R0) and system

equilibria (DFE and EE)
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Theorem 3.7.1 All solutions for our SEnTmIRC system 3.4 which have initial conditions originating

within Rn+m+4
+ are bounded in the positive invariant set:

Ωn+m =
{
N(S,E1, . . . ,En, T1, . . . , Tm, I,R,C) ∈ Rn+m+4

+

∣∣ N ⩽
Λ

µ

}
Where the solutions of the SEnTmIRC system (3.4) are well posed in nature.

Theorem 3.7.2 The disease-free equilibrium DFE for the SEnTmIRC system 3.4 the DFE is given

by:

DFE = (S,E1, . . . ,En, T1, . . . , Tm, I,R,C) =
(Λ
µ

, 0, 0, . . . , 0
)

Where, for the given SEnTmIRC system 3.4, where initial conditions originate in the positively

invariant set Ωn+m, the basic reproductive number is:

R0 =
γnσm

κn1 κ
m
2

(
βκ4

κ2(κ3κ4 − vα)

)
(3.5)

Theorem 3.7.3 For the given SEnTmIRC system 3.4, where initial conditions originate in the posit-

ively invariant set Ωn+m, the disease free equilibrium DFE is globally asymptotically stable (GAS)

in Ωn+m whenever R0 < 1. Similarly, the endemic equilibrium EE is globally asymptotically stable

(GAS) in Ωn+m whenever R0 > 1.

3.8 model comparison

This section illustrates the different dynamics present in our various models by comparing

and contrasting these systems. Through the use of numerical examples, we will compare how

the different system’s equilibrium changes in relation to the number of compartments. This

section demonstrates that increasing the number of compartments alters the system dynamics

by "drawing out" the system, which means the system takes longer to reach equilibrium.

In order to simplify this discussion, this section focuses on how varying the n exposure

compartments alters the dynamics of the SEnTIRC model, as the extension from the SEnTIRC

system 3.3 to the SEnTmIRC system 3.4 alters the dynamics in a similar fashion.

3.8.1 Comparison Between our Different Models

The most natural question arising from this analysis is, how does varying the number of

exposure compartments En alter the results and dynamics of our models? As discussed in

this section, the amount the dynamics of our different systems alter heavily depends on the γ
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and κ1 parameters.

In order to see this change in dynamics, let us first consider how we could compare

SEnTIRC models with a different number of exposure compartments n. For the system to

represent the same epidemiological situation, let us first fix the average time an individual is

considered exposed. To demonstrate the differences in dynamics, let us consider two SEnTIRC

models, one model that has only one exposed compartment and the other has an arbitrary n

exposed compartments. If the average exposure time of the original exponential distributed

parameter (i.e. when n = 1) is given by 1
γ1

and for this to match the average exposure time

for the Erlang distributed parameters case ( n
γn

), the following equivalence must hold:

1

γ1
=

n

γn
=⇒ γ1 =

γn

n

Where γn corresponds to the equivalent average exposure transition parameter for the

SEnTIRC system 3.3 with n compartments (γn). However, if the equivalence in total average

exposure time is maintained, this forces the systems to have different R0 values. Recall the

basic reproductive number for the system with n compartment is given by:

R0 =
γn

κn1

(
βσκ4

κ2(κ3κ4 − vα)

)
Consider, if we force the average exposed time to be the same for any number of compartments

and if we assume that basic reproductive numbers of the two system are equivalent then this

implies:

R1
0 =

γ1

µ+ τ1 + γ1

(
βσκ4

κ2(κ3κ4 − vα)

)
= Rn

0 =

(
γn

µ+ τ1 + γn

)n(
βσκ4

κ2(κ3κ4 − vα)

)
γ1

µ+ τ1 + γ1
=

(
γn

µ+ τ1 + γn

)n

γ1

µ+ τ1 + γ1
=

(
nγ1

µ+ τ1 +nγ1

)n

The superscript above the R0 indicates the number of exposed compartments (i.e. R1
0 implies

that the system has only one exposed compartment).

Clearly, the basic reproductive numbers do not equal each other, as this equality is incorrect.

Hence, for the n different systems, if we assume a constant expected exposure time, then the

R0 of each system are different. Therefore, these systems cannot be directly compared due to

their different bifurcation points. In the remaining of this section, we shall explore how the

system’s dynamics change by fixing the expected exposure period and varying the number of

compartments n.
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3.8.2 Variation of the Dynamics for the SEnTIRC System

In this section we demonstrate how increasing the number of exposure compartments alters

the underlying system dynamics. This discussion shall focus on two main research questions:

• How does increasing the number of compartments n affect the latency period distribu-

tion?

• How does increasing the number of compartments n affect the long term behaviour of

solutions for the SEnTIRC system?

Before we can discuss how the SEnTIRC system changes and adapts, we must first explain

how increasing compartment numbers affects the following expression
(

γ
κ1

)
, as we shall

see, this is an integral expression for this discussion. Let us begin by examining what the

parameter
(

γ
κ1

)
represents, by the properties of the exponential distribution, this parameter

is the proportion of cattle that progress to the test sensitive compartment T(t) instead of

either dying (µ) or being culled (τ1). However, through a small amount of manipulation, this

parameter can be examined from the perspective of latency period length; this perspective

better describes these parameters in terms of the underlying biology. Let us define the

parameters γ and τ1 + µ in the following forms:

1. 1
γ is the expected period of time a host will remain in an exposed compartment before

progress onto the next compartment.

2. 1
τ1+µ is the expected period of time a host can remain in the exposed compartment

before being removed from the system (either from natural death µ or from being culled

τ1).

The relative exposed duration proportion, is the average time a host remains in the exposed

compartment divided by the average time a host can remain in the exposed compartment

before being removed by death (µ) or culling (τ1). Therefore, this parameter represents the

expected portion of a cattle lifetime in which it will remain in the exposed compartment.

(
1
γ

1
µ+τ1

)
=

(
µ+ τ1

γ

)

In the case of the SEnTIRC system, if the parameter value
(

µ+τ1
γ

)
is high, this indicates a

long exposure period, as it takes a larger percentage of its natural lifespan to progress from

the exposure compartment. If we explore our parameter value
( γ
κ1

)n for the SEnTIRC system,

we shall see this parameter heavily depends on this relative proportion τ1+µ
γ

(
γ

κ1

)n

=

(
γ

µ+ τ1 + γ

)n

=

(
1

1+ µ+τ1
γ

)n

=

(
1−

µ+τ1
γ

1+ µ+τ1
γ

)n
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The last equality below is achieved using partial fractions. Clearly, the dynamics of each

case heavily depend on theses two parameters; number of compartments n and relative

exposed duration proportion µ+τ1
γ . As demonstrated in figure 3.4, the higher both the relative

exposed duration proportion µ+τ1
γ and number of compartments n are, the lower the

( γ
κ1

)n
parameter becomes. For example, if we consider a disease which has a relative exposed

duration proportion of 5% and then we vary the number of compartment n, we see that

parameter γn

κn
1

drops from 0.952 if n is equal to one, to 0.6139 is n equals 10.

Figure 3.4: The parameter variation of
( γ
κ1

)
as we vary the number of compartments verse the relative

percentage of the expected latency period per average host lifespan.

Therefore, the parameter
( γ
κ1

)n decreases as the n parameter grows, however, how quickly

this decreases depends on how large the relative exposed duration proportion is (µ+τ1
γ ). This

means this parameter
( γ
κ1

)n is more sensitive to diseases that have a long incubation period.

Now that we understand this parameter in greater detail, this permits us to discuss how this

parameter changes the system dynamics.

3.8.2.1 Latency Distribution

In order to further understand the relationship between system dynamics and number of

compartments let us analysis two questions:

• How does increasing the number of compartments n affect the latency period distribu-

tion?

• How does increasing the number of compartments n affect the infection levels of the

SEnTIRC system?
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Figure 3.5: The left figure are Erlang distributed variables for varying shape parameter (n). Where each

of these different Erlang distributed variables have a constant expected interval waiting time

of 1. The right figure represents how the dynamics of the SEnTIRC system changes as the

number of compartment increases.

Firstly, as the left plot of figure demonstrates, as we increase the number of compartments

n the exposure distribution becomes increasingly centred around the expected value of the

system 1
γ . Incorporating Erlang distribution therefore gives researchers the ability to fit expos-

ure parameters more accurately.

Secondly, how does increasing compartments number n affect the infection levels of the

SEnTIRC system? The figure on the right-hand side demonstrates two changes in dynamics.

The figure demonstrates that as the compartment numbers increase, the system takes longer

to reach the endemic equilibrium and the corresponding endemic equilibrium level for the

infectious compartment diminishes in size.

Let us first examine why the system takes longer to reach the endemic equilibrium. As

the left plot of figure demonstrates, as we increase the compartment numbers the system

becomes increasingly centred on the expected value. This phenomenon is what induces this

delay, as for larger compartment numbers, a relatively smaller number of cattle will progress

through the exposure period quickly, meaning relatively more cattle take longer to become

test sensitive, extending the time for the system to reach the endemic equilibrium.

Moreover, why does extending compartment numbers correspond to a lower level of

infection in the endemic equilibrium? To see the root cause of this effect, let us examine the

basic reproductive number and endemic equilibrium:

R0 =
γn

κn1

(
βσκ4

κ2(κ3κ4 − vα)

)
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EE = (S,E1, . . . ,En, T , I,R,C)

S =
Λ

(λ∗∗ + κ0)

Ei =
γi−1

κi1
λ∗∗ S

T =
γn

κn1 κ2
λ∗∗ S

I =

(
κ4σ

κ4κ3 −αv

)(
γn

κn1 κ2

)
λ∗∗ S

R =

(
vσ

κ4κ3 −αv

)(
γn

κn1 κ2

)
λ∗∗ S

C =
τ1
µ

(
1+ λ∗∗

n∑
i=1

γi−1

κi1

)
S+

τ2
µ

(
1+

σ(κ4 + v)

κ4κ3 −αv

)(
γn

κ2κ
n
1

)
λ∗∗ S

The reason for the lower endemic equilibrium infection level is the
(

γ
κ1

)n

expression

discussed previously. As can be seen in both the basic reproductive number R0 and the

endemic equilibrium levels for non-susceptible hosts, these properties are both reduced by

the
(

γ
κ1

)n

expression. Therefore, the reduction seen in the SEnTIRC model endemic level

is similarly controlled by the number of compartments n and relative exposed duration

proportion µ+τ1
γ , as these parameters control the

(
γ
κ1

)n

expression.

The amount the system dynamics change is, therefore, more pronounced when these

parameters are high (n and µ+τ1
γ ). What does this mean in terms of the underlying biology?

Model dynamics change significantly for diseases with long exposure periods and if their

latency distribution is heavily centred around the expected value.

3.8.2.2 SEnTmIRC model Extension

In the SEnTmIRC model, the system dynamics are adjusted in a similar fashion. Where,

if the total expected latency period is fixed, increasing latency compartments number (n

and m) both lowers endemic equilibrium infection levels and this system takes longer to

reach the equilibrium. Although the effects are now more pronounced, as now the system is

reduced by both
(

γ
κ1

)n

and
(

σ
κ2

)m

. Likewise, the
(

σ
κ2

)m

expression is controlled by the

number of compartments m and relative test sensitive duration proportion µ+τ2
σ , as these

parameter control the
(

σ
κ2

)m

expression. The reason for this similarly arise from the nature of

Erlang distributed parameters, as by extending the SEnTIRC system to the SEnTmIRC system

doesn’t alter the total latency period distribution, only gives the researcher more control. The

reason the total latency period distribution remains the same is that the summation of two

independent Erlang distribution variables is itself Erlang2.

2 This is a commonly used property of the gamma distribution, as Erlang is a special case of the gamma distribution

this property applies to the Erlang distribution also.
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If X ∼ Erlang(a1,b) and Y ∼ Erlang(a2,b) and both X and Y are independent variables

then X+ Y ∼ Erlang(a1 + a2,b).

3.9 conclusion

In this chapter we have examined the latency mechanic of the SE1E2TIRC model 3.4. By

augmenting this model, we have altered how the system incorporates the latency period

distribution, changing it from the exponential distribution to the Erlang distribution, allowing

the incorporation of more realistic latency periods. From there we analysed two different

extensions of the SE1E2TIRC model 3.4, firstly this system was extended to the SEnTIRC

system 3.3 and then to the SEnTmIRC system 3.4. Where in both systems, their analysis shows

that no matter the number of exposure compartments n or test sensitive compartments m, the

long term solution’s behaviours are completely determined by the basic reproductive number

R0. Where given initial conditions originating in the positively invariant set Ωn+m, either

one of two behaviours occur:

• For R0 < 1, all solutions within Ωn+m approach the disease free equilibrium (DFE).

• For R0 > 1, all solutions within Ωn+m \DFE approach the unique endemic equilibrium

(EE).

However, the basic reproductive number R0 is reliant on the original parameters and the

number of compartments that control how long hosts remain in the latency period (n,m).

By varying the number of compartments (n,m) we alter the latency distribution, changing

both the basic reproductive number and the system dynamics. This system extension allows

modellers to more accurately encapsulate as much biological realism as possible, producing

more realistic predictions.
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4
C H A P T E R 4 : B O V I N E T U B E R C U L O S I S A N D W I L D L I F E R E S E RV O I R S

In this chapter, the inter-herd dynamics are examined between a single herd adjacent to a

self-sustaining badger set. The long term infection dynamics are investigated with a special

focus on the system bifurcation type. This model further develops our understanding of bTB’s

spill-over and spill-back between these two populations.

The model structure is based on the commonly used vector host mathematical epidemi-

ological model with incorporated demographics effects. The focus of our investigation is to

understand both the threshold condition and the global system behaviour.

4.1 wildlife reservoir model

This section shall present and describe a wildlife reservoir epidemic model with direct and

wildlife transmission, where the dynamics of the herd are loosely based on the SETIRC model.

Several simplifying assumptions have had to been assumed to reduce the complexity of this

model, therefore the model has the following assumptions:

1. The wildlife population Nb(t) is separated into two distinct compartments Sb(t) and

IB(t) representing the susceptible and infectious badgers respectively.

2. To simplify the associated population dynamics, both populations are consider to be at

equilibrium, this means that the analysis is of the asymptotically autonomous system.

Where similar to the previous model, the cattle total population Nh(t) is at equilibrium

when Nh(t) =
Λh
µh

. Likewise, the wildlife reservoir population is at equilibrium when

Nb(t) =
Λb
µb

.

3. Susceptible host have two infection channels; direct (cattle to cattle transmission) and

indirect (through wildlife infection). Where both the direct and indirect transmission

works according to the mass action principle. The rate of transmission between cattle

is denoted by βhh, where the subscripts represent infection is host to host. Therefore,

direct transmission works according to βhhShIh. Similarly, the rate of transmission

from badger to cattle is given by βbh and as a result the indirect transmission infection

force is given by βbhShIb.
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4. The relapse compartment R and culling compartment C of the system has been removed

to reduce the inherent complexity of the system. As adding more compartments increases

the dimensional size, making the associated system more complex to analyse.

4.2 mathematical model formulation

The inter-herd disease dynamics are described using a cattle population compartmental

model similar to the SETIRC model. The total cattle population at time t is denoted by Nh(t),

where the subscript defines which population we are referring too (h subscript for cattle

host population and b subscript for badger population). In this model cattle are separated

into the following mutually distinct compartments; Susceptible Sh(t), Exposed Eh(t), Test

sensitive Th(t), or Infected Ih(t). Therefore, the first system constraint is the cattle population

dynamics;

Nh(t) = Sh(t) + Eh(t) + Th(t) + Ih(t)

Similarly for the badger population, the total badger population at time t is denoted by

Nb(t), where the only compartments are Susceptible Sb(t) and Infected Ib(t). Therefore, the

second system constraint is the badger population dynamics;

Nb(t) = Sb(t) + Ib(t)

Let us now examine the associated differential equations for each of the following popula-

tions, cattle and badger.

4.2.1 Construction of the Wildlife Reservoir Differential Equations

Let us consider the susceptible cattle population, after accounting for newly recruited cattle

Λh and natural deaths µh, the susceptible host population is reduced after susceptible cattle

contract the disease. Infections occur from both the wildlife reservoir population and cattle

population, these infections occurs according to the mass action principle. The effective

transmission rate for cattle to cattle transmissions is given by βhh and similarly, the effective

transmission rate for badger population is given by βbh. The rate of change of the susceptible

population is therefore modelled by the continuous non-linear differential equation:

dSh
dt

= Λh −

(
βhh

Ih
Nh

+βbh
Ib
Nb

)
Sh − µhS

Cattle that contract the disease progress to the exposed compartments Eh and remain there

until the disease progresses to test sensitive compartment (γh) or until they die a natural death

(µh). The γh progression parameter is the transition rate between the exposed Eh to the test
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sensitive Th compartment. The differential equation controlling the exposed compartments is

given by:

dEh

dt
=

(
βhh

Ih
Nh

+βbh
Ib
Nb

)
Sh − (µh + γh)Eh

The test sensitive population Th is increased by those cattle progressing from the exposed

compartment Eh and the population is reduced by natural deaths µh and cattle progressing

to the infected stage, which occurs at the rate σh.

dTh
dt

= γhEh − (µh + σh)Th

As the test sensitive Th cattle progress into the infected compartment, they enter into the last

compartment of this system. The only way hosts are removed from the infected compartment

is by dying a natural death occurring at rate µh.

dIh
dt

= σhTh − µhIh

Similarly, for the susceptible badger population, badgers are recruited through births at

Λb and die natural deaths at rate µb. The susceptible badger population is reduced after

susceptible badgers contract the disease, although these cattle become infected immediately.

The continuous non-linear differential equation controlling the badger population are therefore

modelled by:

dSb
dt

= Λb −βhbSb
Ih
Nh

− µbSb

dIb
dt

= βhbSb
Ih
Nh

− µbIb

Therefore, the following system of non-linear differential equation represent the inter-species

dynamics of bovine tuberculosis:

dSh
dt

= Λh −

(
βhh

Ih
Nh

+βbh
Ib
Nb

)
Sh − µhSh

dEh

dt
=

(
βhh

Ih
Nh

+βbh
Ib
Nb

)
Sh − (γh + µh)Eh

dTh
dt

= γhEh − (σh + µh)Th

dIh
dt

= σhTh − µhIh

dSb
dt

= Λb −βhbSb
Ih
Nh

− µbSb

dIb
dt

= βhbSb
Ih
Nh

− µbIb

(4.1)
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Figure 4.1: Flow chart of the transmission dynamics of the Wildlife Reservoir model.

4.2.2 Mathematical Model Properties

Let us begin our analysis by examining the required mathematical properties of the model

such as well posed and feasibility region.

Theorem 4.2.1 All solutions for our wildlife reservoir system (4.1) which have initial conditions

originating within R6
+ are bounded.

R6
+ = {N(Sh,Eh, Th, Ih,Sb, Ib)|Sh ⩾ 0,Eh ⩾ 0, Th ⩾ 0, Ih ⩾ 0,Sb ⩾ 0, Ib ⩾ 0}

Proof 4.2.1 Let N
(
Sh(t),Eh(t), Th(t), Ih(t),Sb(t), Ib(t)

)
be an arbitrary solution of the wildlife

reservoir system (4.1) with a non-negative initial conditions. The total population of the herd and

wildlife reservoir is given by N(t) = Nh(t) +Nb(t), where

Nh(t) = Sh(t) + Eh(t) + Th(t) + Ih(t)

Nb(t) = Sb(t) + Ib(t)

Hence,

dNh

dt
= Λh − µh(Sh + Eh + Th + Ih) = Λh − µhNh(t)

dNb

dt
= Λb − µb(Sb + Ib) = Λb − µhNb(t)

By Grönwall’s lemma,

0 ⩽ Nh

(
Sh(t),Eh(t), Th(t), Ih(t)

)
⩽

Λh

µh

(
1− e−µht

)
+Nh(0)e

−µht

0 ⩽ Nb

(
Sb(t), Ib(t)

)
⩽

Λb

µb

(
1− e−µbt

)
+Nb(0)e

−µbt

Hence,

0 ⩽ lim sup
t→∞ Nh(t) ⩽

Λh

µh

0 ⩽ lim sup
t→∞ Nb(t) ⩽

Λb

µb
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By definition N(t) = Nh(t) +Nb(t), therefore the total population is also bounded.

0 ⩽ lim sup
t→∞ N(t) ⩽

Λh

µh
+

Λb

µb

Therefore all solutions of the system 4.1 that originate in R6
+ are attracted to the following positive

invariant region,

Ω =
{
N(Sh,Eh, Th, Ih,Sb, Ib) ∈ R6

+ : N(t) ⩽
Λh

µh
+

Λb

µb

}
(4.2)

The wildlife reservoir system (4.1) is therefore bounded. Additionally, since lim sup
t→∞ N(t) is inde-

pendent of the initial conditions then the system is said to be uniformly bounded.

As all solutions beginning in our positive invariant region Ω are trapped there, the analysis

will therefore be restricted to this region. Now that we have shown that solutions are bounded

the next stage is to show that the wildlife reservoir model solutions are well posed (i.e. exist

and are unique depending on initial conditions).

Theorem 4.2.2 The wildlife host system (4.1) is well posed.

Proof 4.2.2 Similarly to previous proofs, the Lipschitz continuity condition permits the use of the

Picard Lindelöf theorem which implies the system is well posed. The right hand side of the wildlife

reservoir system 4.1 are continuously differentiable functions on

R6
+ = {N(Sh,Eh, Th, Ih,Sb, Ib)|Sh ⩾ 0,Eh ⩾ 0, Th ⩾ 0, Ih ⩾ 0,Sb ⩾ 0, Ib ⩾ 0}

and as the above theorem indicates that the first derivative of our system is uniformly bounded. This

condition implies that the system equation are Lipschitz continuous and with this condition, we can

apply the Picard Lindelöf theorem that proves a unique solution exists for the wildlife reservoir system

4.1.

The following positive invariant region Ω bounds the wildlife reservoir system (4.1) solu-

tions and our future analysis will be restricted to this domain.

4.2.2.1 Disease Free Equilibrium’s and it’s Stability

Theorem 4.2.3 For the given wildlife host system (4.1), where initial conditions originate in the

positively invariant set Ω, the disease free equilibrium DFE is locally asymptotically stable (LAS) in

Ω whenever R0 < 1. Where R0 is defined as follows:

R0 =
γhσh

κ1κ2

(
βbhβhb

µhµb
+

βhh

µh

)
Where the following two parameter expression κ1 and κ2 are defined as follows

κ1 = γh + µh κ2 = σh + µh
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Proof 4.2.3 The local asymptotically stability of the disease free equilibrium can be examined through

analysing the linearised system around the disease free equilibrium (DFE). The Jacobian of our wildlife

host system (4.1) is given below:

J(DFE) =



−µh 0 0 −βhh 0 −βbh

0 −κ1 0 βhh 0 βbh

0 γh −κ2 0 0 0

0 0 σh −µh 0 0

0 0 0 −βhb −µb 0

0 0 0 βhb 0 −µb


Recall, at the disease free equilibrium the entire population is completely comprised of susceptible hosts,

therefore, Sh
Nh

= 1 and Sb
Nb

= 1.

The associated characteristic equation for the the Jacobian J(DFE) is

(λ+µh)(λ+µb)

(
(λ+κ1)(λ+κ2)(λ+µh)(λ+µb)−βhhγhσh(λ+µb)−γhσhβhbβbh

)
= 0

For the disease free equilibrium DFE to be locally stable asymptotically, all corresponding eigenvalues

of the Jacobian must have negative real part. Clearly, two eigenvalues for the system are λ1 = −µh

and λ2 = −µb, using the Routh-Hurwitz condition, it can be shown the other four eigenvalues are

negative. The other four eigenvalues correspond to the four roots of the following function f(λ):

f(λ) = (λ+ κ1)(λ+ κ2)(λ+ µh)(λ+ µb) − γhσh(βbhβhb +βhh(λ+ µb))

After expanding the brackets the following coefficients are made evident,

f(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4

Where the coefficients are defined as follows:

a1 = κ1 + κ2 + µh + µb

a2 = κ1(κ2 + µh + µb) + κ2(µh + µb) + µhµb

a3 = −βhhσhγh + κ1κ2(µh + µb) + µhµb(κ1 + κ2)

a4 = κ1κ2µbµh −βbhβhbσhγh − µbβhhσhγh

After some manipulation of a4, we can obtain the tipping point of the system:

a4 = κ1κ2µbµh

(
1−

σhγh

κ1κ2

(
βbhβhb

µhµb
+

βhh

µh

))
= κ1κ2µbµh(1−R0)

Therefore, the basic reproductive number is given by:

R0 =
σhγh

κ1κ2

(
βbhβhb

µhµb
+

βhh

µh

)
The Routh-Hurwitz condition implies the disease free equilibrium is locally asymptotically stable if:
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1. All coefficients ai for i = 1, 2, 3, 4 are positive ai > 0.

2. a1a2 − a3 > 0

3. a3(a1a2 − a3) − a2
1a4 > 0

If the basic reproductive number is less than unity (R0 < 1) then clearly a1,a2, and a4 are positive.

Notice that a3 can be manipulated into the following form:

a3 = µb(κ1κ2) + µhµb(κ1 + κ2) + (κ1κ2µh −βhhσhγh)

Where if the basic reproductive number is less than unity, then the following inequality holds:

R0 < 1 =⇒ σhγh

κ1κ2

(
βbhβhb

µhµb
+

βhh

µh

)
< 1 =⇒ σhγh

κ1κ2

(
βhh

µh

)
< 1 =⇒ κ1κ2µh > βhhσhγh

By showing that a3 > 0 if R0 < 1 this shows that all coefficient’s of our characteristic equation ai for

i= 1, 2, 3, 4 are all positive ai > 0.

The next condition that must be proven is a1a2 − a3 > 0. Notice, that as a3 can be arranged into

the following form a3 = κ1κ2 + (κ1 + κ2)(µh + µb) + µhµb −βhhσhγh, and by expanding when

a3 is in this form we obtain:

a1a2 − a3 =a1a2− −a3

κ1κ2(κ1 + κ2 + µh + µb) −κ1κ2(µh + µb)

+ (κ1 + κ2)(µh + µb)(κ1 + κ2 + µh + µb)

+ µhµb(κ1 + κ2 + µh + µb) −µhµb(κ1 + κ2)

+βhhσhγh

Hence, the non-negative restriction of parameters implies that a1a2 − a3 > 0 is clearly positive as

demonstrated below:

a1a2−a3 = κ1κ2(κ1+κ2)+(κ1+κ2)(µh+µb)(κ1+κ2+µh+µb)+µhµb(µh+µb)+βhhσhγh > 0

The last condition that must be shown is a3(a1a2−a3)−a2
1a4 > 0. In order to show this condition

a3(a1a2 − a3) − a2
1a4 > 0, we will focus on only one segment of a3(a1a2 − a3) and show that this

is greater than a2
1a4. Let us first examine only part of the expression a3(a1a2 − a3), namely let us

examine a3((κ1 + κ2)(µh + µb)(κ1 + κ2 + µh + µb)).

(κ1 + κ2)(µh + µb)a1a3 = (κ12µh −βhhσhγh)(κ1 + κ2)(µh + µb)a1

+ κ1κ2µb(κ1 + κ2)(µh + µb)a1

+ µhµb(κ1 + κ2)
2(µh + µb)a1
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Where if we examined the following term κ1κ2µb(κ1 + κ2)(µh + µb)a1 we obtain the following:

κ1κ2µb(κ1 + κ2)(µh + µb)a1 = κ1κ2µhµb(κ1 + κ2)a1 + κ1κ2µ
2
b(κ1 + κ2)a1

Similarly, if we examined the following term µhµb(κ1 + κ2)
2(µh + µb)a1 we obtain the following

by expanding (κ1 + κ2)
2:

µhµb(κ1+κ2)
2(µh+µb)a1 = κ1κ2µhµb(µh+µb)a1+µhµb(κ

2
1+κ22+κ1κ2)(µh+µb)a1

Therefore, let us now sum both these expressions, G = κ1κ2µb(κ1 + κ2)(µh + µb)a1 + µhµb(κ1 +

κ2)
2(µh + µb)a1, we obtain the following expressions for G:

G = κ1κ2µhµb(κ1 + κ2)a1 + κ1κ2µhµb(µh + µb)a1

+ κ1κ2µ
2
b(κ1 + κ2)a1 + (κ21 + κ22 + κ1κ2)µhµb(µh + µb)a1

G = κ1κ2µhµba
2
1 + κ1κ2µ

2
b(κ1 + κ2)a1 + (κ21 + κ22 + κ1κ2)µhµb(µh + µb)a1

Therefore, by subbing this expression back in we obtain the following expression for a3(a1a2 − a3):

a3(a1a2 − a3) = a3(κ1κ2(κ1 + κ2) + µhµb(µh + µb) +βhhγhσh)

+ (κ1κ2µh −βhhγhσh)(κ1 + κ2)(µh + µb)a1

+ κ1κ2µ
2
b(κ1 + κ2)a1 + (κ21 + κ22 + κ1κ2)µhµb(µh + µb)a1

+ κ1κ2µhµba
2
1

Where clearly our last term of the expression for a3(a1a2 − a3), namely κ1κ2µhµba
2
1 is larger

than a2
1a4 as:

κ1κ2µhµba
2
1 − a2

1a4 = κ1κ2µhµba
2
1(1− (1−R0))

= κ1κ2µhµba
2
1R0

Therefore, the expression for a3(a1a2 − a3) − a2
1a4 is as follows:

a3(a1a2 − a3) − a2
1a4 = a3(κ1κ2(κ1 + κ2) + µhµb(µh + µb) +βhhγhσh)

+ (κ1κ2µh −βhhγhσh)(κ1 + κ2)(µh + µb)a1

+ κ1κ2µ
2
b(κ1 + κ2)a1 + (κ21 + κ22 + κ1κ2)µhµb(µh + µb)a1

+ κ1κ2µhµba
2
1R0

From above it has been shown that R0 < 1 implies κ1κ2µh > βhhγhσh. This implies that the

above expression for a3(a1a2 − a3) − a2
1a4 is positive, proving last condition required by the Routh-

Hurwitz condition. Therefore, the disease free equilibrium DFE is locally asymptotically stable (LAS)

in Ω whenever R0 < 1.
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4.2.3 Backward Bifurcation

The wildlife host system (4.1) is different compared to the previous system discussed, as

under certain parameter values there exist multiple endemic equilibria, indicating this system

undergoes a backward bifurcation. In order to obtain the exact endemic equilibrium, the

wildlife reservoir system (4.1) must first be solved in terms of a single variable (e.g. Ih).

Through inserting these variable expression back into our system equations we obtain a

quadratic equation, the roots of this quadratic represent the explicit endemic equilibria in

terms of system parameters.

The endemic equilibrium (EE) represents disease being maintained in the system at a

particular endemic level and for the wildlife host system (4.1) it is given by:

EE = (Sh,Eh, Th, Ih,Sb, Ib)

Sh =
Λh

λ∗∗h + µh

Eh =
κ2
γh

Th =
κ2µh

γhσh
Ih

Th =
µh

σh
Ih

Sb =
NhΛb

βhbIh +Nhµb

Ib =

(
βhbNbIh

βhbIh +Nhµb

)
(4.3)

Where we define the force of infection for the host population as:

λ∗∗h = βhh
Ih
Nh

+βbh
Ib
Nb

Moreover, recall the following parameter κ1 and κ2 are defined as:

κ1 = (γh + µh) κ2 = (σh + µh)

Through substituting our expressions for Eh into the exposed compartments differential

equation at equilibrium (i.e. dEh
dt = 0) we obtain the following relationship:

λ∗∗hSh = κ1Eh =
κ1κ2µh

γhσh
Ih

Through rearranging and inserting our equilibrium expressions, we obtain the following:

Sh =
κ1κ2
γhσh

(
Λh(βhbIh + µbNh)

βhh(βhbIh + µbNh) +βbhβhbNh

)

4.2.3.1 The Backward Bifurcation Quadratic Equation

Now that we have obtained the endemic equilibrium expression for all variables in terms of a

Ih, we must substitute these variable expression back into our system equations to obtain our
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quadratic equation f(Ih). The roots of this quadratic represent the explicit endemic equilibria

for the system.

Let us first start by considering the susceptible hosts at the endemic equilibrium (i.e. Ṡh = 0):

Ṡh = 0 = Λh −βhhSh
Ih
Nh

−βbhSh
Ih
Nb

− µhSh

Let us define the numerator (ih) and denominator (jh) of the susceptible host population at

equilibrium (i.e. Sh = ih
jh

) by the parameter ih and jh.

Where ih and jh both are defined as follows:

ih = κ1κ2Λh(βhbIh + µbNh)

jh = γhσhβhh(βhbIh + µbNh) + γhσhβbhβhbNh

Now let us define our quadratic f(Ih), we construct this quadratic by multiplying the

susceptible host population at the endemic equilibrium by −jh:

f(Ih) = 0 = −Λhjh +βhhihIh −βbhihIh − µhih

where by substituting in our expression for ih and jh into the above quadratic f(Ih), we

obtain the following expressions:

−Λhjh = −ΛhγhσhβhhβhbIh −ΛhNhγhσh(µbβhh +βbhβhb)

βhh

Nh
ihIh = κ1κ2µhβhhβhbI

2
h + κ1κ2µbβhhΛhIh

βbh

Nb
ihIb = κ1κ2βbhβhbΛhIh

µhih = κ1κ2Λhµh(βhbIh + µbNh)

By substituting these variable expressions back into f(Ih), we obtain the following quadratic

function:

f(Ih) = aI2h + bIh + c

where the coefficient of our quadratic are given by:

a = βhhβhbκ1κ2µh

b = −Λhγhσhβhhβhb + κ1κ2µbβhhΛh + κ1κ2βbhβhbΛh + κ1κ2Λhµhβhb

c = κ1κ2µhµbΛhNh −ΛhNhγhσh(µbβhh +βbhβhb)

After some manipulation it can be shown that the coefficient c can be also be written as:

c = κ1κ2µhµbΛhNh

(
1−

σhγh

κ1κ2

(
βbhβhb

µhµb
+

βhh

µh

))
= κ1κ2µbΛ

2
h

(
1−R0

)
(4.4)
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As there exist two roots of a quadratic equation, there may exist two corresponding endemic

equilibrium points. However, the existence of these equilibrium points in our feasibility

region depends on the sign of these equilibrium points, which depends on the quadratic

equation’s coefficients a,b, c. There can exist a maximum of two endemic equilibrium points

corresponding to the two roots of this quadratic:

I1 =
−b−

√
b2 − 4ac

2a
, I2 =

−b+
√
b2 − 4ac

2a

Theorem 4.2.4 The wildlife reservoir system (4.1) has the following equilibrium in our feasibility

region Ω:

1. There exist a singular unique endemic equilibrium if the quadratic coefficients c is negative which

occurs if and only if R0 > 1.

2. There exist a singular unique endemic equilibrium if the quadratic coefficients b is negative and

either the discriminant or c is zero (either b2 − 4ac = 0 or c = 0).

3. Two endemic equilibrium exist if b < 0, b2 − 4ac > 0, and c > 0

4. Under all other conditions, no endemic equilibrium exist.

In our wildlife reservoir system (4.1) a is always positive and c signs depends explicitly

on R0. In case 1, there exist a singular unique positive endemic equilibrium if the quadratic

coefficients c is negative, as equation 4.4 shows, this only occurs if and only if R0 > 1. In case

1, the two roots of the quadratic function have the following form if c < 0:

I1 =
−b−

√
b2 + 4ac

2a
, I2 =

−b+
√
b2 + 4ac

2a

Where our second root I2 is the only positive endemic as
√
b2 + 4ac > b, the other root is

negative and therefore outside our feasibility region Ω. Therefore, if R0 > 1 there only exist

one singular biologically feasible endemic equilibrium.

In case 2 where b < 0 and either c = 0, or b2 − 4ac = 0, this implies that there exist one

positive root described below.

I =


−b
a if c = 0 and b < 0

−b
2a if b2 − 4ac = 0 and b < 0

In case 3, there exist two positive roots I1 and I2 if b < 0, b2 − 4ac > 0, and c > 0 (R0 < 1).

Consider the numerator of both our roots I1 and I2, clearly both roots are both positive, as

under these conditions b >
√
b2 − 4ac therefore −b±

√
b2 − 4ac > 0 for both the roots I1
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and I2. Under this condition it is clear that there exists two unique endemic equilibrium in Ω.

In the other cases, such as c > 0 and either b ⩾ 0 or b2 − 4ac < 0 there are no positive roots

for the quadratic and therefore there exist no endemic equilibrium.

4.2.4 Feasibility of backward bifurcation

As discussed through out the literature review section 2.3.4, backward bifurcation occur in

many epidemiological system, albeit, often at extreme parameter values that are outside

realistic ranges. Let us consider the conditions which are required for a backward bifurcations

in this wildlife reservoir system to occur.

For there to exist two endemic equilibria the following conditions must hold b < 0, b2− 4ac,

and c > 0. From the condition c > 0 to be true, our basic reproductive number must be less

than unity.

R0 =
γhσh

κ1κ2

(
βbhβhb

µhµb
+

βhhµb

µh

)
< 1

However as we shall demonstrate below, if c > 0 this implies that b > 0, proving that for

the wildlife reservoir system there exists at most one endemic equilibrium. Let us begin by

examining b:

b = Λh

(
κ1κ2(βhhµb +βhbµh +βhbβbh) − γhσhβhhβhb

)
Where after some manipulation, b takes on the following form:

b = Λh

(
κ1κ2(βhhµb +βhbµh +βhbβbh) − γhσhβhhβhb

)
b = Λh

(
κ1κ2(βhhµb +βhbβbh) + κ1κ2βhbµh − γhσhβhhβhb

)
b = Λh

(
κ1κ2(βhhµb +βhbβbh) + κ1κ2βhbµh

(
1−

γhσh

µhµb

(
βhh

µh

)))
Now, by our condition c > 0 this implies that R0 < 1, although this implies the following:

R0 < 1 =⇒ γhσh

κ1κ2

(
βbhβhb

µhµb
+

βhh

µh

)
< 1

γhσh

κ1κ2

(
βhh

µh

)
< 1

Hence, if we consider this inequality in relation to our expression for b we see that if c > 0

(R0 < 1) this implies b > 0:

b = Λh

(
κ1κ2(βhhµb +βhbβbh) + κ1κ2βhbµh

(
1−

γhσh

µhµb

(
βhh

µh

)))
> 0
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As we have shown just demonstrated, the wildlife reservoir system can have at most one

endemic equilibrium point, as the condition required for two endemic equilibrium points is

impossible. Moreover, in the next section through analysing the global stability of the disease

free equilibrium DFE, we will in fact show that the system does not backward bifurcate in

our feasibility region Ω. As the disease free equilibrium DFE is globally asymptotically stable

in our feasibility region Ω.

4.3 global stability analysis

Theorem 4.3.1 For the given wildlife reservoir system (4.1), where initial conditions originate in the

positively invariant set Ω, the disease free equilibrium DFE is globally asymptotically stable (GAS) in

Ω whenever R0 < 1.

Proof 4.3.1 The following Lyapunov function establishes this global stable nature of the DFE given

that R0

F(t) =
γh

κ1

(
Sh − Sh − Sh ln

Sh

Sh

)
+

γh

κ1
Eh + Th +

κ2
σh

Ih

+

(
γhβbh

κ1µb

)(
Nh

Nb

)(
Sb − Sb − Sb ln

Sb

Sb

)
+

(
γhβbh

κ1µb

)(
Nh

Nb

)
Ib

Let us begin by taking the time derivative of our Lyapunov function.

F(t) =
γh

κ1

(
Sh − Sh

Sh

)
Ṡh+

γh

κ1
Ėh+ Ṫh+

κ2
σh

İh+

(
γhβbh

κ1µb

)(
Nh

Nb

)(
Sb − Sb

Sb

)
Ṡb+

(
γhβbh

κ1µb

)(
Nh

Nb

)
İb

Let us now expand the Lyapunov function:

Ḟ(t) =
γh

κ1

(
Sh − Sh

Sh

)(
Λh − µhSh −

(
βhhIhSh

Nh
+

βbhIbSh
Nb

))
+

γh

κ1

(
βhhIhSh

Nh
+

βbhIbSh
Nb

− κ1Eh

)
+

(
γhEh − κ2Th

)
+

κ2
σh

(
σhTh − µhIh

)
+

γhβbh

κ1µb

(
Nh

Nb

)(
Sb − Sb

Sb

)(
Λb − µbSb −

(
βhbIhSb

Nh

))
+

γhβbh

κ1µb

(
Nh

Nb

)(
βhbSb

Ih
Nh

− µbIb

)
If we use the following equalities Sh = Λh

µh
and Sb = Λb

µb
and substitute them in for Λh and Λb then

we achieve the following equivalent expressions:

γh

κ1

(
Sh − Sh

Sh

)(
Λh − µhSh

)
=

γh

κ1

(
Sh − Sh

Sh

)(
µhSh − µhSh

)
= −µh

γh

κ1

(
(Sh − Sh)

2

Sh

)
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Similarly, for the badger population:

γhβbh

κ1µb

(
Nh

Nb

)(
Sb − Sb

Sb

)(
Λb − µbSb

)
=

γhβbh

κ1µb

(
Nh

Nb

)(
Sb − Sb

Sb

)(
µbSb − µbSb

)
= −µb

γhβbh

κ1µb

(
Nh

Nb

)(
(Sb − Sb)

2

Sb

)
Let us substitute these expressions into our Lyapunov function, while also collecting out terms for Eh

and Th:

Ḟ(t) = −µh
γh

κ1

(
(Sh − Sh)

2

Sh

)
−

γh

κ1

(
Sh − Sh

Sh

)(
βhhIhSh

Nh
+

βbhIbSh
Nb

)
+

γh

κ1

(
βhhIhSh

Nh
+

βbhIbSh
Nb

)
+ Eh

(
γh − κ1

γh

κ1

)
+ Th

(
κ2
σh

σh − κ2

)
−

κ2µh

σh
Ih

+−µb
γhβbh

κ1µb

(
Nh

Nb

)(
(Sb − Sb)

2

Sb

)
−

γhβbh

κ1µb

(
Nh

Nb

)(
Sb − Sb

Sb

)(
βhbIhSb

Nh

)
+

γhβbh

κ1µb

(
Nh

Nb

)(
βhbSb

Ih
Nh

− µbIb

)
Therefore, the parameter associated with both Eh and Th both disappear, let us continue with simplify

by collecting terms:

Ḟ(t) = −µh
γh

κ1

(
(Sh − Sh)

2

Sh

)
+

γh

κ1

(
1− 1+

Sh
Sh

)(
βhhIhSh

Nh
+

βbhIbSh
Nb

)
−

κ2µh

σh
Ih

− µb
γhβbh

κ1µb

(
Nh

Nb

)(
(Sb − Sb)

2

Sb

)
+

γhβbh

κ1µb

(
Nh

Nb

)(
1− 1+

Sb
Sb

)(
βhbIhSb

Nh

)
−

γhβbh

κ1µb

(
Nh

Nb

)
µbIb

After some manipulation we obtain the following:

Ḟ(t) = −µh
γh

κ1

(
(Sh − Sh)

2

Sh

)
+

γh

κ1

(
βhhIhSh

Nh
+

βbhIbSh
Nb

)
−

κ2µh

σh
Ih

− µb
γhβbh

κ1µb

(
Nh

Nb

)(
(Sb − Sb)

2

Sb

)
+

γhβbh

κ1µb

(
Nh

Nb

)(
βhbIhSb

Nh

)
−

γhβbh

κ1µb

(
Nh

Nb

)
µbIb

Now let us extract out the terms Ih and Ib. Moreover, if we use the equality Sh = Λh
µh

= Nh and

Sb = Λb
µb

= Nb then we see the following simplification:

Ḟ(t) = −µh
γh

κ1

(
(Sh − Sh)

2

Sh

)
−

γhβbh

κ1

(
Nh

Nb

)(
(Sb − Sb)

2

Sb

)
+ Ih

(
γh

κ1
βhh +

γh

κ1µb
βbhβhb − µh

κ2
σh

)
+ Ib

(
γh

κ1
βbh

Nh

Nb
−

γh

κ1µb
µbβbh

Nh

Nb

)
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After noticing that the expression in front of Ib equals zero, the last remaining step is to extract the

expression
(

µhκ2
σh

)
from the Ih expression.

Ḟ(t) = −µh
γh

κ1

(
(Sh − Sh)

2

Sh

)
−

γhβbh

κ1

(
Nh

Nb

)(
(Sb − Sb)

2

Sb

)
+ µh

κ2
σh

Ih

(
γhσh

κ1κ2

(
βhh

µh
+

βbhβhb

µhµb

)
− 1

)
Therefore,

Ḟ(t) = −µh
γh

κ1

(
(Sh − Sh)

2

Sh

)
− µb

γhβbh

κ1µb

(
Nh

Nb

)(
(Sb − Sb)

2

Sb

)
+ µh

κ2
σh

Ih

(
R0 − 1

)
Clearly, if R0 < 1 then Ḟ ⩽ 0 with Ḟ = 0 if and only if all other parameters other than susceptible

host (Sh) and susceptible badgers (Sb) are zero (i.e. Eh = Th = IH = Ib = 0). Hence, LaSalle

invariance principle implies every solution to the wildlife reservoir system (4.1) with initial conditions

in Ω asymptotically converge to DFE as time tends to infinity. Hence, the disease free equilibrium is

globally asymptotically stable in Ω if R0 < 1.

The global nature of this theorem indicates that in our feasibility region Ω, there only exist

two equilibrium; a unique endemic equilibrium EE which exists if R0 > 1 and a globally

stable disease free equilibrium DFE when R0 < 1. The last step in our analysis is to determine

the stability of the endemic equilibrium.

4.4 stability of the endemic equilibrium

As previously discussed, the endemic equilibrium (EE) represents disease being maintained

in the system at a particular endemic level. Recall, this has been calculated for the wildlife

host system (4.1) and it is given by:

EE = (Sh,Eh, Th, Ih,Sb, Ib)

Sh =
Λh

λ∗∗h + µh

Eh =
κ2
γh

Th =
κ2µh

γhσh
Ih

Th =
µh

σh
Ih

Sb =
NhΛb

βhbIh +Nhµb

Ib =

(
βhbNbIh

βhbIh +Nhµb

)
(4.5)

Where we define the force of infection for the host population as:

λ∗∗h = βhh
Ih
Nh

+βbh
Ib
Nb
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Moreover, recall the following parameter κ1 and κ2 are defined as:

κ1 = (γh + µh) κ2 = (σh + µh)

Through substituting our expressions for Eh into the exposed compartments differential

equation at equilibrium (i.e. Ėh = 0) we obtain the following relationship:

λ∗∗hSh = κ1Eh =
κ1κ2µh

γhσh
Ih

Through rearranging and inserting the above equilibrium expressions we obtain:

Sh =
κ1κ2
γhσh

(
Λh(βhbIh + µbNh)

βhh(βhbIh + µbNh) +βbhβhbNh

)

Let us now show the endemic equilibrium is locally asymptotically stable when the basic

reproductive number is above unity R0 > 1.

Theorem 4.4.1 For the given wildlife reservoir system (4.1), where initial conditions originate in the

positively invariant set Ω, the endemic equilibrium EE is locally asymptotically stable (LAS) in Ω

whenever R0 > 1.

Proof 4.4.1 The local asymptotically stability of the endemic equilibrium EE can be examined through

analysing the linearised wildlife reservoir system (4.1). The Jacobian evaluated at the endemic equilib-

rium EE for our wildlife reservoir system (4.1) is given below:

J(EE) =



−(βhh
Ih
Nh

+βbh
Ib
Nb

+ µh) 0 0 −βhh
Sh
Nh

0 −βbh
Sh
Nb

βhh
Ih
Nh

+βbh
Ib
Nb

−κ1 0 βhh
Sh
Nh

0 βbh
Sh
Nb

0 γh −κ2 0 0 0

0 0 σh −µh 0 0

0 0 0 −βhb
Sb
Nh

−βhb
Ih‘
Nh

− µb 0

0 0 0 βhb
Sb
Nh

βhb
Ih‘
Nh

−µb


Let us define a useful shortcut expression for the following analysis:

e1 = λ∗∗h + µh = βhh
Ih
Nh

+βbh
Ib
Nb

+ µh

The following elementary row operations are preformed on the Jacobian:

R
′
2 ← R2 +

(
1−

µh

e1

)
R1, R

′
3 ← R3 +

γh

κ1
R2,

R
′
4 ← R4 +

σh

κ2
R3, R

′
5 ← R5 + R6,

R
′
6 ← R6 −

Sbβhb

Nhµh

(
κ1κ2Nhe1

Shβhhγhσh − κ1κ2Nhe1

)
R4
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Where R
′
i indicates that the new ith row is obtained by combining scalar multiple of other rows. The

Jacobian of the matrix obtained after these row operations is presented below:

J(EE) =



−e1 0 0 −βhh
Sh
Nh

0 −βbh
Sh
Nb

0 −κ1 0 βhh
Sh
Nh

(µh
e1

) 0 βbh
Sh
Nb

(µh
e1

)

0 0 −κ2 βhh
Sh
Nh

(µhγh
κ1e1

) 0 βbh
Sh
Nb

(µhγh
κ1e1

)

0 0 0 βhhµh(
Shγhσh

κ1κ2Nhe1
) − µh 0 βbh

Sh
Nb

(µhγhσh
κ1κ2e1

)

0 0 0 0 −βhb
Ib
Nh

− ShSbβhbβbhγhσh

Nb(κ1κ2Nhe1−Shβhhγhσh)

0 0 0 0 0 −µb
ShSbβbhγhσh

IbNb(κ1κ2Nhe1−Shβhhγhσh)
− µb


The corresponding eigenvalues of the Jacobian must all be negative to prove that the endemic

equilibrium (EE) is locally asymptotically stable.

λ1 = −

(
βhh

Ih
Nh

+βbh
Ib
Nb

+ µh

)
< 0, λ2 = −κ1 < 0,

λ3 = −κ2 < 0, λ4 = βhh

(
Shµhγhσh

κ1κ2Nhe1

)
− µh,

λ5 = −βhb
Ib
Nh

< 0, λ6 = −µb
ShSbβbhγhσh

IbNb(κ1κ2Nhe1 − Shβhhγhσh)
− µb,

As the eigenvalues λ1 < 0, λ2 < 0, λ3 < 0, λ5 < 0 are all negative it remains to show that λ4 and λ6

are negative. Although, notice that both λ4 and λ6 are negative if the following inequality holds:

κ1κ2(βhhIh +βbhIb + µh) −βhhγhσhSh > 0

Let us first demonstrate that λ4 < 0 if the above inequality holds:

λ4 = βhh

(
Shµhγhσh

κ1κ2Nhe1

)
− µh

= µh

(
Shβhhγhσh

κ1κ2Nhe1
− 1

)
=

µh

κ1κ2Nhe1

(
Shβhhγhσh − κ1κ2Nhe1

)
Clearly if κ1κ2Nhe1−βhhγhσhSh > 0 then this implies that λ4 is negative. Similarly, this condition

implies the denominator of λ6 is positive and by the non-negative criterion of parameters this implies

λ6 < 0. In order to prove this inequality is correct, let us first re-define Sh in terms of new parameters

e2 & e3:

Sh =
κ1κ2
γhσh

(
Λh(βhbIh + µbNh)

βhh(βhbIh + µbNh) +βbhβhbNh

)
=

Λhκ1κ2e2
e3

e2 = βhbIh +Nhµb

e3 = γhσh

(
βhhe2 +Nhβhbβbh

)
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Hence our inequality can be expressed in the following form:

κ1κ2Nhe1 −βhhγhσhSh = κ1κ2Nhe1 −βhhγhσh
Λhκ1κ2e2

e3

=
κ1κ2
e3

(
Nhe1e3 −βhhγhσhΛhe2

)
=

κ1κ2
e3

(
Nhe3

(
βhh

Ih
Nh

+βbh
Ib
Nb

)
+Nhµhe3 −βhhγhσhΛhe2

)
Let us further examine the following expressions:

Nhµhe3 −βhhγhσhΛhe2 = Λh

(
γhσh

(
βhhe2 +Nhβhbβbh

))
−βhhγhσhΛhe2

= Λhγhσh

(
βhhe2 +Nhβhbβbh −βhhe2

)
= ΛhγhσhNhβhbβbh

Therefore, our inequality κ1κ2Nh(βhhIh +βbhIb + µh) −βhhγhσhSh > 0 holds as:

κ1κ2Nhe1 −βhhγhσhSh =
κ1κ2
e3

(
Nhe3

(
βhh

Ih
Nh

+βbh
Ib
Nb

)
+ΛhγhσhNhβhbβbh

)
Therefore as shown above, this inequality κ1κ2Nhe1 − βhhγhσhSh > 0 demonstrates that all

eigenvalues of the Jacobian have a negative real part which proves that the endemic equilibrium EE is

locally asymptotically stable in Ω.

The role of a wildlife reservoir in bTB is further discussed and analysed in chapter six,

where using a simulation model we demonstrate the change in dynamics through partially

removing the wildlife reservoir, representing a herd improving bio-security measures. The

simulation model incorporates more model mechanisms and therefore gives a more realistic

representation of the wildlife reservoir, therefore, to avoid duplication of results the wildlife

reservoir mechanic analysis shall be completed in chapter six.

4.5 conclusion

A mathematical model for wildlife reservoir disease transmission is proposed and investigated.

The demographics of the model constrain both species to constant recruitment with an

exponential natural death rate, where the system has been analysed when both species are

at equilibrium. The analysis of the system has shown that if the disease’s basic reproductive

number is higher than unity (i.e. R0 > 1) the disease will be locally attracted to a unique

endemic equilibrium. The wildlife host system can also be shown to backward bifurcate,

however after further analyse it was shown that this could not occur in the feasibility region

Ω that we restricted our analysis to. As a result, if the basic reproductive number is less than

unity (i.e. R′ < 1) then the system solutions are attracted to the disease-free equilibrium.
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5
C H A P T E R 5 : B O V I N E T U B E R C U L O S I S ’ E N V I R O N M E N TA L

C O N TA M I N AT I O N

In this chapter, we investigate the biological contamination properties of bovine tuberculosis

and incorporate them into our model. As discussed in the literature review chapter, M. bovis

can contaminate soil, troughs, cattle feed, hay, and various other materials [82]. As a result,

cattle may become infected by interacting with the different contaminated micro-environments

seen within a farm. The literature indicates that cattle are notably more likely to contract the

disease by interacting with contaminated sources for long exposure times or by ingesting

contaminated materials [175]. As a result, cattle feed and water troughs are considered more

potent contamination sources [85], as cattle consume food and/or drink closely with one

another. Moreover, the proximity of infectious cattle’s snouts to food and water sources

increases the overall level of contamination, as nasal secretion is more concentrated on one

particular object, leading to a more significant number of infections [20]. Similarly, cattle

bedding (normally hay) is seen as a more potent contamination source due to cattle’s long

exposure time [62].

The model analysed and examined in this chapter extends the standard prototypical model

by incorporating a compartment for the background environment B(t). This background

environmental compartment B(t) attempts to quantify the level of contamination excreted by

infectious cattle. Therefore, this multi-transmission pathway model considers cattle contracting

bTB from two sources, either from direct cattle to cattle interaction or by cattle engaging with

the contaminated environment B(t). The fundamental qualities of this model are analysed;

disease-free equilibrium, endemic equilibrium, the basic reproductive number, and the long

term behaviour of our solutions. After which, we examine the SETIB system with bTB

parameters through numerical analysis, comparing and contrasting how the system dynamics

alter when examing different environmental contamination parameters.

5.1 background contamination

As discussed extensively in the literature review chapter, infectious cattle spray fomites that

contaminate the environment [19],[20]. The M. bovis bacterium can either aerosolise or con-

taminate surfaces (e.g. soil, pasture, and water sources). If M. bovis undergoes aerosolisation,

it has been demonstrated experimentally that these contaminated aerosols linger in the air
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for 12-24 hours and are resistant to the associated stresses [19]. Furthermore, this infection

interval is expected to be considerably longer if cattle are housed indoors permanently due to

the poor ventilation associated with housing pens [19].

Infected hosts can contaminate the various different environmental matrices seen within a

farm (e.g. feed, hay, soil, or water), where this contamination period lasts for varying periods

of time. The rate at which bTB is estimated to decay is exceptionally variable depending on

the material, lasting anywhere between a couple of days to 2 years [16]. How then do these

environmental matrices become contaminated? Infected cattle excrete M. bovis through their

urine, faeces, saliva, nasal secretion, and sputum, where notably, the highest bacterial load is

found in cattle sputum. One USA (Michigan) study found that M. bovis remains viable and

pathogenic for 88 days in soil and 58 days in both water and hay [62]. In comparison, similar

studies in the UK have found that the bacteria may remain present in pastures and soils

for around six months. The survival and persistence of M. bovis increase in other mediums

such as faeces (8-9 months) and dry cattle feed when stored indoors (9 months) [79],[19].

The differing bacterial time intervals exhibited above are likely due to UK’s climate, multiple

studies have found that tubercle bacilli best survive in cool and moist environments, shaded

from direct sunlight. Under laboratory conditions, researchers have demonstrated that if

M. bovis remains in a shaded environment, it remains viable for up to twice as long [20].

Consequentially, similar field studies imply longer survival times during the winter months;

GB [85], New Zealand [81], Michigan [62] and Australia [175].

Contamination of drinking water has also been identified as a typical transmission pathway

between local wildlife and cattle (white-tailed deer in the USA [62] and boar in Spain [84]).

Infected hosts shed M. bovis through nasal and oral secretion into communal water sources,

often supporting the disease spread through reservoir and target population interaction. In the

UK, communal water sources are not considered a significant risk factor in reservoir and target

population interactions, as most cattle drink from self-contained troughs. However, livestock

troughs have yet to be examined thoroughly in the literature and various researchers have

indicated troughs could be a more substantial source of contamination than current thought

[16]. DEFRA suggests that troughs may be contaminated by saliva and sputum, advising

regular cleaning and disinfection of water troughs and avoiding stagnation if possible [85].

Furthermore, in independent advice regarding badger biosecurity measures, DEFRA suggests

raising water troughs to at least 80cm to prevent badger contamination [49]. DEFRA advises

that similar measures should be implemented regarding feeder rings, as these have also been

suggested as a potential source of contamination [85].
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Therefore, environmental contamination is a decisive disease transmission mechanic and

should undoubtedly be understood and incorporated into the wider bTB modelling liter-

ature. As environmental contamination can induce infections in a wholly susceptible herd,

even after all infected animals are culled. However, even though the literature discusses

bTB environmental contamination in great detail, where various papers have indicated the

importance of this paramount disease mechanic, there are currently very little bTB modelling

papers incorporating environmental contamination. The virtual non-existent discussion of

environmental contamination within the bTB modelling literature means there is little dis-

cussion regarding contamination parameter values. Therefore, there are no parameters for

environmental contamination for the numerical analysis section of this chapter. Hence, we

shall assume different relative percentages of host infected (βh and βb) in the numerical

analysis section. Let us now demonstrate the model and its system properties.

5.2 mathematical model formulation

The inter-herd disease dynamics are described using a cattle population compartmental model

similar to the SE1E2TIRC model. Where like before, the total cattle population at time t is

denoted by N(t) and cattle are separated into the following mutually distinct compartments;

Susceptible S(t), Exposed E(t), Test sensitive T(t), or Infected I(t). Therefore, the first system

constraint is the population dynamics;

N(t) = S(t) + E(t) + T(t) + I(t)

After accounting for newly recruited cattle Λ and natural deaths µ, the susceptible host

population is reduced by susceptible cattle contracting the disease. Infection from both the

background contamination and cattle to cattle transmission occurs according to the mass

action principle. The effective transmission rate for cattle to cattle transmissions is given by

βh and similarly, the effective transmission rate for background contamination is given by βb.

The continuous non-linear differential equation therefore models the rate of change of the

susceptible population:

dS

dt
= Λ−

(
βh

I

N
+βb

B

NB

)
S− µS

Cattle that contract the disease progress to the exposed compartments E(t) and remain there

until the disease progresses to test sensitive compartment or until they die a natural death

µ. The γ progression parameter is the transition rate between the exposed E(t) to the test

sensitive T(t) compartment. The differential equation controlling the exposed compartments

is therefore given by:
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dE

dt
=

(
βh

I

N
+βb

B

NB

)
S− (µ+ γ)E

The test sensitive population T(t) is increased by those cattle progressing from the exposed

compartment E(t). The population is reduced by natural deaths µ and cattle progressing to

the infected stage, which occurs at the rate σ.

dT

dt
= γE− (µ+ σ)T

As the test sensitive T(t) cattle progress into the infected compartment I(t), they enter

into the last compartment of this system. The only way hosts are removed from the infected

compartment is by dying a natural death occurring at rate µ.

dI

dt
= σT − µI

The background compartment B(t) is not part of the infection cycle, rather it represents

the environmental contamination exhibited on the farm. In our set of differential equations

below, cattle contract the disease from the environment in a similar fashion to the mass action

principle, where the force of infection is as follows:

λ∗∗b = βh
I

N
+βb

B

NB

Where NB represents the maximum total environmental contamination that a herd could

produce. Therefore, the background compartment B(t) represents the proportion of the

maximum total environmental contamination seen on a farm. Where this parameter λ∗∗b

incorporate infections induced from cattle interacting/ingesting contaminated material and

the inhalation of fomite (contaminated dust particles) from the air. Each individual infected

cattle shed fomites and contaminate their nearby surroundings at a rate θ, as more M. bovis is

shed into the environment, more cattle ingest/interact with M. bovis and become infectious

themselves. Bovine tuberculosis decays at different rates depending on the media it is found

within, although for the purpose of modelling, we have only one average decay rate for all

mediums on the farm given by ξ.

dB

dt
= θI− ξB

We generate just the environmental force of infection βb
B
NB

by normalising the environ-

mental contamination parameter B(t). However, for us to do so, we must find out what the

maximum size that B(t) can become. From later analysis, regarding the bounded nature of

solutions, we shall see that the environmental contamination parameter B(t) is at most:

NB =
θ

ξ

(
Λ

µ

)
=

θ

ξ
N
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Therefore, the non-linear set of differential equations has the following system equations:

dS

dt
= Λ−

(
βh

I

N
+βb

B

NB

)
S− µS

dE

dt
=

(
βh

I

N
+βb

B

NB

)
S− (µ+ γ)E

dT

dt
= γE− (µ+ σ)T

dI

dt
= σT − µI

dB

dt
= θI− ξB

(5.1)

Figure 5.1: Flow chart of the transmission dynamics of the SETIB model.

5.2.1 Mathematical Model Properties

Let us now investigate the model properties of the SETIB system. In this section, we shall

demonstrate the well posed nature of solutions and construct the system feasibility region.

Theorem 5.2.1 All solutions for our SETIRB system 5.1 which have initial conditions originating

within R5
+ are bounded.

R5
+ = {N(S,E, T , I,B) | S ⩾ 0,E ⩾ 0, T ⩾ 0, I ⩾ 0,B ⩾ 0}

Proof 5.2.1 Let N
(
S(t),E(t), T(t), I(t),B(t)

)
be an arbitrary solution of the SETIB system 5.1 with

a non-negative initial conditions. The population of the herd is given by N(t), where

N(t) = S(t) + E(t) + T(t) + I(t)

Hence,

dN

dt
= Λ− µ(S+ E+ T + I) = Λ− µN(t)

By Grönwall lemma, if x(t) is a function satisfying dx
dt ⩽ ax+ b, where x(0) = x0 and both a and

b are constants then for all time t ⩾ 0. Hence,
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x(t) ⩽ x0e
at +

b

a

(
eat − 1

)
therefore,

0 ⩽ N
(
S(t),E(t), T(t), I(t)

)
⩽

Λ

µ

(
1− e−µt

)
+N(0)e−µt

Hence,

0 ⩽ lim sup
t→∞ N(t) ⩽

Λ

µ

It remains to show that our compartment representing background contamination B(t) is bounded.

As shown above, the total population of the herd N(t) is bounded by Λ
µ , hence so is the number of hosts

within the infected compartment (i.e. I(t) ⩽ Λ
µ ). As a result,

dB

dt
= θIh − ξB ⩽ θ

Λ

µ
− ξB

Hence, using Grönwall lemma once again it can be shown that B(t) is bounded.

lim sup
t→∞ B(t) ⩽

θ

ξ

(
Λ

µ

)
As discussed previously, we shall normalise B(t) by this maximum bound, where NB = θ

ξN.

Therefore all solutions of the SETIB system 5.1 that originate in R5
+ are attracted to the following

positive invariant region,

Ω =
{
N(S,E, T , I,B) ∈ R5

+|N(t) ⩽
Λ

µ
,B(t) ⩽

θ

ξ

(
Λ

µ

)}
(5.2)

The SETIB system 5.1 is therefore bounded. Additionally, since lim sup
t→∞ N(t) is independent of the

initial conditions then the system is said to be uniformly bounded. As all solutions beginning in our

positive invariant region Ω are trapped there, the analysis will be restricted to this feasible region.

Now that we have shown that solutions are bounded the next stage is to show that the SETIB

model solutions are well posed (i.e. exist and are unique depending on initial conditions).

Theorem 5.2.2 The SETIB system (5.1) is well posed.

Proof 5.2.2 As the right hand side of system 5.1 are continuously differentiable functions on

R5
+ = {N(S,E, T , I,B) | S ⩾ 0,E ⩾ 0, T ⩾ 0, I ⩾ 0,B ⩾ 0}

and as the above theorem indicates that the first derivative of our system is uniformly bounded. This

condition implies that the system equation are Lipschitz continuous and with this condition, we can

apply the Picard Lindelöf theorem that proves a unique solution exists for the SETIB system 5.1.
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The SETIB model 5.1 is therefore well posed and any solution with initial conditions

originating in Ω will remain in this feasibility region for all future time. Now, lets turn our

attention to the system equilibrium and the basic reproductive number that bifurcates the

system.

5.2.2 Basic Reproductive Number R0

Theorem 5.2.3 For the given SETIB system 5.1, where initial conditions originate in the positively

invariant set Ω, the basic reproductive number is:

R0 =

(
γσ

κ1κ2µ

)(
βh +βb

)

Proof 5.2.3 The basic reproductive number R0 is calculated using the next generation matrix using

the Van den Driesche and Watmough approach. This method has been extensively discussed in section

2.3.3.3 and throughout this thesis so our analysis shall be condensed.

The basic reproductive number R0 is given by the following:

R0 = ρ(FV−1)

Where the matrices F and V are defined below:

F =



0 0 βh βb

(
ξ
θ

)
0 0 0 0

0 0 0 0

0 0 0 0


and V =



k1 0 0 0

−γ k2 0 0

0 −σ µ 0

0 0 −θ ξ


Where in the linearised F matrix we have used removed demographic dependencies. As consider the

result for f[1,4] ∈ F, where f[1,4] =
∂E
dB , this evaluated at the disease free equals:

∂E

dB
= βb

S

NB
= βb

S
θ
ξN

= βb
ξ

θ

Where as defined previously Nb = θ
ξN, moreover, at the disease free equilibrium the entire herd are

susceptible cattle (i.e. S = Λ
µ ).

The order in which these matrix have been attained are E,T ,I,B and hence the matrix V−1 is calculated

below.
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V−1 =



1
κ1

0 0 0

γ
κ1κ2

1
κ2

0 0

γσ
κ1κ2µ

σ
κ2µ

1
µ 0

γσθ
ξκ1κ2µ

σθ
ξκ2µ

θ
ξµ

1
ξ


(5.3)

Therefore the next generation matrix for the SETIB system is defined as follows:

FV−1 =



(
γσ

κ1κ2µ

)(
βh +βb

) (
σ

κ2µ

)(
βh +βb

) (
1
µ

)(
βh +βb

)
βb
θ

0 0 0 0

0 0 0 0

0 0 0 0


Thereby, the largest eigenvalue of the next generation matrix FV−1 gives the corresponding R0 for

the system.

R0 = ρ(FV−1) =

(
γσ

κ1κ2µ

)(
βh +βb

)

5.2.3 Disease Free Equilibrium and its Stability

The disease free equilibrium DFE represents the system absent of both the disease and

background contamination, hence for the SETIB system 5.1 the disease free equilibrium DFE

is given by:

DFE = (S,E, T , I,B) =
(Λ
µ

, 0, 0, 0, 0
)

(5.4)

Theorem 5.2.4 For the given SETIB system (5.1), where initial conditions originate in the positively

invariant set Ω, the disease free equilibrium DFE is locally asymptotically stable (LAS) in Ω whenever

R0 < 1.

Where the R0 for the system is defined as:

R0 =

(
γσ

κ1κ2µ

)(
βh +βb

)
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Proof 5.2.4 The local asymptotically stability of the disease free equilibrium can be examined through

analysing the linearised system around the disease free equilibrium (DFE). The Jacobian of our

environmental contamination system (5.1) is given below:

J(DFE) =



−µ 0 0 −βh
S
N −βb

S
NB

0 −κ1 0 βh
S
N βb

S
NB

0 γ −κ2 0 0

0 0 σ −µ 0

0 0 0 θ −ξ


Where the following variable equalities exist S = Λ

µ , although as we examine the asymptotically

autonomous system this means that N = Λ
µ for all time t, hence, as a result S

N = 1.

The associated characteristic equation for the the Jacobian J(DFE) is

(λ+ µ)

(
(λ+ κ1)(λ+ κ2)(λ+ µ)(λ+ ξ) − γσ(ξβb +βh(λ+ ξ))

)
= 0

For the disease free equilibrium DFE to be locally stable asymptotically, all corresponding eigenvalues

of the Jacobian must have negative real part. One eigenvalue for the system is λ1 = −µ and using the

Routh-Hurwitz condition we can show the other eigenvalues are negative. The other four eigenvalues

correspond to the four roots of the following function f(λ):

f(λ) = (λ+ κ1)(λ+ κ2)(λ+ µ)(λ+ ξ) − γσ(ξβb +βh(λ+ ξ))

After expanding the brackets the following coefficients are made evident:

f(λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4

Where,

a1 = κ1 + κ2 + µ+ ξ

a2 = κ1(κ2 + µ+ ξ) + κ2(µ+ ξ) + µξ

a3 = −βhσγ+ κ1κ2(µ+ ξ) + µξ(κ1 + κ2)

a4 = κ1κ2µξ− σγξ(βh +βb)

After some manipulation of a4, we can obtain the tipping point of the system:

a4 = κ1κ2µξ

(
1−

(
γσ

κ1κ2µ

)(
βh +βb

))
= κ1κ2µξ(1−R0)

The Routh-Hurwitz condition implies the disease free equilibrium is locally asymptotically stable if the

following conditions hold.

1. All coefficient’s ai for i=1,2,3,4 are positive ai > 0.
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2. a1a2 − a3 > 0

3. a3(a1a2 − a3) − a2
1a4 > 0

If the basic reproductive number is less than unity (R0 < 1) then clearly a1,a2, and a4 are positive.

Notice that a3 can be manipulated into the following form:

a3 = κ1κ2ξ+ µξ(κ1 + κ2) + (κ1κ2µ−βhhσγ)

Where if the basic reproductive number is less than unity then the following inequality holds:

R0 < 1 =⇒ κ1κ2µ > βhσγ

This inequality is derived as follows:

R0 < 1 =⇒
(

γσ

κ1κ2µ

)(
βh +βb

)
< 1

γσ

(
βh +βb

)
< κ1κ2µ

γσβh < κ1κ2µ

Therefore, a3 is positive if our basic reproductive number is less than unity (i.e. a3 > 0 if R0 < 1).

This shows that all coefficient’s of our characteristic equation ai for i=1,2,3,4 are all positive ai > 0.

The next condition that must be proven is a1a2 − a3 > 0.

a1a2 − a3 =(κ1 + κ2 + µ+ ξ)(κ1(κ2 + µ+ ξ) + κ2(µ+ ξ) + µξ)

− (−βhσγ+ κ1κ2(µ+ ξ) + µξ(κ1 + κ2))

Notice, that a2 can be separated into the following form:

a2 = κ1κ2 + (κ1 + κ2)(µ+ ξ) + µξ

Therefore, if we express the a2 parameter in this form then the expression a1a2 − a3 becomes the

following:

a1a2 − a3 =κ1κ2(κ1 + κ2 + µ+ ξ) −κ1κ2(µ+ ξ)

+ (κ1 + κ2)(µ+ ξ)(κ1 + κ2 + µ+ ξ) +βhσγ

+ µξ(κ1 + κ2 + µ+ ξ) −µξ(κ1 + κ2)

Hence, after some manipulation this expression becomes the following:

a1a2 − a3 =κ1κ2(κ1 + κ2)

+ (κ1 + κ2)(µ+ ξ)(κ1 + κ2 + µ+ ξ) +βhσγ

+ µξ(µ+ ξ)
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Therefore, clearly our expression a1a2 − a3 > 0 is positive due to the restriction of parameters to the

feasibility region (i.e. non-negative).

a1a2 − a3 = κ1κ2(κ1 + κ2) + µξ(µ+ ξ) +βhσγ+ (κ1 + κ2)(µ+ ξ)(κ1 + κ2 + µ+ ξ) > 0

The last condition that must be shown is a3(a1a2 − a3) − a2
1a4 > 0. In order to show this is true

lets first analysis a3(a1a2 − a3), by expanding some of its terms we can see that a3(a1a2 − a3) −

a2
1a4 > 0.

a3(a1a2 − a3) = a3

(
κ1κ2(κ1 + κ2) + µξ(µ+ ξ) +βhσγ+ (κ1 + κ2)(µ+ ξ)(κ1 + κ2 + µ+ ξ)

)
= a3

(
(κ1 + κ2)(µ+ ξ)(κ1 + κ2 + µ+ ξ)

)
+ a3

(
κ1κ2(κ1 + κ2) + µξ(µ+ ξ) +βhσγ)

)
= a3(κ1 + κ2)(µ+ ξ)a1 + a3

(
κ1κ2(κ1 + κ2) + µξ(µ+ ξ) +βhσγ)

)
Let focus our attention just to a3(κ1 + κ2)(µ+ ξ)a1. First let us separate a3 into two parts, where

a3 = (κ1κ2µ−βhσγ) + (κ1κ2ξ+ µξ(κ1 + κ2)), therefore,

a3(κ1 + κ2)(µ+ ξ)a1 =
(
κ1κ2µ−βhσγ

)
(κ1 + κ2)(µ+ ξ)a1

+ (κ1κ2ξ+ µξ(κ1 + κ2))(κ1 + κ2)(µ+ ξ)a1

The next stage of analysis is to examine (κ1κ2ξ+ µξ(κ1 + κ2))(κ1 + κ2)(µ+ ξ)a1. As we shall see,

this expression contains two terms κ1κ2µξ(κ1 + κ2)a1 and κ1κ2µξ(µ+ ξ)a1 which together make

x = κ1κ2µξ(κ1 + κ2 + µ+ ξ)a1, an expression larger than a2
1a4. As demonstrated below:

x = κ1κ2µξa
2
1 ⩾ κ1κ2µξa

2
1(1−R0) = a2

1a4

Hence, let us extract x from the (κ1κ2ξ+ µξ(κ1 + κ2))(κ1 + κ2)(µ+ ξ)a1 expression.

(κ1κ2ξ+ µξ(κ1 + κ2))(κ1 + κ2)(µ+ ξ)a1 = κ1κ2ξ(κ1 + κ2)(µ+ ξ)a1 + µξ(κ1 + κ2)
2(µ+ ξ)a1

= κ1κ2µξ(κ1 + κ2)a1 + κ1κ2ξ
2(κ1 + κ2)a1

+ µξ(κ21 + κ22 + 2κ1κ2)(µ+ ξ)a1

= κ1κ2µξ(κ1 + κ2)a1 + κ1κ2ξ
2(κ1 + κ2)a1

+ µξκ1κ2(µ+ ξ)a1 + µξ(κ21 + κ22 + κ1κ2)(µ+ ξ)a1

= x+ κ1κ2ξ
2(κ1 + κ2)a1 + µξ(κ21 + κ22 + κ1κ2)(µ+ ξ)a1

Therefore, by backward substitution this expression for (κ1κ2ξ+ µξ(κ1 + κ2))(κ1 + κ2)(µ+ ξ)a1

into the expression for a3(κ1 + κ2)(µ+ ξ)a1, we obtain the following expressions:

a3(κ1 + κ2)(µ+ ξ)a1 =
(
κ1κ2µ−βhσγ

)
(κ1 + κ2)(µ+ ξ)a1

+ x+ κ1κ2ξ
2(κ1 + κ2)a1 + µξ(κ21 + κ22 + κ1κ2)(µ+ ξ)a1
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The next stage is to backward substitute this expression and into a3(a1a2 − a3).

a3(a1a2 − a3) = a3

(
κ1κ2(κ1 + κ2) + µξ(µ+ ξ) +βhσγ

)
+ a3(κ1 + κ2)(µ+ ξ)a1

= a3

(
κ1κ2(κ1 + κ2) + µξ(µ+ ξ) +βhσγ

)
+
(
κ1κ2µ−βhσγ

)
(κ1 + κ2)(µ+ ξ)a1

+ x+ κ1κ2ξ
2(κ1 + κ2)a1 + µξ(κ21 + κ22 + κ1κ2)(µ+ ξ)a1

Therefore, the expression for a3(a1a2−a3)−a2
1a4 is given below and is clearly positive as a3(a1a2−

a3) contains x (i.e x ⩽ a2
1a4).

a3(a1a2 − a3) − a2
1a4 = a3

(
κ1κ2(κ1 + κ2) + µξ(µ+ ξ) +βhσγ

)
+
(
κ1κ2µ−βhσγ

)
(κ1 + κ2)(µ+ ξ)a1

+ κ1κ2ξ
2(κ1 + κ2)a1 + µξ(κ21 + κ22 + κ1κ2)(µ+ ξ)a1

+ κ1κ2µξa
2
1R0

From above, we have shown that R0 < 1 implies κ1κ2µ > βhσγ. This implies that the above

expression for a3(a1a2 − a3) − a2
1a4 is positive, proving last condition required by the Routh-

Hurwitz condition. Therefore, the disease free equilibrium DFE is locally asymptotically stable (LAS)

in Ω whenever R0 < 1. Although, as the next theorem shows, we can prove this holds globally instead

of locally.

Theorem 5.2.5 For the given SETIB system 5.1, where initial conditions originate in the positively

invariant set Ω, the disease free equilibrium DFE is globally asymptotically stable (GAS) in Ω

whenever R0 < 1.

Proof 5.2.5 This theorem shall be proved by the existence of the following Lyapunov function:

F = E+
κ1
γ
T +

κ1κ2
γσ

I+
βb

ξ
B

Let us begin by differentiating the Lyapunov function:

Ḟ = Ė+
κ1
γ
Ṫ +

κ1κ2
γσ

İ+
βb

ξ
Ḃ

=

(
βh

I

N
+βb

B

NB

)
S− κ1E+

κ1
γ
(γE− κ2T) +

κ1κ2
γσ

(σT − µI) +
βb

ξ
(θI− ξB)

After some manipulation and rearranging we obtain Ḟ in the following form:

Ḟ = E
(κ1
γ
γ− κ1

)
+ T
(κ1κ2

γσ
σ−

κ1
γ
κ2
)
+ I
(
βh

S

N
+βb

θ

ξ
−

κ1κ2µ

γσ

)
+B

(
βb

S

N
−βb

)
= I

(
βh

S

N
+βb

θ

ξ
−

κ1κ2µ

γσ

)
+Bβb

(
S

N
− 1

)
=

κ1κ2µ

γσ
I

(
γσ

κ1κ2µ

(
βh

S

N
+βb

θ

ξ

)
− 1

)
+Bβb

(
S

N
− 1

)
As we are restricting our analysis to the feasibility region Ω, hence the following two expression hold:(
S
N

)
< 1 and

(
θ
ξ

)
< 1. The first is obvious although the second is less so. The reason for

(
θ
ξ

)
< 1 is
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recall that NB is the maximum proportion of the environment that the entire herd may contaminate.

Therefore, the following inequality holds:

1 ⩾ NB =⇒ 1 ⩾
θ

ξ
N =⇒ ξ ⩾ θN =⇒ θ

ξ
⩽ 1

As both these equalities hold
(
S
N

)
< 1 and

(
θ
ξ

)
< 1, therefore:

Ḟ =
κ1κ2µ

γσ
I

(
γσ

κ1κ2µ

(
βh

S

N
+βb

θ

ξ

)
−1

)
+Bβb

(
S

N
−1

)
⩽

κ1κ2µ

γσ
I

(
R0−1

)
−Bβb

(
1−

S

N

)
Therefore, clearly we have demonstrated that Ḟ ⩽ 0 for R0 < 1 as S ⩽ N in Ω. The lyapunov

function has therefore shown that the DFE is globally asymptotically stable (GAS) if Ḟ < 0.

5.2.4 Endemic Equilibrium and its Stability

Let us now consider the SETIB system’s dynamics when the basic reproductive number

is greater than unity (i.e. R0 > 1), what does this mean for the long term solutions? The

definition of the endemic equilibrium (EE = (S,E,E, T , I,B)) for the SETIB system 5.1 is given

below:

S =
Λ

(λ∗∗ + µ)

E =
λ∗∗

κ1
S

T =
γ

κ2
E =

γλ∗∗

κ1κ2
S

I =
σ

µ
T =

γσλ∗∗

κ1κ2µ
S

B =
θ

ξ
I =

θ

ξ

(
γσλ∗∗

κ1κ2µ
S

)
(5.5)

Where, the force of infection for the herd at the endemic equilibrium for the SETIB system

5.1 is denoted by the following expression:

λ∗∗ = βh
I

N
+βB

B

NB

As the below theorem indicates, if the basic reproductive number is greater than unity (i.e.

R0 > 1) then this endemic equilibrium is locally asymptotically stable.

Theorem 5.2.6 When the basic reproductive number is greater than unity (i.e. R0 > 1) the unique

endemic equilibrium EE of the SETIB system with initial condition in the feasibility region Ω is locally

asymptotically stable.
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Proof 5.2.6 The local asymptotically stability of the endemic equilibrium EE can be examined through

analysing the linearised SETIB system (5.1). This Jacobian of our environmental contamination model

is given below:

J(EE) =



−(λ∗∗ + µ) 0 0 −βh
S
N −βb

S
NB

λ∗∗ −κ1 0 βh
S
N βb

S
NB

0 γ −κ2 0 0

0 0 σ −µ 0

0 0 0 θ −ξ


Where λ∗∗ is again the force of infection for the SETIB model (e.g. λ∗∗ = βh

I
N + βb

B
NB

. The

following elementary row operations are preformed on the Jacobian:

R
′
1 ← R1 + R2, R

′
2 ← R2 +

λ∗∗

µ
R1,

R
′
3 ← R3 +

γ

κ1

(
1+ λ∗∗

µ

)R2, R
′
4 ← R4 +

σ

κ2
R3,

R
′
5 ← R5 +

θκ1κ2(λ
∗∗ + µ)

µ( S
N )βhγσ− κ1κ2(λ∗∗ + µ)

R4

Where R
′
i indicates that the new ith row is obtained by combining scalar multiple of other rows.

The Jacobian of the matrix obtained after these row operations is presented below:

J(EE) =



−µ −κ1 0 0 0

0 −κ1

(
1+ λ∗∗

µ

)
0 βh

S
N βb

B
NB

0 0 −κ2
S
N

(
βhγµ

κ1(λ∗∗+µ)

)
B
NB

(
βbγµ

κ1(λ∗∗+µ)

)
0 0 0 µ

(
βhγσ

S
N−κ1κ2(λ

∗∗+µ)

κ1κ2(λ∗∗+µ)

)
B
NB

(
βbγσµ

κ1κ2(λ∗∗+µ)

)
0 0 0 0 ξ

(
B

NB
βbσγ

θ
ξ

κ1κ2(λ∗∗+µ)−βhγσ
S
N

− 1

)


The corresponding eigenvalues of the Jacobian must all be negative to prove that the endemic

equilibrium (EE) is locally asymptotically stable.

λ1 = −µ < 0, λ2 = −κ1
(
1+

λ∗∗

µ

)
< 0,

λ3 = −κ2 < 0, λ4 = µ

(
βhγσ

S
N − κ1κ2(λ

∗∗ + µ)

κ1κ2(λ∗∗ + µ)

)
,

λ5 = ξ

(
B
NB

βbσγ
θ
ξ

κ1κ2(λ∗∗ + µ) −βhγσ
S
N

− 1

)
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As the eigenvalues λ1 < 0, λ2 < 0, λ3 < 0 are all negative it remains to show that λ4 and λ5 are

negative.

Notice that both λ4 and λ5 are negative if:

βhγσ
S

N
+βbγσ

B

NB
− κ1κ2(λ

∗∗ + µ) < 0

If the above inequality holds then λ4 is negative:

βhγσ
S

N
+βbγσ

B

NB
− κ1κ2(λ

∗∗ + µ) < 0 =⇒ βhγσ
S

N
− κ1κ2(λ

∗∗ + µ) < 0

Similarly, if we examine the λ5 eigenvalue we shall see that if the following inequality holds then

λ5 < 0.

B
NB

βbσγ
θ
ξ

κ1κ2(λ∗∗ + µ) −βhγσ
S
N

< 1

Therefore, through rearrange this inequality we see that is equivalent to the following inequality stated

above:

βhγσ
S

N
+βbγσ

B

NB
− κ1κ2(λ

∗∗ + µ) < 0

Before we show this inequality we require the following expression, notice by inputting our explicit

endemic equilibrium values for
(
S
N

)
and

(
B
NB

)
the following equivalent expression for

(
λ∗∗ + µ

)
is

obtained:

λ∗∗ = βh
I

N
+βb

B

NB

= βh
σγ

κ1κ2

(
λ∗∗

λ∗∗ + µ

)
+βb

θ

ξ

(
σγ

κ1κ2

)(
λ∗∗

λ∗∗ + µ

)
=

(
λ∗∗

λ∗∗ + µ

)
µ

(
γσ

κ1κ2µ

)(
βh +βb

(
θ

ξ

))
=

(
λ∗∗

λ∗∗ + µ

)
µR0

Therefore the following equality is obtained:

λ∗∗ + µ = µR0

With the above equality in hand, let us now demonstrate the following inequality:

βhγσ
S

N
+βbγσ

B

NB
− κ1κ2(λ

∗∗ + µ) = βhγσ
S

N
+βbγσ

B

NB
− κ1κ2µR0

= κ1κ2µ

(
γσ

κ1κ2µ

(
βh

S

N
+βb

θ

ξ

B

NB

)
−R0

)

This proves the inequality βhγσ
S
N + βbγσ

B
NB

− κ1κ2(λ
∗∗ + µ) < 0. As both our expression

(
S
N

)
and

(
B
NB

)
are less than or equal to one, hence the following relationship holds:
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γσ

κ1κ2µ

(
βh

S

N
+βb

θ

ξ

B

NB

)
<

γσ

κ1κ2µ

(
βh +βb

θ

ξ

)
= R0

This proves that both λ4 and λ5 are negative, hence all eigenvalues of the Jacobian have negative real

part which proves that the endemic equilibrium EE is locally asymptotically stable in Ω.

5.3 model analysis

Let us compare and contrast the different dynamics in the SETIB model by exploring how

our contamination parameter alter the system dynamics. First, let point out that as discussed

in the mathematical properties element of this chapter, the environmental contamination

compartment of this model B(t) is bounded:

lim sup
t→∞ B(t) ⩽

θ

ξ

(
Λ

µ

)
Where these two parameter control the relative size of both the herd population

(
Λ
µ

)
and the

environmental contamination
(
θ
ξ

)
. For our model to make sense, these two scales must rep-

resent the system accurately. If we were to non-dimensionalise the SETIB model and re-scale

parameters so the population size was regarded as one instead of Λ
µ , then our contamination

parameter B(t) would have a maximum bound of θ
ξ . However, the underlying biology of B(t)

means it represents the proportion of the total maximal proportion of the environment that

can be contaminated; therefore, a natural upper bound of the B(t) compartment is one (hence
θ
ξ ⩽ 1). However, consider what this would mean if θ

ξ = 1, this would mean that a full herd

of infected cattle would then contaminate the entire environment (i.e. B(t) = 1). This does

not make sense biologically as the entire environment would not become fully contaminated,

therefore the parameter (θξ ) should represent the proportion of the environment that would

become contaminated if the entire herd is infected. One paper [175] had somewhat relevant

data, this paper used molecular detection protocols and identified widespread environmental

contamination on a Portuguese farm. Where out of a total of 248 environmental samples, 38

detected M. bovis, although the overall proportion of samples that detected M. bovis was

higher in feeding areas.

Although without further biological investigation into the M. bovis contamination effects, it

is unlikely that realistic parameters would be found for NB, θ and ξ directly. If we cannot

obtain realistic parameters, then we are forced to use the data that is obtainable. If we assume

the maximum environmental contamination is the same as the Portuguese paper[175] then

this implies θ
ξ = 38

248 . As discussed in the literature review, on average M. bovis survives in

the soil for around six months [19], this implies ξ = 1
0.5×365 , using these two parameters

estimates in conjunction we can estimate the contamination level shed by an infectious cattle
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θ = 38
248×0.5×365 = 8.3959× 10−4.

The only remaining parameter that we need to find is βb, although there is no available data

to estimate this parameter. Let us achieve an estimate of this parameter indirectly, if instead

we consider what the environmental contamination parameter βb must be, if we consider

that a proportion of infected cattle p result from environmental contamination. If we consider

that only a modest number of cattle are infected by the environment (e.g. p = 0.05) then if

we consider the force of infection at the endemic equilibrium, then the following equality is

obtained

βbB
NB

βhI
N

= p =⇒ βbB

NB
= p

βhI

N
=⇒ βb = pβh

Therefore, lets use the model parameters from [64] and use a proportion p = 0.05 then we

obtain the following estimate for βb = 2.2831× 10−4. Using these estimates in conjunction

with the other model parameters from [64] the following data table gives our parameter

estimates.

Parameter Description Baseline Value Reference/Comment

Λ Cattle Recruitment 4.56621× 10−2 [64]

µ Natural Death Rate 4.56621 [64]

βh Cattle Infection rate 1.64383× 10−3 [64]

γ Exposure Progression Rate 2.27945× 10−2 [64]

σ Test Sensitive Progression Rate 9.47945× 10−4 [64]

v Infected Progression Rate 1.369863× 10−3 [64]

α Relapsing Progression Rate 1.369863× 10−3 [64]

ξ Contamination Decay Rate 5.47945× 10−3 Estimate/[20]

θ Shedding Rate 8.3959× 10−4 Estimate

βb Environment Infection Rate 2.2831× 10−4 Estimate

NB Maximum Contamination Level 0.153226 Estimate/[175]

Substituting these parameters into the SETIB differential equations 5.1 and numerically

simulating the disease spread we obtain the following results.
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Figure 5.2: Transmission Dynamics of the SETIB model.

The basic reproductive number for the system R0 = 2.7127, as a result the endemic

equilibrium is locally asymptotically stable which can be seen from figure 5.2. The proportional

endemic equilibrium level for the different disease compartment on the farm are the following:

S

N
= 0.36863,

E

N
= 0.01240,

T

N
= 0.20123,

I

N
= 0.417745,

The role of environmental contamination in bTB is further discussed and analysed in chapter

six, where using a simulation model we aim to further understand the role of environmental

contamination in persistent reinfections. As infected cattle contaminate the environment, this

contamination lingers even if the animal is subsequently culled. In the simulation model, we

examine the dual dynamics of environmental contamination and culling, where, by altering

the level of environmental contamination we aim to further understand how this reinfects

cattle. The simulation model incorporates more model mechanisms and therefore gives a

more realistic representation than this environmental contamination SETIB model, therefore

further analysis shall be completed in chapter six.

5.4 conclusion

Cattle infected with bTB shed fomites and infect not just each other but also contaminate the

environment, where the environment will continuously reinfect the herd with the disease.

Therefore, after the herd has been tested and all subsequent positively detected hosts are

removed, the contaminated environment may still infect susceptible cattle within the herd.

In this chapter a mathematical model called the SETIB model for both direct and indirect

transmission is proposed and investigated. The analyse of the system has shown that if the

diseaseâs basic reproductive number is lower than unity (i.e. R0 < 1) the disease will be glob-

ally attracted to the unique disease free equilibrium. Similarly, when the basic reproductive
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number increases past unity (i.e. R0 > 1 the endemic equilibrium becomes locally asymptot-

ically stable. In the model analysis section of this chapter, we discussed the environmental

contamination system parameters βb, θ, and ξ and as there are very few bTB modelling papers

that examine environmental contamination, there exist no parameter values in the literature.

In an effort to understand how the SETIB model operates, we estimate these parameters from

the sparse data sources in the literature and then numerically simulated the disease dynamics.

The SETIB model represents the first step in furthering our understanding of the role of

environmental contamination in the spread of bovine tuberculosis. Environmental contam-

ination may be a significant factor in the spread of bovine tuberculosis and without further

investigation, this factor may be under-represented in future research. From examining the

literature on bTB in Cattle, there remain various gaps regarding the role of environmental

contamination in the spread of bovine tuberculosis. While considering the limited cross-

species direct interaction [66], continual disease resurgence in areas without badgers, the

high longevity of bovine tuberculosis in different materials, and the close proximity of the

confined herd during winter periods, there remains a strong possibility that environmental

contamination could be an under-represented transmission pathway.

Overall, the methodology incorporates a fundamental notation of environmental contamin-

ation in a mathematical form that remains sufficiently mathematically tractable to produce the

systemâs equilibriums and mathematically understand their behaviour. This is an important

first step in understanding the role of environmental contamination, however, there remain

many open questions. The main obstacle in furthering the mathematical modelling of the

environmental contamination mechanic is data and its inherent limitation. Due to difficulties

in quantifying how likely bTB may infect hosts as it decays, this model was forced to re-

parameterise this model by normalising the environmental contamination using a theoretical

maximum. However, if further data regarding environmental survival and infectivity of bTB

were to become available, this model could be reformatted to incorporate this data.

Additionally, with further data sources, the underlying methodology governing the model

could be enhanced to further incorporate the underlying environmental contamination drivers.

The current model incorporates environmental contamination in a rudimental way, where

all factors governing this contamination are aggregated into a singular infection rate and

decay rate. However, environmental contamination is unlikely to act homogeneously across

the farm, as there will likely be disease hotspots (e.g water troughs) through the various

micro-environments of the farm. Further study should examine how to incorporate these

micro-environments into the model, understanding how their varied environmental matrices
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mediums and their different decay will further enhance this model.

To further understand the role of the environment in bTB infections other modelling method-

ologies could also be incorporated. Particularly, an agent-based PDE diffusion simulation may

provide insights, each cow could be simulated to sheds bTB fomites into a farm representation.

This methodology has the added advantage of being able to be tailored to exact farm layouts,

allowing further research into infection-resistant architecture, as potential farms’ layouts

may enhance disease transmission. Through possible readjustment and added biosecurity

measures, farms could be designed to reduce not just bTB but all livestock diseases.
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6
C H A P T E R 6 : S I M U L AT I N G B O V I N E T U B E R C U L O S I S T R A N S M I S S I O N

Throughout Mathematical epidemiology, simulation models have been extensively used to

examine disease dynamics and to investigate control strategies, examples include bovine

spongiform encephalopathy (BSE; e.g. Anderson et al., 1996), foot and mouth disease (FMD;

e.g. Keeling et al., 2001; Morris et al., 2001), avian influenza (e.g. Sharkey et al., 2008), and

classical swine fever (e.g. Boklund et al., 2009). A particularly strong advantage of simulations

is their usefulness in supporting the decision-making process, simulations can explore disease

prevention and eradication programmes by simulating plausible real-world scenarios (Merl et

al., 2009; Szmaragd et al., 2010; Brooks-Pollock et al., 2014). In this chapter, through the use of

simulations and their techniques we examine how the different model mechanics expressed

throughout this thesis work in conjunction. The other mechanics were contemplated and

considered through the lens of ODE dynamical systems, if this model was analysed using the

same methods, the resulting inherent complexity of the set of differential equations would

make the system very complicated to analyse, if not impossible with currently available meth-

ods. However, through the use of simulations and their techniques, much of the underlying

complexity can be mitigated.

Computational models provide a flexible framework for designing different disease control

and prevention strategies that would be incredibly complicated to analyse using dynamical

system techniques. This framework provides researchers with the ability to incorporate a

larger range of disease mechanics without significantly increasing the overall complexity of

the simulation. For example, in this simulation we explicitly incorporate the UK test and

detect strategy into this simulation, a feat that would be incredibly complicated using the

ODE dynamical system framework. Moreover, simulations provide public health officials and

other stakeholders with obtainable predictions to base decisions on, granting them the ability

to design and test different control strategies.

The layout of this chapter starts with a concise and succinct description of the Gillespie

algorithm, the computational techniques used to simulate the inter-herd dynamics of bTB.

From there, we discuss and develop our computational model, where we explicitly incorporate

the different mechanics discussed through this thesis; realistic latency period, wildlife reservoir,

and environmental contamination. After the description of the material and methods behind

the construction of the simulation, two main research themes are explored and investigated:
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1. Infection Proportion and Residual Disease: In this section, we investigate the model

predictions in terms of infection proportion and residual disease under two different

scenarios (with and without culling). Firstly, this simulation quantifies and analysis

the different infection proportions, trying to understand the main routes of infection.

Secondly, as discussed in depth in the literature review chapter, after culling occurs on a

farm there is often residue disease left on the farm. What are the sources of the residual

disease remaining on a farm? This section shall quantify the proportions of future

infections that occur when the herd is in lockdown (e.g. latency, wildlife reservoir, and

environmental contamination). Through a better understanding of these proportions,

researchers will gain further insight into how to mitigate persistent infections.

2. Badger’s Contribution: The second theme examines how an associated wildlife reservoir

contributes to the disease dynamics. This section investigates the change in dynamics

in the model by both fully and partially excluding the wildlife reservoir. This partial

removal of the wildlife reservoir and its influences is achievable in real-world scenarios,

as this represents what would occur if a farm were to increase bio-security measures.

This chapter then concluded by discussing the simulation predictions and implications for the

UK cattle industry bTB control strategy; followed by a discussion regarding the simulation

and its data limitations and a concise summary.

6.1 gillespie algorithm

This section reviews the Gillespie algorithm’s mathematical concepts, describing what this

algorithm is and what they are used for. Simply put, Gillespie algorithms generate one

possible trajectory to a set of stochastic equations. Originally developed by Dan Gillespie in

1977 [176], to simulate biochemical reaction systems both efficiently and accurately while

using limited computational power. This development sparked a modelling revolution and

Gillespie algorithms are now used throughout mathematical biology and various other fields

to simulate complex systems [86]. For example, one use case of Gillespie algorithms pertaining

to this chapter is the modelling of stochastic epidemic dynamics of a population, in which the

number of infectious individuals varies over time. These Gillespie algorithms simulate the

disease dynamics according to a predefined parameterised mathematical model, where this

set of rules governs how the system or individual changes over time. In the previous chapter,

the focus was on deterministic dynamical systems, as these models are deterministic then

given the same initial conditions the model behaves the same each time. Gillespie algorithms

simulate stochastic processes, primarily driven by discrete events taking place in continuous

time, therefore each model output will generally differ.
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The general idea of how the Gillespie algorithm works is twofold; firstly the Gillespie

algorithm selects the next event to occur out of all possible future events. The selection process

is achieved by randomly selecting one event from all possible events, where the probability of

an event being selected is weighted according to its proportional probability. Secondly, the

Gillespie algorithm determines when this event occurs. For example, suppose it is currently

time t, the Gillespie algorithm determines the time step until this event τ, where τ is a random

number according to the exponential distribution scaled by the sum of all possible process

rates. The Gillespie algorithm will then randomly select an event, where the probability of

selection is weighted by the relative likelihood that event will occur. This process is then

iterated continuously for a given time period or until one particular event occurs.

There are numerous texts dedicated to explaining Gillespie algorithms, for further discussion

and concrete examples see [176],[177]. The Gillespie algorithm is now a standard tool used

throughout mathematical epidemiology. The next section discusses the construction of our

simulation and how the various disease mechanics are incorporated.

6.2 materials and methods

The disease dynamics of a herd are modelled by employing a non-linear stochastic multi-agent

model and by using a Gillespie algorithm we can generate a statistically correct trajectory

(possible solutions) of the stochastic equation system. The description of this model is split into

two main sections; firstly, we explain the underlying mechanisms behind the model. Where

we inspect each incorporated mechanic and investigate how they operate in conjunction with

each other. The second half of this description focuses on the data parameters associated with

the different components of the model. As discussed throughout the previous chapter, the

literature has various data inconsistencies and inaccuracies, this section explains how the

various epidemiological parameters have been generated.

6.2.1 Simulation Model Methods

An overview of our non-linear Gillespie algorithm-based simulation works primarily through

the use of differential equations with modified environmental contamination, culling proced-

ure, and demographics. In this simulation, the cattle disease cycle is based on the SEnTmIRC

model, therefore cattle can either be susceptible, exposed, test sensitive, infected, or relapsed,

where there are an n and m arbitrary number of exposed and test sensitive compartments.

Unless otherwise stated the number of compartments (n and m) in the simulation are equal

to one. Whereas, the wildlife reservoir disease cycle operates on a reduced form, as badgers

143



may only be susceptible SB, exposed EB or infected IB.

The different transmission pathways for cattle are as follows; cattle to cattle transmission,

badger to cattle transmission, and environmental contamination transmissions, where each

operates under the mass action principle, therefore the force of infection for this model is

given by:

Sh

(
βhh

Ih
Nh

+βbh
Ib
Nb

+βhB
B

NB

)
Similarly, for badgers the force of infection is given by:

Sb

(
βbb

Ib
Nb

+βhb
Ih
Nh

+βbB
B

NB

)
The deterministic versions of the differential equations that govern disease progression for

this simulation are given below, although, as discussed in the forthcoming section, other

mechanics such as demographics are altered.
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Cattle Differential Equations

dSh
dt

= µhNh −

(
βhh

Ih
Nh

+βbh
Ib
Nb

+βhB
B

NB

)
Sh − (µh + τ1)Sh

dEh1

dt
=

(
βhh

Ih
Nh

+βbh
Ib
Nb

+βhB
B

NB

)
Sh − (µh + τ1 + γh)E1

dEh2

dt
= γhEh1 − (µh + τ1 + γh)Eh2

. . .

dEhn

dt
= γhEhn−1 − (µh + τ1 + γh)Ehn

dTh1

dt
= γhEhn − (µh + τ2 + σ)Th1

dTh2

dt
= σTh1 − (µh + τ2 + σ)Th2

. . .

dThm

dt
= γhThm−1 − (µh + τ2 + γh)Thm

dIh
dt

= σThm +αRh − (µh + τ2 + v)Ih

dRh

dt
= vIh − (µh + τ2 +α)Rh

dCh

dt
= τ1

(
Sh +

n∑
i=1

Ehi

)
+ τ2

( m∑
j=1

Thj + Ih + Rh

)
− µhCh

Badger Differential Equations

dSb
dt

= µbNb −

(
βbb

Ib
Nb

+βhb
Ih
Nh

+βbB
B

NB

)
Sb − µbSb

dEb

dt
=

(
βbb

Ib
Nb

+βhb
Ih
Nh

+βbB
B

NB

)
Sb − (µb + γhb)Eb

dIb
dt

= γbEb − µbIb

Environmental Contamination Differential Equations

dB

dt
= θhIh + θbIb − ξB
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Figure 6.1: A flow diagram model representation of the interconnected dynamics of bTB flowing between

the cattle and badgers populations.

6.2.1.1 Demographics

In an attempt to focus on the internal dynamics on the farm, without considering the added

complexity of demographic dynamics, this simulation keeps the demographics component to

a minimal. As a result, the livestock and wildlife reservoir populations are kept constant. In

the Gillespie algorithm, when either a host from the cattle or badger population dies of natural

deaths µ, the host is immediately replaced with a new susceptible host. A host’s natural death

rate (µh or µB) depends on the individual being considered; cattle (µh) or badgers (µB).

6.2.1.2 Environmental Contamination

In the simulation, badgers transmit the disease directly and indirectly, as they infect cattle

by contributing to contamination of the joint landscape B(t). Infected cattle and badgers

contribute to environmental contamination, after each time period the cattle and badgers

contaminate the environment at rates θh and θb respectively, where this contamination decays
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according to the ξ. Hence, the continuous differential equations that govern environmental

contamination is given by:

dB

dt
= θhIh + θbIb − ξB

Unlikely the other disease mechanics, environmental contamination works continuously

and not stochastically. In the Gillespie algorithm, other disease mechanics such as transmis-

sion work stochastically, for example, the rate at which a cattle transition from the exposed

compartment is random. In contrast, environmental contamination mechanics is better suited

to a continuous approach, so the environmental contamination level is continuously updated

between events. Otherwise, if no distinction between environmental contamination and other

disease mechanics is made, then it would be possible for long period to occur where infectious

cattle do not contaminate the environment which is biologically unrealistic.

This mixed modelling approach permits infected cattle and badgers to continuously con-

taminate the environment at every time period. In the Gillespie algorithm, the environmental

contamination level is updated after every selected event, where the jump time and the

environmental contamination parameters are used to inform the updated contamination level.

6.2.1.3 Culling

Culling operates differently in the simulation compared to how culling has been implemented

previously in this thesis. The culling mechanic should be modelled as close as possible to the

underlying biological situation in order to accurately capture the actual dynamics of the bTB

dynamics within a UK cattle herd. In the simulation, the UK’s test and slaughter strategy are

no longer models culling at a constant rate, instead culling is operated accustom to the UK

test and detection strategy.

Herds are subjected to whole herd testing at least once every two years, representing a herd

in a low incidence area [93]. All hosts detected with bTB are culled immediately and replaced

with susceptible cattle. In the simulation, once a herd is identified as infectious then the herd

is continuously tested every 30 days until two consecutive whole herd tests are passed. Once

cleared, the same herd is then tested again two years later.

6.2.2 Simulation Model Data Values and Time Step

All parameters in this model related to time are defined on a daily basis, where this model

time step variable depends on the number of possible events. The time step used in the

model is a random exponentially distributed variable depending on the total probability of all

possible next events. Otherwise, if we instead fixed the time step, the arbitrary nature of the n
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and m number of compartments in the exposed and test sensitive stages means that the time

step can become arbitrary short, increasing computation time.

In order to account for the bTB dynamics simulated scenarios, each simulation is repeated

using different seed numbers 250 times. This number of iterations allows us to be confident

that the simulation result accurately represents the true underlying distribution of results.

Parameter Description Baseline Value Comment/Reference

µh Cattle Natural Death Rate 4.56621× 10−2 [64]

µb Badger Natural Death Rate 3.044140× 10−4 [178]

γh Cattle Exposure Progression Rate 2.27945× 10−2 Exponential Value/[179]

γb Badger Exposure Progression Rate 7.692307× 10−3 [179]

σh Test Sensitive Progression Rate 9.47945× 10−4 Exponential Value/[179]

vh Infected Progression Rate 1.369863× 10−3 [64]

αh Relapsing Progression Rate 1.369863× 10−3 [64]

ξ Contamination Decay Rate 5.47945× 10−3 Estimate/[20]

θh,θb Shedding Rate 5.997× 10−7 Estimate

βBh,βBb Environment Infection Rate 2.2831× 10−5 Estimate

NB Maximum Contamination Level 0.153226 Estimate/[175]

βhh Cattle to Cattle 6.3× 10−6 [179]

βhb Cattle to Badger 2.45× 10−6 [179]

βbh Badger to Cattle 4.39× 10−6 [179]

βbb Badger to Badger 1.64383× 10−6 [179]

τ2 SICCT Detection rate 0.506 [179]

Likewise to chapter five, we must estimate the environmental contamination parameters

θh, θb, βBb, βBh, ξ and NB. Let us use the same estimation as discussed within that chapter,

although NB must be changed to account for the wildlife reservoir. Chapter five indicated that

NB should represent the maximum upper bound of environmental contamination, although

this bound must be altered if we incorporate a wildlife reservoir as they also contaminate the

environment. The maximum bound for environmental contamination B(t) in this simulation

is:

NB =
θhNh + θbNb

ξ
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Similarly, without further biological investigation into the M. bovis contamination effects, it

is unlikely that realistic parameters would be found for NB, θ and ξ in the literature. If we

cannot obtain realistic parameters, then we are forced to use the data that is obtainable. If

we assume the maximum environmental contamination is the same as the Portuguese paper

[175] then this implies NB = 38
248 . Similarly, as discussed in the literature review, on average

M. bovis survives in the soil for around six months [79], this implies ξ = 1
0.5×365 . Using these

two parameter estimates in conjunction, we can estimate the contamination level shed by

both infectious cattle and badgers if we assume they both contaminate at the same rate (i.e.

θh = θb).

NB =
θhNh + θbNb

ξ
=⇒ 38

248
= θh

110+ 30
1

0.5×365

=⇒ θh = θb = 5.997× 10−6.

6.2.2.1 Initialisation

All scenarios are initiated under the same initial conditions unless otherwise stated. The

system variable’s initial conditions are as follows: out of the average UK herd size of 110 [49],

ten cattle are considered infectious, with the rest being susceptible. For the wildlife reser-

voir population, this population is initialised with 30 susceptible badgers with no infected

badgers [49]. The Gillespie algorithm’s time step between events depends on the number of

possible events. This simulation uses the standard Gillespie algorithm approach of generating

a random time step, this random time step is an exponentially distributed variable with a

shape parameter equal to the total probability of all possible next events. At the beginning

of the simulation (t = 0), the simulation is initialised with the above conditions and is left

to continuously jump forward until either one of two events occurs, 100 years pass or all

infectious sources are removed from the system.

In this chapter, various different scenarios are investigated in order to compare and contrast

the bTB dynamics of each scenario accurately; each different scenario is repeated 250 times

with the same initial conditions. The first of our research themes is analysed in the next

section.

6.3 infection proportion and residual disease

This section investigates two main questions related to the infection proportion and residual

disease found on a farm:

• Infection Proportion: In order to construct a base case that we can compare the other

scenarios to we will first begin by simply generating the system with described initial

conditions. This base case is calculated under two different circumstances; one version
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incorporates the culling mechanic while the other does not. In this section, we shall

compare and contrast the overall infection numbers of these two circumstances and

discuss the culling strategy’s effectiveness.

• Residual Disease and Persistent Infections: As discussed in depth in the literature review

chapter, after culling occurs on a farm there is often residue disease left on the farm.

What are the sources of the residual disease remaining on a farm? This section shall

quantify the proportions of future infections that occur when the herd is in and out

of lockdown (e.g. latency, wildlife reservoir, and environmental contamination). By

better understanding these proportions, researchers will gain further insight into how to

mitigate persistent infections.

6.3.1 Infection Proportion Results

The first base case we shall discuss is the infection proportion with no culling.

Figure 6.2: The disease dynamics of the simulation model with no culling.

Figure 6.2 above represents the average compartment proportions for this simulation model

with no culling. This graphic clearly depicts that infection level tends to some endemic

equilibrium with the following herd percentages:

EE

(
Sh,Eh, Th, Ih,Rh

)
= EE

(
17.36, 1.931, 12.13, 40.38, 37.32

)
Under the literature parameters, this simulation indicates that without intervention, once

disease is introduced to a herd it will continue to grow and spread until it reaches the endemic

equilibrium. In only one out of 250 independent simulations, the disease goes extinct. Let

us now turn our attention to the differing disease transmission pathways that infect cattle;

on average cattle to cattle transmission accounted for 90.1% of all cattle infections, badger to

cattle caused 4.2% of infections, and lastly 5.7% were caused by environmental contamination.
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Let us now compare and contrast this model results with the same simulation, however in

this simulation, a realistic representation of the UK test and cull strategy is incorporated. The

main difference that culling introduces is that the disease is more likely to go extinct. In a

singular simulation iteration, a disease is deemed to have gone extinct if there are currently

only susceptible hosts and the environmental contamination level (B(t)) is below 0.1% of its

theoretical maximum. Out of the 250 simulation runs with culling, the disease went extinct in

76 simulations.

Further investigation of disease extinction revealed an interesting phenomenon, as demon-

strated in figure 6.4, if we look at the distribution of extinction times below, we see that all

simulations went extinct within the first 22 years, with the distribution peaking at 10 years.

Further analysis of this behaviour indicated that the wildlife reservoir disease mechanic

prevented infection extinction from occurring later. Within all simulations in which the disease

went extinct, the infection had not been transmitted to the wildlife reservoir or if it was

transmitted to the badger population, the disease died out before it could gather a foothold.

As simulation time increases over 22 years, it becomes increasingly unlikely that the disease

had not spread to the wildlife population. After the badger population becomes infectious,

this prevents a herd from achieving disease extinction, as the disease continually spills over

from the badger population onto the herd.

Figure 6.3: The distribution of the extinction time of the disease.

The disease continued to re-emerge in the simulation runs in which bTB became endemic

in the wildlife reservoir. The adjusted disease dynamics are represented below, where this

graphic depicts the average compartment proportions for simulations in which the epidemic

did not die out.
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Figure 6.4: The disease dynamics of the simulation model with culling.

Similar to the previous graphic, the disease dynamics depict that infection tends to some

endemic equilibrium with the following herd percentages:

EE

(
Sh,Eh, Th, Ih,Rh

)
= EE

(
84.2, 0.541, 3.36, 11.3, 10.6

)
If we compare the two graphics (Figure 6.2 and 6.4), we do see a stark difference in the

endemic equilibrium values, clearly indicating the effectiveness of the UK culling strategy.

Cattle’s transmission pathways also change if the simulation incorporates culling. In the

simulations, cattle to cattle transmission accounted for 87.05% of all cattle infections on

average, badger to cattle transmission caused 4.85% of all infections, and lastly 8.1% were

caused by environmental contamination transmission. Clearly, incorporating the UK test and

surveillance strategy does affect the infection proportion, as demonstrated by the differences

in the infection proportion between the simulation with culling and without. Further analysis

indicates that during herd lockdown periods, these infection proportions change once again,

as on average cattle to cattle transmission dropped to 78.97%, badger to cattle transmission

increased to 6.35%, and lastly, 14.68% of all cattle infections were caused by environmental

contamination.

This analysis indicated a fundamental property of persistent infection, indeed, cattle to

cattle transmission is the dominant factor in bTB transmission even when a herd is in lock-

down. However, interestingly environmental contamination transmission proportion increased

around threefold when only considering the lockdown period. Recall from the previous sec-

tion in which we discussed the epidemiological parameters for this simulation, environmental

contamination was constructed to be only around 5% as infectious when compared to cattle

to cattle transmission. However during herd lockdown, both environmental contamination

and badger to cattle transmission pathways began infecting a relatively higher percentage of

cattle. Suppose this 5% under-represents the environmental contamination parameters (many
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researchers do believe this is the case) then the relative proportion of new infections caused

by environmental contamination during lockdown could be significantly larger.

In the section, we compared and constructed the average level of infections in cattle,

infection proportion, and disease extinction for the system with and without culling. The

results indicate that the UK test and surveillance strategy is effective, although there is still

considerable room for improvement. In the scenario where no test and surveillance strategy

was implemented, the disease was maintained in nearly all simulation iterations. Moreover,

the average infection level for the 250 iterations was substantial throughout all simulations,

the average percentage of cattle that were susceptible at the end was only 17.36%, while the

other 82.64% of the herd were some form of infected. The situation completely changed if the

UK test and surveillance strategy is implemented, as on average 84.2% of all cattle remained

susceptible, clearly implying that culling substantially reduced the average level of infection.

Further analysis demonstrated that culling also changes the overall infection proportion for

each disease transmission, as culling reduced the relative percentage of infection from cattle

to cattle transmission. This is particularly apparent if we only consider infections induced

during lockdown periods, as the portion of infections caused by environmental contamination

substantially increased from 8.1% to 14.68%.

6.4 badger’s contribution

In this section, we focus on the role of the wildlife reservoir and how the system dynamics

change through both fully and partially excluding the wildlife reservoir. The decoupling of the

badger and cattle populations represents how a herd’s disease dynamics change by increasing

biosecurity measures. In our analysis, we pay particular attention to how decoupling badgers

and cattle can affect disease extinction levels.

To investigate the effects of wildlife reservoir decoupling, the simulation is repeated un-

der five different scenarios, each further reducing the influence of the wildlife reservoir

from the system. The reduction of the wildlife reservoir’s impact is achieved by lowering

badger parameters (βbh,βhb, θb,βBb) by the factor p, where p is one of the following values

[1.0, 0.75, 0.5, 0.25, 0]. By reducing p through these parameters, the behaviour ranges from

no increased biosecurity measures (p = 1.0), slight improvement in biosecurity measures

(p = 0.75), medium improvement in biosecurity measures (p = 0.50), significant improvement

in biosecurity measures (p = 0.25), complete decoupling of these populations (p = 0). The

figure below represents the different distribution of extinction time for the different scenarios:

153



Figure 6.5: The differing distribution of extinction time of our five scenarios, where we vary decouple

the wildlife and reservoir populations.

The simulation demonstrates a crucial principle related to the control of bTB, if we decouple

the badger and cattle populations, on average, the probability that bTB will go extinct increases.

As discussed in the previous section, if p = 1, then the disease goes extinct in 76 out of

the 250 simulations, which means that 30.4% of our simulations do not reach the 100 year

iteration time. The corresponding values for the other p values are as follows:

• For p = 0.75, out of 250 different iterations, in 93 the disease becomes extinct (37.3%).

• For p = 0.50, out of 250 different iterations, in 109 the disease becomes extinct (43.6%).

• For p = 0.25, out of 250 different iterations, in 152 the disease becomes extinct (60.8%).

• For p = 0.00, out of 250 different iterations, in 175 the disease becomes extinct (70%).

Examination of figure 6.5 paints a detailed picture, when p = 1.00 extinctions rarely

happen after the first 20 years as previously discussed. In this discussion, further analysis

demonstrated that bTB had most likely not achieved a foothold in the wildlife reservoir after

this point. However, as we reduce p and decouple the cattle and badger populations, then the

wildlife reservoir has less influence on the dynamics, allowing the disease to become extinct in

more herds and at a later point in time. This simulation indicates that increasing biosecurity

measures would profoundly affect disease dynamics, as a larger portion of herds would be

able to eradicate the disease.

6.5 sensitivity analysis

In this section, we analyse and discuss the underlying sensitivity of our parameter to perturb-

ation with some sensitivity analysis. In this section we examine the sensitivity of parameters

in two main themes:
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1. Domestic Cattle Average Lifespan: In this section we examine the effects of extending

and subtracting the average lifespan of both cattle and badgers, in an effort to further

understand the relationship between shortened domestic cattle lifespan and the lifeline

burden of bovine tuberculosis extensive latency period.

2. Cross Pathway Transmission Rates: In this subsection we examine the overall infection

rates utilised in the simulation model; Cattle, Badger, Cross Species and Environmental.

Attempting to understand how increases and decreases in each of the infection rates,

contribute and affect the overall infection level of the simulation.

The metric used to understand the sensitivity analysis results is the average proportion

of the total herd proportion made up of susceptible cattle in the 15 years. The 15-year cut-

off period was constructed from some experimental analysis of the simulation, this period

gives enough room for the average distribution and its characteristics to alter without being

weighted down from results where the system is at equilibrium. For a baseline the simulation

was run 1000 times to generate the average whiteout any alteration. The average of these

simulations indicates that on average the total average proportion of susceptible in the first 15

years of bTB being introduced was 93.92985%.

In the forthcoming analysis, each different parameter will be examined in relation to this

metric, where we shall examine what effects an increase and decrease of 10% will cause.

6.5.1 Domestic Cattle Average Lifespan:

This section aims to understand the effects of extending and subtracting the average lifespan of

both cattle and badgers. By understanding the relationship between shortened domestic cattle

lifespan and the lifeline burden of bovine tuberculosis’s extensive latency period, farmers will

be more able to actively monitor herd duration. Three different pieces of sensitivity analysis

were conducted; increased/decreased domestic cattle lifespan only, altering badger lifespan

only, and altering both of these simultaneously. In the analysis below, we predominately focus

on the result that only altered cattle lifespan only. As while examining the results, we see that

increasing and decreasing badger lifespan had virtually no effect on overall results. Where the

largest magnitude of difference that badger contributed was an average increase of 0.00023%

in infection proportion.

If we compare this to the overall effect of altering cattle’s lifespan, we see that altering

cattleâs lifespan has a more material influence, but still ill a relatively small impact. There

was an 0.02717% increase in disease portion when cattle lives were 10% longer on average.
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Similarly, there was a 0.02465% decrease in disease portion when cattle lives were 10% shorter

on average. Further analysis of these results showed that when livestock lived longer, there is

a higher chance of the infected cattle becoming infected and infecting other cattle. Whereas,

when cattle have a shorter lifespan, there is a marginally higher chance of the exposed

host dying before becoming infected and infecting other hosts. From this perspective, these

marginal changes follow the expected rank ordering, and the overall magnitude of these

alterations makes intuitive sense.

6.5.2 Cross Pathway Transmission Rates:

The model is significantly more sensitive to alterations of Cross Pathway Transmission Rates

compared to altering the average lifespan of cattle. In this section, we investigate the given

sensitivity of four given scenarios, altering the cattle to cattle transmission, badger-to-badger

transmission, cross-species transmission, and lastly, we alter environmental transmission.

Where alteration to the cross-species transmission includes a 10% increase or decrease to both

cattle to badger transmission and badger to cattle transmission. Let us begin with the model

most sensitive parameter, the cattle to cattle transmission parameter:

If the beta used to model infection between cattle is increased by 10% we see a compensatory

decrease of the susceptible proportion of 2.3690%. Whereas, if this cattle transmission beta is

decreased, there is a corresponding increase to the average susceptible proportion of 1.6781%.

This alteration of infection proportion shows that infection numbers are indeed sensitive to

changes in cattle transmission rates, this makes intuitive sense as the literature indicates that

cattle transmission is the largest component of infection. The model is inherently sensitive to

alteration of this parameter, where similar to the previous analysis, the increases and decreases

align with intuition. As an overall increase in the cattle transmission parameter corresponds

to a decrease of overall susceptible levels of the model. Similarly, an overall decrease of cattle

transmission parameters corresponds to an increase in the number of susceptible hosts within

the system.

Two important differences stood out when we analysed the altered cattle transmission beta:

1. These alterations correspond to the largest magnitude changes in the model and hence

represent the most sensitive model parameter to these changes in cattle transmission

beta. As these overall changes in the model infection proportion represent the largest in

our given analysis.

2. When comparing the different infection proportions under the different scenarios con-

sidered, we see that Cross Pathway Transmission Rates have the highest variance in
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results. Where the standard deviation for the 1000 simulation runs of the average infec-

tion proportion was around 0.632% for the case when infection rates increased. Similarly,

for the scenarios where we decreased the infection beta transmission parameter, we see

there is similar standard deviation of around 0.5892%.

If we instead compare the difference in cattle-to-cattle transmission to the other scenarios

considered (badger to badger, cross-species, and environmental transmission), we see the

model is less sensitive to changes to either badger-to-badger transmission or cross-species

transmission. For example, if we consider the badger-to-badger alterations, we see this makes

virtually no difference to the overall infection proportion. As, if the badger-to-badger trans-

mission is increased by 10% we see a compensatory decrease of the susceptible proportion

of 0.02821%. Similarly, if the badger-to-badger transmission is decreased by 10% we see a

compensatory increase of the susceptible proportion of 0.01393%. Again, comparisons between

cattle-to-cattle transmission and cross-species transmission show that the model is not very

sensitive to changes in cross-species transmissions. As, if the cross-species transmission is

increased by 10% we see a compensatory decrease of the susceptible proportion of 0.043522%.

Similarly, if the cross-species transmission is decreased by 10% we see a compensatory in-

crease of the susceptible proportion of 0.02337%. Lastly, by increasing the environmental beta

transmission by 10% we see a marginal increase to the average infection portion (0.0034291%)

if the beta is increased, and a similar marginal decrease to the infection proportion if the

environment is decreased (0.002776%).

After some reflection this analysis makes sense from an intuitive perspective, cross-species,

badger-to-badger, and environmental transmission pathways should have a smaller material

impact for two reasons:

1. Both cross-species and badger-to-badger transmission parameters infect very few cattle

compared to cattle-to-cattle, instead their detrimental role focus on disease continuation.

These factors cause overflow from the reservoir to continuously preserve or reinfect the

cattle hosts. The small increase in transmission parameters will only cause continuation

in very few herds and as a result, have little influence on infection proportion.

2. Secondly, the sensitivity analysis metric used to compare results (average proportion of

the total herd proportion made up by susceptible cattle in the 15 years) will intrinsically

pick up the difference in cattle population more effectively than the difference in the

badger population. By creating a metric with a similar focus to the UK cattle industry,

we intrinsically focus on cattle infection numbers. A more accurate depiction of how

these other beta transmissions influence the disease proportion would be to analyse

bTB lifespan within the system for the different transmission parameters. As these

transmission parameters are increased and decreased, there would be a corresponding
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extension or shrinkage of disease survival time. However, similar issues would affect

this metric, as badger and cross-species transmissions would more heavenly influence

this metric. After some consideration, our original metric (average proportion of the

total herd proportion made up by susceptible cattle in the 15 years) was selected to

match the focus of the UK cattle industry.

6.5.3 Sensitivity Analysis Summary

The sensitive analysis conducted on this simulation at an overall level replicates the findings

of the literature, the model is most sensitive to changes in the cattle-to-cattle beta transmission.

Where a 10% increase in this parameter induces a 2.3690% increase in the average infection

proportion in the first 15 years. Cattle-to-Cattle transmission beta has by far the largest increase

in the average infection proportion, as the next largest increase was 0.043522% caused by a

10% increase in cross-species transmission. During discussions regarding the results of this

analysis, the model was less sensitive to changes in other transmission parameters partly

because of the nature of the model but also by the nature of the sensitive analysis metric used

to analyse the results. Alternative metrics could have been examined, however each metric

would intrinsically focus on one model characteristic over another. In the end, this metric

was selected to focus on the factors important for the UK cattle industry. Examination of the

model sensitivity metric was deemed out of scope of this thesis and is one avenue of future

improvement.

6.6 simulation model weaknesses

There exist a variety of advantages and disadvantages of the model methodology with

inherited model limitations given by the model structure. In this section we analyse and

discuss various of these weaknesses and limitations, particularly focusing on how these could

be enhanced in future.

6.6.1 Data Limitations

There exists an important caveat to the preceding simulation predictions, related to the data

and parameter estimation techniques used to generate our epidemiological parameters. The

quantifying and modelling of bTB dynamics while considering our different mechanics;

latency, wildlife reservoir, and environmental contamination is not a trivial task (Godfray et al.

2013). The literature uses statistical and analytical methods to analyse existing data rigorously.
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However, the data gaps, significant variation, and discrepancies seen within these data sets

generate parameters with poor predictive powers. Additionally, a compounding factor that

exasperates this problem is the considerable variation in the parameter values used within

the modelling literature. Many models use techniques such as Bayesian partial-likelihood

inference to estimate parameters for specific models (e.g. [179] and [? ]). However, the epidemi-

ological parameters generated from such techniques may provide accurate model predictions

for that exact model, however, these parameters typically do not represent the underlying

biology accurately. As a result, when these parameters are utilised in other models, they may

not generate realistic predictions.

The above simulation has analysed various different underlying aspects of the disease,

although these results rely on these literature epidemiological parameters. Additionally, the

methods used to construct the epidemiological parameters could be significantly improved

after further biological investigation of M. bovis and its survivability in nature. The exact

predictions of the simulation may not perfectly represent the future outcomes of bTB, although

they do indicate general trends and likely possible directions that the disease dynamics may

take. In future, as the availability of accurate and biologically based data increases, these could

be used to improve the accuracy of this simulation’s predictions.

6.6.2 National Infection Spread

One of the greatest weaknesses of this simulation approach is its singular herd view of this

simulation. This simulation model represents a disease spread among a single herd, however,

instead bTB spread occurs at a national level, with spread occurring by livestock trading. The

model was designed to specifically to complement the other transmission pathways discussed

in this thesis, allowing us to examine and understand the different pathways in combination,

otherwise incredibly difficult using the previous dynamical system approach. However, one

aspect that would enhance this model is my incorporating many such herds and implementing

livestock-inducing transmission. Allowing us to view the disease not from a singular herd but

rather from a national level.

One future direction of this chapter therefore would be to alter the simulation to monitor

such regional spread. To complete such an update to this simulation wouldn’t require much

reconstruction, as the model could be run in parallel with N independent systems, each

running in step. All infection induced by livestock trading intervention could be completed

by a simple out of sequence livestock addition, where one host is moved between farms. After

which, by the differential equation viewpoint of these systems, the N-independent parallel

systems could be continued until the next cow is traded. This would represent a simulated
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spread at a national level. However, the high level of complexity and abstraction of this model

would potentially obscure the overall network influence behind other mechanics. Deeper ana-

lysis would be required to examine the overall role of cattle livestock trading in disease spread.

To further examine the role of livestock trading using a dynamical systems approach, would

be difficult but there are currently existing methods to analyse the spread of disease from

a network perspective. There exist several techniques, however, the most prominent such

technique is Mean-field modelling. This approach utilises network modelling to provide a

more flexible framework, where individuals (nodes) may only spread disease to others only if

connected to them in the network. The method works by understanding that calculating how

likely a node is to become infected, relies on pairs. Similarly, to calculating the infection occur

at a pair level required knowledge of triples etc. Mean field modelling works by breaking this

requirement of higher order structure by imposing some structure on this calculation (called a

closure), used to create an approximation for the system. As closures allow the expression of

higher-order groups of nodes (triples, quads, etc) in simpler lower-order structures (pairs and

singles), overall disease movement can therefore be approximated by solving the system with

the given closure.

Mean-field modelling provides an alternative to simulation, allowing us to understand how

disease travels through a network from a dynamical system approach. Similar techniques as the

ones used throughout this thesis can be applied to this system to understand the underlying

equilibrium of the system, and understand how these network systems bifurcate. The main

detriment to the mean-field modelling approach is that the inherent additional complexity

of the network often flows through this process, and the dynamical systems this method

produces are also complex. The additional complexity of these dynamical systems often

acts as a barrier, preventing useful insights from being easily accessible. There is currently

significant research in designing techniques to incorporate multi-host systems and more

complex dynamical structures with network models, that still allow meaningful insights about

the system. One future direction of my work would be to incorporate such new techniques,

allowing the characteristics

6.6.3 Farm Microenvironments

The methodology used to examine the environmental contamination in this thesis represents

an initial step in exploration into the shedding and contraction of bTB from the shared

landscape. As demonstrated in the literature review, clearly contamination of the shared

landscape is an important and opaque transmission pathway. As the literature demonstrates,

direct transmission between cattle and badger interaction is extremely rare, as shown through
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extensive GPS monitoring collars and contact collars study [66] and some other ecologists

have gone as far to even suggest non-existent [80]. However, Phenotype studies indicate that

bTB is continuously in a state of spilling over and spilling back between the target population

and reservoir [75]. Clearly, transmission is occurring in the shared landscape, where infected

hosts shed fomites, contaminating the shared landscape.

The methodology implemented in the simulation was designed to act as a comparison for

the dynamical system approach used in this thesis. However, the approach of only considering

the entire landscape as one compartment, this approach has various unrealistic assumptions

that we will discuss below:

• Equal Proximity Assumption: By the assumptions made in the model, we assume that

each cattle interact with others and the joint environment equally. This assumption

clearly does consider possible segmentation of herds (pre and post-parturition cattle)

or the local preference of cattle. A more advanced environmental mechanism would

consider the different micro-environments of the farm and the selective localisation that

different hosts occupy. There are a variety of ways to better integrate the local disease

dispersion within a farm. The simplest of these is to separate the compartments, each

representing the different microenvironments of the farm. However, a more mathem-

atically sophisticated approach is to utilise some diffusion PDE models to map the

continuous spread of fomites [? ].

• Temporal Element: In order to accurately consider how bTB is shed throughout the farm

it is important to understand the potential temporal implication. Direct transmission

introduces a seasonal component to transmission due to farm housing practices. The bulk

of UK cattle are permanently housed indoors during the winter months, whereas cattle

graze on pastures during the spring and summer months. When housed indoors, the

increased average herd density caused by cramped conditions elevates direct inhalation

risk [19]. Moreover, cattle contaminate/interact with the shared environment with greater

frequency when housed indoors [19]. Where conversely, the improved ventilation and

roaming area of pastures during the summer months imply a lower incidence rate

among cattle. Models within the literature rarely consider this seasonality effect and

often omit the differences in transmission between indoor and outdoor. One possible

future direction of this work is to incorporate seasonality and incorporate the different

micro-environments within a farm; herd separation in livestock barns, birthing pens,

isolated cattle and milk processing areas.
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6.6.4 Residual Disease

Earlier discussions indicated the associated data limitations regarding the model parameters

required to accurately examine the spread of bTB. Currently, the model has various errors

induced by the poor quality of data, if further studies collected and cleaned new biometric

data this would increase the model performance. If the data was more accurate then the

next avenue of study would be to try and accurately quantify the disease proportion of each

transmission pathway.

The direction I would focus this analysis would be to further understand the roots of

re-infection. What factors are responsible for preventing disease eradication and how can

these be mitigated? Using this model with standard UK practices (disease surveillance, culling,

pre and post-movement test etc), I would simulate herds to understand what is the average

bTB lifespan with a farm and understand how the other transmission pathways (Cross species

interactions, contamination of the shared landscape, or cattle livestock trading, etc) influence

disease survivability and resurgence. This would be a simplistic alteration to this simulation,

where results would not just calculate if an infection occurs but would also categorise that

type of infection. This analysis would provide researchers with an understanding of the

most important pathways and allow the construction of optimal disease eradication protocols.

However, due to these data limitations, accurately producing this analysis is not possible with

this method.

6.7 conclusion

In this chapter, we developed a computational model based on the Gillespie algorithm frame-

work to simulate bTB in a herd of UK cattle. This simulation explicitly incorporated the

mechanics discussed in this thesis; realistic latency period, wildlife reservoir, and environ-

mental contamination. The simulation aimed to further understand the following research

themes; infection proportions and residual disease, badger’s contribution and the effect of

improving bio-security.

A succinct and concise summary of results shows that culling is adequate, but there still

exists room for improvement. The simulation demonstrated that the residual disease is still

predominately caused by cattle to cattle transmission under the current epidemiological

parameters from the literature. However, badger to cattle transmission and environmental

contamination becomes more substantial factors when the herd is in lockdown. The next theme

we investigated was biosecurity and wildlife reservoirs, the result showed that increasing

biosecurity measures also increased the probability of extinction. By decoupling the badger
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and cattle populations, we reduce the spillover and spillback between these populations,

increasing the likelihood that the disease will become extinct. The last theme investigated was

the relationship between the test sensitivity of the SICCT test and realistic latency periods.

The result demonstrated that more test-sensitive cattle were identified and culled by altering

the latency period distribution (Erlang distributed) shape parameter, subsequently reducing

infection levels.
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Part III

D I S C U S S I O N A N D C O N C L U S I O N



7
C H A P T E R 7 : G E N E R A L D I S C U S S I O N A N D C O N C L U S I O N

The primary aim of this thesis was to gain further qualitative and quantitative insights into

bovine tuberculosis’s (bTB’s) persistent disease cycle. In each chapter, we have constructed

mathematical models aiming to understand why bovine tuberculosis (bTB) remains a complex

and challenging livestock disease in the UK’s cattle industry. In the following sections of

this chapter, we shall discuss the various limitation of this thesis, focusing predominately on

data limitation and their effect on model predictions. After which, we will summarise the

insight gained from each chapter while also illustrating both, possible future directions and

the associated obstacles hindering these directions. This chapter will then conclude with a

short thesis summary, recapping key issues addressed and examining the current UK’s bTB

control strategy.

7.1 data limitation

In order to utilise the models constructed in this thesis, various data sets from governing

bodies (DEFRA), invested parties (e.g. OIE, WHO), and the wider literature must be collected,

processed and then implemented. These datasets enable modellers to answer high-impact

questions without investing a considerable amount of time and resources in primary data

collection themselves [147], although there are limitations in using data for purposes beyond

its original scope.

Several challenges arose in my attempts to gather data parameters that accurately depict the

underlying biological situation. Firstly, data sets that aimed to accurately capture the underly-

ing biology for various integral epidemiological parameters were either scarce, non-existent,

or not freely available. Without informative quantitative predictions of parameters, there can

be little faith in our model’s predictions. However, how do researchers obtain estimations for

the epidemiological parameters for their models?

Throughout the literature, hard to obtain epidemiological parameters have increasingly

been estimated using parameter interference techniques such as bayesian likelihood methods.

These methods have been employed throughout the bovine tuberculosis literature to generate

many modelling parameters. Most of these techniques use DEFRA’s bTB incidences data to

estimate epidemiological parameters for a given epidemiological model. There lie two main
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problems with this approach:

Firstly, for these methods to produce accurate and informative epidemiological parameters,

the underlying data source must be clear with no inconsistencies. However, as discussed ex-

tensively in the literature review, the bTB properties of a particular farm depend on numerous

factors; farm management type and style, herd characteristics, the proximity of associated

wildlife reservoir, etc. Moreover, the poor sensitivity and specificity of the SICCT test means

that we can not be confident in the overall accuracy of the incidence of disease rates. As a

result, incident rates of bTB are an exceptionally poor data source to estimate parameters from.

Secondly, parameter inference techniques create estimations of our epidemiological para-

meters for specific underlying models. The significant variability of mechanisms included and

excluded from different bTB models is extreme, as model complexity varies from simplistic

models (SETIRC model) to models incorporating a multitude of competing disease mechanics.

As a result, the estimation of the epidemiological parameters varies wildly based on the

different epidemiological mechanisms incorporated. For example, a bTB epidemiological

model examining persistent reinfections, which excludes the effect of a wildlife reservoir,

would likely have a significant reduction in the estimation of sensitivity and specificity of the

SICCT test. This model would only consider reinfection from undetected cattle and would

exclude the spillover from a wildlife reservoir. As a result, there exists a myriad of inconsistent

estimations for the various epidemiological parameters for bTB models within the literature.

Making it extremely challenging to pick valid disease parameters for the models used in this

thesis.

In the future, more experimental data collection is required to fully understand the inter-

workings of bovine tuberculosis. Understandably, these experiments would take a considerable

amount of time and resources, however, they would be a prudent investment, as with this

knowledge researchers could mitigate some of bTB associated costs. Moreover, a more realistic

suggestion, that could be enacted in a shorter time frame, is for the modelling literature to

become more transparent regarding parameter origins. The entire mathematical modelling

community should improve their transparency regarding modelling parameters’ origins.

Modelling papers could achieve this by simply adding an additional key in data tables, stating

where this data came from and how it was generated. Researchers would then be able to

quickly determine if the associated parameter is applicable to their model or not.
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7.2 model limitations

Throughout this thesis, epidemiological models have been used to understand disease trans-

mission mechanisms and to assess the impact of alternative control strategies. Generally,

the overall effectiveness of control mechanisms are typically assumed from expert opinions

rather than from model predictions. The actively managed nature of bTB means it should be

potentially possible to estimate the efficiency of control strategies directly from epidemiolo-

gical data. However, imperfect data sources that obscure a model’s ability to make accurate

predictions are not the only modelling limitation. As we shall see, mathematical models will

always be subject to limitations due to their construction.

By the nature of modelling, some form of simplifying assumptions about the complex

processes that drive disease transmission dynamics must be made [180]. As no matter how

realistic a model is, it will never be perfect. A model will always have to make some assump-

tions and simplifications regarding its own mechanics; therefore, all models will inherently

have limitations and as a consequence, their prediction will never be perfect. However, the

power of mathematical modelling doesn’t lie in just its predictions, as scientific models rep-

resent a system of ideas, events, or processes in an informative manner, allowing insights

to be gathered about their patterns, structures, or functions. Modelling insights regarding

how a system operates are equally, if not more helpful, as researchers can translate these

scientific discoveries into practical applications. In the case of the UK’s cattle industry, insights

and understanding of bTB mechanics from modelling enhances humans’ knowledge base

regarding the disease. From this knowledge base, researchers draw conclusions on how best

to construct control strategies, allowing humans to mitigate and ultimately eradicate bTB once

and for all.

7.3 thesis summary and possible future directions

The model limitation seen within this thesis will require considerable further refinement

before directly informing government policy. These models aimed to address and create

further understanding regarding one of bTB’s primary open questions:

"What are the underlying mechanics of bTB that facilitate persistent reinfections exhibited

in UK’s cattle herds?"

Through further understanding of the qualitative and quantitative factors that influence

persistent reinfections, government officials will be able to translate these scientific insights

into practical interventions that will ultimately reduce the burden of endemic disease on cattle
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production systems [180]. In the forthcoming sections, we discuss the different mechanics

examined throughout this thesis (e.g. latency, wildlife reservoir, and environmental contam-

ination), discussing the insights gained from each chapter and what future work should be

carried out.

However before progressing onto this summary, let us illustrate one consistent improvement

for all models seen in this thesis. In the above discussion we have illustrated the imperfect

nature of parameter estimation by using bTB’s incident rates. The high variance, competing

factors, and unobserved nature of many of the different transmission pathways make incid-

ence rates an inadequate data source. However, to properly investigate each of the mechanics

discussed throughout this thesis, similar parameter estimation techniques would need to be

performed for each model. This analysis would improve model parameters accuracy, com-

pared to those available within the literature. Such analysis would be particularly important

for our simulation, as this simulation incorporates the most significant number of modelling

mechanisms; therefore, its current parameters are most likely to have compounding parameter

errors. Moreover, this analysis would produce relevantly realistic parameter estimation for

our other models studying the other modelling mechanics. Furthermore, as high resolution

detailed epidemiological data that focus on the underlying biological mechanisms become

available, then these could be incorporated into this analysis, further improving our parameter

estimation.

7.3.1 bTB Latency Mechanic

Throughout chapter three, we examined how latency influences persistent infections. As the

literature indicates, one of the major recurring themes of the infection cycle is ’undiagnosed

infections’, these have a profound effect on both the disease transmission dynamics and the

surveillance performance at the industry level. Undiagnosed infections contributed to the

’silent’ spread of the disease both within and between cattle herds. At a herd level, there is

evidence that many factors including host characteristics, testing interval, and physiological

stresses, can potentially contribute to a lack of response from the standard diagnostic test.

Moreover, the high variability in the latency period obscures disease transmission, as cattle

may harbour the infection for years before becoming infectious themselves. In this chapter,

we further incorporated the variable latency mechanic into the standard prototypical model

by altering the latency period distribution from the standard exponential distribution to the

Erlang distribution. As demonstrated from the model’s analysis, this does alter the dynamics

by drawing out the time until solutions reach the endemic equilibrium. However, the system

still bifurcates according to a transcritical bifurcation, where the long term behaviour of solu-
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tions depends entirely on the basic reproductive number R0. Where the endemic equilibrium

infection level is intrinsically tied to this threshold value, as the basic reproductive level

reduces to one, the infection level reduces to zero.

The main limitation of this model is the lack of data regarding latency period distribution.

There is an extensive discussion in the literature regarding latency period distribution and the

various factors that affect it, although remarkably little in the way of quantitive discussion of

the range. Further investigation of such latency period distribution is required to enhance this

model’s potential predictive power.

7.3.2 Wildlife Reservior

In chapter four, we examined the influence of the wildlife reservoir, attempting to understand

the dual dynamics of spillover and spillback between the badger and cattle population. The

presence of a wildlife reservoir complicates disease surveillance, as their presence masks

the true roots of infection. In this chapter, we developed a wildlife reservoir system close

to a vector host system; in this model analysis we described the long term behaviour of the

system’s solutions from the perspective of system equilibrium. This analysis focuses on the

system’s equilibria and under what conditions these equilibria are stable.

This model could see considerable improvement, as some of the model assumptions do not

accurately reflect bTB’s true dynamics. In future, to better understand the transmission of

bovine tuberculosis this model should be reframed as a patch model. In these patch models,

hosts and wildlife interact in distinct and discrete spatial patches where the wildlife hosts

would be able to migrate between the different patches infecting other badgers setts and cattle

herds. Moreover, these models would incorporate not just the migration disease mechanics

but could also be adapted to incorporate environmental contamination as well.

7.3.3 bTB Environmental Contamination

In chapter five, we turned our attention to bTB’s environmental contamination. A vital aspect

of this thesis was trying to understand the role in which environmental contamination in the

within-herd spread of bTB. Environmental contamination is heavily discussed throughout

the literature, although this factor is almost excluded from the modelling literature. The

literature clearly discusses that cattle herds and badgers don’t interact directly, rather the

two populations maintain the disease by interacting with the shared landscape. For example,

recall from the literature review that in a longitudinal observational study [66], ecologists

monitored 421 collared cattle for a total of 8551 collar days, 53 contact-collared badgers for
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8308 collar days, and 54 GPS-collared badgers for 7176 days. The results of this longitudinal

observational study found no cattle and badger interactions.

Conversely, phenotype studies indicate that bTB is continuously in a state of spilling over

and spilling back, as in [181], as 40% of the badger samples taken were indistinguishable

from the sample sequenced in cattle implying close inter-community spreading occurs [181].

Undoubtlfully, cattle and badgers interact through the shared landscape, although this factor

has been almost excluded from the modelling literature. In the literature, most reinfections

are assumed to be caused by either undiagnosed cattle or badger reinfection.

Environmental contamination is an essential avenue for further exploration as currently

there remain numerous open questions. In future, like the other disease mechanisms, more

data collection is required, which is especially true for environmental contamination, as

within the literature the is very little data regarding modelling parameters. Moreover, similar

work needs to be completed in the modelling side of the literature, as various crucial factors

are excluded from the literature models. Our SETIB environmental contamination model

could be improved in future by incorporating the level of bacterium concentration in which

cattle contract the disease, as it is unlikely to be linear as our model suggests. Similarly, the

different micro-environments on a farm should be investigated, as the infection level from

contamination with likely vary. For example, contamination hot spots will likely exist; water

troughs, cattle feeders, and bedding areas.

7.4 simulation model

In chapter six, we use simulations and their techniques to examine how the different model

mechanics expressed throughout this thesis work in conjunction (e.g. latency distribution,

wildlife reservoir, and environmental contamination). The results indicate that the UK’s sur-

veillance and cull strategy is adequate, but there still exists room for improvement. Bovine

tuberculosis is predominately caused by cattle to cattle transmission, using current epidemi-

ological parameters from the literature. However, the other factors still exert a substantial

influence (e.g. badger to cattle and environmental contamination transmission), especially

when the herd is in lockdown. In our investigation of biosecurity measures and wildlife

reservoirs, we determined that increasing biosecurity measures radically reduces infections

as the biosecurity measures increase the probability of extinction. Through decoupling the

badger and cattle population, we reduce the spillover and spillback between these populations,

increasing the likelihood that the disease will become extinct.

170



To truly leverage the scientific capacity of this simulation, parameter estimation techniques

would need to be performed on this simulation. In future, as data sets that accurately represent

the underlying biology become available, we could incorporate these within the simulation to

answer further biological questions. Much more study into residual disease and environmental

contamination is needed to truly understand the hidden disease pathways of bTB.

7.5 thesis conclusion

Bovine tuberculosis continues to undermine the sustainability of the UK’s cattle industry,

despite enormous advances in our understanding of its critical epidemiological features.

Overall, an essential criterion for designing effective bTB control programs relies on a clear

understanding of the underlying disease mechanism. To stop the cycle of persistent reinfection

seen with cattle herds throughout the southwest of England, requires a transparent picture

of the associated route of reinfection. This thesis has only begun to reveal the underlying

qualitative and quantitative route of reinfection and much more work is needed. For public

health officials to meet the UK’s target of being "Officially Bovine Tuberculosis Free (OTF)

status for England by 2038", various problems must be addressed. Overall, the analysis in this

thesis has demonstrated that the key to creating a more effective bTB control programme is to

address infection in wildlife hosts to prevent sporadic re-introductions. By decoupling wildlife

reservoirs and host populations, we would mitigate a substantial factor in the reinfection cycle.

This could be achieved through a two-fold approach, firstly the UK government could force

farmers to improve biosecurity, preventing infectious badgers from entering farm pastures.

Secondly, further investigation and investment in a wildlife vaccine are needed.

The analysis also indicates that further research and data collection are required concerning

the transmission pathways, particularly regarding the effect of environmental contamination.

By increasing the availability of high-quality datasets that aim to model the underlying

biology of epidemiological parameters accurately, researchers would enhance their parameter

estimations. Moreover, this data would shed light on the various transmission mechanisms

contributing to persistent reinfection. Notably, further analysis of environmental contamination

must be conducted, as currently, very little analysis of its quantitive effects on disease

transmission has been performed. With this research, public health officials could develop

more targeted and cost-effective approaches to controlling bTB at the herd and industry levels.

What we can say with some certainty; bovine tuberculosis is a complex disease and without a

change in strategy, new diagnostic tools, vaccine discovery, or an enhanced understanding of

transmission pathways, bTB is likely to remain problematic for many years to come.
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Part IV

A P P E N D I C E S



A
A P P E N D I X A

In this appendix we investigate the model properties of the SEnTmIRC system (3.4), wWhere

we preform the same system analysis as was applied in the SEnTIRC system (3.3), on the

SEnTmIRC system (3.4).

Theorem A.0.1 All solutions for our SEnTmIRC system 3.4 which have initial conditions originating

within Rn+m+4
+ are bounded.

Rn+m+4
+ = {N(S,E1, . . . ,En, T1, . . . , Tm, I,R,C) | S ⩾ 0,Ei ⩾ 0, Tm ⩾ 0, I ⩾ 0,R ⩾ 0,C ⩾ 0}

∀i ∈ {1, . . . ,n}, ∀j ∈ {1, . . . ,m}

Proof A.0.1 Let N
(
S(t),E1(t), . . . ,En(t), T1(t), . . . , Tm(t), I(t),R(t),C(t)

)
be an arbitrary solu-

tion of the SEnTmIRC system 3.4 with a non-negative initial conditions. The population of the herd is

given by N(t), where

N(t) = S(t) +

n∑
i=1

Ei(t) +

m∑
j=1

Tj(t) + I(t) + R(t) +C(t)

Hence,

dN

dt
= Λ− µ(S+

n∑
i=1

Ei(t) +

m∑
j=1

Tj(t) + I+ R+C) = Λ− µN(t)

By Grönwall lemma, if x(t) is a function satisfying dx
dt ⩽ ax+ b, where x(0) = x0 and both a and

b are constants then for all time t ⩾ 0,

x(t) ⩽ x0e
at +

b

a

(
eat − 1

)
therefore,

0 ⩽ N
(
S(t),E1(t), . . . ,En(t), T1(t), . . . , Tm(t), I(t),R(t),C(t)

)
⩽

Λ

µ

(
1− e−µt

)
+N(0)e−µt

Hence,

0 ⩽ lim sup
t→∞ N(t) ⩽

Λ

µ

Therefore all solutions of the SEnTmIRC system 3.4 that originate in Rn+m+4
+ are attracted to the

following positive invariant region,

Ωn+m =
{
N(S(t),E1(t), . . . ,En(t), T1(t), . . . , Tm(t), I(t),R(t),C(t)) ∈ Rn+m+4

+ : N ⩽
Λ

µ

}
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The SEnTmIRC system 3.4 is therefore bounded. Additionally, since lim supN(t) is independent of

the initial conditions then the system is said to be uniformly bounded. As all solutions beginning in

our positive invariant region Ωn+m are trapped there, the analysis will be restricted to this feasibility

region.

Now that we have shown that the solutions are bounded the next stage is to show that the

SEnTmIRC model solutions are well posed (i.e. exist and are unique depending on initial

conditions).

Theorem A.0.2 The SEnTmIRC system (3.4) is well posed.

Proof A.0.2 As the right hand side of system 3.4 are continuously differentiable functions on

Rn+m+4
+ = {N(S,E1, . . . ,En, T1, . . . , Tj, I,R,C) | S ⩾ 0,Ei ⩾ 0, Tm ⩾ 0, I ⩾ 0,R ⩾ 0,C ⩾ 0}

∀i ∈ {1, . . . ,n}, ∀j ∈ {1, . . . ,m}

and as the above theorem indicates that the first derivative of our system is uniformly bounded. This

condition implies that the system equation are Lipschitz continuous and with this condition, we can

apply the Picard Lindelöf theorem that proves a unique solution exists for the SEnTmIRC system (3.4).

The SEnTmIRC model is therefore well posed and any solution with initial conditions

originating in Ωn+m will remain in this feasibility region for all future time. Now, lets turn

our attention the the system equilibrium and the basic reproductive number that bifurcates

the system.

a.0.1 Disease free equilibrium DFE and the Basic Reproductive Number R0

The disease-free equilibrium DFE for the SEnTmIRC system (3.4) is given by:

DFE = (S,E1, . . . ,En, T1, . . . , Tm, I,R,C) =

(
Λ

µ
, 0, . . . , 0

)

Where, the over line notation denote that the compartment is at equilibrium (e.g. S represents

the susceptible compartment at equilibrium).

Theorem A.0.3 For the given SEnTmIRC system (3.4), where initial conditions originate in the

positively invariant set Ωn+m, the basic reproductive number is:

R0 =

(
γn

κn1

)(
σm

κm2

)
βκ4

(κ3κ4 − vα)

Proof A.0.3 The basic reproductive number R0 is calculated by the next generation matrix approach

using the Van den Driesche and Watmough approach. This method has been extensively discussed in
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section 2.3.3.3 and therefore this analysis shall be condensed.

The basic reproductive number R0 is the spectral radius of the next generation matrix given by

FV−1, hence the basic reproductive number is denoted by:

R0 = ρ(FV−1)

Where the matrices F and V are generated from the linearization of the system equations evalu-

ated at the disease free equilibrium. Where the two matrices F and V decouple the system, as F’s

compartment are only the parameters which induce new infections and the matrix V compartments

are all other parameters. Although, lets consider the form that the F matrix for our arbitrary sys-

tem that has n-dimensional latency compartment. If the matrix order is considered to be in order

E1, . . . ,En, T1, . . . , Tm, I,R,C then the matrix F will be a n +m + 3 dimensional square matrix.

Although as there exist only a single infection transmission pathway (cattle to cattle) in the F matrix,

therefore, it has the following simple formula,

F[i,j] =


β if i=1 and j=n+m+1

0 otherwise

Where this simply confirms that all new infectious enter into the first exposure compartment E1 and

are subsequently recorded as such.

F =



0 . . . 0 β 0 0

0 . . . 0 0 0 0

...
...

...
...

...
...

0 0 0 0 0 0


Therefore, as there only exist one non-zero element of matrix F, the next generational matrix FV−1 will

entirely consist of one row of the inverse of the matrix V. Namely, as the only non-zero element (β) of

F is positioned as F[1,n+m+ 1] this implies the next generation matrix will consist of β times the

n+m+ 1 row of the inverse of matrix V. Hence, the next generation matrix has the following form:

FV−1 = β



V−1
[n+m+1,1] V−1

[n+m+1,2] . . . V−1
[n+m+1,n+m+3]

0 0 . . . 0

...
...

...
...

0 0 0 0


By the properties of eigenvalues, if the next generation matrix FV−1 has the above form then the

spectral radius of this matrix FV−1 is given by the first element of the next generation matrix (i.e.
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ρ(FV−1) = a11 ∈ FV−1). This element corresponds to the the first element of the n+m+ 1 row of

the inverse of matrix V and hence, the basic reproductive number for the system R0 is given by:

R0 = ρ(FV−1) = βV−1
[n+m+1,1]

Lets us now turn our focus to generating the inverse of the system V matrix for the system with n

arbitrary exposure compartments and m test sensitive compartments. First let us begin my commenting

on the last row of our matrix V, this corresponds to the cull compartment and it wont effect the

n+m+ 1 row of the inverse of matrix V. As a result, we will excluded this row to reduce matrix size

in this discussion.

In our analyse of matrix V, we consider the matrix in its associated block form. Where a block matrix

is a matrix whose elements are themselves matrices, which are called sub-matrices. By allowing a

matrix to be viewed at different levels of abstraction, the block matrix viewpoint enables elegant proofs

of results. Let us first define our matrix V as a block matrix, consisting of 4 sub-matrices , namely

A,B,C,D.

V =

 A B

C D


The sub-matrix A only incorporates the associated exposure compartments and the test sensitive

compartments. As a result, the matrix is the dimension n +m square matrix, that is in a lower

triangular form.

A =



κ1 0 0

−γ κ1 0

0 −γ κ1

. . .

κ1 0 0

−γ κ2 0

0 −σ κ2

. . .

κ2 0 0

−σ κ2 0

0 −σ κ2


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Where the matrix is generated using the following function:

A[i,j] =



κ1 if i = j ∀i, j ∈ {1, . . . ,n}

−γ if i = j+ 1 ∀i, j ∈ {1, . . . ,n}

κ2 if i = j ∀i, j ∈ {n+ 1, . . . ,n+m}

−σ if i = j+ 1 ∀i, j ∈ {n+ 1, . . . ,n+m− 1}

0 otherwise

The sub-matrix B represents the transfer (excluding new infected hosts) of hosts coming from either

the infected or relapse compartments to the exposure and test sensitive compartments. As the system of

differential equation for the SEnTmIRC system (3.4) show, no such transfer occur. Therefore, it should

be clear to see that the sub-matrix B is a zero matrix of dimensions [n+m, 2]:

B =


0 0

...
...

0 0


The sub-matrix C similarly represents the transfer of hosts from the exposure and test sensitive

compartments to either infected or relapse compartments. Through examining the SEnTmIRC differ-

ential equations, it can be seen that this only occurs when host progress from the test sensitive Tn

compartment to the infected compartment I. Therefore, the sub-matrix C has only one non-zero element

σ at the position [1,n+m].

C =

 0 . . . 0 −σ

0 . . . 0 0

 C[i,j] =


−σ if i = 1 and j = n+m

0 otherwise

Lastly the sub-matrix D represents the transfer between the infected or relapse compartments.

Through examining the SEnTmIRC differential equations, it can be seen that the sub-matrix D has the

following form:

D =

 κ3 −α

−v κ4


In this block form, the next step in the analysis is to use a standard block form inversion, where the

following formula allows us to obtain the inverse for our matrix V.

Theorem A.0.4 Let A ∈ Fn×n,B ∈ Fn×m,C ∈ Fm×n, and D ∈ Fm×m. If A and D−CA−1B

are non-singular, then the following formula holds:
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V−1 =

 A B

C D


−1

=

 A−1 + A−1B
(

D − CA−1B
)−1

CA−1 −A−1B
(

D − CA−1B
)−1

−
(

D − CA−1B
)−1

CA−1
(

D − CA−1B
)−1


For a proof of this statement please see [174]. As our block matrix B is the zero matrix, therefore we

must show that A and D are non-singular for this formula to hold, which will be completed in this

analysis. Additional as the block matrix B is the zero matrix, this above condition can be simplified to

the following:

V−1 =

 A B

C D


−1

=

 A−1 0

−DCA−1 D−1


Therefore, let us begin by constructing the inverses for the our defined sub-matrices A,D to construct

A−1,D−1, and −DCA−1.

By the properties of matrices, the inverses of our sub-matrix A is defined as follows:

A−1 =



1
κ1

0 0 · · · · · · 0

γ

κ2
1

1
κ1

0
...

γ2

κ3
1

γ

κ2
1

1
κ1

...
...

...
...

. . .
...(

γn

κn
1

)(
σm−3

κm−2
2

) (
γn−1

κn−1
1

)(
σm−3

κm−2
2

) (
γn−2

κn−2
1

)(
σm−3

κm−2
2

)
. . . 1

κ2
0 0(

γn

κn
1

)(
σm−2

κm−1
2

) (
γn−1

κn−1
1

)(
σm−2

κm−1
2

) (
γn−2

κn−2
1

)(
σm−2

κm−1
2

)
σ
κ2
2

1
κ2

0(
γn

κn
1

)(
σm−1

κm
2

) (
γn−1

κn−1
1

)(
σm−1

κm
2

) (
γn−2

κn−2
1

)(
σm−1

κm
2

)
· · · σ2

κ3
2

σ
κ2
2

1
κ2


Where this inverse can easily be verified and can be proven using straight forward induction.

The next sub-matrix we find the inverse for is D:

D =

 κ3 −α

−v κ4

 and D−1 =
1

κ4κ3 − vα

 κ4 α

v κ3


Given the inverse for both our sub-matrices A and D, the next step to obtain the next generation

matrix is to calculate −D−1CA−1, and given that −D−1C is given by:

−D−1C =
1

κ4κ3 − vα

 0 . . . 0 κ4σ

0 . . . 0 vσ


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Hence,

−D−1CA−1 =
1

κ4κ3 − vα


γnσm

κn
1 κ

m
2
κ4

γnσm−1

κn
1 κ

m−1
2

κ4 . . . κ4σ
κ2

γnσm

κn
1 κ

m
2
v γnσm−1

κn
1 κ

m−1
2

v . . . vσ
κ2


Therefore, this last result is the final step in calculating the next inverse of our matrix V, therefore

we are finally able to calculate the next generation matrix FV−1. As discussed previously, the next

generation matrix consists of the n+m row of the inverse of V, therefore it consists of the first row of

both −D−1CA−1 and D−1.

FV−1 =
β

κ4κ3 − vα



γnσm

κn
1 κ

m
2
κ4

γnσm−1

κn
1 κ

m−1
2

κ4 . . . κ4σ
κ2

κ4
β

α
β

0 0 . . . 0 0 0

...
...

. . .
...

...
...

0 0 0 0 0 0


Finally by the products of eigenvalues, the spectral radius of the next generation matrix is clearly its

first element and hence the basic reproductive number for the SEnTmIRC system (3.4) is as follows:

R0 = ρ(FV−1) =

(
γn

κn1

)(
γm

κm2

)
βκ4

κ4κ3 − vα

The basic reproductive number R0 for the given n+m dimensional SEnTmIRC system

correctly corresponds to the basic reproductive number given for the SE1E2TIRC system and

the SEnTIRC system (3.3).

We have therefore shown that given the basic reproductive number is less than unity

(R0 < 1) then the disease free equilibrium DFE is locally asymptotically stable. In the remain-

ing of this section, we examine the globally asymptotically stable nature of all solutions in the

feasibility region Ωn+m given that R0 < 1.

By the properties of the next generation matrix, we have shown that given the basic

reproductive number is less than unity (R0 < 1) then the disease free equilibrium DFE is

locally asymptotically stable. Although, as the remaining of this section will show this analysis

can be extended. As given that our basic reproductive number is less than unity (i.e. R0 < 1),

then the following theorem proves all solutions in the feasibility region Ωn+m are globally

asymptotically attracted to the DFE.

Theorem A.0.5 For the given SEnTmIRC system 3.4, where initial conditions originate in the

positively invariant set Ωn+m, the disease free equilibrium DFE is globally asymptotically stable

(GAS) in Ωn+m whenever R0 < 1.
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Proof A.0.4 This theorem shall be proved by the existence of the following Lyapunov function:

F =

n∑
i=1

XiEi +

m∑
j=1

YjTj +Z1I+Z2R

Where the expressions Xi, Yj,Z1,Z2 for all i ∈ {1, . . . ,n} and j ∈ {1, . . . ,m} are defined as follows:

Xi = βσκ4
κi−1
1

γi−2
∀i ∈ {1, . . . ,n+ 1}

Yj = βκ4
κn1

γn−1

κ
j−1
2

σj−2
∀j ∈ {1, . . . ,m+ 1}

Z1 = βκ4
κn1

γn−1

κm2
σm−1

Z2 = βα
κn1

γn−1

κm2
σm−1

Notice, that our expression are linked in the cross over points, for example if you consider what

Xn+1 is you will see that it is equivalent to Y1. Similarly, for the variable Y, we see that Ym+1 = Z1.

Let us now differentiate our Lyapunov function F with respect to time. After expanding the Lyapunov

function and some rearrangement we obtain F in the following form:

Ḟ = X1βI

(
S

N

)
+

n∑
i=1

(
γXi+1 − κ1Xi

)
Ei +

m∑
j=1

(
σYj+1 − κ2Yj

)
Tj+

+

(
vZ2 − κ3Z1

)
I+

(
αZ1 − κ4Z2

)
R

Where this expression can be simplified to the following form:

Ḟ = X1βI

(
S

N

)
+

(
vZ2 − κ3Z1

)
I

As a result of our choice of Xi,j ,1 ,Z2 expressions, the following expression are equal to zero.

n∑
i=1

(
γXi+1 − κ1Xi

)
Ei = 0 as γXi+1 = βσκ4

(
κi1

γi−2

)
= κ1Xi ∀i ∈ {1, . . . ,n}

m∑
j=1

(
σYj+1 − κ2Yj

)
Tj = 0 as σYj+1 = βκ4

(
κn1

γn−1

)(
κ
j
2

σj−2

)
= κ2Yj ∀j ∈ {1, . . . ,m}

(
αZ1 − κ4Z2

)
R = 0 as αZ1 = βακ4

(
κn1

γn−1

)(
κm2

σm−1

)
= κ4Z2

The next step in the analysis is to enter the our system parameter values instead of Xi, Yj,Z

parameters. After doing so the Lyapunov function has the following form:
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Ḟ = X1βI

(
S

N

)
+

(
vZ2 − κ3Z1

)
I

= βγσκ4

(
β
SI

N

)
+

(
βαv

(
κn1

γn−1

)(
κm2

σm−1

)
−βκ3κ4

(
κn1

γn−1

)(
κm2

σm−1

))
I

=

(
βγσκ4

(
S

N

)
+

(
κn1

γn−1

)(
κm2

σm−1

)
(αv− κ3κ4)

)
βI

=

(
κn1

γn−1

)(
κm2

σm−1

)(
βκ4

(
γn

κn1

)(
σm

κm2

)(
S

N

)
− (κ3κ4 −αv)

)
βI

=

(
κn1

γn−1

)(
κm2

σm−1

)(
κ3κ4 −αv

)(
βκ4

(κ3κ4 −αv)

(
γn

κn1

)(
σm

κm2

)(
S

N

)
− 1

)
βI

=

(
κn1

γn−1

)(
κm2

σm−1

)
(κ3κ4 −αv)

(
R0

(
S

N

)
− 1

)
βI

⩽

(
κn1

γn−1

)(
κm2

σm−1

)
(κ3κ4 −αv)

(
R0 − 1

)
βI

Therefore, our Lyapunov function is negative if our basic reproductive number is less than one (i.e.

Ḟ ⩽ 0 for R0 < 1, as S ⩽ N in Ωn+m). As the Lyapunov function has shown that the DFE is

globally asymptotically stable (GAS) if Ḟ < 0 then it remains to show when Ḟ = 0.

Notice that Ḟ = 0 if and only is I = 0. As the model parameters are non-negative and given initial

condition in Ωn+m then it follows that, if I = 0 then by the system differential equations 3.4 then

(E1, . . . ,En, T1, . . . , Tm, I,R,C)→ (0, 0, . . . , 0) as t→∞. Hence, as the total population N(t) is a

conserved quantity then S→ N and C→ 0 as t→∞. Thereby by the LaSalle’s invariance principle,

Ḟ = 0 implies that system 3.4’s disease free equilibrium DFE is asymptotically stable. Hence, as this is

true for both I > 0 and I = 0, the disease free equilibrium DFE is globally asymptotically stable (GAS)

in Ωn+m whenever R0 < 1.

a.0.2 Endemic Equilibrium and its Stability

Let now examine the case when the basic reproductive number is greater than unity (i.e. R0 >

1), what does this mean for the long term solutions? As we shall show in this section, solutions

are attracted to the endemic equilibrium (EE). Where the endemic equilibrium represents

disease being maintained in the system at a particular endemic level, that continuous depends

on system parameters. The definition of the endemic equilibrium for the SEnTmIRC system

3.4 is given below:

EE = (S,E1, . . . ,En, T1, . . . , Tm, I,R,C)
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S =
Λ

(λ∗∗ + κ0)
,

Ei =
γ

κ1
Ei−1 =

γi−1

κi−1
1

E1 =
γi−1

κi1
λ∗∗S,

Tj =
σ

κ2
Tj−1 =

σj−1

κ
j−1
2

T1 =
σj−1

κ
j
2

(
γn

κn1

)
λ∗∗S,

I =

(
σκ4

κ3κ4 −αv

)
Tm =

(
κ4

κ3κ4 −αv

)(
γn

κn1

)(
σm

κm2

)
λ∗∗S

R =
v

κ4
I =

(
v

κ3κ4 −αv

)(
γn

κn1

)(
σm

κm2

)
λ∗∗S

C =
τ1
µ

(
S+

n∑
i=1

Ei

)
+

τ2
µ

( m∑
j=1

T j + I+ R

)

Where, the following parameter are described the same as before:

κ0 = (µ+ τ1) κ1 = (µ+ τ1 + γ) κ2 = (µ+ τ2 + σ) κ3 = (µ+ τ2 + v) κ4 = (µ+ τ2 +α)

Similarly to the previous analysis, let us now determine the stability condition to the

endemic equilibrium (EE) through the use of Lyapunov functions.

Theorem A.0.6 For the given SEnTmIRC system 3.4, where initial conditions originate in the

positively invariant set Ωn+m, the endemic equilibrium EE is globally asymptotically stable (GAS) in

Ωn+m whenever R0 > 1.

Proof A.0.5 If the basic reproductive number is above unity (R0 > 1) then our unique endemic

equilibrium exists (EE < 1) and the following non-linear Lyapunov function proves it is globally

asymptotically stable (GAS).

F = S

(
S

S
− ln

S

S

)
+

n∑
i=1

(
κi−1
1

γi−1

)
Ei

(
Ei

Ei

− ln
Ei

Ei

)
+

m∑
j=1

(
κn1
γn

)(
κ
j−1
2

σj−1

)
Tj

(
Tj

Tj
− ln

Tj

Tj

)

+

(
κn1
γn

)(
κm2
σm

)
I

(
I

I
− ln

I

I

)
+

((
κn1
γn

)(
κm2
σm

)
κ3
v

−
βS

Nv

)
R

(
R

R
− ln

R

R

)
Therefore, the differentiated Lyapunov Function is given by:

Ḟ =

(
1−

S

S

)
Ṡ+

n∑
i=1

(
κi−1
1

γi−1

)(
1−

Ei

Ei

)
Ėi +

m∑
j=1

(
κn1
γn

)(
κ
j−1
2

σj−1

)(
1−

Tj

Tj

)
Ṫj

+

(
κn1
γn

)(
κm2
σm

)(
1−

I

I

)
İ+

((
κn1
γn

)(
κm2
σm

)
κ3
v

−
βS

Nv

)(
1−

R

R

)
Ṙ

By expanding the brackets we obtain,
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Ḟ = Ṡ−

(
S

S

)
Ṡ

+

n∑
i=1

(
κi−1
1

γi−1

)
Ėi −

n∑
i=1

(
κi−1
1

γi−1

)(
Ei

Ei

)
Ėi

+

m∑
j=1

(
κn1
γn

)(
κ
j−1
2

σj−1

)
Ṫj −

m∑
j=1

(
κn1
γn

)(
κ
j−1
2

σj−1

)(
Tj

Tj

)
Ṫj

+

(
κn1
γn

)(
κm2
σm

)
İ−

(
κn1
γn

)(
κm2
σm

)(
I

I

)
İ

+

((
κn1
γn

)(
κm2
σm

)
κ3
v

−
βS

Nv

)
Ṙ−

((
κn1
γn

)(
κm2
σm

)
κ3
v

−
βS

Nv

)(
R

R

)
Ṙ

Lets define the following sub-functions, Ḟ1 and Ḟ2.

Ḟ = Ḟ1 + Ḟ2

Ḟ1 =
βIS

N
−

βIS

N
+

n∑
i=1

(
κi−1
1

γi−1

)
Ėi+

m∑
j=1

κn1
γn

(
κ
j−1
2

σj−1

)
Ṫj+

(
κn1
γn

)(
κm2
σm

)
İ+

((
κn1
γn

)(
κm2
σm

)
κ3
v

−
βS

Nv

)
Ṙ

Ḟ2 = Ṡ−

(
S

S

)
Ṡ−

βIS

N
+

βIS

N
−

n∑
i=1

(
κi−1
1

γi−1

)(
Ei

Ei

)
Ėi −

m∑
j=1

κn1
γn

(
κ
j−1
2

σj−1

)(
Tj

Tj

)
Ṫj

−

(
κn1
γn

)(
κm2
σm

)(
I

I

)
İ−

((
κn1
γn

)(
κm2
σm

)
κ3
v

−
βS

Nv

)(
R

R

)
Ṙ

In order to understand our sub-functions in greater detail (Ḟ1 andḞ2), we will use the following

equalities to aid our analysis.

(
κi1

γi−1

)
Ei =

(
κi−1
1

γi−1

)(
κ1Ei

)
=

(
κi−1
1

γi−1

)(
γEi−1

)
= κ1E1 = · · · = βSI

N(
κn1
γn

)(
κ
j
2

σj−1

)
Tj =

(
κn1
γn

)(
κ
j−1
2

σj−1

)(
κ2Tj

)
=

(
κn1
γn

)(
κ
j−1
2

σj−1

)(
σT j−1

)
= · · · =

(
κn1
γn

)
κ2T1(

κn1
γn

)
κ2T1 =

(
κn1
γn

)
γEn =

(
κn−1
1

γn−1

)
κ1En =

βSI

N

κ3I = αR+ σTm

vI = κ4R

Using the equalities, the following relations can be obtained:

12



Ṡ−

(
S

S

)
Ṡ−

βIS

N
+

βIS

N
=

βIS

N

(
1−

S

S

)
+ κ0S

(
2−

S

S
−

S

S

)
−

(
E1

E1

)
Ė1 =

βIS

N

(
1−

E1

E1

S

S

I

I

)
−
κi−1
1

γi−1

(
Ei

Ei

)
Ėi =

βIS

N

(
1−

Ei

Ei

Ei−1

Ei−1

)
−
κn1
γn

(
T1
T1

)
Ṫ1 =

βIS

N

(
1−

T1
T1

En

En

)
−
κn1
γn

κ
j−1
2

σj−1

(
Tj

Tj

)
Ṫj =

βIS

N

(
1−

Tj

Tj

Tj−1

Tj−1

)
−
κn1
γn

κm2
σm

(
I

I

)
İ =

βIS

N

(
1−

I

I

Tm

Tm

)
+

κn1
γn

κm2
σm

αR

(
1−

I

I

R

R

)
−

((
κn1
γn

)(
κm1
σm

)
κ3
v

−
βS

Nv

)(
R

R

)
Ṙ =

(
κn1
γn

)(
κm2
σm

)
αR

(
1−

I

I

R

R

)
Therefore, our sub-function Ḟ2 can be written in the following form:

Ḟ2 =
βIS

N

(
n+m+ 2−

S

S
−

E1

E1

S

S

I

I
−

n∑
i=2

Ei

Ei

Ei−1

Ei−1

−
T1
T1

En

En

−

m∑
j=2

Tj

Tj

Tj−1

Tj−1

−
I

I

Tm

Tm

)

+

(
κn1
γn

)(
κm2
σm

)
αR

(
2−

I

I

R

R
−

I

I

R

R

)
+ κ0S

(
2−

S

S
−

S

S

)
Lets now consider our other sub-function Ḟ1. Using the equalities from above, the similar relationship

from the analysis of the SEnTIRC model is attained:

(
κn1
γn

)(
κm2
σm

)(
κ3κ4
v

)
R =

(
κn1
γn

)(
κm2
σm

)
κ3I

=

(
κn1
γn

)(
κm2
σm

)(
αR+ σTm

)
=

(
κn1
γn

)(
κm2
σm

)
αR+

(
κn1
γn

)(
κm2
σm

)
σTm

=

(
κn1
γn

)(
κm2
σm

)
αR+

βS

Nv
κ4R

This is used below to show that the sub-function is equal to zero (Ḟ1 = 0).
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Ḟ1 =
βIS

N
−

βIS

N
+

n∑
i=1

(
κi−1
1

γi−1

)
Ėi +

m∑
j=1

(
κn1
γn

)(
κ
j−1
2

σj−1

)
Ṫj +

(
κn1
γn

)(
κm2
σm

)
İ

+

((
κn1
γn

)(
κm2
σm

)
κ3
σv

−
βS

Nv

)
Ṙ

= −
βIS

N
+

(
βIS

N
− κ1E1

)
+

n∑
i=2

(
κi−1
1

γi−1

)(
γEi−1 − κ1Ei

)

+

(
κn1
γn

)(
γEn − κ2T1

)
+

m∑
j=2

(
κn1
γn

)(
κ
j−1
2

σj−1

)(
σTj−1 − κ2Ti

)

+

(
κn1
γn

)(
κm2
σm

)(
σTm +αR− κ3I

)
+

βIS

N
+

((
κn1
γn

)(
κm2
σm

)
κ3
v

−
βS

Nv

)(
vI− κ4R

)
=

n∑
i=1

Ei

(
κi−1
1

γi−1

)(
κ1
γ
γ− κ1

)
+

m∑
j=1

Tj

(
κn1
γn

)(
κ
j−1
2

σj−1

)(
κ2
σ
σ− κ2

)

+ I

((
κn1
γn

)(
κm2
σm

)
κ3
v
v−

(
κn1
γn

)(
κm2
σm

)
κ3 −

βS

Nv
v+

βS

N

)
+ R

(
−

(
κn1
γn

)(
κm2
σm

)(
κ3κ4
v

)
+

(
κn1
γn

)(
κm2
σm

)
α+

βS

Nv
κ4

)
=

(
R

R

)(
−

(
κn1
γn

)(
κm2
σm

)(
κ3κ4
v

)
R+

(
κn1
γn

)(
κm2
σm

)
αR+

βS

Nv
κ4R

)
= 0

Therefore, the original Lyapunov function Ḟ such that Ḟ = Ḟ1 + Ḟ2, is the following:

Ḟ =
βIS

N

(
n+m+ 2−

S

S
−

E1

E1

S

S

I

I
−

n∑
i=2

Ei

Ei

Ei−1

Ei−1

−
T1
T1

En

En

−

m∑
j=2

Tj

Tj

Tj−1

Tj−1

−
I

I

Tm

Tm

)

+

(
κn1
γn

)(
κm2
σm

)
αR

(
2−

I

I

R

R
−

I

I

R

R

)
+ κ0S

(
2−

S

S
−

S

S

)
Using the fact that the arithmetic mean is greater than or equal to the geometric mean, the following

inequalities hold:

n+m+ 2−
S

S
−

E1

E1

S

S

I

I
−

n∑
i=2

Ei

Ei

Ei−1

Ei−1

−
T1
T1

En

En

−

m∑
j=2

Tj

Tj

Tj−1

Tj−1

−
I

I

Tm

Tm
⩽ 0

2−
I

I

R

R
−

I

I

R

R
⩽ 0

2−
S

S
−

S

S
⩽ 0

The above Lyapunov function Ḟ < 0 therefore shows that given that model parameters are non-

negative and given initial condition in Ωn+m, then the unique endemic equilibrium EE is globally

asymptotically stable (GAS) when it exists (i.e. when R0 > 1).
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