Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author's prior written consent.

D $228.23 / 78$
Ball, R
pp 393

THE DEVELOPMENT AND APPLICATION OF MATHEMATICAL
MODELS FOR PLANNING AND RESOURCE ALLOCATION AT THE UNIVERSITY OF STIRLING
by

ROBERT BALL MA(OxOn) MSc (Birmingham)

A Thesis presented to the Board of Studies for Technological Economics for the degree of DOCTOR OF PHILOSOPHY

Stirling, Scotland

June 1977

ACKNOWLELJGEMENT

I have great pleasure in acknowledging the assistance of all who contributed to this work.

I am particularly indebted to my supervisors, Dr Tom Cottrell and Mr Mike Makower. Although Dr Cottrell's tragic death in June 1973 occurred early in the work it was his interest in the use of models in University management which provided much of the inspiration in commencing this project. I am very grateful to Mike Makower for his coments and advice throughout the duration of the project.

Mr Steve Jones, programing assistant in the Department of Management Science, provided invaluable advice on computing aspects of this work. I am also indepted to all at the University of Stirling in the Records Office, Estates and Baildings Office, and Finance who have answered queries and provided information.

Many individuals outside the University also provided assistance. They include Mr John Ficlden of Peat Marwick Mitchell, Mr M G Telly of the OECD, Mr David Falcon of Sheffield Polytechnic, Mr T Shimada of Meiji University, Tokyo, and many others.

Finally my thanks are due to the secretarial staff of the Department of Management Science and particularly Mrs Rosalie Lackie for typing the manuscript.

ABSTRACT

The objective of the research described in this dissertation is to examine the planning and resource allocation problems of universities and to investigate whether scientific management methods and in particular mathematical models can be used with advantage in this context. The approach adopted was to consider these questions in the particular case of one universtiy (the University of Stirling).

The national system of university planning and finance in the UK is described. This provides the framework within which the University's planning decisions are made. A description of the academic system and history of the University of Stirling leading up to the problems of planning for the 1977-82 quinquennium is then given.

A survey of work carried out elsewhere in this field is presented and a number of general purpose models for university planning developed elsewhere are described. This is followed by a general discussion of philosophies of resource allocation in UK universities.

For a number of reasons, it proved to be impractical to attempt to adapt one of the general purpose models developed elsewhere to Stirling University's plannin' problems. Hence, a planning model is constructed from first principles, a modular form being used. This model is then used to investigate possible development plans for the 1977-82 quinqunnium.

After general consideration of possible growth during the quinquennium the model is used to attempt to explore consequences of possible development plans. The first study which was carried out (the 'base-line' study) was based on achicving desired expansion through simply extrapolating present developments. This study projected certain undesirable consequences (such as some Stirling lepartments becoming excessively large).

This study was followed by another which took into account likely introduction of new academic developments and certain other factors suggested as desirable by University decision-makers.

A comprehensive critique of these plans is presented. In particular, the University's chance of obtaining desired student numbers in certain areas is explored. This is followed by two sensitivity analyses. In the first, consequences of possible shortfalls in student numbers in different subject areas are considered. The second considers consequences of possible changes in University internal resource allocation policy. The consequences of the latter turn out to be far nore far-reaching.

The possibility of further work is discussed. Possible improvements in the University's information system are considered and the feasibility of introducing a planning programe budgeting system is discussed.

The major conclusion to emerge from this study is that it proved possible to build a mathematical model of the University which can be usefully employed for planning and in particular for devising and testing quinquennial plans. Tinis approach has the advantage that the implications of a given plan for all significant resources can be assessed. It also enables a wider range of plans to be investigated and full sensitivizy analyses to be carried out.

TABLE OF CONTENTS

Chapter 1 Decision-making Resources Allocalion and Planning inUK Universities1.1 Introduction]
1.2 The university system in the United Kingdom 2
1.3 Relationship between the universities and the State 3
in the UK
1.4 UGC procedure - the grant system 4
1.5 The planning function of the UGC 8
1.6 Freedom of decision-taking for individual universities 10
1.7 Objectives of decision taking in the university 11 contentBibliography: Chapter 114
Chapter 2
Planning and Resource Allocation Problems
2.1 Preamble 15
2.2 University origins 15
2.3 Academic development : general considerations 16
2.4 The University's academic structure 17
2.5 Physical development 19
2.6 University development 21
2.7 General description of University's planning problems 23
2.8 Surmary 28
Bibliography: Chapter 2 29
Chapter 3 A Review of the Application of Management Science Methods
3.1 Overview 30
3.2 Historical perspective 30
3.3 State of the Art at present 33
Bibliography: Chapter 3 45
Chapter 4 University Simulation Models
4.1 Preamble 48
4.2 An outline survey of models in use 49
4.3 Some technical details of the models 51
4.4 Costs of implenenting simulation models 62
4.5 Experiences with the implementation of simulation models 63
4.6 A critique of the use of University simulation models 64
Hibliography: Chapter 4 66
Chapter 5 Resource Allocation in Universities
5.1 Preamble 68
5.2 Allocation of recurrent grant 68
5.2.1 Academic staff allocation: gencral principles 70
5.2.2 Academic staff allocation: methods 73
5.2.3 Allocation of non-academic (technical and secretarial staffs) 76
5.2.4 Other departmental expenditure 77
5.3 Allocation of space 77
5.4 Alternative approaches to University resource allocation; decentralised decision-making 78
5.5 Summary 79
Bibliography: Chapter 5 80
Chapter 6 Outline and Details of 'ROBUS' Simulation Model Developed at Stirling University
6.1 Overview 81
6.2 Approach to model construction 82
6.3 Scope of the model 83
6.4 Structure of the model 83
6.5 Computational aspects 84
6.6 Development of model 84
6.7 Technical outline of model 84
6.8 Technical details of model 85
6.8.1 Modules relating to students 85
6.8.2 Staff modules 93
6.8.3 Space modules 101
6.8.4 Finance 104
6.9 Data source 106
6.10 Operation of the module 107
Chapter $7 \frac{\text { Use of 'ROBUS' Model in Practice - Application of Model }}{\text { to Planning for Quinquennium 1977-82 and Beyond }}$
7.1 The planning scenario and the applicability of the mo del 108
7.2 Growth pattern of aggregate student numbers 109
7.3 Feasibility of aggregate student number targets 114
7.4 Outline of planned projections 118
7.5 "Base-line" study 119
7.5.1 Policies, resources and student inputs 119
7.5.2 "Ease-line" study: results 122
7.6 Revised projection: Academic Council assumptions 135
7.7 Approach to projection: Academic Council assumptions 139
7.8 Kesults of projection: Academic Council assumptions 141
Bibliography: Chapter 7 154
Chapter 8 Review and Sensitivity Analysis
8.1 Plausibility of assumptions in Academic Council projections 155
8.2 Sensitivity analysis: (1) external changes 164
8.2.1 Results of projection (pessimistic assumptions) 164
8.3 Sensitivity analysis: (2) policy changes 170
8.3.1 Results of projection 171
8.4 General observation on sensitivity analysis 171
8.5 Changes in national system of University planning 176
Chapter 9 Critique of Study and Possible Areas for Future Research
9.1 University's control over its development 177
9.2 Further work: development of an integrated management information system 180
9.3 Further work: development of PPBS 183
9.4 Further work: extension to other UK universities 185
9.5 Objectives and optimization 185
9.6 Resource allocation 186
Bibliography: Chapter 9 187
Chapter 10
10.1
Conclusions and Recommendations General remarks 188
10.2 Evaluation of the research 188
10.3 Critique of the approach used in this dissertation: some broader issues 190
10.4 Use of models in providing incentives 194
10.5 General conclusions and recommendations 196
Bibliography: Chapter 10 198
Page
A1
Appendix 1 RRPM Model - Use of Induced Course Load Matrix in Calculation of Departmental. or Discipline Teaching loads.
Appendix 2 The RRPM Model - Calculation of the Cost of a Λ_{4} Student Program.
Appendix 3 Workload model used at Lancaster University. A5
Appendix 4 Details of Workload Model used at Stirling. A6
Appendix 5 General Computing Details A10
Appendix 6 Description and Details of Modules A11
Appendix 6A MAIN PROGRAM Al2
6A2 General description of model A12
$6 \wedge 3$ Detailed description of program $\mathrm{Al2}$
6A4 Variable definition Al2
6A5 Flow diagram : main program Al3
6A6 Program listing A14
Appendix 6B STUDFNT FLON MODULE A15
6B1 Name of Subroutine A15
6B2 General description of module A15
6B3 Detailed description of program A16
6B4 Definition of variables A16
6B5 Flow diagram : Student Flow Module 117
6B6 Program listing Al 8
6B7 Sample Output A20
Appendix 6C NOTIONAL CLASS SIZE MODULE A21
6C1 Name of subroutine A21
6C2 Ceneral description of module A21
6C3 Detailed description of program A24
6C4 Definition of variables A27
6C5 Flow diagram : Notional class size module A30
6C6 Program listing A35
6C7 Sample Output A48PageAppendix 67Studfent equivalent moduteA69
6D1 Name of Subroutine ^69
6122 General description of module A69
6D3 Detailed description of program $\Lambda 70$
6104 Definition of variables A71
6115 Flow diagram : Student Equivalent Module A72
6116 Progran listing A73
617 Sanple output A78
Appendix 6E STAFF ALLOCATLON (WORKLOAD) MODULE A80
6 E1 Name of Subroutine A80
6E2 General description of module A80
6 E 3 Detailed description of program 181
$6 \mathrm{E} / 4$ Definition of variables A34
6E5 Flow diagram : staff allocation (workload) module A86
6E6 Prograna listing A89
6E7 Sample output A102
Appendix 6F STAFF ALLOCATION MODULE (STUDENT:STAFF RATIO) OPTION Al08
6F1 Name of Subroutine A108
6 F2
General description of module Al08
6F3 Detailed description of program Al09
6F4 Definition of Variables Allo
6 F5 Flow diagram:staff allocation (staff:student Al11
ratio module).
6F6 Program listingAll2
6F7 Sample output All5
Appendix 6G NON-ACADEMIC STAFF MODULE A116
6G1 Name of Subroutine All6
6G2 General description of module A116
6G3 Detailed description of module A116
6G4
Definition of variables A117
6 G 5
Flow diagram : non-academic staff module Al18
6G6
Program listing A119
6G7 Sample output A121
Page

A122
Appendix 6 H FINANCE MODULE Al22
6 H 1 Name of subroutine A122
6H2 Detailed description of module A122
6H3 Detailed description of program Al23
6H4 Definition of variables 1124
6H5 Flow diagram : Finance module A126
6H6 Program listing A128
6 H 7 Sample output A134
Appendix: 6I LECTURE AND SEMINAR ROOM SPACE MODULE A135
6 I1 Name of subroutine $\mathrm{Al35}$
6 I2 General description of module A135
6I3 Detailed description of program A136
6 I4 Definition of variables Al38
615 Flow diagram : T-space module Al39
616 Program listing A142
$6 \mathrm{I7}$ Saraple output A149
Appendix 6J TEACHING I.ABORATORY SPACE MODULE Al53
6 J 1 Name of Subroutine A153
6J2 General description of module A1 53
6 J 3 Detailed description of program A154
654 Definition of variables A154
6J5 Flow diagram : TLAB space A155
$6 J 6$
Program listing A157
6 J 7 Sample output A161
Appendix 6K research lab space module A168
6K1 Name of subroutine A168
6K2 General description of module A168
6K3 Detailed description of program A168
6K4
Definition of variables A169
5K5 Flow chart : Research lab module A169
6K6
Program listing Al70
6K7 Sample output A172

Appendix 6I. OFFICL: SPACl: MODLILE
61.1 Name of subroutine

A173
6L2 General description of program
A173
6L3 Detailed description of program
1173
6L4 Definition of variables
A174
6L5 Flow chart : Office space module
$\Lambda 174$
6L. 6 Program listing
A175
$6 L 7$ Sample output
Appendix 7 Sensitivity Analysis I : Projected Space Utili\%ation
A178
Appendix 8 Alternative Approaches to University Resource
A181
Allocation.

AC Academic Council
AUT Association of University Teachers
BA Bachelor of Arts
CAMPUS Comprehensive Analytical Methods of Planning in University Systens
CERI Centre for Educational Research and Innovation
CSI. Computer Simulation Model
CUS Generalized University Simulation
HLS Hochschule Information System
HMSO Her Majesty's Stationery Office
ICLM Induced Course Load Matrix
IFORS International Federation of Operational Research Societies
IMHE Institutional Management in Higher Education (programme)
MIF. Master of Education
MLit Master of Letters
MSc Master of Science
NCHEMS National Centre of Higher Education Management Systems
OECD Organisation for Economic Co-operation and Development
PG Postgraduate
PPBS Planning Programming and Budgeting Systems
ROBUS Robert Ball's University of Stirling model
RRPM Resource Requirements Prediction Model
SEARCH System for Exploring Alternative Resource Commitments in ligher Education
SRG
TUSS
UCCA Universities Central Council on Admissions
UG Undergraduate
UGC University Grants Committee
UK United Kingdom
USA United States of America
USSR Union of Soviet Socialist Republics
WICHE Western Interstate Commission for Higher Education

1.1 Introduction

The objective of the rescarch described jn this disscrtation was to examine planning and resource allocation probiens of Universities and to investigate whether scientific managenent methods and in particular mathematical models colid te used with advantage in this context. The approach adopted was to consider these questions in the particular case of one University (the University of Stirling). After reviewing the planning and reso:rce allocation problems of the liniversity of Stirling in the light of the national system of University planning and finance, a model was developed and used to investigate the University's medium term development plans. A critical evaluation of the work is presented and suggestions for further research made.

The dissertation is organised into ten Chapters. In Chapter 1 the structure and financing of the UK system of University Education is described. Hence it is possible to appreciate the administrative framework within which a University takes its derisions and any relevant constraints on its freedom of action.

A history of the University of Stirling is presented ir Chapter 2 together with an outline of its academic developnent. This then leads on to a general discussion of the planning and resource allocation problems of the University.

Chapter 3 contains a broad survey of attempts by other workers to apply management science methods to University administration. Work done in developing general purpose mathematical models of lniversities for planning is described in Chapter 4. Chapter 5 present:s a general discussion of the methods and philosophy oi resource allocation within Universities, giving special emphasis to the li.k. situation.

The planning problems of the University of Stirling were reviewed in the light of this work and it became apparent: that there were possible advantages to be obtajued from the use of a mathenatical model of the University. For a number of reasons, however, it was found impracticable to utilise any of the general-purpose models developed elsewhere; thus it was necessary to develop a model from first principles. An outline of this model is presented in Chapter 6 with appropriate technical details being inclured in an appendix.

The model thus developed was employed in investigating tentative plans for the quinquennium 1977-82. (This study is described in Chanter 7). A sensitivity analysis which investigates the consequences of the University failing to reach certain of its targets and also the effect of possible changes in resource allocation policy is provided in Chapter 8.

In Chapter 9 possibilities for future work in the field such as the possibility of applying the model to other institutions and possible experiments with PPBS and management information systems are considered. Some broad conclusions and recommendations are presented in Chapter 10.

1.2 The University system in the United Kingdom

Anexcellent description of the development of the UK University system from its mediaeval origins up to the present day is presented by Mountford (1966). Scottish Universities have a distinct historical background from their counterparts in England and still have certain academic and organisational differences. They are, however, fully integrated into the national. UK system of University planning and finance. Although under the Government's White Paper on Devolution (1975) it was proposed that Scottish Universities should remain the responsibility of the UK government, this proposal proved very contentious and there was considerable pressure to have responsibility for the Universities transferred to the proposed Scottish Assembly.

1.3 Relationship between the Universities and the State in the uk

Until near the end of the nineteenth century Parlianent confired its responsibilities towards Universities to the regulation of their Charters, making only negligible financial contributions. At this time University income comprised mainly of revenue from foundations and investments, grants from local authorities and student fees. 'fowards the end of the century, grants to Universities from Central Governnent began to be made in significant amounts and in 1919 the luiversity Grants Committee (U.G.C.) was established to help administer these grants. The original terms of reference of the UGC were:"To enquire into the financial needs of University education in the UK and to advise the Government as to the application of any grants that may be made by parliament towards meeting them".

This remit was augmented in 1946 and 1952 by the followiug. "To collect, examine and make available information relating to Eniversity Education throughout the United Kingdon" and "to assist in consultation with the Universities and other bodies concerned in the preparation and execution of such plans for the development of the Universities as may from time to time be required in order to ensure they are fully adequatc to national needs".

Thus the U.G.C. acquired responsibility both for the keeping of statistical records and for planning the development of the University system in the light of national needs.

Broady speaking the UGC's function in to act as a buffer or internediary between the Government and the Universities in order to enable resources to be allocated to the Universities without direct Governmental interference in their affairs. Thus, hopefully, the national interest and the requirement of adequate supervision of public expenditure on the one hand can be reconciled with academic frecdom and autonomy of the Universities on the other. The UGC has a full-time chairman and vice-chairman and nearly twenty part-time nembers. Most of the nembership is drawn from the liniversities but there are also representatives from Government, industry and other educational sectors. The useful. summary of the functions of the UGC can be fcund in its own publication "UGC" (1970).

1.4 UGC Procedure - the Grant System

The UGC allocates three types of grants to Universities: recurrent, non recurrent and equipwent grants.
(i) Recurrent grants are intended to finance ruming expenditure of Universities such as salaries, consumables, books and periodicals for the library, maintenance of premises and so on. These grants were determined for a fixed five year period (or quinquennium) thus giving rise to the name "Quinquennial Grant System".

Around two years from the end of a quinquennium, a University receives an informal visit from members of the UGC. Fach University is then asked to submit detailed and reasoned proposals for its development during the succeeding quinquennium in the light of some general. guidance concerning the likely develorment of the University system as a whole. This plan is the University's "Quinquennial Subnission". When the estimates from all Universities have been considered, the UGC assesses what it regards as a reasonable total need. In naking
such an cstimate, however, the lici must tal:e cognizance not only of the plans forwarded ly the individual Unjversities, but also such factors as potential demard for University places, national needs for qualified graduates and che likely aveil ability of resources. Parliament examines the UGC's requirement for funds; and in the light of this, ami nutional educational policy, ngrees a global sum (subject to an annual confirmatozy votc) for each year of the ensuing guinquenniu:n.

The UGC then has the task of apportioning the money voted by Parliament between the Universitics. These allocations are given in the form of 'block grants' with no strings attached which means that each University has complete freedom vere the internal disposition of its allocation. Some broad guidance is given to each University, however, concerning national needs and priorities and how the UGC sees an institution's future development within this framework. Thus, in practice, no University would undertake a major change in policy without careful thought and consultation with the UGC. As the UGC (1967) stated in its memorandum of general guidance
"The Comittee hopes that universitics will find it helpful to have the considerations mentioned in this memorandur before them wen they come to decide their own development policies and prioritics within the quinquennium. Each liniversity is free to determine the distribution of its annual block grant in the light of the glidance, general and particular, which the comittec have given. It vould, however, be in accordance with generally accepteal convention tiat: the committee be consulted before any major new developrents ontside the framework set by the University'e quinquennial subrission and suidance contaired in this gencral menorandum and individual letter of allocetion are

The system oif quinquennial block grants gives the Universivies genuine flexibility in thejr internal resource allocation and allows then to make coherent medium-term plans. There are however two difficulties associated with this system. Firstly, the planning horizon varies over the quinquennium from over five years to one ycar. A more serious problem is the crosion of real value of the grants by inflation. Until around the middle of the 1972-77 quinquennium, the University grants were supplemented for inflation using an index of University costs known as the Tress-Brown index. Under this system Universities received automatic supplementation for 50% of their increased costs and the other 50% was sometimes secured upon representations to the Government from the UGC. Grants were autoratically supplemented in full for any increases in acadenic salaries.

Following the rapid increase in the rate of inflation during 1973-5 and cut:-backs in public expenditure on Education, the quinquennial system was virtually abandoned and a provisional ad-hoc system of yearly grants introduced. It is, however, hoped that this will prove to be a temporary expedient since the UCC is hoping to return to the quinquennial system once the rate of inflation has abated and the future of public expenditure on education becomes clearer.

In the meantinc other systems of grant allocation, such as the rolling triennium (which will be discussed later in this dissertation) are being proposed. Finally the introduction of the system of 'cash limits' for public expendirure means that Universities will no longer automatically receive supplewentation even for rises in academic solaries.
(ii) Non-recurrent grants are given for capital and related expenditure such as financing approved building work, the purchase of sites and propertics and paynent of associated professional fees. The Governinent has the responsibility of fixing the total value of grant-aided building work that can be started during a given financial year, the UGC's functions being to distribute this work between different Universities and to coutrol building standards and costs. This work: is carried out by the architectural division of the UGC's secretariat. It does net tamper with matters such as architectural style or design but lays down strict standards of permissable cost per unit area for different kinds of space (lecture room, office, latoratory etc).

The allocation of space for different types of accomodation is also strictly controlled using a system of norms, (eg so many square metres of office space for a lecturer etc). The introduction of a new building programe at a University is usually a lengthy process with five years or more elapsing between the initial plans and completion of the building. By 1975 nev building at

Universities had virtually come to a halt and was likely to be severely curtailed during the next few years at: least.
(iii) Equipment grants and furniture grants are allocated toeach Univorsity in the form of annual suns fixed for a number of years in advance. Until recently Universities were free to accunulate this noney in a separate fund, but because of the subsequent large balances which were accumulated by the Universities, the system vas changed so that the funds were held by the Paymaster General and disbursed to the Universities as and when required. This change of procedure which meant that Universities have lost access to a source of readily available cash, bas considerably exacernated the cash-flow problems of certain institutions (including Stirling). Universilics are, however, free to deploy their grants on equipment and furniture in any :hay they

1.5 The Plaming Function of the VCC

As we have seen the LGC has responsibility (taking into account Government policy) for the formulation of a broud strategy for the development of the University systetn as a thole and for individual institutions within this system. This involves the UGC in a continuous dialogue hoth with the Universities and the Covernment. Through this dialogue it arranges for the collection and analysis of a wide ronge of statistics ahout Unjversity numbers and costs and gives miversities infonal advice and guidance about their deveiorment. There are, however, three mechanisms available to the UCC for more formally exercising their planning functions.
(i) Through recurrent grants

When informing a University of its quinquennial grant, the UGC offers a certain amount of guidance thruigh a gentral menorandur of guidance (in which it outlines the prospects for the University system as a whole) and in an individual letter of allocation to each University. The letter of allocation generally contains the following infornation:-
a) A statement of student numbers (distinguishing between undergraduates and postgraduates and between Arts and Science based students) on which the grant for the final year of the quinquennium is based. The pattern of development of student numbers through the quinquennium toward this target is not, however, specified.
b) Specific comments on proposals put forward by the Universities and which the UGC wished either to encourage or discourage. For instance, the letter of guidance to Stirling for 1972/77 stated that one of the two proposed postgraduate courses in Education had not been taken into account in assessing the grant, and that developments in Swedish were strongly discouraged. Although the UGC indicate that certaitl proposals had been ignored in fixins the block grant: the relationship between the
bluck grant and the individual itens contained is not clearly specified. This point is diecussed in a paper by J C. Walne (1973). Walne states that during the 1967-72 quinquennjum, the UGC used a system of arbitraty weightings for this purpose. This was fcund to be uncatisfactory and a regression anelysis of University costs which took intc account a number of factors such as the number of departments, mean student. load per department, number of taught postgraduate courses etc, was used for the succeeding quinquenniur. The UCC however, have refused to make the dstails of their regression analysis pubic on the grounds that to do so must inevitably stultify resource allocacion discussinns within Universities. Λ C Morris' (1972) article on this subject is also worthy of note.

In the final analysis, however, a University is free to ignore the UGC's advice and spend its block grant on any legitimate purpose it thinks fit. As discussed earlier, however, in practice no University would reject the UGC's advice without considerable thought and consultation.

It is the general impression in British Universities that the amount of specific advice given by the UGC in the above way is increasing over the years.

(ii) Through capital projects

Since the UGC have to sanction all building projects, this gives theni an effective veto power over certain developnents. For instance there has rever been any question of new developments in Engineering at Stirling because the UGC have always maintained that they wore unwilling to supply the necessary capital requirements when resources elsewhere were still not fully utilized.
(iii) Offering incertives

If the UGC fecis that a certain need is not being fully met it may invite a few or all Universities to consider whether, if the necessary funds were made available, they might be prepared to fulfil that need. Providing the proposed development is academicaliy acceptable, Universities will generally co-operate on such matters. For example, Stirling University received specially-earmarked funds for the development of short courses in Techological Economics for industrialists during its carly years.
1.6 Freedom of Decision-Taking for Individual Universities

In this section we shall explore, in the light of the previous discussions, the areas of freedom that a University possesses over its internal decisionmaking. Owing to the block grant principlc, the University has conplete autonony over the internal apportionment of its recurrent grant. In other words it is able to 'divide the University cake' amongst competing internal claims in any manner that it wishes, although, as we have seen, this freedom is qualified by the convention that a University has the responsibility to exercise this power within the framework of national needs and policies and in the light of the guidence given by the UGC.

More specifically the UGC (1964) in its quinquennial survey entitled 'University Developnent 1957-62' surveyed six areas in which they believed that ".... the Universities should have a wide measure of self-detcrmination".

These areas vere: ;

1. The selection of students.
2. Approintment of academic staff.
3. Determination of the content of University education and control of degree standards.
4. Letermination of size and rate of growth.
5. Establishnent of balance between teaching, rescaxch and advanced study; selection of research projecte and frecdon of publication.
6. Alincation of current income among the various categozies of expenditure.

We have previously described how freedon (6) is tempered in the light of the national interest. Although under (4) an institution has control over its size and growth rate, failure to co-operate with the UCC's expansion plans might prove doleterious to an institution's long-term interests. To quote from the Robhins report (1963)
"If when ald the reasons for change have been explained the institution still prefers not to co-operate, it is better that it should be alloved to follow its own path. This being so, it must not complain if various benefits going to co-operating institutions do not come ite way'.

Thus, although Universities are required to be generally responsive to national needs, the quinquennial planning system and block grant principle do, nevertheless, afford a fair measure of self-determination to individual institutions.
1.7 Ohjectives of decision-taking in the Univeisity context

Decisjon-making involves choosing between a number of alternative courses of action. Rational evaluation of these alternative options will then depend on some prior specification of objectives. This alay present certain difficulties in the University context since Universities pursue diffuse and sometimes even conflicting objectives.

Several workers have attempted to specify (and in some cases evaluate) these objectives. Blaug (1969) claims that Universities serve nultipie objectives and that thejr operations can be assessed in principle in terms of the effectiveness with which each of the varying objectives is achieved. He rentatively suggests the folloring objectives.

1. Vocational objectives includirg narimicing lifetime income for graduates.
2. Selection of most able leadership for government and research.
3. Promotion of scholarship and scientific research.
4. Cultivation of talent for the sake of self-enrichment.
5. Preservation and disserination of cultural valucs.

Sonie suggested measures of performance in meeting these objectives are given:-

- Vocational objectives - in terms of discounted future earnings.
- Cultural objectives - according to some index that assigns more weight to arts than science graduates.
- Rescarch output in terms of number of publications.

Unfortunately some of these measures are rather vague and open to objection. For instance evaluating research output in terms of number of publications ignores the question of some rescarch findings being much more significant than others (other authors have suggested approaching this problen by an index of the number of citations a publication receives in bibliography).

Fiven if satisfactory performance measures are devised hovever, it would be necessary to obtain a systam of weighting for different objectives since a particular decision may well have implications for a number of objectives. Thus it can be seen that we are some way from a purcly formal objective evaluation of the relationship of decision-naking and objectives in the University context.

A more general descaiption of objectives of Universitics approached from a historical standpoint is given by J Clark Kert (1964). Beard, Healey and Holloway (1968) give an exhaustive analysis of the orjectives of the teaching activities of Universitics and discuss how prograrmes of study and courses relate to these objectives.

Sims (1973) argues that the rational evaluation of activities depends on the prior specification of the objectives sought by those activities but "Because of conflicting and changing values of faculty and studerats any statement of ains that was videly accepted would be so vague and generalized as to be operationally useless for evaluating performance".

He argucs however, that the absence of clearly defined objectives need not hinder this evaluation if problems are approached from a different vicwpoint. The approach suggested is to accurately describe the existing state ('what is') and scek to move incrementally towards a state offering greater utility ('what will result') by choosing frow an identifiable set of feasible alternatives. In this way it would be possible to assess subjectively the extent to which an improved state has been achicved.

It seems that this pragmatic approach could well be valuable in a practical situation although the use of the concept of utility does imply a grasp of objectives even if it is impossible to articulate them.

Sins further argues that the inputs and outputs which relate to particular courses of action should be marshalled so as to assist rather than determine the basis of subjective evaluations. Given the present state of the art, this seens a sensible approach to practical y roblems and will be the one broadly followed in this dissertation.

1 Beard, Healey and Holloway (1969) Objectives in Higher Education, Society for Rescarch into iligher iducatjon
2 Blaug, M (19h8) 'The Productivity of Universities, Economics of Education, Vol 2, Penguin, pp 313-325
3 Kerr, J Clark (1964) The Uses of the University, ilarvard University Fress
4 Morris, A C (1972) The UCC and the mystery of the Quinquemial cake. Times higher Educational Supplement (July 1972)
5 Mountford, Sir J (1966) British Univerisities, Oxford University Press, pp 1-49
6 Robbins, Lord (1963) Committee on Higher Education, Report of Committee under Chairmanship of Lord Robbins, hMso
7 Sims, M (1973) Accounting Information in Universities, Higher Education Review, Vol 5 No 3, Summer 1973, pp 3-24
8 UGA (1970) The University Grants Comittee, HMSO
9 UGC (1967) Memorandum of Guidance, HMSO
10 UGC (1964) Unjversity Development 1957-62: a quinquennial study, fiSo
11 Walne, J C (1973) Cost Analysis at the University Grants Commitlee, Higher Education, Vol 2 ivo 2, pp 228-235
12 White Paper on Devolution (1975) Our Chanping Democracy, IMSO

CHAPTTR 2

THE UNTVERSITY O STIRLING - HISTORY ACADEMIC STRUCIURE,
PI.ANNING AND RESOUTCE ALLOCAITON PROBIEEIS

2.1 Preanble

In this chapter we shall briefly describe the crigins, broad objectives and academic structure of the University of Stirling. We shall then consider the particular planning and resource allocation problems of the University, given the flexibility of derision making in British Universitics described in the first Chapter.

2.2 University Origirs

Although King James VI of Scotland in the early years of the seventeenth century expressed an intention of founding a university in Stirling, ro progress was made on this project until the carly 1950s. At this time the climate of national opiniun was strongly in favour of further University expansion. Already progress had been made in setting up a number of new Universitics in England (Sussex, harvick, Lancaster cte) and the Robins report (1963) recomended that six new Universities, including one in Scotland should be set up forthwith. In the event it was derided to go ahead only with the new University in Scotland. It is possible that the Government may have been partially influenced by ite regional economic development policy in arriving at this decision and, in the event, the arrival of the University had a considerable effect on the local econemy (Brownrigg 1974). A number of towns in Scotland were intercsted in becoming hosts to the nev University (Falkirk, Inverness, Cubbernauld, etc) but in July 1964 it was decided that the University should be located in the Airthrey Ustate adjoining Stirling.

2.3 Acadcmic Development .. Gene:al Considerations

In 196.5 an Academic Planning Board was instituted to draw up plans for the academic develonment of the new Institution. This body produced its first report (1.965) in which it proposed broad academic aims for the new University.
"The University should aim at promoting the general porers of mind of its students; it should produce men and women who are not mereiy specialists but cultivated men and women with particular skills; it should play an important part in the advancement of learning and transmit a common culture and commen ε tandard of citizenship".

More specifically, the report recomended that in the early years the University should concentrate on three broad fields of study arts and humanities; basic sciences including wathematics and the social scierces. The concept of a rigid faculty structure was rejected; instead the report envisaged that undergraduate and postgraduate courses and research should cross conventional discipline boundarics and that interdisciplinary study should be made an important and integral part of the University's academic life.

Some very tentative euggestions about growth of student numbers are included in the report, initial intakes of around 150 students are suegested for the first two or three years, while a target student population of the order of 4000 students by $1976 / 77$ was envisaged.

2.4 The University's Acacemic Structure

In order to be able to satisfy the broad academic objectives described above, the University developed a flexible academic structurc. This structure has important implications for planning and resource allocation nroblens described later and is significantly different from the usual systems found in Scotland and the rest of the U.K.

Stirling is the only University in the UK winch operates a semester system. It cannet, however, be described as a pure semester system since in such a system a student can enter the University in any semester and, in general, all courses are on offer in any scmester. At Stirling a student may enter the University only in the Autimn semester and, in general, first, third, fifth and seventh sercester courses are available in the Autum semester and eecond, fourth, fixth and cighth semester courses are available in the spring. Thus there are elements of the academic year system present in the Stirlirg structure.

The basic unit of study at Stirling is the semester course unit wlich corresponds to the study of an acadewif. qubject for one semester. It was considered that such a unit. which would occupy around a third of a student's available time for study in a given semester, could comprise a viable academic unit.

The Undergraduate degree (the $B A$), which can be takell either as a General or Honours Degrec, is divided in two parts (Part I and Part IJ.). Part I, which is common to all students, nomaliy lasts for three semesters While Part II involves a further three semestere' study for the General. Degree and five semesters for the Honoure Degree.

The lart I is broadly bascd in order to try to give students an opportunity of studying unfamiliar subjects. In order to pass part. I, a student must pass cight semester course units (taking up to three in any semester) including one subject studied for the whole three senesters (Major) and snother studied for two scmesters (subsidiary). In general a student may take any combination of subjects he wishes, normally the only prohibited combinations being due to the exigencies of the teaching tinetable.

In Part Two the student can take either a General or Honours Degrec prograrme of studies. In order to obtain a general degree a student must satisfactorily complete a further seven emester courses in Part Two in such a way that he completes a General degree major (in all, six semester course units of a particular subject taken over not less than five semesters) and a General degree subsidiary (four semester course units of a subject including at least one in Part Two).

Honours degree programmes involve study in depth in Part II of ona (single honours) or two (joint honours) subjects. Each honours degree programme is individually specified since there are no detailed University regulations concerning the composition of such a degree. Normally, however, provision is made to give the student the opportunity to take from time to tine a course from outside his major field of study.

Thus the University attenpts to carry out the remit of the Acadenic Planning Doard by providing a broadly based Part I for all students followed by further broadly based programes in lart il for General students and appropriatc training in depth for Honowrs students. There is some evidence that students have taken anvantrge of their opporiunities to study a wide range of subjects in Part I (Cotrrell 1972).

2.5 Physical Development

As described earlier, it was decided to locate the University in the Airthrey estate to the north east of Stirling. This estate, which had at one tine been privately cwned, was then owned by the Ministry of Health and consists of around 300 acres of mature parkland, is wocded hillside of around 63 acres and an artificial ioch of 23 acres (sce Map 1).

It was felt that the University could best make an undisturbed begirning if its academic activities could, during its early years, take place well away from the major building sites. For this reason a simple but permanent prelininary building called Pathfoot (after a prehistoric village on the site) was constructed on the north-west corner of the estate. This building comprised an area of about 130,000 square feet and was completed in ten months in time for the first studenc intake in 1967.

Whilst the University began its activitics in Pathfoot, work was started on the major academic buildings which were centred on the loch (Cottrell Building). The first part of this accomodation became available in 1970, whilst by 1974 the University had sufficient academic accomodation for over 3500 students.

Bcause the University is constructed in a comparatively lightly populated area, it was decided at an carly date that a major provision of student residence would be necessary. These were constructed on the opposite side of the loch to the major acadewic buijdings and by 1974, acconmocation for about 1750 students was available.

2.6 Whiversity Dnveloprent

The first students (approxinate?y 150 undergraduates and a handenl of postgraduates) arrived in Septewer 1967. This was followed by a further intake of 150 in 1968. In 1969 since the fitudents were forthcouing and capacity was available the University decided to admit 300 students instead of its initial target of 150 . Murjing this time demand for Lniversity places in the UN was increasing sharp? ${ }^{\text {f }}$ according to the UCCA repcrt (1.969) the percentage of the reievant age group trying for a University place almost doubled between 1965 and 1969.

By the and of acaderic year 1969/70, the University had a total studert population of around 600. At that time all academic activities were housed in Patisfoot and all studente stayed in loceinge or at lome since no Universjty residences were yer completed.

A major expansion phase began in the Autuan of 19\%. A greatly expanded stucent intake of 600 undergraduates arrived as the firsi blocks of residences becare available and some of the academic bujicings in the centrel area were opened.

At this tine academic planning for the next quinquennium (academic years $1972 / 77$) was cormencing. These plans outlined in the University of Stirling's Quinquennial Submission $1972 / 77$ (1971) envisage a grovith to around 4000 students (consisting of approximately 3550 undergraduates and 450 pestgraduates) by the last year of the quinquenniun. These targets involved intakes of over a thousand stucients by the end of the fuinquennium.

Ta lanuary 1973 , the reply from the UGC in the form of the quinquenniel letter was received. This letter pruncd considerably the student nubers proposed in the Quinquennial submission. A target of 3342 students (3042 undergraduates and 300 postgraduates) for the final year of the quinquennium was set out. The Arts: Science mix for undergraduates was given as 2135:907 and quite detailed reconmendations as to the composition of postgraduate numbers were made. It also assunced a much slower build-u:p of postgreduate numbers than in the past and cxpressiy forbade the University from substituting postgraduates for undergraduates, should undergraduate numbers show a shortfall. The letter also included some specific cominents on proposed academic developments and asken! for a 2% reduction (in real terms) of the cost per student.

In the event it proved impossible to achieve these targets. The major reason for this was that the demand for University education had flattened out during the early seventies, and thus the University was in the position of attempting to expand in the tail-end of the national expansion. This situation was exacerbated by the adverse publicity the University reccived following the Queen's visit in 1072. Following the rapid inflation of 1974 and cut-backs in expenditure on Universities, the quinquennial system was at least temporarily abandoned anc replaced by a series of ad-hoc one year plans. It secmed, however, that once the situation stabilized a return to a quinquennial system (or at least a planning horizon greater than one year) would be made. Hence it was necessary to plan at least tentatively for the 1977-82 quinquennium.

2.7 General Descrintion of the University's Plannin: Probleus

(i) Degree of control of the University over its own pattern of develupment

Since, in general terms, the levels of resources allocated by the University to different subject areas will bc related in some ways to the numbers of students studying in those areas, the pattern of student registraticas will have a considerable influence on the future of the University. Owing to the University' ε flexible academic structure students may pursue studies in any subject area they wish and change courses freciy. The only constraint operative upon then is that the programse of studies chosen must be viable (ie it must satisfy the degree regulations).

Given this situation the oniy controls that the University can effectively apply is through the admissions system. Here, although the University operates a common entry policy, a student: has to declare on his UCCA form the subject areas he intends to specialise in (though he is under no cbligation to actually study these subjects once adnitted). This information is, however, valuable since expericace has shown that the numbers of students who study particular academic programmes in Part II of the degree course may be predicted from progame choices of the UCCA forms of entrants.

The University can control to some extent the total numbers admitted by the level of offers made to applicants. It could exert indirect control on numbers studying in different subject areas through varying entry requirements according to subject
choice specified on a student's UCCA form. Nerimtheless because of the academic flexibility available at stirling, the future shape of the University will depend to an inquortant extent on the vagaries of student choice. This may create certain problems for d University.
(a) The University may not develop in a path that it considers desirable.
(b) Student choice can be fickle and could change suddenly especially in an uncertain economic climate. It is generally a slow process to reallocate University resources (since acaderic staff have tenure; in a situation of no overall growth it is necessary to do this through a process of not filling vacancies). Thus it would easily be possible to envisage a situation in which student registrations were changing much more quickly than University resources could be reallocated to meet these new demands.

We shall now give some detailed considerations to particular problem areas:
(ii) Student numbers

As described carlier the University has some contral in at least the upper level of its total student numbers through its admissions system. However, since the early seventies, it has failed to keep pace with its planned expansion programme and will have probably only around 2100 students by the end of the $1.972 / 77$ quinquennium instead of the target of over 3300. As mentioned carlier, this problem is
partially associated with demand for Unjersity education levelifing off during the period, although lecal factors may also be important. Arnongst these are the adverse publicity following the Queen's visit to Stirling in 1972 and the Scottish tradition of entering one's local University.

This situation creates a nunber of problems. Apart fxon the general question of the viability of a University of around 2000 students, the University comissioned builaings and appointed staff ahead of the planned development programme and hence has under-utilized resources.
(iii)

Subject distribution
"It simply vill not do to allow Universitics and Poiytechnics to produce whatever people they fancy or to relate the number and kinds of places they provide to the applicants that come forward" said Lord Crowther-Hunt (1975) in a spech in London. Lord CrowtherHunt was Minister of State for Education at the time and this speech highlighted some of the difficulties of the Uaiversity. Since very early years, Stirling has had problens with obtaining an equitable distribution of students over all subject arcas. For example although it was originally intended that one-third of all courses studied should be in Science, in practice only about a half of this number were actually taken in Science. Since a large proportion of these were taken in Biological subjects, the Physical Sciences numbers vere in some cases alnost derisory. Fear that the University might "degenerate juto a liberal arts college" were voiced in some quaziers.

Furtienmora the distribution of students amongst the remaining suhjects was very uneven. Student numbers in the fields of History, English, Soriology and rsychology tended to be disproportionately large compared with otizer arcas. This raises the question as to whether it is in the best interests of the University to have such an uneven distribution of student registrations. There is also the question of netional interest as raised by Lord Crowther-llunt. Is the University justificd in expanding developments in, say, History and English indefinjtely to meet exponding future student denand in these areas?

As vas described earlier the University might attenpt to influence thic situation by applying different entry criteria according to subjects which students express interest in on their ICCA forms. This could entail raising entry requirements in certain areas and perhaps lowering them in others. A difficulty with raising entry requirenents is that this rust incvitably involve reductions in total sludent numbers and thus conflict with the University's overall nuabers objectives. It may not be ruch help to the University to achieve balance sinply by cutting Arts and Social Science numbers in order to keep ther in line with Science. There remains, however, the option of lowaring entxy requirements in areas such as the Physical Sciences which the liniversit:y particularly wants to foster. Two main arguments are usually presented against this policy.
(I) If a prospective student got wind of this pelicy he/she would indicate interests in Physical Sciences no matter what the true study intentions were.
(2) Candidates with poorer entry qualifications might expericuce difficulty in successfully completing their courses.

However there are counter arguments to the above.
(1) Such action implies detailed "inside knowledge" and a high degree of duplicity amongt relatively inexperjenced people who are applying for liniversity. In any case a student who indicates interests in Science, although having no scientific background would be immediately suspect.
(2) In a study carried out by the author it vas found that there was some tendency for candidates with better cntry qualifications to obtain better degrees. No tendency, however, was found for a higher proportion of minimally qualified entrants to drop out than others. The sample size was however, shall and it ie possible that a tendency to drop out might set in should entry requirements be further reduced.

The University could attempt to directly influence subject distribution by applying quotas in certain areas. This would however tend te defeat the purpose of the system since the object of the flexibility in the University's academic structure was to facilitate the possilijity of changing courses. Another practical difficulty is that in nany cases students would need to take particular courscs in order to satisfactorily complete a degree pregrame. It seems to the author that any atterpt to apply a system of quotas other than in a very limited way inexorably leads to restructuring the University's entire academic system. This would not only involve the University in a number of years' change-cver period; but would also pose difficult questions concerning the identify and purpose of tine University.
(iv)

Finance

Generally the University's financial situation has deteriorated as the financial prospects of the Higher Education System as a whole have worsened. As previously mentioned, the

University has two particular problens. Physical capacity has been provided for well over 3000 students and the Iniversity has to bear the expense of maintaining this surplus capacity. In addition, the University has appointed academic staff ahcad of students demand, hence there is a measure of over-staffing of academic posts.

2.8 Summary

Thus it can be scen that the University is on a difficult plennirio situation. It faces the problem of atterpting to dras up pians for the period 1977-82 and beyond in a very uncertain environment. There is little doubt that the University will wish to expand during this period, partly in order to grow to a more viable size, pertly in orier to fill its excess capacity. The expansion problem, however, is difficult in the light of suhject distritution and financial problems. Thus any techniques which we might develop which could help to elucidate the situation could be very valuable.

BIBLIOGRAPHY : Chapter 2

13 Academic Planing Boaxd of the Yniversity of Stirling (1965) First
Report of the Acalemic plaming loasd, Diaversity of Stirling
14 Brownigs M (1974) AStudy on Reoncric: Impact: the liniversity of
Stirling, Scotish Academic Iress
15 Cottrell, T L (1972) Thierdisciplinary Studice, Times Higher Viducational
Supplement (July i975)
16 Hunt, Lord Crowther (1975) Times Hisher Euncational Supplement (May 1975)
17 Robbins, Lord (1963) op cit (lvo 6)
18 UCCA (1969) Seventh Report, Eyre and Sipot tiswoule Itd
19 UCCA (1971) Tenth Report, Eyre anc Spottiswoode Ltd
20 VCC (1973) Quinquennial letter the liniversity of Stirling
21 University of Stirling (1971) University of Stirling's Quinquennial
Subnission for 1972-\%, University of Stirling

3.1 Overview

Management science is concened with the application of the scientific rethod to management probleme. These methods have proved very valuable in approaching problems of planning and decision-making first in the military splere (during the Second World War) anc later in industry. See, for instance, Waddington (1973) and Tonlinson (1971).

The question then naturally arises as to whether these methods might prove to be of some value in the University context particularly with regard to the specific problems of the lniversity of Stirling. An obvious way of attempting to consider this question is to survey developments in this field. We shall consider work carried out both in the UK and elsewhere. Aithough some of the work earricd nut outside the UR may be in institutions which beiong to very different national University systems, the concepts and nethodology developed could well be relevant to our own situation.
3.2 Historical perspective

Although accounts of successful applications of management science to military and industrial problems have appeared since the end of the Second World Nar, applications in the field of education have only appeared in significant nurbers since the early sixties. We can only speculate about the reasons for this comparatively late develnpment. It could be that the management science approach did not at firse prove worthwhile in the education field, or it could be associated with the objectives of the eystems being less clearly deifed than in the industrial. or n:ilitary setting. Other pessibilities are fears that: such an approach might undermine traditional academic values or simply a conservative attitude towards a scientific approach to management in Universities.

As Sir Eric Ashby (1963) wrote abcht British academics
"All over the country thege croups of scholare, who would not make a decision about the shape of a jeaf of the derivation of word or the author of a manuscript without painstaking?y assembing the evicence, make decisicns about admissions policy, size of universitice, staffs.tudent ratios, content of courses and similar issues based on dubjous assumptions, scrappy data and mere hunch although dedicaled to the pursuit of knowledge, they have until recently resclutely decined to pursue knowleage about themselver".

An carly paper entitled 'fducation - rich problems anc poor markets' calling for management scientists to cievote more effort to the ficld of education was written by Platt (1962). Platt stated that his purpose was
"to invite management scientists and operational analysists to add education to their agenda; cducation is a systen and set of eubsystems potentially susceptible to analysis design and perhaps eventually a little optimisation".

He also discusses the skills which such workers could bring to bear on these problems, such as the ability to formulate alternative poicies and the capacity for measuring the costs and bereitits of various courses of action.

William G Sheppard (1965) in an address to a joint meeting of the Institute of Maragement Sciences and the Gperations Research Society of America referred to Platt's paper and euggested that there was a great disparity between the needs of education for ramagement science and the present effort. He cutlined a nurber of areas where such an analytical approach might prove useful such as in the rescurce allocation problems within Universities and the question of quantifying the relationchips between the needs for teachers and students and their potential supply. He stressed, however, the importince of human problems and the dangers that the simplification of the conception of the educational system inherent in such an analytical attack couid tend to put restrictions on imovation, encourage conformity and lead to mediocrity.

One of the earliest bibliographies of work in this field was provided by R J rath (1968). In this survey Roth analyses 41 IFors (Internationel Federation of Operational Research Societies) abstracts on cducation from the period November 1961 to December 1965. Seventeen of these forty-one abstracts are relevant to universities. Of these, seven deal with University operations (mainly timetabling or 'scheduling'), five deal with forecasting (student admissions, academic success, demographic trends etc), four deal with evaluation of educaticnal technology, and one with a mathematic nocicl of an eaucational institution.

Rath also reported a growth in rescarch activity in the field within Universities. He found ten institutions with offices of campus plaming or institutional research institutes.

Eurton V Dean (1968) in a critigue of Rath's papar observes that most effort had been irvolved in applying existing managewent science nethods to University operations rather than developing new areas of management scjence which were applicable to University problems.
3.3 State of the Art at mresent.

An excellent survey of recent rescarch carried out in this field is presented by R G Schroeder (1973).

We shall now consider some specific problen areas where the adoption of a managenient science approach has proved helpful.
(i) Iniversity timetahling (sometimes called scheduline)

As we saw earlier in Rath's paper, a good proportion of the earlicst succesefully implemented work was carried out in this area. Dakford's work (1965 and 1967) in which he reports a very successful algorithr for scheduling stucents, staff and lecture rooms is worthy of note. More recently Longford-Swith (1971) has attcmpted to derive a relntionship between the classroom wix (ie distribution of classroms of iifferent sizes) and its ability to meet random student demands for courses. After making certain assumptions ahout class sizes he develops a mathematical model of the process of assigning courses to classrooms and develops measures of overflow. Tomei (1969) also provides another account of the work done in this field in the USA. A report by the Department of Instructional Studies of Cincinnati University (1969) however, revaled that only about one third out of about 90 institutions survered had actually implemented work in this field.

Of the work carried out in this field in the UK, that of Gaile Thornley (1968) is particularly inceresting. Dr Thornley used a heuristic mudel to attempt to devise a timetalle for the University of Lancaster. The basic tenet of this work was that a timetable had to meet certain basic objectives before it could be considered feasible. Ecyond this it should attcrapt to meet other objectives. Measurenent of the effectivences with which these objectives are met can be empioyed as a measure of performance.

The index of performance is constructed through assignment of a given number of points for avoiding important subject clashes, further points for obtaining a satisfactory spread of classes throughout the week, along with an extra score for classes that take place at favourable hours. The model generates timetables heuristically progressing toward timetables with higher points scores under various headings and the correspondingly higher utilities. Although the assienment of points may be to some extent arbitrary, this line of rescarch sems promising.
(ii)

Student flow models

Much research effort has been devoted to problems associated with forecasting the admission of students to programmes of study and developing modeis of student progress through a University system. The frogression of students through the University, proceeding normally, repeating sessions, dropping out and possibly being readmittec, has important consequences for the future growth and hence resource requirements of an institution. Although this problem is of greatest importance in J . S. Universities where students have considerable discretion over the time they take over a degree programe, it has also been of importance at the University of Stirling, An excellent surmary of work carried out in this area is presented by C C Lovell et alia (1971). Most models developed in this area are based either on a ratio technique or use a Markovian approach. The basis of the ratio approach is the idea that the ratic of a particular cohort of students who progress from one levei of an academic programe to another may be taken as the probability of progressing between these two stages. (For instance a historically determined proportion of the first year class in a particular subject may progress to the second year).

If we a:ssume that these ratios can remain constarit fron one tine pericd yo the next we have the basis of a tool for predictinf student numbers at different $]$ evels of an academic programac.

The hasic assumption of a Markovian model is that the probability of an entity moving from one state to another during a given time interval depends only on the present state of the cutity and is independent of the past history of the entity. It is further assumed that these probabilitics (transition probabilitics) remain constant from one tine period to the next. It thus would seem plausible to construct a Markovian model of student transitions through a University system. For instance, considering students in the second year of a given course, at the end of the year they may either

progress to the next level of the course, repeat the year or drop out either temporarily or permanently. Thus a Markov model of the whole system may be developed, although this can turn out to be rather complex for a large system. For practical exarples of these types of models sec Marden et alia (1971) or Marshall and Oliver (1970).

K Ball (197.) has used a modification of the ratio technique for the purpose of forecacting student flows. This model is based on consideration of the proportions of given student entrics to have reached given academic levels a number of time periods after entry. Further detaile of this type of model are given in Chapter 6.
(iii) Manpower planning: Acadomic staff flows

Manpower planning is of consjderable importance to all. large organisations. Given a particular level of staffing of an organisation and a specificd recruitment and promotion policy it is important to be able to forecast the future conposition of the organisation. of particular importance is the question as to whether the organisation will have sufficient experienced staff for its needs in the future and whether a satisfactory carcer structure will be provided for its employers.

Simpson et alia (1971) working at Lancaster have developed a model for forecasting staff movements at the University of Lancaster. This is an aggregated model and is based on the Markovian principle that the probahility of an entity muving from one state to ancther during a particular time period depends only on the initial state of that entity. Thus if we consider an academic staff menber on a particular point of the salary scale; at the end of the time period (a year) he can either move up to the next point on the scale (providing he has not reached the maximum), leave through retirement or possibly obtaining a post elsewhere, or be pronoted to the ncxt grade. The transjition probabilities can be obtained from historical information. Unfortunately during a period such as the mid-seventies when University resources are under severe restraint, historically determined transition probabilities are likely to be invalid.

Oliver (1968) has constructed a model of temured and non-tenured acadumic staff movements at Berkeley. His analysis indicated that equilibrium could not be reached with cxisting tenure promotion rates at Rcrkeley.

Gray (1975) has described a manpower model which las been deleloped at a private University in the USA and which had been ased to invertigate the effect of an early retirement policy on the career structure of academic staff. (Incidentally this investigation came to the conclusion that early retirement was only a palliative and not long tern sclution to the problem of designing satisfactory career structures).
lopkins (1972) conducted a study of the effect of an early retirement plan at Stanford. He found that early retirements could be offered at about the sane cost by inducing highly paid fuil professors to retire early and replacing them with assistant professors at a lowei salary.

Berman (1975) has described a manpower model of the system of higher education in the USSR.
(iv) Models for Optimal lesource Allocation

An obvious difficulty with any attenpt to allocate resources in any sense optimally is the problem of specification of University objectives. If we use conventional linear prograrming tcchinques we need to develop a unidimensional objective function (eg maximisation of profit, minimisation of cost) and this is not really practicable in the University context with its multiple, sometime conflicting goals measurable only in different dimensions.

Jec and Clayton (1972) however suggest a possible way of handling the mulliple gonls of lniversities using goal progranming. Goal programajg is an extension of linear programing that can cope with the problem of wultiple goais mad also handle objecrive functions commed of elements in different dimensions. It is necessary for the decision rraker to provide an ordinal ranking of goals in order of iuportance and the technique minimiecs the deviations betweer the stated goals and what can be achieved within a given set of constraints. More specificaliy three types of solution are provided by the goal prugraning approach:-

1) Identification of input (resource) requirements necessary to cbtain all desired goals.
2) Degree of goal attainment possible with specific inputs.
3) Degree of goal attainment possible unjer various combinations of inputs and goal structures.

The authors have developed a goal programing model for allocating the total salary budget of a college among various grades of academic staff, nor-academic staff and graduate assistants while consinexing the numerous goals of the college. Anongst these goals vere adequate salary increases, desired acadenic staff/student ratios, desired distribution of academic staff with respect to rank, desired academic staff:non academic staff ratio, desired academic staff/graduate assistant ratio and the minimisation of cost. Among the constraints were total numbers of acodemic staff, distribution of acadenic staff, numbers of non-acadenic staff, numbers of graduate assistants, overall salary increase and rotal payroll. The authors report that this fodel's results proved helpful particularly in highighting situations in which a given combination of goals were incompatible with the resources avail.able and hence a trade-off would be required.

Len and Mcore (1072) report a goal piograming medel for University adutssions plaming. This model took cogrizance of a varicty of acaderic goals euch as University admissiors standarc's, residence occupation rates, etc.
K K hallhaus (1974) also describes a goal programing nodel for rescurce allocation and plamning in higher education.

Although these developments using goal programing are very promising it should be remembered that it is still necessary to quantify output and for rank 'objectives', a contentious task in the University context.
(v) Cost Miodiels

Soxe intocrtant work has been carried out in the development of simple cost models of Universities. Of major importance of the work carricd out in the UK has been that of Bottomly at the University of: Bradiford (1971). bottcmly was interested in the possibilities of securing ecoronies in the cost of educating students particularly in the context of iniversity expansion. A considerable part of this work considers cconomies of scale both in the use of academic staff and through using buildings moxe intensively. We shall consider the implications of this woik ia more detail in Chapter 5. In addition Eottomly has done some very important conceptuil work in the field of University costs. He distinguishes between financial cost which is concerned with actual cash outflow fron the University and economic cost which is reiated to the dename of the tinjersity for the factors of production. He al.so defines the meaning of marginal costs, opportunity costs and increrental costs to the University context. These concepts are further diselased in Pickford (1975.) A description of the usen of cost models in the vas is given by Janes Famer (1973) and Coiby H Springer (1873).
(vi) Organisational Theory

Some preliminary work has heen carried out in the very inportant area of assessing the effectiveness of University government and administration. Rivett et alia at Sussex (1974) have approached this problem in two ways
(a) Using a systems appreach and
(b) Irom a behavioural point of view.

It may fairly the said, hovever, that this work is still at a very preliminary stage and little of immediate practical value has resulted from this work (see Lars Thulin's (1974) critique of this work).

Further work has been carried out in this field in Japan at the University of Hiroshima (sce Yokoo et alia (1974)) but again progress las been very limited.
(vii) Planning Progranming and Pudgeting Systems (PPES)

Flanning progranuing and budgeting systems are a fairly recent mangerial innovation designed to relate the objectives of an organisation much more closejy to its budgeting process. Traditionally budgets and accounts are object orientated (cg so much for salarics, so much for postage, maintenance, etc). The purpose of a programe budget is to relate costs to the actual programmes which are run to meet the or\&anisation's objectives. Thus, hopefully the implementation of PPBS should directly improve the whole decisjon-making process of an organisation.

One of the first papers to discuss the aṇlication of a PPBS approach to University decision-making was published by litch (196R) and vas entitled "Systems approach to decision-making in the Department of Deience and the liniversity of California". In this paper llitch discusses and contrasts his experiences in inplementing PPBS in the Defence Department and at the University of California.

At the Defence department, Hitch and his co-workers had reasonable success in devising a programme structure which related to the gools of the department. They defined eight or nine major programmes under which were grouped a large number of progranme elements. For inetance, one of the major brogrames was the strategic retaliatory force (force capable of waging all-out nuclear war). The prograbme elements were veapon systems and force units whose principle mission vas strategic reialiation ($B-52$ bumbers, $B-58$ bombers, minutewan missiles, polaris submarines).

In general the PPES approach worked well for the Air-force which consisted in the main of distinct self-contained weapon systens designed for specific missions which could readily he assigned to the appropriate progranmes. It worked much less well for the Anmy where many of the forces had general purposes and hence could not easily be assigned to a particular progranme.

At the University of California, Hitch encountered some of the same difficulties in applying PPBS that he had previonsly encountered in the Arry. There was great difficulty ir deciding on the University's major programmes and related programe elenents. Because of this the author believed that the formal PPLS approach should be modified to that of projecting future resource and money requirements in such a manner
"(a) that the progzarme structure focuses atention on the key pulicy dceision affecting resuurce requirements
(1) that the programen requirnacnts can be used as (or translated into) badget catcgories."

Other interesting papers on PPBS were publiehed by the SRS (1970) and Van kisih (I969).

Van Wyjk propeses a possibie University programe structure. He divides the University into six main programes which he further divides into sub-progiammes as follows:-

1. Instruction
1.1 Hemanitics
i. 2 Eocial science
1.3 Natural science
1.4 Applicd science
1.5 Heajth science
1.6 Law
2. Research
2.1 Basic research
2.2 Applied research
3. Public Service

3.1 University extension.

3.2 Cultural activities
4. Library
5. Student Scrvices
5.1 Residences
5.2 Financial assistance
5. 3 Health
5.4 Alumi
6. Support

These programes are used to fulfil the basic obiectives of the University which he defines as follows
(]) the acquisition of new information.
(2) the disscmination of existing information.
(3) the preservation and retrieval of information.
(4) proticm solving.
(5) service to society.

There remains however the problem of relating the programmes to the achievement of objectives and quantifying this relationship.

An interesting application of programe budgeting in Europe is that by Chalmers University of Technology, Sweden (see Apelquist et alia (1971)). The authors defined five major programes which could be further subdivided into a number of sub-programes. These five major programes were:-

1. UC Engineering education.
2. UG Science and Social Science education.
3. Technical research and graduate training.
4. Research and graduate training in social science.
5. External services.

The authors developed measures of effectiveness for the performance of the progranmes and also developed a cost accounting eystom which could be used to relate University costs to programes on which they were incurred.

Fielden (1969) gives an interesting account of partial implementation of PPBS systems in the universities of California, Ohic state and Pittsburg in the USA. In a further article (1973) he reviews applications of PPBS in Universities and comments on lack of success whicin he attributes to three basic causes:-
(a) The setting of objectives in a classical sense is neither sensilie nor feasible. There are conflicts of objectives between university, society and other groups.
(i) Insepaxability of university activities and protlems of apportionsent of academic time.
(c) Use of output measures to show effectiveness of operations presents difficultics.

The problem of implementing PPES systems in Universities is also discuseed by Weathereby and Balderston (1971) in their excellent review of Prus.
"Io our knowledge a total comprehensive implementation of PPBS has net been achieved in any college or university in the United States."
(viii) University simulation models

A number of attempts have been made to develop University sinulation nodels for the prediction of University resources. These models will. be discussed in the next Chapter.

22 Applequist et alia (1971) The Development of Planning, Programing and Budgeting Systems, Studies in Institutional Management in Higher Education, CERI, OECD, Paris

23 Ashby, Sir Eric (1963) Introdaction: decision-making in the academic world, Sociolosical Studies in British Iniversity education Monozraphy No 7, The Sociological levicw. University of Recle

24 Ball, R (1975) Some Problems in University Planning in Developing Countries, Proceedings of Seventh 1 lơ 3 Conference, North Holland, pp 601-616

25 Bermant, M (1975) Problems of Specialist Mampower Modelling, Proceedings of Seventh Ifors Conference, North Holland, ip 67\%-687

26 Lottomly, J (1971) Costs and Potential Éconories, Studies in Institutional Management in Higher Education, CERT, OECD, Iaris

27 Dean, 3 V (1973) Critique of Management Science in University Operatiors, Management Science, Vol 14, No 6 (February 1968) pp 13-385-\%

28 Farmer, J (1973) Why Cost Analysis in iligher Education, Professional scminar, Proyranme on Institutional Management in Highor Education, CERI, OECD, Paris

29 Fielden, J (1969) Analytical Planning and Improved Resource Allocation in irritish Universities, University of London l'ress

30 Ficlden, J (1973) Concept of PPBS and Approaches to Application, IMHE Programine, CERI, OECD

31 Gray (1975) Report on Education Systems: Workshop Proceedjngs of Scventh IFORS conference, North itolland, pp 586-7

32 Harden, W R , et alia (1971) Projection of enrollment distribution with enrollment ceilings by Markov Processes, Sociol-Economic Planning Science, Vol 5 (1971) pp 467-473

33 Hitch, C (1968) A systens approach to decision making in the Department of Defence and in the University of California, Operational Research Quarterly, 1968, Special Conference Edition, pP 37-45
34 Hopkins, D (1974) Faculty early retirement prograus, Operations Research 22. (1974) pp 455-467

35 Lee and Clayton (1972) A goal programing model for Academic Resource Allocation, Management Science, Vol 18, No 8, April 1972, pp B395-408

36 Lec and Moore (1972) A model for administrative decision making in academic institutjons, procedings of Fourth Anmual Meeting of the American Institute of becisions Science. New Orleans
37 Longwood-Smith, K (1971) Accomodating student demind for courses by varying the class-room size mix, Joumal of the OR Society of America, Vol 19, No 4, July-August 1971, pp 862-874
38 Lovell, C C (1971) Student flow models: a revicw and conceptualisation, Technical Report No 2\%, NCHEMS at WLCIE, Boulder, Colorado

22 Applequist et alia (1971) The Development of Planning, Prograruning and Budgeting Systems, Studies in Institutional Management in Higiner Lducation, CERI, OECD, Paris

23 Asiby, Sir Eric (1963) Introduction: decision-making in the academic world, Sociological Studies in Eritish University éducation Monograpiny No 7, The Sociological Review, University of kecle

24 Ball, R (1975) Sone Problems in University Planning in Developing Countries, proceedings of Seventh lFurs Conference, North Holland, pp 601-616

25 Bermant, M (1975) Problems of Specialist lampower Modelling, Proceedings of Seventh IFORS Conference, North Holland, ip 67\%-687

26 Bottomly, J (1971) Costs and Potential Econories, Studies in Institutional Management in Higher Education, CERI, OECD, Faris

27 Dean, B V (1973) Critique of Management Science in University Operatiors, Management Science, Vol 14, No 6 (February 1968) pp B-385-7

28 Farmer, J (1973) Why Cost Analysis in iligher Education, Professional seminar, lronranme on Jnstitutional Management in Higher Education, CERT, OECD, laris

29 Fielden, J (1969) Analytical Planning and Improved Resource Allocation in British Universities, University of London Press

30 Ficlden, J (1973) Concept of PPBS and Approaches to Application, IMAE Programme, CERI, OECD

31 Gray (1975) Report on Education Svstems: Workshop Proceedings of Seventh IFORS conference, Jorth Holland, pp 586-7

32 Harden, W R, et alia (1971) Projection of enrollment distribution with enrollment ceilings by Markov Processes, Sociol-Economic. Planning Science, Vol. 5 (1971) pp 467-473

33 Hitch, C (1968) A systems approach to decision making in the Department of Defence and in the University of California, Operational Research Quarterly, 1968, Special Conference Edition, pp 37-45

34 liopkins, D (1974) Faculty early retirement prograus, Operations Research 22. (1974) pp 455-467

35 Lee and Clayton (1972) A goal programming model for Academic Resource Allocation, Management Science, Vol 18, No 8, April 1972, pp B395-408

36 Lec and Moore (1972) A model for administrative decision making in academic institutions, Proceedings of Fourth Anmal Meeting of the American Institute of Decisions Science, New Orleans

37 Longrood-Smith, R (1971) Accommodating student demand for courses by varying the class-room size mix, Joumal of the OR Society of America, Vol 19, No 4, July-August 1971, pp 862-874
38 Lovell, c c. (1971) Student flow models: a review and conceptualisation, Technical Report No 24, NCHESS at WLCHE, Boulder, Colorado

39 Marshall and Oliver (1970) A constant worklead tadel for student attendance and enrollment, Uperations fesearch. Vol 18 . No 2 . 1970, pp 193-206

40 Oakford, R, et alia (1967) School scheduling practice and thecry, Journal of Educational Data Processine (196\%) pp 16-50

41 Oliver, $R(1968$) An equilibrium model of faculty appointnents, promotions and quota restriction, Report ion 69-10 Ford Research Programme in University Administration, University of California Berkeley

42 Pickford, M (1974) University Expansion and Finance. Sussex University Press, pp 5-29

43 Platt, W J (1962) Education: rich problems and poor markets, Management: Science, Vol 4, No 8, July 1962, pp 408-418

44 Rath, R J (1968) Management science in university operations, Management Science, Vol 14, No 6 (February 1968) pp B373-384

45 Rivett, P, et alia (1974) Comparative effectiveness of alternative administrative structures, IMIE programme, CERI, OECD, Paris

46 Sheppard, W G (1965) Operations rescarch in education, Managemnt Science, Vol 11, No 4, February 1965, pp C13-19

47 Shroeder, K G (1973) A survey of managenent science in university operation, Management Science, Vol 19, No 8, April 1973, Pp 895-806

48 Simpson, Ket alia (1971) Planning University Development, Studies in Institutional Management in Higher Education, CERI, OECD, pp 99-107

49 Springer, CH (1973) A pilot investigation of the cost estimation model at San Fernand's State College, Professional Seninar, Proprame on Institutional Management in tigher Education, CEkI, OECi, Paris

50 Systems Research Group (1970) Objectives program structure and evaluation in higher education, Systens Research Group Report

51 Thornley, V G (1968) University Timetabling: A quantitative study of the interaction between the course scructure and resource level, ph? disscrtation, University of Lancaster
52 Thulin, L (1974) Comparative effectiveness of alternative adminislrative structures, Evaluation report programe on Institutional Management in higher Education, CERI, OSCD, Paris

53 Tomlinson, R, OR Comes of Age, Tavistock
54 Van Wyk, (1969) Planning Programming and Budgeting Systems in Universities, Paper to Institute of Management Science Meting, At lanta (October 1969)

55 Waddington (1973) OR in World War 2, E:1ek Science
56 Walliaus, R (1974) A resource allocation and plannzo modei for hignes education, Decision models in Acadomic Administration, Kent State University Fress, pp 97-108

Weathersby and Balderstore (1971) PPBS in higher education planning and management, part I, on overview, Ford Research Programme in University Administration, University of California Berkeley

58 Yokoo, et alia (19%) Japanese paterns of instilutional management in higher education, lME prouramme CERI, OECD, Paris

4.1 Preamble

A number of workers have at:mpred to construct University simuation models. The purpose of such nodels has been to enable lniversities to predict their resource requirements (staff, space, finance, etc) under different operating policies and given different student inputs. These sifulation models are all deteministic. As Mitchell (1972) says "Simulations can be and are used which are completely deterministic. The aim in these cases would be to study the workings of large and complex systems under various operating conditions".

Thus in the University context such a model could be used to investigate for example, the consequences of changing maximum class sizes, staffine ratios, salary scales, or for investigating the effects of admitting an increascd proportion of Science based students. Simulation models do not give optimum solutions; it is up to the user of the model to sugecst and investigate altemative policies using the model.

As J Morris and J R Erown state (1974) "Simulation medels developed for use in acadomic administration generally link outputs to inputs in a deterninistic sense. Plamine is then accomplished using 'what vould happen if' approaches which focus on the sensitivity of the modelled system's output measure to input variations. In contrast mathematical models (ref to Goal programing models) are optimisation models. They therefore scek to obtain desired output objectives as function of juputs".

Such models enable the consequences of a devision for an institution as whole (and not simply an isnlated part of it) to be assessed.

4.2 An Outline Survey of Models in Use

There have been a number of attenpts mainly in Europe and North Americd to develop Iniversity simulation models. A feature of a number of these efforts is the production of flexible models which can be readily adapted for use by many institutions (usually vithin the same national University system). One of the first surveys of such models is given by Weathersby and Weinstein (1970). An excellent recent survey of work carried out in this field is given by KM Hussain (1973). We shall now broasly outline the work that has been carried out in different parts of the world.
(a) Notth Amorica

The best known and most widely inplemented models in Nonth America are the R.R.P.M. serics of andels (developed at Boulder Colorado) and the CAMPUS series of models (developed at the Iniversity of Toronto).

The RiPM models (on acronym for Resource Pequirements Prediction Models) originate from a decision of the U.S. office of Cducation to support a proposal for a model to be developed at NCHEMS (National Centre for Higher Education Management Systeris) at bouldcr, Colorado which could be of general use to institutions of hieher education in the U.S. This project resulted in the production of the RRPM models, which were fundanentally based on a model called CSL (Computer Simulation Model) produced by Weathersby (1967) in California. A number of pilot imnlementations were made with this ariginal model after which the model was refined and nore sophisticated versions were produced. (See Hussain \& Martin (1971) and Huff (1972)).

The CAMPUS (Comprehensive Analytical Methods for Planning in Iniversity Systems) sexias of models originate from the work done by Professor pudy for the Bladen Comaission which was considering the financing of higher culucation in Canada. This work culminated in the development of a pilot siriujation modej of the Faculty of Arts and Sciences at the University of Toronto (Judy and i.evene (1965)).

The Ford Foundation then provided further finance for Judy and Levene's group (the Systems Rescarch Group) to produce a general Univelsity nodel (CAPL'S V). This model had a number of lefects (especially poor documentation) and was later superseded by a number of improved versions.

A further series of models called SFARCH models (System for fixploring Alternative Resource Conmitments in ligher Iducation) have been devejoped by the firm of management consultants Peat, Marwick, Mitchell of New York (Kerne and Daniel (1970), Strive and Nelsen (1972)). This is a more aggregated model than those described earlier and it is especially relevant to the situation of the small private college in the United States.

A brief survey of other models developed in the U.S. will be given later in this Chapter.

(b) Europe

A considerable amount of work has been done in this field at the llochschule Information System in West Germany. This is an organisation, situated in Hanover and supported by the Volkswagen Foundation. Its obicctive is the production of models and operational systems which would be relevant to all institutions of higher education in Cermany. This organisation has produced two general purpose simulation models for German institutions, HIs' A ' and ' B '.
(Detweiler and frey (1972)).

These models are particularly orientated towards forecasting space requirements in order to try to help cope with the chronic problems of under-capacity in the German University system.

Models have also been developed at the University of Utrecht in the Netherlands (de Nie (1974)). These models are of particular interest in that they have been developed entirely out of the resources of one University institution.
(c) Japan

Shimada (1972) has developed a simulation model of a Japanese University using systems dynamics methods.
4.3 Some Technical Details of the Models

It would be tedious to embark on an exhaustive description of the technical details of all the models. Instead outline details of one model vill be given and the others will be compared. Further details are supplied in Appendices 1 and 2.

In order to appreciate fully the models developed in North America a general understanding of the acadenic systems pertaining to that area is required. In this system a student studies a specific set of courses (required or electives), each course carrying a specific amount of credit measured in credit hours (this of ten corresponds to the number of hours the course is taught each week). This set of courses, leading to an objective (usually a degree) is called a student program. A program may consist of courses taken from a vide range of subject options although constraints involving the study of some compulsory courses from the students' major subject are usually imposed. Generaliy a degree is awarded for obtaining a required number of credits subject to all compulsory courses having been successfully conpleted.
(a) The PRPM models

The logical etructure of the model RPPM 1.5 can be conceived as divided into six phases. These are:-

1. Institutional definitions.
2. Induced course load mátrix (ICLNi) specification.
3. Calculation of full time equivalent academic staff.
4. " "teaching costs other than acaderic staff salaries.
5. " "non-teaching costs.
6. Report preparation.

A detailed diagram of the logic of FRPM 1.6 (taken from Clark, Huff
Haight and Collard (1973)) is given in figure 4.1.

Phose one of the model allows the institution to define certain parameters related to its organisation and academic structure and also give a list of its degree programs together with the disciplines (or departments) who give the courses of which the programs are comprised.

Phase two of the model attermts to establish a relationship between the academic programs on offer and the teaching loads on the departments who provide the courses. As mentioned carlier a student taling a particular program of studies will generally take courses of more than one department. ('hus, for exampe, a student who is taking the mathematics program may also generate loads on the Physics, lifstory and English Depts as well as the Mathematics Dept). Such loads can be estimated by using the induced course load matrix (JCLM). This matris is made up of the average numler of credit hours talen by a student on a given program in each department or discipline.

By maltiplying the enrollment in different programs by the appropriate elements of the induced course lond matrix, the morkland on each department in terms of student credit hours can be calcuiated. Further exposition of these ideas together with a ainple example are given ire
Fig. 4.1 Logic F1ow of RRPM 1.6

The third phase is used for estimating the levels of academic stafing which would be neceesary to cope with the teaching loads thus gencrated. Two altermative rethods of doing this are provided by the nodel.
(i) The simpler method involves using a series of "productivity ratioc"; the productivity ratio being the number of student credit hours that would be expected to be provided by each full time equivalent staff member. Thue, for instance, if 4912 student credit hours are "produccd" in first year liisuory and the appropriate producivity ratio is 359 student credit hours per staff member, then this corresponds
to $4912 / 359=13.66$ academic staff. The division of this staff between different grades can be carried out acording to predeternined ratios. It is also possible to veight the productivity ratio to allow for different levels of courses.
(ii) The more complex method involves using an approach hased on student contact hours. In this appzoach the ratio between the number of hours that a student spencis in the classroon or laboratory (contact hours) and number of credit hours received is specificd. Thus the number of student contact hours which a given course involves can be estimated. The maximurn class size for a particular course (section size) is read in and thus total academic stafti contact hours can be detcrminci. If there exists some notiona? workload per acadenic staff member defined in terms of staff contact hours, then staffing requirements for a particular course can be estabiished. The advantages of this approach is that staffing is much more closely related to work actually carried out and the effects of changing certain paramcters (such as maxinuy class size) can easily be determined.

Phase rour calculates direct teaching costs other than academic staff salaries.
These costs include departmental administration costs, secretarial costs, equipmont and other related academic expenditure. Each rype of cost is calculated for the department (or discipline) as a whole and then reallocated to the various courses on one of a number of possible bases, such as in proportion to a course's staffing requirement or total student credit hours involved in the course.

Phase Five calculates the cost of cach student progran which is carijed out on the folloving basis: the cost per student credit hour of each discipliac in a given acadomic year can be obtained simply by dividing all costs allocated to that cost centre by the number of credit hours produced. Now the induced course load matrix gives the average number of credit hours taken in each discipline by a student in a typical progrant. Hence the cost of each student program can simply be obtained by muitiplying the appropriate program element by the appropriate cost and then suming (a simple example is demonstrated in Appendix 2).

A series of equations is also provided for estimating non-teaching costs (eg research, public service etc).

Phase Six of the model deals with the gencration of output reports. These are of four kinds. The first is a series of organisational reports that provide traditional line item budgets detailing personnel and financial requirements for various organisational units. Various levels of aggregation can be chosen (eg department, faculty, college). The secord series of reports gives the program budget for an institution as a whole. This report indicates the numbers of students registered for each program of study, the cost of each student program and the total cost of each program as a whole. The third report gives a finarcial sumary for the institution as a whole and displays a breakdown of expenditure by netivity (ef general academic instruction, research, etc.) the final zeport simply gives a general display
?his version of the APM model does not give any indication of the utilisation of academic space. This is covered, however, in the earien and rather more comprehensive model PPPM 1.3 (Hussain and Martin 1971).
(b) CAMPliS modcls

In general the basic logic of CMIUS is very similar to that of RROM although CAn?US is an even more comprehensive and detailed model. The major differences concern the level of detail emnloyed in the calculation of teaching loads. lic have seen that the calculation of teaching loads in RRPM is carried out using an induced course load matrix representing the student credit hour load induced on teaching departrents by student programes. In CAPPUS the load induced is in terms of activities and is measured in contact hours. An activity in this context is defined as ary basic component of instruction involved in giving a course (such as a lecture, laboratory tutorial etc). Thus one course can involve the performing of a nusher of activities. No less than sixteen data ejements have to be supplied for cach activity. These are listed in Table 4.1.

Although such extensive detail gives great flexibility to the models, it has the disadvantage of requiring an enommes information system. For instance a university could easily hold around 2000 activities; this would require an information system providing around 30,000 data items. A further problem is that at this level of disaggregation there is the possinility of the induced course load matrix not being a consistent indicator of the future session's choices. This problen is discussed by Jewett et al (1970), Brenerman and Hopkins (1969).

Data required by CArtuS model (for each activity)

- Credit-hours (per terin or semester)
- Contact hours (per veek)
- Type of activity (lecture, lab, seminar cte).

Resources required

- Personnel by type (prof., graduate assistant, etc).
- equiprent

Space reguired

- Type
- Size
- Duration of activity in wecks

Identification Data

- name and/or number
- discipline or department offering activity
- level (academic year) of activity
- max. no. in class
- min. enrollment allowed
- class size policy

CAMPUS deals very comprehensively with space requirements; the need for various kinds of teaching and office space is calculated and a special 'space matching' facility which calculates space shortages and construction costs of each type of space is provided.

Also available is an academic staff flow model which enables the fiows of academic staff between time periods to be forecast taking into account rates of resignation, sabbatical leave and promotion policies, etc.

The model also possesses the facility of calculating total revenue taking into account both tuition fees from students and also revenue from public funds under formula financing schemes (under such schenes the University grant from its funding agency is calculated using a formula; usually related in some way to student numbers - see J A Muller (1264)).

Thus CAMPUS is probably the most detailed and comprehensive model available; its chief disadvantage being the enormous data base required for successful operation.
(c) SEARCH

Some details of the logic of this model are provided by Peat, Marwick Mitchell (1971). This model is specifically intended for use by small North Anerican private colleges - sometimes with only a few hundred students. Its level of aggregation is much higher than the previously described models, no information at the departmental level being provided. Instead the model operates on total student registrations for particular academic years which it then relates to other planning variables. It is most useful in situations where broad policy decisions are being investigated (eg effect of an increase in tuition fees). Fairly detailed financial information at the institutional level is provided with details of student aid plans, endoment funds and physical plant replacement funds. The model can be run on a time-sharing facility.

CAMUS deals very comprehensively with space reguirements; the need for various linus of teaching and office space is calculated and a special 'space matching' facility wich calculates space shortages and construction costs of each type of space is provided.

Also available is an academic staff flow medel which enoles the fiows of academic staff between time periods to be forecast taking into account rates of resignation, sabbatical leave and promotion policies, etc.

The model also possesses the facility of calculating total revenue taking into account both tuition fees from students and also revenue from public. funds under formula financing schemes (under such schemes the University grant fron its funding agency is calculated using a formula; usually related in some way to student numbers - see J A Muller (0.264)).

Thus CAMFUS is probahly the most detailed and comprehensive rodel available; its chief disadvantage being the enomous data base requited for successiul operation.
(c) SFARCH

Some details of the logic of this model are provided by Feat, Narwick Mitchell (1971). This model is specifically intended for use by smell North American private colleges - sometimes with only a few hundred students. Its level of aggregation is much higher than the previously described models, no information at the departmental level being provided. Instead the model operates on total student registrations for particular academic years which it then relates to other planning variables. It is most useful in situations where broal policy decisions are heing investigated (eg effect of an increase in tuition fees). Fairly detaifed financial information at the institutional levet is provjded with details of student aid plans, endorment funds and physical plant replacement funds. The motel can be run on a time-sharing
ficility.
(d) BIS

The West Gemman University system allows students wide academic freedon, vith, until recently, lictle constraint on the maximum period of studies or even their location and scope (sce Wightman 19\%1). In general the West German Huiversity student spends considerahiy longer than the minimum period in obtaining his degree and this has exacerbated the serious problem of under-capacity in West German universities. (See Radicliffe 1970). Because of this the HIS models are specifically orientated to the problem of forecasting the capacity of an institution to teach students given existing levels of academic staff and physical space.

Like CAPPUS and RRPM this model uses an induced course load matrix to relate the registrations on student programs to teaching load on departments. According to Dettweiler and Frey (1972) however, there is considerable difficulty in the construction of the induced course loac matrix because of the fragmentary and inconplete data on student registrations that exist in most Geman Universities.

The nodel works by first calculating the necessary capacity given likely student registrations and then the students that can be taught giver existing capacity. Becausc of the complexity of the relationship between student registrations and teaching capacity, an itcrative proccdure is used to arrive at target intakes.
(c) T.U.S.S.

Two models have been developed at the University of Utrecht. One model (TUSS-3) is a very detailed model which is based on tie individual teaching activity and can be used for forecasting resource req̧irements of an individual faculty. A more nggregated model (TuSs-2) is used for predicting resource requirements at the University level. An interesting feature of this model has been its adaption for the purpeses of training University administrators through the development of a manderent game (hussain 1974, die Nie 1974). This game is entitled University Simulation Gane (USC).
(f) Industrial Dynamics Model of a Japenese University

This model was developed for a private Japancse University and uses the techniq̧ue of Systens dynamics (see Forrcster 1961). Since finance is a major probiem in private Japanesc Universities, the mociel coneentrates particularly on financial aspects including tuition fees and governnent aid. In this paper Shimada (1972) describes the application of this model to forecasting future development in the Lav faculty.

(g) Other models

As mentioned earlier a number of other models have been developed particularly in North America. Since it would be tedious to go into details of each one and since they illustrate few new principles, they will simply be noted below together with the appropriate references.
G.U.S. (Generalized University Model) implemented at the University of Texas, USA (Muefli 1970).

A model for Michigan State lniversity (Hoenig et al 1968 and 1969).

Tulane Lniversity Model (Fimin et al 19(7).
Fascism and RCM for US Air Torce Acadery (Van hyjk and Russell 10\%2, Allison 1970).

University of Copenhagen Model (Hamer-Jespersen 1972).
IFILP and PLANTRAN developed by the Nid West Research Institute (Van Wijk and Russell 1972).
4.4 Costs of implementing simulation models

Costs involved in implementing simulation models are of too sorts, development costs and operating costs. Development costs are the costs involved in constructing a model or in daptine an existing general purpose model to the needs of a specific institution. This also includes costs of validating the model, generation of data and personncl training.

Operational costs comprise the costs of ruming the model and maintaining the data base. Some data on development costs is available for the general purpose models. It was found in the pilot implecientations of RTPM that total development costs ranged from $\$ 21,000$ to $\$ 100,000$ with an average of $\$ 50,000$. Copies of software hovever: are available for a nominal fee of $\$ 50$.

Since CAMPUS is controlled by the Systems Research Group, a comercial organisation it is difficult to obtain precise data en costs. There is, however, a fec of $\$ 12,500$ to $\$ 25,000$ payable for use of the software alone. In addition the costs of consulting and training is jikely to vary from $\$ 5000$ to over $\$ 50,000$.

HIS supplies its software free of charge but estimates a development cost of up to $\$ 25,000$.

Operational costs of the models are difficult to calculate, much depending on the nethorl an institution uses for costing its corputer time. Krampf and lleinlein (1974) quote a cost of $\$ 300$ for rurning RRPM at a mediun size institution (20 departmerts, formors, 4000 students, $\$ 10,000,000$ budget).

For this amount it is possible to obtain a complete five-year simulation with a full set of analyses and all reports (since no information is given as to the method of assessing the cost of computer time, however, we must regard this result with sore scepticism),
4.5 Experiences vith the implementation of simulation mode1s

Reports of implementations of sinulation models in Universities are of two linds, firstly accounts of practical experiences of iriplementation of models and secondly surveys of implementations orer a nurber of institutions.

Taking the formar accounts, Fortan (1974) discusses the problers of iniplententing CArmuS nodels in the Ontario Community Colleges. He describes the political problens he and his co-worlers encountered in dealing with acadenics and administrators. In many cases the project was delayed through the necessity of implementing satisfactory data collection systems. A description of some of the experiments carried out in a particular college are also given.

G M Andrew and M D Alexander (1974) discuss experiences of implementing CARPUS planning systems at the Universities of Colorado and Minnesota. They give an interesting discussion of the problems of implementing planning systems in mature institutions and of the importance of being able to distinguish effectively between control variables and constraints. According to the authors some success has been achieved at Minnesota.

At Colorado the model has been fully operational at one canpus and is used extensively in master planning. Various components of the model are in operation at the other two campuses. Further details of this are presented by Alexander (1973).

Surveys of implementation of sinulation models are given by Krampf and Heinlein (ibid) and Cicely Watson (1974).

Krampf and Heinlein quote the following institutions as having implemented simulation models; University of Colorado, Stanford, State University of New York, Wheaton College, Thomas College and the University of Minnesota.

Cicely Vatson's survey is into the extent of application of simulation models into higher education in Canada. She found that ten institutions in Canada vere using either RRPM 1-6 or one of the WHICE models closely related to it. She also found that a version of the CAMPUS model was being used for the entire College of Applied Arts and Technology Systems of Ontario. Only two of the twelve largest Canadian Universities were found however to be carrying out any mathematical modelling work whatsoever.
4.6 A critique of the use of University Simulation Mode1s

Simulation models have a number of advantages among which is the ability to quickly test out the possible future effect of different operating policies or different inputs in a dynamic situation.

A number of beneficial side-effects of empioying such models may also possibly accrue. Among these is that they require administraturs to think more formally about the decisions that must be made, thus imposing a definite logic upon the decision maker. Another is that the consistency and comprehensiveness of internal information systems may be improved.

There are however a number of dangers in the use of such models. One is that the output should only be interpreted as giving a broad geaeral indication of future trends. As Kranpf and Heinlein (ibid) state: "If mudel results are not used in the sense of providing only 'ball park' figures with which one can start to operate, erroneous conclusions can result since the detailed output is a function of roughly estimated inputs. Misusing the data in this mamer is a frequent error".

Other possible drawbacks of usjing such models are the development costs of the roclel and the costs involved in providing suitable information systers.

Walhaus (1974) in a paper discussinc particularly the PRPI models states that deficiencien of simulation models can be broadly classificd into troo catcgories:-

1. Inaccurate Feffection of Reality - The model does not produce results consistent with what actually happens, perhaps due to invalia linearity or stability assumptions, a level of aggregation that clouds certain significant variables, mis-representation of trends over time, omission of programs vith significant cost implications and so forth.
2. Ease and valuc of experimentation - The value of the planning infornation produced by using the model relative to the cost and effort required to run the model needs inpsovement, perhaps because the output reports are inadequate in content, presentation or overthelming volune; conputer requirements are large in terns of both run time and storage; the input preparations are turdensome and complex; the sequential node of sinulation prohibits investigating many alternatives etc.

BIBLIOGRAPIU : Chapter 4

59 Alexander, M D (1973) The Inplemertation of CAMPUS/COLORADO at the University of Colorado, Boulder, Colorado, Procecdings of Association for Institutional Research, Annmal Conference 1973

50 Allison, $S(1970)$ A computer model for estimating resoures and costs of an Air Froce Resident Technicúl Training Coulse, RaNk report WN-7044-PR

61 Andrew, G M and Alexander, MD (1974) The Minesotia and Colorado Experiences with the Campus Planning System, Decision Models in Academic Administralion, Kent State University Press, pp 65-68

62 Breneman, D (1969) The stability of faculty input coefficients in linear workload models at the University of California, Paper 69-4 Ford Researcll in University Administration, University of California, Berkelcy

63 Clark, Huff, Haight and Collard (1973) Introduction to the Resource, Requirement Production Model 1.6, NCM:AS at KICHE Technical Report 34^, Boulder, Colorado

64 Dettweller and Frey (1972) Sinultations modelle flur die Hoschschulplanug, HIS, Brief 19, hanover

65 Firmin et alia (1967) University Cost Structurc and Behaviour Cost Simulation Model, Final Report NSF-C 541 locuisiana, Tulane University

66 Forman, L (1974) Impact of the CARPUS model on Decision Frocesses in the Ontario Community Colleges, Decision Plodels in Academic Administration, Kent State University Fress, pp 47-64

67 Forrester, J (1961) Industrial Dynamics, MIT Press
68 Hussain, K M (1973) Institutional Planning Models in Higher Education, IMIE programme, CERI, OECD

69 Hussain, K M (1974) Gamiug Nodels in ifigher Education, INEE programme, CERI, CECD

70 Hussain, K and Martin (1971) A resource requirement prodiction model RRPM-1, Report on the pilot studies, Techuical Report 21 , NCiEMS at WICHE, Boulder, Colorado

71 Huff, D (1972) Implementation of NCiEMS planning models and management tools at California State University, NCIEMS at WICHE, Boulder, Colorado

72 Jewett, Fet alia (1970) The feasibility of analytic models for academic planning, A preliminary analysis of seven quarters observations on the induced course load matrix, Office of Chancellor, Californie State Colleges, California

73 Judy and l.evene (1965) A new tool for educational administrators, Report to the Commission on Financing lif ger Foucation, lniversity of Toronto Press

74 Judy, Levene and Centner (1970) Campus V Documentation Vol I-VI, Institute for Quantitative Analysis in Social and Leononic Policy, University of Toronto

75 Keane and Daniel (1970) Systems for exploring alternative resource commitment in higher education (SEARCH), Peat, Marwick, Mitchell, New York.

76 Koenic et alia (1968) " Λ systems model of maragement, plannirs and resource allocation in institutions of higher education." Final Report, Project C-518 NSF Michigan, Michigan State University.

77 Koenig (1969) A prototype planning and resource allocation progranme for higher education. Socio-economis planning science, Vol 2, Pergamon Press.

78 Kramf and Heinlein (1974). The effectiveness of simulation models in academic administration. Decision Models in Academic Administration, Kent State University Press pr 91"万.

79 J A Miller (1964). State budgeting for higher education. Institution of public administration, University of Michigan. pp 94-110.

80 G Mitchell (1973). Operational Research - English University Press, pp 220.

81 J G Morris and J R Brown (1974). The appiication of mathematical mudels to academic decision making; Decision Mude1s in Academic Administration, Kent State University Press, pp 131-135.

82 J de Nie (1974). Private Commication, Rijksuniverseteit de Utrecht.
83 J de Nie (1974). Manual for using University simulation game. IMHE programine CERI/OECD.

84 Peat, Marwick, Mitchel1 (1971). "SFARCH": A Computer Model Users Manual. Peat Marwick Mitchell and Co, New York.

85 T W Ruefli (1970). "The generalised University simulation," Graduate School of Business, University of Texas, Texas.

86 T Shimada (1972). Industrial dynanics model of a Japanese University. Proceedings of 6th IFORS Conference Dublin.

87 Strive and Nelson (1972). "SEARCH": A Colleqe Planning Mndel, Peat Marwick Mitchell and Co.

88 R Wallhaus (1974). A resource allocation and planning model for higher education. Decision Models in Academic Administration, Kent State University Press, pp 97-107.

89 Cicely Watson (1974). Canadian experience in the application of quantitative models for educational decision making. Journal of the International Society of Educational Plamers. Vol 1 No I pr 10-19.

90 G B Weathersby and Weinstein (1970). A structural comparison of analytical models for university planning. Faper P-12 Berkeley:For Foundation Prograno for Rescarch into University Administration.

91 Margaret Whiteman (1971). The Faces of Germany, Harron.
92 Van W.jyk and Russell (1972). Statc of the art in educational cost mode11ing, Systems kesearch Cirnup report, Toronto, Canada.
5.1 Preamble

A good understanding of the principles and practice of resource allucation policies in Universities is necessary if satisfactory models for University planning and resource allocation are to be devised. These policies will be investigated in this Chapter.

In the first chapter we examined the national system of University finance and found that a University has considerable freedom of action over the internal apportionment of its recurrent grant. In other words subject to certain constraints, and in the light of any advice offered by the UGC, it has freedom to "cut the University cake" between internal claimants as it wishes. In addition to this freedom to allocate recurrent grants between competing internal claims, the University also has freedom over the internal disposition of physical space that is already provided.

In this Chapter we shall consider first of all policies for allocation of recurrent grant which will be followed by a consideration of procedures for allocation of physical space.

5.2 Allocation of recurrent grant

Table 5.1 illustrates the division of the University of Stirling's recurrent grant between different budget headings for the year $1974 / 5$. It will be noticed that academic salaries comprise a very substantial proportion of this total grant. The frecdom that an institution has to decide on the proportion of its budget to spend on this item is in practice severely circumscribed. This is partly owing to the tenure system under which an institution guarantees employment to academic staff after an initial probationary period and partly because the UGC

TABLE 5.1

DISPOSITION OF RECURRENT GRANT
BETWFEN BUDGFT HP:ADS FOR ACNIDMIC YEAN $1974 / 5$

Budget Head

1. Administration
\% of Recurrent Grant
9.2

2a. Academic Depts: Teaching
2b. " " Services
3. Maintenance of Premises
23.5
2.0
3.4
1.3
0.7
(0.5)
100.0

Academic Derartments : Teaching

Salaries of Academic Staff
Departmental Salaries
Departmental \& Laboratory IIaintenance
$\%$
74.4
17.7
7.9
100.0
generally indicate broad overall student:staff ratios for the University system as a whole. Nevertheless, the University has the responsibility of dividing whatever global number of academic staff which may be decided upon between competing internal claims.

5.2.1 Academic Staff Allocation : General Principles

Thus, a University has the problem of dividing available academic resources between different subject areas. Each department or subject has to carry out the functions of teaching, research and administration but traditionally, such allocations have been based on the teaching functions only with the objective of making teaching loads "equitable" (any departure from this policy usually implied an exceptional situation with regard to one of the other functions). It is assumed that academic staff will carry out research and administrative duties in their remaining time. As Bottomley (1971) remarked, one of the consequences of this approach is that a decision to increase teaching effort devoted to a given subject area implies also a pro-rata expansion in research effort also.

If, however, we are going to follow the traditional approach it will be necessary to devise equitable measures of teaching effort. Here Rudd (1968) raises an interesting question he states that in most forms of productive work, an increase in scale of the work results in a reduction in cost of each unit produced (ie returns to scale accrue). Thus the question arises as to what extent, if any, this process takes place in the University teaching situation. We shall now consider relevant research work which has been carried out in this area.

Layard and Verry (1975) have carried out a study into the costs of a number of departments of the same subject in different UK universities. For each subject they atempted to relate total departmental costs to student numbers studying in that department through the regression equation $C=\Lambda_{0}+\Lambda_{1} U+A_{2} P$ where C is total cost of department (including academic salaries, non-academic salaries, consumables, etc). U and P are the nos. of UG and PG student years produced by that department. A_{0}, A_{1}, A_{2} are constants.

Clearly, if fixed costs form a significant proportion of total department costs then significant economies of scale are indicated and this would correspond to a relatively high value of the constant A_{0}.

In practice, however, only in the case of social science did Layard and Verry find that the value of A_{0} differed from zero at the 10% significance level. (In fact for Science subjects A. had a negative value - corresponding to diseconomies of scale.) Broadiy the same results were obtained when the authors took research into account. Thus, the authors also came to the conclusion that, in general, returns to scale were absent in University teaching.
(Some other interesting results were given in this paper - the very high marginal costs of postgraduates relative to undergraduates and the discovery of significant returns to scale in Universities central administration expenditure). These results are also discussed in Verry's paper (1973).

Rescarch studies carried out at the University of Bradford, however, yielded rather different results. These results are discussed in the papers by Dunworth and Bottomley (1973) and Dunworth and Dasey (1972) of the University of Bradford.

Dunworth and Bottomley examined the effect of increased student enrolment on the unit cost per fte student for a number of departments at the University of Bradford. These studies assumed that the quality of student education would remain unimpaired (ie no increase in academic staff teaching hours, no reduction in number of hours of instruction received by the students and no increase in maximum class sizes). In general, these researchers found that unit costs fell as enrolment increased although the overall downward fall was punctuated by regular jumps. These jump points correspond to levels of student enrolments necessitating replication of a particular type of class meeting. These researchers examined nine departments at the University of Bradford and found that if enrolment was increased to the "trough" before the jump point closest to twice present enrolment then the cost per student of providing teaching staff fell from between 18% to 48% with an average of 31%. Thus, cconomies are associated with the fact that the size of lectures (in which students play no active role) can be increased indefinitely without affecting the quality of student education and that any unused capacity on other types of class meeting becomes of less significance as total enrolment grows. Dunworth and Dasey also point out that economies can never be realised whilst expansion of student population is matched by pro-rata increases in academic staffing through the employment of student:staff ratios.

However, Norman (1973) working at lancaster reports that potential economies of scale to be obtained at the University of Lancaster are of appreciably less significance than those reported by the Bradford workers. He ascribes this to the different teaching methods employed at Lancaster who give greater emphasis to small group teaching and less emphasis to lectures than

Bradford. He did, however, agree that significant economies of scale could be obtained by expanding small, newly established departments with low student numbers.

Rudd (ibid) postulates that since Universities persist in allocating academic staff on the basis of student:staff raiios then no economies of scale could appear in a cost function even where they existed.

Instead departments receive additional staff in line with additional student numbers and these additional staff proliferate options; the growth of such options keeps dow the numbers of students on each course and so ensures that courscs continue to be run at uneconomic evels.

Clearly the foregoing discussion has a crucial bearing in considering the appropriate method of staff allocation for an institution to employ.

5.2.2 Academic Staff allocations : methods

(a) Student : staff ratio methods

Such techniques involve allocating staff to a subject or department directly on the basis of student numbers studying the subject. It is possible to give postgraduates a heavier weighting than undergraduates. As we have seen in the previous section use of this method assumes that no returns to scale occur in University teaching. It also means (assuming that the ratio is held constant) that any increase
in student numbersimplies a pro-rata increase in resources.
(b) Modified student : staff ratio method

Fielden and Lockwood (1973) describe how the University of Shefficld have modified the student:staff ratio technique to take account of economies of scale. Using this approach a department's predicted ratio was given by

$$
s / t=1.18 t^{0.5}+5.55
$$

where s is the mean of the weighted and unweighted student equivalent and t is the academic staff equivalent.

Departments whose actual student:staff ratios turns out to be significantly more unfavourable than that predicted by the formula may receive priority when additional staff are allocated.
(c) Workload models

Another promising technique for use in staff allocation is the workload model. The basis of this approach is an attempt to develop a mathematical model of teaching work involved in presenting a subject's courses and allocating academic staff according to total workload generated. Surveys of some of the work carried out in this field are presented in Fielden and Lockwood (ibid) and by Birch and Calvert (1974).

Birch and Calvert begin by examining one very simple model for departmental staff allocation.

$$
T=\frac{s}{\delta} \cdot \frac{1}{t}
$$

where $T=$ number of full time equivalent staff (in a subject)
$s=$ number of full time equivalent students (in a subject)
$g=$ average grour (class size)
1 = average tuition load (formal timetabled "teacher
contact" hourse/week/average group (g))
and $t=$ notional teaching load (formal timetabled "class contact" hours/weck/fte teacher)

The authors then proceed to discuss elaborations of the model. Some classes such as lectures have in practice almost no theoretically maximum size. Henco, the term representing the weekly teaching hours can be broken down into straight lecture hours and smaller group seminar hours. A further sophistication could be the introduction of two levels of student (ie undergraduate and postgraduate).

Simpson et alia (1971) have introduced a s.imilar type of model at Lancaster University. This model, however, also takes into account lecture and seminar preparation and "postmorten' time (ie time for discussing written work). Further details are given in Appendix 3.

A model based on similar principles has been used at the Univessity of Stirling (see Anon (1969) and Ball (1973)). This model takes account of workload involved in preparing and undertaking lectures, tutorials, laboratories and language laboratories. It also makes allowance for correcting essay and lab. books and marking examinations. Further details of this model are given in Appendix 4. This model will be one of the options available for staff allocation in the planning model to be discussed in Chapter 6.

Workload models have the disadvantage that they may require considerable quantities of data, can involve lengthy calculation and may not easily be assimilated by the non-numerate. Nevertheless, as Ficlden and Lockwood (ibid) remark:
"the workload approach represents a real attempt to relate resources to effort and we believe that further research and development on its application should be carricd out."
(d) Other methods of staff allocation

We have already described (see Chapter 4) the credit-hour approach and contact hour approach which are popular methods of staff allocation in the US Universities.

Dundee University have been using a staff allocation method based on unit costs. This is based on the so-called ' Q ratio' which is the unit cost (per fte student) of a Dundee department divided by the mean UK University cost for the appropriate subject group multiplied by 100. Subjects with low Q ratios are given priority when additional resources are allocated. There are a number of drawbacks to this approach. Firstly, national statistics are always two or three years out of date. A much more serious matter, however, is the question of the validity of using national norms in the context of a particular institution. As Fielden and Lockwood have observed "Some formulae and ratios will only be valid in the statistical sense when applied to an entire population."

5.2.3 Allocation of non-academic (technical and secretarial staff)

In general, it has been the practice of most UK Universities (including Stirling) to allocate secretarial staff to subject areas broadly in line with levels of academic staffing in that area. A sophistication of this system which is sometimes suggested is weighting academic staff according to seniority.

Technical staff have also been allocated in relation to academic staff in experimental subjects. Other policies sonetimes suggested
are the allocation of staff in relation to weighted student numbers (taking into account the experimental work done in a department) or in relation to areas of laboratory floor space allocaled to a subject.

5.2.4 Other departmental expenditure

This expenditure comprises consumables, travel, stationery, and hospitality. This expenditure will depend partly on the nature of the subject (eg experimental subjects will generally have greater expenditure on consumables). In the past the level of expenditure on these items for each subject has been arrived at by a process of negotiation and bargaining. A reasonable approach towards forecasting this expenditure might be to assume that it varies in relation to total departmental salary levels.

5.3 Allocation of Space

(a) Lecture theatre and seminar room space

At Stirling lecture theatre and seminar room space is centrally controlled and centrally allocated according to requirements.

This. obviates the diseconomies associated with departmental
control of individual seminar rooms which can be severely underutilized.
(b) Office space

In general, office space is related to levels of academic and non-academic staffing. This is done through a series of space norms, there being different norms for the various grades of academic staff and for non-academic staff.

At Stirling the building is of a uniform structure. Hence there are no physical problems in reallocating office space from one eubject area to another such as would be the case if the University
consisted of a series of separate departmental buildings.
(c) Research laboratory spice

At present it is the policy to allocate research laboratory space in relation to academic staff numbers and postgraduate student numbers in experimental subject areas. Again, because of the type of building structure in use at Stirling; there should be no insuperable physical difficulties in reallocating such space from one subject area to another.
(d) Teaching laboratory space

Each laboratory subject has a certain number of teaching
laboratory rooms (of varying size) allocated to it. Capacity provided is broadly in line with expected student numbers although there is no simple relationship. Again the space is reasonably flexible and there is a possibility of reallocating such space between subjects.
5.4 Alternative approaches to University resource allocation: decentralized decısion-making

In this Chapter so far we have considr.red what are basically centralised methods of resource allocation. Each subject or department is allocated so many academic staff, so many secretaries, so much departmental expenditure, so much physical space, etc. The question arises as to whether it would be possible to decentralize such decisions. For example, each subject area could be given a certain block of finance and would have discretion to decide how to divide the money between different categories of staff, consumables, travel, etc. It has even been suggested that space could be included by charging subjects an imputed rent for the space they occupy (see Pickford (1974)). We shall discuss this alternative approach in
some detail in Chapter 10.

5.5 Suminary

In this Chapter we have outlined possible approaches and policies to resource allocation in Universities. The crucial importance of the allocation of academic staff can be really appreciated. Not only do academic staff salaries absorb a considerable proportion of the available budget but a number of other resources are related to academic staffing levels. It is clear that additional research into the question of academic staff allocation could be important.

93 Anon (1969). How the cake is cut at Stirling, Nature 224, 18th October.
94 R Ball (1973). Use of analytical models in staff allocation at the University of Stirling. Procecdings of TIMS XX Conference, Tel Aviv, Vol 2, pp 699-702.

95 D Birch and J Calvert (1974): A review of academic staffing formulae Educational Administration Bulletin, Vol 3 No 1, pp 32-41.
96 J Bottumley et alia (1971). Costs and potential economies, Studies in Institutional Management in Higher Education, CERI, OECD.

97 J Dunworth and R Dasey (1972). Potential economies in academic staff. Universities Quarterly, Vol 26, No 2, pp 219-230.

98 J Dunworth and Bottomley (1973). Potential economies of scale at the University of Bradford, Higher Education, Vol 2, No 2, pp 225-228.

99 J Fielden and Lockwood (1973). Planning and Management in Universities. Sussex University Press, page 236.

100 ibid. pp. 227-228.
101 ibid. page 228.
102. ibid. page 226.

103 Layard and Verry (1975). Cost Functions in University Teaching and Research, The Economic Journal,
104 J M Norman (1973). An empirical study of undergraduate teaching loads in a University. Higher Education, Vol 2, No 2, pp 222-224.
105 M Pickford (1974). University expansion and finance. University of Sussex Press, pp 174-187.
10G E Rudd (1968). Some thoughts on staff:student ratios. Universities Quarterly, Vol 23, No 1.
107 M G Simpson et alia (1971). Planning University Development, Studies in Institutional Management in Higher Education, CERI, OECD, pp 43-68.
108 Verry (1973). Economies of Scale, Higher Education, Vol 2, No 2, pp 214-219.

6.1 Overview

If we consider the work carricd nut into problems of University planning and resource allocation described in Chapters 3 and 4 , ve find that it is possible to assign such studies to cne of two categories.

Category I - Studies on a component or part of the University system only (eg student flow models, staffing models).

Category II - Studics on the whole University system (systems approach) eg optimal resnurce allocation models

University simulation models
PPBS
Organisational theory.
The particular problems of Stirling University werf described in Chapter 2. In particular, the short to medium terms situation of possible future expansion in a very uncertrin environment was outlined. Given this situation, a model which could investigate the resource consequences of various patterns of Erowth and different operating policies could be very useful. Such a model could be a University simulation model such as is described in Chapter 4. Although results obtained using such a model would only give a very broad indication of future likely development they might, nevertheless, be of interest to decison-makers. It was felt that other approaches such as models for optimal resource allocation did not offer a high enough likelihood of useful results to make the work cost-effective.

6.2 Approach to model construction

The feasibility of adapting any of the general purpose University simulation models to the Stirling situation was considered. In considering this proposition we are confronted with the problem that these general purpose models were, on the whole, developed for University systems which differ considerably from that of the UK. Not only do we find a different academic structure in such institutions but also different resource allocation policies and methods of finance. In some cases the major problem areas that they were constructed to handle are also different. Owing to these factors it is likely that a prohibitive amount of reprogrameing and restructuring effort would be reouired in order to adapt a particular model to the Stirling situation with the danger that, after such extensive alterations, the model might not be completely coherent.

Thus, it seems that there could be significant advantages in attempting to construct a model for Stirling from first principles. The question then arises, however, as to whether to construct a model which relates to Stirling only or whether to construct a general purpose model which other UK Universitics might adapt to their needs. It was eventually decided, however, to construct a model that specifically related to Stirling for the following reasons.

1) The existence of fundamental differences between the academic structure found at Stirling and that usually adopted in the UK. (eg Stirling's semester system is unique within the UK).
2) The additional effort and expensc involved in producing general purpose models (SPG, NCHEMS and HIS all had large quantities of finance available).
3) Any such model produced by the author would inevitably be produced with the Stirling situation in mind. This could provide a source of implicit error for another institution.

This is not to say, however, that a model which related specifically to Stirling should be irrelevant to other UK University institutions. The conceptual approach and techniques developed in this dissertation should be of considerable value to other UK institutions who might be considering the development of their own models.

6.3 Scope of the Model

An important decision is the level of detail that such a model should contain. As we have seen in Chapter 4 , models developed elsewhere have varied from the extremely detailed such as CAMPUS (containing details of every individual teaching activity) to the highly aggregated such as SEARCH which provides information simply on the overall financial implications of particular plans. Of course, the level of detail provided should be appropriate to handle the most significant problems of an institution.

In Chapter 2 it was apparent that many of Stirling's problems related to the level of individual subject, (eg uneven growth of student numbers in different subject areas) hence this level of datail will be provided. In addition to students and staff (academic and non-academic) it was decided that the model should also relate to physical space and finance since both may have an important bearing on future development plans.

6.4 Structure of the Model

It was decided that such an inevitably complex model should have a modular structure. This implies that the model will be broken down into a number of small models (modules) each of which relate to a particular aspect of the University system. A master model operates the modules in the correct sequence and ensures that necessary information is transmitted. The modular structure has the advantage of clarity in that various components of the system are more clearly distinguished and implication of changes in one part of the system for the rest casily identified.

This is not to say, however, that a model which related specifically to Stirling should be irrelevant to other UK University institutions. The conceptual approach and technigues developed in this dissertation should be of considerable value to other UK institutions who might be considering the development of their own models.
6.3 Scope of the Model

An important decision is the level of detail that such a model should contain. As we have seen in Chapter 4 , models developed elscwhere have varied from the extremely detailed such as CAMPUS (containing details of every individual teaching activity) to the highly aggregated such as SEARCH which provides information simply on the overall financial implications of particular plans. Of course, the level of detail provided should be appropriate to handle the most significant problems of an institution.

In Chapter 2 it was apparent that many of Stirling's problems related to the level of individual subject, (eg uneven growth of student numbers in different subject areas) hence this level of datail will be provided. In addition to students and staff (academic and non-academic) it was decided that the model should also relate to physical space and finance since both may have an important bearing on future development plans.

6.4 Structure of the Model

It was decided that such an inevitably complex model should have a modular structure. This implies that the model will be broken down into a number of small models (nodules) each of which relate to a particular aspect of the University system. A master model operates the modules in the correct sequence and ensures that necessary information is transmitted. The modular structure has the advantage of clarity in that various components of the system are more clearly distinguished and implication of changes in one part of the system for the rest casily identified.
6.5 Computational Aspects

Because of the heavy amount of computation that would be involved in using the model it was obvious from an carly stage that the use of computing facilities would be highly desirable.

Accordingly a program was written in FORTRAN IV and stored on disc on the University's Elliot 4130 compuler. It was convenient to nake the master model the main program and the sub-modules its subroutines.

The model was operated using the batch processing mode although it was possible to edit the model using the KOS (Kent-on-line system) time shairing facility. A complete listing of this program together with explanatory notes and flowcharts is presented in Appendix 6.
6.6 Development of the Model

A prototype model ROBUS I was first developed. This model was constructed in order to ensure that the development was feasible and to overcome significant difficulties. Having successfully completed ROBUS I a more sophisticated and much more flexible model ROBUS II was constructed. It is the details of ROBUS II which are described in this dissertation.

6.7 Technical outline of the Model

The model consisted of a main model and the following sub-models (modules).
a) Modules relating to students

Student flow module
Notional class size module
Student equivalent module
b) Modules relating to staff

Academic staff - policy "A" (workload)
Academic staff - policy "B" (student:staff ratio)
Non-academic staff
c) Modules relating in physical space

Lecture and seminar room space
Teaching laboratory space
Research laboratory space
Office space
d) Modules relating to finance

Finance module

An outline flow chart of the ROBUS II model is given in Fig. 6.1.
6.8 Technical Details of the Model

Some of the most important technical details of the models are described in this section. Full technical details together with a complete program listing and sample output are presented in Appendix 6.

Master module

The function of this model, as explained earlier, is to call the other modules in the appropriate sequence and to transmit relevant information. Provision is made for calling only those modulss required for a particular study - for example if no information on physical space is required then it is possible to omit the space modules.

6.8.1 Modules relating to students

(i) Student flow module

This module simulates the flow of students through the University's academic system. This flow is complicated by the irregular academic progress made by a significant proportion of students. Some students find it necessary to repeat courses; others find it necessary to leave the University (either temporarily or permanently).

An initial attempt was made to construct a Markovian model of the academic system which considered transitions through all possible

Fig. 6.1 Out 1ine Flow Chart of ROBUS model

states of the academic system. This approach was abandoned, however, partly because of the extreme conplexity of the resulting model and partly because of difficulties in obtaining sufficient historical data to make reasonable estimates of parameter values.

Thus, a simplified approach was adopted. This was based on the principle of considering the progress through the academic system that given intakes of students have made a given number of years after entry.

For instance, it was found that of the entry two years previously 77.8% was in the third academic year (ie normal progress), 5.6% was in the second academic year and 1% in the first academic year (the remaining percentage will have dropped out).

Similarly,it was found that 87.5% of last year's entry was now in the second academic year while 4.2% was still in the first academic year.

In this way, it is possible to build a model which relates numbers in given academic years to year of entry to the University (see Inset6.1).

Since, for a given year, past intakes to the University will either be known historically or be the subject of projections, it will be possible, using the model, to calculate numbers in any academic year (see Appendix 6.B). A simplified flow diagram of this model is presented in Fig. 6.2.

(ii) Notional class size module

The purpose of this module is to simulate the assignment of students to courses. This is a fairly complex process owing to the nature of Stirling's academic structure.

Fig. 6.2 Student Flow Module: Flow Diagram (Simplificd)

INSET $6.1 \rightarrow$ STUDFNT FLOW MODULE:

Suppose Y_{t}
is lst year
entry in year t

$\mathrm{Y}_{\mathrm{t}-1}$	"	11	"	"	"	"	t-1
$\mathrm{Y}_{\mathrm{t}-2}$	"	11	"	"	"	"	t-2

Then the following relationship was found between the academic ycar of the student and his year of entry to the University.

\therefore Total student numbers in the University is obtained simply by adding numbers in each acadcmic year.

$$
\begin{aligned}
\text { Total Nos. } & =N 1+N 2+N 3+N 4+N 5 \\
& =1.049 Y_{t}+.917 Y_{t-1}+.835 Y_{t-2}+.603 Y_{t-3}+.116 Y_{t-4}+.012 Y_{t-5}
\end{aligned}
$$

An example of the use of this model is given in appendix 6. H .

Academic departments provide courses in different subject areas but (as explained in Chapter 2) a student on a given programe of study may take courses from a number of different subject areas ind even from different years of study.

For simplicity we shall assume that each academic department puts on courses in one subject. This is generally the casc at Stirling with minor exceptions (eg the Philosophy department provides courses in both Philosophy and Religious Studies). Thus, in this case we shall assume that the department is split into a Philosophy department providing courses in Philosophy and a Religious Studies Department providing courses in Religious Studies.

As is described in Chapter 2 the academic structure at Stirling consists of a broadly based Part I and a Part II in which some element of specialization is possible. Generally, departments offer only one available course unit in each of the threc semesters that comprise Part I (although occasionally a second unit is offered as a minor). In each senester of Part II each Department offers generally three or more semester units. (Note, as we have mentioned previously, three course-units in any semester comprises a full academic load for a student.)

The approach to forecasting class sizes is as follows. In Part I, numbers of first year students taking semester 1 class sizes is calculated. This can be done by considering the programmes of study the students indicated on their application. On this basis students can be broadly divided into three groups - Arts based, Science-based, and Social Science based - and it has been found that an approximately consistent proportion of each of these groups take subjects of fered in the first semester. Student numbers in the other semesters of Part I can be derived by considering the historically-derived proportion

Fig. 6.3 Notional Class Size Module

of a cohort of students who proceed from one semester of a subject to the next (account is taken of third semester students who take first semester units).

In Part II a student can be considered to be assigned to a given degree programme either at General or Honours levels. (In the case of General degrees the classification used is that of the General degree subject.) In order to keep the size of the problem within bounds and within the limits of computer storage capacity, students taking joint Honours degree programmes or General degree programes are divided between the appropriate single subject progranmes.

Number of students taking different programmes can be forecast from numbers admitted to take programmes. It has been found empirically that there is a reasonably fixed relationship between student numbers admitted to programmes and numbers actually undertaking these programes in Pait II of the degree.

Having forecast numbers on different degree programmes in Part II the problem is then to estimate numbers taking various course options. As mentioned previously, students may take courses outside their major subject area of interest and in different academic years. This relationship can be established through the use of the Induced Course Load Matrix (ICLM). This matrix gives the probabilities of students on particular programes of study taking course units in different subjects. These matrix elements are determined from historical (I)
information. To include all course units offered in such an induced course matrix would produce a matrix of extreme size and diffuseness. Since no student can take more than three course units in a semester it is possible to represent the position with respect to course registration in given subjects, by three classes in each semester. A student taking 1 class in a subject will take the ' 1 ' class, a
student taking 2 classes will take the ' 1 ' and ' 2 ' classes and a student taking all three units will take the ' 1 ', ' 2 ' and ' 3 ' units. Thus we have "notional class sizes". As an example the ICLM for semester 5 and 6 are shown in Table 6.1.

From the forecast of student numbers taking a given programe and from the induced course load matrix it is possible to forecast the future notional class size. It is necessary to sum student numbers assigned to each notional class size from different years of study. A very simplified representation of the flow diagram of this module is presented in Figure 6.3. Full details of this module are provided in Appendix 6.C.
(iii) Student equivalent module

This module calculates the full time equivalent (fte) student numbers in each department. This is the number of students who could be conceived to be studying a subject on a full time basis. For example, a student taking two semester-course mits in Biology and one in Psychology could be conceived to be $2 / 3$ of a fte in Biology and $1 / 3$ in Psychology. Thus, if we divide students between departments according to the course units studied at a given time, it is possible to obtain an estimate of full time student equivalents attached to that department. Full details are given in Appendix 6.D.

6.8.2 Staff modules

(iv) Staff Allocation

There are two alternative staff allocation policies provided: a workload option and a student:staff ratio option. These were discussed in Chapter 5.

a) Workload ontion

The principle of this approach is that staff should be allocated

Table 6.1 Induced course load matrix for Sems (Hons and General)

This matrix covers the following programes (Hons and General)

1	Maths	15	Physics
2	Economics	16	Chemistry
3	Sociology	17	Psychology
4	English	18	Biochemistry
5	distory	19	Technological Economics
6	Philosophy	20	Education and Biology
7	Accountancy \& Bus. Law	21	" and Chemistry
8	Religious Studies	22	" and English
9	Man. Sc. \& Chemistry	23	" and French
10	Computing Science	24	" and German
11	Franch	25	" and History
12	German	26	" and Maths
13	Spanish	27	" and Spanish
14	Biology		

Only non-zero matrix elements are shown; the following code is used
for subject:

	Maths - 31	B German - 49	
A	Economics - 41	B Spanish - 60	
A	Sociology - 47	C Biology - 25	(Explanation of
A	English - 55	C Physics - 33	Cars A, B, C given
	History - 69	C Chemistry - 34	on page 98)
A	Philosophy - 71	C Psychology - 46	
	Acc. \& Bus. Law - 43	C Int. Sc, - 38	
A	Religious St. - 72	C Finc Arts \& Music - 75	
A	Man. Sc. - 19	C Biochemistry - 29	
A	Comp. Sc. - 32	C Education - 01	
	French - 57		
	c codes comprise the t refers to the number	t two digits in the course the course in that semeste	and the fourth

refers to the semester number.

Thus 4725 corresponds to the 2nd course in the fifth semester for sociology. Induced Course Load Matrix: Sems llons (sample)

1. MATHS (programme)

$$
\frac{3115}{1.000} \quad \frac{3125}{1.000} \quad \frac{3135}{.167} \quad \frac{3215}{.667} \quad \frac{0115}{.167}
$$

2. ECO:NO:1ICS

$\frac{4114}{1.000}$	$\frac{4125}{1.000}$	$\frac{4135}{.308}$	$\frac{3115}{.022}$	$\frac{4715}{.043}$	$\frac{6915}{.132}$	$\frac{7115}{.022}$
$\frac{4315}{.220}$	$\frac{1915}{.066}$					
$\frac{4313}{.044}$	$\frac{4713}{.033}$	$\frac{6913}{.066}$				
$\frac{5511}{.022}$	$\frac{3213}{.022}$					

3. SOCIOLOGY

$\frac{4715}{1.000}$	$\frac{4725}{1.000}$	$\frac{4735}{.676}$	$\frac{4115}{.029}$
$\frac{4613}{.029}$	$\frac{7211}{.029}$		

4. LivGLISH

| $\frac{5515}{1.000}$ | $\frac{5525}{.994}$ | $\frac{5535}{.024}$ | $\frac{4715}{.012}$ | $\frac{6915}{.018}$ | $\frac{7115}{.048}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |$\frac{0115}{.072}$

5. HISTORY

$\frac{6915}{1.000}$	$\frac{6925}{.929}$	$\frac{6935}{.048}$	$\frac{4115}{.048}$	$\frac{4715}{.048}$	$\frac{5515}{.309}$	$\frac{7115}{.048}$

$\frac{5513}{.024}$
$\begin{array}{llllllll}1911 \\ .024 & \frac{4311}{.024} & \frac{4711}{.095} & \frac{5511}{.048} & \frac{4111}{.024} & \frac{7111}{.024} & \frac{7211}{.024} & \frac{7511}{.071}\end{array}$
6. PIIL,OSOPIIY

$\frac{7115}{1.000}$	$\frac{7125}{.943}$	$\frac{7135}{.286}$	$\frac{4615}{.029}$	$\frac{6915}{.029}$	$\frac{7215}{.029}$	$\frac{5515}{.086}$

$$
\frac{7213}{.029}
$$

$$
\frac{7511}{.057}
$$

and so on for programes 7-27

Induced Course Load Matrix: Sem5 General (sample)

1. MATHS

$$
\frac{3115}{1.000} \quad \frac{3125}{.000} \quad \frac{3215}{.667} \quad \frac{3213}{.333}
$$

2. LCONOMICS

$$
\begin{array}{llllllll}
\frac{4115}{1.000} & \frac{4125}{.378} & \frac{4135}{.000} & \frac{4715}{.108} & \frac{6915}{.216} & \frac{7115}{.054} & \frac{4315}{.297} & \frac{1915}{.108} \\
\frac{1913}{.054} & \frac{5513}{.054} & \frac{4713}{.108} & \frac{0113}{.054} & & & & \\
\frac{1911}{0.54} & \frac{4311}{.054} & \frac{6011}{.054} & \frac{5511}{.054} & \frac{4711}{.027} & &
\end{array}
$$

3. SOCIOLOGY

$\frac{4715}{1.000}$	$\frac{4725}{.327}$	$\frac{4735}{.005}$	$\frac{5515}{.073}$	$\frac{4615}{.200}$	$\frac{6915}{.091}$	$\frac{7115}{.018}$	
$\frac{5513}{.018}$	$\frac{4613}{.091}$	$\frac{3213}{.018}$	$\frac{6913}{.018}$	$\frac{6013}{.018}$	$\frac{7113}{.018}$	$\frac{0113}{.018}$	
$\frac{4311}{.055}$	$\frac{4611}{.145}$	$\frac{6911}{.055}$	$\frac{7111}{.018}$	$\frac{5511}{.018}$	$\frac{7211}{.036}$	$\frac{3111}{.018}$	$\frac{7511}{.036}$

4. ENGLISH

$\frac{5515}{1.000}$	$\frac{5525}{.697}$	$\frac{5535}{.000}$	$\frac{4115}{.013}$	$\frac{4615}{.039}$	$\frac{4715}{.053}$	$\frac{6915}{.072}$	$\frac{7115}{.053}$
$\frac{7215}{.026}$	$\frac{0115}{.125}$						
$\frac{4613}{.052}$	$\frac{4713}{.092}$	$\frac{6913}{.013}$	$\frac{7213}{.013}$	$\frac{0113}{.013}$			
$\frac{7111}{.026}$	$\frac{7211}{.026}$	$\frac{7511}{.039}$	$\frac{4311}{.026}$	$\frac{4611}{.013}$	$\frac{5711}{.013}$		

5. MISTORY

$\frac{6915}{1.000}$	$\frac{6925}{.376}$	$\frac{4115}{.059}$	$\frac{4715}{.212}$	$\frac{5515}{.212}$	$\frac{7115}{.047}$	$\frac{4315}{.012}$	$\frac{7215}{.106}$
$\frac{4613}{.024}$	$\frac{4713}{.024}$	$\frac{2513}{.024}$	$\frac{0113}{.071}$	$\frac{5513}{.012}$	$\frac{5713}{.024}$	$\frac{7113}{.024}$	$\frac{7213}{.012}$

$\begin{array}{lllllll}.012 & \frac{4711}{.024} & \frac{5511}{.024} & \frac{7111}{.047} & \frac{6011}{.012} & \frac{7521}{.035} & \frac{7211}{.012}\end{array}$
6. PHILOSOPHY

$\frac{7115}{1.000}$	$\frac{7125}{.476}$	$\frac{7135}{.000}$	$\frac{4615}{.095}$	$\frac{4715}{.285}$	$\frac{5515}{.143}$	$\frac{6915}{.190}$

$$
\frac{4611}{.095} \quad \frac{4711}{.095} \quad \frac{7511}{.190}
$$

and so on for programmes 7-27

Note
The data for these induced course load matrices are based on student registrations for academic years 1973/4 and 1974/5. Because of subsequent academic development and the fact that student numbers vere then very small it is difficult to include data from earlier academic years than this. Stability was observed to be good for programmes with substantial student enrolments. Owing to statistical fluctuations it was less good for programmes with low student enrolments. Nevertheless it should be possible to improve these statistics by recalculating the induced course local matrix yearly. (This subject is discussed further in Section 9.2).
to a department on the basis of workload generated by its teaching comatinents. The model attermets to quantify all elements of workload involved in the preparation and presentation of a course (eg giving and preparing lectures, seminars, tutorials, etc). This model assumes a standard method of teaching the course although in practice each course will involve a different mix of teaching activites. The basis of this approach, however, is to allocatc resources on some reasonable basis for teaching a course and devolve the decision as to their exact utilisation to the department concerned.

Since notional class sizes are used in the model, departments gain additional resources only for additional students attracted. Simply proliferating options without any addition in total student registration brings no additional resources.

Certain subject groups necessarily involve different teaching activities from others (eg experimental subjects involve teaching laboratories). Thus all subjects are divided into three categories :rith appropriate modifications to the model being made for each category. These three categories are:

Cat ' A ' General non-experimental subjects
Cat ' B ' Language subjects
Cat ' C ' Experimental suljects

(Assignment of subjects to categories are given in Table 6.1)

The workload model for Category ' A ' subjects is given in Inset
6.2, and a simplified flow diagram presented in Figure 6.4.

Further technical details are supplied in Appendix 5 and 6.E.
b) Student:staff ratio option

This module divides available academic staff between departments according to cotalstudent equivalents attached to each department. It is possible to give additional weighting to postgraduate students. Further technical details are given in Appendix 6.F.

Fig 6.4 Staff Mllocation: Workload (simplified)

INSET 6.2

Workload model for CAT 'A' - General non-lab subjects (eg English, Maths, Philosophy).
$X=m L+N x(W x w+E / 14)+\operatorname{Fxtp} x\left\{\left[\frac{N}{4 n}\right]+1\right\}$
Giving and Marking Marking Preparing of tutorials preparing lectures Essays Exams
$+\operatorname{Fxtg} \times\left\{\left[\frac{N}{n}\right]+1\right\}+\frac{N}{6}$
Giving allowance (students for tutorials out of class disc. etc.

Explanation of symbols
[] Int. part of
$\mathrm{m} \quad$ Time to give + prepare lectures.
L No of lectures/week.
N No of students taking course.
w Time to correct essay.
W Essay freq.
E Time to correct exam scripts.
F Tutorial frequency.
tp Time to prepare tutorials.
tg Time to give tutorials.
n Nos. in tutorial groups.
\% Weekly workload
(v) Non-academic staff module

This module calculates the number of non-academic staff (ie secretarial and technical staff) which are required by each department. It is the policy to allocate such staff in direct relation to the nurners of academic staff (of course, technical staff are allocated to laboratory subjects only). (See Appendix 6.G)
6.8.3 Space Modules
(vi) Teaching space module

The function of this module is the forecasting of occupancy and utilization of lecture theatre and seminar roon space in a giver year with a view to estimating the adequacy of physical space available.

The basis for forecasting future lecture class sizes is the plausible assurption that the size of such classes will vary broadly in line with the number of full time equivalent students studying that subject in a given semester.

Hence, if we know student equivalents and class sizes for a given subject and semester in a given base year, we can make the following estimate:-

$$
\begin{aligned}
& \text { Future class size }= \begin{array}{l}
\text { Base year } \\
\text { class size }
\end{array} \quad \begin{array}{l}
\text { Future years student equivalents } \\
\text { in that subject and senester }
\end{array} \\
& \frac{\text { Base year's student cquivalents }}{}
\end{aligned}
$$

There is, however, an additonal complication in that new options in particular subjects may be introduced causing consequent reduction in size of existing options. A facility for providing additional options has, however, been incorporated into the model, the assurption being made that such options will have average class sizes and that the size of existing options will be reduced pro-rata.

On many courses small group classes (seminars) are held in addition to the formal lecture sessions. Such sessions are repeated when the class exceeds this minimum group size. The total number of seminar-room hours required can be deduced from a knouledge of the weekly number of seminar hours per student and the usual student numbers in a given seminar group.

Then it follows that the number of seminar-room hours required for a particular course will be given by

No of hours
required
:---
hours/student/week

No of students

in sem. group\end{array}\right]+1\right\}\right.\) (Note[]represents integral part of)

Teaching rooms available are divided into a number of size categories and hence rooms hours available in each category can be calculated. The rooms hours required by each class is assigned to the appropriate size category so that the overall utilization of each size category can be determined.

Naturally, there are certain inherent errors inevitably involved in any attempt to forecast future class sizes. The future popularity of different options may fluctuate considerably, for instance. Nevertheless this approach should yield at least a broad indication of the adequacy of teaching space. An outline flow diagram is presented in Fig. 6.5. For technical details see Appendix 6.I.
(vii) Teaching laboratory space module

The purpose of this module is the projection of the future adequacy of teaching space provided by laboratory subjects. This task is simplified by the fact that future class sizes have already been calculated by the previous module. Thus, if the nunber, length and maximum size of laboratory sessions required by each course are known, it is possible to calculate the total laboratory liours required quite simply and comparison with likely available opace can be made. (App. 6., I)

Fig 6.5 Teaching Space Module (simplified)

(viii) Research Laboratory Space

This module estimates rescarch lab. space required by academic staff and posteraduate students in experimental subjects. Such space is allocated according to a norm of a given number of square metres per member of staff and pestgraduate student. It is possible to vary these noms in future situations. (cf Appendix 6.K)
(IX) Office Space Module

This module calculates office space requirement for academic and nonacademic staff. This allocation is made on the basis of a norm of a given number of square metres of space for each grade of staff. The following grades are applicable:-

Professors and heads of departments.
Tutorial teachers
Other teaching and clerical staff.

Thus it is possible to project the amount of office space required for each departrent and the University as a whole and these projections can then be compared with current allocations. As mentioned earlicr, if there is a surplus and shortages, it is possible to svitch space from a department with a surplus to one with a shortage.

6.8.4 Finance

(X) Financial Module

This module calculates costs associated with each acadenic department and costs associated with the production of each full time equivalent student. Overhead costs such as librarics, computer maintenance and catering will be ignored in this calculation which considers only costs such as salarics ete which can be directly attributed to departments.

Academic salarics are first calculated. For this purpose it is necessary to calculate the number of academic staff in each grade which can be done from a knowledge of the appropriate ratio of senior etaff. The mid point of the salary scale for each grade is employed in this calculation.

Non-academic salaries (ie technical and secretarial staff) can be estimated in a similar manner, again using mid points of appropriate salary scales. Thus, total departmental salary costs can be calculated.

In addition there remains the further problem of estimating other departmental expenditure (ie postage, travel, consumables etc). The approach craployed was to calculate the fraction of the to:al departmiental salary bill that such expenditure represented during two base years, This fraction was then applied to future years' salary bills to obtair. an estimate of this expenditure. Thus, having calculated total departmental expenditure by dividing by total full time equivalent students, it is possible to obtain an estimate of cost per student of each department. It is important that this financial data is treated with some caution; it is not the function of the University to produce students at minimum cost and this information will only give one a very general indication of the efficiency with which resources are being utilized.
6.9 Data Sources

In order to use the model, accurate data on the following aspects of the Universities operations must be collected.
a) Student statistics.
b) Physical space information.
c) Financial information.
a) Student statistics

It is necessary to collect historical information on students and their subject choices in order to derive the proportion of cohorts proceding from one semester to the next in Part I; the induced course load matrix in Part II etc.

This information is provided by the students records office who maintain computerized files of students together with the subjects they are studying and programes of studies (in Part II) etc.
b) Physical Space

It is necessary to know the availability of the different varieties of physical space and (where applicable) the department to whom the space has been allocated. This information is available in manual form from the Estates and Buildings Office.
c) Finencial information

This information is obtained from the Finance Office and the University accounts. More general comments on these data sources together with A consideration of the possibilities of establishing an integrated managenent information system will be discussed in Chapter 9.
6.10 Operation of the model

The model can be used in two broad ways:-
a) To test the effect of changes in input to the University system (eg investigation of effect of an increase or reduction in the proportion of Science-hased students admitted to the University, effect of a fall-off in student numbers.)
b) Testing the effect of changes in operating policy (eg effect of using a student:staff ratio approach instead of a vorkload approach for academic staff allocation or alteration of space norms.) Should it be wished to entirely change the basis of a policy, revriting one of the modules might prove necessary. (for instance supposing that technical staff were related to numbers of square metres of floor space available rather than numbers of academic staff).

CHAPTER 7

USE OF THE "ROBUS" MODEL IN PPACTLCE - APPLTCATION OF THE MODEL TO PLABGI:QG FOR OUINOUENMIUH 1977-82 hisD PEYOHD
7.1 The Planning scenario and applicability of the model

In the first chapter of this dissertation the system of University planning which has been operative in the U.K. is described. As we have seen, the UGC, in the light of discussions with the Government and submissions from the Universities, nake decisions on student nurber targets and resources for a fixed five year period (the quinquenniun). In general it is necessa\& for the University to begin drawing up its quinquemiai plars at least two years before the end of the quinguennium. Thus, it was necessary to comsence planning for the 1977-82 quinquennium in 1y75, which is the starting date for these projections.

Even at the time this study was carried out the position witi regard to the next quirquennium was rather uncertain. Because of the pievailirs high rate of iaflation, the quinquennial system had broken dom ard been repiaced by ad-hoc one year settlements. Nevertheless as lich were determined to restoie the quinquennial system if at all possible, it was necessary for the University to plan, at least tentatively, for the 1977-82 quinquennium.

We must nou consider to what extent the model can help us in this task. Hopefully the model could prove to he useful in the following ways.
(i) The most significant resource implications for any suggested development plan can easily be derived for each year of the plan.
(ii) A much wider range of plans can be explored than would otherwise be possible.
(iii) It should be possible to carry out much more comprehensive sensitivity analyses in attempting to investigate the likely consequences of any subsequant deviations from plamed targets.
(iv) Possible changes in the structure of University planning syatem are being aired. In particular the possibility of change from a fixed quinquennial system to a rolling triennium system is being discussed (see Lord Crowther-llunt (1975)). Under a rolling triannial system a complete plan for a three year period would be carried out annually. The use of the model might be helpful in adjusting to suci a change and, in particular, at least reduce the amount of labour associated with a yearly planning exercise of this sort.

Thus, to summarise the availability of the model will not make any fundamental changes to the plannine process. Decisions will still be taken by acaderics based on acadcric criteria. The use of the model can make explicit resource implications of a decision and may make alternative policies easier to examine. Of course many iuportant relevant aspects of a plan are entirely subjective and must be given due weighting. llowever, to quote Simpson et alia
(1971) "There have, of course, been many examples, both in universities and elsewhere, of planning decisions involving highly subjective matters being taken with little or no reference being made to the quantifiable aspects. In fact the existence of the former is often used as an excuse to ignore the latter surely a most unfortunate atititude."

7.2 Growth Pattern of Aggregate Srudent Numbers

Planning for a quinquennium usually starts with some consideration of a possible global target for student numbers. Having established this target consideration is given to individual academic developments. In the light of this more detailed planhing, nerall target figures may be adjusted.

In early 1975 the University's academic decision-makers (council) were of the opinion that ageregate student numbers somewhere in the 3500-4000 region would be a desirable target to aim at for the end of the quinquennium. Indeed a number of factors seened to suggest, prima facic, that this could be an appropriate target.
(i) From the foundation of the University it was planned that the University should have over 3000 students within a reasonable time period. Indeed physical facilities believed adequate for such numbers were alreacy provided.
(ii) At this larger size one could expect a more academically satisfactory range of subject choices and options to be available. In a broad sense, the University would become nore "viable".
(iii) According to the UGC at the tine (letter of 24 April 1975) it vas expected that the number of full-time and sandwich students in the University syster would grow from 250,000 in 1974-5 to possibly 320,000 in 1991-2, with disproportionately higher grovth in Scotland.

Given this statement by the UCC it was natural for the University to wish to participate fully in such an expansion, especially in a situation where other Scottish Universities might be limited by physical constraints. Indeed in the sare letter the UGC tentatively suggested that in considering its plans for the next quinquenniun, Stiriing should consider the possibility of a substantial expansion.

Fur these reasons the University's academic decision-makers tentatively
suggested a rarget of 3420 undergraduates and 355 postgraduates as a possible
target for 1981/2.

It was at the same tine, however, considered desirable that reasonably smooth growth in student numbers towards the target was desirable for the following reasons.
(i) Teaching departments could find difficulties in coping with sudden very large influxes of additional students.
(ii) Such large influxes of students over short time periods cause inbalance in student numbers between different academic years (which some academics regard as undesirable).

The student flow module was used to experiment with different patterns of student intake and one was found which gave a very steady build up of overall students numbers through the quinquennium of around 10% per annum for most. of the years). These figures are presented in table 7.1.

Although this pattern of growth gives a steady build up of student numbers one important consequerce should, however, be pointed out. Since intake is increasing up to 1981/2, further growth in total student numbers will occur after $1981 / 2$ even if intake is held constant at the level of the final year of the quinquennium. To stabalize aggregate student numbers at the $1981 / 2$ level it would be necessary to actually reduce intake in the following years (a course of action which it is felt the University might be very unwilling to take). In order to obtain a stable student population in $1981 / 2$ it would be necessary to increase intake very sharply early in the quinquennium and then level off. This, however, would not only have the disadvantage of too sudden expansion which is outlined earlier, but could also cast considerable doubt on the University's ability to attract this number of students at such an early date. This discussion does show, however, that when devising plans for the next quinquennium it is important to think ahead and discover any built-in inplications for the quinquennium after next.

If we take the plausible assumption that postgraduate numbers remain at slightly over 10% of total undergraduate numbers we obtain the growth pattern shown in Table 7.2.

TABLE 7.1

PROJECTLD GROWTII OF UNDERGKADUATE STUDEITS HUMELRS 1975-82 AND BEYOND

Note: Drop in total numbers in $1975 / 6$ is caused by significant reduction in first year intake from 1973 onwards.

TABLE 7.2

PROJECTED CROWTH OF TOTAL STUDEITT NUMBERS

Year	$\frac{\text { lindergraduate }}{\text { numbers }}$	$\frac{\text { Postgraduate }}{\text { number }}$	Total
$1974 / 5$	1942	187	
$1975 / 6$	1933	200	2133
$1976 / 7$	2033	210	2243
$1977 / 8$	2249	235	2484
$1978 / 9$	2520	260	2780
$1979 / 80$	2796	290	3085
$1980 / 1$	3090	320	3410
$1981 / 2$	3404	355	3759

7.3 Feasibility of aggregate student number targets

When considering possible targets for student numbers, however, it is important to consider the question as to whether the corresponding student demand is likely to be forthcoming. In past quinquennia the University has sometimes been in the pesition of not being able to fulfil its student number targets.

If we examine Table 7.1 we see that in order to achicve its global targets it would be necessary for the University to increase its first-ycar intake from an expected 575 in 1975 to the region of 1100 by the year 1981. (This is, of course, assuming that drop-out rate, proportions recycling etc, do not change siguificantly during this period). Thus, we are proposing to virtually double our first year intake over a seven year period, and it is very important to consider the feasibility of this aim.

We must first consider the most inportant factors which can influence aggregate demind for University education. Alnongst these should be the following:-
(i) Population of qualified school leavers.
(ii) Proportion of qualified school lcavers who desire University eaucation.
(iii) Stirling University's attractiveness relative to other (particularly Scottish) universities.

Since historically $75-80 \%$ of Stirling students have Scottish origins it will be necessary to study the situation in Scotland with particular care.

Projections of the 17 year old age group populations and number of qualified school leavers for the period up to the mid-1980's which were supplied by the Scottish Education Dept (1975) are shown in Table 7.3. An average annual growth rate of 1.5% for growth in population of 17 ycar olds and 6.0% for growth of University qualificd school-leavers and further education students is projected. For obvious reasons we can place much more conficence in the accuracy of the population projections than the projection of school leavers qualified for University entrance. It should also be noted that after the end of the 1977-82 quinquennium a substantial drop in the population of the 17 year old age group occurs.

As mentiuned earlier, a further critical parameter is the proportion of school leavers qualified for University entrance vho decide to apply. This is difficult to predict in a variable economic situation and we shall tentatively assume that it remains constant.

The 6% per annua growth rate of University entry qualified school-leavers throughout the next quinquennium which was predreted by the SED has been a source of some controversy. Apparently these figures are based on a ten year regression analysis and it has been suggested that insufficient weight has been given to recent trends. Accordingly we will make the conservative assumption of a 5% growth rate in University entry qualified school-leavers throughout the quinquenniun. Thus, given our assumption that a constant proportion of qualificd school leavers apply for University, this implies that numbers of students gajning University entrance in Scotland should increase by 5\% per annum. Table 7.4 illustrates some consequences of this projection. For each year of the quinquennium the projected growth of the Scottish University system is presented along with the projected growth of Stirling University's intake during the period in question. As can be seen from this table, the planned growih in Stirling's intake compared with

Actuals	Population
Actuals	Aged 17
1962-3	72,300
1963-4	88,400
1964-5	96,700
1965-6	84,400
1966-7	82,300
1967-8	79,700
196?-9	77,700
1963-70	77,500
1970-1	78,200
1971-2	79,600
1972-3	80,800

Projections

$1973-4$	83,500
$1974-5$	85,800
$1975-6$	86,900
$1976-7$	87,000
$1977-8$	89,300
$1978-9$	89,000
$1979-80$	91,800
$1980-1$	91,000

86,500
1984-5

Total Growth

$1962-3$ to $1972-3$	11.8%	153.4%
$1967-8$ to $1972-3$	1.4%	48.6%
1972-3 to $1980-1$	12.6%	59.0%
Average Annual Growth		
$1362-3$ to $1972-3$	1.1%	9.7%
$1967-8$ to $1972-3$	0.3%	8.2%
$1972-3$ to $1980-1$	1.5%	6.0%

TABLI: 7.4

the projected growth of the Scottish University system as a whole is a modest figure (typically 12-15\% of the growth of the whole system). Thus it would appear that the growth targets for Stirling are perfectly feasible in relation to the planned growth of the Scottish Universities as a whole. Much will depend on whether Stirling can advance its reputation in the imnediate future and the capacity of the other Scottish Universities for cxpansion. It is possible that a physical limit of capacity in some subject areas in some Universities may soon be reached and it is highly unlikely in the prevailing economic climate that additional capacity could be provided.

Availability of student accomodation may also become a constraint, and this is potentially a very serious problem for Glasgow, Edinburgh arad Aberdeen which is in the throes of a North-Sea oil boom.

Nevertheless, it is important to bear in mind past failures to achieve student target levels and atterpt to anticipate any problems this might cause. Thus, it will be important to carry out appropriate sensitivity analyses. The long term situation onght also to be borne in mind; as mentioned earlier demographic factors in relation to a declining population of 17 year olds may create problems in the period after 1981/2.

7.4 Outline of Planned Projections

As a first step to carrying out a projection over the next quinquennium it might be useful to carry out a preliminary study in which present trends are simply extrapolated. This will be called the "base-line" study and will:-
(i) Include no nev academic developments.
(ii) Assumes present trends continuc (ie proportion of students in various subject areas remain approximately as present). This projection establishes a base against which we can compare further projections.

This study will then be followed by a further projection which does take new developments into account and also certain targets (eg concerning proportion of science students) suggested desirable by the Council.

In the following chapter a full sensitivity anaiysis will be carried out in which the consequences of both failure to achieve particular targets and possible changes in policy will be examined. Arising from this analysis possible alternative plans will be suggested. Existing programmes and departments are shown in Table 7.5.A.

7.5 "Base-Line" Study

As explained in the previous section, the aim of this projection is to explure the consequences of present trends being continued throughout the next quinquennium. Thus, we shall assume that no new academic developments are undertaken and that proportions of students studying different subject areas remain approximately as at present.

7.5.1 Policies, resources and student inputs

The workload model staff allocation option was used since this method had been adopted for planning during the previous quinquennium. (The effect of adopting a different policy will be discussed in the next chapter). Other policies, such as those pertaining to the allocation of physical space, remain as described in Chapter 5. Since this projection assumes no new academic developments and that proportions of students in existing subjects areas remain as before, it follows that the proportions of students who enter the various academic progranmes each year should remain approximately constant. These numbers are given in Table 7.5.B. Costs are based on price levels (including academic staff salaries) of June 1975).

Tab1e 7.5.A

EXISTING PROGRAMIES

1. Maths
2. Economics
3. Sociology
4. English
5. Ilistory
6. Philosophy
7. Accountancy \& Bus. Law
8. Religious Studies
9. Management Science
10. Computing Science
11. French
12. German
13. Spanish
14. Biology
15. Physics
16. Chemistry
17. Psychology
18. Biochemistry
19. Technological Economics
20. Education and Biology
21. " and Chemistry
22. " and English
23. " and French
24. " and German
25. " and History
26. " and Maths
27. " and Sparish

Note: As explained in Chapter 6 most students on most joint programes are split between the single progran.

DEPARTAENT (subjects)

1. Maths
2. Economics
3. Sociology
4. English
5. History
6. Philosophy
7. Accountancy \& Bus. Law
8. Relgious Studies
9. Management Science
10. Computing Science
11. French
12. German
13. Spanish
14. Biology
15. Physics
16. Chemistry
17. Psychology
18. Integrated Science
19. Fine Arts
20. Biochemistry
21. Education

TABLE 7.5.B

BASI: LINE: STUDY: TNJICAITIVE PROCRAMMES OF STUDENTS ADRITT"FED

Programme
 1975-6 76-7 77-8 78-9 79-80 80-1 81-2

1. Maths
2. Economics
3. Sociology
4. English
5. History
6. Philosophy
7. Acc. \& Bus. Law
8. Religious Studies
9. Management Science
10. Computing Science
11. French
12. German
13. Spanish
14. Biology
15. Physics
16. Chemistry
17. Psychology
18. Biochemistry
19. Technological Econ.
20. Educ. \& Biology
21. Educ. \& Chemistry)
22. Educ. \& English
23. Educ. \& French
24. Educ. \& German
25. Educ. \& History
26. Educ. \& Maths
27. Educ. \& Spanish

7	8	9	10	11	12	13
27	32	35	39	42	47	52
58	68	76	83	91	101	111
90	105	116	128	140	156	171
70	82	91	100	109	121	133
10	12	14	15	16	18	20
62	72	80	88	96	107	118
3	4	5	5	5	6	7
2	3	3	3	4	4	4
3	4	5	5	5	6	7
62	74	81	90	98	109	120
9	11	12	13	14	16	18
6	7	8	8	9	10	11
64	75	82	92	100	111	122
8	9	11	12	13	14	15
12	14	16	17	19	21	23
68	79	87	97	100	117	129
6	7	8	8	9	10	11
8	9	11	12	13	114	15

Students wishing to take these
programmes apply for the non-Education subject

7.5.2 "Base-1ine" study : results

(i) Student numbers and academic stoffing

Resultant staff allocation for each subject for each year of the quinquennium is presented in Table 7.6. Some observations can be made from these results.

It can be seen that attempting to develop in this way is likely to result in certain subject areas acquiring very large numbers of academic staff. For example this projection predicts 42 staff in Psychology, 40 in Sociolngy and 38 in English. The question as to what is the maximum desirable level of academic staff in a given subject area is a highly debatable one. There are certain advantages which may accrue from large size; a vider range of expertise resulting in a more comprehensive range of optional courscs, for instance, or the possibility of setting up a "centre of excellence" in a particular subject area. (The University of Essex for example has deliberately created a small number of large departments with just this end in view). On the ofther hand it may well be undesirabje (particularly in a small University) for a few subjects to develop to such an extent that they might tend to dominate the rest of the University. There is also the question as to whether the University is happy with these particular subject areas (Sociology, Psychology and English) securing what might hecome a pre-eminent position.

Table 7.7 presents some of the largest departments in these subject areas in toth Scotland and the U.K. (source: Commonwealth Universities Yearbook, 1974). This survey indicates that on the basis of this projection some Stirling departments would become amongst the largest in the U.K.

TABLE 7.6

BASE LINE STUDY : PROJICTED ACADIMIC STAFTING

Subject $\quad \underline{1975-6} \quad \underline{70-7} \quad \frac{77-8}{78-9} \quad \frac{79-80}{20} \quad \frac{80-1}{} \quad \frac{81-2}{2}$

1. Maths	7	8	8	9	10	11	12
2. Esonomics	19	20	22	25	27	29	32
3. Sociolocy	21	22	25	28	32	36	40
4. English	19	20	23	20	30	34	38
5. History	16	17	20	23	25	29	32
6. Philosophy	11	12	13	15	16	18	20
7. Acc. \& Bus. Law	9	19	11	12	14	15	17
8. Religious Studies	6	6	7	8	8	9	$1)$
9. Nanagement Science	10	10	11	12	13	14	15
10. Computing Science	8	8	8	9	10	11	12
11. Prencl	12	13	15	16	19	21	23
12. German	9	10	11	12	13	14	16
13. Spanish	7	7	8	9	9	10	11
14. Biology	18	18	21	23	26	29	33
15. Physics	9	9	10	11	11	12	13
16. Chemistry	11	11	13	14	15	16	18
17. Psychology	23	24	27	30	34	38	42
18. Int. Science	3	3	3	3	4	4	4
19. Fine Arts	3	3	3	4	4	4	4
20. Biochemistry	7	7	7	8	8	9	10
21. Education	9	9	10	12	13	15	16
TOTAL	237	246	276	309	341	373	418

TABLE 7.7

SOME LARGE SUBJECT DEPARTMENTS IN SCOTLAND AND THE UK

Psychology

Sussex	$26-A c a d e m i c ~ s t a f f ~$		
Glasgow	$15-$	$"$	$"$
Strathclyde	$14-$	$"$	$"$

Stirling 1981/2 projection - 42 academic staff

Sociology

Manchester	$35-A c a d e m i c ~ s t a f f ~$		
Edinburgh	$27-$	$"$	$"$
Aberdeen	$22-$	$"$	$"$

Stirling 1981/2 projection - 40 academic staff

English

Leeds	$40-A c a d e m i c ~ s t a f f ~$		
Edinburgh	$40-$	$"$	$"$
Glasgow	$24-$	$"$	$"$

Stirling 1981/2 projection - 38 academic staff

History

Manchester	$38-A c a d e m i c$	staff	
Edinburgh	$34-$	$"$	$"$
Glasgow	$33-$	$"$	$"$

Stirling 1981/2 projection - 32 academic staff

TABLE 7.8

BASL: BINE STUNY : PROJECTED STUDEHT : STAIF RATIOS

Subject

1. Maths
2. Economics
3. Socinlogy
4. English
5. History

モ. Philosophy
7. Acc. \& Bus. Law
8. Religious Studies
9. Management Science
10. Computing Science
11. Trench
12. German
13. Spanish
14. Biology
15. Physics
16. Chemistry
17. Psychology
18. Integrated Science
19. Fine Arts
20. Biochemistry
21. Education

1975-6 76-7 77-8 78-9 79-80 80-1 81-2
$\begin{array}{lllllll}4.4 & 4.4 & 4.9 & 4.8 & 4.8 & 4.8 & 5.0\end{array}$
$\begin{array}{lllllll}8.3 & 8.5 & 8.7 & 8.5 & 8.7 & 8.9 & 8.9\end{array}$
$\begin{array}{lllllll}13.2 & 13.2 & 12.8 & 12.8 & 12.4 & 12.2 & 12.1\end{array}$
$\begin{array}{lllllll}14.1 & 14.0 & 13.5 & 13.4 & 12.8 & 12.5 & 12.3\end{array}$
$12.9 \quad 13.0 .12 .2 \quad 11.9 \quad 12.1 \quad 11.5 \quad 11.5$
$\begin{array}{lllllll}8.8 & 8.7 & 9.0 & 8.7 & 9.1 & 8.9 & 8.9\end{array}$
$\begin{array}{lllllll}11.2 & 11.0 & 10.1 & 10.3 & 9.9 & 10.2 & 9.8\end{array}$
$\begin{array}{lllllll}4.5 & 4.6 & 4.7 & 4.6 & 5.3 & 5.2 & 5.2\end{array}$
$\begin{array}{lllllll}3.7 & 4.1 & 4.3 & 4.4 & 4.5 & 4.6 & 4.9\end{array}$
$\begin{array}{lllllll}4.0 & 4.1 & 4.7 & 4.5 & 4.7 & 4.7 & 4.9\end{array}$
$\begin{array}{lllllll}8.1 & 7.8 & 7.4 & 7.8 & 7.4 & 7.4 & 7.4\end{array}$
$\begin{array}{lllllll}5.6 & 5.3 & 5.4 & 5.5 & 5.7 & 6.0 & 5.8\end{array}$
$\begin{array}{lllllll}3.3 & 3.4 & 3.5 & 3.5 & 3.9 & 3.9 & 3.9\end{array}$
$\begin{array}{lllllll}10.2 & 10.6 & 9.9 & 10.2 & 10.0 & 9.9 & 9.6\end{array}$
$\begin{array}{lllllll}2.2 & 2.3 & 2.2 & 2.2 & 2.5 & 2.6 & 2.7\end{array}$
$\begin{array}{lllllll}5.9 & 6.2 & 5.7 & 6.0 & 6.2 & 6.4 & 6.3\end{array}$
$\begin{array}{lllllll}12.0 & 12.0 & 11.7 & 11.9 & 11.5 & 11.4 & 11.3\end{array}$

1.5	1.8	2.2	2.5	2.0	2.3	2.5

$\begin{array}{lllllll}6.4 & 7.1 & 8.2 & 7.3 & 7.9 & 8.7 & 9.7\end{array}$
$\begin{array}{lllllll}4.3 & 4.1 & 4.7 & 4.6 & 5.2 & 4.9 & 4.9\end{array}$
$\begin{array}{lllllll}11.7 & 11.9 & 12.7 & 11.7 & 12.0 & 11.6 & 12.0\end{array}$

Resulting student:staff ratios throughout the quinquennium are shown in Table 7.8. It can be seen that by the end of the quinquennium no subject has a ratio significantly more unfavourable than 12:1. A general tendency throughout the quinquennium is for the student:staff ratios of subjects with large student numbers to gradnally fall and for the ratios of subjects with low student numbers to rise (although some of these departments still have very low ratios at the end of the quinquennium). Tinis occurs because subjects with small numbers are using their resources more effectively at the end of the quinquennium thus releasing additional resources for large student number subjects.

Student:staff ratios are very 1 ow in some subjects even at the end of the quinquennium indicating that there is ample scope for this process to continue. Units costs are based on pricing levels (including academic staff salarics) of June 1975 .
(ii) Finance

A table of unit cost per full time stude:.t equivalent is presented in Table 7.9. These costs are of course in any case generally higher for Science and other experimental subjects because of the costs of employing technical staff and consequential higher levels of departmental expenditure.

The trend discussed in the previous section can, however, be detected in that unit cost of subjects with large student numbers tend to rise throughout the quinquennium whilst unit costs of subjects with small student numbers tend to falf eg unit costs for English rise from $\{384$ to $\{442$ during the quinquennium whilst those for Physics fall from $\{4144$ to $\{3535$ and those for Chemistry fall from 11614 to $£ 1470$. Fig 7.1 shows projected variations in unit costs for a certain subject over the quinquennium.

TABLE 7.9

BASE: LINE STUDY : UNIT COSTS PER SUBJECI' (IN POUNDS/fte STUMETTT/YFAR)
(BASYD ON JUNF, 1975 COSTS)

Subject	1975-6	76-7	77-8	78-9	79-80	80-1	81-2
1. Maths;	1213	1207	1070	1069	1101	1163	1102
2. Economics	67%	655	639	662	646	631	637
3. Sociology	417	419	437	1440	455	463	468
4. Lnglish	381	383	410	1103	423	439	442
5. History	428	420	444	469	453	477	483
6. Philosophy	635	630	604	627	600	603	607
7. Acc. \& Bus. Law	467	472	563	539	550	540	561
8. Religious Studies	1150	1117	1133	1137	996	985	1011
9. Management Science	1539	1398	1409	1363	1295	1249	1205
10. Computing Science	1311	1260	1106	1137	110%	1184	1117
11. French	693	707	746	722	752	742	'/67
12. German	927	1008	1048	999	953	905	948
13. Spanish	1677	1590	1514	1524	1365	1396	1473
14. Biology	949	914	969	964	969	982	1022
15. Physics	4144	3954	4221	4346	3833	3780	3535
16. Chemistry	1614	1556	1641	1554	1522	1482	1470
7. Psychology	781	774	790	776	808	810	816
18. Integrated Science	5617	4911	3935	3521	4590	3856	3606
19. Fine Arts \& Music	1251	1129	971	1136	1044	954	851
20. Biochemistry	2199	2267	2005	2026	1793	1850	1904
21. Education	762	753	713	795	770	796	775

As explained earlier increases in staff numbers in subject areas with few students results in resources being used more effectively and enable additional resources to be allocated to subjects with larger student numbers.

It is clear, however, that further economics should still be available for even at tie end of the quinquenium, unit costs are comparatively high in a number of subject areas.
(iii) Space

The proiccted situation with respect to different categories of physical space will now be considered. Categories of space in question are:-
(a) Lecture and seminar room space.
(b) Teaching lab space.
(c) Research lab space.
(d) Office space.
(a) Lecture and Seminar Room Space

The projected utilisation of lecture theatre and seminar room space during the next quinquennium is presented in Table 7.10. These results suggest that on the basis of this projection the University's need for this type of space should be satisfied. It is, of course, important when analysing these results nct to consider each size category in isolation. The module allocates each class to the minimum size category into which it can fit. It is in practice, of course, always possible to hold a class in a larger room and hence the utilisation of adjacent room size categories must be considered. For example in 1981/2 we find that the projected utilisation of 41-60 place rooms appears high (92.5\%) but that there is a correspondingly low utilisation of the next largest size room size category ($61-80$ seats having 27.5% utilisation).

Seminar room space is particularly important but this projection implies that utilisation will have reached only 70% by the end of the quinquennium.

In practice it is important that projected space utilisation should not tend towards 100%. Although very high utilisation may appear to indicate that space is being used very efficiently, in this situation space availability would become an over-riding constraint on the teaching timetable, with probably severe damage to the flexibility of the University's academic system.
(b) Tcashing I.ab Space

The position with respect to teaching labnratory space in 1981/2 is summarised in Table 7.11.

It seems there could be capacity problems in the Biological Sciences by the end of the quinquennium. The projected demand for the largest Biology lal: is considerably in excess of capacity. This demand could, however, be met by split ing some of the larger classes and assigning them to the 30 or 40 seat laboratory. If this was done then demand for laboratory space could be barcly met from existing capacity.

Biochemistry, too, would appear to come very close to filling existing capacity by the end of the quinquennium. Laboratory space in the Physical Sciences, however, is projected to be under-utilised. Hence there arises the possibility of switching space from the Physical sciences to the Biological sciences. Because of the University's uniform building structure this is perfectly feasible in practice.

Thus, to summarise the position, it is likely that total teaching 3.aboratory capacity would be adequate but it could prove necessary to switch space from Physical science to Biological science.
(c) Research Lab Space

The position with respect to research lab space at the end of the quinquennium is indicated in Table 7.12(a). These results indicate that total research laboratory capacity will not be quite adequate by the end of the quinquennium if present space norms are adhered to. Also indicated is the need for a reallocation of substantial amounts of space from the Physical sciences to the Biological Sciences and Psychology towards the end of the quinquennium. This should be feasible, given the flexible design of the University laboratories and that no separate departmental buildings exist.
(d) Ofrice Space

The results of the office space projection are given in Table 7.12(b). The indication is that total designated space together with the reserve area should be just about adequate for requirements at the end of the quinquennium.

The areas designated to certain subjects, however, (such as Chemistry, Maths, Management Science and Education) are substantially in excess of requirements and it will be necessary by the end of the quinquennium to reallocate this surplus to subjects with deficiencies in office space. Such a reallocation, however, should not present too many problems. A given subject is allocated a certain number of offices in a particular corridor with no clear demarcation lines from other subjects and thus in no sense can anyone conceive of "owning" a given block of offices as might be the case if separate departmental buildings had been constructed.

Thus, to summarise, total office-space should be adequate providing the University is prepared to exercise flexibility in the reallocation of this space.

LECTIURE AND GEMINAR SPACE UTILIZATION

Trpe of Room	Hinurs	\% Utilization						
(Capacity)	Available	75/6	76/7	77/8	$78 / 9$	79/80	$80 / 1$	81/2
1-24	920	56.0	56.0	59.0	62.0	65.0	67.0	70.0
$25-40$	80	41.2	50.0	48.7	45.0	40.0	42.5	37.5
41-60	40	132.5	107.5	82.5	82.5	72.5	80.0	92.5
61-80	80	10.0	32.5	47.5	42.5	31.3	33.8	27.5
81-110	40	37.5	15.0	10.0	32.5	92.5	92.5	77.5
111-150	40	37.5	30.0	25.0	25.0	20.0	27.5	47.5
151-250	120	7.5	7.5	11.7	12.5	12.5	14.2	15.0
251-350	40	7.5	20.0	20.0	40.0	50.0	50.0	67.5

TABLE 7.11

TFACHING LAB UTILIZATION (1981/2) - "DASE-LINE" PROJECTION

Biology

Lab capacities (places)	12	30	46	70
llours used	-	-	8	64
$\%$ Utilization	$\underline{0.0}$	$\underline{0.0}$	$\underline{22.2}$	$\underline{177.8}$

Physics

Lab capacities (places)	5	8	12	21	25
Hours used	12	-	-	4	8
\% Utilization	$\underline{33.3}$	$\underline{0.0}$	$\underline{0.0}$	$\underline{11.11}$	$\underline{22.2}$

Chemistry

Lab capacitics (places)	18	26	43	45
Hours used	11	-	4	20
$\%$ Utilization	$\underline{0.0}$	$\underline{11.1}$	$\underline{55.6}$	

Psychology

Lab capacities (places)	20	41	61	90
Hours used	-	-	-	31
$\%$ Utilizacion	$\underline{0.0}$	$\underline{0.0}$	$\underline{0.0}$	$\underline{86.1}$

Int. Science

Lab Capacities (places)	2	24
Hours used	-	16
\% Vitilization	$\underline{0.0}$	$\underline{44.4}$

Biochemistry

Lab capacities (places)	12
Hours used	68
\% Utilization	94.4

TABIE: 7.12 (a)

RESEARCII LAB SPACE: - "BASE:-LIN:" PROJI:CTION

Subiect	75/6	81/2	$\frac{\text { Total area }}{\text { Designated }}$
Biology	595 sq.m.	$1045 \mathrm{sq} . \mathrm{m}$.	724 sq.m.
Physics	165	264	438
Chemistry	220	374	617
Psychology	484	858	606
Int. Science	33	44	33
Biochenistry	121	187	109
	1617	2772	252.7

TABLE $7.12(\mathrm{~b})$
OFFICE: CDACE

Subject	75/6	81/2	Designated
Maths	101 Sq.m.	$181 \mathrm{sq} . \mathrm{m}$.	$416 \mathrm{sq} . \mathrm{m} .$
Economics	282	482	460
Sociology	309	604	424
English	282	570	420
History	242	482	358
Philosophy	167	296	155
Acc. \& Bus. Law	128	255	140
Religous Studies	88	149	100
Management Sc.	149	221	380
Computing Sc.	115	181	
French	181	348	36
German	128	242	235
Spanish	101	167	120
Biology	269	495	485
Physics	128	194	5
Chemistry	167	269	538 545
Psychology	348	631	80
Int. Science	40	61	40
F. Arts \& Music	40	149	104
Biochemistry	101	242	395
Education	128	-	286
Reserve	,		
1	3494	6280	6273

7.6 Revised Projection : Academic Council Assunptions

This revised projection is based on the same overall growth pattern in total student numbers as in the base-line projection but takes into account certain objectives, assumptions and constraints suggested by the Academic Council. These are the following:-
(i) Tctal Pesources

The UGC has hinted that overall resources may be reduced during the quinquennium and that as a result the global student:staff ratio for the University as a whole may be allowed to deteriorate from 9:1 to $10: 1$ over the quinquennium (this corresponds to an effective reduction in level of funding of 10%). If this detcrioration is assumed to take place gradually over the quinquennium a plausible path could be:-

$1975 / 6$ and $1976 / 7$	$9.0: 1$
$1977 / 8$	$9.2: 1$
$1978 / 9$	$9.4: 1$
$1979 / 80$	$9.6: 1$
$1980 / 1$	$9.8: 1$
$1981 / 2$	$10.0: 1$

(ii) Proportion of Science Undergraduates

In the early part of this dissertation we reitarked that the original University development plan envisaged that around $1 / 3$ of the University's undergraduates should study science-based subjects. Unfortunately, in practice, it has not been possible to achicve this target (largely owing to the lack of student interest in studying the physical sciences) and the proportion of science-based undergraduates in the University has remained at a little over 15%. Thus the Academic Council now regard the original target of 33% ecience-based students as a fairly long-term aim. Nevertheless,

INSET 7.1

Tate UGs 75%
0.7
1.6
1.4
1.5
3.0
7.7

Subject
Physics
Computing Science
Biochemistry
Maths
Chemistry
Biology

Tote UGs in 1981/82
1.4
2.1
2.4
2.7
4.6
9.2

For further discussion see Chape. 8.1
it was still hoped to substantially improve the proportion of sciencebased students by the end of the quinquennium and it was suggested that a reasonable objective might be to increase the proportion of science-based undergraduates by 50%, thus bringing the overall proportion of science-based undergraduates up to 23%. Such an improvement, however, could only be possibic if there vere substantial increases in the physical Sciences area, since Bology may be near saturation: Proportions of the USs ar beginning and end of the guinquenium is given in inset 7.1 opposite, (projections)
(iii) Nev Acadcmic Developments

The advent of a new quinquennium afferds a University the possibility of planning nev academic developments in the hope that approval and, thus, support may be obtained from the UGC. Prospects of such development are particularly important to institutions contenplating future growth. Such acaderic development can take place in two ways:-
(1) Extending an existing prograrme of study (eg introducing a singie Honcurs progranme in a subject area vhich could previously only be studied as part of a joint llonours degree; introducing into a genezal degree programe a subject which was previously only offered as a Part I minor).
(2) Making innovations in subject areas not offered previously at Stirling. Certain proposed new academic developments were tentatively adopted by the Council for possible introduction during the quinquennium. A list of these proposed developments is presented in Table 7.13. It was estimated that if these developments vere to become fully viable they might involve something in the order of fifty additional acaremic staff by the end of the quinquennium. Since $i=$ has been assumed that by this time the overall student: staff ratio will have deteriorated to $10: 1$, such developments would therefore need to attract around 500 student equivalents to obtain their full quota of associated students.

TABIE 7.13

MAJOR NEN PROJTECTED DEVELOPYENTS

Undergraduate
Programmes in new subject areas
Single ilonours programe in Environmental Science
Single llonours programme in Political Studies

Developrents in existing subject area
Single llonours in Spanish (at present only available as part of a combined llonours degree).

Single llonours in Accountancy \& Business Law (at present only available as part of a combined Honours degree).

General and Combined llonours proerames in Nusic (previously only available as a Part I minor).

Miscellaneous Develupments in Part I (eq commication media, film studies, further developments in Fine Arts)

Postgraduate Develonments
M.Lit. in Scottish Studies
M.Sc. in Social Administration
N.Sc. in Applied Social Research
M.Sc. in Aquaculture
M.Ed. in Research Methodology.

If this growth is achieved then such new developments will account for around 13% of total University student numbers by the end of the quinquennium and for 30% of the projected growth during this period. Thus, the remainder of the projected growth would be expected to occur in existing developments.

These new developements would be phased in gradually during the quinquennium. Such an arproach has obvious advantages for administrative convenience and, in any case, is incscapable in the case of new degree programes which take three or four years to build up to their full complement.

If we assume an approximately uniform build up in student numbers in new developments we have the following:-

Year	Student Nos Tal:ing New Developments	Corresponding Academic staff Nos.
$1977 / 8$	104	11
$1978 / 9$	208	22
$1979 / 80$	310	32
$1980 / 1$	400	41
$1981 / 2$	492	49

(iv) Undergraduate, Postgraduate Projections

It was decided that, in view of subject distribution at Stirling, it would be appropriate to maintain approximately the same ratio of undergraduates to postgraduates as had existed previously. It was also decided that postgraduate studies should similarly have a proportionate share of new academic developments.

7.7 Approach to projection (Academic Council assumptions)

Firstly, it is important to decide how to incorporate new academic developments into the analysis. Such developments will constitute around 4% of the University's total activity in the first year of the quinquennium, growing to around 13% of total activity by the final year of the quinquennium. These new developments will irteract with the rest of the University system (ie students in existing programmes of study will take courses in new development subject areas and vice versal

Because of the flexible mode of construction of the model there are no inherent difficulties in introducing new programmes of study o: new subjects. Since, however, new developments will, even by the end of the quinquenniun, constitute only a small proportion of cotal University activity it may be sensible to treat such developments as an aggregated quantity which is independent of the rest of the system. This approach can be justified on the following grounds.
(1) The total projected size of nev developments is reasonably small compzed with existing developments.
(2) Since there is no historical information on interactions between new developments and existing developments it would be necessary to estimate then subjectively. Thus the model data would become an intimate mixture of the historically derived and the subjectively estimated.
(3) Although it is perfectly feasible to introduce new programes and subjects into the nodel, considerable additional effort would be required to harmonize the data base. For instance it would be necessary to revise the induced course load matrix for most years of the quinquennium to allow for these developments. It is very doubtful whether any additional information which could be obtained would justify such substantial additional effort.

TABLF 7.14

ADMISSION TO PROGMAMES : PPOJECTION ON ACADFMIC COMICIL ASSURTTONS

	Programme	75/6	76/7	77/8	78/9	79/80	80/1	81/2	
1.	Maths	7	14	1.8	24	27	30	32	
2.	Economics	27	30	28	30	33	37	39	
3.	Sociology	58	65	61	65	70	78	83	+
4.	English	90	101	93	99	108	120	128	
5.	llistory	70	78	73	77	85	94	100	
6.	Philosophy	10	11	11	12	13	14	15	
7.	Acc. \& D.J.	62	70	65	69	76	84	89	\%
8.	Religous Studies	3	4	4	4	4	4	5	
9.	Management Sc.	2	3	3	3	3	4	4	
10.	Computing Sc .	3	5	6	7	8	9	9	
11.	French	62	71	67	70	76	84	90	
12.	German	9	10	10	10	11	12	13	
13.	Spanish	6	7	j	7	7	8	8	F
14.	Biology	64	78	80	91	100	111	118	,
15.	Physics	8	14	17	23	25	28	30	
16.	Chemistry	12	18	21	28	30	33	36	
17.	Psychology	68	76	71	75	81	92	96	
18.	Biochemistry	6	9	12	15	17	18	20	
19.	Tech. Ec.	8	11	13	16	17	19	21	.
20.	Educ. \& Biology								
21.	Educ. \& Chemistry								1
22.	Educ. \& English								;
	Educ. \& French	Students wishing to take these subjects apply for the non-Education subject.							
24.	Educ. \& German								
25.	Educ. \& History								
	Educ. \& Maths								
	Educ. 8 Spanish								

Thus the following growth pattern of aggregate student numbers will be assumed.

Year	Undergraduate			Postgraduate		
	$\frac{\text { Existing }}{\text { Dev. }}$	$\frac{\text { incw }}{\text { Dev. }}$	Total	$\frac{\text { Existing }}{\text { Dev. }}$	$\frac{\text { liew }}{\text { Dev. }}$	Total
1975/6	1933	-	1933	200	-	200
1976/7	2033	-	2033	210	-	210
1977/8	2154	95	2249	226	9	235
1978/9	2331	189	2520	241	19	260
1979/80	2514	282	2796	262	28	290
1980/1	2727	363	3090	283	37	320
1981/2	2960	444	3404	307	48	355

The intake of undergraduates to programes assumed for this projection is given in Table 7.14.

7.8 Results of projection (Acaderic Counci! assumptions)

(i) Academic staffing and student numbers

The projected build up of academic staff over the quinquennium is given in Table 7.15. In this projection problems associated vith certain departments reaching excessively large sizes are considerably eased. For instance at the end of the quinquennium Psychology has 32 staff (previously 42), Sociology has 29 staff (previously 40) and English has 26 staff (previously 38). The reduction is caused partly by the introduction of new developments, increase in proportion of Science students and the reduction in the overall level of University resources. Thus from this aspect these results could be considered a considerable improvement over the base line projection which showed some subjects gaining over 40 staff and becoming amongst the biggest in the U.K.

TABIL: 7.15
ACADIMITC STAFFING: PDOJLCTTOH ON ACADEMTC, COIRICJL ASSUMPTIONS

TABLI: 7.16

STUDENT-STAFF RATIO - PROJFCTION ON ACADEMIC COUNCTI, ASSURPTIONS

	Subject	75/6	$76 / 7$	$77 / 8$	78/9	79/80	80/1	81/2
1.	Maths	4.4	4.7	5.4	6.0	6.4	6.8	7.7
2.	Economics	8.3	8.5	8.6	8.9	8.9	9.3	9.2
3.	Sociology	13.2	13.1	13.1	13.1	12.8	13.2	13.3
4.	English	14.1	13.9	14.6	13.8	13.7	13.8	13.7
5.	History	12.9	12.9	12.7	12.5	12.4	12.6	12.4
6.	Philosorhy	8.8	9.4	8.8	9.2	9.2	9.4	9.5
7.	Acc. \& E.L.	11.2	11.0	10. 4	10.9	10.7	10.2	11.0
8.	Religous Studies	4.5	4.5	4.3	5.0	4.4	4.8	5.6
9.	Management Sc.	3.7	4.2	4.3	4.8	5.1	5.3	5.3
10.	Computing Sc.	4.0	4.2	4.6	4.8	5.7	5.8	6.4
11.	French	8.1	7.7	7.8	7.7	8.0	8.0	8.0
12.	German	5.6	5.2	5.5	5.8	5.6	5.9	5.6
13.	Spanish	3.3	3.4	3.7	3.8	3.7	3.9	3.9
14.	Biology	10.2	10.3	10.7	13.0	11.2	11.4	11.8
15.	Physics	2.2	2.4	2.5	3.2	3.8	4.0	4.7
16.	Chemistry	5.9	6.6	6.6	7.3	7.7	8.2	8.7
17.	Psychology	12.0	12.1	12.2	12.0	11.9	12.2	12.4
18.	Int. Sc.	15.	1.9	2.5	3.4	3.8	3.2	3.5
19.	Fine Arts	6.4	7.0	7.5	7.9	8.4	9.6	10.4
20.	Biochemistry	4.3	4.1	4.8	6.1	6.7	7.4	8.4
21.	Education	11.7	11.9	12.3	13.0	12.9	13.0	12.8
New	Developments	-	-	9.2	9.4	9.6	9.8	10.0

Resulting student:staff ratios for this projection are given in Table 7.16. A point to note is that the student:staff ratio for mediun or large non-Science departments has either marginally or only very slightly declined over the quinquennium in spite of the fact that this projection assumes at 10% cut in overall resources. This is thanks to the inproved performince in the Sciences assumed in this projection (ie Naths changes from 4.4:1 over the quinquennium to 7.7:1, Computing Science changes from $4.0: 1$ to $6.4: 1$, Biology from $10.2: 1$ to 11.8:1, Physics from 2.2:1 to 4.7:1, Chemistry from 5.9:1 to $8.7: 1$ and Biochemistry from 4.3:1 to 8.3:1). Thus, in general, the reduction in overall level of resources is compensated by the more effective utilisation of resources by the Science-based subjects owing to their increased size.
(ii) Finance

Unit costs (calculated on the same basis as before) over the quir:quennium for this projection are shown in Table 7.17. These results are consistent with the conclusions in the last section in that resources available to medium and large non-science subjects remain broadly constant in spite of the cut in overall funding assumed during the quinquennium. This is shown in these results by broadly constant unit costs in these subjects during the quinquennium. As expected there are substantial reductions in projected unit costs for Science subjects (especially in the Physical sciences where, for instance, unit costs for Physics reduce from $£ 4144$ to $£ 2098$, Maths from $£ 1213$ to $£ 732$, etc). Thus, as explained earlier, more effective utilization of resources (though higher student numbers in the generally rather : 11 science departments has compensated for the overall reduction in funding al lowing unit costs to remain broadly stable elswhere). Fig. 7.2 exhibits the variation in unit costs for certain subjects over the quinquemium.

TABLE 7.17

PROJECTEI) InTTT COSTS : PROJCCTION OH ACADMMTC COUNCTL ASSURTTOES (IN POUNDS/f te SIUDENT/YY:AR)

	Subject	75/6	7617	77/8	78/9	79/80	80/1	81/2
1.	Maths	1213	1126	973	860	823	819	732
2.	Economics	677	654	639	626	638	610	604
3.	Sociology	417	422	436	429	434	425	421
4.	English	384	388	370	390	403	397	393
5.	History	428	425	425	438	438	427	450
6.	Philosophy	635	597	622	594	585	5\%	572
7.	Acc. \& B. Law	467	476	515	489	532	547	508
8.	Religous Studies	1150	1.152	1245	1035	1224	1122	962
9.	Management Science	1539	1370	1428	1251	1177	1126	1107
10.	Computing Science	1311	1248	1131	1063	901	900	824
11.	French	693	72.2	709	713	682	696	701
12.	Cerman	927	1031	972	912	1007	958	983
13.	Spanish	1677	1613	1459	1423	1452	1370	1354
14.	Biology	949	947	906	883	873	852	824
15.	Physics	4144	3862	3834	3103	2503	2421	2098
16.	Chemistry	1614	1671	1433	1278	1216	1148	1081
17.	Psychology	781	769	760	770	777	852	747
18.	Int. Sc.	5617	4488	3453	2575	2316	2826	2568
19.	Fine Arts	1251	1138	1062	1016	948	837	770
20.	Biochemistry	2199	2267	1944	1547	1382	1234	1087
21.	Education	762	753	740	696	731	716	724

There is still, however, room for further improvements in resource utilisation in the Physical sciences. For example even at the end of the quinquennium Physics and Chemistry have unit costs of $£ 2098$ and $£ 1081$ respectively whilst larger laboratory subjects such as Psychology and Biology have unit costs of around $£ 800$.
(iii) Physical Space

Table 7.18 (a), (b), (c), (d) summarises the position with regard to different categories of space at the end of the quinquenniun.
(a) Lecture Theatre and Seminar Room Space

The position with regard to this type of space is broadly similar to that in the base-line projection. Generally demand for most room size catcgories is reduced from the previous projection but no account has been taken of space requirements of new developients. It might be expected that these developments might increase demand for space by at least 13% (since they will constitute 13% of student numbers), but this is uncertain as is the question of the distribution of this demand over the different room size categories. Nevertheless, it would appear that the availability of this type of space should be adequate to meet requirements. because proiected utilization in each category is substantially less than 100%.
(b) Teachinf Labl Utilization

Again the situation is broadly as before except that utilization of space in the Sciences has increased.

The teaching lab space available for Eiology and Liochenistry promises to be barcly adequate even if Biology classes are split in order to effectively utilise all space allocated. There docs, however, appear to be still some excess capacity in the Physical Science whilst Psychology's demands on its laboratory space is reduced from the earlicr projection. Teaching laboratory space will have to be provided for one of the University's new developments (Larth and Environmental Sciences) from the existing stock. With a flexible approach to the possibility of subjects sharing space or space reallocation these problems should not prove insurmountable.
(c) Research Lab Space

This situation which is outlined in Table 7.18 (c) is troadly similar to that outlired in the previous projections. Total capacity will be barely adequate if ve take into account the likely research lab demands of new developments (Earth and Environnental Science). Again it will be necessary for substantial transfers of space from that designated to the Physical Sciences to the Biological Sciences in order to meet all requirements.
(d) Office Space

This situation is outlined in Table 7.18 (d). It differs from the base line study in that even after allowing for the requirements of new developments there is sone spare capacity at the end of the quinquennium. This, of course, is because owing to the reduction in funding there are now less academic and non-academic staff requiring space at the end of the quinquennium.

The block of office space held in rescrve will not be adequate to meet all the requirements of the new developments, the rest will have to be ret from thase subjects whose designated areas are surplus to requirements.

As mentioned previously because of the uniform structure of University buildings there is no physical barrier to such a reallocation.

TABLF. 7.18

PITYSICAL SPACE: : FPOIECTIONS ON ACADLMIC COINTCII, ASSUPPTIONS
(a) Lecture and Seminar Spece 1981/2

Class Size	llours	$\frac{\text { A.C. Proiection }}{\text { \% Utilization }}$	$\frac{\text { Base-line projection }}{\text { \% vtilization }}$
0-24	920	64.0	70.0
25-40	80	46.3	37.5
41-60	40	82.5	92.5
61-80	80	25.0	27.5
81-110	40	82.5	77.5
110-150	40	47.5	47.5
151-250	120	15.0	15.0
251-350	40	40.0	67.5

(Note: New Developments not talen into consideration).

TABLF 7. 18 (Continued)

PHYSTCAL SPACL : PROJECTIONS OH ACNDIMIC COUNCTL ASEIMPTIOAS
(b) Teaching Laib Utilization (1981/2)

Biology

Lab Cap. (space)	12	30	40	70
Hours used	-	-	8	68
\% Utilization	$\underline{0.0}$	$\underline{0.0}$	$\underline{22.2}$	$\underline{188.8}$

Physics

Lab Cap.(space)	5	8	12	21	25
Hours used	-	-	12	4	8
$\%$ Utilization	$\underline{0.0}$	$\underline{0.0}$	$\underline{16.5}$	$\underline{11.1}$	$\underline{22.2}$

Chemistry

Lab Cap. (space)	18	26	43	45
Hours used	3	4	4	32
\% Utilization	4.1	11.1	11.1	88.9

Psychology
I, ab Cap. (space) $20 \quad 41 \quad 61 \quad 9$
Hours used - - 4
\% Utilization $0.0 \quad \underline{0.0} \quad \underline{11.1}$

Int. Science
Lab Cap. (space) 24
Hours used - 20
\% Utilization - 55.5

Biochemistry

Lab Cap. (space) 12
Hours used 88
\% Utilization $\underline{122.2}$

TABLE 7.18 (Continued)

PHYSICAL SPACE : P'PODFCTIONG OH ACADEMTC COINCIL ASSIMPTIONS
(c) Research Lab Space (1981/2)

Subject	$\underline{75 / 6}$	$\underline{81 / 2}$	Capacity
Biology	$594 \mathrm{sq} \cdot \mathrm{m}$.	$880 \mathrm{sq} \cdot \mathrm{m}$.	$724 \mathrm{sq} \cdot \mathrm{m}$.
Physics	165	220	438
Chemistry	220	330	617
Psycholojy	484	693	606
Int. Science	33	44	33
Biochemistry	121	165	109
	1617	2332	2527

New Developments Earth and Environmental Science 200-300 sq. metres.

TABLE 7.18 (Continued)

PHYSICAL SPACE : PROJECIIIONS ON ACADEMIC COINCII. ASSUMTTIOAS
(d) Office Space (1981/2)

Subject	1975/6	1981/2	$\frac{\text { Total area }}{\text { designated }}$
Maths	101	167	41.6
Economics	282	389	460
Sociology	309	436	424
English	282	389	420
History	242	348	358
Philosophy	167	221	155
Acc. \& Bus. Law	128	i81	140
Religious Studies	88	101	100
Management Science	149	194	380
Computing Science	115	149	80
French	181	242	368
German	128	181	235
Spanish	101	128	120
Biology	269	402	485
Physics	128	167	144
Chemistry	167	255	538
Psychology	348	482	545
Integrated Science	40	61	80
Fine Arts \& Music	40	40	40
Biochemistry	101	128	104
Education	128	194	395
New Dev	-	761	286
Total	3494	5616	6273

109 Commonwealth Universities Yearbook (1974). Commonwealth Universities Yearbook, Association of Commonwealth Universities.

110 Lord Crowther Hunt (1975). Times Higher Educational Supplement, May 1975.

111 Scottish Education Dept (1975). Letter to University of St Andrews (9/5/75) (from J S Fearn Esq).

112 M G Simpson et alia (1971). Planning University Development $\frac{\text { Studies in Institutional Management in Higher Education. }}{\text { CERI, OECD, Paris. Page } 21 .}$

113 UGC (1975). Letter to University of Stirling (24/4/75). (Ref 39/125/02).

8.1 Plausihility of Assumptions in Academic Council's projection

The projection described in the latter half of the previous chapter incorporates a number of developments suggested by the Council. Our purpose in this Chapter is to examine the possibility of actually being able to achicve this development and explore possible consequences of failing to maet certain targets. The most important developments incorporated into this projection vere:-
(1) Certain new academic developments would be made; these would attract their correspending quota of students accordinं to the prevailing overall student:staff ratio for a given year (eg if 50 staff vere allocated to new developments and the prevailing overall student:staff ratio was $10: 1$, then ve would expect 500 students to be studying the new developments).
(2) The proportion of Science undergraduates in the University was hoped to increase to around 23% overall by the end of the quinquennium.

The likely student demand for new suggested academic developments together with a reviev of the situation with regard to the sciences will be examined in the light of statistics produced by the University Central Council on Admissions (UCCA) for the years 1970-4. These statistics give information on the numbers of students applying for and gaining admittance to UK Universities through the UCCA scheme. These statistics do not, however, distinguish students of Scottish origin and we have mentioned before that over 75% of Stirling students come from Scotland. Even if such figures were issued, they would be inconclusive since three of the eight Scotish Universities (Glasgow, Strathclyde and Aberdeen) make admissions outwith the UCCA scheme. Thus, we shall have to base our analysis on UK statistics, which, hopefully, should give a broad indication of the general position, whilst bearing in mind possibilities of a "Scottish dimension" in

Our approach will be to consider the potential demand for our projected developments and for Science-based subjects during the period 1970-4. Two factors are likely to be very significant in trying to assess possible student demand for a subject. These are:-
(i) Total volume of student demand for that subject (measured in terms of total applications).
(ii) Fraction of total applicants for a subject actually admjeted to University.

Factor (i) establishes the global demand for a particular area of study whilst factor (ii) measures how vell such demand is being met from existing Universily prograrmes.

It was decided that it could be useful to attempt to devise an index of potential student demand for a particular subject or subject area which incorporated both the ahove factors.

Such an index could be:-

$$
\begin{aligned}
& \text { Potential demand } \\
& \text { index }
\end{aligned}=\frac{\text { Total applisations }}{\% \text { of applicants admitted }}
$$

Thus, the value of this index will be increased by a rise in total applications for a given subject area (indicating increased demand) and also by a decrease in the proportion of students admitted (usually corresponding to an increase in unsatisfied dcmand; although an increase in unsatisfactory applicants could in certain cases be a contributcry cause).

It should be understood, however, that the behaviour of this index may be statistically invalid for subjects which have very low numbers of total applicants or a low proportion of applicants who are admitted. As remarked earlier changes from year to year in proportion of qualified applicants applying for a given subject may also give rise to misleading interpretations of the index.

This index, of course, only gives a rough and ready indication of the prevailing situation and should be interpreted with some caution. It does, however, have the advantage of being readily understandable and does combine the two factors felt to be most signifjeant.

Major new developments (ie new degree or joint-degree programies or an extension of an existing development into a degree programme) were tentativeiy planned in the following ficids:-

- Music
- Spanish (ext. of jcint-dcgree programe to full degree prograrme)
- Accountancy and Business Law
- Political Studias
- Earth and Environmental Science

Farth and Enviromental Science impinges on a range of subject areas; hence the UCCA statistics for Geology, other environmental sciences and geography were considered. In the absence of any clearly defined Political studies category, the closest apparent category, Government and Public Administration was used instead.

For each of the above subject categories, total numbers of UCCA applicants and total numbers subsequently admitted to University through UCCA during the period $1970 / 4$ is shown in Table 8.la. Also shown (in Table 8.1b) is the corresponding demand index for each subject category (with that for English also included for purposes of comparison). Some general deductions can be made from this table.

- The index of potential demand is substantial for subjects in the earth and environmental sciences area. Since, during nost of the period in question, less than 50% of potential applicants wereadnitted, there would appear to be considerable unsatisfied demand in this area. Although the subject categories chosen do not correspond exactly to earth and

Table 8.la Numbers Applying and Admitted to University through UCCA: New Developments

	1974		1973		$\underline{1972}$		1971		1970	
Subject	A	B	A	B	\wedge	L	\wedge	B	A	B
$\frac{\text { Earth \& }}{\text { Envir. Sci }}$										
35 Geology	1111	658	1196	626	1123	611	1196	547	1096	562
37 Other Envi Sc	871	343	831	295	715	220	645	186	479	174
42 Geogra.	4072	1968	4399	1789	4459	1765	4432	1675	4310	1690
Political Studics										
$\begin{aligned} & 44 \text { Govt \& } \\ & \text { PA } \end{aligned}$	600	441	603	405	668	380	719	349	612	303
60 Spanish	234	200	294	215	264	222	281	199	299	222
43 Account.	1033	409	776	315	514	179	442	169	383	323
75 Music	988	590	967	473	870	481	817	447	743	403

$A=$ Number applying
$B=$ Number admitred

Table 8.lb New Jevelopments - Potential Demand Index

Subject	1974	1973	1972	1971	1970
Earth \&					
Envir. Sci					
35 Geology	19	23	21	26	21
37 Other Envi Sci	22	24	24	22	13
42 Geogra.	85	107	111	116	111
Pol. Studies					
44 Gove \& PA	8	9	12	15	12
60 Spanish	3	4	3	4	4
43 Account.	26	19	15	12	5
75 Music	16	20	16	15	14
English (for comparison)	114	127	140	144	134

environmental science, there does appear at least to be some possibility of obtaining substantial student numbers in this subject area.

Accountancy secms to be an important growth area with a rapid rise of the demand index over the period in question. In most years only around 40% of applicants are admitted which suggests evidence of substantial unsatisfied demand in this area.

- For music, the index of demand has been at a reasonable level although fairly siagnant over the period in question. Spanish has had a uniformly very low index, and the fact that around 85% of all applicants were admitted suggests adequate, or very possibly, excess capacity available in this subject area. It may well be that argurents for introducing the Honours degree in Spanish may have to be made on the basis of this development complementing other work in modern languages rather than any likelihood of substantial student nurbers appearing to take this option.
- The outlook for political studies does not appear very promising judging from the index for Government and public adninistration. Certain reservations about this conclusion, however, must be made oving to the uncertainty as to hov well this category represents the political studies field.
- The second major development was the plan to increase the proportion of science undergraduates from around 17% during the present quinquennium to around 23% by the end of the next. This implies, of course, a wore than proportional increase in Science students as the University expands.

Table 8.2a presents the relevant statistics on applications and admissions to University through UCCA for Science subjects during the period 1970-4 and Table 8.2b presents the corresponding potential demand indices.

- It can be seen that student demand in the Biological Sciences area has, on the whole, been reasonably stable although there has occured a swing from the more specialised Piology and Zoology courses to the more general Biology courses. A swing in this direction is in Stirling's favour since it offers broader Diological science programmes. Since orly around 60% of all applicants for Biology are admitted to University, there could well be scope for further growth in this area.
- Unfurtunately, the potential for further expansion in Biochemistry seems somethat discouraging since the pattern of University admission for tris subject during recent years has been one of falling demand and rising percentages admitted (in fact the demand index has leen halved during the period in question).
- In the physical sciences, ve fiud that the demand index for Mathematics has droppea substantially during the period under reviev. Nevertheless, this remains a very popular subject nationally with around 5000 applicants per year and should provide scope for Stirling to add to its present rather meagre numbers. The position with regard to Chemistry and Physies seem very difficult and, in the circumstances, it is not surprizing that Stirling has encountered difficulty in obtaining adequate student numbers in these areas. The index for Chemistry, in particular, has dropped to just over half its previous level with around 90% of all applicants being admitted. Since some applicants will not obtain even the minimum University entry qualificaitons, this figure suggests that even minimally qualified applicants are admitted, and may indicate substantial space capacity in this subject area.

Table 8.2a Numbers Applying and. Admitted to University throug UCCA:

	1974		1973		1972		1971		1970	
Subject	\wedge	B	Λ	B	A	B	A	B	A	B

Table 8.2b Inde x of Potential Demand: Science Students

Subiect	$\frac{1974}{1973}$	$\underline{1972}$			
25 Biology	26	28	28	30	24
26 Botany	2	2	3	3	3
27 Zoology	12	24	27	27	25
29 Biochem.	11	12	18	20	21
31 Maths	65	71	80	93	85
33 Physics	29	32	35	36	40
34 Chem.	24	27	33	43	44
55 English	114	127	140	144	134

* Some years more students were ad nitted for Botany than who actually applied - this may be due to students being ad mitted who orisinally applied for some other subject.

Thus, to summarise the above arguments, Stirling has been attempting to develop its Science activities at a time when national student demand for Science courses has been either staynant or contracting. Unless this trend is reversed, it could prove difficult for Stirling to achieve even its very modest targets for Science numbers next quinquennium.

We rust examine the question as to whether there is any action Stirling can undertake to improve its prospects with regard to Science numbers. Obviously improved reputations of the Stirling science departments vould be useful in this connection although, essentially, this is a long-term process and there are unlikely to be many Nobel prize vinners at Stirling in the near future! Visits to schools by members of staff and visits by schools to Stirling University are helpful. Another problem is that Stirling may well he asking for more demanding entry qualifications than other universities. As we have previously mentioned in Chapter 2, at present students are adnitted to the University as a whole and roughly the same entry requirements demanded for all areas of study. Thus,it could well be that Stirling is asking for more demanding entry requirements than other institutions - there is evidence that minimal entry requirements a: accepted for admission by some Universities for Science subjects. For example the UCCA publish statistics of the upper and lower quartiles 'A' level score of applicants admitted to different subjects through their clearing scheme. (These scores are based on a candidate's best three A level results with 5 points for an A, 4 for a $B, 3$ for a $C, 2$ for a D, and 1 for an E. Thus, any candidates admitted to University should normally have a minimum score of 2 and maximum score of 15). These statistics for candidates admitted by UCCA through clearing in 1974 are presented in Table 8.2c. Now minimum qualifications accepted by Stirling for candidates with A level qualifications is two C^{s} (six points). It can be seen that these requirements are generally less exacting than average for arts and social science and rather more exacting than average for
physical science. This subject is discussed further in Chapter 9.7.

Table 8.2c. Upper and Lower Quartile Scores of Candidates Accepted Through UCCA Clearing Scheme (1974)

Subject	Upper Quartile	Lower Quartile
Medicine	12	8
Civil Engincering	8	4
Mining Engineering	7	4
Biology	7	4
Mathematics	8	3
Physics	8	3
Chemistry	7	6
Economics	8	5
Acrountancy	6	7
Law	10	5
Psychology	8	6
Sociology	8	7
English	10	8
French	8	4
Spanisil	10	6
History	8	4

8.2 Sensitivity Analysis - (1) External chanses

The analysis of section 8.1 indicates that there are reasonable grounds for questioning whether the University will achieve the targets adopted in the projection based on the Academic Council assunptions. Such doubts relate both the University's prospects of obtaining its target numbers in nev development subject areas and also to obtaining its desired increase in the proportion of Science undergraduates. In this section we shall explore the consequences of making pessimistic assumptions about these factors. These assumptions are as follows:-
(i) Total student number targets as in previous projection.
(ii) New academic developments attract only 50% of projected student enrolment but still absorb 80% of previously projected resources. This assumption is plausible on the grounds that if new developments as a whole fail to attract sufficient student numbers, it is inevitable that some will be quite sall and small subject areas tend to have higher levels of resources in relation to student numbers. In addition,there is inevitably some tendency to allocate academic staff ahead of student enrolment in such developments.
(iii) The proportion of students studying Science subjects remains at around that of the present quinquennium (ie 15-17\%).

8.2.1 Results of projection (pessimistic assumptions)

(a) Student numbers and academic staffing

The pattern of academic staffing resulting from this projection is presented in Table 8.3. In general these results do not differ greatly from those resulting from the previous projections based on Academic Council assumptions. Broadly speaking Science subjects have marginally reduced staff numbers at the end of the quinquennium (es Chemistry is now 15 instead of 17 ,

Biochemistry 8 instead of 9 etc). Correspondingly, increases (although by no means dramatic ones) are observed for the larger Arts and Social Science subjects (eg English increases from 26 to 30, Sociology from 29 to 32, Psychology from 32 to 34). Thus, even under these pessimistic ascumptions, the largest subjects do not obtain excessively large staff numbers.

Table 8.4 presents variations in student:staff ratios over the quinquennium. In the previous projection, it will be remembered that the more effective utilization of resources in Science subjects meant that student:staff ratios could be held reasonably stable elsewhere. This, of course, can now no longer hold and there is a general slight deterioration in ratio over the quinquenniun (the most adverse ratio is English which reaches 14.5 by the end of the quinquennium). This dcterioration is, however, not drastic and occurs gradually over the period in question.
(b) Finance

Unit costs for different subjects for the quinquennium are presented in Table 8.5. These costs are consistent with the analysis given in the previous section. Unit costs of Science subjects are not reduced as greatly as in the former projection and elsevhere in the medium and larger size subject areas there is generally a moderate and gradual reduction in unit costs indicating a reduction in resources to these areas. Fig. 8.1 shows diagramatically variation in unit costs over the quinquennium.
(c) Space

The situntion with respect to physical space is broadly similar to that shown in the previous projection and is summarised in Appendix 7 .
The major difference is that reductions in numbers of science-based students and staff result in a slight easing of pressure on teaching
laboratory and research 1 aboratory space.

	Subject	75/6	76/7	77/8	78/9	79/80	80/1	81/2
1.	Maths	7	8	8	8	9	9	10
2.	Economics	19	21	21	23	24	25	27
$3:$	Sociology	21	22	24	25	27	30	32
4.	Lnglish	19	20	21	23	25	28	30
5.	History	16	1%	18	20	22	23	25
6.	Philosophy	11	12	12	13	14	15	16
7.	Acc. \& Bus. Lav	9	10	10	11	12	13	13
8.	Religious St.	6	6	7	7	7	8	8
9.	Management Sci.	10	10	10	11	11	12	12
10.	Computing Sci.	8	8	8	8	9	9	9
11.	French	12	13	14	15	16	17	18
12.	German	9	10	10	11	11	12	13
13.	Spanish	7	7	7	8	8	9	9
14.	Biology	18	19	20	21	22	24	26
15.	Physics	9	9	9	10	10	10	10
16.	Chemistry	11	11	12	13	13	14	15
17.	Psychology	23	24	25	27	29	32	34
18.	Integ. Sci.	3	3	3	3	3	3	3
19.	Fine Arts	3	3	3	3	3	3	4
20.	Biochemistry	7	7	7	7	7	7	8
21.	Education	9	9	10	± 1	11	12	13
New	Development	-	-	9	18	28	33	39
	Total	237	249	269	295	321	348	376

Subject

1. Maths
2. Economics
.3. Sociology
3. English
4. History
e. Philosophy
5. Acc. \& Bus. Law
6. Helicious St.
7. Management Sci.
8. Computing Sci.
9. French
10. German
11. Spanish
12. Biclogy
13. Physics
14. Chemistry
15. Psycholog'
16. Integ. Sci.
17. Fine Arts
18. Biochemistry
19. Education

$75 / 8$	$76 / 7$	$\underline{77 / 8}$	$\underline{78 / 9}$	$\underline{79 / 80}$	$\underline{80 / 1}$	$\underline{81 / 2}$
4.4	4.4	4.48	5.1	5.1	5.5	5.4
8.3	8.1	8.8	8.8	9.2	9.7	9.7
13.2	13.2	13.0	13.7	13.8	13.6	13.9
14.1	14.1	14.6	14.7	14.7	14.2	14.5
12.9	13.0	13.4	13.2	13.1	13.7	13.2
8.8	8.7	9.5	9.6	9.8	10.1	10.3
11.2	10.0	10.8	10.9	11.0	11.1	11.2
4.5	4.6	4.6	5.0	5.6	5.3	6.0
3.7	4.1	4.5	4.6	5.0	5.0	5.1
4.0	4.1	4.5	4.9	5.0	5.5	5.4
8.1	7.8	7.9	8.0	8.2	8.5	8.4
5.6	5.2	5.8	5.8	6.5	6.6	6.7
3.3	3.4	4.0	3.7	4.1	4.1	4.4
10.2	10.0	10.3	10.9	11.1	11.1	11.2
2.2	2.4	2.4	2.4	2.8	2.8	3.1
5.9	6.2	6.0	6.2	6.7	6.7	7.5
12.0	12.0	12.4	12.6	12.8	12.6	13.0
1.5	1.8	2.1	2.5	2.5	2.9	3.2
6.4	7.0	8.1	9.2	10.2	10.9	8.9
4.3	4.0	4.7	5.1	5.5	5.9	5.8
11.7	12.5	12.6	32.3	13.5	13.6	13.8

Subject
2. Maths
2. Economics
3. Sociology
4. English
5. History
6. Philosophy
7. Acc. \& Bus. Laiv
8. Religious St.
9. Management Sci.
10. Computing Sci. $75 / 6$
$76 / 7$
$77 / 8$
$78 / 9$
$79 / 80$
80/1 81/2

1213	1200	1097	1023

1012
923958

958

677	682
417	419

628
645
615 582

581
409
404
371

409
404
372
414
408
399

428	419	404	412
635	632	578	599

541
538

529
508
955
495

454
960
877
1085
1192

3181
1029
680
939

860
12. French
12. German
13. Spanish
14. Biology
15. Physics
16. Chemistry

1\%. Psychology
18. Integ. Sci.
19. Fine Arts
20. Biochemistry
21. Education

8. 3 Sensitivity analysis (2) Policy Chances

In the previous section we considered the consequences which might arise from a change in the projected student intale in the University system. In ecneral, these changes could not be directly controlled by the University's decision-makers. Here we shall consider consequences of possible changes in the University's policy for its internal. resource allocation.

The considerable freedom that a University in the UK has over its owr internal resource allocation has been described elsevhere in this dissertation. Cne policy which has far-reaching implications is the decision as to whic: criteria should be used for allocating available staff members between different subject areas. This is not only because academic staff salaries comprise neany half the University's bucget but also owing to the fact that many other resources are directly or indircctly related to academic staffing levels.

A review and critique of policics for staff allocation was presented in Chapter 5. In this review it was mentiond that many institutions use direci student:staff ratio policies for staff allocation and in this section we investigate the implications of adopting such a policy at Stirling.

This will be carried out by repeating the second projection of Chaptcr 7 (Acaderic Council assumption projections) allocating acaderic staff on the basis of a fixed student:staff ratio. This can be casily done by causing the model to switch in the appropriate staff allocation module.

8.3.1 Results of proiection

(a) Academic staffine and student numbers

The results of this projection in terms of allocation of academic staff is presented in Table 8.6. Unlike the workload model policy this method of staffing allows no staffing element which is independent of student numbers. Thus, an obvious deduction is that those subject areas with large student numbers will receive rather more staff than before whilst those areas with small numbers are cut-back further.

A conscquence of this is that we are again in danger of certain subjects having possibly excessively large numbers of acacemic staff by the end of the quinquennium. (Sociology with 39 staff, Psychology with 40 staff and English with 36 staff for exarple may become anongst the largest departments of their type in the UK).

Conve:sely, areas with small student numbers may be reduced to very small academic staff numbers indeed. Physics staff numbers, for example, vary from two to five during the quinquennium. This raises the question as to how many acaderic staff a subject area requires before it can be considered "viable". From the academic point of view "viability" corresponds to the number of academic staff necessary to give a reasonable covering of the subject natter of that subject. This is a very debatable question which will not be pursued further although in the author's opinion, in general, most subjects can be adequately covered with relatively small numbers of academic staff. There is, however, the further question as to whether a department is viable with respect to the workload generated by its teaching commitments. For instance, there is a single Honours programe in Physics taught
by the Physice department whici, even allowing for no optional courses must involve $15-16$ seniester course units, most of which include laboratories. Even if very small student numbers were taling each course it is doubtful if it would be possible to cope with the resulting workload with less than four or five staff. Essentially the University may find itself in a position where either it must provide a minimum level of staffing to maintain a prograrme or tal:e the decision to abandon the programme. A decision to abandon a program should not however be taken entirely on the grounds that the level of acadomic staffing justified under this method of staff allocation are insufficient to mount the prograrne. For instance, before taking a decision to abandon its Honours Physics prograrme, the University should consider the implications of this decision for the remainder of the Physical science and on the acacemic viability of the University as a vholc.

Considerable practical problems may ve encountered in any attempt. to switch from a given policy of staff allocation to a radically different one. This is because such a shift could involve a reduction in numbers of staff currently teaching a subject. Since existing siaff may have tenure and since the rate of resignations in some areas may be very low, it may prove impossible in the short term to reduce staffing levels in given areas. For this reason it could take a number of years in a growth situation to fully implement a change in staff allocation policy.

Column A on Table 8.6 indicates the existing levels of academic staffing. Column B indicates the closest it would be possible to get to the projected staffing for 1981/82 assuming no redundancy and assuming 10% resignations in all departments in this period.

8.3.1 Results of projection

(a) Academic staffing and student numbers

The results of this projection in terms of allocation of academic staff is presented in Table 8.6. Unlike the workload model policy this method of staffing allows no staffing element which is independent of student numbers. Thus, an obvious deduction is that those subject arcas with large student numbers rill receive rather more staff than before whilst those areas with small numbers are cut-back further.

A conscquence of this is that we are again in danger of certain subjects having possibly ex:cessively large numbers of acaderic staff by the end of the quinquennium, (Sociology with 39 staff, Psychology with 40 staff and English with 36 staff for exarple way become amongst the largest departments of their type in the $U K$).

Conve:sely, areas with small student numbers may be reduced to very small academic staff numbers indeed. Physics staff numbers, for example, vary from two to five during the quinquennium. This raises the question as to how many acaderic staff a subject area requires before it can be considered "viable". From the academic point of view "viability" corresponds to number of academic staff necessary to give a reasonable covering of the subject natter of that subject. This is a very debatable question which will not be pursued further although in the author's opinion, in general, most subjects can be adequately covered with relatively small numbers of academic staff. There is, however, the further question as to whether a department is viable with respect to the workluad generated by its teaching commitments. For instance, there is a single Honours programe in Physics taught
by the Physics department which, even allowing for no optional courses must involve $15-16$ semester course units, most of which include laboratories. Even if very small student numbers were taling each course it is doubtful if it would be possible to cope with the resulting workload with less than four or five staff. Essentially the University may find itself in a position where either it must provide a minimum level of staffing to maintain a progrartice or tal:e the decision to abandon the progranme. A decision to abandon a program should not hovever be taken entirely on the grounds that the level of academic staffing justified under this method of staff allocation are insufficient to mount the programe. For instance, before taling a decision to abandon its Honours Physics programme the University should consider the implications of this decision for the remainder of the Physical science and on the acaceric viability of the University as a wholc.

Considerable practical problems may ve encountered in any attempt. to switch fron a given policy of staff allocation to a radically different one. This is because such a shift could involve a reduction in numbers of staff currenlly teaching a subject. Since existing siaff may have tenure and since the rate of resignations in some areas may be very low, it may prove impossible in the short term to reduce staffing levels in given areas. For this reason it could take a number of years in a growth situation to fully implement a change in staff allocation policy.

Column A on Table 8.6 indicates the existing levels of academic staffing. Column B indicates the closest it would be possible to get to the projected staffing for 1981/82 assuming no redundancy and assuming 10% resignations in all departments in this period.
(b) Finance

Table 8.7 gives projected unit costs over the quinquennium. Since academic staff are now allocated directly in relation to student numbers, it might be expected that broadly similar subjects have approximately the same unit costs. Small variations are related to difference in level of departmental allocations and fluctuations associated with the fact that academic staff allocations have to be rounded off to integer quantities. Table 8.7 indicates a general fall in units costs throughout the quinquennium associated with the assumed reduction in resources. Generally, by the end of the quinquemnium, unit costs are between $\{500$ and $\mathfrak{£} 600$ for a non-laboratory subject and between £900 and £1000 for a laboratory subject.
(c) Physical space

This projection is identical to that carried out under the Academic Council assumptions except for staff allocation policy employed. Hence, class sizes are identical to those of this earlier projection and the situation with regard to lecture and seminar room space and teaching laboratory space is unchanged. The overall situation with regard to acadenic office space is also broadly the same (although, of course, different switches of room from one subject area to another will be required). Demands on research laboratory space, however, is eased owing to reductions in science-based staff numbers.

8.4 General Cbservation on Sensititivity Analysis

In the sensitivity analysis carried out in this chapter, it is clear that a change in internal resource allocation policy made a greater change in the future shape of the University than some quite pessimistic assumptions about external circumstances. This emphasizes the importance of University decision-makers taking a considered and informed decision on University resource allocation policy.

TARLE 8.6

ACAIEMIC. STAFF ALIOCATTON USING STHDIM'S STAFF RATIO APPROACH
TO SJMFF ALIOCATIOA
$76 / 3 \quad 77 / 8 \quad 78 / 9 \quad 79 / 80 \quad 30 / 1 \quad 81 / 2$

Col. A - indicates existing staffing
Col. B - indicates nearest possible approach to projected targets for 1981/82 assuming 10% resignations up to $1981 / 82$ and no redundancies.

TABLE 8.7

ACADE:TIC STAFF ALLOCATION USTNG STUDINT: STAFF RATIOS

- PROJECTION OF INIT COSTS (IN PO IS/ftc STUDENT/YEAR)

	Subject	76/7	77/8	78/9	79/80	80/1	81/2
1.	Mat? s	588	612	571	585	559	499
2.	Economics	627	614	593	594	589	585
3.	Sociology	642	617	608	610	583	568
4.	English	618	588	579	571	562	553
5.	History	607	600	578	572	560	543
6.	Philosophy	597	622	594	585	536	525
7.	Acc. \& Bus.Law	631	601	612	571	547	543
8.	Religous Studies	581	517	522	508	466	562
9.	Management Sc.	685	612	627	590	639	588
10.	Computing Sc.	651	590	604	512	526	482
11.	French	631	619	585	601	563	562
12.	German	603	568	533	505	583	558
13.	Spanish	670	606	591	539	508	454
14.	Biology	1091	1101	1046	1051	1030	981
15.	Physics	785	1138	1135	1025	1059	91.7
16.	Chemistry	1033	1031	966	980	987	954
17.	Psychology	1054	1005	1006	970	959	933
18.	Int. Sc.	1363	1048	782	703	621	565
19.	Fine Arts	691	645	617	948	837	770
20.	Biochemistry	952	1127	1094	1024	983	976
21.	Education	1047	979	984	979	954	948

8.5 Changes in the National System of University Plaming

In Chapter 7 we referred to Lord Crowther-Hunt's remarks about the possibility of changing from the present system of fixed guinquennia to rolling triennia. Under the quinquennial system a comprehensive planning exercise has to be undertaken for a five year period ahout two years before the start of the quinquennium. This plan is then informally revised throughout the quinquennium, the planning horizon shrinking accordingly.

Under the rolling triennium system plans would be made fo a three year perind with formal revision (including submission to the UGC) being carried out amnally. Under this system a constant planning horizon of three years could be obtained, although in order to operate this systcm successfully it would be necessary to develop informally a planning strategy for a longer time-scale than three years.

Under such a system where plans or modifications have to be notified to the UGC on an annual basis, a model such as ROBUS would be very useful because formal planning exercises would have to be undertaken much more frequently and the facility of being able to test out quickly and easily the implications of different policies would be invaluable.

CHAPTI:R 9

CRITTQUF OF STHDY AND POSSIBHE: AHEAS JOR FUTURE, RESF:ABCH
9.1 University's control over its develonment

In Chapter 2 we have discussed the extent to which the University's decisionmakers have control over the University's develonment and prolilems arjsing from this. We observed that since students are inputs to the iniversity syster and since resource allocation is directly related to student teaching load, the future shape of the University is largely deterrined by student subject choice. Since once within the University, students have complete flexibility over their courses of study (subject to satisfying the University's degree requlations), the admissions stage is where the University has most opportunity of asserting control.

As we have described previously, although a student is expected to indicate on his UCCA application form his intended programe of studies, the University maintains a common entrance policy of admission to the University as a whole rather than to the individual programme. Owing to this, the University has more or less uniform entry criteria no matter which subject a student expressed interest in studying. The possibility arises as to whether less demanding entry requirements can be demanded for subject areas which are underscribed and the controversy related to this proposal is summarised in Chapter 2.

There are, however, further ways in which the University can gain more control over its own development. Amongst these are :

(a) Imposition of quotas

If a given subject area should be in danger of being oversubscribed relative to the resources available to $i t$ and the University was either unable or unwilling to provide additional recources, then it might establish quotas for that subject (ie limits to enrollments on various courses). A difficult prohlem associated vith such policics would be in deciding to which students such restrictions should apply. Serious problems could arise if exclusion from a course unit directly affected a student's ability to complete his degree procrame. Revertheless, students could perhaps be prohibited from taking oversubscribed subjects as a minor anc this micht enable nodest reductions in student load to be made in some areas.
(b) Changes in Academic Structure

The University's acadenic structure has been laboriously irproved over a ten-year period, with many tecthing troubles being cvarcone in the early years. Thus a prohibitive arount of work could be involved in any atterpt to effect fundarental changes. There is, however, one possible modification which would maintain basically the present structure and enable the University's decision-makers to exercise more control over University development.

Under the present system students are admitted to the University as a whole (although specifying an intended programe of studies on their UCCA forms). They study a broad range of subjects for Part I and then enter either Honours or General degree programmes in Part II. There is no requirement that these programes should bear any relationship to those indicated on a student's original application. The following advantages are ascribed to this sytem:

1) A student can broaden his out look by studying a wider range of subjects than are generally available elsewhere.
2) Flexibility - a student has the chance to acquaint himself with subjects that he did not have the opportunity to study at schonl. If successful, he may decide to specialise in this subject area.

A possible modification to the system mould be for a student to be assigned to his programe of study (according to the procramme applied for on his UCCA form) from the beginning of his studies. The structures of Part I and Part II could remain unchanged and loads generated on different departments could be calculated using the notional class size module. It would be neeessary, however, to perrit a chance of programe only on pernission being granted by the University. In this situation the availability of the Roblis model could be very helpful. The effect of such proposed transfers on departmental student loads can be assessed and a forecast of resource inplications can be made. Permission could be granted or withheld depending on the results of these projections.

This proposal unfortunately, reduces student academic frecdom but any attempt by University decision-makers to establish further control over its devdupment ipso facto reduces student freedor. A further probler is that the University is presenting students with the opportunity to sample nev subjects, yet possibly denying ther the opportunity of furthering their studies when the students find such subjects attractive.

In some situations the University may have to consider whether it is possible to divert resources from one area to another to mect changes in student demand. In practice this may be impossible particularly with regard to academic staff. Since most staff have tenure, it is not possible to make staff redundant and indirect methods such as not filling vacancies and reallocating the posts elsewhere, have to be used. Vacancies are, however, random and may occur extrenely infrequently in some areas.
9.2 Further Work : Develonment of an integrated management information system

W J Kinneven (1973) defines a management information system as:
"A management information system is an organised method of providing past, present and projected information related to internal operations and proiected intelligence. It supports the planning, control and operational functions of an organisation by furnisling uniform information in a proper time frame to assist the decision-raking process".

It is important to note that this definition includes the concept of linking the information system closely to the decision-making process.

It is cormor fallacy that management information systens rust involve the use of the computer. This is not so; it is perfectly possible to have an adequate manual information system so lone as the information provided is systeratically related to the decisions to be taken.

The use of a computer, however, does bestov some important advantages.

- the ability to store large quantities of information.
- the ability to retrieverquiclily relevant information.
- the ability to effect any arbitrary processing
operation on the data (eg aggregate the data in various vays). (See Joel E Ross (1970).)

According to Charles R Thomas (1973) although most of the technology and tonls relating to management information systems are cormon to both the comercial and University situations, there are some significant differences between the systems themselves. Commercial applications involve reasonably small numbers of inter-related systems with well-defined relationships hetween them. Usually very large numbers of data elements are involved. On the other hand, ligher Education Systems consist of many separate systems which traditionally had not vell-defined working relationships. Data items are, however, in comparison with commercial systems, relatively small.

At present, there is no integrated managent information system in existence nt Stirling. As mentioned in Clapter 6, most important data exists in separate and for most purposes independent sources. To recap on the University's major sources of information we have:;

1) Student records

Information relating to students including programes of study and course units taken is held by the academic office. This information is computerised.
2) Space

Records rf buildines givine both quantities and allocation of different types of space available.
3) Finance

Information on finance incorporating all the University's financial transactions is held by the Finance Officer. This system is partially computerised although at present entireiy independent of syster. (1).

Designing an integrated management system would involve designing a system which brought all relevant information together under the same syster. It would be beneficial to computerise such a system partly fer the reasons described carlier and partly because important components of the system are already computerised. The advantages such a system might have are:-
(i) From the point of view of using the planning model it is important that the basic parameters of this model are regularly updated. This is necessary since student behaviour can in some circumstances be very changeable (workers at Boulder, Colorado, for instance, have found that the induced course load matrix can become unstable under cestain conditions). afully integrated mangement information system should make gencration of basic data much simpler (it migit be possible for instance, to prograte the computer to generate the induced course load matrix from studont registration data).
(ij) Such a nystem should help ensure the consistency and reliability of data. This consistency is of particular importance with reference to data supplied to the U.G.C. At present, there may be a danger of inconsistency between data supplied by the student records office and that supplied by the Finance office.
(iji) A general improvement in managerial efficiency resulting from more reliable and consistent data systems.

The following problems could be involved in the development of such a syster.
a) Costs involved in developing the syster. Although this could be substantial there secms to be no reason why the cost of operating such a system should be significantly greater than the cost of maintaining present systers (and it could vell be less).
b) The problen inherent in all such systems is that once an erroneous data element is fed into the system, it can have a cumalative effect throughour.

In spite of these caveats there is, however, in the author's opinion arple justification for some study into the cost cffectiveness of the developrent of such a syster at Stirling University.

9.3 Further vork : Develonment of ppis

Work which has been carried out elswhere (mainly in the USA and continental Europe) into the development of ppbs systems in Universities together with an account of particular difficulties encouncered by these researchers have been docuriented in Chapter 3 .

According to 0tt (1072) the hallmarks of a PPBS system in a
Universily are

1) Specification of the objectives to be achieved by the Universi:y.
2) Investigation of altemative means of achicving those objectives.
3) IInimi atation of cost or comparison of costs and benefits (when the henefits can be quantified).
4) Systematical use of analysis throughout the process.

Thus, irherent in the design of a PPDS system is the process of specification of obiectives, devising programes that can be used to achicve this objective and budgeting on the basis of these progrartes.

Considerable difficulties have been encountered by researchers who have attenpted to apply FPBS to the University situation. In the opinion of the author these difficu'ties fall into four main categeries.

1) Definition of objectives.
2) Definition of programes.
3) Apportioning resources (such as academic staff) between programes.
4) Measuring the effectiveness with which the programes meet the objectives.

These problems could be approached as follows; the University can be conceived as having four major objectives

1) Imparting certain cognitive skills to students.
2) Imparting certain vocational skills to students.
3) Preservation and extension of knowledge.
4) Public service (eg consultancy scrvice, service of members on Covernment and public comittees).

A University attenpts to rect its first two conmitnents through its teaching programes, it broadly attempts to meet the third objective through its research programes. The fourth objective can be met in a number of ways (eg short course programe, consultancy service, extra mural prograrme etc).

Apportioning resources betreen prograrmes does present sore difficulty especially in the case of academic staff. Fortunately we have, hovever, some useful information in this subject thanks to studies carried out by the $\mathbf{U C C}(1970)$ in which fairly extensive study was carried out into the use of acadenic staff time.

Measurement of the effectiveness with which prograrmes are achicving their objective present many more prohlems however. It might be suggested that reasuies of "efficiency" such as cost per student equivalent, staff:student ratio and utilisation of teaching space can be used. However as Dyer (1972) cogently points out, the "efficient" operation of a system which is not properly designed to achicve its primary objectives can hardly be considered "efficient" in a global scnse. The reliance on these statistics for planning and operating decisions can screen or cloud the perceptions of the purpose and responsibilities of a system of higher education.

Thus, to sumarise, it is felt by the author that a PPBS system is a considerable he 1_{p} in attempting to relate the decision-making processes of an institution much more closely to its objectives. In implementing such a system, the model described in this dissertation would be of considcrable value in enabling a researcher to explore alternative means of achievinf objectives. In view of the difficulties experienced elsevhere with such systems, however, and the limited resources of stirling, it might be advantageous to monitor progress elscwhere until there is evidence that some of the major difficulties are bring overcome.
9.4 Further Woak : Extension of work to other UF Universities

The model described in this dissertation was for the reasons described in Chapter 6 specifically related to the l'niversity of Stirling.

It should be possible, however, to extend this work to other IY Universities.
It vould obvicusly not be possible to use this model directly owing to differences in acaderic structure and resource allocation philosophy. Nevertheless, it should be possible to adapt the nodel to other un Universities taking advantage of the concepts and insights developed here.
9.5 Objectives and Optimization

Throughout this study we have encountered problems related to the lack of clear definition of University objectives. It could be useful for the University to attempt to articulate its objectives although this might be an internally devisive operation. This also raises the question as to who has the right to set these objectives. To what extent is this the prerogative of the University acadenies and how much say should society as a whole (who after all provide the Universicy's resources) have in the matter?

It might be interesting as an experinent to consider particular sets of objectives and attempt to carry out an optimal resource allocation excrejse based on goal programing as deseribed in Chapter 3. In the opinion of the author, however, because of serious doubts about the costeffectiveness of work in this area, any resources commited to such an investigation should be strictly limited.
9.6 Resousce allocation

Further research into University resource allocation policy could be
valuable. This subject is further discussed in Appendix 8.
9.7 Possible Measures of Stirling's potential for obtaining additional Science Students.

As mentioned earlier in this dissertation, Stirling's entry qualifications for students wishing to study science subjects are, on the whole, rather more demanding than those of many other universities. This causes loss of students through two causes:
(i) Some students fail to achieve Stirling entry requirements.
(ii) A feature of the UCCA system is that students are allowed to retain
tonditional offers of places from two universities. Many students will perhaps accept a high offer from a university with well established science tradition and the lowest offer as a form of insurance policy. Under present policies Stirling is likely to miss out on both counts. Thus many students will not include Stirling on the choices they maintain, even though many of these may well eventually achieve present Stirling entry standards.
If we can obtain reliable statistics of Highers and A level examination results we can estimate potential demand for a given subject for any given level of entry qualifications demanded. In this way it would be possible to assess the "opportunity cost" in terms of potential students lost through a particular level of entry qualification.

B1BhocRAPliY: Chapter 9

114 Dyer, James S (1972) The use of lphe in a pulalice systern of lligher education: ls it cositeffective?, Plaming Propraming and Budgeting, Markham Publishing Company, p 360

115 Kinneven, W J (1973) Academic Computers in Scrvice, Fossey-Bass Inc, San Francisco, p 66

116 Ott, David J and Ott, A F (1972) The hudget process, Planning
Programming and Budgeting, Markham Publishing Company, p 44
117 Ross, Jocl E (1970) Management by Information System, Prentice-liall, Inc
118 Thomas, Charles R (1973) Data System Design, Frofessional Serinar MHE programae, CLRI/OECD, par is

119 UGC (1970) Survey into use of Academic Staff Time

10.1 General Remarlas

A colleague once remarked that the ficld of education was a "half-way house" between the "hard" technological areas in which management science methods had been applied with considerable success and the "soft" sociological areas where there was a meagre record of successful applications. In this chal.ter we shall attempt to evaluace the work carried out in this disscrtation and explore one or two broader issues arising from this work. Incidentally, the amount of work being carried out by researchers in this ficld has expanded considerably since Platt wrotc his paper ("Lducation : rich problems and poor rarkets") in the early sixties. If ve reviev the dates of vork: cited in this dissertation ve find that almost all are post 1965 with a large proportion of these emanating frore the 1970's.

10.2 Evaluation of the research

When evaluating a piece of rescarch in the management science area an important consideration is whether the results of research have been successfully implemented. We are not here, however, considering a situation (such as might be the case with problems which involved devising a set of optimal bus routes) in which a given set of results is adopted at a particular point in time and perhaps updated at regular intervals. Instead, University planning is an on-going and continuous process and successful implementation in this field vould constitute a continuing contribution to improving the planning process.

The results fencrated by this report were used by the Committec for Academic Development in drawing-up initial plans for the 1977-82 quinquennium. Although it is now clear that there vill not be a quinquennial settlement as such and previous expansion targets are to be drastically pruned, the model is being used to investigate this changed situation. Results obtained from the model have also proved useful to other University Comittees (such as the Science Planning group in considering future laboratory needs). It is intended to refine the model further in the light of experience obtained from its use in practice. This tool will also be available to neet possible changes in the national systeal of planning and grant allocation (such as a move tozards a system based on rolling tıiennia).

A further criterion for evaluating the worth of a piece of work in the nanagement eciences is whether the net benefits arising from the work exceed the costs of carrying out tine research. again it is impossible to evaluate the benefits from the study in direct financial terms. fiopefully, lie .:ork will result in "better management" in the broadest sense. Also, since the work relates inputs to a rather complex syster to the future development of that system, it may give greater control of that development to University decision-makers. On the cost side of the equation, apart from a small quantity of consumables and some computer time (the mar\&inal cost of which is very low since the machine has substantial spare capacity), the most important cost is the opportunity cost of the research time of the author. Since this vork complemented other work which was required by the University administration evaluation of such costs presents considerable difficulty.

It is also important to consider the value of the dissertation as a piece of academic research and in particular, its value to other researchers in the field. As cxplained earline it is felt unlikely that other rescarehers could usefully use the models developed here in a "off the peg" way. It is, however, hoped that concepts and insights presented here might prove useful in their rescarch. It is also hoped that the preliminary chapters of the dissertation will present a reasonably comprehensive reviey of the overall field to any individual tho was considering contencing research in it.
10.3 Critique of the apnroach used in this dissertation; some broader issucs

There are a number of objections and caveats which can be levelled against the use of mocels for planning in Universities. Some are based on that are, frankly, misconceptions about the nature and purpose of such models but may. nevertheless, be important if such misconceptions persist in the minds of decision-makers. Other objections may have more substance in fact.

A good example of the objections resulting from misconceptions of the use of models is illustrated by the controversy in the A.U.T. bulletin (1974). Here it transpired that the opponents of this approach were under the impression that management science methods could only be applied to profit maximisation contexts and something similar was about to be applied in the University situation.

A more common misconception (and perhaps one that over-enthusiastic practioners may have done something to foster) is that such models actually "take over" the decision-making process and reduce genuine political issues and matters of principle to bogus technical ones. It is hoped, however, that throughout this dissertation the point has been clearly made that no decisions can ever be made by these tools. The University decision-maker has exactly the same decisions confronting him as before although, hopefully, better and more relevant information of the conseçuences of the decision will be available to him. In many situations purely subjective considerations such as the academic merit of a particular programe of study wijl be of crucial importance. It also follows, of course, that the availability of appropriate rodels will not necessarily prevent a poor decison-mater taking unvise decisions. In practice, however, it is sometimes found that decision-makers themselves may treat matters of principle as simply technical matters. An example of this is the tendency of decision-makers to trat different rethods of stafi allocation as simply different techmiques for doing basically the same thing. In this situation it was necessary to point out that a considered decision was called for, as the method chosen could have imporant consequences for the Lniversity's future development.

A further objection to the use of rodels in this context (and an objection with some substance) concerns the questions of the validity and credibility of the modcl itself. In questioning the validity of the model there is the point that the model-builder may introduce biases and prejudices of his own (even if only on a subconscious level) into his model. (This argument of course applies in other fields, witness the argunent ahout the Treasury's coonomic models in 1976). This objection seens insuperable since, in the author's opinion, a totally objective statement, position or mathematical model is impossible. It is inevitable that the individual making the statement, taking the position and building the model will be "biased" by the totality
of the experiences of his lifetime. We cannot, however, circumvent this problem simply by abandoning the use of matheratical medels. The planning process has to ge on and even if the planner does not use a formal mathematical model,it is inevitable that he vill nevertheless use some sort of conceptual or mental model on which to base his plans and this model will be just as liable to bias. If the assumptions on winich a mathenatical model is constructed are clearly stated, then obvious iliases may become apparent. Unfortunately, however, it is possible that some assulptions will be implicitly embedided into the model and thus be only accessible to the tecimical cupert. The author is not aware of any conscious biases in the radel developed in this dissertation but then there cannot be any absolute stancards of objectivity and what appears objective to one incividual nay appear biased to another. There is no easy answer to this problem jr the author's opinion; the best solution is for the users of models to be atare of these problems when using model results and exercise appropriate vigilance.

Now we must consider the question of the credibility of the model. It could be argued that decisions in Universities are taken by many individuals who have little uncerstanding of modelling or have even any backgrnund in quantitative methods whatsoever. To what extent can modelling work be credible to these groups? It should be possible, however, to explain the ideas and concepts on which the models are based to these groups although it has to be conceded that the finer details are only accessible to the expert. Looking at lhis matter from a common sense point of viow, the author feels that the credibility of the model and the credibility of the model builder are intimately related. If the medel builder has a record of providing useful information in a varicty of decision-making situations, it is likely that he will have built up a degree of confidence in his expertise that
will lend credibility to his more sophisticated models. The situation is little different from that pertaining to other technical experts. For jnstance, information provided by an accountant $i s$ generally accepted by decision-makers who may have little knowledge of accounting practice, providing the information given in the past has proved to be accurate.

A further problem with relation to the credibility of the model is the question of accuracy, consistency and objectivity of the data used in it. The data sources used for this model have been described earlier. The standard of accuracy has been found to be high and check:s have shorm the data to be generally consistent from one year to another. As described earlicr, however, possible problems of consistency of the induced course load matrix could arise since sore elements have been, of necessity, calculated from rather scanty information.

There is also a problem of objectivity of the information - ie does the information supplied depend on the use to which it is to be put? The author feels that this is not a serious problem as far as this study is concerned but could present difficulties if, say, a PPBS study was undertaken. If such a study were to be undertaken it would be necessary to make use of statistics collected by the UGC into the use of academic time (see section 9.3). Since this data was collected from a questionnaire filled in by academic staff, there is the possibility that respondents may have been influenced in completing the document by consideration of possible future uses of the information. Certainly a cynic might well question some of the apparently very heavy workloads elaimed.

An additional problem is the interpretation of the output of the computer. We have mentioned carlice the problem of credibility of the model. Sometines, hovever, the opposite tendency occurs and the output of a computer is treated as if it were printed on tablets of stonc. It has been pointed out carlier that the results provided by the model give only a broad indication of future development. Ancther danger is a tendency to viev the University as a collection of uncelated acadomic developments or departments, rather than as an integrated whole. This is especially unfortunate in a lniversity such as Stirling with its very inter-dependent academic structure. Thus for example there may be a danger that development in, say, Spanish will be viewed purely in terms of unit cost per student for that subject, without considering, for exanple, the contribution of Spanish to studies in modern languages, to Arts programes in general, and to the University as a whole.
10.4 Use of Pocels in Providing Incentives

In this section we shall discuss the possible role of a model in devising incentives for rewarding individuals or departnents who use their resources more effectively. To do this, models must give such departments some benefits from their improved efficiency. An example of a model that does provide such benefits is the vorkload model for staff allocarion. This model is based on a course being taught by a notional set of teaching activities. If a department manages to use its resources more effectively and provide the same standard of education with lover actual workload, then any resources saved can be used at that departments discretion. (It is assumed that departments will not lower the standard of education that is provided). A workload model which simply modelled teaching activities actually undertaken could not provide any incentives for improved use of resources. Indeed there would be built in incentives for inefficiency - the more inefficiently resources were used the more resources would be obtained by that department.

Another issue which can be raised is consideration of the possibility of whether it might be possible to delegate the decision of choosing betveen different kinds of resources to the individual decision-making units (sometimes called "virement"). Oving to the grants system in which capital expenditure and equipment are financed by separate funds, there are obvious difficulties associated with any attempt to provide virenent between these resources. There remains the question, honever, whether one could allow the decisionmaking unit to decide, given a particular level of resources, what mix of academic staff, non-academic staff and departmental expenditure it vished to acquire. This could be facilitated using the model. The model could be used as before, calculating levels of academic, non-acaderic staff and departmental expenditure for given projected student registrations. Having done this, total resources could be presented as a "block grant" to the individual department who could make the decision for thenselves, say, between one senicr lecturer and tro secretaries or betreen a technician and consurables.

Unfortunately, however, it is likely that severe practical difficulties rould arise essentially because decisions between these different linds of resources involve the University in comitments over different time scales. Decisions on departmental expenditure (consumables, travel, hospitality, ete) generally comit the University for one year only whereas a decision to employ a rember of academic staff is, because of the system of tenure, essentially a cormitment to employment up to retirement. This element of inflexibility is exacerbated by the fact that it is usually impossible to redeploy a specialist from one area to another. Of course, it is possible to vary the level of staffing in a subject area by not filling vacancies but, as explained previously, vacancies occur randomly and very infrequently in some areas.

Secretarial staff and technical staff do not have tenure but in practice, in a situation where one group of workers tas tenure it is politically very difficult to treat any other group differently. Flexibility is much greater in these cases, however, since it is generally possible to reallocate such workers between departments and the turnover of staff is in any case much greater.

Thus, to sumarise the argument, meaningful virement must include sore degree of choice between academic staff and other resources: whilst the present tenure arrangements hold, it is most unlikely that a University would be willing to relinquish its centralized control of acaderic staffing levels. Nevertheless this is a topic worth considering further. An interesting case study of an attempt to introduce virerent is proviced by the Lancaster group (1971).

10.5 General Conclusions and Recormendations

In spite of reservations discusscd in previcus sections, it is nevertheless felt that results generated by the model described in this dissertation can be of value to decision-makers in practical situations.

The following broad recomrendations could be made arising from this work.
(1) The model should continue to be used in future planning situations and should be revised in the light of experiences gained in such studies.
(2) The University might find it valuable (for the reasons discussed in Chapter 9) to further develop and integrate its information system.
(3) Although the iden of introducing a comprehensive ppris system is an interesting one, it is suggested that because of practical difficulties involved, it may not be worthwile carrying out work in this area in the immediate future. Instead it is suggestec that progress elsewhere in this field be monitored.
(4) It might be useful to carry out further work on the subject of University objectives and the evaluation of their achicvement (although such a study could prove fraught with difficulty). If, through carrying out such a study, it should prove possible for the University to define its objectives and desired future growth pattern, then it is likely that the model might be helpfal in devising programes for achieving these aims.

120 Simpson, M G, et alia, Planning University Development, IMHE programe, CERI/OECE, Paris, pp 109-115.

RPP:1 Bode - Hse rif Induecd Cour"c Inad Matrix in Calculation of Denartmental or Discipline Jeaching loade.

The induced course loed matrix (ICJ:!) establishes a relationship between the progrannes of study offered and the subject disciplines which are studied. Tor example a student rho is taking a rathematics programe may generate loads on the Plosics, listory end English departments as well as tire "alinenatics department.

In the PRP ? model this ratrix indjcates the average nos. of credit hours talen by a student in a given prograrme in cach departnent or discipline.

$X_{i j}$ represents the average number of credit hours taken by a student cnrolled for programe j in an academic department j.

For example the averace first year student curolled on a history piogramme might take 16.0 credit hours in history, 3.9 in biology, 3.7 in fine arts and 6.1 in business studies. The appropriate row of the matrix for such a programe would read

Having derived the induced course load matrix, it is possible to deduce the load on each departrent from a knowledge of total student enrolrent in each programale of study. The workload (in terms of credit hours) generated by enrolment on particular programes is given by simply multiplyirg the enrolnent by the appropriate row elements in the induced course load ratrix. For example if there are 80 first year history students enrolled then the load generated by these students will be:-

| History | $80 \times 16.0=1280$ | credit hours | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Eiology | $80 \times 3.9=312$ | $"$ | $"$ | |
| Fine Arts | $80 \times 3.7=$ | 296 | $"$ | $"$ |
| Business Stuaies | $80 \times 6.4=$ | 512 | $"$ | $"$ |

By repeating this process for all acaderic progrartics and then by sumsing for each department or discipline, the total credit load on each department can be found.

Expressing the foregoing argument in a nore concise and mathenatical form we have:-

Let the vector $\frac{2}{2}$ represent enrolment in programes

$$
z=\left(\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{m}
\end{array}\right)
$$

Where $Z_{1}, Z_{2} \ldots z_{m}$ are forecasts of students enrolled for progranmes 1, 2, ——m.

We have already defined the induced course load matrix Λ.

Hence if we multiply our induced course load matrix with our vector of enrolment in programes, we get the vector B.

$$
\begin{aligned}
& \underline{B}=\underline{\Delta} \times \underline{Z} \\
& =\Lambda_{11} Z_{1}+\Lambda_{12} Z_{2}+\cdots \cdot . \cdot+\Lambda_{1 m}{ }^{7}{ }_{m}=B_{1} \\
& A_{21} Z_{1}+A_{22} Z_{2}+\cdots \cdot . \cdot .+A_{2 m}{ }^{Z} m=B_{2}
\end{aligned}
$$

Lach element cf \underline{L} represents the total credit load on each cepartrent brought about by forecast enrolment.

APPLNDIX 2

The RRIM iode] - Calculation of Cost of a student progromme

Total costs of an academic department or discipline can be calculated by adding to departmental staff salaries the direct teaching costs calculated in phase four. The cost per credit hour of a particular discipline in a given academic year can be obtained by dividing the total cost of tlat discipline by the numbers of credil hours produced. Now the indliced course load matrix gives the average numbers of credit hours taken in each discipline by a student studying a given programe. Hence the cost $i f$ each studert programe may be obtained simply by multiplyirg the numers of credit hours taker ir each discipline by the cost of a credit hour in that discipline summing over all disciplines.

Thus referring to the example cited in Agpendix. I, if the cost of a stucent credit hour in first year history, biology, fine arts and business studies turns out to be $\$ 30.00, \$ 33.69, \$ 34.71$ and $\$ 20.90$ then the cost of each student programme in history will be given by $\$(16.0 \times 30.00)+(3.9 \times 33.69)+(3.7 \times 34.71)+(6.4 \times 20.9)=\$ 873.56$

Appendix 3

Workload model used at Lancaster University

This model neglected all time spent on college activities, university and departmental administration and examinations, and found that the UG teaching load in any one year of studies can be approximately described by an expresion of the form
$L=i(1+p)+c\left\{\left[\frac{N}{n}\right]+\frac{m}{z}\right\}(1+q / s)+N r$
plus any load due to practical or language laboratory work
$\mathrm{L}=$ teaching load
$i=$ no. of lectures
$p=$ preparation time per lecture
$c=$ no. of seminar sessions per course
$\mathrm{N}=$ no. of students/course combinations
$\mathrm{n}=$ no. of students in a seminar group
$\mathrm{m}=$ no. of courses run
$\mathrm{q}=$ preparation time/seminar week/member of staff
$\mathbf{s}=$ number of seminar sessions in a course/seminar week/member of staif
r = "post-mortem" time per student per course
[] $]=$ integral part of

In this model the first term corresponds to the load involved in giving and preparing lectures

- the second term corresponds to the load involved in giving and preparing seminars, tutorials and problem classes
- the third term corresponds to post-mortem time (ie time spent on answering questions from students arising from seminars)

DETATS.S OF UOMRIOAD MODEI, USY:D AT STTPLING

The approach adopted is to attempt to model the workloads involved in various activities in the presentation of a course unit. In practice, of course, departments will teach their courses in a nurber of different ways. The philosoptiy behind this model is that resources should be allocated on some reasonable basis for traching a course, with the docision as to exactly hor such resourens should be employed in practi e reing develved to the individual departments concerned.

It was felt that the workload involved in different activitios was related in a number of different rays to stutent nunbers.
(1) Workload indepercient of student numbers

It was felt that this was the case for example (within very wice limits) for the vorkload involved in preparation and presentation of lecturcs.
(2) Workload directly preportional to student nurbers

This was generally assured to be the case for marking essays, correcting examination scripts etc.
(3) Work ${ }^{\text {cod }}$ increases as a step function rijth increase in student nuthers It was felt that for certain activities such as giving tutorials or laboratorice workload rises in a series of jurps as the student numbers increase. (eg in the case of holding a laboratory, worklcad remains constant until student numbers exceed laboratory capasity when it becomes necessary to repeat the 1 ab).

Since certain activities can only take place with particular eroups of subjects (eg laboratories can only take place in association vith Science subjects), subjects are divided into different groups.

The categories are:-
A. General, non-lab subjects (eg English, Maths, Philosophy).
B. Lanquage subjects (eg French, German, Spanish).
C. Latoratory subjects (eg Einlogy, Physics, etc).
D. Education.

For Category A subjects the model is:-
$\mathrm{x}=\frac{\pi}{\lambda} \mathrm{L}+\operatorname{ix}\left(\mathrm{N} x \mathrm{x} i+\frac{E}{14}\right)$
Civing \& Marking Marking
Preparing essays exars
lectures
$+\mathrm{F} \times \operatorname{tp} \times\left\{\left[\begin{array}{c}\left.\frac{N}{4 n}\right] \\ \begin{array}{c}\text { Preparation } \\ \text { of tutcrials }\end{array}\end{array}\right.\right.$

Explanation of symbols [] Integral part of

X Weckly course workload (in hours per week).
m Time to give and prepare lectures.
L No. of lectures per week.
$\mathrm{N} \quad$ No. of students taking the course.
W Weekly essay frequency
w Tine to correct essay.
E: Time to correct exam script
F Weekly tutorial frequency.
tp Time to prepare tutorials.
tg Time to give tutorials.
n Nos. in tutorial croup.

Category B - Language Subjects

The structure of the model is the same as for Category Λ. There is also the following term to allow for the preparation and presentation of language 1aboratories.

$$
\operatorname{sex} \operatorname{sx}\left\{\left[\frac{N}{r}\right]+1\right\}
$$

s Time to give and prepare language labs.
S Weekly frequency of language labs.
r No, of students in language 1 abs.

Category C - Laboratory Subjects

Again the structure of the model is broadly the same as in Category A but with additional terms to allow for workload involved in giving laboratories and correcting lab books. These are:-

$$
\mathrm{Nxwe}+\left\{\left[\frac{\mathrm{N}}{\mathrm{p}}\right]+1\right\} Q+\mathrm{qo}_{\frac{\mathrm{N}}{}}+\mathrm{qo}^{1}\left[\frac{\mathrm{~N}}{\mathrm{p}}\right]_{1}^{\mathrm{Q}} / 4
$$

Correcting Giving Preparing Time to replicate
lab books. Lab. labs lab if repeats are necessary.

Q - No. of hours of 1 ab work per week.
ve

- Time to correct a lab book.
q० - Time to prepare an experiment for a standard (4 hr) laboratory.
qo ${ }^{1}$ - Time to replicate experiment as class grows.

Category D - Education

This is treated as a Category C subject with additional allowance for teaching practices outwith the normal academic year.

Setting of parameter values

Parameter values were set by a乡reenent of representatives of different subject areas. These parameters were different for different areas and also for different semesters (for instance weekly essay frequency was higher for Category a subjects than Category C).

Class sizes
Class sizes which are the inputs to the rodel are described in Appendix 6.C.

Setting of parameter values

Parameter values were set by agreement of representatives of different subject areas. These parameters were different for different areas and also for different semesters (for instance weckly essay frequency was higher for Category A subjects than Category C).

Class sizes

Class sizes which are the inputs to the rodel are described in Appendix 6.C.

Arbendix 5

Gencral Computing Details

5.1 Structure

is explained in Chapter 6 the program consists of a series of subroutines which are controlled by means of a main program. Eacis subprocram corresponds to one of the sub-modules of the model.

5.2 Program Access

The program is stored on disc on the University's Elliot 4130 computer. This is convenient because of the physzcally large size of the program and has the additional advantage that it obviates possible card reader faults. In addition the files can be editea hy tire use of the kos on line terminal.

5.3 Storage

The storace requirments of the model are considerable, thus the SEGRENTRTICR facility was used to reduce the total amount of store required. With this facility in use the program can be run with a $64 K$ store.

APPETNDIX 6

Description and Details of the Modules

In this appendix we present mere detailed explanations of the modules and discuss the operation of the computer program.

The components of this appendix are:

```
Mppendis: 6A
    Nain program
    6E Student Flow Modu]e
    6C Notional Class Size Module
    6D Stuciont Equivalert :odule
    6E. Staff Allocation :Ocule (worklcad option)
    6F Staff fllocation :Nodule (stucent/staff ratio oftion)
    GG Non-academic Sta\Sigmaf Nodule
    6H Finance Rodulc
    6I Teaching Space Nodule (lecture and seminar rooms)
    GJ Teaching Space llodule (laboratory space)
    6K Research Lab Space
    6L Academic Office Space
```

Where appropriate the following information will be supplied for each module. (Sample ouput is from sensitivity analysis I year 1977/8, see Chapter 8)

1. Name of subroutine
2. General description of module
3. Detailed description of program
4. Variable definition
5. Flow chart
6. Program listing
7. Sample output (only most important parti of output are provided)

APIENIIX 6,

Majn program

6nl Name of subroutine - None (main program)

$6 \pi 2$ Gencral description of model

The purpose of this model is to bring the sub-models into operation ac appropriate times and control the passing of information through the system. Facilities are provided for choosing the staff allocation eption required and the space modules and finance modules may be called or not called depending or the particular situation being investigated.

6A3 Detailed descrintion of Frogram

Linc
1589-95 CO:4iON Llock:
1597-99 Call modvis relatirg to students
1600-05 Read in variable LALJ (if LALL $=1$ use workload model for staff allocation, if LALL $=0$ use student:staff ratios)

1607-09 Read in variable KALL (if KALL $=1$ do not operate finance module) otherwise operatc.

1611-15 Read in variable MALL (if MALL = 1 do not operate space module) otherwise operate

6A4 Variable Definition
LALL - A dummy which allows a choice of staff allocation method to be made

KALL - A dummy allowing possibility of operating finance modules MALL - λ dummy allowing possibility of operating space modules

APTENIIX 6Λ

Main program
$6 \pi 1$ Mame of sutioutine - None (main program)

$6 \pi 2$ Gencral description of model

The purpose of this model is to hring the sub-models into operation at appropriate times and control the passing of information through the systom. Facilities are provided for choosing the staff allocation option required and the space mocules and finance modules may be called or not called depending or the particular situation being investigated.

6A3 Detailec description of program

Line
1589-95 co:iron block:
1597-99 Call modvie relatirg to students
1600-05 Read in variable LALI, (if LALL = 1 use workload model for staff allocation, if LALL $=0$ use student:staff ratios)

1607-09 Read in variable KALL (if KALJ = 1 do not operate finance module) otherwise operatc.

1611-15 Read in variable MALL (if MALL = 1 do not operate space module) otherwise operate

6A4 Variable Definition

LALL - A dummy which allows a choice of staff allocation method to be made
KALL - \AA dummy allowing possibility of operating finance modules MALL - A dummy allowing possibility of operating space modules

6A5 Flow Diagram - Main Program

APPENDIX 6B

Student Flow Module

6B1 Name of Subroutine

STUDFL

6B2 General description of module

The purpose of this module is to simulate flows of students through the University system. It works on the basis that it is possible to observe proportions of particular first year intakes that reach given academic levels a given number of years after entering the University. For instance it was found that studying in the second academic year of the University was 87.5% of last year's first year intake, 5.6% of the year prior to that and 0.2% of the year prior to that.

$$
\begin{aligned}
& \text { Thus, if we are considering year } t, \text { and } \\
& Y_{t} \text { is first year entry in year } t \\
& Y_{t-1} \\
& Y_{t-2} \\
& Y_{t-2}
\end{aligned}
$$

Then the number of students in the second academic year will be given by

$$
\mathrm{N} 2=.875 \mathrm{Y}_{\mathrm{t}-1}+.056 \mathrm{Y}_{\mathrm{t}-2}+.002 \mathrm{Y}_{\mathrm{t}-3}
$$

In this way we can construct the matrix showing the proportions of each year of entry that has reached given levels of academic progress. (See Chapter 6, insert 1).

6B3 Detailed Desscription of Program
1- 9 COMMON statement
10 DIMLHSION statement
14-16 Read in new first year entries for previous six years (HY (I))
17-21 Read in matrix relating proportion of cohorts from particular historical years I, who have reached academic year J

22-26 : :ultiply above matrix by vector of first year student entries
27-32 Sum up total stucent numbers in each academic year
33-37 Sum up total undergraduate numbers in University
38-49 write out numbers in each academic year

GBG Definition of Variables
NTOT Total number of uncergraduate studerts in University
NY (I) Number of first year stueents admitted to the University in year I ($I=1$ present yoar, $I=2 \rightarrow$ previous year etc.)

INYR(I)

YF (I, J)

YX(I, J)
Numper of students in academic year J
Fraction of studerts entering University in historical year I at present in academic year J

Numbers of students entering University in historical year I at present in acadmic year J

6B5 Flow Diagram : Student Flow Module

$$
\begin{aligned}
& \text { WPITE(2,499) } \\
& \text { HYO FORMAT(1H1.: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { FORMATIXH1,'STUUENT FLUH MOD') } \\
& \text { REA!J IN STUDENT ENTRIES }
\end{aligned}
$$

REA! IT SOI) (NY(1),I=1,6)

$$
\begin{aligned}
& \text { FURIAI (} 615 \text {) } \\
& \text { READ INMARIX }
\end{aligned}
$$

$$
403 \text { FURMAT(5F5.3) } 4 \text { CUZ GUTIIHE }
$$

$$
\begin{aligned}
& \text { C4U2 GUNTIUHE } \\
& \text { MATKIX MULTIPLICATIJN } \\
& \text { DO } 404 \quad 1=1,6 \\
& \text { nO } 404 \quad J=1.5
\end{aligned}
$$

$$
\begin{aligned}
& J=1, \mathrm{~J} \\
&= \mathrm{M} Y(1) \mathrm{YF}(1, \mathrm{~J}
\end{aligned}
$$

$$
\begin{aligned}
& \text { CUNTI JUE } \\
& \text { SUM YF TOTALS FOA ACADEMIC YRS }
\end{aligned}
$$

$$
\begin{aligned}
& Y \times(1, j)=N \\
& \text { CUNTIUE } \\
& \text { SUM YF TO }
\end{aligned}
$$

NYR(J) $=0$
DO $405 \quad l=1=6$ CUNTINUE
DUTPUT
NTOT=0
$110411 \quad \mathrm{I}=1,5$
WRTEE(2,4:6) 206 FDRHAT $1 \times$. 2OH STIJDENT NUMBERS
Nu:

AIPLHDDIK 6C

Notional Class Size Module

GCl Name of subroutinc: HOTCLS

6C2 General description of :Iodule
This module attempts to simulate the registration of students to courses.

As described in Section $6.8(i i)$ the method employed in Part I is the consiceration of the historically determined proportions of particular colorts of students who proceed from one semester of \bar{a} subject to tire rext.

First, ho?ever, it is necessary to calculate semestor one class sizes. It has been found historically that if students are divided into broad categories of Science, Sccial Science and Art, according to their intended future programmes, that a reasonably constant proportion of cach of these groups take any of the semester one courses in question. Thus if an intake is divided into proportions intending to study Arts, Science and Social Science based programes, it is a simple matter to calculate numbers in semester one courses.

Semester two and three courses are calculated on the basis of historically detemined proportions of semester onc classes procending onwards. Additional minor courses are based on proportions of total student registrations.

As described in Chapter 6 the approach used to forecast class sizes in part II is based on forecasting enrolment in programmes and
using an induced course load matri\% to calculate class sizes. Enrolment on programes is calculated on the basis of an historically determincd proportion of an initial enrolment (see Table 6C1). Now there are many possible course options availal,le in any given Part II sellester. The maximum number that a student can register for however is three. Thus total registrations can be represented by assuming three classes only in each semester of Part II. Thus a student who takes only one course is considered to take the course Cesignated 'l'; students who take two courses are considered to take courses designated ' 1 ' and '2' and students who take all three courses are, of course, considered to be taking courses designated ' $\mathbf{l '}^{\prime}$ ' ${ }^{\prime}$ ' and $^{\prime} 3^{\prime}$. (Hence the term rotional class sizes.) An attempt to include all courses arailable would lead to an irduced course matrix of enolmous size, complexity and diffuseness.

Hence by multiplying the vector of projected enrolment in Honours or General programes with the appropriate incuced course load matrix it is possible to estimate future enrolment in particular courses of study.

Relationship of enrollonent in part il programmes to programme
student's initially entered to study

	ramme of Entry Averag	proport llons	$\begin{aligned} & \text { stud } \\ & \text { Cen } \\ & \hline \end{aligned}$	prograname in seis 5	
	Maths	. 259	. 130		
	Economics	. 331	. 252		
	Sociology	. 425	. 490		
	English	. 341	. 313		
	inistory	. 321	. 465		
	Philosophy	1.123	. 442		
	Acc. \& Bus. Law	. 331	. 252		
	Religious Studies	. 292	. 763		
	Managenent Science	. 331	. 252		
10	Computing Science	. 667	1.000		
11	French	. 198	. 156		
12	German	. 826	. 499		
13	Spanish	. 500	1.000		
14	Biology	. 312	. 291		
15	Physics	. 259	. 250		
	Chemistry	. 637	. 150		
17	Psychology	. 422	. 368		
	Biochemistry	1.402	. 322		
	Technological Econonics	. 330	. 250		
	Education + Biology	. 042	. 072		
21	Education + Chemistry	. 090	. 090	was not possible	
	Education + English	. 105	. 103	to apply for	
23	Education + French	. 034	. 038	these programes	
24	Education + Gernan	. 149	. 202	directly, fractions	
25	Education + ilistory	. 053	. 139	are related to	
26	Education + Maths	. 085	. 153	no. entering to	
	Education + Spanish	. 034	. 038	study non-Educatio part of progranune	

$6 C 3$ Detailed description of program
53-) Definition of COMMOH block
6U-63 DIMENSION statement
67-72 Read in number of subjects (NDE:P) and names
73-78 zero array NCLAS (I, J, Y)
85-91 Read in array $X(I, J, K)$ - proportion of students Arts, ($K=1$), Science ($K=2$) or Social Science based ($K=3$) taking Jth option in subject I (and write out array).
y3-y8 Read in fraction of enrolment intending to study Arts based; Scierce based and Social Science based programes.

99-102 Calculate numbers of students intending to study Arts baser: Science based and Social science based programes.

104-09 kultiply matrix $X(I, J, K)$ by vector of numbers intending to study programs in each area. Sum up numbers in each class.

112-23 firite out Semester 1 class sizes. Format: subject name: students takirg major unit; students taling minor unit (where applicáble).

125-27 Read in fractions taking SEM2 minors
128-31 Calculate numbers taking SEM2 minor courses (total student numbers x fractions)

133-34 Read in transition factors for SEM1 majcz \rightarrow SEM2 major courses
136-33 Calculate student numbers on SEM2 major courses (Serester 1 numbers x transition factors)

139-49 Normalization (to ensure that correct total numbers of semester courses corresponding to number expected from total errolment).

Calculate normalization factor
Adjust class sizes using normalization factor
150-58 Print out SEM2 class sizes
Appropriate departmental headings
Appropriate class sizes (including major and minor courses)
161-62 Read in fraction of SEM3 students taking minor courses
163-66 Calculate numbers taking SEM3 minors (total SEM3 student nurbers x above fractions)

168-70 Read in numbers in previous years SEMl major class
171-72 Read in transition factors
173-76 Calculate numbers on SEM3 major courses
178-81 Read in proportions of SEM3 students taking SEMI courses
182-85 Calculate numbers of SEM3 students taking SEMI coursesNormalization
187-89 Read in average number of semester units taken by a semester 3 student
190-95 Calculate nomalization factor
196-200 Adjust class sizes by appropriate normalization factor
201-09 Write out SEM3 class sizes with appropriate headings
210-17 For all Part I classes. If major class size ($\mathrm{J}=1$)
is zero, replace major with minor class size and vice versa.
PART TWO
219 Put variable NP2 = 2nd year student numbers
220 Read in number of Part II programmes
222 Read in programe titles
225-30 Write out progranme titles (together with appropriateintroductory statements)
242-45 Read in semester number (4 to 8)
247-48 Read in proportion of Honours students
249-51 Calculate total numbers of students on Honours + Generalprogrammes
252-55 Read in fractions of students taking individual Honoursand General programmes for a given semester
256-66 Calculate numbers on all such programmes (and print out results)
267-281 Read in induced course load matrix for Honours and288-300 General programmes (and print out)

282-87 Multiply number on programmes with ICLM (result numbers of students from each programe taking a particular course;
301-05 arrays $\mathrm{NH}(I, J), N G(I, J)$
312-15 Zero arrays $K F(J)$

316-19 Sum up numbers taking each class
320-24 Writc out part class sizes KF(J)
325-5l CJass sizes are stored under appropriate variable names

For | SEM 4 | \rightarrow | KF4 (I) |
| ---: | :--- | :--- |
| SEM 5 | \rightarrow | KF5 (I) |
| SEM 6 | \rightarrow | KFE (I) |
| SEM 7 | \rightarrow | KF7 (I) |
| SEM 8 | \rightarrow | KF8 (I) |

Variable NP2 put equal to appropriate year student numbers If appropriate return to beginning of loop.

353-58 Zero array KCLAS (I,J,K)
359-64 SEM1 - Add to SEMI class numbers - courses taken by students in SEMS 3 and 5

365-71 SEM2 - Add to SEM2 class numbers - courses taken by students in SELS 4 and 6

372-76 Add to SEM3 course numbers - courses taken by students in SEM5

377-92 Assign axrays KF4 - KF8 to modified arrays KCLAS (I, J, K)
393-97 Add to SEM4 course numbers, course units taken by students in SEM6

398-418print out notional class sizes under appropriate headings
419-22 Read in number of education department
423-26 Education SEM9 nos. Assign to appropriate
superscripted variable
427-28 Write out education SEM9 numbers

POSTGRADUATES

423-37 Read in PG numbers attached to each department
(include research, interdisciplinary research and PG courses)
438-43 Write out above numbers
444-49 Calculate total PG numbers

APPEHDIX 6C

4 Definition of Variables

ADEP (I)

APROG (I)
ATPAN (I)

FART

FSCI

FSOC

FGPR (I)

FHPR (I)

FHON

FNORM

GNDRM

GUNIT

KCLAS (I,J,K) Total student registrations on notional class for Subject I, semester J, option K

KF (F) Number of students in a given (Part 2) semester taking a particular course unit J

KF4 (J) -KF8 (J)

KZ

MCLAS (I) Number of SEMl units taking a SEMI major unit in previous year

Numbers of SEM3 students taking a SEMI course in subject I

Total course units studied by SEM3 students

NCLAS (I, J, K) Initial array of students taking subject I,

NDEP No academic subjects offered
NEDCL Class size - Education: Sem 9
Ne:DUC
NHON
HGEN
NHPR (I)

NGPR (I)

NP2

NPGRI (I)
NPGR2 (I)

NPGCR (I)
nPGTOT
NS (K)

NSEM
NZTOT
T2 (I)

T3 (I)

T3R(I)

T13R(I)
Number of full-time taught PG course students studying subject I

Total number of PG students
Numbers of SEMI students classified as intending to study Science, ($I=1$), Social Science ($I=2$) and Arts ($I=3$) programmer

Semester number
Total course units taken by SEM2 students
Proportions of Semester 2 students studying minor course in subject I

Proportion of Semester 3 students studying minor course in subject I

Proportion of previous academic years students in SEMI major course proceeding to subsequent SEM3 major course
proportion of SEM3 students taking a SEMl course in subject I
$X(I, J, K) \quad$ Proportions of students in category $K(K=1$ Science, $K=2$ Social Science, $K=3$ Arts) taking option J ($J=1$ - major course, $2=$ minor course) in subject I (SLMi)
$Y(I, J, K) \quad$ Numbers of students in category $K(K=1$ Science, $K=2$ Social. Science, $K=3$ Arts) taking option J ($J=1$ - major course, $2=$ minor course) in subject I (SFMM)

XH (I, J) Proportion of students studying Honours programme I taking course unit J
$X G(I, J) \quad$ Proportion of students studying General programme I taking course unit J

APPENDIX 6C

5 Flow diagram: Notional class size module

Read in fractions of SEM1 students in categories Arts, Science, Social Science (and write out)

Calculate numbers of SEMI students in Categories Arts/Science/Social Science Multiply student numbers in each category by matrix for SEMI classes

Read in names of subjects Print out SEMI class sizes for each subject

APPEINDIX $6 \check{C}(5)$ (cont.)

Palculate student numbers taking SEM2 major classes

Normalise class sizes (total courses taken $=3 \times$ student numbers)

Print out SEM2 class sizes

Read in fractions taking
SEM3 minors

Calculate numbers taking SEM3 minors

Read in numbers in previous year's SEML

Read in transition factory
SEM1 major \rightarrow SEM3

Calculate numbers taking SEM3 majors

Read in proportions of SEM3 students taking part I subjects

SEM4: Add in SEM6 registrations

Assign class sizes to appropriate element of array KCLAS (I, J, K)

Print out notional class sizes

Read in numbers in Education
SEM9 (and write out)

Read in and write out PG numbers
Full-rime research,
Interdisciplinary research
Postgraduate course
(and write 0 ut)

Calculate total postgraduate students

RETURN

> 明
> ii.i il

\square

$$
\begin{aligned}
& \text { HRITE OUT } \\
& \text { WRITE (2.7) }
\end{aligned}
$$ $\cdots, \quad-\quad-$ $-$ FSCI,FSOC,FART

3)

S' URMAT(3F5.3)
WRITE (2,812)
FORMAT(1H0.PROP WRITE(2.104) FSCI
 NS (1) $=N Y R(1) * F S C I$
$N S(2)=N Y R(1) * F S O C$
IN SC SOC SC IRTS AREAS IN. NS(3) M MYR(1) HFART
MATHIX MULTIPLICATION MATRIX MULTIPLIGATION
nO IEI,MDEP DO $\quad J=1.2$
DO $6 \quad k=1.3$
(1, $1, K)=x$
$006 \quad K=1,3$
$v(1, J, K)=x(1, J, K) \times N S(K)$
MCLAS $I, 1, J)=N C L A S(I, 1, J)+Y(1, J, K)$
CUNTINUE
HRITE (?. 813)

$$
\begin{aligned}
& \text { O.'PART ONE ' } \\
& \text { SEH1 CLASS SILES }
\end{aligned}
$$

813

$$
0
$$

n
3
3
$+\cdots$
+4 H10. \square

$$
\begin{aligned}
& \text { * }+ \text {.nn }
\end{aligned}
$$

298 er
GO TO 900
$991 \operatorname{NCLAS}(1, J, 1)=\operatorname{NCLAS}(1, J, 2)$

$$
\begin{aligned}
& \operatorname{KF}(I)=1 \\
& K F 4(1)=0
\end{aligned}
$$

$$
\begin{aligned}
& 10761 \quad 1-1, J C R \\
& K F(I)=10
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{KF4} 4(1)=0 \\
& \operatorname{KFS}(i)=0
\end{aligned}
$$

$$
\begin{aligned}
& \kappa F 0(1)=0 \\
& \kappa r 7(1)=i l
\end{aligned}
$$

$$
\begin{aligned}
& \text { KFB(I)=0 } \\
& \pi F g(I)=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { in } \\
& =1 \\
& 0 \\
& 0 \\
& x
\end{aligned}
$$

$$
\begin{aligned}
& \text { REAO SEMFSTER } \\
& \text { REATI } 7.1 \text {) NSEM }
\end{aligned}
$$

$$
\begin{aligned}
& \text { REATI } 7,1) \text { NSEM } \\
& \text { HRITE } 2,815 \text {) NSEM }
\end{aligned}
$$

$$
\vec{n}
$$

in m

$$
\begin{aligned}
& \text { HRITE(2,815) NSEM } \\
& 815 \text { HRYUT(1HO, SEMESTER, } 141
\end{aligned}
$$

1F(NSEH.EA.B) KL=3*NDEF

$$
205 \text { FORHATIHO, IND CRSE LD MATRIX GEN') }
$$

勺*

SEMESTFA ：AUD IN SrM4 ANU 6 NJS
MAJ：JRS
DU $62 \quad I=1$ ．NUFP
$L N=3=N D E P+I$

0
Uロ U U 04 CONTIHIE
PAHT 1 PAHT 1 MINARS

KCLAS（I，J．2）＝NCLAST1，J，2）
101 CONTINUF
SEM 4 TO8 NUT CLASS SIZES
SEMESTER 4
SEMES ER 4 NDEP
$K \operatorname{CLAS}(I, 4, K)=K F 4(3 * I-L)$
$K C L A S(1,4, K)=K F 4(3 * 1-L)$

KCLAS $(1,7, K)=K F 7(3+1-L)$ CUNTINUE

ט

 が

ADD TO SEM4，UNITS TA EEN RY SEN：CLASSES DO 67 1
$=3 \times N D F F+I$
CUNTINUF NOTIONAL CLASS SII？ES
WRITE，2，B8）（ADEP（ 1 ），$(=1,12)$
FORTAT $3 \times$ ：＇SEM OPT＇，12A10）
Do ós $\mathrm{J}=1$ ．
DO $68 \mathrm{~K}=1$ ； 2
ค $\quad \infty \quad 0 \infty$
$山$
z
\vdots
\vdots
0
0
0
$\begin{array}{lll}\text { DO } & 70 & \mathrm{~J}=4.8 \\ \text { nO } & 70 & \mathrm{~K}=1.3\end{array}$
－
WKITE，2，69）J，K，（KCLAST $1, N, K), 1=1,121$
HR1TE： 2,88 ）（ADEP（I）， $\mathrm{I}=13, \mathrm{NDEP}$ ）
1.3
1，
9

VE
$j=1$
$\stackrel{7}{u}$芝 －少文妾

WRITE： 7,69 ） $1, K,(K C L A S T I, j, K), I=13$, NVEF）
READ EDU：ATION UEPT NOS
REAU（7．73）NEDUC
KCI．AS（NE ПUC，7，1）＝ivYR（5）
$K C$ I．AS（N．
$K A=3$ NNFP－2
$K F Y(K A)=N Y R(S)$
c
$0 \quad 0$

6B7 Sample Output

INT FRSE LD MATRIX HON

 6
30
0
0
2
0
0
0
0
0
0
0
0
0
0
0
2 330

20

를 92
28
20
0
3
3
0
0
$=$
0
0
0
0

outuranog'gato $10 n 0-00000$
$125170-7$
 S 3
3
3
2
3
3
3 1.0000 .612
0.0020 .054 a-ojno.0.0.0. hisionr
a. ouno.evaga

 4
5
0
3
$\frac{1}{3}$
0
in
20
0

$\begin{array}{lll}60 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}$
Mc encin $3 \leq c: c$定它心云云 옵들응 32 ヨこ こ ？$\because=0$ 으응ㅇㅇㅇ
 gio $\vec{\rightharpoonup}$

ว ロ～つ＝

 0.0 und．U

3
0
0
0
$\cdot n$
$\cdot n$
$\cdot 0$
0 0
0
0部 ？ o ll． 10 ob 긍 28 00
00
0
00
0 \dot{c} $5 c c$
3
3
0
0 0

N ？ 309 옹ㅇ $2-\omega \frac{1}{2}$ $\begin{array}{lll}30 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$ －읃명
 5
0
0
0
0
0 $\stackrel{8}{c}$ 2
2
2
2

를

 е000030

50 ino

들

2

$$
\begin{aligned}
& 0 \\
& 0
\end{aligned}
$$

$$
0
$$

 }

－r
 I

ounal：

 WH2

0 0日以なっ
$8=0,5$

aOco．0．0

－응́ㅇ 0.530
0 353

$$
=0 \geq ?
$$

둔둔

そく． $\boldsymbol{\sim}$

$\begin{array}{ll}\text { co } & 2 r \\ 0 & -2 \\ 0 & 3 \\ 0 & 0 \\ 0 & 0\end{array}$

ooco号号品

8
8

$5 \exists$
$0!$
10
10
19
10
10
10
1
量 Eq气 ric：
 ¢90ㅇㅇ

 둥응ㅇ 드드를 ？？3－ 090909
00090
93020

o e e 20
$\rightarrow 00000$

边

总 0
0
0
0
0
00
0
3
3
3
0
0

20
0
0
0
0
20
20
20
20
0
0
0
0
0
3
3

둔멍웅ㄷㅇ웅
응ㅇㅇㅇㅇ

근응를

$\xrightarrow[3]{2}$
\qquad

号

mes
cosc

co 00
30
$3 \in 0$
0
$\frac{5}{3}$

륭
0
2
\therefore
2

3
2
2
2

0
0
0
0
0
0

2
\cdots
\cdots
7
3
3
3
3
0
0
0
0
0
0
0
0
0
0
0

3
0
0
0
3
0
0
0
i

30
30
0
0
0
0

\square

 등ㅁ응口以～以
 으을
－00000 EKOc＝E －口下口に 0
0
0
0
0
0 등응 300氙号号品个 듣든象过
 동듕동홓
－ 0000
000
cocecco $2,250=2$
0005000 응

 ． 드ㅇㅡㅡㄹ $\therefore 50=3$
$305 \mathrm{y}=3$ cooroag $\frac{05}{50}=\frac{2}{6}$

 $\therefore=520$
75050
C믇드응

 드르․ 응응으으응
0.030
000
0

 들 5000000
0

3 cç 525 c 5,253
学解空
 cocooro

앙ㅇㅇㅇㅇ 00090
90
90
90
0
$\begin{array}{ll}6 & 0 \\ 0 & 6 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$

 $i=2$
0
0
0
0
0
0
0
0
0
0
-
79
 coccc

$$
4
$$

$0 u$
015
$0 u n$
$0 u 0$
001
Oun
000 ATH2
MSE
inn aH
19
$\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array} 0$
$\begin{array}{llll}\text { fi } & 5 & 5 & 6 \\ 0 & 5 & 5 & 5 \\ 0 & 0 & 0 & 0 \\ 13 & 5 & 0 & 5\end{array}$
$\begin{array}{ccccc}1 & 2 & 2 & 3 & 0 \\ 0 & c & 0 & 0 & 5 \\ 0 & 0 & 0 & 1 & \Omega \\ 0 & 0 & c & c & 0\end{array}$
$5=c=c c$
505
0
000000
$\cdots \infty-2 \rightarrow 0$ cनe óoc
$25323=425$ 0300 Nino
 Econ ?

 3.0540.150
sociol ENGL ISH
£ $50 \cdot 1400 \cdot d 90 e \cdot 0 z \angle 0 \cdot d E u$
g50

皆
20
득듣ㄷ응
$0=0=0$

? 2 - 2 j 2

?
$2=-3-2=0$
$n=320$
$n=20$

$$
\begin{aligned}
& \text { ENGL ISH } \\
& \text { Ent }
\end{aligned}
$$

3.0ugu.u!c

00

 0 00
00 300
300
010
号が品 COMO？ 응응ㅇㅇㅇ응 응으을 응ㅇㄷ $120=$.000

$$
\begin{aligned}
& 1 \\
& 0 \\
& 0 . \\
& 0 . \\
& 0 . \\
& 0 .
\end{aligned}
$$

yoco ， 0000
1000
1000
$00: 10$－：0000

201 르릉 céeceod世行

$$
\begin{aligned}
& \begin{array}{l}
\text { Jno } \\
\text { ung } \\
\text { uno } \\
\text { jou } \\
\text { giou }
\end{array} \\
& \text { C } \\
& \text { をした } \\
& \begin{array}{l}
10 \mathrm{n} \\
00 \\
00 \\
00 \\
00 \\
00
\end{array}
\end{aligned}
$$

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2

0000
2
2
0
0
0
0
0
\vdots
응

095050 $\begin{array}{llll}090 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0\end{array}$ 3
0
0
0
0
0
0
0
0
0
0
3
0
0
2
0
0
 2
0
0
0
0
0
0
0
0
0
 cesce co $0=0$

 $02033=1$
20303
0000
 $\rightarrow 2020$

응ㅇㅇ으응

35
3 $\frac{1}{0}$
－DCT 70

옹6000 ¢00909 000000
 © $\mathrm{C}=0 \mathrm{o}$ 000530 oon $0=0$ 응ㅇㅇㅇㅁ 3000 00000 $00-100$ 000000 000000

근은

s응동 03000总家葡运示 2 $2=2020$

－ | . |
| :--- |
| . |
| . |
| . |
| . |
| .10 |
| .10 |

 를
 ㅂ․․․․․

M15－75 을을으응
－－
occceco
0.0
un CHEM

5
4

$$
\left.\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$ EO．ENG

6
0
0
0
0
0
0
0
0
0
0
5
5

0
0
0
10
0
7
0
0
0
0
0
0
0
0
0
2
0官

5
$\stackrel{1}{3}=$
00

000000

0030920
23030 등․3．335

N－2
．nugo

IST
eunhis

우응ㅇ
－2 $=2$

accet
독
号号号
O


```
Rミ:
```



```
C
```



```
#
```


Student equivalent module

6Dl Name of subroutine: STUDEQ

6D2 General description of module

As is remarked in Chapter 6.8 (iii) the purpose of this module is the calculation of the number of full time equivalent students who could be conceived to be studying in a given subject area. Since each course unit, however, occupies a definite proportion of each student's time it is possible to relate the number of course units being studied in a given semester to the number of full time equivalent students studying that subject in a given semester. This procedure is adopted in this module. The problem is very straightforward in the first two semesters where students normally take three senester units. In semester three the problem is slightly complicated by the fact that less than three units are taken on average and that some students also take units from semester 1.

A uniform procedure is used for all Part 2 semesters in that total student equivalents for a given somester are distributed between subjects in proportion to the numbers of semester units being taken in each subject. Due allowance is also made for the fact that some students study courses in other semesters (i.e. semester 5 stude:ats may be taking courses in semester 3 or 1).

Student equivalents attached to each departmont are then summed and postgraduate numbers are added.

APPENDIX 6

6D3 Detailed Description of Procram
933-39 COMMON statcment

940-41 DIMENSION statement

942-49 zero array SEQ (I, J)
951-62 Calculate student equivalents corresponding to SEMI and SEM2 students taking semester units in SEMS1 and 2 respectively

963-69 As above for Semester 3 students

970-74 Add semester 3 students taking SEM1 course units to appropriate subject total

976-85 Array KF4 (I) to KF9(I) are allocated to appropriate columns of arrays $K Z(I, J)$

989-96 Calculate total semester units taken in a giver semester
997-1008 Allocate student equivalents/semester/subject on basis.

Number of student equivalents

Number of
$=$ students in given semester

Number of course units taken
\times in that sibject
x Total course units in that semester

1009-14 Allocate cquivalent calculated above to subject (array $\operatorname{SEQ}(I, J)$ - semesters 4 - 9)

1015-19 Add in contribution to equivalents from SEM5 students taking SEMI units

1020-25 Add in contribution to equivalents from SEM6 and 4 students taking SEM2 units

1026-30 As above for semester 6 students taking semester 4 units
1031-36 Sum up student equivalents over each semester
1037-40 Add in postgraduate numbers to total equivalents
Write out results
1042-47 Write out table headings
1048-64 Write out total undergraduate equivalents
II. Write out total student (UG + r') equivalents

APPENDIX 6

6D4 Definition of Variables

GUNTT Number of semester course units taken by semester 3 students

KTOT(J) Total course units studied in semester J
$K Z(I, J) \quad T o t a l$ students registered for subject I in semester J
NSTUD (J) Total undergraduate students registered in semester J
$\operatorname{SEQ}(I, J) \quad$ Number of full time equivalent students taking subject I in semester J

SEQTOT(I) Total full time equivalent student numbers (UG + PG) taking subject I

XEQ (I)
Total full time equivalent student number (UG only) taking subject I

APPENDIX 6

6D Student Equivalent Module: Flow Diagram

Read in average number of units
taken by SEM 3 students
Calculate SEM3 full time equivalents.
Add to SEM1, SEM 3 students taking SEMI courses
\downarrow

Calculate equivalents for a subject + semester on basis o total student registrations in that subject + semester

Allocate student equivalents to approiate class of array $\operatorname{SEQ}(1, J)$

Add to SEMI equivalents SEM5
students taking SEMI units
Add to SEM2 equivalent students from SEM 4 +6

4 equivalents students
Add to SE
from SME6

Forint out student equivalent
totals (UG and UG + PG)

 . $\because \|$

APPENDIX 6E

Staff allocation (workload module) module

6Ei Name of subroutine STAFFl

6E2 General description of module
A general description of the workload model is presented in Appendix 4 . Notional class sizes projected by the notional class size module (see Appendix 6B) form the input to this module. Thus undergraduate workload for each subject can be estimated. Postgraduate workload is estimated on the basis of three hours per week for each single discipline postgraduate and six hours per week for interdisciplinary postgraduates. - Individual staff allocations are made for postgraduate courses. Remaining staff are then allocated between subjects on the basis of workload.

APRENDIX 6

6E3 Detailed description of program

STAFF ALLOCATION MODULE (WOPKLOAD) STAFF 1

454-60 COMMON statement
461-68 DIMENSION statement
473-77 Read in (and print out) number of subjects in CATs, A, B, C
478-84 Read in workload factors (constants)
485-95 Read in workload factors (variable) for semester J and option K

Distribute notional class sizes unto categories
494-500
(1) Cat A notional class sizes assigned to array

ACLAS (I, J, K)

501-06
(2)
(3)
" BCLAS (I, J, K)
$\operatorname{CCLAS}(I, J, K)$
507-12
(3)

Postgraduates - assign to appropriate arrays (Cat.A)

519-24

525-30
$"$
(Cat.B)

532-36
Read in statistical class factors Cat.A for subject I, senester J, option K

537-41 Read in statistical class factors Cat. C for subject I, semester J, option K

Workload calculation, Cat. A
543-45 Zero arrays XDOA(I) and XDEA(I)
546-50 Calculation of subfactors D2, D2, D3
551-54 Allow for zero class size. If class size $\equiv 0$ put workload $=0$

555-68
569-74
Calculate (and print out) workload for Cat 'A' classes

575-80 Sum up workload for even semester in each subject

581-84 Calculate average workload over odd and even semesters
585-95
Print out results
588-89
Subject names

590-01 Odd semester workload for each subject
592-93 Even semester workload for each subject
594-95 Average workload for each subject
596-644 As above for Cat 'B', appropriate modification to workload calculation for language subject

645-703 As above for Cat ' C ', appropriate modifications to workload calculations for laboratory subjects. Including modification to allow for additional education workload from teaching practice

704-08 Calculate postgraduate workload (research students) for subjects in Cat 'A'

709 Calculate total workload for a subject (UG + PG) Cat 'A'
710-22 Calculate total workload for a subject (UG + PG) Cat 'B'
723-30 Calculate total workload for a subject (UG + PG) Cat ' C^{\prime}
731-37 Sum up total workload for Cat 'A' subjects
738-40 Sum up total workload for Cat 'B' subjects
741-43 Sum up total workload for Cat 'C' subjects
744-45 Calculate total University workload (add up workload in Cats 'A.' 'B', and 'C')

746-47 Calculate total student numbers (add UG +PG)
748-50 Read in overall student:staff ratio
751-52 Calculate total University staff entitlement
753-54 Write out total University staff numbers
755-59 Read in staff allocated to PG courses (Cat A, B, C)
760-63 zero variables NAPG, NBPG, NCPG
764-66 Sum staff allocated to PG courses (Cat 'A')
767-69 Sum staff allocated to PG courses (Cat 'B')
770-72 Sum staff allocated to PG courses (Cat ' C ')
773-75 Calculate staff available for allocation on workload basis (total staff all - pg course allocation)

778-81 Calculate staff allocated for Departments (Cat A)
782-84 Calculate staff allocated for Departments (Cat B)
785-87 Calculate staff allocated for Departments (Cat C)
788-91 Write out hours of workload per staff member

```
792-97 Round off to nearest. integer (Cat 'A')
798-803 Round off to nearest integer (Cat 'B')
804-09 Round off to nearest integer (Cat 'C')
810-13 Add staff allocation to PG course to staff allocated
    in workload basis (Cat 'A')
814-16 Add staff allocation to PG course to staff allocated
    in workload basis (Cat 'B')
817-19 Add staff allocation to PG course to staff allocated
    in workload basis (Cat 'C')
. Write out staffing levels : Cat 'A'
823-24 Departmental name
825-26 Workload allocation
827-28 PG course allocation
829-30 Total allocation
831-36 As above for Cat 'B'
837-42 As above for Cat 'C'
```

APPENDIX 6
$6 E 4$ Definition of Variables

ACLAS (I, J, K)
BCLAS (I, J, K)
CCLAS (I, J, K)
BSB (JK)

FA, FB, FC

HRST

LA (I, J, K)
$\mathrm{LC}(\mathrm{I}, \mathrm{J}, \mathrm{K})$

MAST (I) , MBST(I)
$\operatorname{MCST}(I)$

MSTUD
$N A, N B, N C$
NAPG (I) , NBPG (I) NCPG (I)

NAPGCR) I)
NBPGCR (I)
NCPGCR (I)
NAPGRI (I)
NBPGR1 (I)
NCPGR1 (I)
NAPGR2 (I)
NBPGR2 (I)
NCPGR2 (I)

NPG

NWK

NAPGST (I)
NBPGST (I)
NCPGST (I)

OC (J, K)
QOC (J, K)

Notional class sizes for (Cat. A, B, C)
subject I, semester J, option K

Weekly frequency of lanquage labs
Tutorial frequency subject categories A, B, C
Average weekly workload per member of academic staff
Frequency of statistical classes for subject I, semester J, option K (categories A, C)

Total staff allocation for subject I (rounded off) for subject categories A, B, C

Total student population (UG + PG)
Number of subjects in categories A, B, C
Total numbers of academic staff allocated directly for PG course work

Number of full time postgraduate students taking postgraduate course work in subject I (for categories A, B, C)

Number of full time research students taking single discipline subject (categories A, B, C)

Number of full time research students taking interdisciplinary subjects

Total academic staff allocated directly on basis of taught PG courses

Total academic staff available for allocation on workload basis

Academic staff allocated directly to subject I for taught PG courses

Number of hours lab work/week semester J, option K
Time to prepare experiment for standard
4 hours lab (semester J, option K)

TG

SSRAT

UATOT (I)
UBTOT (I)
UCTO'C (I)
XATOT (I)
XBTOT (I)
XCTOT (I)
$X C A(I, J, K)$
$X C B(I, J, K)$
$X C C(I, J, K)$
XDEA (I)
XDEB (I)
XDEC (I)
XDOA (I)
XDOB (I)
XDOC (I)
XL
XM
XII

XNAST (I)
XNBST (I)
xNCST (I)
XR
XTP
XW

XX
WA (J, K) WB (J, K)
WATOT, WBTOT
WCTOT
$\operatorname{WEC}(J, K)$
WKTOT
WTP
WKTP 1
WKTP

Time to give tutorial
Overall University student:staff ratic
Total workload for category A, B, C, subjects

Average workload for subject I
(categories A, B and C)

Workload in class subject I, semester J, option K
(category A, B, C subjects)
Total even (Spring) semester workload for subjects Cat A, B, C

Total odd (Autumn) semester workload for subjects Cat A, B, C

Weekly lecture frequency
Time to correct essay
Size of tutorial group
Staff allocation (unrounded) for subjects I
(cat A, B, C)

Size of language lab
Time to prepare tutorials
Time to correct essays
Time to correct exam paper
Essay frequency, categories A, B
Total workload of categories A, B, C subjects

Essay frequency - semesters J, option K
Total University workload
Time to mark translation
Workload involved in education teaching practice (1)
Workload involved in education teaching practice (2)

APPENDIX 6

6E5 Staff allocation : Workload : Flow Diaqram

6E6 Program Listing

0

\checkmark
0

$$
\begin{aligned}
& \begin{array}{lllllllllllllll}
0 & 0 & 0 & 0 & 0 & n & 0 & 0 & 0 & 0 & 0 & 0 & 0 & n \\
0 & 0 & 0 & m & 0 & 0 & n & 0 & 0 & 0 & 0 & 0 & n & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \vdots & 0 & 0 & \dot{0} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
& n & N & M & & & & & & N & \cdots
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllllllllllllllll}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & n & n & 0 & 0 \\
0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & M & 0 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}
\end{aligned}
$$

appendix 6

6F Staff Allocation Module (Student:Staff ratio) option

6Fl Name of subroutinc STAFF 2

6 F2 General description of module
This module provides an alternative policy for allocating academic staff to subjects to the workload policy module. In general this module divides total available academic staff between subjects on the basis of total student equivalents enrolled in each subject. It is possible to give additional weighting to postgraduate students of different types by varying the student:staff ratio applied to these groups. There is, however, a normalization routine to ensure torl acedeic shoff allocated to different subject equils, total staff available.

APPENDIX 6

6F3 Detailed description of program

849-55 COMMON statement

856-57 DIMENSION statement

862-63 Read in student staff ratios for
(1) undergraduates
(2) postgraduate research (singie discipline)
(3) postgraduate research (interdisciplinary)
(4) postgracuate courses

864-71 Calculate staff allocation per department for each of categories described above

873-75 Read in overall student:staff ratio
876-78 Calculate total staff entitlement \{total student numbers divided by appropriate overall. student:staff ratio\}

879-80 Write out total staff entitlement
881-86 Calculate normalization factor (SNORM)
887-9C Adjust staff allocations by normalization factors GO total staff allocations := total staff entitlement)

891-97 Round off staff allocation to nearest integer
899-901 Ruad in number of subjects in category ' A ', ' B ' and ' C '
902-04 Assign category 'A' staffing allocations to array MAST(I)
905-08 Assign category ' B ' staffing allocations to array MBST(I)
909-12 Assign category ' C ' staffing allocations to array MCST(I)
916-17 Write out department names (cat A)
918-19 Write out staffing levels (cat A)
922 Write out department names (cミt B)
922-23 Write out staffing levels (cat B)
926 Write out der :tment names (cat C)
927 : Write out staffing levels (cat C)

APPENDIX 6

6F4 Definition of Variables

MSTUD Total. student numbers
MAST(I) Total staff allocated to subjects in Cat. A, B, C
MBST(I) (A - general; B - language subject
MCST (I)
C - laboratory subject)

NA, NB, NC
Number of subjects in categories A, B, C
NSTAFF Total university staff allocation
NST(I) Total staff allocated to subject I
SSRAT Overall student:staff ratio

SSCR
SSRI
SSR2

SSUG

STALL (I)
STCR (I)
STRI (I)

STR2 (I)

Student:staff ratio for postgraduate course work students Stldent:staff ratio for single discipline postgraduates Student:staff ratio for interdisciplinary postgraduates Student:staff ratio for undergraduate students Academic staff (unrounded) allocated to subject I Staff allocated on basis of postgraduate course work. Staff allocated on basis of (single discipline) postgraduate research

Staff allocated on basis of (interdisciplinary) postgraduate research

APPENDIX 6

6F5 Flow Chart : Staff Allocation 2

Read in overall University
student:staff ratio
v
Calculate normalizationfactors

Adjust staff allocations by
 subject to nearest integers
 Eat A, B, C
assign subject academic staff allocations to appropriate eategory
 \div

APPENDIX 6

6G Non-acacicmic staff module

6Gl Name of subroutine NACST

6G2 General description of module

The function of this module is the allocation of non-academic staff (secretarial and technical staff) to different subject areas. The policy is employed is that these grades of staff are related to academic staff in a given subject area by a constant factor (or norm). The numbers of staff thus allocated are rounded off to the nearest integer.

6G3 Detailed description of program

1220-26 COMMON statement
1227 DIMENSION statement
1232-33 Read in ratios of academic:secretaial staff and academic:technical staff

1234-37 Calculate numbers of secretarial staff for each subject in category A

1245-50 Round off to nearest integral number
1238-40) Repeat above for category B
1251-56)
1241-43) Repeat above for category C
$\frac{1257162}{1263-65}$ Calculate numbers of technical staff for each (laboratory) subject

1266-70 Round off above numbers to nearest integer
1271-89 Print out results; subject names, number of secretarial staff, numbers of technical staff

APPENIIX 6

6 G4 Definition of variables

NASEC (I)
NBSEC (I)
NCSEC (I)
NCTEC (I)

SECRAT

TECRAT
$\mathrm{XNC} \operatorname{TEC}(\mathrm{I})$

ZNASEC (I)
ZNBSEC (I)
zNCSEC (I)

Number of sccretarial staff allocated to subject I (subject categories A, B, C)

Number of technicians allocated to subject I
(category ' C ' lab subject only)
Ratio of secretarial staff : academic staf
Ratio of technical staff : academic staff
Number of technicians allocated to subject I
(unrounded)
Number of secretarial staff allocated to
subject I (categories A, B, C) (unrounded)
appendix 6

6G7 Sample Output

APPELDIX 6

6 H Financial Module

6 Hl Name of subroutine
 FINMOD

6H2 Detailed Description of Module

This module gives information on financial implications of plans; in particular information on unit costs of producing students in different subject areas is provided. From a knowledge of the usual proportions of senior staff it is possible to calculate the numbers of staff in each subject in each grade and hence the total academic salary bill. By adding non-academic salaries the total salary expenditure for each subject can be determined. Departmental expenditure (i.e. expenditure for consumables, travel, hospitalify etc.) is determined as a historically derived fraction of the total salary bill for a given subject area.

These calculations allow total direct expenditure in a given subject area to be calculated. Since numbers of full-time equivalent students that can be considered to be studying a particular subject area is known, unit costs in different subjects can be calculated.

APPENDIX 6

6H3 Detailed description of proqram

1068-74 COMSON block
1075-81 DIMENSION statement
1085-92 Read in salarics, professor, senior lecturer, lecturer, secretary, technician (and print out)

1093-95 Read in proportions of senior staff, professorial staff
1096-98 Calculate number of senior staff in category 'A' subjects
1099-1103 Round off to nearest integer
1104-09 Calculate numbers of professors, senior lecturers, lecturers in each category A subject

1110-12 Read in fraction of salary bill spent on departmental expenditure for each Cat A subject

1113-24 Student equivalent adjustment. Assign student equivalents (for categories A, B, C) to appropriate array SEQAT(I), SEQB(I), SE®CT(I)

1125-33 Calculate academic salaries, secretarial salaries, total salaries, departmental expenditure, total direct expenditure associated with a subject area and unit costs

1134-46 Print out results for category 'A', subject headings, academic salaries, total salaries, departmental expenditure, unit costs

1147-80 Repeat above sequence of operations for category 'B' subjects
1181-215 Repeat above sequence of operations for category 'C' subjects (except allowance is made for salary of technicians)

APPENDIX 6

6114 Definition of Variables

ASCALA (I)
ACSALB (I)
ACSALC (I)
AuCOST (I)
Bucost (I)
CuCOST (I)
DPEXA(I)
DPEXb(I)
DPEXC (I)
fSALA (I)
FSALB(I)
FSALC (I)
MLSL
MPRSL
MSECSI,
MSLSL
MTECSL
NALEC (I)
NBLEC(I)
NCLEC(I)
NAPR (I)
NBPR (I)
NCPR(I)
NASEN (I)
NBSEN (I)
NCSEN (I)
NASL (I)
NBSL (I)
NCSL (I)
PFRAT
SENRAT

SECSLA (I)
SECSLB (I)
SECSLC (I)

Total academic salaries for subjects in categories A, B, C,

Unit cost per full time equivalent students for subjects in categories A, B, C

Departmental expenditure in subject I
(catcgories A, B, C)

Departmental expenditure expressed as a
fraction of total salary bill

Average lecturer grade salary
Average professorial grade salary
Average secretarial grade salary
Average senior lecturer grade salary
Average technician grade salary
Number of lecturers in subject I
(for categories A, B, C)

Number of professorial staff in subject I
(categories A, B, C)

Number of senior staff in subject I
(categories A, B, C)

Number of senior lecturers staff in subject I
(categories A, B, C)
Proportion of senior academic staff who are professors
Proportion of academic staff classified as senior
(i.e. professorial and senior lecturer)

Total secretarial salaries for subject I
(categories A, B, C)

SEQRT(I) SEQBT (1) SEQCT (I)

TECSLC (I)
TOTSLA (I) TOTSLB (I) TOTSLC (I)

YASEN (I)
XBSEN (I)
XCSEN (I)
XOTSLA (I)
XOTSLB (I)
XOTSLC(I)

Total student equivalents for subjects of categories A, B, C

Total technjcian salaries for subject I (cat C only)
Total salary (academic plus non-academic) subject I
(categories A, B, C)
Number of senior academic staff (unrounded)
allocated to subject I
(categories A, B, C)
Total expenditure for subject I
(categories A, B, C)

APFENDIX 6

645
Finance Module : Flow Chart

SEGMENT
1;DC:S0;RI55,RBFILES:

2NPGR2 (30), NPGCR (30), NA, HB, NU, NAFGN1 (15), NAPGW2(15),NAPGCR(15),
 NTEC(15).

$\overline{\overline{6}}$

9 FURMAT(1HI,', INANCIAL MODULE')
v
 !N91SSV

烒
\square

647 Sample Output
－Og Mn

$$
\begin{aligned}
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { ㄷ..8nの }
\end{aligned}
$$

$$
\begin{aligned}
& \text { あMinkiñ } \\
& \text { 领。 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ríann } \\
& \text { - - - Nom }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ㄱ․ } 0000
\end{aligned}
$$

$$
\begin{aligned}
& \text { を至范OON } \\
& \text { この心品品 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Noror } \\
& \text { NNN }
\end{aligned}
$$

APPENDIX 6

61 Lecture and Seminar Room Space Module

6 Il Name of subroutine TSPACE
$6 I 2$ General description of module
The function of this module is the estimation of the likely utilization of lecture and seminar room space over a period of time.

A fairly detailed description of the method of approach to this problem has already been given in section 6.8(iv). Basically in order to estimate future room utilization it is necessary to attempt to forecast future course numbers (i.e. student numbers who actually enrol on each course option). The approach used is to note actual course numbers and total full time equivalents in a given subject and semester in a given base year. The plausible assumption is then made that future course numbers on each option will increase in line with projected full time equivalents in that subject and semester. There is provision allowed for assuming some increase in options available, the assumption being made that such options will have average enrolment and that numbers on existing options can be reduced pro-rata.

The amount of lecture room space can be calculated directly (since the number of lecture hours given on each course is provided as part of the input data). There is also provision for calculating the numher of small group classes (seminar hours) provided. Although this approach is fairly crude it should nevertheless give some indication of likely future teaching space requirements.
appendix 6

613 Detailed description of program
1294-1 300 COMmON statement

1301-04 DIMENSION statement

1308-16 Read in ard write out array $\operatorname{SEQB}(1, J)$; student equivalent in department I, semester J in base year.

1317-30 Read in actual class sizes and number of lecture hours per subject in base year; write out array

1331-34 Test for Autumn and Spring semesters

1335-41 If Autumn semester
Set array $\operatorname{ZSEQ}(I, J)$ - autumn semester equivalents equal number appropriate values of $\operatorname{SEQ}(I, J)$ - output from student equivalent module

1342-48 If Spring semester execute corresponding operation Spring semester equivalents

1349-52 Test for extra options
1353-62 If no extra options, calculate future class size on basis. class size $=0$, future year class size $=0$ otherwise. Future class size $=$ present class size \times Future equivalents/subject/ semester. Base year equivalents/subject/semester

1364-90 Deal with case where new options are introduced
1364-67 Read in number of base year, options in subject I and semester J NOPT (I, J). Read in total number of options in future years NEWOPT (I,J)

1368-70 print out above arrays
1371-76 Calculate total number of student course units studied in a semester in a given subject area
Calculate class size of new options = total student course units - total number of options (NENOPT (I, J))

1381 Put class sizes of new options - CLNEW
1383-84

1385
Calculate total student courses taken in new options
Calculate factor for reducing size of base year options (equals total number of student course units in future year - number of student course units on new options divided by total student courses)
1387-89 Modify class sizes of original options by factor F
1402-34 Allocation of classes to size categories
14(02-03 Set array $N(I)$ equal to zero
1407 Test to ascertain if class size is significantly different fromzero (then room hour utilized will equal zero)
1403-16 Test range into which lecture class falls
1417-34 Add appropriate number of room hours to corresponding roomsize catcgory
1435-37 Read in numbers of room hours available in each category
1433-40 Calculate teaching room utilization (i.e. fraction of availablehours each size category is used)
1441-6 Read in number of seminar hours (NSEM(I, J, K) group size forseminar group in particular class (NGROUP (I, J, K)
1447-52 Calculate numbers of seminar hours required (number of classesrequired \times number of hours in each class)
1453-43 Add up nuraber of seminar hours required - add numberto smallest room size category
1459 Calculate proportion of seminar room hours used for allteaching purposes
1460-64 Print out table headings
1465-67 Read in minimum and maximum sizes of the various size ranges
1468-72 Write out ranges in each size category; number of hours used,number of hours available, utilization

APPENDIX 6

614 Definition of Variables

CLNEW Number of enrolments on new subject options
F Coefficient for adjusting student numbers on original options (allowing for new subject options)

KAUT Index used for testing whether Autumn ($K=1$) or Spring ($K=0$) semester

LTOT (I,J) Total number of student course units studied in subject I, scmester J

MAVAIL (I) Number of room hours available in category I
MOPT Index used for indicating whether facility for including additional options is required

MQ Total course units studied in new options
$N(I)$
NEWOPT (I, J) Total number of optional courses in subject I, semester J including new options

NGROUP (I, J,K) Size of seminar group subject I, semester J, option K
NHRS (I, J, K) Number of seminar room hours required by subject I, semester J, option K
$\operatorname{NLECT}(I, J, K) \quad$ Number of lecture hours required by subject I, semester J, option K

NOPT (I, J)
NPCLAS (I, J, K) Size of base year class for subject I, semester J,
$\operatorname{NSEM}(1, J, K)$ option K
Number of seminar hours given by subject I, semester J, option K

NXCLAS (I, J,K) Projected class size for future years subject I, semester J, option K
$\operatorname{SEQB}(I, J)$

ULIT(I)
2.SES(I,J)

Full-time student equiv
subject I, semester J
Utilization of space category I
Student equivalents in subject I, semester J
(For Autumn Scmester $1,3,5,7,9$ given by $J=1-5$
For Spring Semester $2,4,6,8$ given by $J=2-4$

APPENDIX 6

6I5 Module T-space Flow diagram

DU $201,1=1$, NDEP
REAi $, 7,2,2)(\operatorname{SEQH}(1, J), J=1, b)$
FURMAT(SFB.I
WRITE(2.271) AUEP(I), (SEQE(1,.j), , $=1,5$)
z
$2:$
0
0

271
201
14
14

$$
\begin{aligned}
& \sim M \\
& \angle O H \\
& \angle O H
\end{aligned}
$$

-

$$
\therefore \ddot{A}
$$

TEAGHING SPACE MODULE
 BASE YR SIIID

rick

$$
25 \text { sics }
$$

\bigcirc	0	N	\cdots	0	0	0	0	\＄	C）
－	2	－	： 3	：	\cdots	13	：	3	\cdots
	\cdots	¢	M	C	0	0	\bigcirc	∇	c

－	：	\checkmark	\cdots	3	：	\because	\cdots	－
c．	\bigcirc	$\underset{r-1}{c}$	∞	0	\bigcirc	0	\cdots	\cdots
ω	こ	\therefore	c	$=$	c	$:$	\cdots	\bigcirc
5.	P）	\bigcirc	$\underset{\sim}{\sim}$	\cdots	\cdots	5	$\stackrel{10}{ }$	じ
0	0	\bigcirc	0	0	0	0	\cdots	0
\bullet	c．	N	$\underset{\sim}{7}$	c	c	c	$\stackrel{\sim}{\sim}$	∇
－	0	0	0	5	$=$	\％	\sim	0

0	\%	B	n	c)	0	0	0	\bigcirc
\bigcirc	0	0	c	0	0	3	0	0
0	c	$\underset{\sim}{7}$	$\underset{r-m}{m}$	0	0	c	c	0
m	0	:3	:3	D	\square	$=$	に	:

O	::	\checkmark	7	\cdots	:	:	\rightarrow	\because
cor	0	$\underset{r}{c}$	∞	0	0	\bigcirc	$\stackrel{\square}{-}$	-
E	$=$	\therefore	c.	$=$	c	:2	\cdots	0
θ	a)	0	\sim	c:	\cdots	c	${ }_{-r}$	\cdots
0	0	-	0	0	0	θ	-	0
-	c:	n	viv	c	c	c	$\underset{\sim}{\boldsymbol{N}}$	∇
	-			$=$	$=$	\%	\sim	0

APLENDIX 6
$6 J$ Teaching Laboratory Space Module
$6 . J 1$ Name of subroutine TLABSP

6J2 General description of subroutine
As mentioned in Chapter 6.8 (vii) this module is used for assessing teaching laboratory capacity for laboratory subjects.

Projected actual class sizes have already been calculated by the ISPACE module. Information is also available on the number of laboratories taken by each student per week in each course and the duration of each laboratory. Each subject also has a number of teaching laboratories of different sizes. Hence it is possible to assign each class to the appropriate laboratory size category and to calculate the number of laboratory hours that it will require. In this way the percentage utilizations of laboratories of different tcaching subjects can be estimated.

APPENDIX 6

6J3 Detailed Description of proaram
1478-84 COMNON statement
1485-86 DIMENSION statement
1490-96 Assign laboratory subject class sizes to array LXCLAS (I, J, K)
1497-1506 Write out above array
1509-16 Read in number of labs/student/week, duration (in hours per week)
1517-19 Write out above arrays
1520-23 Read in teaching lab sizes for each subject (LABNOS(I,J))
1527-30 Set array elcments of array NHRS (I, J) equal to zero
1531-36 Assign class sizes to labs
1535 If class size $=0$, lab hours reģuired $=0$
1537-56 For each course option add lab hours required to appropriate element of array NHRS (I,J)

1557-61 Read in number of hours available for each lab size category in each subject

1562-68 Calculate utilization of each teaching laboratory
1569-84 Print out results. For each laboratory subject: name, laboratory sizes; for each laboratory, hours used, hours available, utilization

6J4 Definition of Variables
KAVAIL (I,J) Number of hours available for subject I, lab size, category J
$\operatorname{LABNOS}(I, J) \quad$ Capacity of laboratory for subject I, category J
LXCLAS (I,J,K)
Student numbers in subject I, semester J, option K (laboratory subjects)

MTLAB $(I, J, K) \quad$ Duration of laboratory (in hours for subject I, semester J

NIIRS (I,J) Number of laboratory hours used in subject I, laboratory category J

NLAB (I,J,K) Number of laboratories per week for laboratory subject I, semester J, option K

UTIL (I, J)
Utilization of laboratory category J, subject I

APPENDIX 6

GJ'5 Flow Diagram TLABSPACE

A 162

ATPEINIIX 6K

6K Research Inab Space Module

$6 K 1$ Name of subroutine RLABSP

6K2 General description of module
The function of this module is to calculate the research laboratory spaco required in laboratory subjects. The policy on which this is based is that space is allocated on the bases of numbers of academic staff and research student in a subject area through 'norms' (i.e. so many square metres per academic staff member).

Thus if the appropriate norms are read in to the module, it is a fairly straightforward matter to calculate research laboratory space required by a particular subject. Total research space required is also calculated.

6K3
 Detailed Description of Program

1621-27
COMMON statement
1623
DIMENSION statement
1629-32 Read in norms for academic staff and postgraduate research students

1633-41 Calculate researcin lab space required by each lab subject
1642-46 Calculate total rescarch space required
1647-57 print out results: print out subject name, research space per subject, total research space required.

6K4 Definition of Variable

IRIS (I)
PDNORM Research lab space norm for postgraduate

RES? (I)
STNORM
TRES
students
Dummy indicating whether subject require res. lab. space

Research lab space assigned to subject I Research lab space norm for academic staff Total research lab space required
$6 K 5$

Flow Chart - Research Lab Module

START

Read in norms for academic
staff, postgraduate research
students

Calculate research lab space required by lab subjects

Calculate total research space

Print out result
subject name, research
space per lab subject,
total research space

6K6 Program Listing

RESEACH LAP SHATF

APPENDIX 6

6L Office Space podule
61.1 Name of subroutine TOFFSP

6 L 2 General description of program
The function of this module is to carry out calculations of office space requirements of difierent subject areas. The policy on which this allocation is based is that there is a norm establishec for different grades of staff. Staff are divided into the following grades, professorial staff, non-professorial staff, non-academic staff. Each grade has an appropriate office space norm.

Thus if appropriate norms are read in, it is a relatively simple matter to calculate academic office space required.

6L3 Detailed description of program
1663-69 COMMON statement
1670-71 DIAENSION statement
1672-75 Read in office space norms for, professorial staff, non-professorial academic staff, non-academic staff
calculate numbers of non-professorial staff for each subject area

1677-80 Calculate office area required for category ' A ' subjects
1681-84 Repeat above for category ' B ' subjects
1685-88 Repeat above for catcgory ' C ' subjects
168y-95 print out results, subject name, square metres of office space required (for category ' A ')

1696-1703 Repeat above for categories ' B ' and ' C '

6L4 Definition of Variables

6L5 Flow Chart - Office space module

Calculate number of non-prof'ial staff/subject (total academic staff professorial numbers

Repeat for Categories B, C subjects
Calculate office space
required by each subject 1

Print out results -
subject name;
office space required
etc.

RETURN

$$
\begin{array}{cc}
\text { In } \\
\text { en } & \times-1 \\
\text { n }
\end{array}
$$

$$
\begin{aligned}
& n \\
& 2 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{array}{cc}
\dddot{H}_{0}^{\alpha} \\
0
\end{array}
$$

$$
\begin{aligned}
& 3 \\
& \frac{3}{5}
\end{aligned}
$$

$$
\begin{aligned}
& \ddot{*} \\
& \underset{\sim}{n} \\
& \underset{\sim}{\sim} \\
& \underset{\sim}{n}
\end{aligned}
$$

$$
\begin{aligned}
& s i n \\
& \text { in } \\
& \text { in } \\
& \text { in } \\
& \text { in }
\end{aligned}
$$

APPENDIX 7

Sensitivity Analysis I: Projected Space Ulilization
(a) Lecture and Seminar Room Space

1975/6

1981/2

Room size	Hours used	\% utilization	Hours used	\% utilization
1-24 (places)	520	56.0	628	68.0
25-40 "	33	41.2	35	43.8
41-60 "	53	132.5	29	72.5
61-80.. "	8	10.0	28	35.0
81-110 "	15	37.5	39	97.5
111-150 "	15	37.5	8	20.0
151-250 "	9	7.5	15	12.5.
251-350 "	3	7.5	25	62.5

(b) Teaching Lab Space (1981/2)

BIOLOGY

Capacity (places)	$\underline{12}$	$\frac{30}{}$	$\underline{40}$	$\frac{70}{64}$
Hours used	-	8	-	64
Hours available	108	36	36	36
\% utilization	-	22.7	-	177.8

PHYSICS

Capacity (places)	$\underline{5}$	$\underline{8}$		$\underline{12}$	$\underline{21}$	$\underline{25}$
Hours used	12	-	\ldots	4	-	4
Hours available	36	36		72	36	36
$\%$ utilization	33.3	-		5.6	-	11.1

CHEMISTRY			43	45
Capacity (places)	$\underline{18}$	$\underline{26}$	$\frac{43}{2}$	20
Hours used	11	0	4	36
Hours available	72	36	36	55.6
\% utilization	15.3	-	11.1	

PSYCHOLOGY

Capacity (places)	$\underline{20}$	$\underline{41}$	$\underline{61}$	$\frac{90}{21}$
	0	0	0	31
Hours used	36	36	36	36
Hours available	-	-	-	86.1

APPENDIX 7 cont
INTEGRATEI SCIENCE

Capacity	$\underline{2}$	$\underline{24}$
Hours used	-	16
Hours available	72	36
\% utilization	-	44.4
BIOCllemISTRY		
Capacity	12	
Hours used	68	
Hours available	72	
\% utilization	94.4	

(c) Rescarch Lab Space (1981/2)

Area required (sq. m.)

Subject	75/6	81/2	Capacity
Biology	594 sq.m.	946 sq.m.	724 sq.m.
Physics	165	231	438
Chemistry	220	341	617
Psychology	484	770	606
Integrated Science	33	33	33
Biochemistry	121	165	109
	1617	2486	2527

New Development
Earth \& Environmental
Science
200-300 sq.m.
(d) Acadernic Office Space

	Area Required		Designated Area
Subject	75/6	81/2	
Maths	101	149	416
Economics	282	402	460
Sociology	309	482	424
English	282	450	420
History	242	375	358
Philosophy	167	242	155
Accountacy \& Bus. Law	128	194	140
Religious Studies	88	115	100
Management Science	149	181	380
Computing Science	115	128	80
French	181	269	368
German	128	194	235
Spanish	101	128	120
Biology	269	389	485
Physics	128	149	144
Chemistry	167	221	538
Psychology	348	516	545
Integrated Science	40	40	80
Fine Arts	40	61	40
Biochemistry	101	115	104
Education	128	194	395
New Developments	-	609	286
	3494	5603	6273

APYENDIX 8

Alternative Approaches to University Resource Allocation

1. Academic Staff Allocation

Any method of staff allocation chosen should fulfill the following requirements:
(1) Academic staff allocated to each department should be conmensurate with its teaching commitments.
(2) Excessive detail should be avoided, the method should be robust but at least do "rough justice".
(3) Since many Stirling decision-makers are not numerate, any model should be kept as simple as possible.

Let us start by trying to make simple but hopefully realistic assumptions concerning the nature of teaching loads generated in a university. It might be sensible to assume
(1) a basic or fixed workload required to mount the degree programe offered by a department.
(2) owing to the small group teaching methods used at Stirling marginal workload increases linearly with additional student numbers.

Departmental
workload

This would correspond to a model of the form
Academic staffing
in a subject
$=C_{0}+C_{1} \times$ UG fte $+C_{2} \times P G$ fte
It would be necessary to devise satisfactory values for the constants C_{0}, C_{1}, and C_{2}. (It would, of course, be possible to have, for exanple, different

APPENDIX 8 cont
values of C_{1} and C_{2} for Science subjects than for Arts subjects.)

(i) The Constant C_{0}

This corresponds to the minimum number of staff necessary to mount that department's degree programmes (minimum viable size). As before, we are not considering this question from the standpoint: of academic viability but rather from the standpoint of the workload generated by its teaching commit ments. To take a specific case, if a department has the responsibility of mounting a single Honours degree programme this involves (even if no options are provided) mounting a basic number of semester units as
follows:

Semester	Minimum No. of units
	1
2	1
3	1
4	2
5	3
6	3
7	3
8	

Thus, from this viewpoint, it appears that the minimum viable size of a department which has to mount its own single Honours degree is the number of staff required to mount 16 semester course units in a given academic year. This is a decision which would be in the hands of the university decision-makers and subject to debate. It might be decided that it should be in the neighbourhood of four.

APPENDIX 8 cont.

(ii) The Constants C_{1} and C_{2}

As explained in Chapter 5, total lniversity academic staff numbers for a given year are generally determined. Since the constant C_{0} will have been already decided it is necessary only to decide on the relationsinip between C_{1} and C_{2} to derive their value.

It is possible to have different valurs of C_{1} and C_{2} for different groups of subjects providing the relative weighting is known.

2 Advantages of this method
(i) This method is simple to understand and apply.
(ii) While ensuring a minimum level of a cademic staffing for small departments, it allocates additional staffing purely in relation to student numbers.
(iii) The costs of setting up new developments are clearly imicated.

Relationship between above model, work load and student:staff rates.
In general there is a fairly close relationship between the model proposed above and the workload model. Both models propose a basic element of staffing (or workload) and then the additional staffing (or workload) increases more or less linearly with student numbers, (although there are step functions in the workload model, workload generally increases approximately linearly with student numbers if considered over a reasonably wide range of student numbers). In fact if the parameters of the models are adjusted accordingly, results achieved by the two models can be virtually identical. The workload model has the advantage that the elements of workload considered are easily identifiable. Its application, however, generally requires the use of a computer and it has the disadvantage that it requires agrement on a large number of parameters. The proposed model only requires agreement on one or two parameters, and it is
easy to apply and to check its results. Hence it might well be more acceptable.

Both the proposed model and workload model would correspond to the staff:student ratio technique in the limiting case when their constant term is given a value equal to zero.

Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author's prior written consent.

