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The Neural Correlates of 

Action Representation in the Real World 

Thesis outline 

According to the human information processing framework, complex human behaviour is 

driven by an internal model, also widely known as ‘action representation’, which includes 

motor and goal related information about a particular action. These action representations 

are the product of our dynamic interaction with the surrounding environment and constructed 

through life by knowledge and experience. The cognitive substrate underlying action 

representation is organised in hierarchical processes, whose role is to predict the 

consequence of a particular course of actions, ensuring the accomplishment of a goal. 

However, action representations are flexible and can be dynamically updated and modified 

online depending on the circumstances in which we act. Furthermore, action representations 

can also be ‘rehearsed’ when no motor output is required, such as when we imagine an 

action, i.e., during motor imagery, or when we observe another person performing an action, 

i.e., during action observation.  

Neuroscientific investigations employing the electroencephalogram (EEG) have shown 

patterns of brain oscillations related to cognitive mechanisms underlying action 

representation in laboratory-based settings. However, due to the constraints of traditional 

brain imaging techniques, neuroscientific research is still far from revealing neural correlates 

of action representation in real world behaviour, particularly in relation to dynamic whole 

body movements, such as locomotion. Despite the importance of locomotion in daily life, 

notably little is known about the neural and cognitive processes that support locomotor 

control. The recent development of portable brain imaging technology provides the unique 

opportunity of investigating human cognitive processes while participants freely move in 
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the real world environment. In particular, the mobile EEG, employed in the studies presented 

in this thesis, allows to capture fast changes in brain signals, due to its excellent temporal 

resolution.  

The aim of this thesis is to identify neural markers of action representation during natural 

locomotor behaviour in real world environments, employing the mobile EEG approach. In 

three different studies, brain oscillations were analysed in the time frequency domain, while 

participants executed, imagined, and observed natural locomotor movements. In particular, 

the analysis focused on event related power spectral changes in the theta (4-7 Hz), alpha (8-

12 Hz) and beta (13-35 Hz) frequency bands. 

In the first study of this thesis, investigating obstacle avoidance, neural markers of proactive 

and reactive cognitive control were identified in the theta and in the beta oscillations. 

Proactive control strategies, reflected in the power increase in the theta frequency band over 

frontal brain areas, are activated when participants face unexpected changes while moving 

in the environment, such as the avoidance of unpredictable obstacles on the floor. The 

findings demonstrated that the action representation is dynamically updated as soon an 

upcoming obstacle appears, compared to unobstructed walking and when the obstacle is 

expected. In addition, regardless of whether action representation required updating, a clear 

beta power increase, also known as beta rebound, was present after obstacles were crossed, 

reflecting reactive control strategies.  

Action representation can be activated also intentionally in absence of motor output, such as 

when participants perform motor imagery of movements. A large body of evidence has 

shown that action execution and imagery rely on the same action representation and have 

overlapping neural substrates, indicating activation of motor processes without overt 

movements. However, how neural activation in imagery and execution compares for 

naturalistic whole body movements, such as walking, has not been studied. This issue was 
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addressed in the second study of this thesis. The data revealed similar patterns of cortical 

activity when participants actually walked and during motor imagery of walking, reflected 

in the modulations of alpha and beta oscillations, but no overlap with the non-motor control 

task of counting mentally. However, the results also showed that imagery and execution are 

cognitively distinct, as indicated by different temporal dynamics of alpha and beta 

modulation. These dissociations suggest that the activation of the action representation 

during motor imagery involves not only the kinematic information of the action, that replace 

the covert motor output, but also spatial information about the environment in which the 

imagined action is embedded. 

The activation of the action representation can also drive the understanding of others’ 

intentions during the observation of other people’s actions. Key information when 

interacting with others is whether someone is moving towards or away from us, indicating 

whether we may interact with the person. In addition, to determine the nature of a social 

interaction, we also need to take into consideration the distance of the actor relative to us as 

the observer. How this information is processed in the brain is largely unknown, at least in 

part because prior studies have not involved live whole body motion. Consequently, in the 

third study of this thesis, EEG activity was recorded while participants observed an actor 

approaching them or moving away. The data showed that distinct cognitive mechanisms 

encode relevant contextual and social information, such as the distance of the actor and the 

perspective. It was found that alpha oscillations were modulated by distance, with a stronger 

decrease of power when the model was near to the observer compared to far, regardless of 

perspective. By contrast, beta oscillations were found to be modulated by both distance and 

perspective, with a stronger decrease of power when the model was near and facing the 

participant (walking towards) compared to when the model was near but viewed from the 

back (walking away). The dissociation in the neural response to perspective and distance 

suggests that contextual and social information of the action representation are processed in 
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order to encode the nature of an impending interaction with other people in real world 

environments. 

The findings of this thesis contribute to the understanding of neural and cognitive 

mechanisms underlying action representation in real world contexts. Previous 

neuroscientific research has provided useful insight for the understanding of human 

cognition, using traditional laboratory settings. However, daily living activities in the real 

world are much more complex compared to laboratory-based tasks. For example, natural 

locomotor behaviour, is characterised by rhythmical movements but also by high variability 

depending on the circumstances. Furthermore, the investigation of brain signals for the 

development of supportive technologies in clinical settings using the EEG, which offers a 

unique tool for capturing neural markers of cognitive processes, needs to be reshaped around 

the needs of patients during daily living activities. Indeed, the data of the present thesis point 

towards the importance of the development of a new dynamic neuroscientific approach, 

which needs to examine natural behaviour in real world environments. Across the three 

studies it was demonstrated that mobile EEG recording during different aspects of real world 

locomotor behaviour is feasible for capturing neural markers of cognitive dynamic control 

in humans, suggesting new routes for the development of assistive technologies aimed to 

support patients affected by motor disorders. 
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Highlights of the experimental studies presented in this thesis 

Highlights of Chapter 2 

• This is the first study assessing the neural correlates of proactive and reactive control 

processes during obstacle avoidance in the real world environment employing the mobile 

EEG. 

• The temporal profile of changes in frontal theta and centro-parietal beta oscillations 

allowed to arbitrate between early selection and late correction mechanisms of proactive 

control. 

• Neural markers of early selection forms of movement control, occurring before the 

unexpected obstacles, are reflected in frontal theta power increase, which update the 

internal model in order to face an unexpected change in the environment 

• Centro-parietal beta power suppression reflected a late correction mechanism, which 

prepare and implement the motor execution before stepping over obstacles, compared to 

unobstructed walking. 

• Regardless of whether motor plans required updating, a clear beta rebound was present 

after obstacles were crossed, reflecting reactive forms of movement control. 

• Mobile EEG during real world walking provides novel insight into the cognitive and 

neural basis of dynamic motor control in humans. 

Highlights of Chapter 3 

• This first study assessing the neural correlates of motor imagery of whole body dynamic 

movements (walking) demonstrates a neural overlap with actual execution of walking, 

evident in matching beta power decrease-increase dynamics and similarity in alpha 

suppression. 

• It is possible to identify the neural signature of the covert process that is motor imagery. 

• The spatial distribution of brain activity of imagery compared to the execution of real 

world dynamic behaviour such as walking, demonstrates a distributed neural network for 

motor imagery. 
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• In imagery of real world dynamic behaviour such as walking, the temporal and spatial 

distribution of brain activity of imagery compared to the execution, highlights the 

involvement of cognitive mechanisms that go beyond the mere encoding of motor 

information. 

• A parietal decrease in alpha power found in imagery, indexes the integration of visual and 

motor information for environment-related action representation of real world dynamic 

behaviour. 

Highlights of Chapter 4 

• When watching a person approaching or walking away, perspective of the observer and 

proximity of the agent matters to encode the action performed by other people. 

• Heightened neural activation, evident in a selective decrease in beta power when the 

approaching agent is nearing the observer, demonstrates that during action observation the 

social information of action representation are processed to understand the nature of the 

social interaction. 

• Modulation of mu rhythms in response to someone approaching, signals the need for a 

new dynamic neuroscience to understand real life interaction between people. 
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Chapter 1: General Introduction 

This thesis is about action representations and their neural correlates. Action representations 

serve as internal models of our behaviour, constructed through dynamic interaction between 

body and environment, shaped by knowledge and experience. We rely on action 

representations in order to act in an everchanging environment. Considering that much of 

our real world behaviour involves dynamic movements with degrees of freedom that are not 

tolerated by traditional brain imaging techniques, we have long been constrained in 

examining how actions are represented in the brain. In this thesis, limitations of traditional 

brain imagining techniques are overcome by employing a novel mobile EEG approach, 

which allows the identification of the neural markers of the action representations underlying 

real world locomotor behaviour. 

According to the theory of human information processing, action representations drive a 

single or series of movements in order to successfully achieve a goal, minimizing errors and 

optimizing the desired outcome. These operations consist in a complex hierarchy of 

cognitive mechanisms which plan, update, and predict behaviour. Furthermore, the 

embodied cognition framework (Barsalou, 2008; Clark, 1999) suggests that cognition, 

perception, and action are intimately related and that the brain is able to simulate actions and 

their consequences through the activation of action representation. Indeed, neuroscientific 

research has provided converging evidence that the brain is similarly activated when we 

execute, imagine or when we observe other people performing a particular action, suggesting 

that our cognitive system is activated ‘as if’ we were doing the action (Fadiga et al., 2000). 

The findings of the present thesis represent an important development for the study of 

cognitive and neural processes underlying real world behaviour. The three studies of the 

present thesis focused on locomotion, which represent intuitively one of the most natural 

and evolutionary conserved behaviours across species (Ferreira-Pinto et al., 2018). Although 

it appears a very elementary and pervasive behaviour in daily life, it originates from a 

complex system which include a close interaction between cortical and subcortical brain 

structures, such as the cortex, basal ganglia, cerebellum, midbrain and hindbrain, and spinal 

neurons (Kiehn, 2016; Ferreira-Pinto et al., 2018). Locomotor control is one of the most 

important acquisitions in human life. It develops slowly during infancy and constitute a 

fundamental basis for the development of psychological functions (for a review see 

Anderson et al., 2013). A large body of evidence have shown that locomotion and cognitive 
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functions are intimately related, and that the loss of locomotor abilities is one of the main 

predictors of cognitive decline in healthy aging (Ataulla h& De Jesus, 2021; Pirker et al, 

2017; Jahn et al., 2010) and neurological disease (Richards et al., 1993; Ambrose et al., 2010; 

Verghese et al., 2002; Beauchet et al., 2016). Indeed, gait impairments characterize a broad 

range of neurological disorders, such as Parkinson’s disease, dyspraxia, Huntington Chorea. 

Therefore, the investigation of neural markers of cognitive process underlying locomotion 

deserves attention in order to suggest new insights for clinical practice and health 

psychology. A key contribution is offered by the present thesis therefore towards the 

understanding of cognitive processes that drive locomotor behaviour, which can help the 

future development of robotic assistive technologies for the treatments of different 

neurological disorders.  

In the following sections (sections 1.1., 1.2., 1.3.) I will provide an overview of the 

development of the concept of action representation in theoretical psychological accounts, 

from behaviourism to embodied cognition. Subsequently (in section 1.4.), 

neurophysiological evidence of action representation will be discussed in relation to apraxia: 

a neurological disorder largely characterized by the loss of action representation of 

movements. Below, it will be also provide an overview of neuroscientific evidence of action 

representation in relation to motor imagery (section 1.5.) and action observation 

(section1.6.), each of which will be investigated in experimental Chapters 3 and 4 

respectively. An overview of electrophysiological evidence on those brain oscillations 

targeted in the studies, namely theta, alpha, and beta oscillations, will be provided in relation 

to action control, motor imagery and action observation (sections 1.7.-1.7.9.). Finally, in the 

last three sections of the introduction, the mobile approach (section 1.8.), the technical 

challenges (section 1.8.1.) and the rationale of this thesis (section 1.9.) will be presented. 

1.1. From behaviourism to computational approaches of motor 

control 

Action has been conceived as the cardinal element of psychology (Freese & Sabini, 1985). 

During behaviourism however, the concept of action was replaced with the broad and 

general term ‘behaviour’. The behaviourist account was strongly affected by the cartesian 

dualism, in which body and mind were conceived as separate entities. This circumscribed 

the object of psychological investigations, which was limited only to the association between 

stimulus-response, neglecting the mental dimension. According to behaviourism, 
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psychology as science should only investigate what happens to the body, i.e., what is 

observable and measurable, which can be mechanistically linked to the physical properties 

of the environment. 

Because of this pervasive account, during 1970-1980, motor theories in psychology were 

significantly influenced by the neurophysiological approaches, for which human motor acts 

can be defined as movements and reflexes. According to Giszter (2015) motor acts, in turn 

are defined by several fundamental building blocks for motion, also named motor primitives, 

which are kinematics, force interactions with the environment, body kinetics and regulation 

of impedance (Giszter, 2015). However, this mechanistic perspective assumed a 

fundamental similarity between human motor behaviour and  machines, which perform the 

same motion monotonously (Rosenbaum, 2009). Our motor behaviour continuously 

changes, as we need to adapt constantly to a dynamic environment (Rosenbaum, 2009). 

Critically, conceiving behaviour as motor acts, excluded the covert component of cognitive 

dimension. 

With the emergence of cognitive psychology in the 1950s (e.g., Miller, 1956; Miller, 

Galanter & Pribram, 1960) this perspective started to gradually change. Miller, Galanter and 

Pibram (1960) were the firsts to express concerns about the simplistic perspective of 

behaviour as ‘reflexes’ and they introduced the notion of ‘Plans’. Accordingly, behaviour is 

guided by Plans, which include motives and knowledge about our own behaviour and the 

external environment. Plans are primarily voluntary but can become automated, similarly to 

innate behaviours. More importantly, this perspective constituted the first attempt to 

introduce the cognitive dimension in the regulation of behaviour. The Plan of Miller and 

colleagues was similar to a programme, in which a hierarchical process controls the order of 

sequential operations to perform (Meijer & Roth, 1988). 

More specific claims were made in 1988 when Meijer and Roth published ‘Complex 

movement behaviour: The Motor-action controversy’ (Meijer & Roth, 1988). This work 

aimed to outline in more concrete terms the critical transition occurring during the second 

half of 1900, from ‘motor’ to ‘action’ theories. As summarised by the authors in their work, 

a radical theoretical change started with the cognitivist approach, shaping a new notion of 

action. Differently from the perspective proposed by Miller, Galanter and Pibram (1960) 

focused on the intentional aspect of behaviour, the new action theories emphasised the role 

of ‘motor program’ or ‘motor schema’. The new ‘action theories’ (Kelso, 1980; Saltzman & 

Kelso, 1987) assumed the existence of a ‘motor program’ or ‘schema’, which is set in 
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advance and runs in neural circuits for motor control. This program has a temporal structure, 

which is an emergent property regulating the timing of the behavioural output and 

corresponds to a dynamical internal model, for the sequence of different movements. 

In the same year, psychological theories were also radically changing after the influential 

work of the American psychologist Gibson (1979) and to the so-called ecological 

psychology, which claims the need to include the environment in scientific investigations. 

The ecological psychology framework traditionally refers the work developed by Gibson 

(1979), however from a broader viewpoint, this perspective also includes the works of other 

psychologists such as Brunswik (1943), Neisser (1979) and Bronfenbrenner (1977) who, 

with some variations, are also proponents of the ecological account. In Gibsonian terms, 

ecological psychology developed as a branch of ecological science, which emphasizes the 

reciprocal interaction between organisms and their environments (Gibson, 1979). Indeed, 

the first assumption of the Gibsonian ecological psychology is that perception is a product 

of the mutual interplay between the features of the environment - or ecological niche 

(econiche) - and the animal. The econiche is described in terms of properties or affordances, 

which are the functional possibilities offered by the environment to the sensorimotor 

capacities of animals. The perception of affordances is directly linked to action, as it 

automatically triggers the possible action that an individual can carry out in the surrounding 

environment, without the need of higher-level processes. Another critical difference between 

the ecological account and the cognitivist theories, is the existence of an action system, in 

which sensory and motor processes interact with each other, not anymore in hierarchies of 

programs (Reed, 1981). 

Despite the relevance of the cognitivist account, action theories and ecological psychology, 

a critical issue remained regarding the denial of mental representation. It was only later, with 

the development of the human information processing framework, which affected relevantly 

modern cognitive science, that the concept of representation assumed fundamental 

importance to define mental and motor processes behind behaviour. In cognitive science, the 

first theorist to recognise the relevance of the notion of representation was Fodor (1983). In 

his modular theory, Fodor assumes that the mind is organised in cognitive modules, which 

are computational devices specialised in specific domains, whose role is to encode input 

information and transform them in output. Perception is a process whereby the input of the 

sensory system is converted into a conceptual output: both input and output are conceived 

as representation, which are then transmitted to the motor system (Sperber, 1994). Certainly, 
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Fodor has the merit to introduce the notion of representation in cognitive science, however 

in his theoretical framework, they are conceived as conceptual models, rather than action-

related information. 

It is then with the computational approach and the embodied cognition theory that the term 

‘action representation’ assumes the characteristic of being an internal model that guides 

behaviour. The computational paradigms were inspired by the work of the Russian 

physiologist Berneistein (1967) who suggested that the motor system creates a model of 

future actions which is the product of the individual will and the interaction with the 

environment. Accordingly, for the computational approach, actions are not only 

biomechanical or physical events, but rather the natural units of our activities; this means 

that they are directed usually to targeted states, not to movements itself (Prinz in Heuer & 

Sanders, 2016). Actions depend on different levels of computations that are intrinsically 

related to the perceptual system. To have a successful behavioural outcome, an action must 

be guided by an appropriate representation, which is in turn the product of an internal 

feedforward system that simulates the dynamic interaction between the body and the 

environment. In this view, the action representation also offers an estimation of the possible 

outcome of the related behaviour, to minimize errors and increase the chance of success. 

Predictions are the fundamental pillar of the computational approach to motor control of 

actions (Wolpert, 1997; Wolpert & Kawato, 1998) which will be described in the next 

section. 

1.2. Computational models of action representation  

“Actions are not simply movements. Most of them are whole sequences of movements that 

together solve a motor problem. Each such chain consists of different movements that 

replace each other systematically, leading one to a solution for the problem. All the 

movements, parts of such a chain, are related to each other by means of the problem. If you 

miss one of the links of the chain, or mix up their order you will fail to solve the problem.” 

(Bernstein, 1996, p. 146, cited in Grafton & Hamilton, 2007). It is evident from this quote 

that Bernstein’s perspective highlights an underlying hierarchical structure of motor 

behaviour. The idea of a hierarchy in motor control was already mentioned between the end 

of the 19th and the beginning of 20th century’ by Jackson (1874) and Sherrington (1906), 

who suggested the existence of high and low level neuronal centres which are activated in 

https://www.sciencedirect.com/science/article/pii/S0167945707000504#bib10


6 

 

train during the production of a motor output, but at the same time interact as an integrate 

system. 

The theoretical assumption of a hierarchy in motor control is the core of the motor 

programming theory and of the computational approach to motor control (Wolpert. 1997; 

Wolpert & Kawato, 1998). According to Wolpert, motor control can be explained as a 

hierarchical cascade of processes which translate neural inputs into movement kinematics, 

in order to produce an observable behaviour. The ground of this theory consists in motor 

predictions, developed within the framework of forward models, which are causal models 

through which the system estimates the future state (behaviour) depending on the current 

state (Wolpert & Flanaghan, 2001; Miall & Wolpert, 1996). By predicting the future 

outcome of behaviour, a forward model is used to minimize errors in behaviour, select the 

optimal action and integrate the sensory and motor information into a state estimation, acting 

like a supervisory system (Wolpert & Flanaghan, 2001; Wolpert & Kawato, 1998). Internal 

models can be conceived as the computational equivalent to the cognitive construct of action 

representation or motor primitives of the motor theories (Kawato & Wolpert, 1998). Internal 

models are the building blocks which constitute the foundation of the motor repertoire, and 

are shaped by experience and learning (Wolpert. 1997). In particular, the forward models 

are systems which compare the internal model to the actual outcome. They provide a 

simulation of behaviour, calculating the dynamic interplay between the current state of the 

body and the external environment (Miall & Wolpert, 1996). 

Computational models are relevant as they show with accurate predictions how behaviour 

can be implemented in two main states: the covert preparation, which consist mainly of off-

line processes, and the overt execution, which designates online processes (Pezzulo & 

Ognibene, 2012). According to these models, a distal goal can be reached defining in 

advance the ideal action plan, and then activating the relative motor commands in order to 

implement the actual movement in time. However, motor control cannot be serial, as we 

need to constantly update the action representation in response to an ever-changing 

environment (Pezzulo & Ognibene, 2012). 

The serial approach of computational models generally assumes the independence of the 

behavioural decision, the selection of the action and the execution. This ‘serial’ view has 

been replaced by parallel models, which highlight the dynamic interplay between processes 

of motor preparation and execution that can be considered as a continuum, rather than a 

serial cascade of processes. Pezzulo & Ognibene (2012) proposed a model in which motor 
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control can be considered as a continuous proactive process which integrate past experience, 

actual predictions and present contextual information in order to successfully achieve a goal. 

This means that internal models or action representations need to be flexible, and adaptable 

to different contexts. Evidence on motor adaptations to external perturbations showed that 

we can switch between different possible action plans depending on the context (Gandolfo 

et al., 1996). A relevant example is the experiment of Gandolfo et al. (1996) on arm 

adaptations to force perturbation. In this study, participants had to execute movements 

towards targets. Movements were either subjected to random force perturbations, which 

induced a distortion of the postural configuration of the wrist, or executed without 

perturbation. A first main finding indicated an interference between the two conditions: even 

when no perturbation occurred, the postural configuration of the wrist appeared modified, 

showing an ‘aftereffect’. As learning proceeded, participants responded with different 

configurations to the two conditions, indicating that the prediction of the perturbations was 

then cancelled. These findings showed the ability of the motor system to build an internal 

model of the external world, selecting the response depending on the external perturbation. 

However, this model can be dynamically updated and adjusted during experience, correcting 

the initial prediction based on somatosensory feedback, changing together with the external 

events. This evidence has provided useful insights for testing hypotheses related to the 

flexibility of cognitive processes underlying motor control. However, it is clear that 

controlled settings do not really match real world scenarios and do not represent the 

complexity of human natural behaviour. Therefore, the aim of the first study of this thesis 

(Chapter 2) is to investigate cognitive processes underlying action representation during 

voluntary motor control in real world scenarios, such as online motor adaptations when 

walking and stepping over predictable and unpredictable obstacles. 

1.3. The emergence of embodied cognition 

The ecological ‘Gibsonian’ theory meant a radical change in the approach to study human 

cognition, firstly because of the rejection of behaviourist dualism, and secondly for claiming 

the interdependence between action and perception. This view represented an important 

precursor of the embodied cognition framework, which constituted the alternative to 

functional computational approaches (Garbarini & Avanzato, 2004). The core of embodied 

cognition consists in conceiving cognitive processes as shaped by the body and by 

sensorimotor experience, which are situated in the environment (Varela et al., 1992). In these 

terms, sensorimotor, perceptual, and motor processes are not separable within the cognitive 
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system. As argued by Gallese (2000), for the embodied cognition, the motor system not only 

drives the execution of actions but also represents it. The discovery of the canonical and 

mirror neurons in the monkey’s brain (Di Pellegrino et al., 1992; Fadiga & Craghiero, 2003; 

Gallese et al., 1996; Rizzolatti et al., 1988; Rizzolatti & Fadiga, 1998; Rizzolatti et al., 1996) 

represented strong evidence for the embodied perspective. The distinctive properties of 

canonical neurons are relative to their activation during specific hand-object interactions, 

but also during the observation of an object alone, indicating that they are sensitive to the 

action afforded by the object. Mirror neurons are activated both during the execution of goal 

directed movements and during the observation of goal directed movements. The properties 

of these neurons suggested a match between the execution and the observation of action, 

which occurs through the so-called ‘mental simulation’: a process whereby the brain is 

activated ‘as if’ the observer was doing a particular action. Mental simulation during the 

observation of others’ actions is based on the rehearsal of the specific action representation 

in the motor system of the observer, and it has been proposed as a possible mechanism 

through which we can understand others’ behaviour (Rizzolatti & Craghiero, 2004; 

Rizzolatti & Fogassi, 2014). Within the framework of mental simulation, Jeannerod (2001; 

2006) is one of the most relevant representative theorists. He proposed a unifying view of 

motor cognition, in which motor simulation is not limited to the observation of others’ 

behaviour, but plays a central role during the imagination of an action, also known as motor 

imagery. His perspective inspired the so-called ‘functional equivalence hypothesis’, for 

which action execution, observation and motor imagery share similar neural features and are 

conceived as functionally similar (Jeannerod, 2001; 2006). 

Strong evidence for the existence of a motor simulation mechanism, involving the rehearsal 

of the action representation in the human brain, came from neuropsychological observations 

on patients with apraxia. Apraxia is typically determined by a left parietal brain damage and 

is characterized by impaired execution of learned gestures, despite preserved motor and 

sensory systems (Heilman & Rothi, 2003). Although the different models proposed have 

determined a confused taxonomy and definition of the disorder, the investigation of apraxia 

was highly influential and contributed to the understanding of cognitive mechanisms 

underlying human motor cognition. In the following section, a brief review of the main 

models will be reported.  
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1.4. Actions representation: evidence from apraxia 

The term ‘ideo-motor action’ was coined by William B. Carpenter to indicate that action 

triggered by a ‘chain of ideas’ (Carpenter, 1874 cited in Heuer & Sanders, 2016). As reported 

by Prinz in ‘Perspectives on perception and action’ (Heuer & Sanders, 2016), Carpenter’s 

definition of ideomotor action was inspired by the previous theory of Lotze (1852). The 

similarities between the two approaches is evident from what Lotze wrote in his work 

‘Medicinische psychologie oder physiologie der seele’, translated by James: “The spectator 

accompanies the throwing of a billiard ball, or the thrust of a swordsman, with slight 

movements of his arm; the untaught narrator tells his story with many gesticulations; the 

reader, while absorbed in the perusal of a battle scene, feels a slight tension run through his 

muscular system, keeping time as it were with the actions he is reading of” (Lotze, 1852; 

cited in James, 1890, p. 525). Later, in ‘Principle of Mental Psychology’, Carpenter 

characterized ideomotor phenomena as actions arising automatically without any volitional 

control, underlying the immediate relationship and in some way a correspondence between 

ideas and actions. This account resembles Lotze’s perspective, whereby perceived or 

imagined movements immediately affect the execution of corresponding body movement.  

The concept of ideomotor actions emerged again with neuropsychological investigations on 

apraxia during the first years of the 20th century. It was Liepmann (1900, 1905; translation 

1977), who suggested that actions are guided by intrapsychic processes, which translates 

ideas in motor output (Goldenberg, 2003). In the first model proposed by Liepmann, the 

whole cortex generates the motor ‘idea’, and sends information to left sensorimotor regions, 

which in turn activate limbs and muscles. According to this schema, the image of a voluntary 

action is characterised by spatiotemporal features, created by intrapsychic processes which 

do not include kinetic aspects, but are closer to a visual entity, also called ‘movement 

formula’ (Goldenberg, 2003, p. 518). As reviewed by Goldenberg, in the second version of 

his schema, the motor ‘idea’ of Liepmann was clearly defined as a mental image of the 

movement, generated in posterior visual associative areas, which transmitted the motor 

commands through central areas via the parietal cortex. A lesion in the parietal cortex would 

then cause the damage of the idea or of the mental image beyond a particular movement, 

resulting in the inability to move limbs according to the idea (Goldenberg, 1992). The loss 

of the mental image of a movement would then be the origin of a motor disorder described 

as ‘ideomotor apraxia’ which is characterized by a selective impairment in imitative 
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behaviour and in the production of meaningless gestures on command, but with preservation 

of tool-use movements. 

In his last theorization, Liepmann identified another form of apraxia, the so-called ideational 

apraxia. This form of apraxia is characterized by a loss of the ability to produce purposeful 

behaviours, and can manifest itself with omissions, erroneous movement sequences and 

inappropriate tool use. According to Liepmann, in his publication from 1920 (Rothi et al. 

1991), differently from ideomotor apraxia, which is the loss of the motor representation, 

ideational apraxia is characterized by the loss of the meaning of purposeful movement. 

Since Liepmann seminal works, the original definition of apraxia has been revisited, and 

different classifications have been proposed (Geschwind & Damasio, 1985; Heilman et al., 

1982; Ochipa et al., 1989; Buxbaum et al., 2003; for a review see Goldenberg, 2009). Despite 

the confusing taxonomy (see Buxbaum, 2001) there are few general assumptions of 

Liepmann’s theory that are still accepted: (i) motor acts are stored in the brain as different 

level of information (ii); motor acts are the results of a chain of processes which combine 

the different elements of order to generate meaningful behaviours (Jeannerod, 2006; Grafton 

& Hamilton, 2007); (iii) the role of the parietal cortex in generating action representations 

which guide the implementation of purposeful movement (Goldenberg, 2009). 

The body of evidence on apraxia had a relevant impact on motor cognition theories and the 

understanding of action's representation. The evidence for an internal representation of 

movements was furthermore of interest due to the growing approaches based on the human 

information processing framework (Shiffrin & Schneider, 1977; Schneider & Shiffrin, 

1977). According to this account, the cognitive system can encode different information 

stored in distinct modalities, which are processed by neural circuits functionally connected. 

In line with this perspective, the first theory of motor representation adopting the human 

information processing approach, was proposed by Rothi, Ochipa, and Heilman (1991). As 

suggested by Rothi and colleagues, similarly to language, perceptual information related to 

gestures and objects are stored in distinct units of semantic knowledge. In order to produce 

a familiar gesture, the semantic route acts like a working memory buffer supporting the 

implementation of behaviour by processing the different information stored in memory. 

Conversely, for new gestures the semantic route can be ignored, and the visual input is 

directly translated in motor gestures (Rothi et al., 1991; Rumiati & Tessari, 2002). According 

to this view, different separate units regulate the recognition of objects and actions, and on 

the other hand the execution of actions. In line with these assumptions, apraxia might be 
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explained as an impairment to access information stored in the different units. However, this 

model was considered oversimplified and not adequate to explain several observed 

dissociations, such as the activation of motor areas when naming images of graspable objects 

(Martin & Chao, 2001; for further discussion see Negri et al., 2007; Buxbaum et al., 2005). 

The dissociation about tool-use knowledge received particular interest in motor theories, 

especially when it was found that in the monkey’s brain, neurons of the area F5 and in the 

intraparietal sulcus respond when the monkey performs a grasping movement but also when 

the monkey observes the movement performed by another agent or when the object is shown 

alone (Gallese et al., 1996; for review see e.g., Rizzolatti & Craighero, 2004; Rizzolatti & 

Wolpert, 200). Functional imaging studies on humans have revealed a homologous fronto-

parietal circuit, which is active during the observation of actions (Buccino et al., 2004) and 

that parietal and premotor areas are active when participants observe graspable objects (Chao 

& Martin, 1999; Johnson-Frey, 2004). These investigations suggested that a broad fronto-

parietal circuit might be responsible for the encoding of information about objects and 

related actions, stored in the form of ‘motor schema’ (Garbarini & Adenzato, 2004). In 

particular, this evidence suggested that the parietal and the premotor areas are possibly the 

storage of a ‘motor vocabulary’ needed to execute and recognise objects and related actions 

(Fadiga et al., 2000). This would be in line with the impairments exhibited by apraxic 

patients, which usually emerge after parietal lesions that might damage the stored knowledge 

about objects and related action representation (Buxbaum, 2018). 

Notably, several evidence showed that apraxic patients not only manifest deficit at the level 

of movement execution, but also during motor imagery (Roy et al., 1993; Sirigu et al. 1995; 

Jeannerod 2006; Buxbaum et al., 2005) and action observation (Pazzaglia et al., 2008; 

Frenkel-Toledo et al., 2016). For example, Sirigu et al. (1995) showed that patients with left 

parietal lesions were impaired in predicting time to execute the motor imagery of both simple 

and complex finger movements compared to healthy participants and to patients with lesions 

in central motor areas. Buxbaum et al. (2005) showed that patients with ideomotor apraxia 

present a deficit when they have to imagine a reaching and grasping movement using 

different grips, compared to healthy participants and non apraxic patients. Similarly, patients 

with apraxia were shown to have a deficit during recognition of actions performed by other 

individuals. Pazzaglia et al. (2008) showed that apraxic patients presented a deficit not only 

during the execution of meaningful gestures but also during the recognition of correct 

gestures executed by other individuals compared to non apraxic patients. Furthermore, 
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Frenkel-Toledo (2016) showed that patients with ideomotor apraxia fail in imitating 

reaching and grasping movements compared to patients without apraxia. Taken together, 

these findings converge towards the idea that apraxic patients might be specifically impaired 

in evoking action representation not only during the execution but also during recognition. 

Indeed, it has been proposed that apraxia might be related to an impaired motor simulation 

due to the difficulty in rehearse the action representation of the movement, which it is 

thought to occur during both motor imagery and action observation (Jeannerod, 2001; 

Jeannerod & Decety, 1995).  

Taken together, evidence on apraxia strongly suggests the existence of an action 

representation in the brain, which constitute the core component of motor imagery and action 

observation, further explored in the sections below. 

1.5. Action representation and Motor Imagery 

According to Kosslyn, a mental image is an internal representation created at the early stages 

of perception and emerging when the stimulus is not present (Kosslyn, 2006). Mental images 

are characterised by the same perceptual properties of the stimulus and can emerge 

voluntarily (Kosslyn, 1980; 2006). Mental images are similar to internal representations, 

therefore, given their subjective nature, assessing their properties has been a critical issue 

for experimental psychology and their relevance was denied until the rise of cognitive 

science and the theory of human information processing (Boring, 1950; Kosslyn, 1980). 

The first psychological account regarding ‘mental images’ focused on visual imagery, and 

it suggested a correspondence between the perceptual properties of the physical object and 

the characteristics of the internal mental images (Finke, 1986). This match, which constitutes 

the core of the so called ‘functional analogy model’ (Finke, 1986; Finke & Kurtzman, 1981; 

Kosslyn, 1978, 1984), serves as a ‘selective priming’ mechanism, which facilitates the 

activation of specific neural mechanisms in the visual system. Subsequently, a similar 

process was proposed also for the representation of motor acts, known as ‘motor imagery’, 

described as a cognitive process including the anticipation of behavioural outcomes in order 

to make an action plan and improve motor performance (Decety & Mick, 1988; Decety & 

Ingvar, 1990; Ingvar, 1985). 

Motor imagery has been defined as a particular type of mental image, i.e., it has been 

regarded as the internal representation of a movement without executing it (Decety, 1996a; 
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Jeannerod, 1994, 2001; Mulder, 2007). Specifically, motor imagery is the process whereby 

the action representation of a movement is mentally simulated, producing similar feelings 

and sensations arising during execution, but without any overt output (Decety & Ingvar, 

1990; Beisteiner et al., 1995). 

The objective assessment of motor imagery begins with the pioneering mental chronometry 

experiments by Decety and colleagues (Decety & Michel, 1989; Decety et al., 1989). These 

investigations showed a match between the temporal organization of real movements and 

the temporal duration of motor imagery. As reported in these studies, time required to 

imagine and execute movements, such as writing, drawing or walking, are similar and stable 

(Decety & Michel, 1989; Decety et al., 1989). Additionally, experimental psychology 

showed that motor imagery and actual execution of movement share a similar pattern of 

autonomic changes. Decety et al. (1991) recorded the vegetative response (heart rate and 

pulmonary ventilation) while participants imagined walking on a treadmill at different 

speeds. The results indicated the respiration rate and the pulmonary ventilation increased 

during motor imagery of walking with increased imagined speed, in a similar manner as 

during action execution. 

Another relevant finding concerned the evidence that motor imagery reflects biomechanical 

aspects of movements (Parson et al., 1987, 1994; Frak et al., 2001). In several studies on 

mental rotation of hands, Parson et al. (1987; 1994) showed that the time to mentally 

simulate hand movements from a resting position is similar to the actual movements when 

they involve common natural postures. However, they also showed that participants needed 

longer time to imagine less common and more difficult hand postures, suggesting that 

biomechanical and kinematic aspects of movements are reflected in the mental simulation 

(Parson et al., 1994). Decety and colleagues (1991) asked participants to walk on beams of 

the same length but different width, assuming that narrower width would increase the task 

difficulty and the execution times. They found that time to mentally simulate the task 

increased with task difficulty, matching the time to actually execute it, both in participants 

performing the task for the first time, and in participants who had previous knowledge of the 

task. This was interpreted as a similar adherence of both actual execution and motor imagery 

to Fitts’ law (Fitts, 1954), which predicts an association between speed and task difficulty 

(i.e., increased difficulty is associated with longer movement times). However, the presence 

of the actual execution as an experimental condition, was a confounding factor for these 

experiments, as participants had tacit knowledge of the motor task. This issue was later 
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addressed in several studies. Decety and Jeannerod (1995) employed a virtual reality 

paradigm and asked participants to imagine themselves walking in a virtual environment 

through several gates of different width and placed at different distances. They found that 

the time to mentally imagine the walk increased with the difficulty of the task (i.e., longer 

motor imagery times for longer distances) and this effect was not related to the tacit 

knowledge of the task. The adherence of motor imagery to Fitts’ law was also proven in 

movement involving tools use. Macuga et al. (2012) asked participants to actually execute 

and imagine moving a pen and two weighted tools (top-heavy and bottom-heavy) tapping in 

horizontal and vertical trajectories. They found that motor imagery of all the three tool uses 

conformed to Fitts’ law, suggesting an internal shared representation for real execution and 

motor imagery. 

Other evidence related to motor imagery came from neuropsychological patients with 

apraxia. As mentioned in the previous section of this Chapter, patients with damage to 

parietal brain areas (Liepmann, 1900; Heilman et al., 1982; Schwartz et al., 1991; Sirigu et 

al., 1995) might exhibit a deficit in tool use without any sensory or motor impairments. It 

was then shown that patients with apraxia exhibit also deficit in imagining the movement 

(Roy et al., 1993; Buxbaum et al., 2005). Buxbaum et al. (2005) compared the actual 

execution and the motor imagery of grasping movements towards different objects in healthy 

participants, stroke patients with ideomotor apraxia and stroke patients without apraxia. 

They found that stroke patients with ideomotor apraxia exhibit a more pronounced deficit in 

performing motor imagery compared to both stroke without apraxia and healthy participants. 

Aside from apraxia, other disorders showed deficit in both movement execution and mental 

simulation, for example, Parkinson’s disease (Dominey et al., 1995). 

Further evidence of the phenomenological correspondence between action execution and 

motor imagery came from brain imaging studies. Early investigations showed that during 

motor imagery the regional blood flow (rCBF) increases in motor areas such as the premotor 

cortex and supplementary motor areas (Rao et al., 1993; Orgonzo & Larsen, 1979; Roland 

et al., 1980; Decety et al., 1988; Grafton et al., 1996), and subcortical structure such as the 

cerebellum (Decety et al., 1990; Lotze et al., 1999; Grafton et al., 1996). Motor evoked 

potentials (MEPs) studies with transcranial magnetic stimulation (TMS) showed increased 

corticospinal excitability of the effector involved in motor imagery (Fadiga et al, 1998) 

without changes in the spinal excitability (Yahagi et al., 1996). The specificity of the 

activation during motor imagery has been confirmed also by functional magnetic resonance 
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imaging (fMRI) studies (Stippich et al., 2002; Ehrsson et al., 2003), which showed a 

somatotopic recruitment of the primary motor areas during motor imagery of tongue, finger, 

and toe movements. Furthermore, a large body of evidence has showed similar activation 

during execution and motor imagery over a large network including the premotor cortex, 

prefrontal areas, parietal cortex, and the basal ganglia (Geradin et al., 2000; Grezes & Decety 

2001; Hetu et al. 2013; for a recent review see Hardwick et al., 2018). 

Despite evidence for neural similarities, much evidence has also highlighted differences 

between motor imagery and action execution. For example, the mental simulation of a 

movement might take longer than actual execution (Decety et al., 1989; Louis et al., 2011) 

especially when participants have to perform novel complex tasks (Calmels et al., 2006; 

Cerritelli et al., 2020). Participant’s expertise (Olsson & Nyberg, 2010; Orlandi et al., 2020; 

Fink et al., 2009) and posture (de Lange et al., 2006) might also modulate brain activity 

during motor imagery. For example, Guillot et al. (2009) found that brain activation during 

motor imagery might differ from execution depending on the imagery ability. Good imagery 

performers recruit motor parietal and premotor areas, whereas weak imagers recruit more 

the cerebellum, orbitofrontal areas, and posterior cingulate areas (Guillot et al., 2009). 

Furthermore, the assessment of the ability of performing motor imagery has also been 

questioned. Usually, this ability is measured through questionnaires focused on the vividness 

of the mental image for visual imagery, and on the intensity of the ‘feeling’ for the 

kinaesthetic imagery (Roberts et al., 2008; Williams et al., 2012; Williams & Cumming, 

2011). Although these questionnaires have been proven to be a valid tool for assessing motor 

imagery ability, they are not enough to determine whether participants are effectively 

performing the mental task. This is mainly due to the covert nature of motor imagery and to 

the fact that these tools are generally self-reported scales, which are prone to several 

psychological biases, such as social desirability, self-protection bias or tendency to the mean 

(Gabbard & Lee, 2014; Dahm, 2020). Additionally, it has been suggested that for complex 

motor tasks, visual imagery is easier to perform compared to kinaesthetic imagery; thus, it 

is possible that it can be involuntarily used by participants (Guillot et al., 2004). 

Furthermore, in a recent meta-analysis, Hardwick et al. (2018) showed a rather small overlap 

between brain activation during action execution and motor imagery. In particular, this meta-

analysis revealed a prominent recruitment of frontal areas during motor imagery, which are 

usually less active during execution. Two possible explanations have been proposed for this 

difference: the higher recruitment of frontal areas might be related to the increased working 
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memory demands during motor imagery of complex movements (Rottschy et al., 2012; 

Wollenweber et al., 2014) or alternatively, to the inhibitory mechanisms (Blasi et al., 2006; 

Coxon et al., 2016; Nigel et al., 2015) which prevent the activation of corticospinal pathways 

during motor imagery (Crammond et al., 1997). 

In light of the evidence for a questionable functional equivalence between execution and 

motor imagery, an alternative model has been recently proposed by Glover and Baran known 

as the ‘Motor Cognitive Model’. The Motor Cognitive Model (Glover & Baran, 2017) 

provides a cognitive framework for motor imagery mechanisms. Whilst it does not deny the 

functional analogies, it suggests that motor imagery and actual execution also differ 

depending on the different motor stages and on the action being executed/simulated. At the 

stage of the movement preparation, the motor representation of an action is generated 

employing similar cognitive mechanisms in both motor imagery and actual execution. 

During the execution stage, the actual movement automatically activates visual and sensory 

feedback to monitor the movement online, whereas during motor imagery these processes 

are not activated due the absence of the physical movement. The model also poses a 

distinction between motor imagery of highly developed and poorly developed motor images. 

Highly developed motor representations are the results of well-known and strongly practiced 

actions, which are recalled easily and do not need a great amount of cognitive effort. Poorly 

developed motor representations are instead newly learned actions, which require more 

control and conscious effort during their recall. As proposed by Glover and Baran (2017), 

highly developed motor images would elicit greater similarities between motor imagery and 

actual execution, not only during the planning but also during the execution. Highly 

developed images are more likely to produce the match between time to execute and imagine 

the movement, differently from poorly developed images that require additional control. In 

summary, this model suggests that the planning phase of movement, is the common ground 

between motor imagery and action execution. 

The cognitive substrate of motor imagery has been difficult to assess primarily because of 

the methodological limitations, which allow the investigation unrepresentative and minimal 

movements. Indeed, the evidence of neural correlates of cognitive mechanisms underlying 

motor imagery has been recorded in tasks in which participants are seated or lying down in 

a scanner and imagining the performance of simple movements such as finger tapping or 

dorsiflexion of the foot (Pfurtscheller et al., 2006a, 2006b; Neuper et al., 1999; Hashimoto 

et al., 2013; Solis-Escalante et al., 2008, 2012; Muller-Putz et al., 2010). Furthermore, EEG 
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studies on motor imagery, usually analyse brain activity with a limited number of channels 

and cognitive dimension is not considered at all for (Leeb et al., 2007; Pfurtscheller et al., 

2003). For example, whole body dynamic movements in the natural environment have not 

yet been investigated. As suggested by the embodied cognition framework, action 

representations are dynamic entities, which include not only the kinematic aspects of the 

action, but also the information about the state of the body and the information coming from 

the external world (Varela et al., 1992). Indeed, much evidence has shown how the brain 

states and cognitive processes are influenced by the environment (Gramann et al., 2011; 

2014). Thus, in order to understand the complex cognitive substrate of motor imagery, it is 

necessary to look at natural actions, corresponding to what we actually do in the real world. 

Therefore, the aim of the second study (Chapter 3) of this thesis is to test the functional 

equivalence hypothesis on whole body dynamic natural movement applying a mobile 

approach. 

1.6. Action representation and Action Observation 

Moving and acting in the environment also means that we need to interact with others and 

understand their actions. The idea that humans are sensitive to movements performed by 

others is something that is not recent in psychology. As shown by developmental 

psychology, human infants are attracted by faces, body posture and body parts (for a review 

see Marshall & Meltzoff, 2015). Through the observation of others’ actions, infants can learn 

and can build their knowledge about the world and about the meaning of particular motion 

patterns. As suggested by the observational learning account (Bandura et al., 1966; Bandura, 

2008), infants acquire social skills through imitation (Meltzoff, 1988; 1996; 2017; Meltzoff 

& Prinz, 2002 Kuhl et al., 1996; Heimann, 1989; Nadel & Butterworth, 1999; Uzgiris, 1981). 

According to Meltzoff (2002; 2017), to learn a particular behaviour, infants need to evaluate 

the match between their own action and the action observed (Meltzoff, 2002; 2017). In other 

words, infants need a representational system to compare what they observed and their own 

motor transformations. This perspective supports the idea that understanding others is based 

on the activation of the action representation system which works through ‘mental 

simulation’ of the action observed. 

The hypothesis of a ‘mental simulation’ has then found the most important foundation in the 

late ‘80s when it was found through single cell recording that neurons of the F5 premotor 

area of the monkey’s brain become active both during the execution of particular goal-direct 
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hand movements such as grasping or retrieving a piece of food (Rizzolatti et al., 1987), but 

also when the monkey observed the same movement performed by another agent (di 

Pellegrino et al., 1992; Gallese et al., 1996). As reported by di Pellegrino et al. (1992), they 

‘incidentally’ observed that these neurons, today widely known as ‘mirror neurons’, were 

activated by the observation of meaningful, object-directed actions performed by the 

experimenter, even if the monkey was not performing any overt movement. From this first 

observation, a large body of evidence has tried to understand this peculiar property of the 

neurons of the area F5 of the monkey’s brain. A first crucial finding was that the area F5 

contains neurons that are selectively activated when the monkey observes an object alone, 

also called ‘canonical’ neurons, and other neurons are active during the observation of goal 

directed actions, performed both by a conspecific or by a human, also called ‘mirror’ neurons 

(Rizzolatti et al., 1987; Rizzolatti et al., 1996; Gallese et al., 1996). Gallese et al. (1996) 

compared the neural activation when presenting objects alone requiring different grip 

(precision grip, finger prehension, whole hand prehension) but also when observing action 

relate to food grasping (presenting the food to the monkey, putting it on a surface, grasping 

it, giving it to a second experimenter or taking it away from him), food manipulation and 

manipulation of other objects and other movements (waving, lifting arms). They found that 

the activation of mirror neurons was triggered by actions in which the mouth or the hand of 

the experimenter interacted with an object. These neurons only fired when the monkey 

observed and performed the same action, suggesting that mirror neurons’ function is related 

to the internal representation of the movement (Gallese et al., 1996; Jeannerod 2001) which 

encodes the essential elements of the action, such as the agent of the action or the specific 

motor aspects, acting as a ‘motor vocabulary’ (Gallese et al., 1996). This has led to relate 

the main function of the mirror neurons to the understanding of action performed by others. 

Further evidence suggested that mirror neurons might respond also to different levels of the 

action. Umiltà et al. (2001) recorded the activity of mirror neurons of the area F5 in the 

monkey brain while observing a ‘fully visible’ action towards an object, and while observing 

a ‘hidden’ action toward an object, i.e., the critical part of the hand-object interaction was 

not visible. They showed that most of the mirror neurons fired similarly in both conditions, 

meaning that they responded also when the monkey had to infer the goal of the action withoit 

observing it, suggesting a specialized mirror function in action prediction (Umiltà et al., 

2001). Kohler et al. (2002) demonstrated that mirror neurons fired both when the monkey 

performed a hand action (tearing action, dropping a stick) but also when the monkey heard 

the sound related to that specific action. Fogassi et al. (2005) compared the activation of 
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monkey’s mirror neurons during the observation of grasping actions with different purposes, 

i.e., grasping a piece of food for eating, grasping a piece of food for placing it in a container 

and grasping a solid object to place it. They found that mirror neurons of the inferior parietal 

lobule discharged selectively according to the goal of the observed grasping action. In other 

words, seeing a particular grasping action in relation to different goals, activates the same 

neurons that code the execution of that specific action, allowing the monkey not only to 

recognise, but also to predict the action outcome. This was further supported by evidence of 

mirror neurons activation during grasping actions performed with different effectors. In two 

independent investigations, Umilta’ et al. (2008) and Rochat et al. (2010), recorded the 

activity of mirror neurons while the monkey observed a grasping action performed both with 

hands and with a tool (pliers) by the experimenter. They found that mirror neurons were 

activated in both conditions, even when the action performed, required a different precision 

movement (closing vs opening) or a different tool (spearing food using a stick). 

The results obtained from monkeys and the parallel development of brain imaging 

techniques, led to a wide number of investigations aimed to find the homologous mirror 

neuron system also in humans. Interestingly, the first scientific evidence was provided in 

1950, when Gastaut & Bert (1954, but see also Cohen-Seat et al., 1954) recorded the cortical 

activity while participants observed a movie. They reported the blocking of the rolandic ‘mu 

rhythm’ (8-12 Hz) when participants observed biological motion, a pattern usually observed 

during movement execution. In the human brain, area F5 corresponds to Broca’s areas. 

Gallese and colleagues in 1996 speculated that this area might possibly represent the locus 

of the matching mechanism between execution of action and observation. 

First studies on humans targeted the premotor cortex using TMS. Fadiga et al. (1995) used 

the TMS to stimulate the motor cortex and recorded the MEPs from four muscles of the hand 

during the observation of grasping, of the object presented alone, of simple arm movements 

and a dimming light detection task (detect the dimming of a visual stimulus on the screen). 

They found that the observation of movement performed by other individuals increased the 

motor excitability, and that this pattern of motor activation during observation of others’ 

movement was similar to the pattern of muscle contraction during the actual execution of 

the specific movement. In particular, observing grasping actions elicited greater activation 

in the opponens pollicis, whereas during the observation of arm movement, the facilitation 

effect was found in muscles involved in arm elevation, but not in the opponens pollicis. 

Similarly to theories proposed in animal studies described above, this finding suggested that 
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action observation has a role in facilitating the motor response. This interpretation was 

further supported by Strafella and Paus (2000) and Maeda et al. (2002) studies. Strafella and 

Paus (2000) found similar results recording MEPs while participants observed handwriting 

and arm movements in the specific muscles involved in the execution of the two actions (i.e., 

first dorsal interosseous and the biceps). Similarly, Maeda and colleagues (2002) found a 

match between the MEPs elicited in the specific finger muscle involved in the observed 

action. 

EEG and neuromagnetic (MEG) studies also found evidence of a match between brain 

activity during observation and execution of actions in humans. Cochin et al. (1998) 

measured the cortical response using EEG while participants observed video projections 

showing objects, still and moving cartoons, and gymnastic exercises performed by a human 

model. They reported that during the observation of human movements, alpha and beta 

rhythms desynchronise over central and centro-parietal areas, a pattern that has been 

regarded as the index of motor activation during the execution of movements (Pfurtscheller 

& Klimesch, 1992; Pfurtscheller et al., 1996a, 1996b, see Chapter 4 for further discussion 

on alpha and beta oscillations during action observation). Hari et al. (2000), used MEG to 

investigate the activation of the motor cortex during the execution and the observation of 

manipulative actions, and during rest. They found that the precentral motor cortex was 

similarly activated during the execution and the observation of the movements compared to 

rest, although to a weaker extent during action observation. 

A large body of brain imaging studies has then extended these findings, showing that a broad 

range of brain areas are active during the observation of others’ actions. Rizzolatti et al. 

(1996) measured the rCBF employing the positron emission tomography (PET) scanning 

while participants observed a grasping movement towards an object (geometric solid and 

common small/large objects), while executing the grasping movements towards the same 

objects and while observing the object alone. They showed that the observation of grasping 

movements significantly activated the inferotemporal cortex and the left inferior frontal 

gyrus. Decety et al. (1996) asked participants to imitate or recognise meaningful actions and 

meaningless actions performed by an experimenter while measuring the rCBF through PET. 

They found that when subjects observed the action with the purpose of recognizing them, 

there was an increased activation of the right parahippocampal gyrus, whereas in the 

condition in which they had to imitate, there was an increased activation of the right 

dorsolateral prefrontal cortex and of the pre-supplementary motor areas. Furthermore, they 
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found that meaningful action activated the inferior frontal gyrus, middle temporal gyrus and 

the orbitofrontal regions, which were more active compared to meaningless actions. 

Similarly, Grezes et al. (1998) in a PET study, found a different activation of brain areas 

when observing meaningful and meaningless actions, the former involving activation of the 

inferior frontal gyrus and the fusiform gyrus and latter involving the activation of the 

superior and the inferior parietal lobe and the cerebellum. 

These findings demonstrated that a broad range of brain areas is involved in action 

observation, which were then confirmed by the fMRI investigations. Iacoboni et al. (1999) 

scanned participants while observing and then imitating finger movements that were shown 

in a video and while executing the same movements in response to visual cues. They found 

that different brain areas including the left inferior frontal cortex and the superior parietal 

lobule, were active during both observation and imitation. Buccino et al. (2001) investigated 

brain activation during the observation of object- and non-object related actions performed 

by a model with different body effectors, such as mouth, arm, hand, and foot. They found 

that action observation of movements performed with different body parts activated the 

frontal premotor brain areas in a somatotopic manner. Furthermore, they found that object 

related actions elicited a somatotopic activation of the parietal areas, confirming the role in 

the perception of manipulable objects (Buccino et al., 2001). Johnson-Frey et al. (2003) 

further demonstrated that the dynamic hand-object interaction is not essential to activate the 

mirror neuron system in humans and that only the static image of hand-object interaction is 

enough to elicit a mirror response. They analysed the brain response using fMRI while 

participants observed static images of objects being either grasped or just touched. The 

results indicate a greater response of the inferior frontal areas during grasping images 

compared to touching images, suggesting that the inferior frontal cortex might be relevant 

for action-relevant perceptual properties. 

Despite the large number of neuroscientific investigations on action observation, 

experimental paradigms have been affected by a lack of ecological validity. For example, 

typically, studies on action observation have employed recorded videos in which only 

targeted body parts were shown to participants (Cochin et al., 1998; Ulloa & Pineda, 2007; 

Zarka et al., 2014; Angelini et al., 2018; Kilner et al., 2006; 2009). It has been suggested 

indeed that brain activity in response to recorded videos might be reduced in comparison to 

live actions (Rizzolatti & Fogassi, 2014). Furthermore, as one of the most accredited 

hypotheses for the action observation is related to the understanding others’ action goals 
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(Schippers & Keysers, 2011; Hamilton, 2013; Buccino et al., 2001, 2004; Wheaton et al., 

2004; Rizzolatti & Fogassi, 2014) it is crucial to investigate cognitive mechanisms related 

to action observation in contexts that resemble real world dynamics. This means that to better 

understand the meaning of the mirror neuron system it is necessary to use experimental 

paradigms aimed to disentangle the different factors that might affect cognitive processing, 

in settings that reproduce what happens during real life action observation. Thus, the aim of 

the third study of this thesis (Chapter 4) is to investigate neural correlates of whole body 

dynamic action observation. 

 

Figure 1.1. Contrast analysis taken from Hardwick et al., 2018. The figure shows the overlap 

between motor imagery, action observation an movement execution across cortical and subcortical 

areas emerged from the meta-analysis conducted by the authors.  

1.7. Brain oscillations 

The development of the human information processing framework (Boring, 1950; Kosslyn, 

1980) and the theories of motor control (Wolpert. 1997; Wolpert & Kawato, 1998) signified 

an important step forward for modern neuroscience. The first important consequence of this 

theoretical revolution was the idea that the brain works as a predictive machine, that 

processes regular features of the external environment and uses this information to predict 

events and solve problems (Wolpert. 1997; Wolpert & Kawato, 1998). The ability of the 

brain to work as a predictive machine is supported by complex processes, which above all 

include the organization and the retention of information (Buzsáki et al., 2013). These 
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processes allow the brain to maintain a trace after the disappearance of the input, and take 

place thanks to the continuous online modification of synaptic connections over a broad 

number of functional brain circuits (Buzsáki et al., 2013; Buzsáki, 2006). Another important 

ability of the brain is the integration and the organization of local processes into the global 

system, also known as bottom-up communication (Buzsáki et al., 2013; Tononi et al., 1998). 

This communication can take place also in the other direction, from the global to the local 

level, establishing the so called top-down control (Engel & Fries, 2001). To support these 

processes, a powerful exchange of information between local and global structures, is 

necessary. Furthermore, in order to produce complex computations and generate behavioural 

output, brain processes need to interact in parallel with each other, integrating data coming 

both from the sensory system and from the external world (Buzsáki et al., 2013; Cisek & 

Kalaska, 2010; Gallese, 2000). 

One the most accredited hypotheses regarding how the information are organized, retained, 

and integrated from local areas to the global system, regards brain oscillations, which are 

thought to mediate and support these processes (Buzsáki, 2006; Buzsáki et al., 2013). Brain 

oscillations are ubiquitous phenomena in the nervous systems, and they are evolutionary 

preserved across species (Buzsáki et al., 2013). This suggests that they might underlie some 

fundamental brain processes such as the encoding of sensory information and the generation 

of specific behaviours (Singer, 2017). All the brain structures have the intrinsic ability to 

generate oscillations which propagate within the central nervous system. This knowledge 

emerges primarily from animal models and from studies on patients who received deep brain 

stimulation (DBS) surgery. The implanted electrodes can record oscillations from single 

neurons, neuronal assembly, and local field potentials (LFP). Although different techniques 

have been used to investigate brain oscillations in humans (i.e., electrophysiology both in 

vitro in vivo and MEG), the principal methodology employed by cognitive neuroscience is 

the EEG, which provide a non-invasive recording of ongoing oscillations over the scalp with 

a high temporal accuracy. 

The frequency of brain oscillations depends on the properties of different neurons, and it 

covers a range between 0.05 Hz to 500 Hz (Buzsáki, 2010). However, the classical taxonomy 

of human brain rhythms includes slow frequency bands, namely delta (0-4 Hz), theta (4-8 

Hz) and alpha (8-12 Hz), and high frequency bands, such as beta (13-35 Hz) and gamma 

(35-90 Hz). Single neurons as well as neuronal assemblies, can generate rhythmic activity 

both in a specific frequency range or within multiple frequencies (Hutcheon & Yarom, 
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2000). This suggests that specific timing of oscillations might represent the information 

exchange between different networks (Buzsáki & Draguhn, 2004; Buzsáki, 2010). Typically, 

slow waves are generated by broad distributed and prominent membrane-potential changes, 

whereas fast oscillations are generated by narrower neuronal assemblies and by smaller 

changes in the membrane action potential (Singer, 2017; Buzsáki, 2010; Buzsáki et al., 2013; 

Fries et al., 2007). The type of oscillations produced by a particular brain area depends on 

the characteristics of the specific neurons, which can have frequency preferences and 

oscillate either spontaneously or in response to specific stimuli. Generally, spontaneous 

brain oscillations are the index of excitatory and inhibitory postsynaptic potentials, which 

can be characterized by cyclic or temporary changes in excitability. For example, pacemaker 

cells are characterized by regular fluctuation, and are involved in the control of rhythmical 

behaviour, such as locomotion, respiration, and heart frequency (Marder & Buchner, 2001; 

Grillner, 2006). However, neurons can oscillate in response to determined stimuli: indeed, 

the role of oscillations in supporting cognitive processes has been assessed through different 

experimental paradigms aimed to measure cortical activity elicited by specific cognitive 

tasks (Buzsáki, 2010;Buzsáki et al., 2013). 

The most important evidence for the association between oscillations and cognitive 

processes, is the synchronized activity of neural networks during perceptual and sensory 

processing (Engel et al., 2001; Ward, 2003). Synchrony is necessary when information needs 

to be retained or integrated, and it is usually visible as a coherent brain activity in the EEG 

(Hutcheon & Yarom, 2000; Varela et al., 2001). The strength of neuronal synchronization 

depends on the velocity of signal conduction, which is globally mediated by low frequency 

ranges, such as theta or alpha frequency ranges (Buzsáki et al., 2013). According to Buzsáki 

(2010) synchrony is defined by the time window in which information is retained, whereas 

successive events that evoke identical responses can induce non-synchronous activation of 

neural networks. For example, synchronous and asynchronous activity in the basal ganglia 

can induce the so-called event-related desynchronization/synchronization over cortical areas 

(Gatev et al., 2006). This pattern of synchronization and desynchronization is generally 

accepted as the modulatory activity of communication between (and within) the cortex and 

other subcortical structures. 

The event-related spectral desynchronization was firstly described by Pfurtscheller & 

Aranibar (1977) in the alpha and in the beta frequency bands, and is commonly accepted as 

the index of the activation of the corresponding cortical area. In contrast, the event-related 
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spectral synchronization is associated with the reduction of cortical activation (Pfurtscheller 

& Aranibar, 1977). Both phenomena can be studied by analysing the power spectral changes 

in the frequency domain, by which the power spectral changes of the EEG activity are 

averaged, and time locked to events. This analysis, also known as time-frequency analysis, 

is usually represented by a two-dimensional image called event related spectral perturbation 

(Pfurtscheller & Da Silva, 1999; Makeig et al., 2004, see Figure 1.2).  

  

Figure 1.2. Mean event-related changes in spectral power (ERSP) computed as the percentage 

change from baseline, during the epoch of interest  at frequencies ranging from 3 to 35 Hz. The image 

shows an increase of power in the frequency range of 10-35 Hz during the first 500ms, and a decrease 

in power around 2500ms and lasting until 3500ms in the frequency range of 7-33 Hz. 

One of the principal pieces of evidence of previous EEG investigations is that distinct 

oscillations in particular frequency ranges are generated by specific tasks, suggesting a 

functional specialization (for a recent review see Klimesch, 2018). The first example was 

reported by the pioneering studies of Berger (Berger, 1929) who observed different power 

spectral changes in the alpha frequency band during rest with eyes closed compared to rest 

with eyes open. Following this first observation, EEG investigations have aimed to identify 

the functional significance of brain oscillations by analysing the frequency domain using the 

event related spectral perturbation in response to cognitive tasks. However, mostly cognitive 

functions are investigated in isolation, therefore multiple interpretations have been proposed 

for the same oscillatory range, resulting in separate and distinct hypotheses for the same 

frequency band. For the purpose of this thesis, only evidence regarding theta, alpha and beta 



26 

 

oscillations bands will be discussed in relation to action control, motor imagery and action 

observation, which are the focus of the three studies reported in Chapter 2, 3 and 4 

respectively. Therefore, in the following sections, previous evidence regarding the 

interpretation of theta, alpha and beta oscillations will be discussed in relation to action 

representation during voluntary actions, motor imagery and action observation. 

1.7.1. Theta and action representation in execution 

The role of slow oscillations in the theta frequency range (6-12 Hz in rats, 4-7 Hz in humans) 

have been for long the centre of an animated debate. Mainly, electrophysiological evidence 

of theta oscillations has been collected on animals. The first hypothesis about the role of 

theta oscillations in the brain associated these slow waves to arousal, following the 

observation of cortical and hippocampal theta activity during the administration of noxious 

stimuli in anesthetized rabbits (MacLean et al., 1952; Green & Arduini, 1954). 

Subsequently, theta waves were recorded in both rats and cats during active behaviour, such 

as locomotion, spatial orientation, and memory tasks (Vanderwolf, 1967, 1969). These 

observations were then consistently reported in a large body of animal studies, involving 

rats, guinea pigs, dogs, cats, gerbils and suggested a role for theta oscillation in the 

preparation of voluntary behaviour (Kramis et al., 1975). This view was then followed by 

an alternative hypothesis developed by Bland (1986) who suggested the role of theta waves 

in integrating sensory motor information during behaviour in rats. 

In humans, theta activity has been difficult to record, mainly because this rhythm is not as 

prominent as the hippocampal theta of animals. Furthermore, it is difficult to establish an 

relation between functions exploited by cortical oscillations in animals and humans, as the 

same cognitive function might be subserved by distinct frequency ranges. For example, theta 

oscillations over the visual cortex in rodents exhibit some similarities with human alpha 

rhythm (Senzai et al., 2019). Additionally, another difficulty for a univocal interpretation is 

represented by the pervasive presence of theta rhythm in different cognitive tasks 

(Cruikshank et al., 2012). Indeed, theta oscillations have been regarded as the index of 

different cognitive functions, such as attention (Aftanas & Golocheikine 2001; Banquet 

1973; Brookings et al. 1996; Ishihara & Yoshii 1967; Mizuki et al. 1982; Mundy-Castle, 

1957; Nakashima & Sato 1993; Smith et al. 2001), memory (Gevins et al. 1997; Gruber et 

al. 2008; Jensen & Tesche 2002; Klimesch et al. 2001; Krause et al. 2000; Onton et al. 2005; 

Sederberg et al. 2003), spatial navigation (Caplan et al. 2001, 2003; de Araujo et al. 2002; 
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Ekstrom et al. 2005; Kahana et al. 1999, 2001). Similarly to animal models, theta oscillations 

have been proposed to underlie sensorimotor integration, in analogy with Bland’s hypothesis 

(Caplan et al. 2003). This perspective is supported by several evidence that showed that 

during the planning and the initiation of a motor response, theta activity increases over the 

motor brain areas (Tombini et al., 2009; Mehring et al., 2003; Perfetti et al., 2011; 

Cruikshank et al., 2012). 

Neuroscientific evidence on humans has also pointed to the role of theta activity in action 

monitoring in relation to the error-related negativity (ERN). The ERN is a negative event 

related potential, also known as error negativity (Ne), which has been consistently reported 

to occur with the appearance of erroneous responses (Ghering et al., 1990; Gehring et al., 

1993, 1995; Falkestein et al., 1991; Dehaene et al., 1994). The ERN peaks approximately 

around 150 ms after the incorrect response, and it is temporally aligned with the onset of the 

electromyographic (EMG) signal in the muscle involved in the response (Botvinik et al., 

2000). In the seminal studies of Gehring et al. (1993) and Dahaene et al. (1994), the ERN 

was observed during the performance of the Eriksen Flanker task (Eriksen & Eriksen, 1974; 

Coles et al., 1985), known to induce erroneous responses. In both studies, the ERN was 

recorded following incorrect responses but not correct ones. Furthermore, the ERN was 

maximal over medial prefrontal brain areas, specifically over the anterior cingulate cortex 

and the supplementary motor areas, suggesting that these areas might play a key role in the 

online monitoring of performance (Ghering et al., 1990; Gehring et al., 1993; Dahaene et al., 

1994). After these studies, different perspectives emerged regarding the role of the ERN. 

The first hypothesis (Falkestein et al., 1991; Ghering et al., 1990; 1993) pointed towards a 

response checking process. According to this interpretation, the ERN represents the correlate 

of a cognitive mechanism which detects the mismatch between the actual (erroneous) 

response and the action representation of the required response. The second hypothesis 

suggests that the ERN is not related to comparative processes but arises when a task induces 

the competition between different conflictual responses, which more likely generates 

erroneous performances (Carter et al., 1998). However, a third perspective supported by 

evidence of the occurrence of the ERN both during correct and incorrect responses 

(Scheffers et al., 1996; Vidal et al., 2000; Luu & Tucker 2001) pointed towards a general 

mechanism for the evaluation of action consequences, of both correct and incorrect 

responses (Luu et al., 2003; Vidal et al., 2003). 
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A critical finding was provided by Luu & Tucker (2003) who revealed that the ERN shows 

association with the midline frontal theta for both correct and incorrect responses during the 

performance of the Eriksen Flanker task. This association was consistently reported by other 

studies, which suggested that midline frontal theta could be the generator of the ERN (Luu 

et al., 2004; Trujillo & Allen, 2007; Cavanagh et al. 2009) and might index the monitoring 

of action outcomes (Cavanagh et al., 2009; 2010). Specifically, midline frontal theta might 

signal the need for an online behavioural adaptation, especially after erroneous responses 

(Cavanagh et al., 2010). This perspective is further supported by the observation of increased 

theta activity over mid-frontal and sensorimotor areas during challenging balance tasks 

(Slobounov et al., 2009; Sipp et al., 2013) and in response to external perturbations (Peterson 

& Ferris, 2018). Most of these findings reported the increase of power over the anterior 

cingulate cortex that has been related to detection of errors and online monitoring of actions 

(Anguera et al. 2009; Slobounov et al. 2009; Sipp et al., 2013). 

1.7.2. Theta and action representation in Motor Imagery 

The original account of motor imagery changed substantially over the past 30 years due to 

the growth of scientific evidence. Recently, a multidimensional perspective regarding motor 

imagery as has been proposed (Eaves & Cumming, 2018). According to this view, cognitive 

processes underlying motor imagery include different functions, namely generation, 

inspection, transformation, and maintenance.  Generation includes the process of producing 

a transient mental image from sensorimotor long-term memories, created during previous 

experience. Inspection involves the shift of attentional focus on perceptual properties, to 

extract and encode relevant information. Transformation involves the manipulation of the 

features of the motor image. Finally, maintenance is defined as a supporting process for the 

other functions which ensure the achievement of the required goal. 

The multidimensional account, which is based on a computational approach developed by 

Kosslyn (2006) for visual mental images, received strong support from brain imaging 

studies. These investigations revealed the involvement of a broad frontoparietal-striatal 

network in motor imagery tasks, suggesting that motor imagery involves a large range of 

cognitive functions, such as working memory, action monitoring, predictive coding, 

attention, and sensorimotor integration. In line with the multidimensional model of motor 

imagery, this chain of cognitive mechanisms would ensure the different steps, i.e., 

generation, inspection, transformation, and maintenance of the motor image (Guillot et al., 
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2014; O’Shea & Moran, 2017; Eaves & Cumming, 2018). Furthermore, recent EEG studies 

(Van der Lubbe et al., 2021) suggested that motor imagery involves more executive control 

compared to actual execution, which support the different operations included in the 

multidimensional model (Eaves & Cumming, 2018). 

As mentioned in the previous section, a neural correlate for executive functions has been 

identified in theta rhythm. Theta rhythm over frontal areas has been associated with action 

monitoring, error prediction, and generally to top-down cognitive control (Cavanagh et al., 

2010). It has been proposed that theta oscillations might reflect cognitive control processes 

also in motor imagery. This is supported by several electrophysiological evidence showing 

increased theta activity in skilled participants. Weeber & Doppelmayr (2016) examined the 

effects of motor imagery training in a dart throwing task. EEG activity was recorded at the 

beginning and at the end of the 15 training sessions. At the end of the training, they found 

significant higher theta increase in middle frontal electrodes compared to the first session 

only in the group of participants that underwent the motor imagery training, but not in a 

control group that received no training. Other studies from sports literature showed that 

midline frontal theta is associated with top-down cognitive control during movements 

(Baumester et al., 2008; Doppelmayr et al., 2008; Luchsinger et al., 2016). Baumester et al., 

(2008) observed a higher theta power in experts compared to novices during golf-putting. 

Doppelmayr et al. (2008) found that midline frontal theta was higher in expert shooters 

compared to novices just before rifle shooting. Similarly, Luchsinger et al. (2016) showed a 

larger increase of midline frontal theta in experts compared to novice skiers towards the 

shooting. 

Conversely, other evidence showed different findings in experts and novices. Manicucci et 

al., (2020) found that participants with low-score in kinaesthetic imagery ability measured 

with the Movement Imagery Questionnaire (MIQ-3, Hall &Martin, 1997) exhibit less theta 

power over frontocentral brain areas, which might indicate the need for a greater cognitive 

effort to perform the imagery task compared to high-score participants. These findings are 

in line with the study conducted by Ahn et al. (2013). They showed that theta oscillations 

were associated with the brain computer interface (BCI) user performance, and that increases 

in theta power were associated with illiterate users, suggesting recruitment of additional 

attentional resources. Similarly, Trambaiolli et al. (2019) reported higher theta power in 

‘literate’ participants performing a motor imagery task requiring them to move a cursor on 
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a screen using neurofeedback. They found that good performers exhibited a higher theta 

power compared to ‘illiterate’ participants. 

These findings offered two possible interpretations. According to the first hypothesis, theta 

oscillations might represent the recruitment of greater attentional resources in good motor 

imagery performer, which is supported by evidence of the association between theta 

oscillation and attentional processes (Haufler et al., 2000; Kubota et al., 2001; Luu et al., 

2003; Nakashima & Sato, 1993; Sauseng et al., 2006). The second hypothesis argues that 

theta activity during motor imagery might reflect the feedback of the performance, supported 

by evidence that shows how theta activity might signal the evaluation of action outcomes 

(Cavanagh et al., 2009; 2010). In these terms, the higher theta power in good performers 

would mean a greater engagement in feedback and learning compared to bad performers. 

Van der Lubbe et al. (2021) examined the involvement of frontal areas using a Go/No-go 

discrete sequence task in which participants had to perform a sequence of five finger 

movements pressing different keys of a keyboard with the left or the right hand. The 

participants had to execute, imagine, or withhold the movement. They found a higher frontal-

central theta increase of power during the motor imagery condition, compared to the 

execution and the inhibition of movements. The findings suggest a greater engagement of 

attentional processes and effort during motor imagery, but also a possible involvement of 

top-down cognitive control processes (Sauseng et al., 2005, 2006; Luu et al., 2003). 

1.7.3. Theta and action representation in Action Observation 

The role of theta oscillations has been investigated also in relation to action observation. 

Preliminary studies on children aged 2-7 years, showed that during action observation of 

biological movements a prominent theta band suppression occurred over frontal, temporal 

and central brain areas compared to the observation of both static objects and objects in 

movement (Cochin et al., 2001). These findings were further confirmed on children aged 5-

7 years, in which a prominent theta band suppression was found over central, parietal, and 

temporal areas during action observation (Martineu et al., 2008) This evidence suggests that 

theta oscillations might represent the neural marker of the development of mirror functions 

in the cognitive system, which starts from slow oscillations, and it is replaced by faster 

frequency ranges during the adolescence, such as alpha rhythm (8-12 Hz, Oberman et al., 

2013).   
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Furthermore, studies on neurotypical human adults also reported theta desynchronization 

during action observation tasks. Frenkel-Toledo et al. (2016) investigated cortical activation 

during rest, execution, and observation of reaching and grasping hand movements and 

observation of non-biological movements (i.e., a ball rolling on a surface). The data 

indicated a stronger theta suppression occurring during action observation of hand 

movements compared to non-biological movements. Urgen et al. (2013) investigated theta 

oscillations during action observation of five upper body actions performed by a human 

agent, a human-like robot and a robot. They found that the observation of the movements 

performed by the robot elicited a stronger increase in the theta power over frontal and central 

electrodes compared to the humanoid and android movements. In both studies, theta 

oscillations have been proposed to index cognitive processes that are distinct from the action 

simulation processes occurring during action observation. It has been suggested that theta 

rhythm might be related to the encoding of the action representation in working 

memory(Duzel et al., 2005; osipova et al., 2006; Zion-Golumbic et al., 2010; Klimesch et 

al., 2010). Additionally, consistently with previous studies which associated theta activity 

with semantic linguistic congruence (Hald et al., 2006; Davidson & Indefrey, 2007; 

Bastiaansen et al., 2008; Shahin et al., 2009), Urgen et al. (2013) pointed out a possible 

specific role for theta activity in integrating perceptual information and semantic memory 

during the observation of actions. 

An alternative explanation regarding the role of theta oscillations during action observation 

has been proposed by Babiloni et al. (2017). They examined the functional connectivity of 

theta oscillations over premotor and frontal brain areas during action observation and 

execution of reaching and grasping movements towards different objects through the 

electrocorticographic (ECoG) recording in epileptic individuals. The results indicated a 

stronger functional connectivity in both delta and theta frequency range (3-8 Hz) occurring 

within prefrontal and premotor networks during the execution of reaching and grasping 

movements compared to their observation. According to Babiloni (2017), theta and delta 

oscillations are involved in enhancing neural connections between distant brain areas, 

depending on task-related demands. In other words, higher functional connectivity would 

promote coordination within a broad neural circuit, especially in conditions requiring 

additional cognitive resources. This explanation is furthermore consistent with the 

sensorimotor integration account, which highlight the role of theta oscillations in the 

integration of motor programs and sensory information for the online monitoring of action 

outcome (Bland & Oddie, 2001; Caplan et al., 2003; Ekstrom et al., 2005). 
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1.7.4. Alpha and action representation in execution 

In the early 20th century, Hans Berger observed that when adults relax with eyes closed, a 

rhythmic activity around 10 Hz emerges from posterior scalp regions (Berger, 1933). This 

observation suggested that in absence of external visual stimulation or motor output, the 

brain produces a resting rhythm, characterised by power suppression (Kuhlman, 1978). 

Following this observation, the alpha power suppression over posterior brain areas was 

interpreted as the index of bottom-up processing (Klimesch et al. 2007). However, this 

interpretation was then questioned by the evidence that alpha oscillations can be also 

suppressed in absence of visual stimulation in a dark room with eyes open (Adrian & 

Matthews, 1934; Penfield & Jasper, 1954; Moosman et al., 2003). Moreover, alpha power 

suppression is not only observed over occipital scalp areas, but also over central brain 

regions during movements (Pfurtscheller, 1989; Pfurtscheller & Berghold, 1989), over 

frontal sites during semantic processing (Klimesch et al., 1997; 1999), and over parietal areas 

during memory tasks (Klimesch et al., 2006). Walter (1950) was the first to indicate that 

each individual’s alpha rhythm is the outcome of different oscillatory patterns, 

corresponding to the ‘most highly synchronised process over the largest superficial area’ 

(Walter, 1950 cited in Guntekin & Basar, 2007). According to Walter’s account, Galambos 

(1992) classified the alpha ‘rhythms’ in two general categories: spontaneous alpha 

(generated spontaneously in the brain) and induced alpha (induced by external sensory 

stimuli). Subsequently, Basar et al. (1997) highlighted the necessary use of the term ‘alphas’ 

and indicated four main dynamics for alpha patterns, which can be spontaneous, evoked, 

induced and emitted. Spontaneous patterns reflect an integrative process of different brain 

functions. Induced patterns are defined as initiated but not time-locked to a stimulus. Evoked 

reflects the pattern of alpha activity time-locked to a stimulus. Emitted indicates a pattern of 

activity observed in anticipation of the external stimulation. 

Since these observations, different hypotheses about the functional and cognitive meaning 

of alpha have been proposed. A popular hypothesis suggested by Pfurtscheller et al., (1996) 

is that alpha might reflect the general activation of the brain, i.e., an ‘idling’ rhythm of the 

brain, which has been indicated as the state of the brain when no external stimulation is 

provided (Adrian &Matthews, 1934). The general premise to this account is that brain areas 

engaged in a given task, display event-related desynchronization, whereas brain areas that 

are not related to the task and represent a potential interference, present event-related 

synchronization. As suggested by Klimesch (2012), a strong support for this account, is 
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provided by the evidence that alpha suppression is usually observed in response to different 

tasks (Pfurtscheller & Lopes da Silva, 1999), it is widespread over the scalp and it usually 

lasts until the end of the task, suggesting that alpha power suppression might reflect active 

processes (Kaufman et al., 1990, 1992; Michel et al., 1994). Differently, alpha event-related 

synchronization represents the neural correlate of a specific localised idling rhythm, which 

can be recorded over brain areas that have ‘nothing to do’ (Adrian & Mattews, 1934, cited 

in Pfurtscheller et al., 1996b). This observation was supported by the evidence that areas that 

are not related to the processing of information related to the task at hand present alpha 

power synchronization. For example, alpha power synchronization can be observed over 

hand areas during foot movements (Pfurtscheller & Neuprer,1994) and during visual 

stimulation (Brechet & Lecasble, 1965; Pfurtscheller & Klimesch,1992). 

Within motor cortical areas, alpha oscillations have been observed during preparation and 

execution of movements. As mentioned before, around 2 seconds prior to the movement 

onset, a strong desynchronization in the alpha band (8-14 Hz) appears contralaterally in the 

motor cortex and then becomes bilateral with the movement execution. The alpha 

suppression is sustained during movement and gradually dissipates around 2 seconds after 

movement cessation (Gastaut, 1952; Pfurtscheller & Aranibar, 1979; Toro et al., 1994; 

Pfurtscheller & Berghold, 1989; Stancák & Pfurtscheller, 1996; Jurkiewicz et al., 2006; 

Heinrichs-Graham et al., 2013). The cortical activation observed prior to the movement 

onset has been suggested to represent the preparation of the relevant sensorimotor circuits 

needed to implement the actual execution of the movement (Georgopoulos et al., 1989; 

Pfurtscheller et al., 1997). 

However, a controversial finding for the idling rhythm hypothesis, is that alpha 

synchronization can be observed also during the active performance of a task. As reviewed 

in Klimesh (2012), in memory tasks in which a particular piece of information needs to be 

retained before providing the appropriate response, alpha power synchronization occurs over 

parietal areas (Schack et al., 2005). Moreover, alpha synchronization can be observed over 

motor areas during motor tasks that require inhibition of movement (Hummel et al., 2002) 

or during the motor imagery of movements (Neuper et al., 1999; Pfurtscheller & Neuper, 

1997). These observations support a possible role of alpha synchronization in inhibitory top-

down processes (Klimesch et al., 2012). 

Another hypothesis has been proposed by Pineda (2005) which highlights the role of alpha 

rhythm in linking perception and action. This hypothesis is supported by evidence of alpha 
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power suppression over the sensorimotor cortex during execution, motor imagery and action 

observation of movements (Pfurtscheller, 1992; Pfurtscheller et al., 2000; Babiloni et al., 

1999; Pineda et al., 2000). Alpha oscillations over central sensorimotor areas, also called 

‘mu rhythm’, have been proposed to signal the modulation of sensorimotor areas driven by 

the mirror neuron system. The hypothesis regarding alpha mu rhythm as a common 

denominator between perception and action, proposed by Pineda, accounts also for the 

existence of multiple alpha rhythms in the brain and the global-local organization. According 

to this view, functionally specialised local networks produce alpha oscillations 

independently. When they become coupled, a coherent and global alpha modulation can be 

observed over a distributed system that includes the independent sources. This local-global 

entrainment is coherent with the pattern of desynchronization and synchronization of alpha 

patterns observed over the scalp across different tasks (Pineda, 2005 but see also Wiener, 

1955, 1956). Thus, global synchronization might represent a gating system which encodes 

different representations, such as visual and auditory information, into action 

representations, facilitating the local entrainment of different brain areas and translating 

‘seeing’ and ‘hearing’ into ‘doing’ (Pineda, 2005). 

1.7.5. Alpha and action representation in Motor Imagery 

As mentioned before, the event related desynchronization in the alpha rhythm over the 

sensorimotor cortex is usually observed prior and during the execution of a movement 

(Gastaut, 1952; Pfurtscheller & Aranibar, 1979; Toro et al., 1994; Pfurtscheller & Berghold, 

1989; Stancák & Pfurtscheller, 1996; Jurkiewicz et al., 2006; Heinrichs-Graham et al., 

2013). In the middle 20th century, clinical studies reported a blocking of the rolandic ‘wicket’ 

alpha rhythm during passive movements, after spoken orders or tactile stimulations 

(Chatrian et al., 1959). The blocking of sensorimotor alpha rhythm was also reported when 

movements were imagined with the phantom limb in amputated patients (Klass & Bickford, 

1957; Gastaut et al., 1965). 

Since these studies, a large body of evidence reported a suppression of alpha oscillations 

over motor areas also when there is no overt motor output, i.e., during motor imagery 

(Babiloni et al., 1999; Pfurtscheller & Lopes da Silva, 1999; Crone et al., 1998b; Miller et 

al., 2007). In particular, the series of experiments performed by Pfurtscheller and colleagues, 

had a large impact on the scientific debate about the investigation of neural correlates of 

motor imagery. In their seminal studies during 1996-1997, Pfurtscheller and colleagues 
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asked participants to imagine a movement performed either with the left or the right hand. 

During the task, a power suppression in the alpha band was observed over the contralateral 

primary sensorimotor hand area, similarly to the alpha event-related desynchronization 

observed during the preparation of the real hand movement. This suggested that motor brain 

areas are similarly activated when planning a movement and when imagining performing 

the same movement. At the same time, an alpha synchronization was observed ipsilateral in 

the sensorimotor hand area. The alpha power increase in the ipsilateral hand areas, has been 

interpreted as the inhibition of irrelevant brain processes. This pattern has been later called 

‘focal ERD/surrounding ERS’ (Suffczynski et al., 1999). 

Despite the great impact of these studies on the understanding of neural correlates of motor 

imagery, previous investigations did not consistently report this pattern in the alpha 

frequency range. In Pfurtscheller et al., (2001) only a subset of the participants showed the 

expected imagery-related EEG activity. Furthermore, in other studies (Pfurtscheller et al., 

2005 and Pfurtscheller & da Silva, 1999) they reported a high intra-subject variability within 

the activated frequency bands. A possible explanation to this inconsistency regards the type 

of motor imagery performed by participants. Indeed, two main kinds of imagination have 

been related to motor imagery, as described by Annet (1995). The imagination of movements 

can be performed either from a first-person perspective, ‘with an interior view’, i.e., 

kinaesthetic imagery, or from a third person perspective, as an ‘external observer’, i.e., visual 

imagery (Sekiyama, 1983). To test this hypothesis, Neuper et al. (2005) compared 

participants' performance during the execution and imagination of hand movements 

(clenching a ball with the right hand) both in the kinaesthetic and in the visual imagery 

modality. The results indicated that distinct patterns of power suppression and power 

increase of alpha and beta oscillations occurred during the two imagery modalities. 

Specifically, only the kinaesthetic imagery showed the expected event related 

desynchronization/synchronization pattern over the sensorimotor hand area in the alpha and 

in the beta frequency ranges, whereas the visual imagery modality did not show evidence of 

this pattern. These findings were later corroborated by other EEG investigations (Cremades, 

2002; Cremades et al., 2007; Stecklow et al., 2010) and brain imaging studies (Solodkin et 

al., 2004; Guillot et al., 2009). Cremades (2002) examined cortical responses in expert and 

novice golfers during visual and kinaesthetic imagery of golf putting movements. They 

found a larger suppression of alpha power during kinaesthetic compared to visual imagery 

in experts compared to novices. Similarly, Stecklow et al. (2010) investigated the cortical 

activity in volleyball athletes and non-athletes during motor and visual imagery of a 
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volleyball attack movement and a hand clapping movement. They found a prominent alpha 

desynchronization in athletes during kinaesthetic imagery of volleyball movements 

compared to non-athletes. This evidence showed that alpha activity might be modulated by 

the perspective but also by the knowledge of movement and the level of expertise. Indeed, 

several recent studies found similar results (Niedermeyer, 1977; Gerloff et al., 1998; Martin 

et al., 2017; Nishimura et al., 2018; Ruggirello et al., 2019). Furthermore, alpha oscillations 

during motor imagery have been found to be modulated by the complexity of the imagined 

movement. Zabielska-Mendyk et al. (2018) found that in expert pianists, alpha 

desynchronization was larger for complex movement compared to simple ones, whereas in 

non-professional pianists the level alpha suppression did not discriminate between complex 

and simple movements. 

1.7.6. Alpha and action representation in Action Observation 

In 1954, Gastaut and Bert proposed to study the cortical activity with the EEG in situations 

that are close to real life and far from the static position of traditional experiments. Therefore, 

they investigated the cortical activity during the observation of a ‘newsreel’ showing 

biological motion, such as ski jumps, boxing matches, and bike races. The analysis of the 

EEG activity showed an alpha rhythm desynchronization over central brain areas, interpreted 

as the index of the identification of the human actors observed. 

Since these pioneering studies, the alpha desynchronization during observation of other 

movement has been regarded as the index of the downstream activation of the mirror neuron 

system on sensorimotor areas (Muthukumaraswamy & Johnson, 2004a) and has been 

consistently reported in EEG studies on action observation. Cochin et al. (1999) examined 

the EEG response in 20 healthy participants during the execution and observation of pincer 

movements executed with fingers by a model, and resting state. They showed that both the 

execution and the observation of the movement elicited a decrease in the alpha spectral 

power over frontal and central electrodes, which are thought to be included in the mirror 

neuron system in humans. Babiloni et al., (2002) suggested that alpha rhythms might have 

different roles depending on the spatial distribution over cortical areas. They compared the 

cortical activity during the execution of finger extension and the observation of the same 

movement in 10 healthy participants. They reported a stronger blocking of alpha rhythm 

over parietal and occipital areas compared to execution, but not in central areas. 

Additionally, they found an alpha increase of power only after movement observation over 
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parietal sites. Frontal alpha suppression was found to be contralateral to the observed 

movement whereas execution was characterized by an ipsilateral alpha desynchronization. 

As suggested by the authors, whereas the alpha rhythm over frontal areas might be related 

to the activation of sensory information about the movement facilitating the understanding 

of the observed action, posterior parietal cortex alpha suppression might signal the 

integration of visual and motor information of the observed actions, as the parietal cortex 

receive input both from motor areas and occipital cortex. These findings opened the 

possibility of multiple roles of alpha rhythms within the action observation network. 

Other studies instead suggested that the alpha rhythm over central areas might be highly 

specialized and related to the processing of specific movement parameters. 

Muthukumaraswamy & Johnson (2004b) reported stronger suppression of alpha oscillations 

over primary sensory and motor areas, during the observation of a precision grip towards an 

object compared to the observation of a flat hand extension movement. In a separate similar 

experiment, Muthukumaraswamy et al. (2004) tested the hypothesis that alpha power might 

be modulated by the goal of the observed movements, rather than the movement parameters. 

They compared the cortical activation between execution, flat hand extension, precision grip 

with no object and precision grip towards an object. Confirming the previous findings, the 

alpha power suppression was found to be generally stronger when participants observed the 

precision grip compared to the flat hand extension. However, they also found that the 

precision grip towards an object elicited a more prominent alpha suppression than an empty 

precision grip. This suggested that alpha oscillations over sensorimotor areas, as the index 

of the mirror neuron system in humans, respond to the observation of goal-directed 

behaviours, compared to non-goal-oriented actions (Jonson-Frey et al., 2003; Schippers & 

Keysers, 2011; Hamilton, 2013; Buccino et al., 2001, 2004; Wheaton et al., 2004; Rizzolatti 

& Fogassi, 2014). 

Within the mirror neuron system framework, alpha oscillations have been also related to 

social interactions (Tognoli et al., 2007; Kilner et al., 2006). Tognoli et al. (2007) 

investigated alpha oscillations during visually mediated social interactions. EEG activity 

was recorded during visually guided and not-visually guided social interaction conditions. 

In the visually guided social interaction condition, participants observed another person 

movement and then performed the same (coordinated action) or a different action (not 

coordinated action). In the not-visually guided social interaction condition, participants were 

not able to observe others’ movements. The data demonstrated that alpha rhythm is more 
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suppressed during the observation of others’ actions regardless of the coordination, 

compared to actions that are not fully visible. As suggested by Urgen et al. (2013), these 

findings support a role for alpha in matching visual input with the semantic motor 

representation stored in memory, which is in line with the hypothesis for a function of 

integrating perpetual, memory, and motor information into a meaningful action 

representation (Pineda, 2005). 

1.7.7. Beta oscillations as sensorimotor rhythm for action 

Described for the first time by Berger (1929) and Tonnies (1934), the suppression of beta 

(13-30 Hz) oscillations has been commonly reported over the sensorimotor cortex during the 

planning and the execution of movements compared to rest (Neuper et al., 2006; 

Pfurtscheller & Berghold, 1989; Pfurtscheller & Lopes da Silva, 1999). Mainly, beta rhythm 

has been reported along with alpha oscillations, as an index of sensorimotor processing (Hari 

& Salmelin, 1997; Pfurtscheller & Lopes da Silva, 1999; Bauer et al., 2006; Schubert et al., 

2009; Jones et al., 2010; Van Ede et al., 2011). Aside from movement execution and 

preparations, other investigations reported beta modulation also in relation to  different kind 

of cognitive processing, such as memory (Sederberg et al., 2006; Tallon-Baudry et al., 1998; 

Deiber et al., 2007), inhibition (Tempel et al., 2020), reward (Massar et al., 2014) and 

temporal predictions (Meijer et al., 2016). 

Due to their extensive presence over the brain, the origin of beta oscillations has been an 

object of debate. There are two possible hypotheses related to the neural origin of beta 

rhythm, which are respectively indicated as the local generator model and the subcortical 

model. Accordingly with the local generation model, beta oscillations originate from the 

cortex (Jensen et al., 2005; Roopun et al., 2006; Kramer et al., 2008; Kopell et al., 2011; 

Sherman et al., 2016) and their role is to maintain long-distance inter area communication 

(see Koppel et al., 2000). Another perspective sees beta oscillations originating in the basal 

ganglia and propagating then in the cortex (Holgado et al., 2010; McCarthy et al., 2011). 

Regarding the functional significance of beta oscillations within the sensorimotor cortex, 

two main models have been proposed. Sensorimotor beta rhythm has been firstly interpreted 

as an idling state (Pfurtscheller et al., 1996a; Neuper & Pfurtscheller, 2001). Similarly, to 

alpha oscillations, considered as the idling rhythm of the visual cortex, beta rhythm has been 

proposed as the idling rhythm of the sensorimotor cortex (Kuhlman, 1978; Pfurtscheller et 

al., 1996). This interpretation followed the observation that beta oscillations synchronise 



39 

 

over motor areas that are not needed for a given task (Pfurtscheller et al., 1996a, 1996b) 

whereas during movements, beta desynchronized over motor areas contralateral to the 

movement performed (Pfurtscheller et al., 1995; van Wijk et al., 2012). Indeed, it is widely 

accepted that beta desynchronization over sensorimotor brain regions is the index of motor 

activation and may reflect the planning and the execution of voluntary movements compared 

to passive states (Neuper et al., 2006; Pfurtscheller & Berghold, 1989; Pfurtscheller & Lopes 

da Silva, 1999; Chung et al., 2017; Allen and MacKinnon, 2010; Kilavik et al., 2013; 

Pfurtscheller et al., 1994). In the post movement phase, the beta suppression is followed by 

a power synchronization over the same sensorimotor areas. This beta increase was associated 

with a deactivation or inhibition of neural networks not involved in that specific moment 

(Neuper & Pfurtscheller, 2001). 

The second perspective suggests that beta oscillations index the maintenance of the current 

cognitive and motor state, also called the ‘status quo’ hypothesis (Engel & Fries, 2010; 

Jekinson & Brown, 2011). According to this model, beta activity might signal an active 

process which promotes the feedback processing and recalibrates the motor system after a 

change (Engel & Fries, 2010; Baker, 2007). This account is supported by evidence showing 

that beta increase of power also known as beta rebound, promotes the existing motor set at 

the expense of new potentially interfering events or movements. Indeed, during periods of 

enhanced beta synchronization movements have been shown to be slower (Gilberston et al., 

2005), whereas postural control is enhanced, suggesting that beta rebound promotes the 

maintenance of steady-state force output (Androulidakis et al., 2006). Furthermore, it has 

been demonstrated that altered oscillatory patterns in the beta frequency band might induce 

slowing of movements, as reported in clinical studies on patient with Parkinson’s disease 

(Joundi et al., 2012; Pogosyan et al., 2009: Brown, 2007; Heida et al., 2014; Heinrichs-

Graham et al., 2013; Little & Brown, 2014; Espenhahn et al., 2017). Beta rebound has been 

associated also with inhibition of movement initiation (Gilbertson et al., 2005; Zhang et al., 

2008) and decreased corticospinal excitability (Chen et al., 1998).  

However, the beta rebound is not only observed over sensorimotor areas after movement, 

but also during the active performance of other tasks. For example, several studies have 

reported beta increases over frontal, parietal and temporal brain regions during the online 

maintenance of information in working memory (Liebe et al., 2012; Wimmer et al., 2016; 

Deiber et al., 2007). Furthermore, beta rebound has also been reported during decision 

making tasks, before providing a motor response (Kaiser et al., 2001; Zhang et al., 2008). In 
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line with this evidence, Spitzer & Haegens (2017) recently proposed an integrative view that 

takes in account the multiple roles of beta oscillations. According to this perspective, beta 

rhythm has been suggested to represent the index of an endogenous processing which 

supports the activation of cortical representation of task-relevant contents (Spitzer & 

Haegens, 2017). 

Movement-related beta desynchronization is typically observed bilaterally over 

sensorimotor areas, whereas the beta rebound occurs ipsilaterally over the sensorimotor 

cortex (Salmelin and Hari, 1994; Stancák & Pfurtscheller, 1996). As mentioned above, 

whereas beta desynchronization has been related to the activation of sensorimotor areas, beta 

rebound has been related to inhibition, as an “idling” state (Engel & Fries, 2010) and to 

content-specific activation (Spitzer & Haegens, 2017). However, these findings have not 

been consistently reported, as several evidence showed that both beta desynchronization and 

the beta rebound might be affected by different variables. For example, Tan et al. (2014) 

showed that the amplitude of the beta rebound is inversely related to the magnitude of 

movement errors. Other evidence relates beta activity to attentional process and online 

processing (Sauseng & Klimesh, 2008; Gola et al., 2013). Chung et al. (2017) suggested that 

not only beta power, but the coordination of modulation of different frequency bands (alpha 

and theta) within the sensorimotor and parietal cortex are necessary for online update of the 

system, error monitoring and accuracy of motor performance. In an experiment with healthy 

controls and Parkinson's disease patients, Nelson et al. (2018) showed that the pattern of beta 

desynchronization/synchronization is directly related to motor memory retention and neural 

plasticity during the learning of a motor task. Kaiser et al. (2001) suggested that beta 

desynchronization before movement may represent the selection process of possible 

movements to carry out. Furthermore, Tzagarakis et al. (2010) and Doyle et al. (2005) 

showed that beta suppression may be related to movement uncertainty: beta 

desynchronization is greater when choices are limited to narrower range of movement 

alternatives (e.g., subjects already know which side of the body to move) compared with a 

higher range of possibilities. The functional significance of the ‘up and down’ of beta 

oscillations over the sensorimotor cortex still deserves further investigation. 

1.7.8. Beta and action representation in Motor Imagery 

The first evidence of similar dynamics of beta oscillations during movements and during the 

absence of motor output was reported in 1954 by Jasper and Penfield. They observed a 



41 

 

suppression in the beta frequency range over the contralateral sensorimotor cortex during a 

tactile stimulation. Later, it was also found that beta event-related desynchronization/ 

synchronization patterns can be observed also during the anticipation of a tactile stimulation 

without motor output (van Ede et al., 2010). In the MEG study, van Ede et al. (2010) 

manipulated the expectation of tactile stimulation on the hands. They showed that just prior 

(330ms before) and following tactile stimulation, a beta power suppression occurred over 

the contralateral sensorimotor cortex and a beta rebound in the time interval between two 

consecutive stimulations. The involvement of beta modulation during the passive motor 

states was largely corroborated in the series of experiments carried out by Pfurtscheller and 

colleagues in the ’90s. As described in the first experiment (Pfurtscheller & Neuper, 1997) 

during motor imagery of finger movements, there was a suppression of both alpha and beta 

rhythms over central areas contralateral to the movement side. At the same time, a 

concomitant synchronization in the alpha and beta frequency ranges appeared over the 

ipsilateral central side. 

A similar pattern has been reported across different EEG investigations on motor imagery 

(Salmelin et al., 1995; Pfurtscheller & Neuper, 2001; Salenius et al., 1997; Schnitzler et al., 

1997; McFarland et al., 2000); although there is a certain level of variability among studies. 

In Pfurtscheller et al. (2005) for example, only a subset of participants displayed a clear beta 

rebound after the termination of imagery of hand or foot movements. Interestingly, the beta 

rebound was absent after imagery of tongue movements. The lateralization of the beta 

rebound has also not been confirmed across the studies. Several investigations reported the 

beta rebound over the ipsilateral areas during motor imagery of both right and left 

hand (Pfurtscheller et al., 1997b; Parasuraman & Rizzo, 2008), whereas Pfurtscheller et al. 

(2005) reported a contralateral beta rebound after hand motor imagery. Further research 

highlighted that the variability in the pattern of beta activity during motor imagery might be 

related to multiple factors. A possible explanation regards the parameters of movement. For 

example, Nam et al. (2011) found that the extent of the lateralization of beta power decrease 

and increase during motor imagery might be associated with movement duration. They 

compared cortical activation during brief and continuous motor imagery of both left and 

right hands and found a stronger contralateral power decrease and larger ipsilateral power 

increase in the beta frequency range in the brief motor imagery compared to the continuous 

motor imagery. The complexity of the movement to be imagined also plays a relevant role. 

Zabielska-Mendyk et al. (2018) found that beta desynchronization was larger in motor 

imagery of complex finger tapping movements compared to simple ones. 

https://www.sciencedirect.com/science/article/pii/S1388245710006139#b0200
https://www.sciencedirect.com/science/article/pii/S1388245710006139#b0200
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1.7.9. Beta and action representation in Action Observation 

Typically considered as sensorimotor rhythm, beta oscillations have been related to pure 

motor domain. However, since their presence also occurs during tasks that do not require a 

motor output, i.e. during motor imagery, their possible involvement in action observation 

has been considered. 

First investigations on beta oscillations during action observation have been carried out using 

MEG. Hari et al. (1998) examined cortical activity during the manipulation of a small object, 

the observation of the same movement performed by another individual, observation of 

moving and static objects and rest. The data showed that during both the execution and the 

observation of a movement, a similar beta suppression occurred over the precentral motor 

cortex. Cochin et al. (1998) recorded cortical activity during the observation of static 

landscapes, moving and static objects and animals and gymnastic exercises performed by 

humans. The data showed a decrease of power in the alpha frequency band over central areas 

but also a parallel posterior beta suppression, specifically over centroparietal and occipital 

areas during the observation of human movements compared to the other conditions. In an 

EEG experiment, Babiloni et al. (2002) investigated the cortical activation during both the 

execution and the observation of aimless finger movements (i.e., finger extension). The 

results showed that during execution and observation of aimless movements, beta power 

similarly decreased over premotor and primary motor areas, suggesting a mechanism related 

to the evaluation of the match between the observed action and one’s own execution. 

Furthermore, Avanzini et al. (2012) showed that the upper beta desynchronization was 

modulated by the speed of the observed movement, suggesting the encoding of the 

kinematics aspect of behaviour. 

This evidence suggested a possible involvement of beta oscillations in visual perception of 

biological motion. However, different evidence suggested a role for beta beyond the visuo-

motor match, but also in action understanding and the mirror neuron system. Järveläinen et 

al. (2004) In an MEG study, they compared the brain activation during execution and 

observation of both goal-direct-tool use movements (using chopsticks to move small objects) 

and non-goal directed tool use movements (using chopsticks without any goal). They found 

that goal direct tool use movements elicited a stronger suppression in beta power over the 

primary motor cortex compared to non-goal direct tool use. This would suggest a role for 

beta in encoding the goal of the action rather than the visual properties, in line with the 
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account that considers the mirror neuron system for the understanding of actions performed 

by others. A further demonstration for a role of beta in the understanding of other actions is 

provided by Kilner and colleagues, which showed that beta (Kilner et al., 2009) was 

modulated by the perspective of the observer in respect to a model performing an action. 

Indeed, Kilner and colleagues (2009) found a stronger beta power suppression over 

sensorimotor areas contralateral to the side of the screen in which the movement was 

performed, but only the model was facing forward the participant, compared to the condition 

in which the model was facing away. This finding has been interpreted as a modulation in 

visuospatial attention driven by the social relevance of the observed action. 

1.8. Mobile approach to study neural correlates of Action 

Representation 

In the mid-20th century, Gastaut & Bert (1954) measured cortical activity during the 

observation of a cinematographic projection, claiming that to understand neural correlates 

of human cognitive processes, research needs to investigate contexts and actions that are 

close to real life, rather than simple and minimal behaviour studied in the traditional 

laboratory setting. This perspective was also generally pursued by theorists of ecological 

psychology, who highlighted the need for ecological validity in experimental paradigms 

(Brunswick 1943; Neisser, 1979; Bronfenbrenner, 1977). The changes proposed by the 

ecological account were directed towards a more naturalistic approach, through which 

cognitive processes are not anymore studied separately from the environment, even if 

without replacing the importance of controlled laboratory experiments. Indeed, naturalistic 

research should illuminate the properties of the laboratory experiments in ecological 

contexts, adapting each setting to the different research questions. This aspect was further 

sustained by theories of embodied cognition which extended the focus of research on the 

dynamic interplay between cognition, body and environment (Barsalou, 2008; Clark, 1999). 

In the past two decades, the study of human mind and behaviour has been remodelled by the 

development of portable technologies. The emergence of mobile devices has brought the so-

called Mobile Brain body Imaging (MoBI) research field, which aims to study natural 

behaviour in real world environments. The MoBI approach offers the exclusive possibility 

to revisit traditional experimental paradigms, in which participants are usually required to 

perform tasks in laboratory rooms, usually motionless, while seated in front of a computer 

screen or while lying down in a scanner. The MoBI approach provides the novelty of 
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measuring neural correlates of human cognitive processes during complex natural behaviour 

in real world scenarios, bringing a totally new conception of neuroscientific research. 

The MoBI framework is clearly embedded in the embodied perspective, adopting a 

methodological approach that is grounded on the concurrent study of mind and body 

(Makeig et al., 2009). Cognitive processes are intimately related to perception and action, 

and they need to be investigated in the natural environment. Indeed, several studies 

demonstrated that the environment and the state of the body affects brain activity and 

cognitive processes during both active behaviour (Gramman et al., 2011; 2014; Maimon et 

al., 2010) and imagination (Rizzolatti et al., 2002; Nunez & Srinivasan, 2006). Therefore, in 

order to understand human cognition, the concurrent recording of signals coming from the 

brain and the body is necessary. This represents one of the main challenges of the MoBI 

approach, which employ the synchronization between signals provided by different devices 

(e.g., EEG, EMG, eye tracking) in real world settings (Gramann et al., 2011; Makeig et al., 

2009; Artoni et al., 2018; Ladouce et al., 2017). Meeting this challenge requires the 

development of more advanced technological solutions, such as the creation of wearable and 

easy-to-apply sensors, which allow the recording of high-quality signals during natural 

movements. 

Although traditional brain imaging techniques such as fMRI or PET still represent the most 

powerful methodologies to study brain changes with high spatial resolution, direct measures 

of behaviour are more suitable to explore natural behaviour while individuals move freely 

within the environment. Techniques such as the near infrared spectroscopy (fNRIS) and the 

mobile EEG are the new frontiers of the mobile approach. The fNRIS employs sensors that 

measures changes in blood haemoglobin concentrations, which index the activity of the local 

brain areas. Although fNRIS provided relevant insights in the understanding of active human 

behaviour such as walking (Miyai et al., 2001; Suzuki et al., 2004, 2008; Harada et al., 2009) 

and obstacle avoidance (Maidan et al., 2018), it offers a low temporal resolution, not suitable 

to detect very fast changes in neural signals underlying cognitive processes. Differently, the 

mobile EEG represents a good compromise to explore neural oscillations underlying 

cognitive processes, as it provides a non-invasive recording of brain signals with an excellent 

temporal resolution, albeit with poor spatial accuracy. 

Mobile EEG recordings have been previously applied in several research fields, such as sport 

performance (Park et al., 2015), environmental psychology (Mavros et al., 2016; Aspinall et 

al., 2015) neuro aesthetic (Djebbara et al., 2019), architecture (Djebbara et al., 2019) and 
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neuro ergonomics (Wascher et al., 2021). There is a growing interest in neural recordings 

during locomotion and mobile EEG has been used during active walking task. However, 

previous MoBI investigations on walking took place on a treadmill and generally they did 

not actually explore cognitive mechanisms, which are largely involved in the control of 

locomotion (Gwin et al., 2011; Seeber et al., 2014; 2015; Bulea et al., 2015; Wagner et al., 

2012; 2016). Indeed, a large body of evidence demonstrated that the control of locomotion 

involve a complex interplay between subcortical structures and cortical structures (Dietz and 

Duysens, 2000; Dietz, 2003; Nielsen, 2003; Drew et al. , 2004; Drew et al., 2008; Grillner 

et al. , 2008). However, until the emergence of mobile technologies, cognitive and neural 

processes related to human locomotion have been assessed through classical brain imaging 

techniques, which require the participants to sit or to lie down performing simple rhythmical 

movements with the feet (Luft et al., 2002; Dobkin et al., 2004; Mehta et al., 2009) or during 

the performance of motor imagery of walking (Jahn et al. , 2008; Wagner et al. , 2008; Wang 

et al., 2008; Jahn et al., 2009). It is clear, that tasks performed with the constraints of the 

scanner do not resemble real walking, which requires more complex cognitive dynamics 

such as the whole body postural control and the integration of sensory feedback from the 

body with external information coming from the surrounding environment.  

The application of the mobile EEG technique in the study of human locomotion has seen 

somewhat of a proliferation in the context of the MoBI framework. Indeed, mobile EEG has 

been applied in outdoor spatial navigation (Reiser et al., 2019), speed control (Bulea et al., 

2015), gait adaptations (Wagner et al., 2016), running and cycling (Gwin et al., 2011; Zink 

et al., 2016), attentional allocation while walking (Ladouce et al., 2019) or walking over 

different terrains (Luu et al., 2017). Furthermore, one of the most striking pieces of evidence 

provided by mobile studies showed that cortical activity is coupled with the gait cycle (Gwin 

et al., 2011; Seeber et al., 2014; 2015).  

The interest in locomotion has also had a critical impact in clinical practice, where the mobile 

EEG could perhaps be used for neurofeedback and brain computer interface (BCI) systems. 

Neurofeedback is a technique whereby a user learns to control their own brain signals 

associated with behaviour, whereas BCI systems employ the brain activity as input signals 

to control external devices, such as prosthesis or exoskeleton (Wolpaw, 2002). The use of 

both systems has been increasingly applied in rehabilitative settings, as they represent a 

potential tool for patients with limited mobility (Millan et al., 2008; Hatsopoulos and 

Donoghue, 2009; Kim et al., 2011; Leuthardt et al., 2009; Scherberger, 2009; Zich et al., 
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2015; for a review see Kranczioch et al., 2014). Although the mobile EEG has been largely 

applied to investigate cognitive control of locomotion, the contribution to the understanding 

of human motor cognition has remained limited, especially in real world settings. Therefore, 

the aim of this thesis is to provide real world evidence of neural correlates of human motor 

processes related to motor cognition and action representation using the mobile EEG 

approach. 

1.8.1. Technical challenges 

The mobile EEG offers an exciting and unique opportunity for the understanding of human 

cognitive processes in real world settings. However, there are still several drawbacks, which 

mainly include the difficulty of removing motion artifacts and noise from the EEG recording. 

The development of potential solutions has seen in the past few years critical improvements. 

Indeed, several offline techniques have been proposed in order to reduce the interference 

created by noise and artifacts during real world recordings. One of the most used signal 

processing techniques is the independent component analysis (ICA, Bell & Sejnowski, 

1995). The application of ICA has the potential to identify and separate artifacts related to 

eye, head and neck movements, cardiac activity, line noise from brain signals. The ICA has 

proven to be a successful technique in both traditional and MoBI investigations (Makeig & 

Jung, 1996; Makeig et al., 2002, 2004; Jung et al., 2000). The research group of the Swartz 

Center for Computational Neuroscience of the University of California San Diego has been 

the main promoter of solutions for the analysis of mobile EEG data, and recently another 

technique, called IClabel, has been proposed. IClabel is an automated tool which allows to 

identify and classify independent components (IC) after the ICA decomposition. This tool 

provides a consistent and statistically based categorization of ICs through a comparison with 

a large database of EEG dataset (Pion Tonachini et al., 2019, see Figure 1.3 and 1.4). 
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Figure 1.3. Scalp map projections obtained using IClabel plugin of EEGLAB (Pion Tonachini et al., 

2019). The figures shows an example of the visualization of ICs labels offered by the algorithm.  

Figure 1.4. Image of a single IC properties obtained with IClabel (Pion Tonachini et al., 2019). Panel 

A illustrates the Scalp Topography; Panel B shows the component Time Series; Panel C shows the 
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ERP (event related potential) of the continuous data; Panel D represents the Dipole Model Plot which 

shows the estimated location of brain equivalent current dipoles with the residual variance reported 

in percentage (RV); Panel E illustrates the Activity Power Spectrum of the IC averaged across the 

entire dataset.  

Another main challenge of the MoBI approach, is represented by the online synchronization 

of the mobile EEG with other portable devices such as EMG, eye tracking or force sensors 

for gait measurements (Gramann et al., 2011; Makeig et al., 2009; Artoni et al., 2018; 

Ladouce et al., 2017). The combined application of different portable devices opens the door 

to several problems that need to be addressed in order to provide a reliable recording of brain 

and body signals. Firstly, the sampling rate of different devices represents a critical issue for 

a reliable synchronization between fast brain events recorded by the mobile EEG (which 

uses a sampling rate of up to 2000 Hz) such as evoked potentials or oscillations, and body 

signals, such as gait measurements or gaze dynamics (usually, recorded with a sampling rate 

of 50 Hz). A second aspects concerns the time drifts occurring during recordings, which 

cannot be systematically predicted. To solve these issues, recently, an opensource project 

called Laboratory Streaming Layer (LSL, Kothe, 2014) has been successfully applied to 

synchronize signals of different devices using a network. LSL provide a real time data stream 

acquired from different hardware, allowing a concurrent time stamp of the different streams. 

It has been used to integrate different EEG systems, eye tracking and motion capture 

(Gramman et al., 2014). However, LSL requires access to the Application Programming 

Interfaces (Artoni et al., 2017) which is not always feasible due to the restrictions related to 

licenses of the different devices. 

An alternative solution to LSL, is to use a wired strategy employing the TTL port, connecting 

physically the different devices with cables through the respective amplifiers during the 

online recordings. However, this solution might overcomplicate the experimental setup, as 

in this case the devices should be connected with cables throughout the experimental session. 

For example, some devices such as the EMG, might have a fixed amplifier, whereas the 

mobile EEG amplifier is usually placed in a backpack worn by the participant; also, using 

long cables might affect free movements within the experimental settings. As suggested by 

Artoni et al., (2018) a possible solution would be aligning the start of the recording and the 

end, delivering just the initial pulse and the last to both the devices. 

In the study reported in Chapter 4 of the present thesis, we employed the strategy of the TTL 

port, following the suggestions of Artoni et al. (2018), to synchronize signals of gait 
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parameters and cortical activity, recorded respectively through mobile EEG and the Pedar-

x foot pressure insoles system (Figure 1.5).  

 

Figure 1.5. Panel A: An example of the experimental setup used in Chapter 4. The participants wore 

the mobile EEG and the foot pressure insoles system. Panel B: schematic representation of the 

synchronization strategy used in Chapter 4. At the beginning of the recording, a pulse was sent by 

the amplifier of the Pedar-x, to the amplifier of the EEG, through an Arduino system. 

Before applying this strategy, the feasibility and reliability of the synchronization was tested. 

The discrepancy in the sampling rate between the two devices led to opt for a one-way 

communication from the Pedar-x (50 Hz) to the EEG (up to 2000 Hz), setting the former at 

a higher sampling rate that allowed a better and more accurate reference for later offline 

synchronisation. To obtain a continuous synchronization between signals, the amplifier of 

the Pedar-x, wired to the laptop, had to be connected to the amplifier of the EEG placed in 

the backpack worn by the participant, with a long cable. This strategy offered the advantage 

of having repetitive pulses delivered to the EEG, although impractical during free 

movements experiments. The solution to this issue was to deliver only the first pulse of the 

recording to use as a clock pulse for offline synchronisation. As both the amplifiers employ 

different connection standards, the main issue encountered was how to make the two devices 

communicate with each other. The adoption of the Arduino system, connected on one side 

to the TTL port of the two amplifiers, was a good choice to solve the issue. Its use has been 

recently proposed by Artoni et al. (2018) who showed it can be an effective strategy to align 
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data from the EEG and the EMG when the real time streaming data application is not 

available.  

Lastly, a critical aspect of investigating cortical oscillations during naturalistic rhythmical 

movements such as locomotion, is represented by the discrepancy between brain and gait  

rhythms. A large body of evidence has demonstrated the coupling between gait and cortical 

activity (Gwin et al., 2011; Seeber et al., 2014, 2015). This coupling has been found also 

during sensory stimulation. Indeed, as shown by a broad literature, when a rhythmical 

stimulus is presented, the brain produces an oscillatory response that simulate the rhythmical 

structure of the stimulus (Schroeder & Lakatos, 2009; Obleser & Kayser, 2016; Chemin et 

al., 2018). The alignment between brain signals and rhythmical stimuli is thought to reflect 

the attempt of the brain to predict the structure of events (Arnal & Giraud, 2012; Helfrich et 

al., 2019). The coupling between brain oscillations and rhythmical stimuli has been indeed 

investigated in different fields, such as music perception (Nozaradan et al., 2015), speech 

(Vanthornhout et al., 2018; Obleser & Kayser, 2019) and gait control (Gwin et al., 2011; 

Seeber et al., 2014, 2015). 

Although the coupling between oscillations and rhythmical movements constitute a 

compelling perspective for the MoBI approach, the issue of synchronising brain activity and 

rhythmical behaviours is particularly challenging. The main difficulty arises from the high 

intra and inter individual variability that characterises the temporal structure of gait events, 

i.e., the heel strikes, which are not perfectly periodic. Furthermore, in real world experiments 

investigating locomotion, the speed of participants clearly affects the duration of each trial, 

influencing the temporal occurrence of experimental events. This issue represented one of 

the main critical challenges of the present thesis, which focused on natural walking. For 

example, in Chapter 2 where unexpected obstacles were presented on the floor when 

participants crossed motion sensors placed on the path, the variable speed of participants did 

not allow the alignment between different trials. This issue was encountered also in Chapter 

3 and 4 of the present thesis, where the speed of participants affected the length of the trial 

making trivial the segmentation of EEG data. 

A solution for this issue is represented by the time warping technique (Sakoe & Chiba, 1978). 

Time warping is a method to stretch and align periodic brain signals to events of variable 

duration (Sakoe & Chiba, 1978; Chemin et al., 2018). This approach makes possible to 

shrink or to extend the EEG signal to match the time interval between events that are not 

perfectly periodic (Chemin et al., 2018). In other words, the time warping makes possible to 
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solve the high variability of natural rhythmical movements, such as gait. This technique has 

been applied in the studies of the present thesis, through the use of the newtimef() function 

in EEGLAB (Delorme & Makeig, 2004). The newtimef() function apply a linear time 

warping to the median of the events of the trials computed across participants and conditions. 

This methods was furthermore applied to align the timepoints of the heel strike in the 

analysis of Chapter 4. The time warping is applied after the computation of the time 

frequency transform, in order to avoid the alteration of the original signal. 

1.9. Rationale of the present thesis 

To summarise, the high temporal resolution of the EEG makes it particularly suitable to 

investigate oscillatory patterns in the brain to identify neural markers underlying human 

cognitive functions. However, to date, electrophysiological investigations have been 

critically limited by the methodological constraints and technical difficulties investigating 

real world behaviour. What we know about neural markers of cognitive processes has been 

tested in laboratory settings, in which poorly informative stimuli are employed in 

psychological paradigms to study complex human behaviours and cognitive processes. The 

main limitation of previous investigations is represented by brain imaging technologies, 

which require participants to lie down in a scanner or to sit and imagine movements normally 

performed when upright, or to sit motionless during EEG recordings while, for example, 

imagining walking. In this thesis, we employ a novel approach, namely the mobile EEG to 

investigate cognitive processes during naturalistic behaviour in real world environments. 

More specifically, in three studies, the neural markers of action representation are analysed 

during covert and overt human naturalistic behaviour, such as when we need to face 

unexpected change in the environment, when we have to imagine walking down a room, and 

when we observe a person approaching or moving away from us. Neural oscillations in the 

theta (4-7 Hz), alpha (8-12 Hz) and beta (13-35 Hz) frequency bands are analysed in the time 

frequency domain, through the assessment of the event related spectral perturbations. 

In the first study, neural correlates of action representation during natural obstacle avoidance 

are investigated. This study aims to provide the first real world evidence for the assumptions 

of the proactive cognitive control account (Braver, 2012; Pezzulo & Ognibene, 2012). 

Participants were required to walk freely down a room and step over expected and 

unexpected obstacles displayed as images projected onto the floor. The results showed that 

avoiding unexpected obstacles induced increases in frontal theta, associated with early 
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proactive control of action, which updates the action representation when facing a dynamic 

change in the environment. Furthermore, it was demonstrated that the adjustment of 

movements is made just before crossing the object but not when there is nothing on the floor. 

These dynamics are suggestive of a late mechanism of proactive control, which is reflected 

in power suppression of the beta frequency range over sensorimotor areas, signalling motor 

preparation. Finally, a clear beta rebound was evident only after obstacles were crossed, 

reflecting the resetting of the motor system and the activation of reactive processes of 

cognitive control. 

In the second study, the neural correlates of action representation during motor imagery are 

investigated, comparing motor imagery to actual execution of walking and a mental counting 

as a control task. In particular, this study aims to test the functional equivalence hypothesis 

(Jeannerod, 1994, 2001) using whole body dynamic natural movements, which received 

little attention in previous research due to noted methodological constraints. The results 

indeed revealed similar patterns of cortical activity during actual walking and motor 

imagery, reflected in modulations of beta oscillations, but with minimal overlap with the 

non-motor control task of mentally counting. However, the results also showed interesting 

differences, as beta power modulation during motor imagery of walking showed a distinct 

temporal profile. Furthermore, we also found a different modulation in the alpha frequency 

band, which was characterised by a stronger decrease of power in the motor imagery 

condition compared to actual execution and mental counting, but only at the beginning of 

the trial. This would suggest a dissociation between cognitive processes related to the 

activation of action representation during motor imagery and actual execution, reflected in 

distinct modulations in the alpha and in the beta frequency bands. 

In the third study, it is investigated whether the distance of a model and the perspective of 

the observer might modulate neural correlates associated with the activation of action 

representation during action observation. Brain activity was recorded through the mobile 

EEG while participants observed a model walking towards or away from them. The results 

showed that the alpha frequency band is modulated only by the distance, as a stronger 

decrease of power occurs only when the model is near to the observer compared to the 'far' 

distance, regardless of perspective. Crucially, differently to previous literature, beta was 

found to be modulated both by distance and perspective - as a stronger decrease of power 

occurs when the model is near but facing the participant (walking towards) compared to the 

condition in which the model is near but viewed from the back (walking away). This suggests 
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that in real world action observation, relevant aspects of the action representation are needed 

to process others’ actions, such as the perspective of the observer and the distance in space 

of the agent. 

The studies reported in this thesis will provide the first evidence for distinct neural correlates 

underlying action representation in real world human behaviour. Importantly, the cortical 

activity underlying cognitive processes related to action representation will be investigated 

using the new mobile EEG approach, which provides a characterization of the temporal 

profile of brain oscillations related to a given task. Crucially, the mobile approach allows the 

investigation of natural behaviour in the real world, revealing cognitive processes that could 

not be studied before with the traditional brain imaging techniques. In this thesis, 

investigations will be focused on locomotion, which is undoubtedly one of the most natural 

motor behaviours (and the most constrained by brain imaging techniques to date). Although 

apparently simple, locomotion is a complex whole body movement, generated by substrates 

which includes brain areas critically involved in cognitive processes. In the three studies 

presented, different aspects of real world locomotor behaviours will be explored, such as 

when walking and facing unexpected changes in the environment, imagining walking down 

a room, and observing another person approaching or walking away or towards us. These 

behaviours are regulated by cognitive mechanisms which share a similar core component, 

which is the internal representation of the action.  
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Chapter 2: Mobile EEG reveals functionally dissociable dynamic 

processes supporting real world ambulatory obstacle avoidance: 

Evidence for early proactive control. 

2.1. Introduction 

Moving safely through the environment while walking requires continual monitoring and 

adjustment of planned behaviour, including the ability to make fast online motor 

transformations in response to dynamic changes such as the appearance of unexpected 

obstacles. The skill of negotiating the constraints of the environment while walking is 

inherently complex; it develops slowly throughout infancy (Mowbray & Cowie, 2020) and 

is progressively lost in aging and motor impairments such as Parkinson's disease (Holtzer et 

al., 2014; Peterson & Horak, 2016). The gradual reduction in cognitive resources and motor 

control that occurs with aging and disease means that it becomes increasingly difficult to 

respond effectively to obstacles that are encountered while walking. Indeed, falls associated 

with stumbling or tripping over objects represent a critical factor in the increased mortality 

rates that are seen for elderly and neurological patients (Kovacs, 2005; Tinetti et al., 1988; 

Weerdesteyn et al., 2006). Given the complexity and fragility of the processes involved in 

walking, it is clearly important to identify the neural processes supporting cognitive control 

during walking and obstacle avoidance, generating new targets for clinical practice 

(Alexander & Hausdorff, 2008; Peterson et al., 2016). Over the last decade, growing 

research interest in human ambulation has led to the extensive recording of EEG (the 

electroencephalogram) during active walking on treadmills (Petersen et al., 2012; Severens 

et al., 2012; Gwin et al., 2010; Gwin et al., 2011; Gramann et al., 2011; Wagner et al., 2012; 

Wagner et al., 2016; Wagner et al., 2019; Seeber et al., 2014; Seeber et al., 2015). Recorded 

from electrodes placed on the scalp, EEG provides a non-invasive representation of 

oscillatory brain activity produced during task performance, allowing the identification of 

functionally dissociable cortical mechanisms that drive human behaviour (Buzsáki & 

Draguhn, 2004). To date, EEG studies of walking have revealed the activation of several 

‘prefrontal’ brain signals that are activated during the approach to an obstacle, explained as 

the recruitment of additional cognitive resources. For example, Haefeli et al. (2011) 

recorded EEG while participants walked on a treadmill, finding increased activity over 

frontal areas in response to an acoustic signal that warned of upcoming obstacles. Similar 

findings have been reported using mobile functional near-infrared spectroscopy (fNIRS). 
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For example, Maidan et al. (2018) reported a higher hemodynamic response in the prefrontal 

cortex when participants had to prepare to step over unanticipated obstacles (compared to 

hemodynamic responses during normal walking), independent of the size of the objects. 

These findings have been extended by a recent EEG investigation of walking on a treadmill 

(Nordin et al., 2019). Nordin et al. reported increased power in low-frequency oscillations 

(ranging from 3 to 13 Hz, i.e., delta, theta and alpha) while participants walked at different 

speeds and stepped over foam obstacles (appearing from behind a curtain placed at the front 

of the treadmill). These oscillatory brain changes were widespread across the scalp, with 

source localisation suggesting the engagement of a distributed cortical network (i.e., 

supplementary motor, premotor and posterior parietal areas). Furthermore, on the basis of 

timing information, Nordin et al. (2019) argued that obstacle avoidance involved identifying 

the obstacle and interrupting the gait cycle (associated with early engagement of premotor 

and supplementary motor areas) and then planning the foot placements required to cross the 

obstacle (associated with later activation of posterior parietal cortex). Wider interest in the 

processes involved in goal-directed behaviour have led to the development of theoretical 

models of cognitive control—and these models provide a framework for understanding 

ambulatory control. Notably, studies of cognitive control by Braver (Braver, 2012; see also 

Pezzulo & Ognibene, 2012) have characterised two broad stages of control processing. First, 

when a behaviour is planned, proactive control processes are employed to respond to 

potential sources of interference, allowing the original goal to be reached. Importantly, in 

theory, proactive control processes can occur at different times, reflecting either early 

selection or late adaptation of planned behaviour. Second, after an unexpected event has 

occurred, reactive control processes are employed to allow recovery from the interference 

and return to the original goal. Markedly similar distinctions between proactive and reactive 

control mechanisms have also emerged from studies on human balance (Bhatt et al., 2018; 

Horak, 2006; Shumway-Cook & Woollacott, 2007). Proactive strategies are used to 

anticipate the loss of balance (due to some source of interference), when the body has enough 

space and time to predict the upcoming interference and adjust motor plans. By contrast, 

reactive strategies involve compensatory adjustments to restore postural control and balance 

after unexpected events. Although the theoretical distinction between proactive and reactive 

control strategies was not developed in relation to ambulatory control per se, the distinction 

is nonetheless clearly relevant for understanding the processes supporting obstacle 

avoidance during walking. Indeed, the neural signals observed in studies of treadmill 

walking can be readily interpreted within this ‘dual mode’ framework (Dual Mechanisms of 

Control, Braver, 2012). For example, Nordin et al. (2019) reported modulation of low-
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frequency oscillations linked to supplementary motor cortex and posterior parietal cortex. 

Both signals occurred before unexpected obstacles, consistent with the operation of a 

proactive control mechanism that allows planned behaviour to be refined. Moreover, the 

timing of the posterior parietal signal suggests that the adjustment was made shortly before 

the obstacle was encountered, which is suggestive of a late adaptation form of proactive 

control. To our knowledge there is no equivalent evidence of EEG markers of reactive 

control during obstacle avoidance. However, there is wide evidence for reactive control 

mechanisms after movement. For example, EEG studies have revealed post-movement 

increases in beta power (13–30 Hz), described as the beta rebound, a marker of reactive 

control (Liebrand et al., 2017). Evidence from the wider literature on movement control 

reveals that beta power over sensory motor regions is enhanced when the predictions of an 

incoming stimulus are violated (Arnal et al., 2011) and after forcibly interrupted movements 

(Alegre et al., 2008; Heinrichs-Graham et al., 2017), suggesting a mechanism that re-

calibrates the motor system after a movement (Engel & Fries, 2010; Kilavik et al., 2013; 

Pfurtscheller et al., 1996a). Thus, although reactive control mechanisms have not been 

demonstrated during obstacle avoidance, changes in beta power may index the operation of 

such mechanisms. The recent emergence of mobile EEG (Gramann et al., 2011, 2014; 

Ladouce et al., 2017; Makeig et al., 2009) represents a particularly important development 

for researchers interested in walking, not least because mobile techniques significantly 

extend the range of contexts in which brain signals can be studied (e.g. see Park et al., 2018; 

Park et al., 2015). Critically, using mobile EEG technology makes it possible to monitor the 

brain while participants navigate natural environments, taking walking research away from 

the use of treadmills and out of the laboratory (see Ladouce et al., 2019; Park & 

Donaldson, 2019, for recent examples). As a result, the neuro-cognitive processes 

supporting walking can now be studied in the real world, offering an entirely new embodied 

perspective to the understanding of human behaviour and motor impairments (which had 

been previously limited to non-ecological settings and fairly uninformative tasks; cf. 

Ladouce et al., 2017; McFadyen et al., 2017). Furthermore, the high temporal resolution of 

EEG (i.e., millisecond accuracy), combined with wireless portability, makes mobile EEG 

ideally suited to capturing the rapid cortical responses that occur in response to dynamic 

stimuli (Makeig et al., 2009). As far as we are aware, currently there is no direct evidence 

for EEG markers of proactive and reactive control processes during real world ambulatory 

obstacle avoidance. Thus, our primary aim in the current study is to ask whether it is possible 

to identify neural signals of proactive and reactive control during real world obstacle 

avoidance. To address this issue, we recorded EEG while participants walked freely along a 
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10-m-long path. Critically, we manipulated the presentation of obstacles across trials, 

providing participants with more or less time and space to prepare for a response to the 

obstacle. Obstacles were absent, always present at the start of the action, or appeared up 

ahead after a short or long delay. In addition, we manipulated the available time and space 

that participants had to adjust their gait when negotiating the environment, while allowing 

the walking task to remain as natural as possible. Based on the literature reviewed above, 

and as a test of the dual-mode framework (Braver, 2012), we predicted that distinct proactive 

and reactive control mechanisms should be identifiable based on their temporal dynamics. 

As well as demonstrating that neural markers of movement control can be identified during 

natural walking, we also examined two specific hypotheses. First, by varying the time and 

space that participants had to prepare for an obstacle we were able to arbitrate between early 

selection and late adaptation mechanisms of proactive control. Current evidence (cf. Nordin 

et al., 2019) is not sufficient to differentiate between early and late proactive control 

mechanisms before an obstacle is overcome. Here, we predict that proactive control 

processes will operate as soon as information about an upcoming obstacle becomes available 

(i.e., early selection). Put simply, the high temporal resolution of EEG data should allow us 

to reveal the precise temporal dynamics of proactive control during walking. Second, by 

varying the opportunity to anticipate and prepare before adjusting to an obstacle, we aimed 

to test whether reactive control processes during walking are indexed by changes in beta 

power (the so-called beta rebound). That is, we tested whether reactive control processes are 

specifically associated with recovery after a change in a motor plan, in order to reset the 

previous state. As we show below, mobile EEG does indeed capture and characterise the 

dynamic engagement of proactive and reactive control processes during real world 

ambulatory obstacle avoidance. 

2.2. Materials and methods 

This study was approved by the local ethics committee and conformed to standards set by 

the Declaration of Helsinki. Thirty-two healthy participants (21 females and 11 males; age 

range = 19–65; mean age = 32.1 years, SD = 11.6 years) took part in the experiment. All 

participants were right-handed (self-reported) and gave their written informed consent 

before the experiment. The experimental design involved four conditions (as depicted in 

Figure 2.1) in which participants walked along a 10-m-long carpet, passing through a series 

of infrared laser beams that recorded their location and controlled the presentation of 

obstacles (visible as a coloured patch projected onto the floor that had to be stepped over). 
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In the “no adjustment” condition, no obstacle was presented, and participants simply walked 

across the room. In the “preset adjustment” condition, obstacles were present at the start of 

each trial, placed at a fixed location 250 cm from the first laser beam. In the “immediate 

adjustment” condition, walking through the laser beam would trigger the presentation of an 

obstacle, displayed 160 cm in front of the participant. Finally, in the “delayed adjustment” 

condition, walking through the laser beam once again triggered the presentation of an 

obstacle, presented 310 cm in front of the participant. The participants were always 

instructed to walk straight across the room, to maintain a comfortable pace and to step over 

any obstacle presented in front of them. Each crossing of the room corresponded to an 

individual trial, and on reaching the end of the carpet participants were asked to turn around 

and walk back across the room in the same way. The video projector and laser beams were 

arranged to allow data collection in both directions. Participants completed a total of 240 

trials divided into six experimental blocks. Each block lasted around 5 min. All conditions 

were presented with equal probability. Participants were given 5–10 min breaks between 

each experimental block, and were encouraged to request additional breaks during each 

block should they need this. Any systematic influence of fatigue on the data was further 

minimised through randomisation of condition order across participants. The overall 

experimental session lasted approximately 90 min, including preparation, recording and 

breaks between experimental blocks. 
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Figure 2.1. Panel a) Representation of the experimental conditions, indicated with different colors 

(from top to bottom, respectively: blue, preset adjustment; red, delayed adjustment; black, immediate 

adjustment; green, no adjustment). For each condition, the median duration (in ms) of the planning 

phase (between participants) is reported inside each path between the approach and the crossing 

dashed lines. Panel b) Photograph of a participant, wearing the mobile EEG equipment, as they cross 

an obstacle. 

The obstacle was presented as a white stripe (40x80cm) projected on a 10-m-long carpet. 

The obstacle presentation was controlled with a system interfacing two fixed motion sensors, 

placed at 230 cm from both ends of the carpet (directing infrared laser beams across the 

room, through which participants would pass). Stimulus presentation was controlled using 

E-prime 3.0 software (Psychology Software Tools) and a projector. The motion sensors were 

designed to send an input signal to the stimulus presentation software running on a laptop, 

using the Auxiliary I/O port of a Chronos response device (Psychology Software Tools). The 

laptop was connected to a projector placed at the side of the carpet. The presence and location 

of the obstacle presented varied on a trial-by-trial basis, depending on the experimental 

condition. During each trial, the experimenter manually marked two main events (as 

illustrated in Figure 2.1): the moment that the participant crossed the beam (‘Approach’) and 

the moment when the participant was over the obstacle (‘Crossing’). These two points 

provided temporal markers for use within the analysis of the EEG data that identified a 

planning phase (before the obstacle was encountered) and a resetting phase (after the 

obstacle was encountered). Participants also wore foot sensor insoles (Pedar-x System, 
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novel.de), a bluetooth pressure distribution measuring system for monitoring local loads 

between the foot and the shoe. The data of gait parameters were not recorded in all 

participants of this study and are not reported here. 

2.2.1. EEG acquisition and analysis  

EEG data were recorded from 32 Ag/AgCl electrodes connected to a portable amplifier 

(ANT-neuro, Enschede, The Netherlands). Electrodes were positioned according to the 

International 10–20 system (FP1, FPz, FP2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, M1, 

T7, C3, Cz, C4, T8, M2, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, POz, O1, Oz, O2) with 

AFz electrode as ground and CPz electrode as reference. The electrode impedances were 

reduced below 5 kΩ before the recording. During recording EEG data were sampled at 

500 Hz and bandpass filtered at 0.01–250 Hz. EEG data analyses were performed using 

custom scripts written in MATLAB 2019a (The MathWorks) incorporating EEGLAB 

toolbox (Delorme & Makeig, 2004). Data from the mastoid channels (M1 and M2) were 

removed from the analysis, and all remaining EEG data were filtered using a 0.1 to 40 Hz 

bandpass filter. EEG channels with prominent artefacts were automatically selected 

(kurtosis > 5 SDs) and interpolated, and all channels were then re-referenced to the average. 

An extended infomax Independent Component Analysis (ICA, Makeig et al., 1996) was 

performed to identify and remove non-brain signals. Artifactual ICs scalp maps were 

selected through SASICA (Semi-Automated Selection of Independent Components of the 

electroencephalogram for Artifact Correction, Chaumon et al., 2015) combined with the 

ADJUST (Automatic EEG artefact Detection based on the Joint Use Of Spatial and 

Temporal features, Mognon et al., 2011) and MARA (Multiple Artifact Rejection 

Algorithm, Winkler et al., 2011) plugins. These methods provide objective means of 

evaluating artifactual signals that, due to their multi-dimensionality and heterogeneity, can 

be difficult to interpret and identify in raw EEG. Consequently, we used the following 

measures: Autocorrelation, Focal Components, Signal-to-Noise Ratio, Dipole Fit Residual 

Variance, Correlation with other channel(s), ADJUST and MARA. Detailed descriptions of 

each of these methods are available in the wider literature, however, for clarity here we 

briefly describe what each procedure achieves, highlighting any parameter settings 

employed. The ‘Autocorrelation’ measure detects noisy components with weak 

autocorrelation (e.g. muscle artefacts) with a threshold of 2 SDs and a lag of 20 ms. The 

‘Focal Components’ measure detects components that are too focal and thus unlikely to 

correspond to neural activity (e.g. bad channels or muscle artefacts) with a threshold of 2 
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SDs. The ‘Signal-to-Noise Ratio’ measure (0-Inf, -Inf 0, threshold ratio = 1) is used to 

identify components with weak signal-to-noise ratio that occur between the baseline and the 

time window of interest. The ‘Dipole Fit Residual Variance’ measure (threshold = 15%) 

detects components with high residual variance after subtraction of the forward dipole 

model. The ‘Correlation with other channel(s)’ measure detects components whose time 

course correlates with any channel(s), with a threshold of 4 SDs. The ADJUST (Mognon 

et al., 2011) and MARA (Winkler et al., 2011) plugins automatically compute spatial and 

temporal features (using pre-set parameters) to classify components as artefacts. The 

resulting ICs scalp maps (or topographies) were further visually inspected to identify ICs 

with low residual variance (<15%). Across conditions an average (mean ± SD) of 5.85 ± 

1.97 of non-artifactual ICs were retained for analysis. After artefacts were removed, the 

remaining data were segmented into epochs relative to the step over the obstacle (i.e. the 

‘Crossing’ event, which was defined as time 0), producing a −3,500 ms to 2,000 ms time 

window. Since the latency of different trials was affected by a great deal of variability within 

and between participants, single-trial spectrograms were time warped to the median latency 

(across participants) of the ‘Approach’ event using linear interpolation. In order to have the 

same number of trials, 40 trials were randomly selected for each condition. Epochs that 

exceeded the bounding values within the epochs, that is, in which the latency of the 

‘Approach’ event exceeded the limit of −2,500 ms from the ‘Crossing’, were excluded (i.e. 

trials in which the participant was very slow to walk along the carpet). Epochs were further 

visually inspected to identify trials that still appeared to be contaminated by prominent 

muscular artefacts and these were manually removed. Across conditions, an average (mean 

± SD) of 37 ± 2.07 epochs were included in the subsequent analysis, resulting in 7.5% of 

trials being excluded. Event Related Spectral Perturbations (ERSPs) were obtained by 

computing the mean difference between single-trial log spectrograms for each channel, for 

each participant, relative to the mean baseline spectrum (from −3,000 ms preceding to 1,500 

ms following the obstacle stepping). 

2.2.2. Statistical analysis 

Midline single-channel spectrograms (Fc, Cz and POz; Figure 2.2) were visually inspected 

to identify prominent changes in the spectral power across conditions. Informed by our 

hypothesis and visual inspection of the topographic maps of theta (Figures 2.3 and 2.4) and 

beta (Figure 2,5) power, we identified frontal (FC1, Fz and FC2 channels), central (CP1, Cz 

and CP2) and parietal (P3, POz and P4) locations that captured the effects of interest. Finally, 
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in order to examine the time course of spectral changes before and after the obstacle, the 

planning (from −1,750 ms to −250 ms) and the resetting (from 250 ms to 1,250 ms) periods 

were divided into a series of successive 500 ms time windows. Three different repeated 

measures ANOVAs with three within factors (Experimental Condition, Time Window and 

Scalp Location) were performed to examine the power modulation across the planning and 

the resetting phases for each frequency band. Significance level was set at p < .05 and, where 

the sphericity assumption was violated, the Greenhouse-Geisser method was used to correct 

the degrees of freedom. Post-hoc paired samples t-tests were adjusted for multiple 

comparisons using Bonferroni correction. 

2.3. Results 

 

Figure 2.2. Time warped spectrograms at electrodes Fz, Cz, and POz for each experimental 

condition. Vertical solid black lines represent the ‘Approach’ (APP) and the ‘Crossing’ (CR, time 0) 

events, respectively. Vertical dashed lines represent time windows included in the analysis. On the 

x- axis (time in ms), the median latencies of the timing of the Approach point are reported for each 

condition. The lowest frequency shown is 3 Hz, the highest is 35 Hz. Colors indicate the relative 

change of power from the baseline (%). Blue colors represent decrease of power; red colors indicate 

increase of power 
 

Midline time warped spectrograms (Figure 2.2) revealed a transient change in the spectral 

power of theta (4–7 Hz) and beta (13–35 Hz) frequency bands, occurring after the 

‘Approach’ and before ‘Crossing’ and differently distributed across conditions. Below the 
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results for each frequency band are presented separately for the planning and the resetting 

phases. 

2.3.1. Planning 

2.3.2. Theta 

The ANOVA indicated that changes in the theta spectral power were significantly different 

across experimental conditions [F(1,31) = 14.645, p < .001, ηp
2 = 0.321]. Post-hoc paired 

sample t-tests revealed that the theta increase was significantly stronger both in the 

immediate adjustment [immediate vs. no adjustment: t(31) = 6.150, p < .001; immediate vs. 

pre-set: t(31) = 5.374, p < .001; immediate vs. delayed: t(31) = 2.142, p < .05] and in the 

delayed adjustment condition [delayed vs. no adjustment: t(31) = −4.235, p < .001; delayed 

vs. pre-set: t(31) = −2.811, p < .01], but similar in the pre-set adjustment and no adjustment 

conditions (p = .375). 

 

Figure 2.3. Topographic maps illustrating the temporal dynamics of theta power across conditions 

and time windows. The dashed rectangle around the scalp maps before time 0, indicates the time 

windows included in the planning phase 

A main effect of Scalp Location [F(1,31) = 8.302, p < .001, ηp
2 = 0.211] revealed that the 

theta increase was more pronounced at frontal compared to parietal [t(31) = 3.733, p < .001] 

and central [t(31) = −2.154, p < .05] electrodes, and decreased strongly in parietal compared 

to central [t(31) = 2.138, p < .05] electrodes. A significant interaction between Experimental 

Condition and Time Window [F(1,31) = 37.313, p < .001, ηp
2 = 0.546; Figures 2.2 and 2.3] 
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confirmed that the timing of the increase in theta power was consistent with the appearance 

of the obstacle in the immediate and delayed adjustment conditions. As shown in Figure 2.3, 

a significantly stronger theta increase occurred firstly in the delayed adjustment after the 

obstacle appeared [−1,750 ms to −1,250 ms; delayed vs. no adjustment: t(31) = −6.007, p < 

.001; delayed vs. pre-set: t(31) = −4.150, p < .001; delayed vs. immediate: t(31) = −5.598, p 

< .001] and decreased more in the immediate compared to pre-set adjustment condition 

[t(31) = −3.248, p < .01]. In the following time window (−1,250 ms to −750 ms), the theta 

increase became stronger in the immediate adjustment condition [immediate vs. no 

adjustment: t(31) = 4.922, p < .001; immediate vs. pre-set: t(31) = 4.432, p < .001] but was 

still present in the delayed adjustment condition [delayed vs. no adjustment: t(31) = −6.052, 

p < .001; delayed vs. pre-set: t(31) = −3.345, p < .01]. In the last time window the theta 

increase was stronger in the immediate adjustment condition [immediate vs. no adjustment: 

t(31) = 5.902, p < .001; immediate vs. pre-set: t(31) = 6.904, p < .001; immediate vs. delayed: 

t(31) = 10.882, p < .001], but the decrease was stronger in the delayed adjustment condition 

[delayed vs. no adjustment: t(31) = 7.586, p < .001; delayed vs. pre-set: t(31) = 2.163, p < 

.05] and in the pre-set adjustment conditions [pre-set vs. no adjustment: t(31) = 3.602, p < 

.001]. Post-hoc t-tests revealed no statistical differences between pre-set adjustment and no 

adjustment conditions during the first two time windows (p > .05) of the planning phase. No 

other main effect or interaction reached statistical significance (p > .05). 
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Figure 2.4. The time course of percentage changes from the baseline in theta power across the 

experimental conditions (group mean, with standard errors indicated by shading) shown for a 

representative electrode (FC1). Dashed lines represent the median latency of the ‘Approach’ event, 

that matches the same color of the conditions indicated by the key. Solid vertical black line indicates 

the ‘Crossing’ event (time 0). The black rectangle indicates the time windows included in the analysis 

of the planning phase 

2.3.3. Beta 

Although the ANOVA did not show a main effect of Experimental Condition, the decrease 

in beta power was stronger in the immediate adjustment condition (mean = −9.69 ± 7.09 

μV), followed by the delayed adjustment condition (mean = −9.08 ± 6.73 μV), the pre-set 

adjustment condition (mean = −8.34 ± 6.72 μV) and no adjustment condition (mean = −5.43 

± 7.28 μV). A main effect of Scalp Location [F(1,31) = 4.183, p < .05, ηp
2 = 0.119] revealed 

that a stronger decrease in beta power occurred in central (mean = −8.43 ± 4.66 μV) and 

parietal (mean = −8.80 ± 5.03 μV) electrodes compared to frontal (mean = −7.19 ± 4.82 μV) 

electrodes, although post-hoc paired sample t-tests showed only one statistically significant 

difference [parietal vs. frontal: t(31) = 2.589, p < .05]. A significant interaction between 

Time Windows and Experimental Condition [F(1,31) = 2.919, p < .05, ηp
2 = 0.086; Figure 

2.6] showed that beta decrease was significantly stronger in all obstacle conditions compared 

to no adjustment in the last time window [−750 to −250 ms; no adjustment vs. immediate: 
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t(31) = −2.876, p < .01; no adjustment vs. delayed: t(31) = 4.997, p < .001; no adjustment 

vs. pre-set: t(31) = 3.742, p < .001]. A significant interaction between Scalp Location and 

Time Window [F(1,31) = 4,595, p < .01, ηp
2 = 0.129] revealed that beta decrease was initially 

stronger in parietal electrodes [time −1,750 to −1,250 ms; parietal vs. frontal: t(31) = 2.219, 

p < .05] but later (−750 to −250 ms) when the participants were approaching the obstacle 

became stronger in central electrodes compared to frontal [t(31) = −3.395, p < .01] and 

parietal [t(31) = −3.475, p < .01] electrodes. No other main effect or interaction reached 

statistical significance (p > .05). 

 

Figure 2.5. Topographic maps illustrating the temporal dynamics of beta power across conditions 

and time windows. The dashed rectangles around the scalp maps before and after time 0, indicates 

the time windows included in the planning and in the resetting phase respectively 

2.3.4. Resetting phase 

2.3.5. Beta 

The ANOVA revealed a main effect of Experimental Condition [F(1,31) = 9.912, p < .001, 

ηp
2 = 0.242] on beta modulation during the resetting phase. The increase in beta power was 

stronger in the all obstacle conditions compared to no adjustment condition [no adjustment 

vs. immediate: t(31) = 4.525, p < .001; no adjustment vs. delayed: t(31) = −5.113, p < .001; 

no adjustment vs. pre-set: t(31) = −4.062, p < .001]. Additionally, the beta increase was 

stronger in the delayed adjustment condition compared to the immediate adjustment 

condition [t(31) = −2.461, p < .05] but not compared to pre-set adjustment condition 

[immediate vs. pre-set: p = .839; delayed vs. pre-set: p = .258]. A main effect of Scalp 
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Location [F(1,31) = 4.028, p < .05, ηp
2 = 0.115] revealed that the beta increase was stronger 

in parietal compared to central [t(31) = −2.143, p <.05] and frontal [t(31) = −2.143, p < .01] 

electrodes. No other main effect or interaction reached statistical significance (p > .05). 

 

Figure 2.6. The time course of percentage changes from the baseline in beta power across the 

experimental conditions (group mean, with standard errors indicated by shading) shown for a 

representative electrode (Cz). Solid vertical black line indicates the ‘Crossing’ event (time 0). The 

black rectangles indicate the time windows in which we found significant differences between 

conditions (−750 ms to −250 ms and 250 ms to 1,250 ms respectively) 

2.4. Discussion 

To our knowledge, this is the first mobile EEG investigation of real world ambulatory 

obstacle avoidance. Our primary aim was to assess whether neural signals associated with 

proactive and reactive forms of cognitive control could be detected during naturalistic 

movements, using the temporal dynamics of the neural response to dissociate the cognitive 

processes involved. In short, the results revealed distinct neural markers of proactive and 

reactive control, distinguishable in frequency (i.e. in theta or beta, respectively) and in time 

(i.e. present before or after the obstacle, respectively). This neural dissociation is, to our 

knowledge, the first evidence in support of the dual-mode account of cognitive control (cf. 

Braver, 2012) during real world walking. Furthermore, the temporal dynamics of the neural 

response observed while participants approached an obstacle revealed that, within the 

cognitive process of proactive control, selection is made early. These data are therefore 
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unique in identifying a specific time point at which movement preparation processes occur, 

a finding that has implications for continuous models of proactive motor control (e.g. 

Pezzulo & Ognibene, 2012). Below we discuss the implications of these findings for the 

understanding of each of these control processes, as well as considering technical and 

practical implications, limitations and recommendations for future studies. 

We start by focusing on proactive control mechanisms. As predicted, the analysis revealed 

a clear neural marker of proactive control: transient increases in theta power over frontal 

scalp locations during the planning phase, consistent with the timing of the unexpected 

obstacles’ appearance on the path. Analysis of the spectral EEG data revealed that the 

increase in theta power was largest when participants had less time and space available to 

change their gait before stepping over an obstacle (i.e. in the immediate adjustment 

condition). By contrast, this modulation was substantially absent when participants walked 

without encountering any obstacle (i.e. in the no adjustment condition) or when they could 

see the obstacle in advance (i.e. in the pre-set adjustment condition). Taken together, 

therefore, the pattern across conditions strongly suggests that increases in frontal theta 

observed during walking mark a proactive cognitive control mechanism that is engaged in 

response to unexpected obstacles. 

More importantly, the temporal dynamics of theta showed that the increase in power was 

linked to the appearance of the obstacle, suggesting an early selection mechanism is at play 

(Braver, 2012) within proactive control (Pezzulo & Ognibene, 2012). Nordin et al. (2019) 

investigated the brain dynamics during obstacle avoidance, and concluded that changes in 

posterior parietal alpha, theta and delta power (i.e. 3–13 Hz) occurred just two steps before 

the obstacle, providing support for a late adaptation model of control. Analogous oscillatory 

changes were found by Nordin and colleagues in premotor and supplementary motor areas 

that preceded posterior parietal cortex activation. However, the limited length of the 

treadmill belt in the study by Nordin et al. (2019) prevents safe conclusions from being 

drawn regarding the timing of these changes in relation to crossing the obstacle. By contrast, 

the present study clearly demonstrates that increases in frontal theta are not related to the 

time that an obstacle is overcome, but instead to the time that the walker becomes aware of 

an obstacle. Thus, the present results provide clear evidence in favour of an early selection 

mechanism underlying proactive control. According to dual-mode theory, proactive control 

operates through mechanisms which actively maintain relevant information until the 

behaviour is accomplished (Braver, 2012). In theory, therefore, the continuous maintenance 

of goal-relevant information supporting complex behaviour in the real world must require 
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the recruitment of substantial cognitive resources. In situations where a planned action needs 

to be maintained rather than performed immediately, proactive control must operate in a 

flexible and cost-efficient manner, updating relevant information to ensure that the 

appropriate action can take place at the right time (Pezzulo & Ognibene, 2012). As noted 

above, however, in the context of negotiating unexpected obstacles, our mobile EEG 

findings pinpoint the specific timing of frontal theta in relation to the appearance of the to-

be- avoided obstacle revealing an early selection mechanism within proactive control. 

Support for our account of proactive control can be found in the task switching literature 

(Cooper et al., 2015, 2017, 2019), where cognitive control has been divided into two stages: 

an early component, which ensures the preparation and the updating of relevant information 

facing the change, and a later component that reflects response readiness (Cooper et al., 

2015, 2017, 2019). Cooper and colleagues found that, in the context of task switching, 

frontal theta reflects an early cognitive control mechanism. Taken together, therefore, 

evidence suggests that increases in frontal theta power index an ‘early’ proactive 

mechanism, associated with preparing for an upcoming change, regardless of when the 

action is to be executed.  

Having discussed changes in theta power and the timing of proactive control that occurs 

before an obstacle is encountered, we now turn to changes in beta power that occur as the 

obstacle is reached. During the planning phase, a greater decrease in beta power was 

observed at electrodes over sensorimotor areas when the participants had to step over 

obstacles, compared to when there was no obstacle to avoid. As unobstructed walking 

involves a more basic negotiation of one's environment compared to obstacle avoidance, the 

greater decrease in beta band power 

likely reflects a state of increased motor readiness, which is needed in order to negotiate the 

obstacle without interrupting the walking cycle. Furthermore, the magnitude of the decrease 

in beta power was larger over parietal scalp locations during the earlier stages of movement, 

but larger at central electrodes when the participants approached the obstacle. 

Decreases in parietal beta power have previously been observed during visually guided step 

adjustments (Wagner et al., 2012) and motor preparation of finger movements (Mars et al., 

2007). Central beta power decreases have previously been observed in humans during active 

walking (Presacco et al., 2011; Seeber et al., 2014; Wagner et al., 2012; Wieser et al., 2010) 

and cycling (Jain et al., 2013; Storzer et al., 2016). It is well established that changes in beta 

power over sensorimotor brain regions index motor activation, thought to reflect the 
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planning and the execution of voluntary movements (Neuper et al., 2006; Pfurtscheller & 

Berghold, 1989; Pfurtscheller & Lopes da Silva, 1999). 

Consequently, the temporal evolution of beta power in the present study points towards the 

operation of a sequential mechanism, which initially recruits sensorimotor integration and 

spatial representation processes and, at a later stage, movement planning processes. 

Moreover, neither the temporal evolution nor magnitude of the decrease in beta power were 

notably different when gait adjustments were present or were triggered by the presentation 

of unexpected obstacles. This aspect of the data likely reflects the relatively low difficulty 

of stepping over obstacles in the present study. In addition, however, it also suggests that the 

updating of motor plans, presumably reflected in theta increases, is not necessarily reflected 

in greater primary sensorimotor activity. 

We now turn to consideration of processes that occur once an obstacle has been negotiated. 

During the resetting phase we observed robust transient power changes in beta (the so-called 

post-movement beta rebound; cf. Jurkiewicz et al., 2006; Pfurtscheller et al., 2005; 

Pfurtscheller & Solis-Escalante, 2009). The beta rebound is typically observed over 

sensorimotor areas after motor execution or motor imagery (Pfurtscheller et al., 2005; 

Pfurtscheller & Solis-Escalante, 2009) and it is believed to reflect an active recalibration 

process that takes place after a change in the state of the motor system (Engel & Fries, 2010; 

Kilavik et al., 2013; Pfurtscheller et al., 1996a). Notably, studies of cognitive control (e.g. 

during task switching and go/no-go paradigms; see Cooper et al., 2019 and Liebrand et al., 

2017, respectively) suggest the beta rebound seen over prefrontal and sensorimotor areas is 

an index of reactive control (cf. Liebrand et al., 2017). Accordingly, the presence of the beta 

rebound in the current study suggests that reactive control processes are also engaged during 

naturalistic walking, to restore the motor system to its previous state. Critically, and 

consistent with our hypothesis, increases in beta power were present only when gait 

adjustments were required (in order to step over the obstacle), but were absent when there 

was no obstacle to avoid. 

The current study design also allowed us to explore whether the beta rebound was modulated 

by the amount of time participants had to adjust their gait. As such, the beta rebound may be 

modulated by the motor demands placed when adapting gait. Although the beta rebound was 

clearly present after negotiating the obstacle, this index of recovery was not more 

pronounced when obstacles appeared while walking compared to when the obstacle was 

present at the start of the journey. Modulation was also evident when obstacles appeared 
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while walking: the beta rebound was stronger when the participants had more time to adjust 

their gait before stepping over the obstacle. Visual inspection of the shape of the beta 

rebound waveform suggests, however, that this effect may be due to the fact that the beta 

rebound was prolonged when participants had more time. A recent study has suggested that 

the duration of the beta rebound is increased after temporally protracted movements (Fry et 

al., 2016). Accordingly, the modulation of beta rebound appears to signify the longer 

engagement of the motor system when an unexpected obstacle appeared at a great distance 

from the participants. 

2.4.1. Practical implications, technical considerations and future 

directions 

The overarching objective of the present study was to demonstrate the relevance and utility 

of using mobile EEG in real world investigations, in particular for detecting neural correlates 

of natural behaviour that cannot be captured in traditional laboratory settings (Gramann et 

al., 2011, 2014; Ladouce et al., 2017; Makeig et al., 2009). Despite extensive development 

of new hardware solutions (i.e. dry electrodes, Lopez-Gordo et al., 2014, or dual-layer EEG 

caps, Nordin et al., 2019) and tools for signal processing (i.e. independent component 

analysis, Makeig et al., 1996), to date mobile technologies have not typically been used to 

test cognitive theories (Ladouce et al., 2017). Here, by revealing neuro-cognitive indices of 

proactive and reactive control, we show that mobile EEG can be used to characterise the 

complex pattern of processes that are engaged when humans encounter obstacles while 

walking. The technical challenges of reducing motion artefacts during natural movements, 

and the need to integrate the information from multiple devices, differentiate the mobile 

EEG approach from traditional laboratory-based EEG. A further obvious difference lies in 

the number of channels employed: here, we used 32 mobile EEG channels, rather than the 

64 or 128 channels commonly used in laboratory-based systems. 

Inevitably, the methodological constraints associated with mobile EEG have implications 

for data processing, analysis and interpretation. For example, the use of fewer electrodes 

results in the extraction of fewer independent components during the pre-processing stage 

than in equivalent laboratory-based studies. Equally, the use of a restricted electrode 

montage also precludes using EEG to identify the neural sources of the recorded signal, 

preventing any strong conclusions about the specific brain regions responsible. More 

importantly, mobile EEG data tend to be “noisier” in terms of movement and muscle artefact 
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than traditional laboratory-based EEG data, making it more difficult to identify brain signals. 

To address this issue, we relied heavily on automatic artefact rejection procedures to provide 

an objective evaluation of brain and non-brain signals. Despite the limitations associated 

with mobile data collection, the present experiment clearly demonstrates that cognitive 

processing can be assessed during real world behaviour. 

Another challenge for mobile EEG research lies in the presentation and manipulation of real 

world stimuli within the context of a structured experimental design. For example, in the 

present study, “obstacles” were images projected onto the floor, which allowed us to easily 

manipulate the position and predictability of the objects while maintaining a naturalistic and 

safe environment for participants. Although our paradigm was not entirely natural, lights 

projected onto the floor have previously been used in behavioural studies of obstacle 

avoidance (Chen et al., 1996; Salazar-Varas et al., 2015). In addition, the use of 2D (rather 

than 3D) obstacles could potentially interfere with natural leg mechanics while walking. 

Critically, however, our aim was to identify the cognitive processes relating to overcoming 

expected and unexpected obstacles, rather than to explore gait patterns per se. It is 

nevertheless of interest for future studies to examine whether the introduction of real 3D 

obstacles significantly influences the engagement of control processes. Similarly, future 

studies will need to examine the impact of variability in the temporal-spatial features of 

walking (i.e. changes in speed, acceleration or direction) and the participants’ performance 

(i.e. successful vs. unsuccessful obstacle avoidance) in order to identify any links between 

brain cortical dynamics and gait patterns. To fully investigate all of the factors that influence 

walking would, of course, require a more complex paradigm than was employed here, for 

example, via the introduction of routes that allow walkers to turn repeatedly. Other 

developments will require the use of additional sensors, for example, to allow EEG 

recordings to be time-stamped based on the pattern and timing of heel strikes that are made 

during walking. Even without additional technical and methodological development, the 

present findings highlight the exciting opportunities that now exist for studying 

neurodegenerative and developmental disorders (such as Parkinson's disease and dyspraxia, 

respectively), where understanding real world behaviours is critical. Negotiating obstacles 

in the real world requires us to allocate attention, detect relevant constraints and flexibly 

adapt motor behaviours, which is challenging for elderly or Parkinson's disease patients who 

often experience gait impairments that increase the risk of falls and mortality (Kovacs, 2005; 

Tinetti et al., 1988; Weerdesteyn et al., 2006). Studies that aimed to identify neural markers 

of Parkinson's disease and gait dynamics are presently limited, being restricted to simple 
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tasks (i.e. finger tapping, Stegemöller et al., 2016, 2017) or indirect methods such as 

kinematics recording (Galna et al., 2010; Vitorio et al., 2010). By contrast, mobile EEG can 

provide direct insight into the neural and cognitive processes that are affected by disorders, 

addressing the actual real world situations that are problematic for patients. 

For rehabilitation of motor disorders following brain injury or as a consequence of 

neurodegenerative diseases such as Parkinson's disease, it is particularly important to have 

an understanding of the cognitive processes involved in the complex, dynamic, modality 

integrated reality of real world behaviour. As such, identifiable neural markers of real world 

behaviour offer novel pathways towards tailored neuro-rehabilitation approaches for motor 

disorders in particular. Such evidence-based cognitive rehabilitation strategies could, for 

example, use neurofeedback or non-invasive brain stimulation and the online acquisition of 

cognitive neural markers in offering tailored and ecological diagnostics and rehabilitation 

processes for patients affected by various neurological aetiologies. 

2.5. Conclusion 

Our study demonstrates that mobile EEG can be used to capture the dynamic oscillatory 

responses associated with the neuro-cognitive processes of that are engaged while 

negotiating real world environments. We demonstrated that naturalistic obstacle avoidance 

is mediated by proactive and reactive cognitive control processes, reflected in the dynamics 

of theta and beta oscillations. In particular, the temporal brain dynamics of frontal theta 

revealed that proactive control during unexpected obstacle avoidance is associated with an 

early selection mechanism. Furthermore, we showed that motor readiness is mediated by 

beta power decreases which were evident when pre-set or externally triggered gait 

adjustments were needed in order to step over an obstacle. With regards to reactive control, 

we identified a robust beta rebound after obstacles were crossed, demonstrating that real 

world negotiation of the environment requires finely tuned resetting of the motor system. 

Taken together, these mobile EEG data provide a new way to examine the neuro-cognitive 

processes supporting walking in particular, and of applying an embodied mobile cognition 

perspective to the understanding of human behaviour in general. The findings are also 

relevant towards a better understanding of motor impairments in more naturalistic contexts 

and should inform the development of novel neuro-rehabilitation approaches. 
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Chapter 3: The neural correlates of the imagery and execution in 

real world dynamic behaviour: evidence for neural overlap but 

distinct cognitive processes 

3.1. Introduction 

The term motor imagery has been used in literature to indicate the visual and kinaesthetic 

imagination of a movement without execution (Decety, 1996a; Jeannerod, 1994, 2001; 

Mulder, 2007). Since the first seminal studies in the 1930s (Sackett, 1934, 1935), a large 

amount of evidence has shown that motor imagery and actual execution of movements share 

similar cognitive processes and neural activation features. For example, the time taken to 

execute and to mentally imagine a movement has been shown to be similar (Decety & Michel, 

1989; Sirigu et al., 1995) suggesting that imagery is based on actual movement cognitive 

representations. Similarly, execution and motor imagery adhere to Fitts’ law whereby the 

time to execute or imagine a movement is moderated by accuracy demands (Decety & 

Jeannerod, 1995; Macuga et al., 2012; Macuga & Frey, 2012). According to the so called 

‘functional equivalence hypothesis’ following Jeannerod’s motor simulation theory 

(Jeannerod, 1994, 2001), similarities between actual execution and motor imagery emerge 

from shared motor-cognitive processes, allowing for the imagined rehearsal of movement 

using cognitive motor planning processes (Jeannerod, 2001).  

The functional equivalence hypothesis has received large support, primarily from brain 

imaging studies which have demonstrated that motor imagery and actual motor execution 

involve activation of similar brain areas (Grèzes & Decety, 2001; Porro et al, 1996; Sharma 

& Baron, 2013). These brain activations include a distributed premotor-parietal network, 

involving several subcortical structures, such as the putamen and cerebellum (Grezes & 

Decety, 2001; Hardwick et al., 2018). Further indirect evidence for equivalence comes from 

sport (Guillot & Collet, 2008; Williams et al., 2015) and clinical literature, which have shown 

that the mental practice of movement through motor imagery (i.e., the repetitive exposure to 

motor imagery of movements) can be effective for learning motor skills (Dijkerman et al., 

2010; Barclay et al., 2020). The potential efficacy of mental practice in sport training and in 

motor rehabilitation is supported by findings which demonstrated that motor imagery practice 

can induce plastic changes in motor networks (for a review see Ruffino et al., 2017).  
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Despite evidence for neural similarities, there remains an open debate about the effective 

equivalence of cognitive processes underlying motor imagery and action execution (i.e., what 

is the correspondence mechanism?). Indeed, the functional equivalence hypothesis has been 

challenged by the evidence of substantial temporal and neural differences between action 

execution and motor imagery (see Glover & Baran, 2017). The behavioural similarities show 

variance, with for example, time to mentally simulate a movement sometimes taking longer 

than actual execution (Decety et al., 1989; Louis et al., 2011) especially when participants 

have to perform novel complex tasks (Calmels et al., 2006; Cerritelli et al., 2020). In a recent 

meta-analysis, Hardwick et al. (2018) showed a relatively small overlap between brain 

activations during action execution and motor imagery, which likely indicates a discrete 

mechanism of equivalence that is not reflected by the majority of the findings. Whereas action 

execution involves more specific areas involved in motor functions such as the primary motor 

cortex and the cerebellum, motor imagery involves areas involved in visuomotor control and 

motor planning, such as the premotor and the parietal areas (Hetu et al., 2013; Hardwick et 

al., 2018). These findings suggest that cognitive mechanisms underlying motor imagery are 

yet to be understood (cf. O’Shea & Moran, 2017) and that the functional equivalence between 

action execution and motor imagery has been probably overstated (Hardwick et al., 2018). 

Drawbacks for the effective demonstration of functional equivalence between action 

execution and motor imagery include confounding factors such as whether some of the neural 

activity observed during motor imagery represents inhibition of action responses (see Chong 

& Stinear, 2017; Angelini et al., 2015; Solodkin et al., 2004; Lotze et al., 1999). As during 

motor imagery no motor response is actually produced, it has been suggested that underlying 

cognitive mechanisms involve inhibitory processes, preventing the activation of neural 

descending pathways (Jeannerod, 1994). In line with these hypotheses, different studies have 

shown that neural areas for inhibitory control of overt motor responses, such as the 

supplementary motor areas and right inferior frontal gyrus (Angelini et al., 2015), the 

cerebellum (Lotze et al., 1999) and the parietal areas (Solodkin et al., 2004), are recruited 

during motor imagery. In particular, Angelini et al. (2015) showed a partial overlap between 

motor inhibition occurring during motor imagery and the voluntary withholding of motor 

response during NoGo trials, demonstrating that the inhibitory circuits are recruited in 

different temporal sequences in overt and covert behaviours. This suggests that inhibition is 

automatically and involuntarily included in the cognitive mechanisms underlying motor 

imagery (Angelini et al., 2015). 
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Likewise, methodological constraints make measures of motor imagery extremely 

challenging for researchers, even in experimentally controlled settings. This is primarily due 

to the covert nature of motor imagery tasks and difficulties to demonstrate with evidence that 

covert imagery (which typically cannot be systematically manipulated and measured) 

influences performance. Furthermore, without comparison to actual execution, it is not 

always clear what is being measured by recording brain activations during motor imagery. 

The assessment of the quality of movement imagery is further called into question through 

the evaluation of individual participants’ imagery ability, which mostly has been evaluated 

with subjective self-reported questionnaires and scales (Gregg et al., 2010; Mizuguchi et al., 

2015; for a review see MacIntyre et al., 2018). Another constraint is related to brain imaging 

technologies, which usually require participants to lie down in a scanner and imagine 

movements normally performed when upright, or to sit during EEG recordings while for 

example imagining walking. This incongruence between body posture and imagined action 

is an issue because the compatibility of the body position has been shown to affect motor 

imagery performance. For example, the time it takes to perform a movement mentally has 

been found to be more similar to the actual execution when participants are in a congruent 

posture to the imagined movement, compared to incongruent conditions (Parsons et al., 1994; 

de Lange et al., 2006; Conson et al., 2011; Saimpont et al., 2012). In sum, although the 

laboratory gives the advantage of studying human cognitive processes in highly controlled 

settings, the research is far from providing a clear and univocal explanation of neural 

substrate and cognitive processes underlying motor imagery (Barton & Pretty, 2010; 

Menicucci et al., 2020), and their equivalence to action execution processes.   

The use of mobile electroencephalogram (EEG) technology solves many of the constraints 

discussed in the previous paragraphs. EEG recordings allow a characterization of highly 

accurate temporal dynamics of brain rhythms thought to reflect cognitive processing, which 

overcomes the limitations of functional scanning.  A common finding of EEG investigations 

is that during motor imagery, there is a decrease/suppression and an increase in the spectral 

power, often termed event related desynchronization and synchronization, respectively. 

These are more often found in the alpha (8-12 Hz) and beta (13-35 Hz) frequency bands, 

occurring over sensorimotor (Pfurtscheller & Neuper, 1997; Neuper & Pfurtscheller, 2001; 

Pfurtscheller et al., 1997) and parietal-occipital (Salenius et al., 1995; Xie et al., 2020) brain 

areas. Generally, it is widely accepted that power suppression in the alpha and beta frequency 

bands is related to the activation of relevant brain areas during a given task, whereas power 

increase is associated with inhibition (Pfurtscheller et al., 1999; Klimesch, 2012). Although 
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EEG investigations have provided evidence of the engagement of sensorimotor brain areas 

during action execution and motor imagery, research has typically focused on upper limb 

movements, while participants were sitting, performing hand or finger movements. EEG 

measures of lower limb movements and of whole body dynamics such as locomotion have 

been given little attention. Studies of lower limb imagery were mostly limited to imagery of 

only minimal movement, such as the dorsiflexion of the foot (Pfurtscheller et al., 2006b; 

Neuper et al., 1996; Hashimoto et al., 2013; Solis-Escalante et al., 2008, 2012; Muller-Putz 

et al., 2010) or stepping in place (Hsu et al., 2017; Liu et al., 2019). These investigations 

mainly aimed to identify reliable signals for brain-computer interface (BCI) control, which 

connect the oscillatory activity of the brain to a computer (Wolpaw et al., 2002) in order to 

drive external devices, such as prostheses (Leeb et al., 2007; Pfurtscheller et al., 2003). 

Indeed, commonly in these studies, recordings were obtained with a limited number of 

channels and cognitive aspects were less explored. However, lower limb natural movements, 

such as walking, involve much more complex kinematics than movements such as the 

dorsiflexion of the feet. Walking is a whole body dynamic action, which involves postural 

control, coordination of limb kinematics while integrating multisensory information from the 

body with information from the external environment. Indeed, la Fougere et al. (2010) in a 

PET/fMRI study showed that the neural activation during execution and motor imagery of 

walking are substantially different. Whereas actual walking involves primary motor cortex 

and somatosensory activation, motor imagery involves the activation of the supplementary 

motor area and the basal ganglia (la Fougere et al., 2010). However, motor imagery in fMRI 

requires participants to lay supine, which is fundamentally different from the upright position 

during locomotion. To the best of our knowledge, the neural correlates of motor imagery of 

whole body dynamic movements have not yet been investigated. 

Therefore, in the current study we investigated the similarities and differences of neural 

activations associated with action execution and motor imagery of whole body walking 

movements using a mobile EEG approach. We asked participants to walk or (in a standing 

position) to imagine walking at a natural pace along a path. To enhance the sensorimotor 

experience, we asked participants to perform the imagery straight after walking, using a first-

person perspective and focussing on the kinaesthetic experience (feeling the sensations as if 

actually walking), which has been shown to elicit greater motor activation compared to visual 

motor imagery from a third person perspective (Lorey et al., 2009; Mizuguchi et al., 2017). 

Furthermore, we used a mental counting task as a non-motor control condition. According to 

the functional equivalence hypothesis of motor simulation theory (Jeannerod, 1994, 2001), 
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we expected that motor imagery and actual execution would elicit similar EEG profiles 

compared to mental counting, i.e., power spectral changes of alpha and beta frequency bands, 

which might index similar cognitive mechanisms underlying execution and motor imagery. 

3.2. Methods 

3.2.1. Participants 

Twenty-four healthy participants (23 female and 1 male; age range = 18-44 years; mean age 

= 22.16 years, SD = 6.8 years) took part in the experiment. The data from three participants 

were excluded due to the presence of prominent artifacts in EEG recordings. The remaining 

data of twenty-one participants (20 female and 1 male; age range = 18-44 years; mean age = 

21.43 years, SD = 5.5 years) were used in the reported analyses. Height (169.05 ± 8.02 cm), 

weight (67.5 ± 15.39 Kg) and walking speed (5.29 ± 0.56 Km/h) were also recorded for each 

participant. All the participants had no history of neurological disorders and were right-

handed (self-reported). Before starting the experiment, all the participants gave their 

informed consent. Ethical approval was provided by the General University Ethics Panel of 

the University of Stirling. 

3.2.2. Material and procedure 

In the original design, participants were asked to complete four experimental conditions: i) 

Actual walking, ii) Motor Imagery of walking, iii) Mental Counting and iv) Observation of 

walking. In this study, we focus on the comparisons between Motor Imagery, Actual 

Execution and Mental Counting. Action observation data were part of a separate study and 

analysed in relation to other hypothesis and parameters (see Chapter 4). They are therefore 

not included in this Chapter. Participants completed a total of 120 trials (40 trials for each 

condition) divided in 6 experimental blocks of 20 trials each. During the mental counting 

(MC) condition, participants were standing and instructed to listen to 6 consecutive tones 

(107 dB, interval of 600 ms), and then to mentally count up to six at the same frequency. 

They were asked to say out loud ‘six’ when they finished the mental count. During the 

execution of walking (EXE) condition, participants were instructed to take 6 steps on a 6 m 

long carpet, to turn and continue walking without stopping. During the motor imagery of 

walking (MI) condition, participants were instructed to take 6 steps, stop at the beginning of 

the 6 m carpet and to ‘imagine feeling as if they were walking on the carpet performing a 

further 6 steps and arriving to the end of the path’ using the first person’s perspective 
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(kinaesthetic imagery). They were asked to say out loud ‘stop’ when they finished the sixth 

step of the mental walking task. In order to ensure the success of the task, participants were 

first trained for several minutes. During training, participants were first introduced to the 

kinaesthetic imagery perspective, in order to ensure that they understood the task. Secondly, 

they were told to concentrate their attention on the movement of their legs, and the ‘feeling’ 

of pushing the foot on the ground, focusing on the sensation coming from the different 

muscles of the lower limbs. They were asked to try for several minutes before starting the 

block of MI, until they were certain that they would be able to perform the task. Depending 

on the condition, a trial was defined as the time period from when the participants started to 

mentally count until they said ‘six’ (MC condition), from when they started to walk until the 

end of the path (EXE condition) and from when they started the imagery of walking until 

they said ‘stop’ (MI condition). The order of conditions and experimental blocks was 

randomized across participants.  

3.2.3. EEG recording and processing 

EEG data were recorded from 32 Ag/AgCl electrodes connected to a portable amplifier 

(ANT-neuro, Enschede, The Netherlands). Electrodes were positioned according to the 

International 10-20 system: FP1, FPz, FP2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, M1, T7, 

C3, Cz, C4, T8, M2, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, POz, O1, Oz, O2. AFz electrode 

was used as ground and CPz electrode was used as reference. The electrode impedances were 

reduced below 5 kΩ before the recording. During recording, EEG data were sampled at 500 

Hz and bandpass filtered at 0.01-250 Hz. EEG data analyses were performed using custom 

scripts written in MATLAB 2019a (The MathWorks) incorporating EEGLAB toolbox 

(Delorme and Makeig, 2004). Data from the mastoid channels (M1 and M2) were removed 

from the analysis, and all remaining EEG data were filtered using a 0.1 Hz to 40 Hz bandpass 

filter. EEG channels with prominent artifacts were automatically selected (kurtosis > 5 SDs) 

and interpolated, and all channels were then re-referenced to the average. Data were 

downsampled to 250 Hz and an extended infomax Independent Component Analysis (ICA, 

Makeig et al., 1996) was performed to identify and remove non-brain signals. Brain-related-

ICs were identified using the IClabel plugin (Pion-Tonachini et al., 2019). Components 

exceeding a 90% probability of being eye, muscle, heart, line noise, and channel noise were 

rejected. Only brain ICs with dipoles located inside the head and a residual variance lower 

than 15% were kept. An average of (mean ± SD) 6.65 ± 0.81 ICs across conditions was 

retained for the analysis.  
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3.2.4. EEG Analysis 

In order to investigate the cortical dynamics during the overall length of trials across 

conditions, EEG data were segmented in epochs of 8500 ms. An epoch lasted from -7000 ms 

before and 1500 ms after time 0, which corresponded to the end of each trial. Single channel 

spectrograms were time warped to the median latency of the start of the trial (-3960 ms) 

across participants for each condition. Event related spectral perturbation (ERSPs) was 

computed using a Fast Fourier Transform (FFT), and computed as the mean difference 

between single trial log spectrograms for each channel and each participant across conditions 

and the mean baseline (-3960 ms before to 1320 ms after time 0). The window of the ERSP 

computation was sent at 3 cycles in the newtimef function and frequencies ranging from 3 to 

40 Hz were computed at 2500 time points distributed in the time warped epochs for each 

trial, channel, participant and condition. Single channel time frequency spectrograms were 

visually inspected to identify relevant changes in the spectral power in the a priori defined 

frequency bands of interest: alpha (8-12 Hz) and beta (13-35 Hz). Topographical scalp maps 

in the frequency bands of alpha and beta (Figure 3.1 and 3.2, panel A) were further visually 

inspected to identify relevant regions of interest (ROI). We identified a central (FC1, FC2, 

C3, C4, CZ), a parietal (CP1, CP2, P3, P4, PZ channels) and an occipital (O1, O2, OZ, POZ) 

ROI.  

3.2.5. Statistical analysis 

Topographic scalp maps (Figure 3.1 and Figure 3.2, panel A) showed prominent changes in 

the spectral power in the alpha and in the beta frequency bands across conditions. In order to 

capture relevant spectral changes, we divided the time window of interest in 4 separate time 

windows:  more specifically [-3960, -2640]ms, [-2640, -1320]ms, [-1320,0]ms, [0,1320]ms. 

Two separate repeated measures 3x4x3 ANOVAs with factors Condition (Mental counting 

(MC); Execution (EXE); Motor Imagery (MI)), Time Window (Time 1, Time 2, Time 3, 

Time 4) and ROIs (central, parietal, occipital) were performed for alpha and beta frequency 

bands. The Greenhouse – Geisser correction was applied whenever the sphericity assumption 

was violated and post-hoc paired sample t-tests adjusted using Bonferroni correction, were 

performed to further investigate significant main effects and interactions. 
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3.3. Results 

3.3.1. Beta oscillations 

The ANOVA revealed a main effect of Condition [F(1, 20) = 28.875,  p = .000, ηp
2 = .591] 

showing an overall smaller amplitude in the beta frequency band during EXE compared to 

MC [t(20) = 8.365, p = .000] and MI [t(20) = 5.585, p = .000]. A main effect of Time Window 

[F(1, 20) = 36.173,  p = .000, ηp
2 = .644] revealed that there was a  decrease of beta power in 

Time Windows 1 and 2 whereas there was an increase of beta power in Time Windows 3 and 

4. 

 

Figure 3.1. (A) Scalp maps topography of beta (13-25 Hz) spectral power across conditions and time 

windows. (B) Averaged beta percentage change of power from baseline across conditions in each 

time window. (C) Averaged waveforms comparison between MC vs MI (left) and EXE vs MI (right) 

in beta frequency band over parietal areas 



82 

 

Importantly, there was a significant interaction between Condition and Time Window [F(1, 

20) = 8.059, p = .000, ηp
2 = .287]. As illustrated in Figure 3.1C, there was a sustained beta 

power decrease during motor imagery and execution, which was evidently different to the 

modulation of beta power during mental counting. Post-hoc paired t-tests confirmed that the 

decrease in beta power was significantly stronger during MI compared to MC in Time 

Window 1 [t(20) = 2.634, p = .048] and Time Window 2 [t(20) = 4.679, p = .000]. In addition, 

the increase in beta power in Time Window 4 was significantly stronger during MI compared 

to MC [t(20) = 3.236, p = .048]. With regard to the comparison between MI and EXE there 

was only a significant difference in Time Window 3 [t(20) = 4.262, p = .000], due to a faster 

increase in power in motor imagery. 

There was a significant interaction between ROI and Time Window [F(1, 20) = 9.610,  p = 

.000, ηp
2 = .325]. Beta power decrease was stronger in the central ROI compared to the 

parietal ROI in Time Window 1 [t(20) = 3.752, p = .012] and Time Window 2 [t(20) = 3.828, 

p = .012]. In Time Window 2 there were also significant differences between the occipital 

and central [t(20) = 4.019, p = .012] and parietal [t(20) = 6.149, p = .000] ROIs. In addition, 

there was a stronger increase of beta power in the parietal ROI compared to the occipital ROI 

[t(20) = 3.336, p = .048] in Time Window 3. 

There was a significant interaction between Condition and ROI [F(1, 20) = 3.749,  p = .031, 

ηp
2 = .153]. Post-hoc paired t-tests revealed larger amplitudes of beta power in MI compared 

to EXE in the central [t(20) = 5.274, p = .000], parietal [t(20) = 6.103, p = .000] and occipital 

[t(20) = 3.702, p = .012] ROIs. With regard to MC, the beta power amplitude was larger in 

MI only over parietal areas [t(20) = 2.401, p = .048]. 

A significant 3-way interaction [F(1, 20) = 2.990,  p = .033, ηp
2 = .130] was investigated for  

each ROI separately. In the central ROI, there was a stronger decrease of beta power in MI 

compared to MC in Time Window 1 [t(20) = 2.764, p = .048] and Time Window 2 [t(20) = 

3.403, p = .048]. In Time Window 3, the beta power increased in relation to the baseline in 

MI, whereas there was still a beta power decrease in EXE; this difference was significantly 

different [t(20) = 4.547, p = .000]. Similarly in the parietal ROI, there was a stronger decrease 

of beta power in MI compared to MC in Time Window 1 [t(20) =2.794, p = .036] and Time 

Window 2 [t(20) = 3.759, p = .012]. In addition, there was a stronger decrease of beta power 

in Time Window 2 in MI compared to EXE [t(20) = 2.554, p = .048]. In Time Window 3, the 

beta power increased in relation to the baseline in MI, whereas there was still a beta decrease 

in EXE; this difference was significantly different [t(20) = 3.979, p = .012]. In the occipital 
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ROI, there was a stronger decrease of beta power in Time Window 2 in MI compared to MC 

[t(20) =6.226, p = .000], whereas there was a stronger increase of beta power in Time 

Window 4 [ t(20) =3.397, p = .036]. In addition, in Time Window 3, the beta power increased 

in relation to the baseline in MI, whereas there was still a beta decrease in EXE; this 

difference was significantly different [t(20) = 3.770, p = .012]. 

3.3.2. Alpha oscillations 

The ANOVA revealed a main effect of Condition [F(1, 20) = 57.871, p = .000, ηp
2 = .743]. 

Post-hoc paired sample t-tests showed an overall smaller amplitude during EXE compared 

to MC [t(20) = 8.675, p = .000] and MI [t(20) = 9.645, p < .001] but no differences between 

MI and MC (p > .05). A main effect of Time Window [F(1, 20) = 27.328, p = .000, ηp
2 = 

.577] revealed that there was a decrease of alpha power in Time Windows 1 and 2 whereas 

there was an increase of alpha power in Time Windows 3 and 4. 

 

Figure 3.2. (A) Scalp maps topography of alpha (8-12 Hz) spectral power across conditions and time 

windows. (B) Averaged alpha percentage change of power from baseline across conditions in each 
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time window. (C) Averaged waveforms comparison between MC vs MI (left) and EXE vs MI (right) 

in alpha frequency band over parietal areas 

As illustrated in Figure 3.2, the modulation of alpha power was similar to the modulation of 

beta power only in EXE. There was practically no modulation in MC, whereas there was a 

sharp and relatively short-lived power decrease at the early stages of MI. This was confirmed 

by a significant 2-way interaction between Condition and Time Window [F(1, 20) = 7.901,  

p = .000, ηp
2 = .283]. Post-hoc paired t-tests showed that there was a greater alpha power 

decrease in MI compared to MC in Time Window 1 [t(20) = 3.53, p = .024], and a greater 

alpha power increase in MI compared to MC in Time Window 4 [t(20) = 2.910, p = .036]. In 

addition, in Time Window 3, the alpha power increased in relation to the baseline in MI, 

whereas there was still a beta decrease in EXE; this difference was significantly different 

[t(20) = 7.327, p = .000]. 

A significant interaction between ROI and Time Window [F(1, 20) = 12.005,  p = .000, ηp
2 

= .375] revealed a stronger decrease of alpha power in the occipital ROI compared to the 

central [t(20) = 3.4.546, p = .000] and the parietal [t(20) = 4.794, p = .000] ROI in Time 

Window 2. Similarly, a stronger decrease of alpha power occurred over occipital ROI 

compared to the central [t(20) = 3.790, p = .012] and the parietal [t(20) = 2.34, p = .000] ROI. 

In Time Window 4, a stronger increase of alpha power occurred over the occipital compared 

to the central [t(20) = 3.799, p = .012] and the parietal [t(20) = 3.496, p = .024] ROI. 

There was a significant interaction between Condition and ROI [F(1, 20) = 5.756,  p = .003, 

ηp
2 = .223]. The amplitude of alpha power was larger in MI compared to MC in the parietal 

ROI [t(20) = 2.922, p = .036]. In addition, the amplitude of alpha power was larger in MI 

compared to EXE in the central [t(20) = 6.823, p = .000], parietal  [t(20) = 10.924, p = .000] 

and  occipital ROIs [t(20) = 6.610, p = .000]. 

A significant 3-way interaction [F(1, 20) = 3.254,  p = .016, ηp
2 = .140] was further 

investigated by each ROI. In the central ROI, there was a stronger decrease of alpha power 

in MI compared to MC in Time Window 1 [t(20) = 4.234, p = .000] and a stronger increase 

of alpha power in Time Window 4 [t(20) =2.322, p = .048]. In addition, In Time Window 3, 

the alpha power increased in relation to the baseline in MI, whereas there was still an alpha 

decrease in EXE; this difference was significantly different [t(20) = 5.753, p = .000]. 

Similarly in the parietal ROI, there was a stronger decrease of alpha power in MI compared 

to MC in Time Window 1 [t(20) = 4.000, p = .012] and a stronger increase of alpha power in 

Time Window 4 [t(20) =2.818, p = .036]. In addition, In Time Window 3, the alpha power 
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increased in relation to the baseline in MI, whereas there was still an alpha decrease in EXE; 

this difference was significantly different [t(20) = 4.468, p = .000]. In the occipital ROI, the 

significant difference between MI and MC appeared later compared to the central parietal 

ROIs; the analysis revealed a stronger decrease of alpha power in Time Window 2 [t(20) = 

3.283, p = .024]. Similar to the other two ROIs, there was a stronger increase of alpha power 

in Time Window 4 [t(20) =2.623, p = .048]. In addition, In Time Window 3, the alpha power 

increased in relation to the baseline in MI, whereas there was still an alpha decrease in EXE; 

this difference was significantly different [t(20) = 8.662, p = .000]. 

 

3.4. Discussion 

The present study demonstrated an overlap between the oscillatory brain activity related to 

motor imagery and actual execution of walking, which was significantly different from the 

mental counting condition. This confirmed that participants were engaged in the motor 

imagery task, and that they were not only mentally counting the steps. The results showed a 

general match between the power decrease-increase dynamics in the beta frequency band 

when participants were performing the actual movement of walking or the motor imagery of 

walking, and such correspondence did not emerge when participants were mentally 

counting. However, the data also indicated interesting differences between the action 

execution and motor imagery conditions. Furthermore, the data indicated a different beta 

power amplitude over brain areas during motor imagery, which was associated with larger 

amplitude of beta power over central and posterior electrodes, compared to actual walking. 

We also found that oscillatory activity in the alpha frequency band was characterised by a 

stronger power suppression at the beginning of the motor imagery compared to the actual 

execution and mental counting conditions, which rapidly dissipated during the performance 

of the task. The alpha power suppression was instead sustained during the actual execution 

of walking, whereas no modulation was evident when participants had to mentally count. 

 Consistently with the functional equivalence hypothesis, our results demonstrated that the 

pattern of power suppression in the beta frequency band is similar in the first two time 

windows of the actual execution and motor imagery of walking. This is further supported by 

differences in beta power suppression between the motor imagery and mental counting 

conditions, suggesting that participants did not just count the steps mentally in the motor 

imagery condition. Typically, power suppression in the beta frequency band over the central 
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cortical areas is visible during the preparation (Rhodes et al., 2018; Tzagarakis et al., 2010) 

and the execution of movements (Pfurtscheller & Berghold, 1989; Kaiser et al., 2003; 

Stančák et al., 1997; Cassim et al., 2000; Kilavik et al., 2013). This pattern of beta band 

activity has also been reported during the kinaesthetic imagery of movement of body parts, 

i.e., hand, foot and tongue motor imagery (Pfurtscheller & Neuper, 1997; Neuper & 

Pfurtscheller, 1998; 1999; Pfurtscheller et al., 2006a, 2006b) and for motor imagery of 

skilled movements over sensorimotor areas (Nakagawa et al., 2011; Pfurtscheller et al., 

2002; Di Nota et al., 2017). The role of beta suppression over the sensorimotor areas has 

been regarded as the index of a mechanism that recruits necessary units required to generate 

a motor output (Rhodes et al., 2018). In line with this account, our data showed that both 

motor imagery and execution of walking elicited a stronger beta power suppression, 

specifically during the first two time windows of the tasks, compared to mental counting. 

The suppression of beta oscillations might signal the recruitment of neural circuits 

underlying the activation of the relevant motor information related to the action 

representation of walking, which possibly resemble typical cognitive mechanisms occurring 

during motor planning of overt motor responses (see Glover & Baran, 2017). 

However, the data also indicate relevant differences between beta power modulation during 

motor imagery and actual execution of walking. As shown in Figure 3.1, after the first two 

time windows of the motor imagery task, the beta power suppression rapidly faded away, 

whereas it was continuously sustained during actual execution of walking. This is likely due 

to a greater recruitment of motor units during overt motor outputs compared to covert 

actions. Furthermore, the power suppression in the beta band during motor imagery occurred 

over central, parietal and occipital electrodes. This finding would suggest the involvement 

of a complex cognitive substrate and distributed neural network for motor imagery 

(Solodikin et al., 2004). Indeed, suggestions for a multi-dimensional account of motor 

imagery are gaining consensus (Kraeutner et al., 2020; Cumming & Eaves, 2018; Dahm, 

2019). According to this view, the generation of an action representation not only involves 

motor specific information related to the movement to be executed or imagined, but also its 

visual and sensory features (Munzert et al., 2009). Moreover, in order to maintain an action 

representation active in one’s mind, the visuomotor processing of the movement to be 

imagined requires additional cognitive resources compared to that needed for execution. 

Indeed, according to the recent motor cognitive model (Glover & Baran, 2017), motor 

imagery involves a greater engagement of executive functions compared to actual execution 

(Glover et al., 2020). In our study, participants were required to imagine walking down a 
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room and to indicate the completion of the path. This condition requires the maintenance of 

the simulation of action active as well as a dynamic integration of visual and kinaesthetic 

sensory information associated with the motor imagery of one’s body moving in the 

environment (Kruger et al., 2020). This suggests that motor imagery involves cognitive 

mechanisms that go beyond the mere encoding of motor information, and that the 

investigation of real world complex behaviour might have a critical role in revealing the 

multidimensional nature of these processes. Furthermore, the present study suggests that 

motor imagery of dynamic whole body movements might represent a window into the 

understanding of the neural and cognitive similarities with actual execution, but also the 

differences between the two behaviours.  

The results of the present study also showed an increase of power in the beta frequency band 

toward the end of the walking movement in all three experimental conditions, but overall 

stronger in the motor imagery condition. The increase in the beta frequency band, also 

known as beta ‘rebound’, is typically observed over premotor and sensorimotor areas in the 

post movement phase (Jurkiewicz et al., 2006; Pfurtscheller et al., 2005; Pfurtscheller & 

Solis-Escalante, 2009). The beta rebound has been related to a possible resetting mechanism 

or to an ‘idling state’ occurring at the end of a movement (Engel & Fries, 2010; Kilavik et 

al., 2013). In the present study, the beta power increase was apparent at different times across 

the three experimental conditions, with two peaks occurring during the last two time 

windows in the motor imagery conditions. From these two peaks, the first coincided with 

the beta peak in the mental counting condition and the second with the beta peak in the actual 

execution condition. This possibly suggests two different mechanisms occurring at the end 

of the motor imagery trials: a first - early - increase of beta power which might indicate the 

end of the mental counting of the steps, occurring at the same time of the mental counting 

condition, and a second - delayed - increase of beta power related to the reset of the motor 

representation, occurring at the same time of the end of walking execution. The distinct 

patterns of the beta rebound would also indicate a different temporal recruitment of neural 

circuits related to the reset (Engel & Fries, 2010) or alternatively to inhibition (Salmelin et 

al., 1995). This evidence is furthermore in line with the study of Angelini et al. (2015), which 

showed that inhibitory processes are temporally distinct in motor imagery and action 

execution, suggesting that inhibition is automatically included in the cognitive processes 

underlying motor imagery (Angelini et al., 2015). Our data support such an account, showing 

an earlier activation of the beta rebound during motor imagery compared to actual execution 

of walking, likely indicating that inhibition is anticipated during the rehearsal of the action 
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representation during covert motor behaviour. This data also shows that inhibition processes 

might be included in the multidimensional cognitive substrate of motor imagery. 

Alpha power modulation followed a different pattern across the three experimental 

conditions. It is well known that during movement preparation and execution, a power 

desynchronization in the alpha and beta frequency bands occurs over sensorimotor areas 

(Leocani et al., 2001; Pfurtscheller & Berghold, 1989; Kaiser et al., 2003). This pattern has 

also been observed during motor imagery and movement observation, suggesting an 

association with action simulation mechanisms (Pfurtscheller & Lopes da Silva, 1999; 

Jurkiewicz et al., 2006; de Lange et al., 2008). In the present study, we found a continuous 

alpha desynchronization during actual execution, consistent with previous findings on 

walking (Gwin et al., 2011; Bradford et al., 2016; Bulea et al., 2015). Our results showed a 

prominent suppression of alpha power in the motor imagery condition, but only at the 

beginning of the imagined walking, whereas there was no evident modulation during the 

mental counting condition. The strong alpha desynchronization occurring at the beginning 

of motor imagery could indicate the initial allocation of attention towards relevant features 

of the task at hand, as the participants were instructed to actually walk for six steps, and then 

to start the motor imagery, focusing on the feeling and the sensation of ‘mentally’ moving 

the muscles. Our participants were furthermore asked to keep their eyes open during the 

motor imagery condition, in which they had to imagine walking down the path and to say 

‘stop’ when they mentally reached the end of it. Therefore, it is likely that the large alpha 

power suppression at the beginning of the task indexed the allocation of attention towards 

the relevant aspects of the task, such as the visual input coming from the external 

environment. This is in line with previous literature (Foxe & Snyder, 2011; Brinkman et al., 

2014) suggesting that the role of alpha decrease of power might be related to the allocation 

of attention toward relevant task-related information, such as visual information or changes 

in arousal (Brinkman et al., 2014). In our study, we also found a larger alpha suppression 

over central and posterior electrodes compared to actual execution. This result suggests the 

engagement of a wide range of brain areas involved during motor imagery, possibly 

indicating the processing of kinaesthetic and visual information related to the action to 

imagine. The activation of central and parietal areas has been reported to be prominent for 

kinaesthetic imagery, and occipital brain activation has been found to be stronger for visual 

imagery tasks (Guillot et al., 2009). Our results may suggest that the alpha decrease of power 

observed over central, parietal and occipital electrodes indexes the integration of visual and 

motor information related to action representation (Babiloni et al., 2002). This would 
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indicate that during the imagery of whole body movement in the environment, the processing 

of multiple visual and motor information is required.  

Overall, the present results indicate that motor imagery and actual execution of movements 

share common neural features, as predicted by the functional equivalence hypothesis. 

However, the results also highlighted imagery-related differences, which might play a 

crucial role in the understanding of cognitive mechanisms underlying motor imagery. The 

shared features occur during the early stages of walking action execution and motor imagery, 

possibly reflecting the initiation of an action plan representation (Glover & Baran, 2017). 

Furthermore, the beta rebound occurs similarly for walking action execution and motor 

imagery at the end of the action, possibly indicating the resetting of motor processes (Engel 

& Fries, 2010). The differences likely indicate the superior volume of cognitive processes 

and resources needed to sustain and integrate over a planned imagined walking movement, 

making the imagined movement an independent cognitive process to executed action, but 

nevertheless using some of the same areas of the brain as those used for action execution 

(Glover & Baran, 2017; Van der Lubbe et al., 2021). This suggests that functional 

equivalence has precise and general similarities. A precise similarity is the exact use of a 

specific cognitive mechanism for an objective. From the data here, it seems that the cognitive 

mechanism used for initiation of a plan and termination of an action plan is the same for 

both action execution and motor imagery. However, our data also suggest that while the 

imagination of movement uses sensory motor areas of the brain, the activity might not 

represent the activation of specific mechanisms used for action execution, and possibly 

reflects an independent cognitive process that is born out of the motor execution cell 

assembly (Keysers & Gazzola, 2014; see also Cooper et al., 2013). In these terms, during 

motor imagery, different information related to the action to imagine, which are stored and 

coded by multiple sensorimotor areas of the brain, are triggered and activated. This chain of 

cognitive events might require not only a mere static associative process that activates motor 

information, but a dynamic mechanism, as it might involve the processing of both past 

sensorimotor experience and online updating of sensorimotor input coming from the external 

environment (Keyers & Gazzola, 2014). That is to say that motor imagery uses some of the 

same cognitive apparatus as that used for action execution, but the cognitive processes for 

imagery and execution are independent; equivalent, but not functionally equivalent (not a 

common function).  

Taken together, our data demonstrate that the high temporal accuracy of the EEG offers the 

possibility to disentangle cognitive processes occurring during motor imagery and action 
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execution. It is crucial to investigate the neural correlates of these processes also considering 

the growing applications of motor imagery in clinical settings. Indeed, motor imagery of 

movements represents one of the main cognitive tools being used within the BCI approach, 

as it can be applied in absence of physical involvement and can be employed as a self-

regulatory control signal of motor brain areas. The principle of the BCI approach is to detect 

neural signals in order to control external devices, such as exoskeletons or wheelchairs (Choi 

& Cichocki, 2008; Lafleur et al., 2013; Leeb et al., 2007). It is therefore important to 

understand which are the neural correlates of walking imagery as they can be used as self-

regulatory signals for motor learning and recovery in patients with gait impairments 

(Malouin & Richards, 2010; Kranczioch et al., 2014; Daeglau et al., 2020).  

In conclusion, the present results highlight the need to shed a new light on the previous 

assumptions of the functional equivalence hypothesis. This can be achieved using more 

ecological paradigms and employing tasks involving whole body movements, which have 

not received attention by previous literature. A new methodological approach such as the 

one used in the present study, might reveal critical differences in the stages of cognitive 

processes taking place during motor imagery and action execution. 
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Chapter 4. The neural response is heightened when watching a 

person approaching compared to walking away: evidence of 

dynamic social neuroscience 

4.1. Introduction 

In face-to-face daily social interactions, we constantly decipher and predict others’ behaviour 

in order to produce appropriate responses. Research over the past 30 years has identified the 

neural substrates supporting the processing of actions performed by other individuals in a 

wide sensorimotor brain network including the occipital-temporal, parietal and premotor 

cortex, known as the action observation network (Grafton et al., 1996; Cross et al., 2009; 

Buccino et al., 2001; Caspers et al., 2010; Hari et al., 1998; Rizzolatti & Sinigaglia, 2010; 

Cattaneo & Rizzolatti, 2009; Hari & Kujala, 2009; Decety & Grèzes, 2006; Gallese et al., 

2004). This action observation network represents observed action in the motor system of the 

observer (Rizzolatti et al., 2001; Sinigaglia, 2013). According to the theory of motor 

perception (Rizzolatti & Craighero, 2004), the implicit knowledge about motor principles of 

movement is obtained through representing the observed action in the same areas of the brain 

as those used for motor execution. However, the overlap between motor brain areas activated 

during both action observation and real execution does not only concern the kinematics of a 

given action, but also includes the goal of the action (Rizzolatti & Fogassi, 2014). Indeed, 

action observation has been proposed to play a key role in predicting others’ action intentions 

or goals, and in the understanding of actions performed by other individuals (Schippers & 

Keysers, 2011; Hamilton, 2013; Buccino et al., 2001, 2004; Wheaton et al., 2004; Rizzolatti 

& Fogassi, 2014).  

One aspect that we need to evaluate when interacting with others is whether the observed 

action is directed towards or away from us, allowing for cooperative interaction (for a review 

see Rizzolatti & Fogassi, 2014). In these terms, the perspective of the observer with respect 

to the observed action, becomes critically relevant. Indeed, previous research has shown that 

the visual perspective of an observer modulates the activation of the action observation 

network (Koski et al., 2003; Vogt et al., 2003). First-person perspective action observation 

seems to elicit stronger activity in sensorimotor areas compared to third-person perspective 

action observation (Maeda et al., 2002; Jackson et al., 2006; Angelini et al., 2018). For 

example, using TMS, Maeda et al. (2000) showed that corticospinal excitability increased 

during action observation of hand movements placed in a natural orientation (i.e., an 
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egocentric perspective relative to the observer) compared to an unnatural orientation (i.e., an 

allocentric perspective relative to the observer). In a functional MRI study, Jackson et al. 

(2006) showed that participants were faster when they were required to imitate an action 

observed from the first-person than third-person perspective, and that first-person perspective 

action observation elicited stronger activation over the sensory motor cortex, compared to 

the third-person perspective action observation. Recently, Angelini et al. (2018) using 

electroencephalography (EEG), compared the cortical activity during action observation of 

hand movements from four different points of view (i.e., first-person, third-person and lateral 

left/right perspectives). They showed a stronger suppression of mu rhythm alpha (8-13 Hz) 

and beta (14-25 Hz) frequency band components, commonly considered as cortical markers 

of action observation. These suppressions occurred over sensorimotor areas during action 

observation of first-person perspective action, compared to the other points of view. As 

suggested by Maeda et al. (2002), the first-person perspective seems more similar to the ‘self’ 

perspective, which likely induces a facilitation of sensorimotor integration processes in the 

observer. 

Aside from the perspective of the observer, another feature that might play a relevant role 

during the observation of others’ actions, is the position in space of a moving agent with 

respect to the observer. Indeed, research with monkeys has shown that action observation 

network activation is differently modulated by the distance of the observed moving agent, 

and that ‘mirror’ neurons are selectively activated when the observed action is performed in 

the monkey’s peripersonal space (Caggiano et al., 2009; Bonini et al., 2014). Generally, 

peripersonal space designates the immediate space surrounding the body, in which we can 

directly interact with objects or other agents, whereas extrapersonal personal space designates 

the space beyond our reach (Holmes & Spence, 2004; Rizzolatti et al., 1997; di Pellegrino & 

Làdavas, 2015). To date, studies on peripersonal and extrapersonal space in humans have 

focused mainly on cognitive processes related to the perception of manipulable objects 

(Culham et al., 2008; Proverbio, 2012). Few studies have considered the ‘social’ aspect of 

the proximity of other conspecifics to our peripersonal space (for a recent review see 

Bogdanova et al., 2021). For example, Teneggi et al. (2013) showed that the mere presence 

of another individual, but not of an artificial stimulus (i.e., a mannequin) in the extrapersonal 

space, narrows the boundary of the peripersonal space, suggesting that the boundary of one’s 

peripersonal space representation can be shaped by the presence of others in social 

interactions. Additionally, Teneggi and colleagues showed that when participants interacted 

cooperatively (compared to a condition in which they were interacting non-cooperatively), 
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the peripersonal space of the self, merged with the other’s peripersonal space, suggesting that 

the representation of the peripersonal space is not only influenced by the presence of other 

individuals, but also by the valence of the social interaction.  

As far as we are aware, to date no studies have shown how the perspective and the distance 

of an observer from an active agent might modulate the cortical activity during action 

observation. One reason for this is that action observation neuroimaging studies tend to use 

videos, rather than live actions, and hence the effect of proximity of the observed agent could 

not be studied. Thus, the objective of the present study was to investigate whether the 

perspective and distance of a passive observer with respect to a natural model moving 

towards and away from the observer would modulate the cortical mu rhythms commonly 

associated with action observation (alpha 8-12 Hz and beta 13-25 Hz oscillations). Previous 

studies showed that during action observation, event-related desynchronization or 

suppression of spectral power occurs over areas included in the action observation network; 

occipital, parietal, and sensorimotor brain areas (Arnstein et al., 2011; Avanzini et al., 2012; 

Muthukumaraswamy et al., 2004; Babiloni et al., 1999). Consequently, here we predicted 

that alpha and beta oscillations recorded during live whole body action observation would be 

modulated by the perspective of the observer, and that the condition of action observation of 

walking away (i.e., first person perspective), would elicit stronger suppression of alpha and 

beta frequency bands (Angelini et al., 2018), which has been reported as the cortical markers 

of the mental simulation occurring during action observation (Eaves et al., 2016; 

Muthukumaraswamy et al., 2004). Additionally, we expected that oscillations in the alpha 

and beta frequency bands would be modulated by the distance of the model from the observer, 

with a stronger suppression when the moving agent is close to the observer compared to when 

they are far away from the observer. Such modulation would indicate that the action 

observation network in the brain is particularly sensitive to the proximity of the observed 

agent. 

In the present study we used a natural walking task, which in this case meant that participants 

observed a human model walking towards or away from them. As pointed out by Angelini et 

al. (2018), a general bias of action observation investigations has focussed on upper limb 

body effector actions, whereas lower limbs movements have been typically less explored. 

This is perhaps not surprising considering that the direct evidence for the mirror neuron 

network is largely based on reaching and grasping movements. The focus on upper limb 

movements may have arisen due to an assessment bias, caused by the inadequacy of 

methodologies for measuring dynamic executed actions of people moving around compared 
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to observed lower limb actions. However, as discussed above, observation of movements that 

involve the other approaching or walking away from the observer are critically relevant for 

perceiving the impending interaction with others (e.g., Rizzolatti & Fogassi, 2014), akin to 

the basic survival principle of working out whether the lion is a threat walking towards you 

or is walking away. As far as we are aware, where previous studies of action observation 

have involved walking, the paradigms involved videos (Cochin et al., 1998) or animated 

pictures (Ulloa & Pineda, 2007; Zarka et al., 2014), rather than the observation of actual 

walking made by an agent present in the same room as the observer. As suggested by previous 

literature (for a review see Cevallos et al., 2015), ecological features (e.g., the dynamics of 

live action) might have an important role in action perception mechanisms and that brain 

responses during action observation of videos may be less consistent compared to live actions 

(Rizzolatti & Fogassi, 2014).  

To date, only one recent study examined action observation of live-action walking (Kaneko 

et al., 2021). However, in that study, the model walked on a treadmill and only one observer 

point of view (lateral third person perspective) was investigated. By contrast, in the present 

study, we investigate how action observation network activity is modulated by the natural 

observation of an agent walking towards and away from the observer. In Kaneko et al.’s 

treadmill study (2021), it was found that that action observation of walking did modulate 

both alpha and beta oscillations over sensorimotor areas, but only when participants were 

requested to observe and simultaneously imagine the movement (kinaesthetic motor 

imagery), compared to passive observation. These modulations were found to be coupled 

with the observed gait cycle phases. Therefore, in the present study we also investigated 

whether coupling between the observed gait cycle and mu rhythms is dependent on the 

perspective of the observer. 

4.2. Methods  

4.2.1. Participants 

Twenty healthy participants (18 female; age range = 18-44 years; mean age = 21.4 years, SD 

= 5.6 years) took part in the study. Due to the presence of prominent artifacts in EEG 

recordings, the data of two participants were excluded. The remaining data of eighteen 

subjects (18 female; age range = 18-44 years; mean age = 21.67 years, SD = 5.9 years) were 

used in the analysis reported. All the participants had no history of neurological disorder. 

Before starting the experiment, all the participants gave their written informed 
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consent. Ethical approval was provided by the Research Ethics Panel of the University of 

Stirling. 

4.2.2. Material and procedure 

EEG data were continuously recorded using a 32 channels mobile EEG amplifier (ANT-

neuro, Enschede, The Netherlands). Participants completed 40 trials for each condition. 

During the observation of walking conditions, participants stood 1 m away at the head of a 

carpet, watching the walking actions of a model walking up and down the carpet. The 

observed model was a female (M.M.) and walked in two directions: towards the participant 

and away, performing six steps on the 6 m carpet in each trial for a total of 80 trials divided 

in two blocks. The model wore the insoles of the Pedar-x System (novel.de, Munich, 

Germany), a bluetooth pressure distribution measuring system for monitoring local loads 

between the foot and the shoe, which allowed the extraction of temporal parameters of gait 

for this study. Each insole was connected to a controller-box attached to the model’s waist 

with a belt. An Arduino board connected to the TTL port of the EEG amplifier and to the 

sync-box of the Pedar-x was used to synchronize the recording of the two devices, so that the 

EEG signal and gait can be integrated. At the beginning of each recording, a pulse was sent 

from the Pedar-x to the EEG in order to temporally align the two recordings. Trials in which 

the model walked towards the observer (AO of walking Towards condition, 40 trials) were 

separated offline from trials in which the model walked away and the observer viewed the 

back of the model (AO of walking Away condition, 40 trials) in order to compare the two 

perspectives in the following analysis. Figure 4.1 shows this study’s two experimental 

conditions. 

The conditions of this study were nested and counterbalanced with the conditions of another 

study, reported elsewhere, and included the following other conditions: Actual Execution of 

walking (in which the participant themselves walked up and down the carpet), Motor Imagery 

of walking (in which the participant imagined walking up and down the carpet) and Mental 

Counting (in which the participant counted to six paced by a metronome). None of these other 

conditions can be analysis with regards to the parameters on interest in this study (distance 

and perspective) and are therefore not included in this manuscript. 
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Figure 4.1. Representation of the two experimental conditions. 

4.2.3. EEG acquisition and processing 

EEG data was continuously recorded from 32 Ag/AgCl electrodes caps connected to a 

portable amplifier (ANT-neuro, Enschede, The Netherlands) at a sampling rate of 500 Hz 

and bandpass filtered at 0.01-250 Hz. Electrodes were positioned according to the 

International 10-20 system: FP1, FPz, FP2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, M1, 

T7, C3, Cz, C4, T8, M2, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, POz, O1, Oz, O2, with 

AFz electrode as ground and CPz electrode as reference. The electrode impedances were 

reduced below 5 kΩ before the recording. EEG data analyses were performed using custom 

scripts written in MATLAB 2019a (The MathWorks) incorporating the EEGLAB toolbox 

(Delorme and Makeig, 2004). Data from the mastoid channels (M1 and M2) were removed 

from the analysis, and all remaining EEG data was filtered using a 0.1 Hz to 40 Hz bandpass 

filter. EEG channels with prominent artifacts were automatically selected (kurtosis > 5 SDs) 

and interpolated, and all channels were then re-referenced to the average. Data were 

downsampled to 250 Hz and an extended infomax Independent Component Analysis (ICA, 
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Makeig et al., 1996) was performed to identify and remove non-brain signals. Brain-related-

ICs were identified using the IClabel plugin (Pion-Tonachini et al., 2019). Components 

exceeding a 90% probability of being eye, muscle, heart, line noise, and channel noise were 

rejected. Only brain ICs with dipoles located inside the head and a residual variance lower 

than 15% were kept. An average of (mean ± SD) 7.19 ± 1.6 ICs across conditions was 

retained for the analysis. 

4.2.4. Event related spectral perturbation (ERSP) analysis 

EEG data were segmented in 4.5s epochs from -500 ms before and 4000 ms after the start 

of the trial (time 0). Single channel spectrograms were time warped to the median latency of 

the end of the trial across participants for each condition. Event related spectral perturbation 

(ERSP) was computed as the mean difference between single trial log spectrograms for each 

channel and each participant across conditions and the mean baseline of the overall trial 

(from 0 to 4000 ms). Middle line single channel time frequency spectrograms (Cz, Pz, POz, 

Oz; Figure 4.2) were visually inspected to identify relevant changes in the spectral power. 

In a data-driven manner, plots suggested two main spectral changes from baseline (event 

related desynchronization and event related synchronization) occurring in a range from 8 to 

25 Hz. We defined the two frequency bands of interest namely alpha (8-12 Hz) and beta (13-

25 Hz). 

4.2.5. Statistical analyses 

Alpha and beta oscillations were analysed by pooling the activity of neighbouring electrodes 

in relevant regions of interest (ROI) over sensorimotor (FC1, FC2, C3, C4, CZ, CP1, CP2) 

and parietal-occipital (P3, P4, PZ, O1, O2, OZ, POZ) areas. Both AO conditions were 

examined in two separate statistical analyses, described below. 

(a) Effect of perspective and distance. In order to investigate the effect of both the perspective 

of the observer and the distance of the model from the observer on cortical activation in the 

mu rhythm subcomponents (alpha and beta) during AO, the overall length of each time-

warped epoch was divided in 3 distances: the near, the middle and the far distances. 

Significant changes in the spectral power were assessed with 2x3x2 Repeated Measures 

ANOVAs with Condition (AO of walking Away, AO of walking Towards), Distance (near, 

middle, far) and ROIs (central, parietal-occipital) as within subject factors, separately for 

each frequency band.  
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(b) Cortical modulation depending on gait phases. In order to investigate whether cortical 

activation during AO is modulated by the gait phases, the model’s heel strike latencies were 

extracted from the Pedar-x step analysis output and were used to analyse the EEG data of the 

participants (observers). To explore whether alpha and beta modulations were related to the 

perspective of gait phases, a gait cycle performed by the model (i.e., 3 consecutive heel 

strikes) was selected during the first time window of AO conditions (i.e., at the beginning of 

the trial). EEG data were segmented into epochs relative to the observed first heel strike (time 

0) and single trial spectrograms were time warped to the median of the second and the third 

consecutive heel strike. Each gait cycle was then divided in percentage following the standard 

division of Perry & Davis (1992): stance phase (0-60%) and swing phase (60-100%). These 

phases were subdivided into: loading response (0-10%), mid-stance (10-30%), terminal 

stance (30-50%) and pre-swing (50-60%) for the stance phase; and initial swing (60-73%), 

mid-swing (73-87%) and terminal swing (87-100%) for the swing phase. ERSP was 

computed for each gait phase as the difference between each log spectrogram and the mean 

of the baseline (mean activity of the overall gait cycle) for each channel and participant within 

each condition. We assessed through two separate 2x7x2 Repeated Measures ANOVAs with 

Condition (AO of walking Away and AO of walking Towards), Gait Phase (loading response, 

mid-stance, terminal stance, pre-swing, initial swing, mid-swing, terminal swing) and ROIs 

(central, parietal-occipital) as within subject factors, separately for each frequency band. 

For all the analyses, the Greenhouse – Geisser correction was applied whenever the sphericity 

assumption was violated and post-hoc sample t-tests adjusted using Bonferroni correction 

were performed to investigate significant main effects and interactions. 

4.3. Results 

As can be seen in Figure 4.2, which illustrates the time frequency spectrograms of Cz, Pz, 

POz, Oz channels, the two AO conditions showed a distinct pattern of power decrease and 

increase. The main differences appear to be confined to the extremities of the epoch (areas 

highlighted in the black rectangles in Figure 4.2) in which the model was near or far from the 

observer, indicating an effect related to the proximity of the moving agent. Furthermore, the 

two patterns appear to be reversed depending on the perspective (highlighted in the black 

rectangles in the plots in Figure 4.2).  



99 

 

 

Figure 4.2. Time-frequency spectrograms of midline channels (in order Cz, Pz, POz, Oz) across 

conditions for the whole epoch. The onset of the trial is at 0 ms.  

4.3.1. Effect of perspective and distance 

4.3.2. Alpha 

The ANOVA revealed a main effect of Distance [F(1, 17) = 4.859, p < .05, ηp
2 = .222] with 

an overall stronger decrease of alpha power when the observer was near to the model 

compared to when the model was in the middle of the walk (t(17) = 2.855, p = .033) and a 

marginally significant difference when the model was near compared to far (t(17) = 2.855, p 

= .066). There was no significant difference in alpha modulation between the middle and far 

distance (p>.05). 
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A main effect of ROIs [F(1, 17) = 6.139, p < .05, ηp
2 = .209] showed an overall stronger 

decrease of alpha power over parietal-occipital areas compared to central brain areas. 

A significant interaction between ROIs and Distance [F(1, 17) = 4.383, p < .05, ηp
2 = .205, 

see Figure 4.3, panel (a)] showed a significantly stronger decrease of alpha power over 

parietal-occipital compared to central areas when the model was near to the observer (t(17) 

= 3.382, p = .012), but showed no significant differences for the middle and far distances (p 

> .05). 

 

Figure 4.3. (a) Alpha percentage change from the baseline across ROIs and Distance (with relative 

standard error bars and dashed linear trendline). (b) Beta percentage change from the baseline across 

ROIs and Distance (with relative standard error bars and dashed linear trendline). 

4.3.3. Beta 

The ANOVA revealed a main effect of Distance [F(1, 17) = 9.293, p < .01, ηp
2 = .353] with 

an overall stronger decrease of beta power when the model was near to the observer 

compared to when the model was in the middle (t(17) = 3.415, p = .009) and far from the 

observer (t(17) = 4.056, p = .003). There was no significant difference in beta modulation 

between the middle and the far distance (p > .05) (see Figure 4.3, panel (b)). 

A significant interaction between Condition and Distance [F(1, 17) = 5.103, p < .05, ηp
2 = 

.231, see Figure 4.4] showed that a stronger decrease of beta power occurred when the model 

was near and walking towards the observer (i.e., the model facing the observer) compared 

to when the model was near and walking away from the observer (i.e., the model showing 

her back to the observer), (t(17) = 2.713, p = .035).  
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Figure 4.4. Beta percentage change from the baseline across Conditions and Distance (with relative 

standard error and dashed linear trendline). Scalp topographies of beta activity for each condition (AO 

of walking Away; AO of walking Towards) across distances (near, middle, far) are shown on top of 

the relative bars. As can be seen from the trendlines, there was a weak modulation of beta power 

when the model was moving away from the observers. On the contrary, there was a strong modulation 

when the model moved towards the observer, approaching them. 

A significant interaction between Condition and ROIs [F(1, 17) = 8.424, p < .05, ηp
2 = .331] 

showed a significant stronger decrease of beta power over parietal-occipital areas when the 

model was walking towards the participants compared to the condition in which the model 

was walking away (t(17) = 2.189, p = .043). In contrast, in the condition of AO of walking 

Away, there was a stronger decrease in beta power over central areas compared to parietal-

occipital areas (t(17) = 2.816, p = .012).  

A significant interaction between ROIs and Distance [F(1, 17) = 10.083, p < .01, ηp
2 = .372, 

see Figure 4.3, panel (b)] showed a significant stronger decrease of beta power over parietal-

occipital areas compared to central when the model was near to the observer (t(17) = 3.539, 

p = .009) and a stronger decrease over central areas compared to parietal-occipital areas when 

the model was far from the observer (t(17) = 3.539, p = .015). There was no significant 

difference in beta modulation over central and parietal-occipital areas when the model was 

in the middle distance (p > .05). 



102 

 

4.3.4. Cortical modulation depending on the perspective of gait 

phases/cycle 

4.3.5. Alpha  

Figure 4.5 shows alpha modulation during the gait cycle across the two different conditions. 

As we can see from the graph, alpha modulation presents an inverse pattern depending on 

the perspective of the observer with respect to the direction of the gait cycle of the model. 

Furthermore, the graph indicates that alpha modulation is stronger in the condition in which 

the model was walking towards the observer. Indeed, the ANOVA did not reveal any 

significant main effect (p > .05). A significant interaction between Condition and Gait Phases 

[F(1, 17) = 3.206, p < .05, ηp
2 = .159] indicated that differences in alpha modulation occurred 

during the first gait cycle of both AO conditions. Paired-sample post-hoc t-tests showed a 

significantly stronger decrease of alpha power in AO of walking Towards compared to AO 

of walking Away during the mid-stance, just before the second heel contact (t(17) = 2.823 , 

p = .035). During the pre-swing and initial swing (just after the second heel contact) a 

significantly stronger decrease of alpha power occurred in AO of walking Away compared 

to AO of walking Towards (pre-swing: t(17) = 2.679, p = .042; initial swing: t(17) = 2.504 , 

p = .028). 

 

Figure 5. Alpha percentage change from the baseline averaged across central and parietal-occipital 

ROIs, across AO conditions and gait phase. Dashed lines represent the alignment between time points 

of the different gait phases across two conditions, respectively defined: load (0-10%), mid-stance 

(10-30%), terminal stance (30-50%), pre-swing (50-60%), initial swing (60-73%), mid-swing (73-

87%) and terminal swing (87-100%). 
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4.3.6. Beta 

The ANOVA did not reveal any significant main effect or interaction (p > .05). 

4.4. Discussion 

This study uniquely establishes that during the observation of a live agent walking away or 

towards the observer, the action observation network is sensitive to both the perspective and 

the distance of the observer relative to the moving agent. By examining the time course and 

distribution of the cortical activation associated with action observation, we revealed distinct 

patterns of modulation in the alpha and the beta frequency bands depending on the distance 

and perspective of the observed action. This dissociation between the two frequencies 

demonstrates that alpha is tuned to visual information, such as a person’s proximity, but that 

beta, as this study shows for the first time, reveals tuning of the action observation network 

to those situations compatible with impending social interaction between the observer and 

the agent. 

The analysis revealed that alpha frequency was modulated only by the distance of the model 

from the observer, demonstrated by a stronger decrease of power over parietal-occipital brain 

areas when the model was ‘near’ to the observer compared to 'far', regardless of perspective. 

Previous primate research has shown that mirror neurons of the brain area F5 responded 

selectively to object-directed actions performed in the peripersonal space of the monkey 

(Caggiano et al., 2009; Bonini et al., 2014). Similarly, human EEG studies, investigating 

peripersonal and extrapersonal space, reveal alpha suppression of power over parietal areas 

when participants estimate the reachability of manipulable objects placed within - compared 

to outside - their peripersonal space (without making overt action) (Wamain et al., 2016). 

Taken together these previous findings suggest that motor activation is moderated by the 

location of an object in the space relative to the subject, and enhanced when the object is 

within peripersonal space and the subject can directly interact with the object (Wamain et al., 

2016). Building on these earlier data, the present research findings provide the first 

demonstration that the proximity of a moving agent approaching the peripersonal space of an 

observer moderates neural activity within the action observation network.  

One important outcome of the current study is further clarification of the circumstances under 

which the action observation network operates. In the present study design, the movement of 

the model did not imply the use of any object or any explicit goal-directed behaviour towards 



104 

 

the subject, thus our results suggest that even in the absence of an object or an explicit 

intention of an interaction, alpha and beta oscillations over parietal-occipital areas are 

selectively modulated by the proximity of others. As previously shown by a large body of 

evidence, the parietal-occipital cortex is part of the action observation network involved in 

the representation of space for action (Colby & Goldberg, 1999; Husain & Nachev, 2007), in 

motor planning (Andersen et al., 1997; Andersen & Cui, 2009; Buneo & Andersen, 2006; 

Busan et al., 2009), in the action observation of object and non-object directed actions 

(Iacoboni et al., 2004; Evangeliou et al., 2009; Buccino et al., 2001) and in processing social 

information during action observation (Tunik et al., 2007; Pobric & Hamilton, 2006). The 

present data furthermore suggest that when the model is far away, an increase of power occurs 

both in the alpha and in the beta bands, suggesting a reverse oscillatory pattern compared to 

when the model is near to the observer. We speculate that this distinctive pattern of activity 

suggests the involvement of attentional processes, visible in the relative increase of alpha 

spectral power when the agent is farther away from the perceiver, when attentional demands 

are more likely be reduced (Foxe & Snyder, 2011; Talsma et al., 2010). These results are 

consistent with the accounts that suggest alpha power is inversely related to effortful 

attentional processing, such that increased power reflects a reduction in cognitive load (Foxe 

et al., 1998; Vanni et al., 1997; Van Diepen et al., 2019). At least in part, however, the 

apparent increase in alpha power visible during the moment in which the model is farther 

away from the perceiver might also reflect the fact that the baseline was computed over the 

entire epoch. As can be seen in Figure 3, alpha power values relative to the baseline are 

negative when the model is near the observer and positive when the model is farther away 

from the observer. Regardless, our results support the view that alpha oscillations over 

parietal-occipital areas reflect a mechanism which underlies the processing of relevant visual 

and spatial information of the observed action, such as the distance of another agent from the 

observer.  

Crucially, the results revealed that differently from alpha, oscillations in the beta frequency 

band are modulated not only by distance, but also by perspective. The analysis revealed a 

stronger decrease of beta spectral power over parietal-occipital brain areas when the model 

was facing the participant (AO of walking towards) compared to when observed walking 

from the back (AO of walking away). Furthermore, beta power suppression was more 

prominent during approach when the model was near and walking towards the participant. 

Sensorimotor beta oscillations have previously been shown to be an index of the activity of 

the action observation network in humans (Cochin et al., 1998; Hari et al., 1998). Perspective 
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(but not distance) was previously considered in an EEG study of action observation of video 

recorded meaningless hand gestures by Kilner and colleagues, which showed beta (Kilner et 

al., 2009) but also alpha (Kilner et al., 2006) were modulated by the direction of the model 

in respect to the observer (Kilner et al., 2009). Indeed, Kilner and colleagues (2009) found a 

stronger beta power suppression over sensorimotor areas contralateral to the side of the 

screen in which the gesture was performed, but only when the model was facing the 

participant, compared to the condition in which the model was facing away. This finding has 

been interpreted as a modulation in visuospatial attention driven by the social relevance of 

the observed action. Kilner et al. (2006) described a similar pattern in the alpha frequency 

band, suggesting that both alpha and beta cortical rhythms could be related to a mechanism 

that filters socially relevant information of an observed action within the action observation 

network (Kilner et al., 2006). Critically, our results showed a clear dissociation in which only 

oscillations in the beta (and not alpha) frequency band were modulated by the perspective of 

the observer.  

The current finding is furthermore important because it demonstrates that the two cortical 

rhythms have partially distinct roles within the action observation network. In a further 

dissociation, we found that only oscillations in the alpha, but not in the beta frequency band, 

were modulated by the gait phases of the observed model. It has been shown that cortical 

activity in the alpha and in the beta frequency bands over the sensorimotor cortex is locked 

to the gait phases (Gwin et al., 2011; Seeber et al., 2014; Wagner et al., 2012). A similar 

modulation has been reported during the simultaneous observation and imagination of 

treadmill walking (Kaneko et al., 2021; to our knowledge the only other study that integrated 

brain signals of the observer with the live movements of the observed). Indeed, in their recent 

study Kaneko et al. (2021) reported beta power suppression at the stance and mid-swing 

phases, and alpha and beta power increases at the terminal stance, when participants were 

required to imagine walking and observe a model walking on a treadmill from the lateral 

perspective. By contrast, in the present study we found that alpha, but not beta, was 

modulated by the gait phases during action observation, and that this modulation depended 

on the perspective of the observer. 

4.5. Implications and conclusion of the present study 

Due to the novelty of both a dynamic (mobile) brain imaging method and a novel 

experimental design, the findings of this study mean a significant move forward in the 

understanding of the cognitive and neural processes supporting observation of real world 
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action. The live presence of the moving agent meant that, for the first time, we could examine 

the neural correlates of the dynamic features of action observation, where the moving agent 

was closer or further away from the observer. We showed that mu rhythms (alpha and beta) 

suppression was stronger when actions were performed near to the observer - close to the 

participant’s peripersonal space - compared to actions performed far away from the observer. 

It is significant that earlier studies in non-human primates have shown that the action 

observation network is activated when the observed action is performed in the peripersonal 

compared to extrapersonal space (Caggiano et al., 2009; Bonini et al., 2014), providing 

support for the claim that the present results relate to impending social interaction between 

the observer and the agent.  

Furthermore, our data showed that in real world action observation of walking, motor 

activation is not necessarily facilitated by first person perspective of the observer, as 

previously suggested (Maeda et al., 2000; Jackson et al., 2006; Angelini et al., 2018), as we 

found a stronger beta suppression of power over parietal-occipital brain areas when the model 

is facing the participant. Previously, action observation investigations used only videos, not 

live actions, and furthermore showed only part of the body when displaying movements 

usually of the upper limb. Here we used a live action involving the actual presence (and 

therefore whole body) of the moving agent, typical of real-life social interactions. The fact 

that we found that in live action observation the action observation network responds to 

perspective and proximity, highlights the need to examine the kinds of real-life interaction 

that have been neglected due to technological constraints. This suggests that in daily life 

action observation, the observer has to monitor and assess multiple sources of information 

from the observed action, such as the orientation of the agent moving towards the observer 

and the decreasing distance between the observer and the approaching agent.  

Finally, our study suggests that alpha and beta oscillations are dissociable, playing distinct 

roles during action observation. Previous studies have not typically separated the two bands, 

describing mu rhythms together as the index of a general mechanism involved in the 

regulation of inhibition/activation of cortical visual, somatosensory, and sensorimotor brain 

areas (Pfurtscheller & Lopes da Silva, 1999). However, recent evidence points towards 

different functional and topographical distribution for alpha and beta activities (Stolk et al., 

2019). Indeed, alpha rhythm has been proposed to signal the allocation of attention toward 

relevant task-related information (Foxe & Snyder, 2011; Brinkman et al., 2014; Babiloni et 

al., 2006), while beta oscillations are thought to be related to motor activation (Ronqvist et 

al., 2013). Our results do indeed support these accounts (e.g., see Kilner et al., 2009) and 

https://www.sciencedirect.com/science/article/pii/S1388245715003089#b0330
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demonstrate that whereas alpha oscillations signal the brain response to salient visual aspects 

of an observed action (i.e. the presence of an agent near to our peripersonal space), beta 

oscillations might instead reflect a specific process which filters and discriminates between 

relevant social motor information of action performed by others (i.e., the direction of the 

interaction). 

Overall, the findings in our study provide neural evidence for the significance of interactions 

between people, and highlights that in order to understand social interactions we need to 

investigate dynamic real world behaviour. To do this, it is necessary to employ 

methodological approaches suited to a new dynamic social neuroscience, such as mobile 

neuroimaging techniques, bringing experimentation into the real world.  
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Chapter 5. General discussion 

5.1. Summary of findings 

The findings of the studies reported in the present thesis demonstrate the feasibility of the 

mobile EEG approach to investigate neural correlates of action representation in real world 

locomotor behaviour. An important aspect highlighted throughout the three studies is that 

the distinct pattern of neural activity in the theta, alpha and beta frequency bands over 

cortical areas were modulated by the task performed and by the incoming sensory 

information from the surrounding environment. The findings demonstrated cognitive 

processes underlying the monitoring, updating and maintenance of an internal model of 

behaviour during online gait adaptations and motor imagery of walking, and how these 

processes are modulated by relevant social cues when observing other people’ movements. 

More importantly, the findings of this thesis suggest the embodied nature of cognitive 

processes underlying action representation.  

The study described in Chapter 2, support the ‘Dual Mechanism of Control’ framework 

(Braver, 2012). According to this model, cognitive control can be dissociated in two forms 

of control, the proactive form of control and the reactive form of control. The proactive form 

of control is a strategy which detects possible interference, updates the action representation 

and its goal accordingly, and maintains them active until the effective implementation of the 

action. The findings indeed demonstrate that a proactive control mechanism is involved 

when we face unexpected changes in the environment, such as the appearance of an 

unexpected obstacle to overcome. More specifically, when participants had to avoid 

unexpected obstacles, a power increase in theta frequency band occurred over frontal brain 

areas. This change in spectral power was not visible both when participants had to avoid 

predictable objects, already visible from the beginning of the walk, and when they had to 

walk without any obstruction. The frontal theta is furthermore temporally aligned with the 

presentation of the unpredictable obstacle in the two alternative distances, near and far from 

the participants, and it occurs stronger when the motor adjustment requires more effort, i.e., 

when the object suddenly appeared closer to the participants compared to when it was 

projected farther away. This would also indicate that cognitive demand associated to the task 

is reflected in the power spectral increase of theta oscillations.  

The brain area that plays a crucial role proactive control of behaviour is the prefrontal cortex 

(Braver, 2012). Due to its broad connections, the prefrontal cortex processes the information 
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associated with both internal mental states and external inputs (Miller & Cohen, 2001). 

Indeed, the prefrontal cortex receives inputs from temporal, occipital and parietal areas, 

which are responsible for processing multimodal sensory information, such as visual, 

somatosensory, and auditory information. The main output connections of the prefrontal 

cortex include the motor cortex, cerebellum, limbic structures, and the basal ganglia. 

Therefore, it represents a hub for the integration of sensory and motor information, which 

makes it suitable to exert a general top-down control over different cognitive process (Miller 

& Cohen, 2001). A widely accepted hypothesis suggests that the prefrontal cortex is 

responsible for activating higher level representations and maintaining them online until the 

goal is achieved (Miller & Cohen, 2001; Braver, 2012). However, the prefrontal cortex also 

updates representations when a change is detected, such as the appearance of an unexpected 

obstacle, ensuring a switch in the motor plan and providing the flexibility needed depending 

on the cognitive demands (Miller & Cohen, 2001; Braver, 2012).    

Although the Dual Mechanism of Control framework provides useful insights to understand 

cognitive control mechanisms underlying human behaviour, it might be suggestive of a 

highly disadvantageous system (Braver, 2012). For example, when the implementation of a 

response to an interference needs to be delayed in time – i.e., not implemented immediately 

– the information related to the action plan should be maintained active in the brain until the 

response is completed, involving a considerable cognitive cost. Indeed, the data reported in 

Chapter 2 showed in theta power increase a possible marker of proactive control when 

unexpected obstacles appear while walking. However, encountering objects on the floor, 

regardless of their expectation, also elicited a beta power suppression, which was visible just 

before crossing the obstacle but not when participants freely walked the path. This temporal 

dissociation suggest that the implementation of the motor adaptation is triggered just before 

performing it, with no need to maintain the information active in the brain until the response 

is required. This aspect of cognitive-motor control is not explained by the Dual Mechanism 

of Control (Braver, 2012). A theoretical model which provides a possible explanation is the 

proactive model of action preparation, which has been proposed by Pezzulo & Ognibene 

(2012). According to this model, proactive and reactive control strategies lay on a 

continuum, rather than being two independent and separate processes as suggested by the 

Dual Mechanism of Control framework (Braver, 2012). Consequently, the proactive form 

of control monitors the internal model which drives the motor plan to accomplish a certain 

goal, but this representation is not continuously maintained active in the brain, as the 

appropriate action can be triggered at the right time. The results of the first study presented 
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in Chapter 2, support both accounts, as they suggest a distinction between proactive and 

reactive stages of cognitive control in line with the Dual Mechanism of Control framework 

(Braver, 2012). However, the findings also suggest the involvement of a ‘late’ component 

of proactive control mechanism, likely reflected in the power suppression in the beta 

frequency band, which occurred significantly stronger when participants had to step over 

obstacles, but only before crossing the object, regardless of the expectations (i.e., both for 

predictable and unpredictable conditions), compared to the condition in which no obstacle 

appeared. This ‘late’ component would support the account of a continuous proactive 

process that trigger the right response at the right time (Pezzulo & Ognibene, 2012), 

indicating the activation of sensorimotor processes related to the execution of the motor 

adaptation only when required by the task. 

At the end of the motor adaptation a clear beta rebound was found over parietal areas, 

possibly corresponding to the reactive control mechanism indicated by Braver in his Dual 

Model of Control (2012). According to the model, the reactive form of control is activated 

after the detection and the resolution of an external interference (Braver, 2012). The beta 

rebound over sensorimotor areas has been previously reported as an index of reactive control 

(Liebrand et al., 2017) and it has been associated with a resetting mechanisms that 

recalibrate the state of the motor system after a change (Engel & fries, 2010). According to 

these different perspectives, the beta rebound after crossing an obstacle regardless of the 

expectations, but not when walking without obstructions, might represent a resetting 

mechanism, which restore the motor system to its previous state after implementing a change 

in a typical pattern of behaviour. 

The second study, reported in Chapter 3 of the present thesis, concerned the investigation of 

the neural correlates of action representation during motor imagery of walking. The results 

of this study showed an overlap between brain activity during motor imagery and actual 

execution of walking, which were reflected in the modulation of alpha and beta frequency 

bands. However, the temporal dynamics of alpha and beta frequency range, differed between 

the two conditions. The data indeed showed an alpha power suppression occurring both in 

motor imagery and in actual execution of walking; however, in motor imagery, the 

suppression of alpha power rapidly faded away, whereas it was sustained during actual 

execution of walking. The pattern of brain activity recorded in the second study (Chapter 3) 

during actual performance of walking, is consistent with previous literature reporting alpha 

power suppression over sensorimotor areas during the planning and the execution of 

voluntary movements (Leocani et al., 2001; Pfurtscheller & Berghold, 1989; Kaiser et al., 

https://onlinelibrary.wiley.com/doi/full/10.1111/ejn.15120#ejn15120-bib-0031
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2003) and during active gait (Gwin et al., 2011; Bulea et al., 2015; Seeber et al., 2014; 

Wagner et al., 2014). During motor imagery, the alpha suppression was visible only at the 

beginning of the trials, and occurred over central, parietal, and occipital electrodes, which 

might reflect the processing not only of motor information related to the activation of the 

action representation of walking, but possibly also the encoding of spatial features of the 

environment. Indeed, it is worth noting that the participants were instructed to perform the 

motor imagery of walking with eyes open in order to enhance the visual representation of 

the surrounding environments, and to indicate verbally when they mentally reached of the 

end of the path. The role of occipital alpha in the allocation of attention towards spatial 

information has been established by previous literature (Foxe et al., 1998; Foxe & Snyder, 

2011; Brinkman et al., 2014). Furthermore, the engagement of central and parietal areas has 

been reported to be more prominent for kinaesthetic imagery compared to visual imagery 

(Guillot et al., 2009). Conversely, occipital brain activation has been found to be stronger 

for visual imagery compared to motor imagery (Guillot et al., 2009). The findings of the 

second study are in line with this evidence, suggesting that alpha suppression during motor 

imagery of whole body movements in the environment might signal the engagement of 

different functional brain areas and the processing of visual and motor information related 

to the action representation.  

The results of the second study also indicate similar pattern of beta power modulation during 

motor imagery and actual execution of walking, which supports the functional equivalence 

hypothesis assumptions. The similarities are visible in the beta power suppression occurring 

during the first two seconds of walking execution and motor imagery, which was not evident 

in the mental counting condition. As already mentioned in this thesis, power suppression in 

the beta frequency band over sensorimotor areas has been typically observed during the 

execution of movements (Pfurtscheller & Berghold, 1989; Kaiser et al., 2003; Stančák et al., 

1997; Cassim et al., 2000; Kilavik et al., 2013) and during the kinaesthetic imagery of 

movements (Pfurtscheller & Neuper, 1997; Neuper & Pfurtscheller, 1998; 1999; 

Pfurtscheller et al., 2006a). This evidence has suggested that beta power suppression over 

sensorimotor brain areas might signal the activation of neural network necessary to generate 

a motor output (Rhodes et al., 2018). Therefore, the beta power suppression observed in the 

second study might reflect the processing of motor information related to the action 

representation of walking, which is similar to cognitive processes occurring during motor 

planning of actual execution of movements (Glover & Baran, 2017). Furthermore, a clear 

beta rebound occurred in at the end of the three experimental conditions, although with 
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differences in its time course. More specifically, the beta rebound was characterized by two 

prominent peaks in the motor imagery condition: a first peak was apparent towards the end, 

aligned with the increase of beta power in the mental counting condition and a second peak 

of beta rebound aligned with the beta rebound in the actual walking condition. The time 

course of the two peaks in the beta rebound during motor imagery might indicate the 

involvement of cognitive processes associated with the reset of the motor system (Engel & 

Fries, 2010) or alternatively with inhibition (Salmelin et al., 1995). Indeed, in an EEG study, 

Angelini et al. (2015), showed that inhibitory processes are temporally distinct in motor 

imagery and action execution. The findings of their study showed an earlier activation of 

neural circuit related to inhibitory control, suggesting that inhibition is automatically 

recruited when withholding over motor output (Angelini et al., 2015). The findings of the 

second study are in line with this evidence, showing that the earlier beta rebound occurring 

during motor imagery might signal the recruitment of inhibitory processes, which might be 

automatically activated during motor imagery. Taken together, these results provide real 

world evidence for the functional equivalence hypothesis, suggesting that the activation of 

the action representation during motor imagery share the encoding of sensory and motor 

information with action execution. However, they also highlight temporal differences in 

cognitive and neural processes underlying motor imagery and actual execution of whole 

body movements in real world environments, which is consistent with the  multidimensional 

account of motor imagery (Kraeutner et al., 2020; Cumming & Eaves, 2018; Dahm, 2019). 

The third study, reported in Chapter 4 of the present thesis, concerned the investigation of 

action observation of whole body motion in the real world. More specifically, we investigated 

a situation in which an observer watches another person approaching or walking away. In 

real world interactions, the distance and the perspective of another person is of critical 

importance to determine the possibility of a social interaction. Therefore, we recorded EEG 

from participants who observed a ‘model’ walking away and towards them. The data revealed 

two distinct cognitive processes reflected in the modulation of alpha and beta frequency 

bands, commonly considered as the index of the activation of the action observation network. 

The data showed that a stronger suppression of alpha power over parietal-occipital electrodes 

occurred only when the model was ‘near’ to the observer, but not when it was ‘far’. This is 

consistent with previous EEG studies showing alpha suppression of power over parietal areas 

when participants estimate the reachability of manipulable objects placed within their 

peripersonal space (Wamain et al., 2016). Furthermore, other investigations showed that 

parietal-occipital areas are associated with the representation of space and motor preparation 
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(Colby & Goldberg, 1999; Husain & Nachev, 2007; Andersen et al., 1997; Andersen & Cui, 

2009; Buneo & Andersen, 2006; Busan et al., 2009). This suggest that motor activation is 

greater when an object is placed within the reachable space of the perceiver, i.e., it is possible 

to directly interact with the object (Wamain et al., 2016). The data of the third study of this 

thesis are in line with this evidence, suggesting that in real world contexts, alpha oscillations 

over parietal-occipital electrodes are modulated by the distance of an agent from the observer.  

More importantly, the results of the third study revealed that beta frequency band was 

modulated both by the perspective and the distance. Indeed, the data showed a stronger 

decrease of beta spectral power over parietal-occipital scalp locations when the model was 

approaching the observer (facing them) compared to when the model was moving away. 

Furthermore, beta power suppression was more prominent when the model was near and 

walking towards the participant. These findings highlighted the role of beta oscillation within 

the action observation network (Cochin et al., 1998; Hari et al., 1998) and are furthermore in 

line with previous EEG laboratory-based investigations (Kilner et al., 2009, 2006). Kilner 

and colleagues (2009) reported a larger beta amplitude over sensorimotor areas contralateral 

to the side of the screen in which the gesture was performed, but only when the model was 

facing the participant, compared to the condition in which the model was facing away. This 

finding suggests that beta oscillations might be associated to the encoding of socially relevant 

information of an observed action, such as the perspective of the model with respect to the 

observer (Kilner et al., 2009). 

Taken together, the results of this thesis highlight the importance of studying neural 

correlates of action representation in real world environments using a naturalistic approach, 

revealing the complexity of cognitive mechanisms behind human behaviour. The data 

furthermore demonstrate that mobile EEG is a feasible and reliable method to dissociate and 

understand cognitive processes occurring during both overt and covert behavioural 

responses. In the following sections, implications of the findings will be discussed in relation 

to the theoretical framework of embodied cognition. A section regarding the relevance of 

mobile approach will illustrate potential applications and technical challenges of real world 

investigations of human locomotion. In addition, this discussion will cover the use of mobile 

approach in clinical settings and the recent development of neurofeedback and BCI systems, 

which are promising tools for the treatment of motor disorders and gait impairments.  
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5.2. Embodied nature of action representation  

The findings reported in the present thesis provide evidence for the embodied nature of 

human cognition, which depends on the interaction between the body and the surrounding 

environment. A unifying theoretical framework that highlights the embodied nature of action 

representation during overt and covert behaviour, is the so-called emulation account (Grush, 

2004, 2007; Ptak et al., 2017), which incorporates the assumptions of theories of action 

control, human information processing and the embodied cognition perspectives (Ptak et al., 

2017).  

According to the emulation account, the brain is functionally organised in different neural 

circuits on the basis of sensorimotor experience, which create internal models that guide 

behaviour (Grush, 2004). The functional complexity of neural networks increases 

dynamically throughout life, by replacing and integrating existing models with new 

behavioural responses, along with the acquisition of new skills (Ptak et al., 2017). These 

models represent patterns of interaction between the body and the environment and include 

different information about action plans, such as high levels information associated to the 

action goals, and the kinematic aspects of the specific movements (Ptak et al., 2017). In other 

words, the emulation account posits similarly to motor control theories, that the brain creates 

an action representation which acts as a feedforward model, guiding motor planning during 

overt behaviour and predicting sensory outcome in order to produce a successful 

performance (Wolpert, 1997; Wolpert & Kawato, 1998). According to this view, action 

representation is not a static model of behaviour, but it is dynamically updated during the 

interaction between the body and the environment and it needs to be monitored and adapted 

depending on the circumstances. This means that the emulation model also assumes the need 

for control processes, which monitor online the behaviour and adjust the internal model 

accordingly (Ptak et al., 2017). The findings of the first study, reported in Chapter 2, support 

this perspective, showing that oscillations in the theta frequency band might reflect control 

mechanisms associated with the updating and the monitoring of action representations when 

facing unexpected changes in the environment. This is also in line with evidence suggesting 

that midline theta may be an index of the need for increased cognitive adaptive control in 

contexts of uncertainty (Cavanagh & Frank, 2014) and an online action monitoring 

mechanism, which ensures a successful behavioural outcome (Luu et al., 2004).  

Furthermore, the emulation account provides a general embodied framework for the findings 

of the second study, reported in Chapter 3, regarding motor imagery of walking. As 
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mentioned above, sensorimotor experience during life allows to create models of the 

interaction between the body and the environment. Action representation can then be used 

unintentionally or intentionally offline, in order to produce the imagination of movements 

(Grush, 2004). According to this view, motor imagery reflects the emulation of an action 

plan, which can be dynamically manipulated, transformed, and mentally maintained (Grush, 

2004; Ptak et al., 2017). The emulation account also predicts that action execution and motor 

imagery rely on the same action representations and share similar cognitive mechanisms, 

which are used to simulate the behavioural outcome during motor planning. The brain areas 

that play a crucial role in the emulation model are collectively referred to as the dorsal 

frontoparietal network (see Ptak et al., 2017). This neural network supports different 

cognitive functions, such as cognitive control, action planning, working memory and motor 

imagery (Ptak et al., 2017). These mechanisms are structured in hierarchies, which develop 

throughout life from a ‘general purpose-function’ to more specific operations, emerging 

from a combination of more elementary processes. However, as suggested by Ptak et al. 

(2017) although these processes share some basic functions and patterns of brain activations, 

they have been investigated in isolation, preventing a full understanding of complex 

cognition behind overt and covert human behaviour. Thus, in order to understand human 

cognitive processes, is necessary to analyse overlapping mechanisms between different 

behaviours.  

In line with this perspective, our data showed that execution of walking and its motor 

imagery elicit similar patterns of cortical oscillations, although with notable differences 

primarily with regards to their time course. This is suggestive of overlapping basic cognitive 

mechanisms between execution of movements and motor imagery, but also of differences in 

the temporal dynamics of the cortical modulation associated with cognitive processes. In 

these terms, the similarities might involve the encoding of kinaesthetic information 

associated with the mental rehearsal of action representation of walking, which are likely 

reflected in the similar modulation of beta frequency band (Nauta et al., 2002). However, 

the data also suggest that other mechanisms are involved in motor imagery of walking, such 

as a possible automatically triggered inhibitory process – supported by a prominent beta 

rebound at the end of motor imagery. These findings provide evidence for a 

multidimensional nature of motor imagery and support the emulation account, for which 

action execution and motor imagery do share core cognitive mechanisms, which is also in 

line with the predictions of the functional equivalence hypothesis (Jeannerod, 1994, 2001).  
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The embodied perspective was also supported by the findings reported in Chapter 4. In this 

study it was described how in real world action observation, the perspective of the observer 

and the distance of an agent from an observer, are encoded by oscillations in the alpha and 

in the beta frequency band over parietal electrodes, which are thought to signal  the activation 

of the human action observation network (Grafton et al., 1996; Cross et al., 2009; Buccino 

et al., 2001; Caspers et al., 2010; Hari et al., 1998; Rizzolatti & Sinigaglia, 2010; Cattaneo 

& Rizzolatti, 2009). The action observation network has attracted the attention of different 

fields of research and it represents one of the main neuroscientific evidence for the embodied 

cognition framework. The extensive number of investigations on action observation have 

provided support for a matching mechanism between observed and executed actions, a 

process that contributes to the understanding of others’ intentions (Konorski, 1967). Action 

observation, however, was an important theme in psychological literature already before the 

discovery of the mirror neuron system, as it can be seen from observational learning 

(Bandura et al., 1966) or imitative behaviour (Meltzoff & Moore, 1983) theories. Through 

the observation of others’ actions, the infant can learn and acquire new skills, and build an 

internal representation of behaviour, which according to the emulation account, is 

dynamically transformed and updated throughout life. In addition, action observation 

mediates our knowledge of the external environment, i.e., by observing others’ behaviour, 

we can infer the properties of the surrounding environment and build a representation of the 

interaction between the body and the external world. Mattar & Gribble (2005) showed that 

participants learned mechanical properties of the environment by observing other people’s 

movements. In this study, participants were required to execute or to observe and then 

execute an arm movement in the same or in a different environment, while a robotic device 

applied a perturbing force in different directions to the arm movement. The results showed 

that participants performing action observation before the execution, performed better 

compared to participants that did not observe the movement. Furthermore, participants that 

performed the movement in the same environment of the video performed better than 

participants who executed the movement in a different environment. These findings suggest 

that action observation might play a critical role also in the knowledge of the properties of 

the environment, guiding the creation of an embodied action representation, which is the 

product of the interaction between the body and the environment.  

In the real world, action observation is shaped by different circumstances and contexts, and 

happens also when we are interacting with other individuals. Our interactions, indeed, are 

not always mediated by language, and in such circumstances, we need to select the relevant 



117 

 

cues to understand the intentions of others in relation to our own goal. Pezzulo and 

colleagues (2013, 2019) proposed a theoretical framework, the so-called sensorimotor 

communication model, which differently from linguistic communication is not mediated by 

the transmission of an explicit meaning but is related to the encoding of motor signals such 

as kinematics, sent by other individuals. According to this model, the body posture and the 

kinematics convey the information without the need of a previous knowledge or a shared 

communicative system between individuals. Although this perspective implies a 

communicative intention between co-actors, it also have important implications for action 

observation. The findings described in Chapter 4 of this thesis provide support for such 

account. The results showed that during action observation of an agent either approaching 

or moving away from an observer, contextual and bodily cues, such as the distance and the 

perspective respectively, modulate differently neural markers of the action observation 

network, even in the absence of a communicative intention. These dynamics might represent 

the basic level of analysis in real world interactions that are not mediated by linguistic 

communications. In such circumstances, bodily cues such as distance and perspective of 

another individual, embedded in a specific context, are evaluated to establish whether we 

are required to cooperate or to not interact at all. In these scenarios, the sensorimotor 

communication represents the principal channel that drives the understanding of the 

intentions of others during action observation. 

5.3. Relevance of real world settings and mobile potentials to 

study human locomotion 

The studies described in this thesis focused on neural correlates of cognitive processes 

underlying action representation during both overt and covert natural locomotor behaviour. 

Evolutionary, locomotion certainly represents the most preserved form of movement across 

different species (Ferreira-Pinto et al., 2018). It might appear as a very intuitive and simple 

behaviour, due to its ubiquity in daily living. Conversely, control of locomotion depends on 

a complex interplay between supraspinal brain areas, such as the cortex, basal ganglia, 

cerebellum, midbrain and hindbrain, and spinal neurons (Kiehn, 2016; Ferreira-Pinto et al., 

2018). Locomotion itself is a whole body movement, characterized by automatic rhythmical 

lower limbs’ movements, which can be triggered by external sensory stimuli or in absence 

of evident external triggers, to accomplish a particular goal. For example, initiation of 

locomotion can be due to a specific need, such as food or water, but it can be also driven by 

other goals, such as the need to explore the surrounding environment and reach objects. This 
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would suggest how cognitive decisions might prompt the voluntary control of locomotion 

(Ferreira-Pinto et al., 2018). 

Voluntary control of locomotion develops slowly and represents one of the most critical 

steps of human psychological development (Anderson et al., 2013). Indeed, it has been 

demonstrated that acquisition of locomotion plays an important role in the development of 

psychological functions, such as perception, memory, motor coordination, spatial abilities, 

and social skills (for a review see Anderson et al., 2013). Early forms of self-motion in 

infants, such as crawling, provide the opportunity to not depend anymore on others’ 

movements and explore the environment pursuing specific goals, proving the ability to 

produce changes in the external world (Gibson, 1988). Moving within the environment, 

allows the acquisition of information that drives the development of psychological and motor 

skills. However, the importance of locomotion in cognitive development has been 

considered only recently, due to the dualism between motor and cognitive domains 

pervading scientific research until the mid-twentieth century (Anderson et al., 2013). It was 

with the emergence of ecological psychology (Gibson, 1979) and the development of system 

accounts (Thelen & Smith, 1994) that the close relationship between action, perception and 

cognition was recognized (Anderson et al., 2013). Indeed, a large body of evidence has 

shown how locomotion requires both sensory and cognitive resources (Sheridan & 

Hausdorff, 2007). The cognitive load during walking has been mainly assessed with dual 

task paradigms (for a review see Al-Yahya et al., 2011), which showed that performing a 

demanding additional task while walking might interfere with gait parameters, such as speed 

(Patel et al., 2014). 

Remarkably, our knowledge of the neural control of human locomotion is still limited and 

comes primarily from animal models (Armstrong & Edgley, 1988; Beloozerova & Sirota, 

1988; Drew et al., 2002; Drew & Marigold, 2015). Although bipedal locomotion is 

relevantly different from quadrupeds’ ambulatory movements, these investigations allowed 

the identification of neural circuits of locomotion and highlighted the role of the cortex in 

the voluntary control of precision stepping tasks and in adaptation during walking (Drew & 

Marigold, 2015; Marigold and Drew, 2017). Brain activity during locomotion in humans has 

been traditionally assessed though the recording of MEPs (Schubert et al., 1997; Petersen et 

al., 1998; Capaday et al., 1999) or in fMRI during motor imagery of walking (Hamacher et 

al., 2015; Jahn et al., 2004, 2008; Bakker et al., 2008; Malouin et al., 2003; la Fougere et al., 

2010). These studies revealed that cortical areas related to cognitive control, are also active 

during motor imagery of walking (Rosano et al., 2008; Thompson, 2001; Whitman et al., 
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2001). However, as already highlighted in the General Introduction and in the three studies 

reported in this thesis, walking in the real world environment requires complex cognitive 

and motor resources, compared to the mere imagination of walking from a supine position, 

as specifically revealed by the findings reported in Chapter 3. Additionally, even when in 

the standing position, locomotion cannot be maintained without sensory feedback from 

vision, proprioception, and somatosensory information (Horaket al., 1994). A clear example 

of the amount of information that we need to process when moving around, is the relevant 

visual flow coming from the external environment. Vision is certainly one of the most 

relevant channels to guide locomotion, and it represents the interface between the agent and 

the environment (Gibson, 1954; for a review see Logan et al., 2010). A large body of studies 

has shown how vision supports spatial navigation and gait adaptations with regards to 

obstacles (Grasso et al. 1998; McFadyen et al. 2007; Patla & Vickers 1997; Schubert et al. 

2003; Warren et al. 2001) and modulates gait parameters, such as speed and stride length 

(Konczak 1994; Prokop et al. 1997; Mohler et al. 2007). It is thus clear, that the investigation 

of neural and cognitive control of locomotion implies processes that can be investigated only 

when individuals actively walk around, rather than lying down in a scanner. Thus, to 

understand cognitive processes underlying locomotion, it is critical to investigate real world 

human ambulatory behaviour. 

Only recently, along with the development of new portable devices, such as mobile EEG 

and fNIRS, it has been possible to deepen the understanding of neural circuits for locomotion 

in humans. fNIRS is used for recording indirect cortical activity through the hemodynamic 

changes in the brain and it was one of the first techniques to be applied to assess cortical 

activity during walking (Miyai et al., 2001). Although it has produced useful insights in the 

study of cortical control of walking, such as during precision stepping tasks (Koenraadt et 

al., 2014) and obstacle avoidance (Maidan et al., 2018), its application includes several 

drawbacks (for a review see Vitorio et al., 2017). For example, as reported by Vitorio et al. 

(2017), fNIRS recordings during walking are characterized by relevant artifacts and noise, 

which constitute an obstacle for the identification of reliable brain signals. Furthermore, the 

lag between cortical signals and hemodynamic changes is relevant (4-7 sec, Vitorio et al., 

2017), which means that fNIRS is not suitable to detect fast neurophysiological processes in 

the brain.  

The EEG presents many more advantages compared to other non-invasive techniques. With 

its high temporal accuracy, the EEG can record fast changes in the brain, which are not 

captured by fNIRS (Delval et al., 2020). Furthermore, the EEG offers the opportunity to 
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correlate the cortical activity with other portable devices for gait measurements, which 

allows the investigation of natural walking behaviour in the real world environment. Indeed, 

human locomotion represents one of the main research field for the application of mobile 

technologies. One of the most important novelties brought by the MoBI approach is the 

synchronous investigation of brain activity and lower limb kinematics, employing the 

concurrent recording of the electromyogram (EMG) or mechanical force sensors (foot 

pressor insoles or motion capture) (Artoni et al., 2017a; Presacco et al., 2012). A major 

finding of this application regards the coupling between gait patterns and rhythmical 

oscillatory activity, which elucidated the cortical contribution in the control of locomotion 

(Gwin et al., 2010, 2011; Gramann et al., 2010; Severens et al., 2012; Bradford et al., 2016; 

Bulea et al., 2014, 2015; Seeber et al., 2014, 2015; Wagner et al., 2012, 2014). In their 

seminal study, Gwin and colleagues (2010) analysed brain activity during walking and 

running on a treadmill. In this investigation, the combined recording of cortical oscillations 

through the EEG and the measurement of gait parameters, using mechanical force sensors 

for lower limb movements, was employed. The findings of their study highlighted specific 

pattern of cortical activity in alpha, beta, and gamma frequency bands over sensorimotor 

cortex during intra-stride changes. Furthermore, Presacco et al. (2012), showed synchronous 

activation between beta oscillations in the primary motor cortex and EMG activity of the 

tibialis anterior during treadmill walking. These findings have been consistently reported in 

subsequent studies, which showed that cortical changes are associated with specific gait 

phases during treadmill walking (Seeber et al., 2014, 2015; Bulea et al., 2014, 2015). 

Furthermore, the MoBI approach has been applied to investigate cycling on stationary 

bicycle (Jain et al., 2013; Enders et al., 2016), precision stepping tasks (Oliveira et al., 2018), 

adaptations during walking (Wagner et al., 2016; Yokoyama et al., 2020) and obstacle 

avoidance (Nordin et al., 2019). These studies showed that an extensive network of frontal, 

central and parietal areas, typically involved in action planning and cognitive control, are 

also activated during voluntary control of locomotion, even though cognitive mechanisms 

remained unexplored in these studies, which was key to the rationale for the work reported 

in this thesis. 

Another field of application of the MoBI approach, is the concurrent recording of EEG 

activity and gaze behaviour using eye tracking techniques. Gaze dynamics are characterized 

by patterns of fixations whose role is to guide behaviour in acquiring the relevant visual 

information to perform a specific task (Land, 1999; 2006). From an evolutionary 

perspective, the main goal of gaze is to drive actions through the surrounding environment 
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to survive (Land, 1999; 2006). The relevance of vision in guiding actions has been 

demonstrated in different investigations in real world daily behaviour, such as driving (Land 

and Lee 1994), sports, such as cricket (Land and McLeod 2000), walking (Patla and Vickers 

1997), sandwich making (Hayhoe 2000, Hayhoe et al. 2003) and tea making (Land et al. 

1999). The intrinsic relationship between action and vision, make the synchronous 

application of EEG and eye tracking recordings a compelling method to study embodied 

cognition (Mele & Federici, 2017). Vision represents an important window into human 

cognitive processes. Several investigations showed the bidirectional relationship between 

eye movements and cognitive processes (Grant & Spivey, 2003). Furthermore, it has been 

showed that eye movements do not only occur in response to external visual inputs, but also 

to internal ‘mental’ images, such as visual memories and motor imagery (Richardson & 

Spivey, 2000; Spivey & Geng, 2001). Indeed, it has been suggested that eye movements 

might also index the scanning of mental visual images, related both to spatial representation 

and to the internal model of behaviour within the environment (Richardson & Spivey, 2000; 

Spivey & Geng, 2001). 

Visually guided attention is undoubtedly essential during locomotion, as it allows the 

exploration of the surrounding environment and more importantly, it supports the detection 

of possible threats such as obstacles (Foulsham et al., 2011; Franchak & Adolph, 2010). A 

major theoretical challenge for mobile eye tracking studies is to dissociate between visual 

and motor systems during spatial navigation in the environment. As part of a complex and 

intertwined system, locomotion and visual attention are difficult to dissociate (Franchak & 

Adolph, 2010). Visual attention during locomotion is of particular interest also for obstacle 

avoidance tasks in the real world, and such a focus would represent a possible future 

direction for the study described in Chapter 2 of this thesis. Particularly, it would be 

interesting to understand how visual attention is related to cognitive mechanisms of 

proactive and reactive cognitive control. Previous laboratory investigations have shown that 

eye movements are directed toward critical spatial points of the visual scene, and that these 

movements occur in anticipation of a stimulus, i.e., gaze is used to collect relevant 

information to plan ahead the action (Ballard et al., 1995; Johansson et al. 2001). This 

strategy seems to be used in a ‘just in time’ manner (Ballard et al., 1995), which means that 

once relevant information is processed, it does not need to be maintained active in the 

working memory (Mennie et al., 2007). The first study of the present thesis did indeed offer 

a demonstration of ‘just in time’ mechanisms at play. The study furthermore showed that 

proactive control of natural behaviour is a form of cognitive control which updates action 
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representation when an unexpected change in the environment is detected, regardless of 

when the behavioural adjustment needs to be implemented. Eye movements could offer a 

critical window into these mechanisms, providing further data about how we process 

relevant information when we have to implement complex behavioural responses in the real 

world environments. 

5.3.1. Technical challenges of mobile approach 

Locomotion represents one of the most relevant research targets of the recent MoBI 

approach. However, as mentioned in the General Introduction, the combined application of 

different portable devices opens several problems that need to be addressed in order to 

provide a reliable recording of brain and body signals. Aside from the online recording 

strategies, another technical challenge is related to the analysis of the brain signals in real 

world investigations. In the traditional laboratory experiments, EEG recordings are usually 

carried out while participants are almost motionless, and motion artifacts are minimised or 

rejected offline using EMG or ocular activity recordings. Conversely, in real world 

investigations, where participants can freely move in the surrounding environment, the 

artifacts generated by body and eye movements and from external sources (e.g. cables or 

electrodes) are much more prominent, thus enlarging the problem of dissociating non brain-

related activity from the neural signals of interest. Several studies have attempted to identify 

gait related artifacts during natural walking and have highlighted how neck and head 

movements can cause systematic artifacts, which are more prominent at high walking speed 

(Jacobsen et al., 2020; Arad et al., 2018; Castermans et al., 2014; Kline et al., 2015). 

A very popular method to identify and then remove artifacts in EEG data is based on 

independent component analysis (ICA, Amari & Cichocki, 1998; Comon, 1994; Hyvärinen, 

1999). Recently, the artifacts subspace reconstruction (ASR) has been successfully applied 

in pre-processing pipeline of EEG data (Chang et al., 2018; Blum et al., 2019). The ICA is 

a linear decomposition technique, which aims to find maximally independent linear 

projections or independent components (ICs). In order to differentiate between different ICs, 

there are several main assumptions in the ICA: the statistical independence of source signal, 

the linear mixing at the sensor level and the stationarity of the signal (Vigario et al., 2000). 

In other words, the ICA assumes that independent source signals are fixed, and their number 

is equal to the number of the applied scalp sensors. The source signals are then selected 

depending on the linear projection to the head model, also known as single equivalent dipole 

model (Gramann et al., 2014; Jung et al., 2000; Makeig et al., 2004; Delorme et al., 2012). 
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Single equivalent dipole model is a source localization technique which works on the 

assumption that cortical activity recorded by the EEG is determined by metabolic active 

regions which are related to neuronal assemblies, structured in macrocolumns perpendicular 

to the cortex (Akalin Acar and Makeig, 2013; Baillet et al. 2001; Lutkenhoner et al. 1995; 

Baillet and Garnero 1997). The source localization models allow the identification of the 

location of source signals in the physical space and approximate the location for unknown 

sources (Gramann et al., 2014). These methods represent important tools in order to identify 

brain related signals in EEG investigations. However, for mobile EEG recording, the most 

problematic aspect is represented by the heavy presence of noise and artifacts, which might 

reduce the amount of brain signals detected by the ICA. This might result in low number of 

ICs to include in the subsequent analysis, which might inevitably compromise the reliability 

of the interpretation. As shown in the methods sections of Chapter 2, 3 and 4 of this thesis, 

the ICA was employed to separate brain related ICs from non-brain ICs. The apparent low 

number of ICs remaining after removing non-brain ICs in the three studies of this thesis, is 

partially due to the limited number of electrodes of the mobile EEG employed (32 channels). 

However, it is noteworthy that the number of brain ICs extracted in the three studies 

(average± SD: 5.85 ± 1.97 ICs for Chapter 2’s study; 6.65 ± 0.81 ICs for Chapter 3’s study; 

7.19 ± 1.6 ICs for Chapter 4’s study) represented more than the 15% of the total ICs 

extracted. Our data are generally in line with previous observations on the optimal number 

of ICs that can be extracted by applying the ICA on mobile data. As recently tested by Klug 

& Gramann (2021) on a 128-channel mobile EEG, the ICA led to a maximum of 12.7 brain 

related ICs classified, corresponding to approximately to the 10% of the total number of ICs, 

suggesting that the number of ICs of the three studies presented in this thesis represents a 

suitable amount of brain-related signal to further analyse. 

Artifact subspace reconstruction (ASR; Bulea et al., 2015; Luu et al., 2017; Nordin et al., 

2019) is a tool similar to the ICA, which allows the removal of artifacts dividing EEG 

continuous data in short portions (usually 500 ms) and decomposing them using an unmixing 

method (Gramann et al., 2014; Jacobsen et al., 2020). The ASR assumes that the presence 

of artifacts in the EEG data determine a relevant level of variability, which can be identified 

using a covariance matrix for detecting the deviant statistical values extracted by the 

principal component analysis (Arad et al., 2018; Plechawska et al., 2019). 

These two procedures have been successfully applied to MoBI data in real world EEG 

investigations. However, a critical issue for offline pre-processing tools such as ICA and 
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ASR, is that although they dissociate brain signals from artifacts, they do not categorise or 

dissociate noise and other body signals. A possible solution to this problem is represent by 

the recently developed tool within the EEGlab framework, the so-called IClabel (Pion-

Tonachini et al., 2019). IClabel is an automated method to standardise the categorization of 

ICs, which has been applied to the studies reported in Chapter 3 and 4 of the present theses. 

A similar EEGlab tools is SASICA (Semi-Automated Selection of Independent Components 

of the electroencephalogram for Artifact Correction, Chaumon et al., 2015) which has been 

used in the study in Chapter 2 of this thesis and it has been replaced by IClabel method in 

Chapter 3 and 4. This replacement was solely guided by the availability of IClabel plugin, 

which was released online only recently (Pion-Tonachini et al., 2019). Generally, automated 

methods for the selection of artifactual ICs in the EEG data allow the assessment of different 

statistical threshold which are not visible to the human eye, which is the main characteristics 

of both SASICA and IClabel, which are based on the same parameters. However, compared 

to SASICA, IClabel can guide more specifically the selection of ICs using a classifier which 

provide probabilistic labels for each signal source comparing them with a dataset containing 

over 200,000 ICs from more than 6000 EEG datasets (Pion-Tonachini et al., 2019). 

To summarise, the application of semi-automatic methods for the identification of non-brain 

sources in EEG recordings rely on the computation of spatial and temporal features 

commonly associated with artifactual signal. The strict criteria employed by these algorithms 

might affect the number of brain sources selected and used in the analysis, as the resulting 

brain-related ICs might appear to be lower compared to laboratory EEG recordings. 

However, using manual and subjective approaches does not facilitate reproducibility of the 

research. For example, critical features of brain components are not visible to the human 

eye, but can be computed only using statistical and mathematical functions or thresholds. 

Considering the heavy presence of noise in mobile EEG data, the semi-automated methods 

employed in this thesis, represented a more suitable approach to identify brain signals in the 

EEG data compared to manual approaches. Additionally, the limited number of electrodes 

used within the frame of this thesis represented a strong limiting factor to the number of 

neural sources that could be estimated. These constraints associated with mobile EEG, might 

have critical impact on strategies for data analysis and the interpretation of the results. For 

example, the use of 32 electrodes montage prevented the precise identification of neural 

sources of the recorded signal, precluding the interpretation relative to the neural origin of 

the observed oscillations. 
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Despite the significant improvements in signal pre-processing tools, currently there is still 

no agreement on the pipeline for mobile EEG data (Jakobsen et al., 2018). It is critical to 

propose and assess new approaches to reliably analyse cortical activity during real world 

behaviour. For example, as suggested by Jacobsen et al. (2020), it might be more relevant to 

characterise firstly artifacts occurring during gait and focus on the optimization of the online 

recording. This would allow a better classification of brain signals, reducing the offline 

operations which might affect the outcomes and the interpretation of the data.   

5.4. Action representation as a tool for motor disorders 

Locomotion is a crucial skill acquisition for humans, and its progressive loss impacts 

significantly in aging and in neurological disorders. Falls during walking are the main direct 

risk to health for neurological and elderly population, and according to the World Health 

Organization, they represent the second leading cause of deaths or injury worldwide (World 

Health Organization, 2021). The risk of falls is related to age; indeed, it has been 

demonstrated that among 85 years old individuals, only 20% of them showed normal gait 

patterns (Ataullah & De Jesus, 2021; Pirker et al, 2017; Jahn et al., 2010). The strong 

correlation between locomotion and cognitive decline, suggests a common mechanism for 

both walking and cognition (Ataullah & De Jesus, 2021; Verghese et al., 2013; Christensen 

et al., 2001). As demonstrated by the results presented in Chapter 2 and 3 of this thesis, 

neural control of walking requires also attentional, visual, and cognitive resources, which 

involve the activation of a broad network of cortical and subcortical neural structures 

(Holtzer et al., 2014). One of the most reported consequences of gait and cognitive decline 

is the progressively reduced gait speed (Verghese et al., 2013; Montero-odasso et al., 2014; 

Y Tseng et al., 2014) and increased gait variability (Boripuntakul et al., 2014; Beauchet et 

al., 2016). Given the impact of the loss of locomotor abilities on the quality of life, it is 

important to develop novel rehabilitation treatments in order to improve motor functions in 

both elderly and neurologic patients. The results of the present thesis represent an important 

contribution for the understanding of cognitive processes underlying real world locomotor 

human behaviour. In particular, the data presented in Chapter 3 and 4 regarding neural 

correlates of motor imagery of walking and action observation of walking, might suggest 

new insights for rehabilitation techniques. Indeed, both motor imagery and action 

observation have been commonly applied in clinical settings as effective tools for the 

recovery of motor impairments. These topics will be further discussed in the following 

paragraphs. 
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A critical finding for motor rehabilitation practice, is that the brain can recover its functions 

after a structural damage, a process that is commonly called neuroplasticity (Pascual-Leone 

et al., 2005). Neuroplasticity is the product of the intrinsic relationship between the body 

and the environment, which can induce physiologic, structural, and organizational changes 

in the brain through experience (Pascual-Leone et al., 2005; Gulyaeva, 2017). The ability of 

the brain to reorganize itself is crucial throughout human life, as it allows the learning of 

new skills and the adaption to an everchanging environment (Hallett, 2005; Gulyaeva, 2017). 

Neuroplastic changes can develop quickly or might take longer and can occur both at the 

cellular and at neuronal networks levels. The main mechanism that promotes neuroplasticity 

in the central nervous system is the continuous change of synaptic connections, which 

represents the principal neural mechanism for the development of memories and learning 

(Gulyaeva, 2017). A critical consequence of the neuroplastic ability of the brain, is the 

opportunity to recover and restore functions after both short-term temporary neural damage 

(Edeline et al. 1993; Brasil-Neto et al. 1993) or after a stroke (Dimyan & Cohen, 2011). 

Indeed, after a lesion, the brain can reorganize the cortical functions and recover motor 

functions to some extent.  

Physical exercise has been identified as the most important tool to enhance neuroplasticity, 

improving both motor and cognitive functions (Hotting & Order, 2013). In rehabilitative 

setting, the physical exercise is the main activity used, as it allows the “rewiring of the brain” 

(Gulyaeva, 2017). Despite the actual execution of movements, as in physical practice, 

appears to be the main promoter of cortical reorganization and motor recovery, a large body 

of evidence have shown that motor imagery (Ruffino et al., 2017) and action observation 

(Naish et al., 2014) can induce plastic changes in the brain.  

As already mentioned, brain areas involved in the actual execution of movements, i.e., the 

premotor, the supplementary motor, and the parietal cortical areas, but also subcortical 

structures such as the basal ganglia and the cerebellum, are similarly active also during motor 

imagery (Hallett et al. 1994; Sirigu et al. 1995; Stephan et al. 1995; Lotze et al. 1999; 

Gerardin et al. 2000; Grezes & Decety 2001; Jeannerod 2001; Kimberley et al. 2006). As 

demonstrated by the results reported in Chapter 3, actual execution of walking and motor 

imagery share similar core cognitive mechanisms which are reflected in modulation of alpha 

and beta oscillations. The first evidence showing that the repeated use of motor imagery - 

i.e., the rehearsal of action representation, also called ‘mental practice’- can elicit cortical 

changes in the brain, was provided by Pascual-Leone and colleagues (1995). In this study, 

participants had to learn a sequential finger movement either performing it or imagining it 
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in 5 separate sessions. TMS was applied on the contralateral hand area of the primary motor 

cortex following each session. At the end of the training, both groups showed similar 

improvements and error rates. Similarly, Avanzino et al. (2015) used a paired associative 

stimulation (PAS) approach combining TMS and peripheral nerve stimulation, assessing the 

long-term depression plasticity (LTD) and the long-term potentiation plasticity (LTP) with 

an interstimulus interval of 25ms and 10ms - which reduce (the LTD) and increase (LTP) 

corticospinal excitability. In this study participants were required to learn a sequential finger 

movement by performing it or imagining it. Behavioural results showed similar speed rates 

after both training in the participants. More importantly, they found that both physical and 

motor imagery training influenced the excitability of the primary motor cortex, affecting the 

LTD and the LTP in an opposite way, suggesting an effect of motor imagery on synaptic 

changes in the brain. Similar findings were reported also in brain imaging studies. Jackson 

et al. (2003) showed that mental practice of sequential movements, induced similar changes 

in the activation of the orbitofrontal cortex and the cerebellum, as physical practice of 

movements.  

Although these studies highlight that mental practice might affect cortical plasticity, they 

also pointed out the different effect in comparison with physical practice. Lacourse et al. 

(2005) showed that whereas mental practice of sequential movement increased brain activity 

over the cerebellum, premotor areas and striatal brain areas, physical practice induced 

decreased activity in the cerebellum and increased activity in striatal brain area. These 

differences suggest that the absence of sensory feedback in motor imagery might prevent the 

potentiation of cortical plasticity which need the support of covert motor output occurring 

in physical practice (Ruffino et al., 2017). Importantly, the data reported in Chapter 3, 

provide relevant support for this perspective: although neural markers of cognitive 

mechanisms underlying actual execution and motor imagery share similar features, they also 

partially differ, suggesting a complex neural substrate underlying motor imagery of real 

world locomotor behaviour. The novelty of the mobile data reported in Chapter 3 of this 

thesis, therefore provides an important contribution for the understanding of the nature of 

motor imagery, with might have relevant impact for rehabilitative contexts in particular in 

the absence of neural data comparing imagery and actual locomotor behaviour. 

The evidence that motor imagery can induce plastic changes in the brain has led to the 

application of mental practice as a rehabilitation technique (Mulder, 2007; De Vries & 

Mulder, 2007; Dickstein & Deutsch, 2007). Indeed, mental practice has been used in 

Parkinson’s disease (Tamir et al., 2007; Brown et al., 2011), low back pain (Fairweather & 
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Sidaway, 1993) and stroke (Page et al., 2001, 2000; Page et al., 2007; Stevens & Stoykov, 

2003; Cho et al., 2013) and has been proposed as effective for gait impairments (Malouin & 

Richards, 2010). However, despite the promising results obtained from the application of 

motor imagery practice in rehabilitation, several meta-analyses and reviews suggest to 

carefully consider the different evidence, mainly for the high heterogeneity that characterizes 

protocols and studies (Guerra et al., 2017; Hardwick et al., 2017, 2018; Herranz-Gómez et 

al., 2020). For example, in rehabilitative settings, the different duration of the interventions, 

the frequency of the treatment, the sample size and the task employed make it very difficult 

to assess the benefits of motor imagery practice (Barclay et al., 2020; Guerra et al., 2017; 

Hardwick et al., 2017, 2018; Herranz-Gómez et al., 2020; see also Ietswaart et al., 2011). 

Additionally, depending on the brain lesions, motor imagery ability can be impaired in 

neurological populations when critical brain structures are compromised, therefore motor 

imagery practice might not be always effective (McInnes et al., 2016).  

Neural plasticity has been also proposed to occur during action observation, which can 

induce a facilitation in motor execution (Fadiga et al., 1995; Urgesi et al., 2006; Castiello et 

al., 2002; Buccino et al., 2001). In a TMS study, Fadiga et al. (1995) showed that action 

observation of hand-object interaction increased motor excitability in finger muscle involved 

in the observed movements, suggesting that action observation have an effect in facilitating 

motor output. Urgesi et al. (2006) measured MEPs recoded from hand muscles involved in 

observed finger movements in different postures. They found an increased motor excitability 

when the observed hand posture was compatible with the posture of the observer. Brass et 

al. (2000) showed that the execution of finger movements was facilitated when participants 

observed and executed congruent actions but not when the two movements were not the 

same (i.e., observing a finger lift movement and performing a finger tap). Similarly, Castiello 

et al. (2000) asked participants to observe and execute incongruent and congruent actions 

(i.e., observe a grasping action towards a small or a large object) and found that both the 

speed and the acceleration of the movement were faster for congruent compared to 

incongruent actions. These findings were further confirmed by investigations on action 

observation training on motor performance. For example, Porro et al. (2007) found that the 

repetitive training based on action observation of finger movement produced similar increase 

in the isometric force of the muscle involved in the movement as physical practice. 

According to motor theory, motor learning can happen through the observation of other 

movements and this would be relevant also for the recovery of motor functions. For example, 

action observation treatments have been proven to be effective in the rehabilitation of 
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Parkinson’s disease (Pelosin et al., 2010; Buccino et al., 2011), stroke (Ertelt et al., 2007; 

Franceschini et al., 2010; Bang et al., 2013) and orthopaedic patients (Belelli et al., 2010). 

However, it also been shown that the mere observation of movements is not enough to 

activate neural pathways of the mirror neuron system. Indeed, recently it has been proposed 

that the combined use of motor imagery and action observation might be more effective than 

using the two techniques alone (Sakamoto et al., 2009; Lawrence er al., 2013; Taube et al., 

2015). EEG investigations reported that cortical activation is less pronounced during mere 

action observation, when compared to the condition in which participants are required also 

to simultaneously imagine kinaesthetically the movement (Berends et al., 2013; Eaves et al., 

2016a; Kaneko et al., 2021). This suggests that when performed alone, action observation 

might be less effective in eliciting sensorimotor facilitation, and that using action 

observation simultaneously with motor imagery might be more effective in clinical 

treatments based on mental simulation of movements (see Eaves et al., 2016b).  

The fast technological development of the past twenty years has signified an important step 

forward for the conceptualization of rehabilitative techniques in clinical settings. In 

particular, the EEG has been extensively used to build computerised assisting technology 

such as neurofeedback and BCI systems. With the emergence of portable devises, these two 

techniques have been integrated with mobile portability, which will be described in the 

following section.  

5.4.1. Neurofeedback, BCIs and mobile EEG 

Brain computer interfaces (also called brain−machine interfaces) use brain signals to control 

and communicate to external devices without activating peripheral output channels such as 

muscle and nerves (Wolpaw, 2013). According to Wolpaw & Wolpaw (2012), a BCI can be 

seen as a system that measures the activity of the central nervous system and translates it 

into artificial output which replaces the natural output, changing the relationship between 

the central nervous system and the environment (Wolpaw & Wolpaw, 2012). BCI systems 

have been used with a large range of acquisition techniques. For example, for locomotor 

behaviour, fMRI, MEG, electrocorticography (ECoG), LFP, fNIRS and EEG have been 

employed (McFarland & Wolpaw, 2017; Khan et al., 2021). Although both MEG and fMRI 

have an excellent temporal and spatial resolution respectively, their basic features requiring 

the participants to be stationary and motionless, are not compatible for real-time application 

of BCI on walking behaviour (Khan et al., 2021). Among non-invasive approaches to record 
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brain activity for BCI system during gait, the EEG represents the most popular technique, 

due to its portability and easy-to-use features (Khan et al., 2021). 

The excellent temporal resolution of the EEG makes it ideal for BCI applications. Indeed, 

an increasing number of investigations have attempted to detect and classify EEG signals 

related to normal gait (Severens et al., 2012; 2015), attention during gait initiation (Hasan et 

al., 2020; Choi et al., 2019; Sburlea et al., 2019) and obstacle avoidance (Salazar-Varas et 

al., 2015; Long et al., 2018) to control external devices, such as exoskeletons, through a BCI 

system. One of the most robust signals of gait-related brain activity used in EEG-BCI 

applications is the event related desynchronization in the alpha and beta frequency bands 

over the sensorimotor cortex (Severens et al., 2012; 2014; Wagner et al., 2012). Other 

investigations have been focused on attentional mechanisms while walking through the 

assessment of the P300 potential (Debener et al., 2012; De Vos et al., 2014; see also Ladouce 

et al., 2019), which is an event related potential (ERP) associated with attentional allocation 

(Johnson, 1988), context updating (Donchin & Coles, 1988), working memory processes 

(Polich, 2007) and reactivation of stimulus-response links (Verleger et al., 2017; Verleger 

2020). Movement related cortical potentials (MRCPs) have also been used in BCI 

applications to predict motor intentions (Savic et al., 2014). MRCP also known as 

Bereitschaftspotential (BP), is a slow negative wave occurring over the primary motor cortex 

around 1s before movement onset (Shibasaki & Hallett, 2006). This signal has been used to 

detect the intention of gait initiation as it provides information about the preparation of 

movement (Savic et al., 2014; Sburlea et al., 2015). Among locomotor tasks used to control 

BCI systems, obstacle avoidance represents one of the main challenges (Salazar-Varas et al., 

2015; Long et al., 2018). For example, Salazar-Varas et al. (2015) investigated brain signals 

during the detection of expected and unexpected obstacles while participants walked on a 

treadmill and found increased activity in EEG potentials over frontal and central electrodes 

compared to rest.  

Although these investigations have provided valuable insights in the understanding of 

cortical signals to drive BCI systems, EEG signals acquisition was mainly carried out while 

participants walked on a treadmill, which might have an important impact on cortical 

activity. As mentioned already in the present thesis, real walking in natural environments is 

the product of a complex interaction between cortical and subcortical structures, which 

drives the integration of sensory and motor information. The results presented in Chapter 2 

of this thesis clearly show the complexity of neural signals while walking in the real world 

environment and encountering objects to avoid. The specificity of the cortical modulation in 
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relation to unexpected obstacles appearing on the floor, compared to expected obstacles and 

unobstructed walking, highlights that complex locomotor scenarios require the involvement 

of different neural processes compared to simple ones. Indeed, it has been showed that brain 

and body signals during normal and complex gait conditions might differ (Wagner et al., 

2014; den Otter et al., 2004). In order to control BCI systems and develop robot assistive 

technologies, it is therefore important to identify signals associated with real life 

circumstances that might represent a possible risk for people with gait impairments. 

Avoiding unexpected obstacles is certainly one of the most challenging situations for elderly 

and neurologic patients. The findings of the first study, reported in Chapter 2 of this thesis 

are therefore particularly relevant for this aim, as they provide the evidence for distinct 

neural signatures of cognitive processes and as such, they might represent a critical 

contribution to the understanding of signals associated with the detection of potential risks 

in the environment, i.e., the theta modulation when encountering unexpected obstacles on 

the floor and the beta modulations when stepping over any obstacle. This also shows that 

the mobile approach provides the advantage to detect and classify more reliable signals for 

BCI systems, aimed to support obstacle avoidance during natural walking.  

In clinical settings, BCI systems have been mostly applied with individuals with 

amyotrophic lateral sclerosis (ALS) or spinal cord injuries, however, recently, this 

technology has been proposed also for other neurologic disorders, such as stroke (McFarland 

& Wolpaw, 2017). The main idea that drives the application of BCI technique in 

rehabilitation is to promote neural plasticity and to replace natural motor behaviour with 

artificial output through an external device interacting with the environment, in order to 

support the patient autonomy in daily life (Abibullaev et al., 2017). A large number of BCI 

applications have used neural signals of motor imagery during upper limb tasks (Gomez-

Rodriguez et al., 2011; King et al., 2014; Ang et al., 2013) and during gait (Severens et al., 

2105; Ferrero et al., 2021; Tang et al., 2018; Choi et al., 2019). However, motor imagery 

presents several problematic aspects for BCI systems. Firstly, as no motor output is required 

during motor imagery, it is difficult to assess whether participants are actually performing 

the task. That is why the neural signature of ambulatory motor imagery identified in the 

study reported in Chapter 3 is so promising: it offers a way to capture the covert process of 

motor imagery. Secondly, any other external stimulus such as noise that may distract the 

participants during the recording, affecting the quality of the data. Finally, neural correlates 

of motor imagery tasks might present high variability between and within individuals, which 

is an important issue for the reliability of the signal detected. A possible solution would be 
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enhancing cortical activation by combining motor imagery and action observation, which 

has been suggested to be more effective compared to the application of the two techniques 

alone (Marshall et al., 2019; Romano Smith et al., 2019). Abibullaev et al., 2017 recently 

proposed a combined approach using motor imagery and action observation to drive a 

fNIRS-BCI system to control a haptic device in real time. The study reached a good accuracy 

for signal detection compared to previous BCI studies using motor imagery. However, as 

pointed out by the authors, fNIRS has a low temporal resolution compared to the EEG. 

Therefore, to increase the reliability of signals for BCI approaches, the EEG might be an 

ideal solution, offering the temporal accuracy that the fNIRS cannot achieve. 

Aside from BCI, another popular technique which is gaining growing attention in 

technological and clinical settings is neurofeedback. Neurofeedback is a particular type of 

training by which users learn to control their own cortical activity in order to modify 

behavioural responses (Kamiya, 1996, 1968; landers et al., 1991). This technique usually 

employs EEG signals which are represented to the user on a monitor, graphically or by 

auditory signals. After neurofeedback training, users learn to control their own body signals 

in order to optimise their behavioural performance. Neurofeedback technique has been 

applied in different settings, for example in clinical contexts to reduce anxiety (Peniston & 

Kulkosky, 1991; Raymond et al., 2005), on healthy individuals to improve cognitive 

performance (Hanslmayr et al., 2005) or physical performance (Hammond, 2007) and in 

sport (Arns et al., 2008; for a review see Park et al., 2015). 

Motor imagery is the most popular paradigm used in neurofeedback investigations. The 

advantage of motor imagery consists in the potential application of neurofeedback in the 

natural daily living environment. The possibility of monitoring continuously brain signals 

might increase attentional focus, but also enhance motivation and compliance to the 

treatment in patients with neurologic disorders (Kranczioch et al., 2014). Several 

investigations have shown the relevance of a neurofeedback training based on motor imagery 

to improve motor rehabilitation (Mihara et al., 2013; Zich et al., 2015). Mihara et al. (2013) 

employed fNIRS neurofeedback training based on motor imagery in hemiplegic patients 

with subcortical stroke in addition to motor rehabilitation. They showed that after six 

repetitive sessions, patients receiving neurofeedback training showed significant 

improvements in motor recovery compared to patients who did not receive the 

neurofeedback training. Zich et al. (2015) used a mobile EEG based neurofeedback training 

in stroke patients moving in natural domestic environments. They showed that brain activity 

during movements of the affected hand became increasingly more lateralised after practicing 
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motor imagery regularly. These results were accompanied by improvement in motor 

functions and structural changes that indicated an increased integrity of white matter. 

Although previous works on motor imagery-based neurofeedback have provided promising 

results, the difficulty of finding reliable signals during motor imagery recordings, along with 

the high variability within and between participants, means that the neural substrate of motor 

imagery still require further investigations. Furthermore, traditional brain imaging 

techniques allow the assessment of very poor and elementary movements (Pfurtscheller et 

al., 2006a, 2006b; Neuper et al., 1996; Hashimoto et al., 2013; Solis-Escalante et al., 2008, 

2012; Muller-Putz et al., 2010) preventing the examination of complex real world dynamic 

actions, which are of critical importance for the development of assistive technology 

supporting daily life activities. Indeed, how neural activation in imagery and execution 

compares for naturalistic whole body movements, such as walking, has not been studied due 

to methodological constraints. The findings reported in Chapter 2 of this thesis represent a 

window into the complex neural substrate underlying motor imagery of locomotor 

behaviour, revealing similar patterns of cortical oscillations during actual walking and motor 

imagery, but also specific differences. These results clarify the neural substrate of motor 

imagery of complex real world behaviours and represent a critical contribution for the 

development of motor imagery-based neurofeedback techniques. 

Taken together, the findings of previous investigations demonstrate the potential of BCI and 

neurofeedback applications, which might have important implications for the development 

of accessible and low-cost rehabilitation techniques. Moreover, mobile technologies have a 

large range of possible applications, such as sport performance, as they allow to record and 

detect neural signals while participants are actively engaged in natural behaviour, and they 

can be transmitted to external devices in real time, enhancing learning and the improvement 

of motor skills (Park et al., 2015). However, neuroscientific research is still far from the 

identification of reliable signals, mainly because of the limitation of brain imaging and 

experimental paradigms. The results presented in three studies of this thesis show that the 

mobile EEG approach is feasible to capture the complexity of brain signal related to whole 

body movements in real world environments and furthermore offer distinct neural signatures 

of the processes involved. As such, these findings offer a relevant insights for the 

identification neural markers of real world behaviours, which might be used for assistive 

technologies in clinical settings, in order to support elderly and patients affected by motor 

disorders in daily life activities. 
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5.5. Conclusion 

The body of works reported in the present thesis contribute to investigate neural correlates 

of cognitive processes underlying action representation in real world locomotor behaviour, 

using a mobile approach. A fundamental aspect highlighted across the three studies is the 

embodied nature of internal models of behaviour, which are the product of sensorimotor 

experience of the body moving in the surrounding environment. The brain processes 

information and guides behaviour through internal representations, which are dynamically 

updated during voluntary control of locomotion depending on external circumstances 

(investigated in Chapter 2). The brain also activates and rehearses the action representation 

during covert behaviour, such as during motor imagery (investigated in Chapter 3), which 

includes not only the kinematic information of the action, that replace the covert motor 

output, but also spatial information about the environment in which the imagined action is 

embedded. The dynamic interaction between body and context is also visible when we have 

to observe others’ behaviour (investigated in Chapter 4) in which relevant bodily cues are 

processed in order to encode possible goals of another person’s actions, even without a 

communicative intention. These results provide novel insights in complex cognitive 

processes underlying real world human behaviour, and strong evidence for theoretical 

models of cognitive control, action emulation and simulative processes, which share 

significant core components. 

Across the three studies, it was illustrated how neural markers underlying cognitive 

processes related to action representation are distinct, flexible, and modulated by the task at 

hand in real world environments. At the same time, it was also possible to identify some core 

functions of brain oscillations in covert and overt human behaviour. As it was demonstrated 

in Chapter 2, theta oscillations over frontal brain areas were associated with cognitive 

proactive control, which updates the internal representation of the body in relation to 

unexpected changes in the environment. Alpha oscillations were associated with visual and 

spatial information during the rehearsal of action representation (Chapter 3) and also with 

the encoding of relevant spatial information relative to an observed moving agent (Chapter 

4). Beta oscillations were associated with the adaptation of the motor plans (Chapter 2), with 

the kinaesthetic aspects of action representation (Chapter 3) and with the encoding of 

relevant bodily cues such as distance and perspective of another person (Chapter 4), 

reflecting a role in sensorimotor processing, in line with the broad previous literature.  
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The novelty of the experimental paradigms employed in the present thesis signify an 

important step forward for the mobile cognition framework (Gramann et al., 2011; Ladouce 

et al., 2017). The three studies demonstrate the feasibility of mobile EEG in capturing neural 

markers of cognitive mechanisms during real world overt and covert behaviour, which have 

never been investigated in real world contexts. Furthermore, the technical aspects of the 

setup of the studies described in Chapter 2 and Chapter 4 of the present thesis, offers new 

potentials solutions to the issue related to real world recordings, both during online 

recordings and in the offline processing pipeline. Nonetheless, the mobile approach still 

requires the development of new solutions to improve the reliability of both online 

recordings and offline analysis tools. Although there is still much to work on, the mobile 

approach represents one of the most promising tools for clinical applications, as 

demonstrated by the increasing number of investigations on BCI and neurofeedback 

systems, which have the potential of being non-invasive, feasible to use in home 

environment and at low cost. 
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