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Type 2 diabetes (T2D) is a complex chronic disease associated with substantial morbidity and 
mortality.1 The consensus from genetic studies of T2D, reflected in the palette model, is that 
T2D development is influenced by multiple aetiological processes.2 While some people may 
develop T2D because of extreme alteration in one or two such molecular processes; in most, 
multiple pathways are involved.2,3 This results in considerable heterogeneity in the phenotype 
of T2D, that is largely ignored in individual patient management.  In acknowledgement of this 
heterogeneity there have been recent attempts to place patients into discrete phenotypic 
clusters.4,5 However, such an approach does not align with the emerging molecular 
understanding of disease architecture of T2D.  We used a reverse graph embedding method 
to reduce multiple phenotypic characteristics into a non-linear tree structure.  In an overall 
population of 23,137 people with newly diagnosed T2D, we show a continuum of phenotypic 
variation across the tree and show that this maps to different diabetes outcomes, in terms of 
variation in antihyperglycemic drug failure, risk of progression to insulin requirement and risk 
of micro and macrovascular complications.  We validated our findings in two independent 
cohorts and developed an application to visualise the position of patients with new T2D within 
a two-dimensional space, with their 10 year risk of diabetes complications. We also find a 
distribution of T2D partitioned polygenic scores6 across the tree consistent with variation in 
causal aetiological processes.  Overall, our data highlights how the underlying phenotypic 
variation driving T2D onset impacts on subsequent diabetes outcomes and drug response, 
and the need to incorporate this into personalized treatment approaches for the 
management of type 2 diabetes.  

We used electronic health record information of T2D cases from Tayside and Fife in Scotland7 
diagnosed between 1993-2017 to identify individuals who were not GAD antibody positive 
and diagnosed with T2D on or after the age of 35.  To explore phenotypic heterogeneity, we 
used nine characteristics that are well captured in routine clinical care and reflect a range of 
measures known to be altered in T2D and associated with variation in risk of adverse diabetes 
outcomes:  HbA1c, BMI, Total Cholesterol (TC), HDL-Cholesterol (HDL-C), Triglyceride (TG), 
Alanine Aminotransferase (ALT), Creatinine, and systolic and diastolic blood pressure (SBP & 
DBP). These were measured within one year from diagnosis closest to the point of diagnosis, 
normalised and residualised for age and sex. Patient selection is outlined in Supplementary 
Figure 1; 23,137 patients were included with complete data.  The phenotypic characteristics 
of the study population are described in Supplementary Table 1. 

To enable reduction of the phenotype data at diagnosis of T2D, we used DDRTree 
(Discriminative dimensionality reduction via learning a tree); which is a dimensionality 
reduction algorithm utilising reverse graph embedding.8,9 This reduces the multi-dimensional 
data and projects into a low-dimensional space in the form of a minimal spanning tree 
structure.  A principal tree trunk is at the centre of the data with the algorithm identifying a 
branch clustering structure of the data points in the reduced dimension. Each resulting branch 
will include individuals with an increasingly similar and distinctive pattern of phenotypes 
extending to the tip, while individuals located more proximally in the principal tree trunk will 
have mixed characteristics. Whilst data is continuous across the tree, consistent with the 
palette model2,  the patients with the most extreme distinct phenotypes are found at the end 
of each branch. For the internal validation process, we gave number to each tree branch (1-
6) and excluded the individuals at the centre of data. We then tested the assignment of 
individuals to tree branches across multiple iterations of the DDRTree algorithm resulting in 
an  adjusted rand index of 0.79, 0.74-0.84 (median, IQ range) which is indicative of stability of 
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the algorithm.  To enable external validation of patient outcomes and to assess contribution 
of genetic risk scores we treated the tree derived from the Scottish data as a reference 
structure.  We then developed a mapping function to map individuals with T2D from UK 
Biobank and the ADOPT clinical trial to the reference tree using the age of diagnosis, sex and 
the nine phenotypes used to define the reference tree.    For validation, we used UK Biobank 
(UKBB) primary care data10 of patients with newly diagnosed T2D (N=7332, details of sample 
selection are described in Supplementary Figure 2, and characteristics of the study population 
is given in Supplementary Table 1) and the ADOPT randomised controlled trial of 
monotherapy with metformin, rosiglitazone and glibenclamide11  (N=4150, details of sample 
selection are described in Supplementary Figure 3, and characteristics of the study population 
are given in Supplementary Table 1).  

To visualise and characterise the phenotypic variation present across the tree we overlaid the 
phenotypic data, as shown in Figure 1A. Other than the visual gradient, we used two metrics 
to assess the distribution of the phenotype across the tree:  in Figure 1B we regress each 
phenotype against each of the two tree dimensions, and in Figure 1C we plot the Moran’s I 
values for each phenotype representing the strength of spatial correlation across the tree.  
Based upon all these measures, of the phenotypic characteristics used to define the tree, HDL-
C, SBP & DBP were most strongly distributed across the tree, followed by total cholesterol 
and triglycerides and then HbA1c and BMI.  There was minimal variation in creatinine or ALT 
across the tree. The individuals located in left upper part of the tree had elevated HDL-C 
levels; those in the right upper tree had higher levels of blood pressure, cholesterol, and 
moderate levels hyperglycemia. The lower right part of the tree contained patients who were 
obese, hyperglycemic, with high triglycerides levels and low HDL-C. We saw no difference 
when we overlaid individuals whose BP measures or lipid measures were untreated vs 
treated.   As expected, given we mapped individuals to the Scottish reference tree, the 
phenotype distribution was the same for the UK Biobank participants (Supplementary Figure 
4) and the ADOPT clinical trial (Supplementary Figure 5).  Of note, however, patients recruited 
to the ADOPT trial did not map to the tree areas with particularly high HbA1c or BMI as these 
patients were excluded from the trial. 

A subset of Scottish individuals had measurements of C-peptide (n=3604), adiponectin 
(n=965) and leptin (n=742). While these measurements were not made at diagnosis, when 
these data are overlaid on the tree (Supplementary Figure 6 A-D) they show that the 
adiponectin largely positively correlated with the dimension 2 (similar to HDL-C), while C-
peptide and leptin was positively associated with dimension 1 (similar to adiposity, 
hyperglycaemia, and dyslipidaemia) with the highest C-peptide and leptin concentrations 
seen in lower part of the tree.  Fasting measures of beta-cell function and insulin sensitivity 
(HOMA B and HOMA IR) were available for the ADOPT trial at recruitment.  When this data is 
overlayed upon the tree (Supplementary Figure 7) there was no visible gradient seen for beta-
cell function, but insulin resistance showed a distribution opposite to HDL-Cholesterol (with 
high HDL-C and lower HOMA IR  in the top left quadrant of the tree).   

We then investigated how the phenotypic variation at diagnosis translates to variation in four 
diabetes outcomes: time to insulin requirement; time to any diabetic retinopathy (DR); time 
to chronic kidney disease (CKD, eGFR<60); time to Major Adverse Cardiovascular Event 
(MACE).  We used cox proportional hazard model and competing risk (Fine and Gray) model12 
from diagnosis of T2D, with death as competing risk and diabetes outcomes as events of 
interest and calculated the individual probabilities (event probabilities) of progression to each 
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of these outcomes (over 5/10 years) for each patient using the coordinates of each individual 
in the two-dimensional space (i.e. position in the tree).  These probabilities for the discovery 
(Scottish, Tayside & Fife) cohort are overlaid on the tree in Figure 2(A-D).  To assess the 
distribution of event probabilities we report the sub hazard ratio (sHR) from the competing 
risk model constructed with DDRTree dimensions (Figure 2 E) and the strength of spatial 
correlation (Moran’s I) is shown in Figure 2 F showing strong spatial correlation of each 
outcome across the tree. The probabilities of time to insulin, MACE and CKD had a very similar 
pattern across the tree, with greatest risk observed in the most obese and dyslipidemic 
individuals (bottom right). By contrast, the risk of retinopathy showed a different pattern with 
risk largely driven by the combination of increased blood pressure and hyperglycemia (top 
right).  Consistent with this, the UKDPS study found that blood pressure lowering from 
159mmHg to 144mmHg on average reduced the progression of retinopathy13, although this 
contrasts with the ACCORD study where lowering BP from 138mmHg to 114mmHg had little 
impact on retinopathy progression.14  Scottish individuals in the top right of the tree had SBP 
of 160-180mmHg more in keeping with patients included in UKPDS.  We saw a similar picture 
if we used referable retinopathy as the endpoint.    In addition, we constructed the competing 
risk models with continuous variables (eg: HbA1c, BMI, HDL-c etc) as covariates and derived 
the event probabilities for each individual. These probabilities are overlaid on the tree 
(Supplementary Figure 8 A-F) with a similar pattern seen for those derived from models 
developed using the DDRTree dimensions. Competing risk model summaries for each 
outcome are provided in Supplementary Table 2.  The performance for these competing risk 
models was assessed with the C-index, which is measure of discrimination with higher values 
indicating better models,15,16 with internal validation and estimated the C-index for the four 
outcome models to range from 56.6-76.9 (Supplementary Table3).  For validation, we derived 
MACE, CKD, and insulin requirement outcomes for UK Biobank (figure 3 A-C) and CKD for 
ADOPT (figure 4A and 4E) and show a very similar risk distribution for these outcomes across 
the tree. 

We then investigated how drug response varied with phenotypic variation.  Here we focused 
on the ADOPT study, where patients were randomised soon after diagnosis to metformin, 
glibenclamide (Sulphonylurea) or rosiglitazone (Thiazolidinedione).  We show a striking 
difference in monotherapy failure for these drugs, with metformin and sulphonylurea failure 
being faster in those obese hyperglycaemic individuals towards the bottom right of the tree, 
but with TZD failure quicker in those in the lower left of the tree (Figure 4 B-D and 4 F-I). 

Having established a visual representation of the phenotypic variation at diagnosis and how 
this impacts on diabetes outcome and drug response, we moved to explore the heterogeneity 
in the genetic aetiology of diabetes to provide insight into causal processes underlying the 
phenotypic heterogeneity represented by the tree. For this purpose, we constructed 
partitioned polygenic scores (pPS) for beta cell dysfunction (with high proinsulin), proinsulin 
(beta-cell dysfunction with low proinsulin secretion), BMI, lipodystrophy, and liver/lipid, as 
described in Udler et al.  We overlaid the pPS over the tree structure where we had genetic 
data (Scottish, Tayside & Fife=3512, UK Biobank,n=7145). Given the small genetic effect and 
small sample size there was no clear visible gradient of the pPS across the tree.  However, 
when regressing against the tree dimensions (Figure 5A), dimension 1 (X-axis) was positively 
associated with obesity pPS and inversely associated with beta cell, proinsulin, and liver GRS, 
while the dimension 2 (Y-axis) was positively associated with beta cell, proinsulin and liver 
GRS and inversely associated with lipodystrophy pPS.  Figure 5B shows that the beta-cell pPS 
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and obesity pPS were significantly spatially autocorrelated.  As depicted in figure 5C the lower 
right of the tree had higher genetic obesity, the upper left of the tree had elevated genetic 
beta-cell dysfunction and increased diabetes risk mediated via liver/lipid mediated insulin 
resistance; the bottom left was characterized by genetic lipodystrophy with lower genetic 
obesity – interestingly this is the quadrant where thiazolidinediones were least durable. 

In summary, we have applied a novel approach to data dimensionality reduction of health 
record data of 23,137 individuals with T2D with a complete set of clinically relevant 
phenotype data available at the time of diagnosis. The resulting tree structure provides a two-
dimensional representation of the increasingly recognized complex phenotypic variation in 
patients with T2D and allows an overlay of clinically relevant phenotypes and complications.  
We have validated the outcomes in two independent data sets. In addition, this analysis 
provides insights into heterogeneity in diabetes at the genetic level through the significant 
association of pPS with the tree dimensions which imply that some of the observed 
heterogeneity is mediated via causal aetiological processes for type 2 diabetes. We have 
demonstrated how this approach enables an intuitive visual representation of how 
phenotypic variation translates to variation in glycaemic response to medication, glycaemic 
deterioration, and risk of micro and macrovascular disease.  As a potential aid for assisting 
clinicians and their patients to demonstrate and visualize individual patient profiles at T2D 
diagnosis and how this indicates risks of disease progression and complications, we have 
developed an app (https://atn-uod2018.shinyapps.io/Prediction_diabetes_outcome_18082021/).  
Newly diagnosed patients can be placed in the diabetes continuum (tree structure) with their 
risk of micro- and macro-vascular complications predicted for a 10-year period, derived using 
age, sex, and the nine other continuous phenotypic measures used to define the tree.   

Our approach differs from recent studies that have derived subtypes of T2D in a number of 
ways.4,17–19 Firstly, the phenotypic data used in deriving the tree was adjusted for age and sex.  
We chose to do this as age, in particular, is a major driver of adverse outcomes – especially 
for risk of insulin initiation, MACE and CKD. Thus, the overlay of MACE and CKD risk on the 
tree is not mediated by an underlying distribution of age or sex. Secondly, whilst the DDRTree 
method groups together patients who are similar within the tree branches, it is clear from the 
figures, that the phenotype and the associated risks are distributed continuously along the 
whole tree.  This highlights how, based upon the phenotypes included in the study, any 
discrete binning into subgroups will lose information as demonstrated by Dennis et al20, and 
mis-represent the continuum that is T2D. A recent analysis of Swedish National Diabetes 
Register with 114,231 individuals with newly diagnosed T2D cases also reported the use of 
prediction models with simple clinical phenotypes outperform the models with cluster labels 
and they failed to identify T2D clusters while using nine continuous phenotypes at diagnosis.21 
We are not advocating the use of DDRTree to improve prediction, but rather to reduce a 
complex multi-dimensional disease into a simpler intuitively understandable two-
dimensional model that can be readily visualized and used to enhance the therapeutic process 
between clinicians and individual patients, to see how their personal T2D profile compares to 
others of similar age and sex.  The app enables the exploration of how lifestyle or 
pharmacological intervention to improve modifiable risk factors such as blood pressure, 
lipids, BMI and HbA1c might influence a patient’s position in the tree and their subsequent 
risk of complications.   

Current clinical guidelines for the management of T2D generally do not consider individual 
patient phenotype when considering what is the optimal treatment, or what are the risks of 

https://atn-uod2018.shinyapps.io/Prediction_diabetes_outcome_18082021/
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progression to insulin or microvascular disease, yet we highlight how outcome and drug 
response varies considerably across the complex phenotypic spectrum.  While demonstration 
of the clinical value of such information will require validation in a prospective trial, our data 
supports the concept that the management of individual patients with T2D should be 
informed by their specific phenotypic profile e.g., with respect to retinal screening intervals, 
monitoring of HbA1c, and consideration of optimal diabetes treatment and patient lifestyle 
choices.  Incorporation of individual phenotypic variation into clinical practice has clear 
potential to make a significant contribution to a precision approach to the management of 
T2D.  

 

Methods  

The cohort and variable definitions 

We used three datasets for this analysis (i) Scottish (Tayside & Fife); a subset of this cohort 
had consented for genetic analysis as part of the Genetics of Diabetes Audit and Research in 
Tayside and Fife (GoDARTS) study (ii) UKBB primary care data (iii) A Diabetes Outcome 
Progression Trial (ADOPT) data.  

Scottish cohort 

We used electronic health record information of type 2 diabetes cases from Tayside and Fife 
in Scotland diagnosed between 1993-2017. The Scottish Care Information -Diabetes 
Collaboration (Tayside & Fife) has longitudinal data on biochemical investigations and 
prescriptions.7 We excluded those who were known to be GAD positive and those with age 
of T2D diagnosis before 35 years of age. We used eleven phenotypes, which includes age of 
diagnosis, sex, HbA1c, BMI, HDL-Cholesterol (HDL-C), Triglyceride (TG), Total Cholesterol (TC), 
ALT, Creatinine, Systolic and diastolic blood pressure (SBP & DBP) at diagnosis. All covariates 
were measured within one-year from the date of diagnosis and if multiple recordings were 
available the measurement closest to date of diagnosis was used. For a sub population C-
peptide, adiponectin and leptin measurements were available, these measurements at 
recruitment rather than diagnosis of diabetes.  A subset had also consented for genetic 
analysis (genome wide genotyping) as part of the GoDARTS Study (1998-2015)22 and this was 
used for derivation of partitioned polygenic scores.  

UKBB Primary care data  

The UK (United Kingdom) Biobank (UKBB) is a large prospective epidemiological resource with 

consented data of 500,000 individuals recruited during the period of 2006-2010.  UKBB 

contains information from electronic health records as well as from interviews and 

questionnaire and a proportion of individuals consented were genotyped also. The UKBB 

resource was designed with an objective to improve the prevention, diagnosis and treatment 

of non-communicable disease including cardiovascular diseases, diabetes, and cancer.10,23 

Currently, UKBB resources are also utilized for COVID-19 research.24 Longitudinal primary care 

data of around 45% of the UKBB cohort has been made available to facilitate disease 

progression-based analysis.25  
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We identified T2D cases from the longitudinal and cross-sectional data based on their 

diagnosis labels and antihyperglycemic prescriptions and collected genetic data for these T2D 

cases. The phenotype at diagnosis was defined as recorded values in the primary care data 

set one year before or after diagnosis of T2D. The genetic data available on all UKBB 

participants was used to derive partitioned polygenic scores(pPS).   

ADOPT trial data.  

ADOPT was a multicentre randomised controlled trial of rosiglitazone, glibenclamide 
(glyburide) and metformin in recently diagnosed cases with T2D.11  This trial had a multiethnic 
study population with majority 88.3% being Caucasian. The trial follow up period was four 
years (2002-2006) and inclusion criteria for the trial was age of T2D diagnosis between 30-75 
years with fasting glucose levels 7-13 mmol/L. During the follow up period HbA1c, change in 
beta cell function and Insulin sensitivity and other diabetes related phenotypes were assessed 
at regular time points.  

Statistical Analysis  

DDRTree 

DDRTree is a dimensionality reduction approach with a reverse graph structure embedding 
algorithm and a mapping function. It was initially developed for the analysis of high 
dimensional single cell transcriptomics data with an aim of understanding the role of gene 
regulation in cell fate.9,26 We used the implementation of DDRTree from Monocle 2.8 In this 
analysis data bifurcation was done with DDRTree and this method showed better accuracy 
and normalized mutual information (NMI) compared to local linear embedding (LLE) and 
principal component analysis (PCA) with different datasets.9 

We excluded outliers from data based on 5 SD values and data was transformed with rank 
normalization. In a second step, we residualised each phenotype for age and sex using linear 
regression analysis. This age and sex residualised matrix of phenotypes was entered to the 
Monocle 2 algorithm without any initial dimensionality reduction. The DDRTree algorithm 
reduces high dimensional data (residualised nine phenotypes) and projects it into a two-
dimensional space. Later a smoothed graph structure is constructed from the reduced data 
and then similar data points are grouped together to obtain a tree structure with tree 
branches and group of individuals located in tree trunk is considered as center of the data. 

To validate DDRTree, we gave a label to tree ends (1-6) and internal validation was conducted 
by estimating the Adjusted Rand Index (ARI) which is a measure of agreement for positioning 
the individual in same tree branch at different execution of the algorithm.  We considered an 
adjusted rand index of values above 0.75 as an indication of stability of the method. We ran 
the DDRTree algorithm on 10000 randomly selected individual’s phenotype data and re-ran 
it for 500 times excluding 10% of individuals randomly in each run. While estimating the 
adjusted rand index, we excluded the contribution from individuals located in the principal 
tree trunk.  

We used R version 3.5.2 for all data management and statistical analysis,27 and ‘monocle2’ 
package from Bioconductor for implementing DDRTree. 
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Endpoint definitions 

Insulin Initiation:  This was defined as sustained use of insulin for more than 6 months or a 
clinical requirement for insulin, indicated as two or more HbA1c reading >=8.5% more than 
three months apart while taking two or more oral antihyperglycaemic agents.28 

Diabetic retinopathy (DR): We used the Scottish Diabetic Retinopathy Grading Scheme and 
any grade R1, R2, R3 and R4 (background retinopathy and above) is considered as incidence 
of diabetic retinopathy.29 As a sensitivity analysis we used referable retinopathy as an 
endpoint – being either R3 or R4.  

Major Adverse Cardiac Events (MACE): We identified MACE from Scottish Morbidity Records 
(SMR, for Scottish cohort) and Hospital episode statistics (HES, for UKBB) using ICD 10 and ICD 
9 codes (ICD 10- codes I20-I25 and I60-I69, ICD 9- codes 410-414 and 430-438). 

Chronic Kidney Disease (CKD): CKD was identified from the electronic health records based 
upon an estimated Glomerular Filtration Rate (eGFR) of <= 60 ml/min/1.73m2 on at least 2 
reading which were 90 days apart.30  eGFR was calculated from serum creatinine using the 
CKD-EPI equation.31 

Drug failure: In the ADOPT trial, monotherapy failure was indicated by Fasting Plasma Glucose 
(FPG) >180 mg/dl (>10mmol/L) after at least 6 weeks of initiation of treatment with a 
tolerated dose of antihyperglycaemic drugs. 

Modelling of risk of glycemic deterioration, micro and macrovascular complications.   

We assessed the risk of diabetes progression using a competing risk model (Fine and Gray 
model) and derived sub hazard ratios with death as a competing event in the Scottish cohort 
and UKBB.32 For this purpose, we developed five competing risk models, one for each diabetes 
related outcome and in all models death was considered as a ‘competing event’ which hinders 
the incidence of the ‘event of interest’. Major diabetes progression end points were insulin 
initiation, diabetic retinopathy (DR), Major Adverse Cardiac Events (MACE) and chronic kidney 
disease (CKD). In each model we considered T2D diagnosis as the baseline and we excluded 
individuals who did not have follow up data or individuals who had already experienced the 
event of interest (Insulin Initiation/DR/MACE/CKD) from the corresponding competing risk 
models. Later we constructed Fine and Gray models by using the tree dimensions from 
DDRTree, or continuous variables as covariates in the model.  

To obtain the individual probability for developing each diabetes outcome (eg: CKD or MACE) 
for each study participant over a 10-year follow up period, we used previously constructed 
competing risk models with dimensions from DDRTree as covariates. For example, to estimate 
the probability of incidence of CKD for a study participant, we used the CKD competing risk 
model (event of interest: CKD, competing event: death) with DDRTree dimensions as 
covariates and predicted event probability for that individual. Similarly, we calculated 
individual level probability for the incidence of insulin initiation, MACE and DR using 
corresponding competing risk models. These event probabilities were overlaid on the tree 
diagram to visualize the heterogeneity in diabetes progression. A similar approach was 
followed in ADOPT data while using cox proportional hazard model for deriving event 
probabilities. 
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External validation of analysis  

Development of a mapping function: To map individuals with newly diagnosed T2D to the 
Scottish tree, we constructed a ‘mapping function’.  This considers the 11 diabetes related 
phenotypes (age of T2D diagnosis, Sex, HbA1c, BMI, HDL-C, TC, TG, SBP, DBP, ALT and 
Creatinine) and assigns each individual a position in the Scottish tree. The mapping function 
is built with two components (i) two generalised additive models (GAM) with smooth terms 
fitted with cubic regression splines which will predict the DDRTree dimensions (dimension 1 
and dimension2, the coordinates in 2D space) with 11 phenotypes as covariates 
(Supplementary Table 4). (ii) a distance estimating algorithm, which will estimate the 
Euclidean distance between two points in 2D space. So, when all phenotypes are given for a 
newly diagnosed T2D, the trained spline model will predict the dimension 1 and dimension 2 
for the individual, which is a provisional position for the individual. In second step, a distance 
estimating algorithm was used to calculate the distance between the provisional position of 
the individual and all the positions in reference tree. Then the mapping function will assign a 
new position to the individual in reference tree, which will have shortest distance to the 
provisional point.  In this way we identify the individual (from 23,137 people) who is most 
similar to the new individual being mapped.  We used adj R2 of the model as an indicator of 
model performance, the model used to predict the dimension1 had an adj R2  0.76 and an adj 
R2 0.86 for the model used to predict dimension 2. 

We used the UKBB primary care data for the external validation, by using the age of diagnosis, 
sex and other nine phenotype we mapped the individuals in UKBB data to reference tree. 
Later, we overlayed the nine phenotypes over this tree and assessed the gradient of 
phenotype across tree and compared it with reference tree. To assess diabetes progression, 
we used three end points available in UKBB data, (i) time to insulin initiation (ii) time to CKD 
and (iii) time to MACE. We followed the similar definitions for the diabetes outcomes as 
described in earlier. We constructed competing risk models with death as competing event 
and used Fine and Gray models as before. The predicted probability of each event was 
overlayed on the tree. 

We applied the ‘mapping function’ for ADOPT trial participants and followed the same steps 
as for UKPDS data.  We assessed the distribution of beta cell function and insulin resistance 
over the ADOPT tree.  In ADOPT we then assessed time to CKD, and time to metformin, 
sulphonylurea and thiazolidinedione failure using cox proportional hazard models and plotted 
the predicted event probabilities from these models over the tree.   

Statistical evaluation of phenotypes or outcome distribution across the tree 

Whilst most phenotypes and outcomes could clearly be seen to vary across the tree, we 
quantified this variation in two ways. First, for phenotype distribution, we regressed each 
phenotype against the tree dimensions and plot the regression coefficient and 95% CI. To 
assess distribution for each diabetes outcome probability, we used the sub hazard ratios (sHR) 
from the competing risk model. From each competing risk model, we derived sHR with 95% 
CI and these sHR indicated how the risk of diabetes outcomes (probability of Insulin 
initiation/DR/MACE/CKD) varies across the two-dimensional space (X and Y axis). Secondly, 
we undertook spatial autocorrelation analysis using Moran’s I statistic.  For this we considered 
each individuals location (with their coordinate in space) and assessed its relationship with 
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values associated with these locations.33 A positive value of Moran’s I suggests similar values 
(phenotype/GRS/event probabilities)  are located together and close while a negative value 
indicates dissimilar values are located close. 

Genetic analysis  

In order to deconstruct the heterogeneity of type 2 diabetes Udler et al conducted a soft 
clustering analysis of 94 established  type 2 diabetes genetic loci and 47 diabetes related traits 
using Bayesian nonnegative matrix factorization (bNMF)34 and identified five clusters. Out of 
five clusters, two of them were related to beta cell function but differed by proinsulin levels 
and three of them were related to insulin resistance mediated through obesity, lipids, and 
lipodystrophy. Based on this we constructed five partitioned polygenic scores (pPS) in Scottish 
(GoDARTS) patients and UKBB patients as previously defined and labelled as beta cell 
dysfunction, proinsulin, body mass index (BMI), lipodystrophy and liver/lipid.  

We assessed the relation between these five pPS and DDRTree dimensions (dimension 1 and 
dimension 2) with linear regression models in both GoDARTS and UKBB data. The significant 
positive relation with pPS and dimension 1 (X- axis) indicate as the individuals located in the 
origin of X-axis have lesser or higher risk of corresponding pPS compared to the individual 
located at the extremes of axis. In GoDARTS data we assessed the spatial distribution of pPS 
using spatial autocorrelation (Moran’s I).   

Development of the R Shiny app and prediction models for micro and macro vascular 
complications  

As we described above, we use the ‘mapping function’ to find the position of a newly 
diagnosed T2D patient in the tree. To predict the risk of micro and macro vascular 
complications we used the Fine-Gray models constructed with all continuous variables (age 
of diagnosis, sex, HbA1c, HDL-C, BMI, TG, TC, ALT, creatinine, and systolic and diastolic blood 
pressure) for each outcome. For each model, we assessed the shape of the relationship 
between phenotype and outcome and undertook transformations as require. Similarly, the 
time varying effects of the phenotype were assessed and those with time varying effects were 
included in the models. In addition to the phenotype, we assessed the use of statins or 
antihypertensive at the time of diabetes diagnosis and used in the model building process. 
Then we predicted the event probabilities for our event of interest at each of multiple time 
points from diagnosis through to 10 years after T2D diagnosis. 
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Figure 1  

 

 

  
Fig 1| A visual representation of the phenotypic characteristics of 23,137 patients at diagnosis of T2D. A.  DDRTree was used to reduce the 9 phenotypic variables (HbA1c, BMI, HDL-c, TC, TG, ALT, 

creatinine, and blood pressure) residualised for age and sex into a non-linear tree structure.  The phenotype values are overlayed on the tree structure to visualise the distribution of nine phenotypes 

(HbA1c, BMI, HDL-c, TC, TG, ALT, creatinine, and SBP and DBP) over the reduced tree structure.  Each point in the figure represents one individual.  The magenta colour of the point indicates a higher 

value of the phenotypic variable for that individual and the green colour indicates lower values. B. Linear regression estimates (with 95% CI) between the DDRTree dimensions and the nine phenotypes 

showing the association between phenotypes and dimensions C.  Spatial autocorrelation (n=23137) of the nine phenotypes; The Moran’s I statistic is shown on the X-axis, with higher values representing 

phenotypes that are more strongly autocorrelated; all values were at p<0.0001.    
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Figure 2 

 

 

 

 

Fig 2| Visualising the heterogeneity in diabetes progression in Scottish patients with T2DM. All predictions are from models with DDRTree dimensions. A. Predicted probability of insulin initiation (use 

of insulin for more than 6 months or a clinical requirement for insulin, indicated as two or more HbA1c reading >=8.5% more than three months apart while taking two or more oral antihyperglycaemic 

agents) over 10 year period from the diagnosis of T2D. B. Probability of any incident diabetic retinopathy over a 10-year period. C. Probability of incident major adverse cardiac events (identified from 

SMR based on ICD 9 and ICD 10 codes) over a 10-year period. D. Probability of incident chronic kidney disease (eGFR<= 60 ml/min/1.73m2 on at least 2 reading which were 90 days apart) over 10-year 

period.   For all outcomes (A-D) probabilities were generated from a competing risk model constructed with DDRTree dimensions. E. Hazard ratios (95% CI) of DDRTree dimensions for each outcome 

from competing risk models F. Spatial autocorrelation of four diabetes progression outcomes The Moran’s I statistic is shown on the X-axis, with higher values representing phenotypes that are more 

strongly autocorrelated; all values were at p<0.0001.    
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Figure 3 

 

 

 

 

 

 

Fig 3| Visualising the heterogeneity in diabetes progression in UKBB data.  All predictions are from models with DDRTree dimensions. A. Predicted probability of insulin initiation (use of insulin for more 

than 6 months or a clinical requirement for insulin, indicated as two or more HbA1c reading >=8.5% more than three months apart while taking two or more oral antihyperglycemic agents) over 10-year 

period from the diagnosis of T2D.    B. Probability of incident major adverse cardiac events (identified from SMR based on ICD 9 and ICD 10 codes) over a 10-year period. C. Probability of incident chronic 

kidney disease (eGFR<= 60 ml/min/1.73m2 on at least 2 reading which were 90 days apart) over 10-year period. For all outcomes (A-C) probabilities were generated from a competing risk model constructed 

with DDRTree dimensions. D.sub Hazard ratios (95% CI) of DDRTree dimensions for each outcome from competing risk models. E. Spatial autocorrelation of three diabetes progression outcomes.  The 

Moran’s I statistic is shown on the X-axis, with higher values representing phenotypes that are more strongly autocorrelated; all values were at p<0.0001.    
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Figure 4 
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Fig 4| Visualising the heterogeneity in antidiabetic drug response using ADOPT trial data. A. Probability of incident chronic kidney disease (eGFR<= 60 ml/min/1.73m2 on at least 2 reading which were 90 days apart) over 5-year 

period B. Predicted probability of metformin drug failure indicated by Fasting Plasma Glucose (FPG) >180 mg/dl (>10mmol/L) derived from cox proportional hazard model with DDRTree dimensions as covariates over period 5 years.  

C. Predicted probability of sulphonyl urea drug failure indicated by Fasting Plasma Glucose (FPG) >180 mg/dl (>10mmol/L) derived from cox proportional hazard model with DDRTree dimensions as covariates over period 5 years. 

D. Predicted probability of thiazolidinedione drug failure indicated by Fasting Plasma Glucose (FPG) >180 mg/dl (>10mmol/L) derived from cox proportional hazard model with DDRTree dimensions as covariates over period 5 years. 

E. Hazard ratio with 95% CI of DDRTree dimensions (Dimesnion1 and Dimension 2) for CKD, F.Hazard ratio with 95% CI of DDRTree dimensions (Dimesnion1 and Dimension 2) for Metformin drug failure, G. Hazard ratio with 95% CI 

of DDRTree dimensions (Dimesnion1 and Dimension 2) for sulphonyl urea drug failure. H. Hazard ratio with 95% CI of DDRTree dimensions (Dimesnion1 and Dimension 2) for thiazolidinedione drug failure from cox proportional 

hazard model.I. Spatial autocorrelation of CKD and drug failure probabilities. The Moran’s I statistic is shown on the X-axis, with higher values representing phenotypes that are more strongly autocorrelated; all values were at 

p<0.0001.    

 X-axis with Moran’s I and Y axis with diabetes outcomes. 
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Figure 5 

 

 

 

 

Fig 5| Distibrution of T2D partitioned polygenic scores across the phenotypic tree.  A. Association between five pPS and dimension 1 and dimension 2 in GoDARTS (n=3512) and UKBB 

(n=7145). B. Spatial autocorrelation in GoDARTS (n=3512) of five pPS.  X-axis shows Moran’s I and Y axis the five pPS with green colour indicating lower p-value and magenta with higher 

values of p values. C. A schematic showing how  genetically determined obesity (increases on X-axis), beta cell dysfunction and liver/lipid mediated insulin resistance (decreases on X axis), 

and beta cell dysfunction and lipid/liver mediated insulin resistance (increases on the Y-axis) are distributed.  
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