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Abstract 53 

Edwardsiella ictaluri, a non-zoonotic Gram-negative bacterium, has been known to science for 54 

more than 4 decades. It was reported for the first time in 1979 in Ictalurus punctatus in the USA, 55 

and later in Pangasianodon hypophthalmus and Pelteobagrus fulvidraco in Asia. Even though 56 

catfish species are more susceptible to E. ictaluri, other fish species are also affected, and up to 44 57 

fish species in 4 continents are known to be susceptible. The diseases caused by E. ictaluri are 58 

known as enteric septicaemia of catfish (ESC) in channel catfish, bacillary necrosis of pangasius 59 

(BNP) in striped catfish, red-head disease in yellow catfish and edwardsiellosis in tilapia. 60 

Outbreaks caused by E. ictaluri can cause up to 100% mortality resulting in substantive economic 61 

losses to the industry, threatening food security and undermining sustainability. Although efforts 62 
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have been made to prevent and control this pathogen using vaccines, antibiotics, disease resistance 63 

selective breeding, functional feed ingredients, prebiotics and probiotics, and biosecurity 64 

measures, E. ictaluri is still causing health issues in different countries. Here, we provided with a 65 

comprehensive review that addressed the current knowledge of E. ictaluri bacteriological 66 

characteristics, epidemiology, pathogenesis, diagnosis, control and management. Furthermore, we 67 

also provided the future perspectives based on advanced technologies and biosecurity management 68 

in aquaculture to assist pathogen control and/or eradication. 69 

Keywords: Edwardsiella ictaluri, fish, pathogenesis, control strategies 70 

 71 

Introduction  72 

Aquaculture is an important sector of the food industry, which had a total value of USD 263.6 73 

billion in 2018, employs 59.5 million people globally, and provides approximately 17% of the 74 

animal protein consumed, as well as essential nutrients such as Omega-3 fatty acids, iodine, 75 

vitamin D, trace minerals like iron, calcium, and zinc 1. However, despite the positive contribution 76 

of aquaculture, it is an intensive farming practice and there are health management issues that 77 

impede both economic and socio-economic expansion of the sector 2,3. The primary constraint to 78 

the culture of many aquaculture species is the emergence of infectious diseases caused by 79 

pathogens such as bacteria, viruses, fungi, and infestations caused by parasites 4-7. The most 80 

prevalent bacterial infections in channel, yellow, and striped catfishes are caused by Edwardsiella 81 

ictaluri followed by Flavobacterium columnare, and Aeromonas hydrophila 8-10. In tilapia culture, 82 

substantial losses are experienced from infections caused by the bacteria Aeromonas spp., 83 

Francisella spp., F. columnare, Streptococcus agalactiae and Streptococcus iniae  11, and recently 84 

due to E. ictaluri infections 12,13. 85 

E. ictaluri is a freshwater fish host generalist pathogen that causes mortalities up to 50% and 100% 86 

in naturally infected tilapia, and yellow and striped catfishes in Asia, respectively 10,14-17. Also, E. 87 

ictaluri causes losses of up to 50.5% to catfish operations in the USA 18. A channel catfish study 88 

on the direct impacts of fish diseases carried out in East Mississippi Catfish Industry identified a 89 

total loss of USD $16.9 million in 2016 19. Of the pathogens studied, E. ictaluri contributed a loss 90 

of 1.2 million fish and USD 0.7 million farm-gate value 19. Thus, E. ictaluri is an economically 91 

important pathogen in aquaculture and extensive research has been carried out to study the 92 
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pathogen. Even though there is a lot of literature available related to E. ictaluri infections in aquatic 93 

animals, a comprehensive updated review could contribute to potential disease control and 94 

management. Based on the economic importance of E. ictaluri and the need to explore potential 95 

ways to manage the pathogen, the present study is conducted to provide a systemic review on 96 

current state of knowledge on E. ictaluri infections in aquaculture and future perspectives on 97 

combating the pathogen.  98 

Pathogen discovery, susceptible hosts, geographical distribution, and epidemiology 99 

The first report on the isolation of E. ictaluri was by Hawke in 1979 20. E. ictaluri was identified 100 

as the causative agent of enteric septicemia of catfish (ESC), primarily infecting fingerlings of 101 

channel catfish (Ictalurus punctatus) in the United States of America (USA) aquaculture industry 102 

20. However, it was later discovered that ESC was already present in Arkansas a decade before the 103 

first official report using archived samples 21.  After the initial report in the USA in 1979 in channel 104 

catfish, E. ictaluri has been identified in several continents, for instance in Asia it is the frequent 105 

causative agent of bacillary necrosis of Pangasius (BNP) 22 and red-head disease 10 in striped and 106 

yellow catfish, respectively.  107 

 108 

E. ictaluri is a fish-host generalist infecting up to 44 fish species, of which 31 species are naturally 109 

infected and 13 species were experimentally infected as shown in Table 1. A total of seven catfish 110 

families have been described to be susceptible to E. ictaluri, including Ictaluridae, Bagridae, 111 

Clariidae, Pangasiidae, Ariidae, Siluridae and Plotosidae. For non-catfish species, 10 fish families 112 

are susceptible including Plecoglossidae, Sternopygidae, Cyprinidae, Cichlidae, Salmonidae, 113 

Moronidae, Anguillidae, Percichthyidae, Balaenopteridae and Pleuronectidae. To date, there are 114 

several documented isolations of E. ictaluri in several continents that include North America, 115 

Caribbean, Asia, Australia, and Europe with mortalities reaching 100% (Table 1). A timeline of 116 

E. ictaluri isolation in different host species and geographical locations is described in Table 2. 117 

Even though up to 44 susceptible fish hosts have been reported, E. ictaluri predominantly affects 118 

intensively reared channel catfish and striped catfish in USA and Vietnam 8,23, respectively, yellow 119 

catfish (Pelteobagrus fulvidraco) in China 10,24, and riverine ayu (Plecoglossus altivelis) in Japan 120 

25.  Most of the available literature on E. ictaluri is related to these 4 hosts and only 3 articles 121 

describe E. ictaluri infections in tilapia culture 12,13,26. 122 

 123 
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In the United States, epizootics in channel catfish are mainly experienced during late spring and 124 

early fall whereby acute ESC is usually experienced when temperatures are between 22 °C and 28 125 

°C and chronic ESC usually occur when temperatures are cooler in the range of 18°C-22 °C or 126 

above 28 °C 27,28. On the other hand, epizootics in striped catfish and tilapia in Southeast Asia are 127 

experienced during the rainy season when temperatures range from 23 to 30 °C where only an 128 

acute form is exhibited 12,14,15,29. Studies have shown that the peak mortality of channel catfish 129 

from E. ictaluri is experienced at 25 °C 30,31 and hypoxia results in increased bacterial load in 130 

channel catfish tissues 32. Environmental persistence studies of E. ictaluri using specific 131 

bacteriophages suggested that E. ictaluri can survive for up to 15 days in pond water and up to 95 132 

days in pond sediments, implicating that water and mud could be E. ictaluri reservoirs 33,34. E. 133 

ictaluri has also been shown experimentally to produce biofilms on common aquaculture material 134 

which might be a reservoir for recurrent epizootics and contributes to disinfectant resistance 35. So 135 

far E. ictaluri has not yet been implicated in zoonosis and this might be because E. ictaluri is not 136 

capable of growth at 37 ºC 36.  Nevertheless, E. ictaluri was isolated from the mammal minke 137 

whale (Balaenoptera acutorostrata) excrement 37. Although E. ictaluri infections can occur 138 

independently of stressors and still cause high mortalities of up to 77%, stressors such as handling, 139 

adverse environmental conditions and stocking density greatly enhance mortalities up to 97% 38-140 

40. A recent epidemiological survey on environmental factors that influence E. ictaluri infection in 141 

riverine ayu was conducted in Japan over a five-year period. The survey revealed that E. ictaluri 142 

related mortalities in ayu are exacerbated by adverse environmental conditions that include an 143 

increase in diurnal water temperature range (DWTR), high water temperatures, higher than normal 144 

air temperatures and lower levels of streamflows 41.  145 

 146 

Naturally, E. ictaluri is mainly transmitted horizontally from dead infected catfish to naïve 147 

population due to infected fish cannibalization or E. ictaluri being shed from dead fish 39,42 whereas 148 

vertical transmission has not been reported yet 43 although presence of the bacteria in gonads may 149 

imply possible vertical transmission 44,45. A high bacterial count was also found in the vicinity of 150 

the dying fish which decreased with the removal of the dead fish whilst survivors of an epizootic 151 

become carriers and pathogen reservoirs 32,46,47. Contrarily, bacterial shedding into water was not 152 

observed for experimentally infected striped catfish 48. Fish eating birds such as Great blue heron 153 

(Ardea herodias), Double-crested cormorants (Phalacrocorax auritus), Snowy egret (Egretta 154 
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thula) and Great egret (Casmerodius albus) have also been implicated in the spread of E. ictaluri 155 

between ponds 49,50. E. ictaluri can be experimentally transmitted via exposure to pathogen in 156 

water, injection both intramuscular and intraperitoneal, intubation of the intestines and infection 157 

via the nares 8,51-54. 158 

 159 

E. ictaluri general characteristics and genomic composition 160 

E. ictaluri, a Gram-negative Enterobacteriaceae family member, is a pleomorphic rod of varied 161 

lengths and widths depending on host 13,14,55,56 that is peritrichous and was found to be weakly 162 

motile at optimal growth temperature, but non-motile strains were also isolated 55,57,58 (Table 2). 163 

E. ictaluri culture conditions in complex media are optimal temperature between 25-30 ºC and pH 164 

range of 7.0-7.5 59 , respectively, and it reaches stationary phase in about 48 hours 14,55.  Generally, 165 

strains of E. ictaluri is facultative anaerobic 44,60. In terms of biochemical characteristics, E. ictaluri 166 

strains isolated from different host species exhibit heterogeneity mainly in striped catfish, sea bass, 167 

yellowhead catfish, hybrid catfish and tilapia strains with differences mainly in activities from 168 

ornithine decarboxylase, cytochrome oxidase, H2S production and production of gas and acid 169 

from glucose (Table 2) 59,61-63. Serologically, E. ictaluri is heterogenous and has antigenic 170 

variations in the O antigens and immunogenic epitopes that are recognized by different isolates 171 

58,62,64-67, however, a serotyping scheme is yet to be developed 68. One of the most intriguing aspects 172 

of E. ictaluri isolates from different hosts is the failure to cross-infect and failure of immunization 173 

with one E. ictaluri isolate from catfish to cross-protect against heterologous isolates, suggesting 174 

high genetic variations within the different isolates and genotypes 58,69,70. All E. ictaluri isolates 175 

from different hosts were generally susceptible to the antibiotics florfenicol, penicillins, 176 

quinolones, fluoroquinolones, aminoglycosides, tetracyclines and resistant to macrolides whereas 177 

tilapia and striped catfish strains were additionally resistant to sulphonamides 64,71,72. Intrinsic 178 

resistance to cationic antimicrobial peptides (CAMPs) such as colistin and polymyxin B of E. 179 

ictaluri is well documented 71,73. 180 

 181 

A total of 11 whole genome sequenced E. ictaluri isolates obtained from the USA and Southeast 182 

Asia are publicly available in the National Center for Biotechnology Information (NCBI). 183 

Genomes from channel catfish isolates include 93-146 (CP001600.2), MS-17-156 (CP028813.1), 184 

NCTC12122 (UFXT00000000.1), ATCC 33202 (AFJI00000000.1), S97-773 185 
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(QBLD00000000.1) and S07-698 (QDAD00000000.1). Only 1 striped catfish isolate genome is 186 

available namely T1-1 (CP054060). Two E. ictaluri genomes isolated from zebrafish (Danio 187 

rerio) isolates are available, including LADL11-100 (LDWX00000000.1) and LADL11-194 188 

(LEAL00000000.1). Two E. ictaluri genomes, isolated from Nile tilapia (Oreochromis niloticus) 189 

and red hybrid tilapia (Oreochromis spp.), respectively, have been described including RUSVM-190 

1 (CP020466.1) and 2234 (CP053781). The E. ictaluri isolates have genomic sizes ranging from 191 

3.6 to above 3.9 Mbp, with similar G+C contents (~57%) and between 3,235 to 3,641 protein 192 

coding sequences.  193 

 194 

Catfish isolates from the USA and Thailand were found to contain an intervening sequence (IVS) 195 

located in helix-45 of the 23S rRNA gene that is absent in E. tarda and can provide a basis for 196 

differentiating the two closely related species 74. Genetic variation of E. ictaluri isolates from 197 

diverse hosts have been investigated using fingerprinting based on amplified-fragment length 198 

polymorphism (AFLP) analysis, repetitive-sequence-mediated polymerase chain reaction (rep-199 

PCR) and phylogenetic analysis using the gyrB gene and have revealed that the species consists of 200 

host-based genotypes 13,64,75. E. ictaluri genomes consists of Type I, III, V, and VI secretion 201 

systems with variations in Type IV secretion system among genotypes 70,76. Comparative genomics 202 

studies have shown variation in the O-antigen biosynthesis cluster and type IV secretion system 203 

(T4SS) genes between channel catfish and zebrafish isolates 70, absence of T4SS-type G genes in 204 

Nile tilapia isolate RUSVM-1 76 and presence of oxidative resistance stress gene (aconitate 205 

hydratase B, acnB) in a virulent E. ictaluri isolated from ayu 77. Genes encoding for surface 206 

structures such as cell wall, capsule and flagellar biosynthesis were found to be under positive 207 

selection which might explain some adaptive traits in the species 78. Recently, our research group 208 

carried out comparative genomics of the 11 E. ictaluri genomes mentioned above and the results 209 

revealed that host specificity is brought about by intra-species evolution driven by gene gain and 210 

loss driven by prophages and insertion sequences 79.  211 

 212 

E. ictaluri plasmidome  213 

E. ictaluri genomes contain different number of plasmids. Generally, channel catfish isolates were 214 

found to contain between 1 to 3 plasmids, with most of them containing the plasmids pEI1 (4,807 215 

kb) and pEI2 (5,643 kb) 64,80,81. Plasmids pEI1 and pEI2 are involved in virulence as they contain 216 
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Type III secretory system genes that are responsible for direct injection of effectors into host cells 217 

and invasion 82.  Striped catfish E. ictaluri isolates were found to contain 3 different plasmids (~ 218 

4.0 kb, 5.7 kb, 10 kb) and yellow catfish contains 2 plasmids (~ 4.1 kb and 5.6 kb) 24,58,83 whereas 219 

E. ictaluri isolated from non-silurids such as zebrafish and tilapia were shown to contain 2 220 

plasmids (pEI1 and pEI2 homologs), and a green knife fish isolate had 4 plasmids (3.1, 4.1, 5.7 221 

and 6.0 kb) 12,64,66. From the data in the public database, the E. ictaluri plasmids have common 222 

lengths ranging from 3kb to about 9kb as reported earlier 84 with the exception of 2 plasmids pEI-223 

MS-17-156-1 and pEI-2234-3 that have lengths above 100kb. Plasmid similarities within a host-224 

based genotype as well as differences among genotypes from different hosts were reported, 225 

although most of the plasmids carried Type III secretion system proteins except plasmids from 226 

zebrafish isolates, whilst a striped catfish isolate contained a unique plasmid 58,64,82,84. Recent 227 

studies in comparative genomics revealed that 2 isolates, MS-17-156 from channel catfish (USA) 228 

and 2234 from red hybrid tilapia (Vietnam) contain plasmids containing multi-drug resistant genes 229 

79. E. ictaluri isolates also contain species specific bacteriophages (φeiAU, φeiDWF, φeiMSLS) 230 

that are lytic, showing homogeneity despite isolation temporal and spatial divergence 85 as well as 231 

a large number of insertion elements and genomic islands 76,78. 232 

Pathogenesis, pathology, clinical signs of disease and virulence 233 

Pathogenesis mechanism of E. ictaluri has been elucidated in channel catfish, striped catfish, and 234 

Nile tilapia. Ports of E. ictaluri entry into susceptible hosts include the nares, oral-gastric route, 235 

gills and skin (Figure 1A). For ESC in channel catfish, the acute form seems to occur when E. 236 

ictaluri infects via the oral-gastric route, likely when channel catfish ingest infected carcasses, 237 

contaminated water or food 54,86,87. Upon the bacterial attachment in the intestinal mucosa, 238 

intestinal epithelial cells are rapidly invaded, and the bacteria is translocated and systemic 239 

disseminated to the liver, spleen, and kidney, likely through infected macrophages 52,54,86. The gills 240 

and skin are also primary sites for infection and systemic infection of lymphoid organs 88,89. It 241 

seems that chronic infection happens when E. ictaluri infects channel catfish nares, colonizing the 242 

brain via the olfactory bulb and olfactory nerve 51,52,54. After colonizing the brain, a systemic 243 

infection could occur 90. The major clinical sign in channel catfish that appears 2-4 weeks post 244 

infection is the classic ‘hole in the head’ lesion, which is related to cartilaginous skull cap digestion 245 

caused by E. ictaluri chondroitinase activity 54,91. Experimentally challenged channel catfish were 246 

shown to have reduced plasma components like erythrocyte, leucocyte counts, plasma glucose 247 
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levels 92. Also, whole-blood components like hematocrit counts and hemoglobin concentration are 248 

reduced after E. ictaluri infection, mostly due to hemolysin activity 92,93. It also has been reported 249 

the E. ictaluri persist in the posterior kidney, brain, and blood of surviving infected channel catfish 250 

fingerlings 87, suggesting that some individual might be able to resist the acute infection.    251 

 252 

Interestingly, in striped catfish, experimental immersion challenge with E. ictaluri revealed that 253 

one of the ports of entry of E. ictaluri during pathogenesis are gills 48. Another immersion 254 

challenge of striped catfish with E. ictaluri showed that the gastrointestinal tract is also a port of 255 

bacterial entry into the fish 94. Edwardiellosis clinical signs in striped fish is different from channel 256 

catfish. Typically, striped fish exhibit external clinical signs such as skin lesions, pale gills and 257 

pale colour 8,57,94 but the classic ‘hole in the head’ lesion has not been reported. In experimentally 258 

challenged striped catfish, behavioral changes (e.g., gasping for air, lethargy, lack of appetite, 259 

erratic swimming) were observed as early as 4 hours post infection (hpi) whereas gross clinical 260 

signs were seen 96 hpi 39,94,183. E. ictaluri bacterial cells were notably absent in the brain of BNP 261 

experimentally infected striped catfish although the bacteria were found in the other internal organs 262 

including head kidney, trunk kidney, liver, spleen, gills, skin and muscle 48,94. Intracellular 263 

replication of E. ictaluri in macrophages was also elucidated in striped catfish and the pathogen 264 

could persist in necrotic-participating phagocytic cells and in melano-macrophage centers up to 1 265 

month 48,94. From their findings, Pirarat et al., suggested that E. ictaluri damages the endothelial 266 

cells leading to inflammation of the perivascular sheath and blood vessels and results in tissue 267 

hypoxia and necrosis 48.  268 

 269 

Although E. ictaluri infection has been reported in tilapia, there are no reports of behavioral change 270 

or external clinical signs, but increased fish morbidity and mortality was reported 12,13. 271 

Pathogenesis of E. ictaluri in tilapia was investigated by Soto et al., in 2013 26. As reported earlier, 272 

the port of entry of E. ictaluri for colonization into Nile tilapia is via the oral-gastric route and 273 

cutaneous routes.  The bacteria are then disseminated hematogenously to organs such as gills, 274 

brain, head kidney, heart, and spleen. The spleen and head kidney are the main targets of infection 275 

and bacterial survival as shown by presence of high bacterial DNA levels and presence of clumps 276 

of rod-shaped bacteria in the organs 12,26. Bacterial systemic dissemination is facilitated by antigen-277 

presenting cells like macrophages 26.  278 
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 279 

Channel catfish and striped catfish suffering from E. ictaluri infection have been reported to 280 

display behavioral changes. Infected catfishes show erratic rapid circular swimming and spinning 281 

caused by meningoencephalitis as well as lethargy, listless up-side down hanging or slow 282 

swimming near pond edge 20,23,57,95. E. ictaluri infected fish such as catfishes (channel, striped and 283 

yellow) and ayu, exhibit external gross clinical signs like skin haemorrhage and ulceration, 284 

distended abdomen, discoloration, reddened anus, exophthalmos and meningio-encephalitis (red 285 

head) (Figure 2) 96,23,24,57. The general internal clinical signs reported in the susceptible hosts that 286 

include catfishes and tilapia and ayu are white nodules granulomas, abdomen ascites, pale gills, 287 

enlarged gallbladder, reddened gonads and enlarged and haemorrhagic posterior kidney (Figure 3) 288 

12,23,39,96. Both channel catfish and yellow catfish display classic ‘hole in the head’ lesion whilst 289 

yellow catfish additionally display the ‘hole-under-the-jaw’ lesion 24,97. Histopathological 290 

examinations in most susceptible hosts revealed similar results such as granulomatous 291 

inflammatory reactions, necrosis, haemorrhage, pyknosis and karyorrhexis in internal organs, 292 

epithelial lining hyperplasia in gills and observation of clumps of rod shaped bacteria in tissues 293 

(Figure 4) 12,39,96,98. Electron transmission microscopy also revealed the intracellular localisation 294 

of E. ictaluri in macrophage in infected zebrafish zebrafish head kidney tissue (Figure 5). 295 

 296 

The molecular mechanisms of E. ictaluri pathogenesis were described in channel catfish and 297 

zebrafish using epithelial cells, phagocytic cells and macrophages and a graphical illustration is 298 

shown in Figure 1B. Pathogen attachment is facilitated by the recognition of E. ictaluri by host 299 

cell receptors e.g. Toll-like receptor 5 (TLR5) and  (NOD)-like receptor subfamily C (NLRC) 99 300 

and the help of E. ictaluri proteins Hcp2 100, EseI and EseH 101. For invasion, the plasmid encoded 301 

protein, EseI plays a role 101, and E. ictaluri enters into the target cells using Ca2+-dependent 302 

receptor-mediated endocytosis and macropinocytosis 102,103. Endocytosis of E. ictaluri into the 303 

epithelial cells is enabled when the polymerization of actin, manipulation of myosin components 304 

and apical junction complex (AJC) components are dysregulated 99,102,103. This facilitates entry of 305 

the bacteria enclosed in an Edwardsiella-containing-vacuole (ECV) thereby protecting the bacteria 306 

from lysosomal degradation 99. The ECV is acidified immediately by host cell vacuolar ATPases 307 

104. Consequently, intracellular survival of E. ictaluri is enabled by the upregulated expression of 308 

T3SS by the two-component regulatory proteins EsrA and EsrB 105 and the activity of the Type VI 309 
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Secretion System (T6SS) effector, Hcp2 100. Also, using urea that would have been produced by 310 

arginase enzyme from the host cell, the E. ictaluri acid-activated urease produces ammonia, which 311 

neutralizes the ECV acidic environment to a pH level (>pH 5.0). This creates an environment 312 

conducive for E. ictaluri replication and translocation of T3SS effectors (EseGHIJKLMNO) 313 

directly into the host cytoplasm 106,107. These T3SS effectors interact with target host proteins to 314 

disrupt host defense mechanisms 105,106. Conducive pH is then maintained by the prevention of 315 

phagosomal/lysosomal fusion, nutrients for bacterial growth and ECV enrichment are supplied by 316 

the Golgi and programmed cell death is suppressed 108. Lysosomal acid hydrolases and reactive 317 

oxygen species production is downregulated by the T6SS effector, EvpP, indicating exploitation 318 

of the endosomal machinery thereby enabling intra-phagosome survival 99,100. Lastly, 319 

inflammatory and immune responses are modulated with the putative aid of the EseN protein, for 320 

disease progression and then genes responsible for endocrine and growth are downregulated which 321 

may contribute to faltering growth 99.  It was also shown that E. ictaluri replicates intracellularly 322 

in macrophages 109 and can survive in fish organs up 65 days post infection 45.   323 

 324 

Virulence and pathogenesis of E. ictaluri is facilitated by type III, IV and VI secretion systems 325 

that enable intracellular replication and survival in channel catfish 76,106,110-112. Several 326 

investigations also demonstrate that E. ictaluri employs lipopolysaccharide (LPS), extracellular 327 

capsular polysaccharide, outer membrane proteins, adhesins and fibrillar processes for attachment 328 

to and survival in macrophages and host cells 113-116. E. ictaluri requires flagella for motility 117, 329 

oligo-polysaccharide (O-PS) for modulation of host immune responses 118 as well as hemolysins 330 

and chondroitinase whose activities were mentioned earlier 91,93. Pathogenesis of E. ictaluri is 331 

regulated by a number of mechanisms. Intracellular multiplication of E. ictaluri requires iron 332 

uptake and heme synthesis systems both under the regulation of the ferric uptake regulator (Fur) 333 

119. TonB is an important virulent factor that is required by E. ictaluri for TonB-mediated active 334 

transport of nutrients, especially iron, which is critical for survival of pathogenic bacteria during 335 

infection 120. Urease activity is required for intracellular virulence and proliferation and is 336 

facilitated by pH increase due to production of ammonia. This probably neutralizes the acidic 337 

phagosome environment 104,107. Pathogenesis of E. ictaluri is also promoted by stress-related genes 338 

that also enable survival of the pathogen in phagolysosomal conditions that are harsh 121. Two 339 
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component regulatory system RstA/B and putative regulatory ribonuclease were shown to be 340 

important for regulation of invasion and adhesion, respectively 114. 341 

 342 

Immune response to E. ictaluri experimental infections in catfish 343 

Immune responses to E. ictaluri infections have only been documented in catfishes. An earlier 344 

review on the immune response of channel catfish to E. ictaluri infections stated that E. ictaluri 345 

triggers innate immune response, specific antibody-based humoral response and cell-mediated 346 

immunity 122. Also, transcriptome analysis of differentially expressed immune response genes 347 

induced by E. ictaluri infections in channel catfish was carried out by numerous investigators and 348 

these are listed in a review by Zhou et al. 123. On top of inducing immune responses in catfish, E. 349 

ictaluri was found to also increase alternative splicing of catfish genes. This facilitates the 350 

regulation of host gene expression with a subsequent increase in proteomic complexity, resulting 351 

in enhanced immune regulatory networks 124.  352 

 353 

Numerous molecules related to the innate immune response of catfish infected with E. ictaluri 354 

were reported and are described in a review by Gao et., al 125. E. ictaluri-infected channel catfish 355 

initially undergoes rapid physiological and metabolic responses known as acute phase response 356 

(APR) in the liver triggered by recognition of pathogen-associated molecular patterns (PAMPs) 357 

by Pattern recognition receptors (PRRs) 126. These PRRs include Toll-like receptors such as TLR3, 358 

TLR5 and TLR21, that recognise flagellin, and LPS as well as activate systemic immunity 127-131.  359 

The other PRRs involved in E. ictaluri infection are Peptidoglycan recognition proteins (PGRPs) 360 

that recognize bacterial cell wall and function in direct bacterial killing, and multiple signalling 361 

pathways regulation 132.  NOD-like receptors (NLRs) and retinoic acid-inducible gene I (RIG-I)-362 

like receptors (RLRs) were also identified which play a role in the recognition of cytosolic 363 

microbial components and trigger inflammatory responses 133,134. Galectins that recognize surface 364 

exposed glycans and play key roles in inflammatory responses and apoptosis were also identified 365 

in channel catfish after E. ictaluri exposure 135.  366 

 367 

Innate immune response molecules involved in antigen degradation that were found in E. ictaluri-368 

infected channel catfish were antimicrobial peptides (AMPs) 136-140, cathepsins 141,142, Lysozymes 369 

143, nitric oxide (NOS) 144, myeloperoxidase 145 and FOXO proteins that regulate the expression of 370 
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antimicrobial peptides 146. The proteins phosphoinositide-3-kinase (PI3Ks) 147, transferrin, an 371 

acute response protein responsible for iron storage 148 and expression of tumour suppressor genes 372 

like PTEN that can induce elevated cytokines production in response to TLR agonists 149 were also 373 

upregulated in channel catfish in response to E. ictaluri infection. Phagocytosis of E. ictaluri can 374 

be enhanced by increased monocytes and neutrophils 150, septins 35 and lectins 151 while the 375 

alternative complement pathway plays a role in bacterial opsonophagocytosis 152. 376 

 377 

Complement related genes such as C1r, C3, C5, C7, C9, and C1-INH were identified in E. ictaluri-378 

infected darkbarbel catfish (Pelteobagrus vachelli) and are essential for linking innate to adaptive 379 

immune responses 153. Immune regulators such as chemokines, cytokines in channel catfish and 380 

Cyclophilin A (CypA) in yellow catfish also play a role in inflammatory response and bridging 381 

innate to adaptive immunity after E. ictaluri infections 150,154,155-158 with the mediation of Janus 382 

kinase/signal transducers and activators of transcription (JAK/STAT) signalling pathway proteins 383 

159. Other innate immune response molecules produced channel catfish in response to E. ictaluri 384 

infection are annexins 160, Intelectins (IntL2) which probably plays an immune response 385 

downstream role 161and apolipoproteins that modulates inflammatory response to LPS  162. E. 386 

ictaluri infected channel catfish also mounts antioxidant defense mechanisms using stress response 387 

proteins like calreticulin and Hsp70 163,164. 388 

 389 

Channel catfish infected with E. ictaluri are able to mount protective T and B cell-dependent 390 

adaptive immunity 165,166. IgM antibody is produced as humoral response to E. ictaluri in channel 391 

catfish 122. Cell-mediated immune response was evidenced in resistant channel catfish family 392 

whereby macrophages formed aggregations in the posterior kidney and spleen 165,167. On the other 393 

hand, channel catfish before 4 weeks old failed to mount a detectable immune response, even after 394 

two exposures to the pathogen, probably due to poorly differentiated primary lymphoid organs and 395 

tissues 168. Leukocyte immune-type receptors (LITRs) were also found to play a role in cell-396 

mediated immunity of channel catfish 169. Catfish also utilize the major histocompatibility complex 397 

(MHC) class I as a cell-mediated defense mechanism against E. ictaluri in resistant blue catfish. 398 

In a study by Peatman et al. two different MHC class I alpha chains and beta-2-microglobulin 399 

(β2m) were significantly upregulated in the E. ictaluri resistant blue catfish 3 days post E. ictaluri 400 

infection but not in channel catfish 170. Moreover, Recombination-activating gene 2 (rag 2) was 401 
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detected in high quantities in the thymus and head-kidney of yellow catfish indicating a role in 402 

diversification of B and T cells via V(D)J (variable/diversity/joining) recombination 171. Also, co-403 

upregulation with pro-inflammatory cytokines implicated Rag 2 involvement in yellow catfish 404 

immune responses 171. 405 

 406 

Disease diagnosis  407 

Laboratory diagnosis of diseases caused by E. ictaluri is typically by first isolating the bacterium 408 

from the internal organs or brain tissue on culture media. Commonly used media include tryptic 409 

soy agar (TSA) or brain heart infusion (BHI) agar supplemented with 5% blood and selective 410 

morphology differentiating medium (E. ictaluri medium, EIM), that is inhibitive of most Gram-411 

negative and Gram-positive bacteria 23,172.  A defined minimal medium was formulated that 412 

contains only 8 essential components instead of 46 and can sustain growth of E. ictaluri 173. 413 

Subsequently, bacterial isolation is usually followed by biochemical tests using kits like Crystal™ 414 

or the API 20E 97 which distinguishes between E. ictaluri and E. tarda. Histopathology is then 415 

employed to diagnose based on microscopic cellular analysis 90,95,98. Invasive techniques for 416 

identifying bacterial location in host tissues include in situ hybridization, immunohistochemistry 417 

and radioisotope labeling 15,114,89,48. In vivo bioluminescence imaging (BLI) was introduced by 418 

Karsi et al.,174 for non-invasive identification of bacterial in host tissues. Identification of E. 419 

ictaluri was also carried out using MALDI-TOF (matrix-assisted laser desorption ionization–time-420 

of-flight mass spectrometer) 175,176. 421 

  422 

Confirmatory tests performed in identification of the bacterium are necessary for diagnosis of 423 

diseases caused by E. ictaluri and these include serology tests and molecular detection 177. 424 

Serology tests used to confirm E. ictaluri infection include enzyme-linked immunosorbent assay 425 

(ELISA) such as a FAST-ELISA that rapidly detected antibodies to E. ictaluri exoantigen 178; 426 

indirect ELISA using rabbit anti-catfish immunoglobulin and mouse anti-catfish immunoglobulin 427 

179,180; and modified ELISA using detergent coupled with filtration 181. Enzyme immunoassay 428 

(EIA) to detect E. ictaluri in decomposing fish samples 182 and indirect fluorescent antibody 429 

technique (IFA) using either highly specific monoclonal antibodies 183 or antibody conjugated 430 

fluorochromes 184 were also employed. For detection of E. ictaluri in yellow catfish, a dot-enzyme 431 

linked immunosorbent assay (Dot-ELISA) and an indirect fluorescence antibody technique (IFAT) 432 
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with high specificity and sensitivity were designed 10. Additional serology tests used in E. ictaluri 433 

diagnosis are passive hemagglutination, bacterial agglutination, microagglutination, complement-434 

dependent passive hemolysis, agar gel immunodiffusion and indirect immunofluorescence 185,186.  435 

 436 

The other confirmatory tests are based on molecular detection using Polymerase chain reaction 437 

(PCR). Generally, E. ictaluri was confirmed as the causative agent using amplification and 438 

sequencing of the 16S rRNA gene and the gyrB gene 12,187,188, E. ictaluri-specific PCR targeting 439 

upstream region of fimbrial gene 189 and IVS ⁄IRS PCR assay method using primers targeting 440 

regions between the ribosomal DNA gene clusters, inter-ribosomal spacer (IRS) and 23S rRNA 441 

gene intervening sequence (IVS) 190. Rapid PCR and a real-time PCR assay which could detect 442 

low levels of E. ictaluri in water, were also developed 188,191. The molecular diagnostic loop-443 

mediated isothermal amplification method (LAMP) which recognizes the eip18 gene was also used 444 

for E. ictaluri confirmation 192. Application of OmniAmp DNA polymerase (Pol) in LAMP using 445 

lateral flow strips to detect E. ictaluri amplification was demonstrated as sensitive, rapid, and easy-446 

to-use point-of-care (POC) method 193. Recently, high-gradient immunomagnetic separation 447 

(HGIMS) coupled with PCR was also evaluated as a diagnostic tool with a higher detection 448 

sensitivity when compared with conventional PCR 194.  449 

 450 

Disease management and limitations 451 

Of importance to note is the fact that despite extensive research on E. ictaluri in aquaculture for a 452 

period spanning over 4 decades, the pathogen continues to be problematic in spite of efforts to 453 

prevent outbreaks. The widely adopted treatment strategies of ESC in channel catfish aquaculture 454 

include restricted feeding, administration of medicated feed and water chemical treatment 97,195. 455 

However, the pitfalls of restricted feeding that can lead to production loss are that growth of fish 456 

can be reduced and careful monitoring of the water temperature is required 97. Approved antibiotics 457 

for treatment of E. ictaluri infections are Romet ® (a 5:1 mixture of sulfadimethoxine and 458 

ormetoprim) and Aquaflor® (florfenicol) in the USA, enrofloxacin and florfenicol in Vietnam and 459 

doxycycline (DC) in China (Table 3) 29,196-199. The constraints of using feed medicated with 460 

antibiotics are that the cost of antibiotics can be prohibitive to small scale farmers, also, there is 461 

emergence of antimicrobial resistant strains and the inefficient drug delivery via medicated feed 462 

because of loss of appetite in sick fish 29,200-202. On the other hand, prevention of E. ictaluri 463 
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infection can be aided by avoiding stress in fish, use of chemicals, winter overfeeding, production 464 

of disease resistant hybrids and use of specific pathogen free (SPF) fish 40,97,203,204.  The limitation 465 

of stocking SPF fish in ponds where they can encounter E. ictaluri carriers is that very high 466 

mortalities occur in the naïve SPF fish therefore it is preferable to stock survivors from a previous 467 

outbreak that would have acquired immunity 97. 468 

 469 

Vaccine formulations have been made using either bacterins or attenuated bacteria (Table 3). The 470 

early bacterin vaccines that were developed for the channel catfish reported high relative percent 471 

survival (RPS) values more than 90% under experimental laboratory trials but varying 472 

effectiveness under field conditions and did not provide long term acquired immunity 205,206. The 473 

formalin killed vaccine also failed to protect the fish unless administered in Freund’s complete 474 

adjuvant (FCA) 207, probably due to failure of killed E. ictaluri to invade the fish 89. For striped 475 

catfish, two commercial inactivated vaccines, Alpha ject Panga 1 and Alpha Ject Panga 2 were 476 

licensed in Vietnam for prevention of BNP 208. Alpha ject Panga 1 and 2 vaccines have reported 477 

high efficacy, where the mortalities of vaccinated striped catfish were reduced to 0-4.7% 209. There 478 

are two patented attenuated vaccines available in the USA namely live attenuated E. ictaluri 479 

bacterium lacking the evpB gene (patent number US20170065695A1) 210 and AQUAVAC-ESC® 480 

(US Patent no. 6,019,981) that was attenuated by multiple passages in increased concentrations of 481 

rifampicin resulting in a mutant that is missing part of the O-lipopolysaccharide 211. Other attempts 482 

at producing high efficacy live attenuated vaccines (Relative percent survival, RPS ≥ 66%) for 483 

both channel and striped catfish included the construction of E. ictaluri mutants of wzzE, purA, 484 

fhuC, aroA, crp and asdA genes and a novobiocin attenuated E. ictaluri 200,212-217. Another vaccine 485 

approach was the use of E. ictaluri bacterial ghosts (EIGs), generated by introduction of a plasmid 486 

that encodes the phage PhiX174 lysis gene E, that had an RPS of 89.3% in channel catfish 218. 487 

Limited studies on subunit-based vaccines development and their efficacy against E. ictaluri have 488 

been carried out. Attempts to produce a subunit vaccines with promising results (RPS 62.5-95%) 489 

have been made using the E. ictaluri lipopolysaccharide in Freund’s complete adjuvant 207 and E. 490 

ictaluri outer membrane proteins (OMPN1-3) 219, while five different E. ictaluri proteins including 491 

hypothetical protein (yggE), specific inhibitor of chromosomal initiation of replication (iciA), 492 

ribose 5-phosphate isomerase (rpiA) and fructose 1,6-bisphosphate aldolase (fda) 220 provided 493 

inclusive results. We recently constructed a multi-epitope chimeric subunit vaccine (EiCh) that 494 
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provided partial protection in Nile tilapia with an RPS of 42% 221 Economic assessment of 495 

vaccination in catfish aquaculture in the US depicted that the practice could result in significant 496 

profits for the farmer around $71,758 to $133,887/400-ha per farm 222. However, efficacy of the 497 

E. ictaluri vaccines under field conditions has not been entirely elucidated due to prohibitive costs 498 

and varied field efficacies with 41.9% of farmers the farmers reporting improved survival rates 499 

after vaccination and 37.5% of the farmers being unsure of vaccination efficacy thus posing a 500 

limitation in vaccine use 123,223. 501 

 502 

Selective-breeding programs that have been implemented for resistance against E. ictaluri 503 

infections in aquaculture include a genetically improved channel catfish strain (NWAC103) that 504 

is a non-transgenically purebred produced after breeding fish with desired traits whereby the traits 505 

were identified using microsatellite loci identification method and DNA fingerprinting 224. Also, 506 

selective genotyping and genome-wide association studies (GWAS) identified a microsatellite and 507 

quantitative trait locus (QTL) using interspecific backcross progenies, respectively, that confer E. 508 

ictaluri resistance in channel catfish 123,225,226 implying applicability of marker-assisted selection 509 

for disease resistance selective breeding. Although genetic selection was shown to enhance 510 

resistance against E. ictaluri 224, the method can also result in the genetically improved channel 511 

catfish strain being more susceptible to other pathogens (e.g., ictalurid herpesvirus, CCV) 97.  512 

 513 

 Dietary supplements such as vitamins, minerals, nutrients and glycans have been proven 514 

experimentally to enhance immune response of channel catfish but did not conclusively alter 515 

susceptibility to E. ictaluri infections 97,227-230. In fact, Menhaden oil supplemented alone in fish 516 

feed was reported to increase susceptibility of catfish to ESC infection 231. On the other hand, β-517 

glucan enhanced protection of striped catfish from E. ictaluri infection 232. The studies on the 518 

application of probiotics for growth enhancement and ESC resistance indicated that commercial 519 

probiotics supplemented in feed could neither enhance growth nor protect juvenile catfish 233, 520 

however, Vibrio parahaemolyticus and E. coli could protect zebrafish larvae 234 and Bacillus 521 

pumilus inhibited E. ictaluri in striped catfish 235. Studies of effects of commercial prebiotics 522 

(mannan oligosaccharide, MOS) in channel catfish were encouraging as there was a significant 523 

increase in survival rate 236. Essential oils in prevention of E. ictaluri infections also proved 524 

efficacious 237. 525 
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 526 

FUTURE PERSPECTIVES 527 

Urgent need for more E. ictaluri sequenced genomes 528 

Despite the knowledge that E. ictaluri has been isolated from 44 diverse hosts, only 11 sequenced 529 

genomes exist in public database. From literature, we already know that the species is composed 530 

of host specific genotypes and members of the species are biochemically, antigenic, and 531 

serological heterogenous 62,64,67,79. This implies genomic variations among the isolates and a deeper 532 

understanding can only be achieved by sequencing more host specific isolates and conducting 533 

comparative genomic studies. Most of the groundwork in aquaculture disease studies are being 534 

accomplished with whole genome sequencing and comparative genomics. This provides valuable 535 

information on host-pathogen relationships, pathogen evolution, niche adaptation and 536 

pathogenicity 238-243. Also, potential universal vaccine candidates and drug targets towards 537 

different genotypes can be developed using reverse vaccinology based on identified antigenic 538 

proteins 244. 539 

 540 

Grassroot capacity building 541 

The primary tool in combating spread of E. ictaluri that need to be implemented sooner rather than 542 

later is capacity building at grassroot level of mainly the farmers as well as technical personnel. 543 

These key players should be educated in proactive programs like awareness on E. ictaluri 544 

infections in aquaculture, good aquaculture practices, preventative measures, and management of 545 

fish health. Also, they should be educated in reactive strategies like remedial action, timeous 546 

reporting in epizootics and performing simple diagnostic procedures 245. Since training is usually 547 

costly, the participation at government and international level is greatly anticipated to help fund 548 

such programs 246. To address the need for timeous pathogen identification, early forecast of 549 

disease outbreak and disease diagnosis, the concept of point-of-care (POC) methods was suggested 550 

whereby simple diagnostic methods can be carried out at farm-level using portable devices like 551 

real-time polymerase chain reaction (PCR) device, MinIon devices for DNA/RNA sequencing 552 

(Oxford Nanopore Technologies, Oxford, UK) and lateral flow strips 193,247. These approaches can 553 

facilitate bio-surveillance but however, need to be coupled with remedial strategies for effective 554 

and efficient control of E. ictaluri. 555 

 556 
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Biosecurity Measures 557 

Movement of live fish for aquaculture usually contributes to movement of pathogens. 558 

Transboundary importation of E. ictaluri was implicated in Trinidad and Tobago and Australia 559 

where outbreaks occurred during quarantine of imported fish 57,248. This calls to attention the need 560 

for policy makers to enforce stricter biosecurity at national and local levels. The biosecurity 561 

measures should include disease surveillance using rapid, highly accurate diagnostic tools and self-562 

quarantine in closed system for imported animals at farm level. This will assist in preventing 563 

pathogen spread and development of control strategies 249. Moreover, it will be beneficial to use 564 

genetically modified fish for E. ictaluri resistance coupled with strict biosecurity at the farms to 565 

prevent and contain epizootics 247. It is imperative to perform Import risk analysis (IRA) including 566 

passive and active surveillance both for wild and farmed fish to prevent pathogen spread to new 567 

hosts and geographical locations 250.  568 

 569 

Alternatives to antibiotic and chemical use 570 

On top of the antibiotic alternatives already researched against E. ictaluri mentioned above such 571 

as vaccines, prebiotics, probiotics, essential oils and feed supplements, there are yet other therapies 572 

that remain unexplored. These include use of bacteria capable of disrupting quorum sensing 573 

molecules and phage therapy 251. In aquaculture, bacteria such as Bacillus, Halobacillus salinus 574 

and Actinobacteria Streptomyces albus have been identified as biocontrol agents due to their 575 

ability to quench pathogen quorum sensing system for bacteria like Vibrio sp. and Aeromonas 576 

hydrophila thereby increasing fish survival after challenge 251. Quorum sensing therapy can be 577 

enhanced by using Biofloc technology whereby extra carbon is added to pond water resulting in 578 

improved growth of biocontrol agents  in situ  252. Bacteriophages are known for their therapeutic 579 

properties by inhibiting pathogens in single doses without reported side effects 253. For the control 580 

and inhibition of E. ictaluri using phage therapy, a patent exists of 2 bacteriophages, ΦeiAU and 581 

ΦeiDWF 254 but extensive use and efficacy is still to be reported Hence, these alternative to 582 

antibiotics therapies can help in the control of E. ictaluri to curb antimicrobial resistance (AMR). 583 

 584 

An emerging ozone nanobubble technology has been reported to be effective in reducing pathogen 585 

concentration in water and its safety in marine and aquaculture species was also exhibited. This 586 

technique entails injection of ozone created nanobubbles (NB-O3) into water with various salinity 587 
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and results in up to 99.27 % concentration reduction of pathogen such as Streptococcus agalactiae 588 

or Aeromonas veronii after 3 treatments of fish-cultured water 255. Safety was established for Nile 589 

tilapia (Oreochromis niloticus), sea urchins (Strongylocentrotus intermedius) and sea cucumbers 590 

(Apostichopus japonicas) 255,256. Ozone nanobubble treatment also modulates the fish immune 591 

system to fight infection more effectively 257. Application of ozone nanobubble technology in 592 

disinfection against E. ictaluri might be a feasible approach that could contribute to reducing 593 

chemical disinfectants and antibiotics use thereby reducing AMR and negative impact to the 594 

environment.  595 

 596 

Application of genomics in disease control  597 

Improved disease resistance in aquaculture production has been greatly enhanced by application 598 

of genome-based biotechnologies which can also help in managing and controlling E. ictaluri 599 

infections. Metagenomic analysis have been employed to study microbiomes to monitor fish health 600 

indices, aquatic environments safety and susceptibility of skin invasion by microbes 258. By 601 

applying whole genome sequencing coupled with in vivo induced antigen technology (IVIAT) and 602 

tandem mass tag (TMT) labelling-based quantitative proteomics, immunogenic proteins have been 603 

identified for vaccine production 259,260. The other important application of genomics to E. ictaluri 604 

control would be the editing of host species genomes by manipulating disease-resistance genes 605 

with techniques such as zinc finger nucleases (ZFNs), clustered regularly interspaced short 606 

palindromic repeats (CRISPRs)-CRISPR-associated protein 9 (Cas9) and transcription activator-607 

like effector nucleases (TALENs) 261. Most of these techniques have already been applied to 608 

channel catfish but application on other susceptible hosts and investigations of the consequences 609 

from the induced mutations are yet to be carried out.  610 

 611 

Selective breeding for disease resistant traits 612 

Although a number of trials in selective breeding and even a patented selectively bred strain of 613 

channel catfish strain (NWAC103) was reported, there are technological advances that has been 614 

made that can be applied not only to channel catfish but to all susceptible hosts. One such advance 615 

is Genomic Selection (GS) whereby genomic estimated breeding values (GEBV) are calculated 616 

based on marker-assisted selection such as single-nucleotide polymorphisms (SNPs) using a 617 

genotyped and phenotyped ‘training population’ that will provide the next generation parents with 618 
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desirable traits such as disease resistance 262. Furthermore, the introgression technique can be 619 

applied to introduce and transfer disease resistance genes to a population through backcrossing 620 

and marker-assisted selection repeatedly 263. The technique has been applied in Rainbow trout 621 

(Onchorhynchus mykiss) for inferring resistance against bacterial cold water disease (BCWD) 264, 622 

and columnaris resistance in channel catfish 265. Control of E. ictaluri can also be achieved by 623 

identification of E. ictaluri resistance traits in host species and production of specific pathogen 624 

resistant (SPR) fish species. SPR is a qualitative trait where the fish is resistance to a particular 625 

pathogen 266 and in aquaculture the application of SPR species has been implimented in shrimp 626 

culture where in the USA, commercial SPR Litopenaeus vannamei with resistance to Taura 627 

syndrome virus (TSV) are available 267.   628 

 629 

Trained Innate Immunity 630 

It is crucial to stimulate protective immunity in fish before they reach the susceptible stages mainly 631 

fry, fingerlings and juvenile stages (Table 1). The stimulation of defenses of the innate immunity 632 

resulting in enhanced non-specific resistance against pathogens is what is termed trained innate 633 

immunity and can be transferred vertically from brood stock or used to prime fish at the larval 634 

stage 268. The innate immune cells e.g., macrophages, natural killer cells and monocytes undergo 635 

epigenetic reprogramming when they encounter a pathogen thereby acquiring immunological 636 

memory resulting in enhanced clearance of the pathogen upon a subsequent encounter 269. Pattern 637 

recognition receptors (Toll-like receptors, C-type lectin receptors, RIG-1-like receptors, NOD-like 638 

receptors (NLRs) and scavenger receptors) are stimulated by ligands such as flagellin, ß-glucan, 639 

CpG containing oligodeoxynucleotides and muramyl dipeptide resulting in trained innate 640 

immunity 268. Evidence of trained innate immunity of fish by administration of ß-glucan was 641 

reviewed by Petit &Wiegertjes 270 and when channel catfish were injected with ß-glucans, 642 

phagocytic and bactericidal abilities were enhanced as well as reduced mortality 271. This evidence 643 

proves the potential of priming the trained innate immunity of fish especially catfish to fight 644 

against E. ictaluri.  645 

 646 

Concluding remarks  647 

 Despite efforts that have been made to control or manage infections, new susceptible hosts and 648 

evidence of spread in new geographical locations keep on being reported. Research on this 649 
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pathogen is lacking in areas that include available whole genomes, serotyping scheme and bio-650 

surveillance programmes, universal vaccines against all genotypes and selective breeding for 651 

resistant host species. It is important to prioritise research on whole genome sequencing of all 652 

genotypes from all host species as this will enable a deeper understanding of the pathogen which 653 

is instrumental in understanding host-pathogen interactions, bacterial evolution vaccine 654 

development via reverse vaccinology. Implementation of increased biosecurity measures, use of 655 

genetically modified and selective bred fish species can help avoid spread of the E. ictaluri into 656 

new territories and facilitate pathogen management and control. To counter antimicrobial 657 

resistance, there is need for new alternative to antibiotics through the use biocontrol agents and 658 

technologies such as Biofloc technology and ozone nanobubble. This review provided 659 

comprehensive current knowledge of E. ictaluri infection in aquatic animals with special reference 660 

to aquaculture susceptible hosts and future perspective on disease management.   661 
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Table 1. E. ictaluri hosts, distribution, and occurrence 1562 

Host family  Host  

species  

Geographical 

location 

Occurrence  Affected fish stage Mortality  Reference  

 

 

Ictaluridae 

Ictalurus punctatus USA Natural infection fingerling 100% (experimental challenge) 20 
Ictalurus furcatus USA Experimental infection  fingerling 0.7% (natural infection) 272 

Ameiurus catus USA Natural infection Information not available Information not available 55 

Amieurus nebulosus USA Natural infection mixed sizes 35 to 40% (natural infection) 61 

Noturus gyrinus  USA Natural infection juvenile Not reported 273 
 

Bagridae  

Pelteobagrus fulvidraco  China Natural infection Juvenile-adult 50% (natural infection) 16 

Pelteobagrus nudiceps Japan Natural subclinical 

infections 

Not specified 100% (experimental challenge) 33 

 Pelteobagrus vachelli China Experimental infection Juvenile  26-62% (natural infection) 153 
 Tachysurus tokiensis Japan Experimental infection Juveniles  100% (natural infection) 274 
 

 

Clariidae  

Clarias batrachus  Thailand Natural infection Not specified Not reported 275 

Clarias 

macrocephalus x Clarias gariepinus 

Thailand Natural infection Not specified 100% (experimental challenge) 276 

 

 

 

 

Pangasiidae  

Pangasianodon hypophthalmus Thailand Natural concurrent 

infection 

juvenile 80% (experimental challenge) 15 

Pangasianodon hypophthalmus West Indies  Natural infection juvenile approximately 2000 animals 57 

Pangasius hypophthalmus 

(Sauvage) 

Vietnam Natural infection Not specified Not reported 22 

Pangasius hypophthalmus 

(Sauvage) 

Indonesia Natural infection fingerlings and immature 

fish 

50 to 100% (natural infection) 17 

 Pangasius pangasius Indonesia Natural infection Young adults 95% (natural infection) 277 
Plecoglossidae  Plecoglossus altivelis  Japan Natural infection and 

experimental 

Fingerlings-adult 100% (experimental challenge) 25  

 

Siluridae 

Silurus asotus Japan Experimental infection fingerlings, juveniles 100% (natural infection) 33 
Silurus soldatovi meridionalis China Natural infection Juveniles  60% (natural infection) 187 

 Silurus glanis USA Experimental infection Juveniles  80% (natural infection) 278 
 Ompok bimaculatus Thailand Experimental infection Fingerlings  2.5%-100% (natural infection) 279 
 

Plotosidae  

Anodontiglanis dahli  Australia Natural infection Not specified Not reported 248  
Neosilurus ater  Australia  Natural infection Not specified Not reported 248 
Tandanus tropicanus Australia Natural infections Not specified Not reported 175 

 
Ariidae  Neoarius berneyi  Australia  Natural infection Not specified Not reported 248 
Sternopygidae  Eigenmannia virescens  USA Information not available Information not available Information not available 55,280 
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†-Edwardsiella ictaluri-like infection1563 

Host family  Host  

species  

Geographical 

location 

Occurrence  Affected fish stage Mortality  Reference  

 

Cyprinidae  

Danio rerio  USA Natural infection adult 19% (natural infection) 281  
Danio devario USA Natural infection Not specified  100% (experimental challenge) 282  

Puntius conchonius Australia Natural infection Not specified 40% (natural infection) 283  
Zacco platypus Japan Experimental infection Not specified 15% (experimental challenge) 33  

 Tribilodon hakonensis Japan Experimental infection Fingerlings 40% (natural infection) 274  
 Tribolodon brandtii maruta Japan Natural infection Not specified Not reported  284  
 Candidia temminckii Japan Natural infection Not specified Not reported  284  
 Hemibarbus barbus Japan Natural infection Not specified Not reported  284  
 Rhynchocypris lagowskii Japan Natural infection Not specified Not reported  284  
 Scardinius erythrophthalmus 

hesperidicus H. 

Croatia Natural infection Juveniles Not reported 285 

 

Cichlidae  

Sarotherodon aureus  USA Experimental infection fingerlings 70% (experimental challenge) 53 
Oreochromis niloticus  West Indies Natural infection fry and fingerlings  100% (experimental challenge) 13  
Oreochromis spp.  Vietnam Natural infection juveniles 40–50% (natural infection) 12  

Salmonidae  Oncorhynchus tshawytscha  USA Experimental infection Juveniles  75% (experimental challenge) 286  
Oncorhynchus mykiss  Turkey Natural infection juveniles 100% (experimental challenge) 287  

Moronidae Morone americana USA Experimental infection Information not available 100% (experimental challenge) 288  

 Dicentrarchus labrax† Spain Natural infection fry 90% (experimental challenge) 289  

Anguillidae Anguilla japonica Japan Experimental infection Fingerlings 10% (natural infection) 274  

Percichthyidae Coreoperca kawamebari Japan Natural infection Not specified Not reported  284  

Balaenopteridae Balaenoptera acutorostrata Japan Natural infection Not specified Not reported  37 

Pleuronectidae Platichthys stellatus China Experimental infection Juveniles Not reported 290 
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Table 2. Timeline of Edwardsiella ictaluri isolations from natural infected fish including the biochemical characteristics. 1564 

Year of 

isolation 

Country Fish host Biochemical characteristics Reference 

   Motility  

 

Nitrate 

reductase 

Catalase  Ornithine 

decarboxylase  

Lysine 

decarboxylase 

Cytochrome 

oxidase 

 NaCl 

>1.5% 

Gas/acid 

from 

glucose 

Methyl 

Red 

test 

H2S 

production 

Urease  Citrate  

1979 USA channel  

catfish 

+ + N/R + + - NR +/NR + - - - 20 

1981‡  USA white bullhead NA NA NA NA NA NA NA NA NA NA NA NA  55 

1982‡  USA green knife fish NA NA NA NA NA NA NA NA NA NA NA NA 280  

1983 USA danio + + NR + + - NR +/NR + - - - 282 

1985 ‡  Thailand walking catfish + NR NR + + - NR NR/+ NR - - + 275  

1985 

  

Australia rosy barb - NR + + + - NR +/+ - - - - 283  

1989 Spain  sea bass + + + - + - + + - - - - 289  

2001 ‡  Vietnam striped catfish + - - - - + NR -/- NR + - NR 22  

2002 USA tadpole madtom NR NR NR NR + - NR + NR NR NR NR 273  

2004 ‡ Turkey rainbow trout - + + + + - NR NR/+ + - - - 287  

2004 USA brown bullhead + + + + + - NR -/NR - NR NR - 61  

2006 China yellow catfish + + + - + - - +/+ - - - - 16  

2007 Japan ayu  + NR + + + - - +/NR + + NR - 25  

2008-

2010 

Japan Forktail bullhead  + + + + + - - NR/+ + + - - 33  

2010-

2011 

West 

Indies 

Nile tilapia NR NR NR - + - NR + NR - - - 13  

2011 China southern catfish + + + + + - NR +/+ - - + NR 187  

2011 USA zebrafish + NR NR NR NR - NR + NR - NR + 281  

1565 
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Year of 

isolation 

Country Fish host Biochemical characteristics Reference 

   Motility  Nitrate 

reductase 

Catalase  Ornithine 

decarboxylase  

Lysine 

decarboxylase 

Cytochrome 

oxidase 

 NaCl 

>1.5% 

Gas/acid 

from 

glucose 

Methyl 

Red 

test 

H2S 

production 

Urease  citrate  

2011 Australia toothless catfish 

narrowfront tandan 

Berney's catfish 

NA NA NA NA NA NA NA NA NA NA NA NA 291 

2011-

2012 

Japan  Pacific redfin 

dark chub 

Japanese barbel 

Amur minnow 

Japanese aucha 

perch 

NA NA NA NA NA NA NA NA NA NA NA NA 284  

2014 ‡  Thailand hybrid catfish 

 

+ NR + - + - NR NR/+ NR - - + 276  

2016 ‡  Australia eeltail catfish/ 

tandan 

+ + NR + + - + V/NR + NR - - 175  

2016 Vietnam red hybrid tilapia NR NR + - + - NR NR/+ NR - - V 12  

‡ represents publication year where year of isolation was not specified. 1566 

V-variable 1567 

NR-not reported. 1568 

NA-data not available 1569 

 1570 

 1571 

 1572 

 1573 

 1574 

 1575 

 1576 

 1577 
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Table 3. Summary of antibiotic and vaccines used in aquaculture against E. ictaluri. 1578 

Method  Type  Description  Delivery route  Fish species 

(age) 

Efficacy 

(survival 

rate) 

Reference  

Antibiotics Sulfonamide Romet-30™ Oral  Channel catfish 

(fingerlings) 

Up to 89.1% 198  

florfenicol Aquaflor® Oral  Channel and 

striped catfish 

(fingerlings) 

Up to 100% 196  

 Enrofloxacin  Oral   Striped catfish 

(fingerlings) 

Not reported  197  

 Doxycycline  Oral Yellow catfish 

(fingerlings) 

Not reported 199  

 

 

 

Vaccines 

 

Live 

attenuated 

bacteria 

evpB gene mutant (patent number 

US20170065695A1) 

Immersion, 

injection, oral or 

combination 

Channel catfish 

(Fry/fingerlings) 

80.83%-

92.58% 

210  

AQUAVAC-ESC® (US Patent no. 

6,019,981) 

immersion Channel catfish 

(Fry/fingerlings)  

Up to 94.7% 211 

  

Inactivated 

bacteria 

Alpha ject Panga 1 and 2 injection Striped catfish 

(fingerlings)  

95.3-100%  PHARMAQ Vietnam 

(https://www.pharmaq.no/sfiles/1/58/4/file/pharmaq-

vn-handout_2013-2-_lighter-version.pdf) 

 1579 

https://www.pharmaq.no/sfiles/1/58/4/file/pharmaq-vn-handout_2013-2-_lighter-version.pdf
https://www.pharmaq.no/sfiles/1/58/4/file/pharmaq-vn-handout_2013-2-_lighter-version.pdf
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Figures and legends 1580 

 1581 

 1582 

Figure 1. Pathogenesis of E. ictaluri. A) Ports of entry into the host fish used by E. ictaluri during 1583 

infection. B) molecular mechanisms of E. ictaluri pathogenesis into host cells e.g. macrophage. 1584 

 1585 

 1586 

 1587 

 1588 

 1589 



47 
 

 1590 

Figure 2. Examples of gross external clinical signs of natural E. ictaluri infections in fish hosts. Channel 1591 

and yellow catfish exhibit ‘Hole in the head’ lesion (A). Yellow catfish also present ‘hole under the jaw’ 1592 

lesion (B). Striped catfish exhibit haemorrhage and ulceration on the skin (C). Ayu exhibits distended 1593 

abdomen with reddened anus (D), exophthalmos (E) and meningio-encephalitis (red head) (F) shown by 1594 

arrowheads. Images A) and (B) reproduced with permission granted © 2010 The Authors. Aquaculture 1595 

Research © 2010 Blackwell Publishing Ltd. Image (C) reproduced with permission granted © 2016 John 1596 

Wiley & Sons Ltd. Images (D), (E), (F) reproduced with permission granted © 2020 Wiley Periodicals 1597 

LLC. 1598 

 1599 

 1600 

 1601 

 1602 

 1603 

 1604 

 1605 

 1606 

 1607 

 1608 

 1609 
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 1610 

 1611 

Figure 3. Examples of gross internal clinical signs of natural E. ictaluri infections include mottled spleen 1612 

and anterior kidney indicated by yellow arrows in striped catfish (A), pale liver and mottled spleen and 1613 

kidney in tilapia indicated by black arrow (B), and in ayu; bloody ascites in peritoneal region (C), pale 1614 

gills and a gallbladder that is enlarged (D), reddened gonads (E) and posterior kidney that is enlarged and 1615 

haemorrhagic (F) all indicated by arrowheads. Images A) reproduced with permission granted © 2020 1616 

John Wiley & Sons Ltd. Image (B) Reprinted from Aquaculture Volume 499/15, Dong et al., Natural 1617 

occurrence of edwardsiellosis caused by Edwardsiella ictaluri in farmed hybrid red tilapia (Oreochromis 1618 

sp.) in Southeast Asia, Pages 17-23, Copyright (2019), with permission from Elsevier. Images (C), (D), 1619 

(E), (F) reproduced with permission granted © 2020 Wiley Periodicals LLC. 1620 

 1621 

 1622 

 1623 

 1624 

 1625 

 1626 

 1627 

 1628 
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 1629 

 1630 

Figure 4. Typical histopathological findings. (A) in channel catfish fry, diffuse necrosis of the 1631 

hematopoietic tissues (arrows) was identified. (B) in red hybrid tilapia, there was spleen and cell pyknosis 1632 

and karyorrhexis (arrow heads). (C) in striped catfish kidney, histopathology showed necrosis (denoted 1633 

by N) and haemorrhagic areas (denoted by H).  (D)  in the gills of ayu, epithelial lining hyperplasia was 1634 

evident at base of secondary gill lamellae together with in-between separation of the underlying capillary 1635 

bed from the epithelial cell lining of secondary gill lamellae. Image (A) Reprinted from Fish and Shellfish 1636 

Immunology Volume 72, Abdelhamed et al., The virulence and immune protection of Edwardsiella 1637 

ictaluri HemR mutants in catfish, Pages 153-160, Copyright (2018), with permission from Elsevier. Image 1638 

(B) Reprinted from Aquaculture Volume 499/15, Dong et al., Natural occurrence of edwardsiellosis 1639 

caused by Edwardsiella ictaluri in farmed hybrid red tilapia (Oreochromis sp.) in Southeast Asia, Pages 1640 

17-23, Copyright (2019), with permission from Elsevier. Image (C) reproduced with permission granted 1641 

© 2020 John Wiley & Sons Ltd. Image (D) reproduced with permission granted © 2020 Wiley Periodicals 1642 

LLC. 1643 

 1644 

 1645 

 1646 
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 1647 

Figure 5. Transmission electron microscopy intracellular visualization of E. ictaluri of infected zebrafish 1648 

head kidney. The tissue samples were taken 6 h post-infection (105 CFU dose-1). (A) Intracellular E. 1649 

ictaluri in infected zebrafish head kidney macrophage (Scale bar = 0.5 μm). (B) Magnification of 1650 

transverse sectioned intracellular E. ictaluri in infected zebrafish head kidney macrophage (Scale bar 0.5 1651 

= μm). (C) High magnification of cross-sectioned TEM images of intracellular E. ictaluri membrane (Scale 1652 

bar = 0.2 μm). Arrowheads indicate outer membrane vesicles-like (Images kindly provided by Dr. 1653 

Santander). 1654 


