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 I 

Abstract 

Modelling and forecasting market volatility is an important topic within finance research, with 

the aim of producing accurate forecasts, as confirmed by the plethora of academic papers 

written over the past few decades. Understanding volatility is crucial for market participants 

such as investors, policymakers, and academics. The linear Heterogeneous Autoregressive 

(HAR) model currently dominates the volatility models for forecasting Realised Volatility 

(RV). This thesis enters the ongoing volatility forecasting debate by developing further the 

HAR model. First, within the HAR setting volatility jumps, realised semi-variance and the 

leverage effect are added. With the use of a selection of loss functions and forecasting 

comparisons it is found that adding the leverage effect into the HAR model can produce the 

most accurate forecasts over daily, weekly, and monthly horizons. Second, this thesis compares 

the foresting ability of the Autoregressive (AR) model with flexible lags, generated by the 

Least Absolute Shrinkage & Selection Operator (Lasso) approach (es), to the HAR model with 

a fixed lag structure.  In-sample results show the Lasso approach to improve the model fitness, 

and the out-of-sample results indicate a more flexible lag structure is preferred, especially the 

ordered Lasso performs the best. Third, this thesis incorporates the Smooth Transition and 

Markov-switching approaches with the linear HAR model in a further forecasting exercise. In-

sample results show that the regime-switching models provide better estimation accuracy than 

the linear HAR model. For the out-of-sample results, although the regime-switching models 

have limited forecasting ability over the daily horizon, these do outperform the linear HAR 

model over weekly and monthly horizons. The Markov-switching model is found to be the best, 

by consistently exhibiting the most accurate forecasts over time. All the above findings have 

been evaluated within a risk management setting (Value at Risk & Expected Shortfall). 
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Chapter 1  Introduction 

1.1 Motivations 

The stock market is at the core of the national economy. It associates with the whole financial 

market. The stock market volatility has always been treated as an attractive and meaningful 

research setting in time series econometrics. After the stock market crash in 1987, the stock 

price of the Standard & Poor's (S&P) composite portfolio decreased by 20.4% (Schwert, 1990), 

it is can be seen that economic globalization inevitably made major financial events riskier to 

global markets. With the bankruptcy of Lehman Brothers in 2008, the Dow Jones Industrial 

Average declined by more than 500 points by the end of the trading session of the day (Johnson 

and Mamun, 2012), then the financial crisis swept the global stock market. In 2015, Greece 

defaulted on its debt that triggered a European sovereign debt crisis, the sovereign debt crisis 

had a deep impact on the value of the common currency and challenged the stability of the 

monetary union (Kräussl et al. 2016). In recent years, the potential influence of Brexit spread 

throughout the EU and the economic recession brought from the COVID-19 uncertainty that 

exacerbates the variation in the stock market (Li, 2020 and Corbet et al. 2021). In general, the 

term volatility is associated with risk in financial assets within a certain period (Figlewski, 

2004), high volatility is considered a phenomenon of market disruption, which means assets 

and securities are not fairly priced. The above examples emphasise the importance of volatility 

for investing activities, which take risk into account. To minimize the market risk, investors 

can use predicted volatility to change their investment strategies toward less risky assets. 

The impact of intraday volatility is partly due to transitions. The attention of regulators 

has also enhanced the potential negative impact of such trading in the financial market. High 

frequency data can increase the spread of shocks across different markets, thereby increasing 

systemic risk. In May 2010, an example of a faster transmission of shocks was the Flash Crash 
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which triggered the sudden drop of the S&P 500, allegedly caused by an automated trading 

algorithm that works on intraday intervals (Vuorenmaa, and Wang, 2014). A similar incident 

of trading errors occurred again two years later. Knight Capital, the largest US trader, suffered 

considerable losses in 2012, causing severe stock market turmoil (Popper, 2012). Due to Flash 

Crash and algorithmic trading system errors, regulators should closely examine the connection 

between high frequency trading and intraday volatility to reduce potential risks. Regulators and 

policymakers also need to pay attention to intraday volatility and implement regulatory reforms 

to assist financial markets in adapting to higher frequency volatility.  

It can be seen that it is critical for everyone involved in the financial markets to forecast 

volatility accurately. As recent examples have shown, in today's financial markets, especially 

in periods of instability, accurate modelling and forecasting volatility are becoming ever more 

essential since regulators, individual and institutional investors all grapple with greater risks 

and increasing volatility. The ability to accurately predict volatility might be the determining 

factor in benefiting from the period of turmoil and stability. This benefit extends to anyone 

who can successfully apply future volatility – this is the motivation for this thesis. 

It is evident that the need of getting accurate predictions is important for every market 

participant. Specifically, understanding volatility is crucial to investors in regard of making 

improved portfolio allocation and market timing decisions; at the same time, regulators and 

policymakers can also seek to implement policies to stabilize market risks. Therefore, 

modelling and forecasting volatility is an ongoing task in current years. Although a large 

number of volatility models have been proposed, no conclusion has been reached on which 

model generates the most accurate volatility estimation and prediction. The contribution of this 

thesis is to analyse the predictive power of alternative volatility models and propose novel 

developments on current models to improve the predictive performance of these models.  
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1.2 Outline of Thesis  

The current literature focuses mainly on intraday volatility. Although excessive volatility 

models have been proposed, there is no evidence indicating which volatility model generates 

the most accurate forecasts. Current research is continuously improving forecasting 

performance. As the heterogeneous autoregressive (HAR) (developed by Corsi, 2009) type 

models are leading the current research trends, it is able to replicate the volatility persistence 

using the aggregated volatility at different interval sizes. This thesis has three main 

contributions. First, the previous volatility models incorporate volatility various characteristics 

to provide more accurate predictions, for example volatility clustering, long-memory and 

leverage effect. Chapter 3 reports several loss functions and forecasting tests to indicate that 

adding leverage effect into the HAR models produces superior forecasts to volatility jumps and 

realised semi-variance over daily, weekly and monthly horizons. Second, as the HAR model 

has a fixed lag structure and is considered a restricted AR(22) model, Chapter 4 finds the 

parsimonious lags in the AR models generated by the Lasso approach could provide more 

accurate forecasts over the HAR model. Third, sudden market changes can affect volatility 

persistence, therefore the persistence is not always consistent. Chapter 5 finds that the HAR 

model incorporating a regime-switching framework can improve forecasting accuracy. More 

specifically it is found that the Markov-switching HAR model performs best. 

In addition to the main contributions, two further aspects are examined in this thesis. 

First, due to data availability, the sample is selected from developed and emerging countries to 

identify any different patterns between them, which allows the results in this thesis to be 

adopted by a wider range of market participants1. Second, the findings of this thesis are also 

confirmed within a practitioner’s setting with the use of the Value at Risk and Expected 

 
1  Due to database limitation, only four emerging markets are available from the Oxford-Man Institute of 

Quantitative Finance. This thesis also selects four developed markets for comparison purposes. Therefore, this 

thesis employs the realised volatility of eight international indices, including four developed markets: the UK, 

Japan, the US, Germany; and four emerging markets: China, India, Brazil and Mexico.  
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Shortfall settings. This enables the risk managers, bankers and regulators to use these results 

and to manage risk directly. 

Accurately modelling and forecasting volatility is of importance to all market 

participants. This thesis will rely on past and current research and propose improvements to 

existing models. The rest of the thesis is organized as follows. 

Chapter two comprehensively introduces the literature review covering several aspects 

related to forecasting volatility models. This chapter starts by reviewing the GARCH type 

model. More recently, due to the availability of high frequency data opportunities for 

improving forecast accuracy arose from the work of Andersen and Bollerslev (1998). This 

chapter also addresses the issue of microstructure noise caused by the intraday data and 

discusses the alternative measures used to deal with this problem. This chapter introduces 

realised volatility as it is regarded as a less noisy proxy than the squared returns. The stylised 

characteristics of volatility are discussed, some of which are also detected in intraday data. The 

HAR model by Corsi (2009), is then introduced motivated by the Heterogeneous Market 

Hypothesis (HMH) and setting the scene for the rest of the thesis.   

In Chapter 3 the traditional HAR model is modified to include three additional 

components, namely: volatility jumps, realised semi-variance and leverage effect. The 

forecasting performance of the models are assessed on a number of loss functions, including 

symmetric loss functions, asymmetric loss functions, pairwise comparisons and equal 

predictive ability tests. The main conclusion of this Chapter is that the HAR-RV model taking 

into account the leverage effect produces the top performance over daily, weekly and monthly 

horizons, this finding consistent with recent studies (Buncic & Gisler, 2017 and Horpestad et 

al., 2019). When considering more sophisticated HAR models with realised semi-variance, as 

well as the signed jumps, the forecasting accuracy is also improved, but the performance is not 

as good as the leverage effect. This chapter also notes the HAR models with volatility jumps 
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have limited forecasting information compared with the leverage effect and realised semi-

variance.  

Due to the lag structure in the basic HAR model being fixed it is regarded as a restricted 

AR(22) model (Cosri 2009). Chapter 4 explores whether the parsimonious lag models 

generated from the Lasso-based approach can improve volatility accuracy over the HAR model. 

Specifically, this chapter employs four Lasso type-based methods to generate the parsimonious 

lags in the AR model to compare their forecasting ability against two HAR models with fixed 

lag structures. An AR(22) with the same lag structure to HAR model and an AR(100) with 

longer lags, based on the work by Audrino and Knaus (2016) and Croux et al. (2018). It is 

found that the model's flexible lags can improve the in-sample fit over the HAR models and 

the lags beyond 22 still contain efficient forecasting information. The out-of-sample results 

indicate that the AR(100) ordered Lasso performs the best for daily forecasts. In contrast, the 

AR(22) ordered Lasso dominates the weekly and monthly forecasts. These results are 

confirmed within a Value at Risk setting. This chapter has been published2 in the Journal of 

International Financial Markets, Institutions and Money, this paper can be found in the 

Appendix 4 of this thesis. 

Chapter 5 investigates whether and which nonlinear regime-switching approach can 

improve the forecasting performance of the HAR model, due to the persistence of RV being 

nonlinear. Two approaches are considered, the Smooth Transition and the Markov-switching. 

This chapter extends the Markov-switching model by considering the time-varying transition 

probability to examine the time-variation in the regime transition process and considers the 

variance shifts between regimes by implying the heteroscedasticity in the Markov-switching 

dynamics. Both the in-sample and out-of-sample results indicate the regime-switching HAR 

 
2 Reference: Ding, Y., Kambouroudis, D. and McMillan, D.G., 2021. Forecasting Realised Volatility: Does the 

LASSO approach outperform HAR?. Journal of International Financial Markets, Institutions and Money, 

p.101386. 
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models are preferred over the linear HAR model. The Markov-switching method performs 

better than two types of smooth transition approaches. For the out-of-sample results, although 

the regime-switching models have limited forecasting ability over the daily horizon, the 

Markov-switching HAR model is the best and consistently exhibits the most accurate forecasts 

over time, weekly and monthly horizons. As before these results are also confirmed within a 

risk management setting with the application of Value at Risk and Expected Shortfall 

techniques.  
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Chapter 2 A Review of Forecasting Models  

2.1 Introduction 

The volatility describes the fluctuating pattern of assets in the financial market over time. In 

the mathematical or statistical sphere, it is conventionally associated with the variance of the 

asset returns. Since the ARCH/GARCH model (Engle, 1982 and Bollerslev, 1986) are 

proposed, the GARCH model is used to estimate volatility by providing a model that more 

closely resembles real markets. Thus, the time-series volatility has been modelled using 

econometric techniques. Subsequently, the GARCH model and its extensions have made 

remarkable achievements in predicting volatility. The GARCH-type models dominated 

volatility modelling in the past several decades. The convenience of requiring high frequency 

financial data has stimulate many activities in the field of volatility modelling. In particular, 

the understanding of high frequency volatility and its dynamic characteristics has benefited 

greatly from high frequency financial data availability. Andersen and Bollerslev (1998) use 5-

minute returns to construct the realised variance and show that the standard volatility models 

deliver better forecasting performance when using the high frequency data. The high frequency 

data contain more transition information and microeconomics changes. Therefore, the recent 

works of forecasting volatility increasingly concentrate on high frequency data. 

The rest of this chapter is shown as follows. In this survey, this chapter starts with a 

summary of GARCH-type volatility models. Besides the review of the GARCH-type volatility 

models, this chapter introduces the microstructure noise of high frequency data and the 

different existing measures to reduce the influence of microstructure noise, in which I highlight 

the RV. Next, I outline the empirical feature of high frequency data. The volatility models in 

the later chapters focus on those features to provide more accurate predictions. In addition, I 

highlight the heterogeneous market hypothesis (HMH) and the HAR model, which is the main 

direction for this thesis. 
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2.2 Previous GARCH models  

In previous works, the volatility is constructed by the daily squared returns, which is inherently 

latent. After the traditional approaches of several simple models3, the GARCH models have 

been developed to model and forecast volatility over the past years. Compared to the whole 

world of daily or low-frequency volatility models created over the past several decades, there 

is something in common with modelling high-frequency volatility. Therefore, it is still valuable 

to look back to the previous GARCH models, which provide common ideas to bring into the 

high-frequency field. In this section, the various GARCH models are presented, which are 

widely used for latent volatility4.  

 

2.2.1 GARCH Models  

ARCH model 

Engle (1982) first proposes the ARCH model to test the UK's conditional variance of the 

inflation rate. The ARCH model suggests the present conditional variance depends on the past 

squared error term rather than constant. In a more detailed way, assume the simple model: 

Yt = α + βXt + ut (2.1) 

where Yt is a dependent variable, Xt is an explanatory variable and β is a coefficient. Normally, 

ut  is the independently normal distribution with a zero mean and conditional variance,  ht , 

shown as: 

ut|Ωt ∼ iid N(0, ht) (2.2) 

 
3 Some simply models are traditionally used in the past techniques. For example: the future volatility is the mean 

of all past volatility in the historical average approach, and the moving average method uses the averaged volatility 

within a fixed interval to generate the forecasts. 
4 In this section, this thesis provides an extensive review of the GARCH-type models, especially asymmetric and 

long-memory GARCH models. Asymmetry and long memory are two common features for modelling high-

frequency volatility that have been extensively modelled so far. Some empirical models used in Chapter 2 are 

relevant to asymmetry and the long lag length AR models in Chapter 3 refer to long memory. Therefore, it is 

worth to review the literature on asymmetric and long-memory ARCH/GARCH approaches.  
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where Ωt is the information set. The ARCH model allows the variance of residuals (ht) to 

depend on historical squared error terms, so the ARCH (q) model is given by: 

ht = γ0 +∑γtut−j
2

q

j=1

 (2.3) 

In the ARCH process, the heteroscedasticity of variance will change over time. 

Moreover, as the variance is positive, the estimated coefficients in the ARCH model must be 

positive. 

 

GARCH model  

Bollerslev (1986) proposes the GARCH model, which extends the ARCH model and lets the 

conditional variance follow the ARMA process. The GARCH model presents the current 

volatility depend on both the conditional error term and the historical conditional variance. The 

GARCH (p, q) models are shown as follows: 

ht = γ0 +∑γtut−j
2

q

j=1

+∑δt

p

i=1

ht−i (2.4) 

where ut−j is the lagged squared residual terms and ht−I is the past value of itself. It is clear 

that for 𝑝 = 0 the model can be reduced to ARCH (p).   

 

GARCH-in-Mean model  

In the real financial data, the conditional mean is not always constant. It can be affected by 

time-varying risk premium during the estimation period. The GARCH-in-Mean (GARCH-M) 

model is further extended by Engle et al. (1987) that allows the explanatory variables to affect 

the conditional mean and its conditional variance. Therefore, Engle et al. (1987) add the 

conditional variance into the conditional mean function of Yt, the GARCH-M (p, q) model has 

the following form: 
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Yt = α + βXt + θht + ut 

ut|Ωt ∼ iid N(0, ht) 
(2.5) 

ht = γ0 +∑γtut−j
2

q

j=1

+∑δt

p

i=1

ht−i (2.6) 

Another form of the GARCH-M model to capture the risk premium is to utilize standard 

deviation rather than unconditional mean. So this specification of the GARCH-M model can 

be shown as follow: 

Yt = α + βXt + θ√ht + ut 

ut|Ωt ∼ iid N(0, ht) 
(2.7) 

ht = γ0 +∑γtut−j
2

q

j=1

+∑δt

p

i=1

ht−i (2.8) 

The GARCH-M model adjusts the conditional mean with market time-varying risk 

premium. Hall et al. (1990) combine the GARCH-M model and capital assets pricing model 

(CAPM) to apply with financial data. 

 

2.2.2 Asymmetric GARCH Models  

One of the restrictions of the GARCH model is that it cannot describe the asymmetry affected 

by positive and negative news; the GARCH model treats news equally. Market volatility has a 

negative relationship with stock returns (Black, 1976 and Christie, 1982). The high volatility 

leads to a negative return, whereas the stock price grows when the market experiences low 

volatility. To capture the asymmetric effect, numerous extensions of the GARCH models are 

developed.  
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EGARCH model 

The exponential GACRCH (EGARCH) model is first proposed by Nelson (1991). There are 

several ways to express this equation, one of the conditional variance equations is given by: 

log(ht) = γ0 +∑ζj |
ut−j

√ht−j
|

q

j=1

+∑ξj
ut−j

√ht−j

q

j=1

+∑δi log(ht−i
2 )

p

i=1

 (2.9) 

where the coefficient ξj tests the asymmetric effect of market news. When ξj < 0, the positive 

news generates less volatility than negative news. In addition, there are positive and negative 

news, which is ut−j > 0 or ut−j < 0, to describe the asymmetric effect, so another form of 

EGARCH model shown as: 

{
 
 

 
 
log(ht) = γ0 +∑(ζj − ξj) |

ut−j

√ht−j
|

q

j=1

+∑δi log(ht−i
2 )

p

i=1

，when ut−j < 0

log(ht) = γ0 +∑(ζj + ξj) |
ut−j

√ht−j
|

q

j=1

+∑δi log(ht−i
2 )

p

i=1

，when ut−j > 0 

 (2.10) 

If ξj = 0, this conditional variance equation is symmetric. When ξj < 0, then negative news 

has a greater impact than positive news. The term ∑ δi log(ht−i
2 )p

i=1  is used to capture the 

volatility clustering. Furthermore, on the left-hand side, to guarantee the conditional variance 

to be positive, it uses exponential measurement instead of quadratic.  

 

TGARCH model  

Zakoian (1990) provides another model to capture asymmetry: the Threshold-GARCH 

(TGARCH) model. Similarly, Glosten et al. (1993) propose the GJR-GARCH model, which is 

closely related to the TGARCH model. The main idea of the TGARCH model is to set up a 

dummy variable as a threshold, which captures the leverage effect of positive and negative 

news. The TGARCH model can be shown as follows: 
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ht = γ0 +∑γjut−j
2

q

j=1

+∑δiht−i

p

i=1

+∑θjut−j
2 It−j

q

j=1

 (2.11) 

where the It−1 is set as a dummy variable and shown as: 

It−1 = {
 0    if  u𝑡−𝑗 > 0

  1    if  u𝑡−𝑗 < 0 
 (2.12) 

where the It−1takes the value 1 for the bad news and 0 for the good news. Thus, the positive 

and negative news have different coefficients in the TGARCH model. For the positive news, 

the coefficients are γj, while (γj + θj) are the coefficients of negative news. When θj > 0, this 

conditional variance equation is asymmetric, and the negative news has larger impacts than 

positive news.  

 

2.2.3 Long-Memory GARCH Models 

As Ding et al. (1993) show that asset returns have a long-memory feature, the lags of absolute 

and squared returns decay exponentially in their autocorrelation function. To capture the long-

memory feature, the IGARCH model and CGARCH model are described below. 

 

IGARCH model  

Engle and Bollerslev (1986) develop the Integrated GARCH (IGARCH) model as an extended 

form of the GARCH model with infinity memory. Though empirical results report that the 

summary of two parameters in the GARCH model is closely equal to one, Engle and Bollerslev 

(1986) directly set the IGARCH model follows the condition of  ∑ γt
q
j=1 +∑ δt

p
i=1 = 1 for 

conditional variance. Thus, the γt = 1 − δt in the IGARCH model, the specification of the 

IGARCH model shown as follows: 

ht = γ0 +∑(1 − δ𝑡)ut−j
2

q

j=1

+∑δt

p

i=1

ht−i (2.13) 
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where, the summary of parameters in the IGARCH model is equal to one. To capture volatility 

persistence, the mean of volatility is ultimately stationary and reverts to a constant value in 

IGARCH model.  

 

CGARCH model  

In contrast with the GARCH model, the unconditional variance is constant at all time, which 

is mean reversion. Engle and Lee (1993) develop the component GARCH (CGARCH) model 

to measure conditional variance by decomposing it into long-run and short-run components, 

which allows the mean reversion to a time-varying trend. The specifications of the CGARCH 

model shown as follow: 

ht = qt + α(ut−1
2 − qt−1) + β(ht−1 − qt−1) (2.14) 

 

qt = ω+ ∅(ut−1
2 −ht−1) + ρqt−1 (2.15) 

where the conditional variance ht is mean-reversion with a long-run component qt, and the 

long-run component qt is time-varying and determined by the forecasting error (ut−1
2 −ht−1). 

The speed of the coefficients ∅ and ρ drive the mean-reversion of trend. When ρ > α + β, the 

qt  represents the conditional volatility has a long-run trend. The short-run component of 

conditional variance is the difference between conditional variance and long-run trend, 

(ht−1 − qt−1). If the long-run component qt is constant, the CGARCH model becomes the 

classical GARCH model. 

 

2.2 Microstructure Noise  

The paper of Andersen and Bollerslev (1998) is a response to the mistrust of the GARCH 

model. Several papers point out that although the GARCH model has a good in-sample 

estimation, it cannot account for the variability of daily squared returns when performing out-
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of-sample evaluation (see, e.g., Jorion, 1995 and Figlewski, 1997).  This wrong conclusion has 

been refuted by using the high frequency data, which provides more accurate forecasting 

information than daily squared returns. Andersen and Bollerslev (1998) show that the standard 

GARCH model delivers accurate forecasts using the realised variance. Therefore, the obvious 

poor performance is attributed to the fact that the daily squared returns lack forecasting 

information, and it is a very noisy proxy of conditional variance. In the works of Andersen and 

Bollerslev (1998), the RV can be constructed through the sum of squared intraday returns. 

Theoretically, this approach, which reduces the data frequency from daily interval to 

infinitesimal interval, can converge to a true measure of latent volatility. In practice, this would 

be infeasible due to data storage limitations and the market microstructure noise.  

In theory, traditional economic theory holds that the financial markets are efficient, and 

the prices of the assets reflect all information, which is the true price of the asset (Fama, 1970). 

However, the efficient market hypothesis is not enough to explain the intraday trading 

behaviour in the real financial market. There is a difference between the market intraday prices 

and true prices, which is called the market microstructure noise. The microstructure noise in 

the financial markets can be affected by the discrete asset price (Harris, 1990), bid-ask spread 

(O'Hara, 1995). For the low frequency data (such as daily, weekly or monthly data), the market 

microstructure noise has a negligible impact on volatility. However, for the high frequency 

data, this effect cannot be ignored. 

Assume pt,I is the asset price, which is affected by the microstructure noise, and pt,i
∗  is 

the real asset price, so the pt,I can be shown as the pt,i
∗  and the microstructure noise term, εt,i: 

pt,i = pt,i
∗ + εt,i (2.16) 

Then, the asset return is given as follow: 
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rt,i = pt,i
∗ − pt,i−1

∗ + εt,i − εt,i−1 

= rt,i
∗ + et,i 

(2.17) 

where et,I is the microstructure noise of asset return. Furthermore, the squared intraday return 

with microstructure noise is: 

rt,i
2 =∑(rt,i

∗ )
2

nt

i=1

+ 2∑rt,i
∗  et,i

nt

i=1

+∑(et,i)
2

nt

i=1

 (2.18) 

when n →∞, due to the markets with microstructure noise term, ∑ (et,i)
2nt

i=1  shows the squared 

intraday return cannot converge to the true volatility. Consequently, the influence of 

microstructure noise in the high frequency data becomes more significant as the sampling 

frequency increases. 

The reason why high frequency data perform better is that high frequency data could 

contain more market information; the higher frequency is used, the more information is 

included. However, with the frequency increases, the intraday data will diverge to infinity 

rather than converge to the true volatility (Bandi and Russell, 2008). On other words, because 

of a host of practical market microstructure noise, the RV suffers from a bias problem as 

sampling frequency of intraday data increase. After Andersen and Bollerslev (1998) propose 

the RV, the widespread measurement is selected the suitable frequency sample to trade off the 

microstructure noise and the interval of intraday data. In order to get a more accurate RV 

estimator, Andersen et al. (2000, 2003) recommend using the sampling frequency from 5-

minute to 30-minute to reduce the influence of microstructure noise. Aït-Sahalia et al. (2005) 

discuss the optimal sample frequency in different hypotheses of microstructure noise. Further 

investigation of Liu et al. (2015) finds that the other sampling frequency could not beat the 5-

minute RV.  

At present, besides the RV, four main realised measures are computed by intraday data 

to deal with the influence of microstructure noise. First, the RV is usually calculated based on 
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intraday data sampled moderately at a certain frequency, humans subjectively determine the 

selection of the data frequency. Zhang et al. (2005) propose subsampling ways to calculate the 

average RV. This is a trade-off between bias and variance when choosing a sampling frequency. 

Second, Martens and van Dijk (2006) put forward the realised range-based volatility computed 

by the intraday interval of the high-low range. They show the realised range-based volatility 

has better forecasting ability than RV when using the same sample frequency. Then, the 

Quantile-based realised variance is developed by Christensen et al. (2010); they show the 

Quantile-based realised variance is robust to both jumps, outliers, and microstructure noise. 

Last, Hansen and Lunde (2004, 2006) propose an unbiased estimator that is Realised Kernel 

and Barndorff-Nielsen et al. (2008) improve the Realised Kernel and proposed the Flat-top 

Realised Kernel. These two empirical works show the kernel-based estimators are more 

accurate than the RV. So far, it is still a controversy for intraday volatility to diminish the 

influence of microstructure noise completely. There is no convincing method to solve this 

problem. 

 

2.3 Realised volatility  

An important part of accurately modelling volatility is to measure the “true” volatility. As 

volatility is latent, the daily squared returns lack intraday transaction information and 

microeconomics change. As mentioned in the previous section, the volatility measures tend to 

increase the data frequency to improve forecasting accuracy. In the work of Andersen and 

Bollerslev (1998), the RV is firstly used to construct a new volatility measure, calculated by 

the sum of squared intraday returns. They point out that this measure is less noisy relative to 

the squared return. Since then, the RV dominates the research of high frequency data in 

estimating and forecasting intraday volatility.  



 17 

Specifically, denote the logarithm of an asset price pt  at the time t, and assume pt 

follows a continuous-time stochastic volatility diffusion process: 

dpt = μtdt + σtdWt (2.19) 

where μt and σt represent the drift term and the instantaneous volatility, respectively; Wt is the 

standard Brownian motion. Then, assume the rt,i = pt,i − pt,i−1 , (t = 1,⋯ , T;  i = 1,⋯ , N), 

where T means the total trading days, pt,I means the log assets price at day t and ith intraday 

interval, thus, rt,I means the log assets return at day t and ith intraday interval. So the RV is the 

sum of intraday return: 

RVt =∑(pt,i − pt,i−1)
2

N

i=1

=∑(rt,i)
2

N

i=1

 (2.20) 

Andersen et al. (2003) notice the log of assets return is a local martingale process that integrated 

volatility is the limitation of RV probability if the time intervals are close to zero, the RV is the 

unbiased estimator of the true volatility and the error of RV is close to zero.  As Andersen et 

al. (2003) presented:  

r(t + h, h)|σ{μt+s, σt+s}s∈[0,h]~N(∫ μt+sds
h

0

, ∫ σ2t+sds
h

0

) (2.21) 

where, σ{μt+s, σt+s}s∈[0,h] is the σ-field generated by the {μt+s, σt+s}s∈[0,h].  And ∫ σ2t+sds
h

0
 

is the Integrated Volatility (IV). Consequently, without markets microstructure noise and the 

jumps, the RV converges to integrated volatility, which means RV 
p
→ IV. 

 Apart from RV, the daily square returns have been previously used to measure volatility, 

it is computed by the log difference of daily prices. However, Andersen and Bollerslev (1998) 

point out the poor performance of forecasting model is not a failure of the model itself, but a 

failure to correctly specify the measure of the true measure, so the daily square return is 

considered as a noisy volatility estimator. Alternatively, another measure for modelling 

volatility is the implied volatility, which is obtained from the Black-Scholes option pricing 
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model (Black and Scholes, 1973). The market price of an option is observable, the Black-

Scholes model can be solved backward from the observed prices to derive or imply what the 

market volatility should be. This measure of volatility is called implied volatility, and it is 

usually used as the market's expectation of the volatility of the option maturity date. While 

implied volatility is low frequency volatility, the importance of implied volatility in volatility 

forecasting is found in recent empirical works. (Busch et al. 2011; Oikonomou et al. 2019.  

Jeon et al. 2020 and Kambouroudis, D.S., 2021.) 

 

2.4 Characteristics of Intraday Volatility  

After resolving the preliminary problems of microstructure noise, empirical works try to clarify 

the influential factors to model the intraday data and accommodate regularities. The present 

volatility models are developed based on the basic volatility stylized features. Nonetheless, it 

is still worth concentrating on the daily squared returns, which provides an opportunity to bring 

the traditional volatility model into the high frequency sphere. This section discusses several 

characteristics that are the volatility models frequently consider. 

 

Volatility Clustering  

This characteristic of volatility is visible that can be observed when plotting all data through 

time. A large stock change follows the large stock volatility for a certain time and the low 

volatility is followed by the low volatility (Mandelbort, 1963). Moreover, volatility clustering 

is closely related to other features, which are long memory and high persistence. So, the 

volatility clustering can also be explained by the fact that it can continuously affect the future 

mean for a long time. The volatility clustering motivates the ARCH and GARCH models 

(Engle, 1982, and Bollerslev, 1986), which capture the feature that volatility persists for more 

than one period. 
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Asymmetric Volatility Effects  

The asymmetric volatility effects have been firstly noticed by Black (1976), which refers to the 

volatility of the stock market has a negative relationship with stock return. The negative returns 

lead to high volatility in the stock market. In contrast, the stock price grows when the market 

has low volatility. There are three main explanations for this asymmetric effect: the leverage 

effect, the feedback effect, and the investors' behaviour effect. 

First, Black (1976) and Christie (1982) state that this phenomenon can be explained by 

the firm's leverage effect, which is a primary theory to illustrate the asymmetry. When the stock 

prices of firms decline, the firms with debt and equity will become highly leveraged. In other 

words, the firms become riskier that leads to the value of firms usually falls. Dutt and 

Humphery-Jenner (2013) also indicate that firms with lower volatility have higher operating 

returns, partly explaining why lower volatility provides higher value for firms. In addition, 

Baur and Dimpfl (2019) note that positive and negative market returns could increase volatility. 

However, the negative return plays a stronger role than a positive return. Second, the volatility 

feedback effect suggests a high rate of asset return in the market only occurs when the asset 

price drops, leading to the volatility increase (Engle et al., 1987 and Pindyck, 1984). Third, 

Avramov et al. (2006) indicate the asymmetric volatility is caused by the investment behaviour 

of traders who have not been informed. The herd mentality of non-informed investors can 

easily lead to blind investment, which can increase the volatility when assets price drop, while 

the rational investment behaviour of informed investors reduces the volatility when asset prices 

increase. Empirically, Xiang and Zhu (2014) also find that the behaviours of investors play a 

dominant role in asymmetric volatility. 
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Leptokurtic 

The distribution of asset return is leptokurtic (Mandelbort, 1963; Fama, 1965). This 

phenomenon is also called the fat-tail or thick-tail distribution. The skewness and kurtosis of 

the standard normal distribution are 0 and 3, respectively, but the distribution of asset return 

has higher kurtosis and fatter skewness than the normal distribution. Moreover, this feature is 

suitable for high-frequency data as well. Andersen et al. (2001) examine high-frequency data 

and find the asset return and realised variance has a fatter tail. It is right-skewed, but the 

logarithmic standard deviation is an approximately standard normal distribution.  

 

Long Memory and Volatility Persistence  

According to Ding et al. (1993) and Bollerslev and Mikkelsen (1996), volatility persistence is 

usually described as the long memory feature. The volatility of asset returns has high 

autocorrelation for long lags. The increasing lags decay exponentially in autocorrelation 

function (ACF). Due to varying degrees of the measurement errors in the different asset return, 

there are slight differences for the short-term lags. However, those differences will be 

diminished along with the increase of lags and will show similar patterns and decay rate for 

the long-term lags (Hansen and Lunde, 2014; Tim Bollerslev et al. 2018). After realizing the 

proposed volatility, Andersen et al. (2003) and Lieberman and Philips (2008) consider the long 

memory and high persistence as the fundamental feature of RV. Many empirical works model 

the RV based on this feature (see, e.g., Hol and Koopman, 2002; Andersen et al., 2004 and 

Corsi, 2009). 

 

Macroeconomic Variation  

An assumption of volatility is mean-reversion; the volatility is ultimately stationary and will 

revert to a constant mean (Ding et al., 1993). However, this assumption is controversial. 
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Granger and Ding (1996) and Longin (1997) provide evidence that the persistence of volatility 

is not always consistent. In addition, Granger and Hyung (2004) present evidence that 

occasional breaks affect long memory within the volatility series. The one explanation is 

associated with the business cycle (Hamilton, 1989). The economic recession and expansion 

lead to the cyclical variation in volatility series. Another more convincing interpretation is that 

the mean of volatility change when the macroeconomic policy has been announced and the 

major financial events; thus, there are short-lived high volatility, and the low volatility has 

longer persistence (McAleer and Medeiros, 2008). Therefore, the stylized fact of 

macroeconomic variation empirically motivates the volatility models to incorporate with the 

structure break and regime-switching (Rapach and Strauss, 2008 and McAleer and Medeiros, 

2008).  

 

 Intraday periodicity  

Along with the empirical features usually exhibited in the low frequency data, the intraday 

volatility shows a unique property. The high-frequency volatility is strongly affected by 

intraday periodicity (Andersen and Bollerslev, 1997). More specifically, intraday periodicity 

refers to that, in one trading date, there are more frequent transactions in a short time after 

trading starts and before trading ends. This phenomenon causes the volatility in these two 

periods to be greater than others. So the periodicity of intraday volatility in one day is a U-

shape pattern. However, for intraday data, Martens et al. (2002) suggest that the traditional 

GARCH-type models are not directly applicable to intraday data because the GARCH-type 

models easily distort the periodic pattern of intraday data. 
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2.5 Heterogeneous Market Hypothesis 

After Fama (1970) proposes the Efficient Markets Hypothesis (EMH), which provides a 

theoretical basis for the expected changes of return. According to EMH, all information in the 

market, including historical information, internal information, and public information, can be 

reflected immediately by the asset prices. When new information is released, the asset pricing 

changes depend on investors adjust their estimates of asset prices rationally. However, the 

EMH is a debate currently. Many empirical results cannot be explained reasonably. Bondt and 

Thaler (1975, 1978) use experimental psychology to propose the Overreaction Hypothesis. 

They indicate that most investors tend to overreact to the unexpected and dramatic good news. 

The post losers outperform the market in the following years. Moreover, Jegadeesh and Titman 

(2001) propose the Momentum Strategies that find buying high-return stocks over the past 3 to 

12 months and selling low-return stocks during the same period will perform well in the next 

12 months. Both the Overreaction Hypothesis and Momentum Strategies indicate that the EMH 

cannot explain the real market change very well.  

Notably, Müller et al. (1993) research foreign exchange volatility with different time 

horizons from short to long term and find the different traders have their own expected goals 

in different time horizons. According to those heterogeneous trading behaviours that reflect 

assets prices in the market, Müller et al. (1993) propose the heterogeneous market hypothesis 

(HMH). Since traders in the market dominate market prices, traders have different expectations 

of assets return in the market. They will make different transaction decisions on trading price, 

trading volume, and trading frequency, depending on their trading behaviour. Short-term 

traders react to every market change in real-time, so their trading frequency is very high. Mid-

term traders focus on daily or weekly information to make trading decisions. And long-term 

traders only make adjustments to trading strategies for important news. Therefore, the trader's 

heterogeneous trading behaviour on market information determines the market volatility. 
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According to the HMH by Müller et al. (1993), volatility in different periods reflects 

the different market expectations and the composition of investors' behaviours. The different 

periods of volatility should be utilized to reveal the dynamic changes in the market. Corsi (2009) 

considers the fractional integrated models cannot completely reflect market information and 

proposes the Heterogeneous Autoregression Realised Volatility (HAR-RV) model with daily, 

weekly and monthly horizons of RV, which correspond to different trading behaviours. The 

HAR-RV model is given as: 

𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑑𝑅𝑉𝑡−1 + 𝛽𝑤𝑅𝑉𝑡−5:𝑡−1 + 𝛽𝑚𝑅𝑉𝑡−22:𝑡−1 + 𝑢𝑡 (2.22) 

where the coefficient, 𝛽𝑑 , is the daily lag of RV, 𝛽𝑤  and 𝛽𝑚  are the weekly and monthly 

average lags, calculated as follow: 

𝑅𝑉𝑡+1−ℎ:𝑡 =
𝑅𝑉𝑡 + 𝑅𝑉𝑡−1 + 𝑅𝑉𝑡−2 +⋯+ 𝑅𝑉𝑡−ℎ+1

ℎ
 (2.23) 

The long-memory pattern and heterogeneous trading behaviours in the HAR-RV model are 

reproduced by the sum of the daily, weekly, and monthly volatility components. 

 

2.6 Conclusion and Summary  

As it can be seen, modelling volatility plays an important role in understanding market risk. 

This section reviews various forecasting models, ranging from the basic GARCH model to the 

HAR model and the stylized features of volatility. This review also shows that numerous ways 

of modelling volatility features have their own superiorities. There is no consensus on how to 

obtain the best forecasting model, which leaves gaps for new exploration. The previous works 

of intraday volatility models demonstrate the intraday volatility contains much more market 

information. The RV has replaced daily squared return to model volatility due to it can achieve 

better forecasting performance.  

As discussed above, forecasting RV has become the main direction of current academic 

research, however, so far no generally conclusion has been accepted. With the popularity of 
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the HAR model in recent years, this thesis adopts the stylized features of volatility and extends 

the HAR model to generate forecasting models with more accurate forecasts. Specifically, this 

thesis expands the existing literature in three aspects. First, to improve the forecasting ability, 

the HAR model is used to accommodate more volatility components. However, we do not 

know which one can provide the optimal results. Second, the HAR model has three fixed lag 

structures to capture the volatility persistence. Whether the flexible lags structure or the long 

lags may improve forecasts? Third, macroeconomic variation affects the volatility persistence, 

but most forecasting models are single regime models. Whether the forecasting models that 

allow the regime switch between low and high volatility could be more suitable for the real 

market? 
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Chapter 3 Foresting Realised Volatility: the HAR model with Volatility Jumps, Realised 

Semi-Variance and Leverage Effect 

3.1 Introduction 

The volatility of financial assets has received great attention over recent decades as forecasting 

volatility is an essential part of financial and econometric research. The undertaken research 

reflects that volatility is associated with risk and therefore is crucial to understand within 

business and financial activities. In general, to reduce the investment risk in the financial 

market, investors can use the predicted volatility to adjust their trading strategies and asset 

allocation, while regulators also need to understand potential future volatility to formulate 

appropriate macro-policies. Therefore, modelling and predicting volatility is one of the core 

elements of financial market research.  

After the achievements of the ARCH (Engle, 1982) and GARCH (Bollerslev, 1986) 

model on low-frequency data, the Realised Volatility (RV) model based on high-frequency 

data was provided by Andersen and Bollerslev (1998) as an unbiased estimator. The high-

frequency data could contain more information than daily data, although the high-frequency 

data could be affected by the microstructure noise. Corsi (2009) propose the Heterogeneous 

Autoregressive of Realised Volatility (HAR-RV) model to forecast RV, which could capture 

the long-memory and fat-tail characteristics of volatility. 

Consequently, the HAR-RV model is used in recent research widely to forecast RV. A 

growing amount of empirical literature has concentrated on investigating the forecasting 

accuracy of RV components in the HAR model, and thus many extension HAR models that 

depend on characteristics of RV have been generated. The most common components include 

discontinuous jump, which is influenced by the market news. As a result, Andersen et al. (2007) 

and Corsi et al. (2010) add the jump and continuous components into the HAR model. To 

capture the asymmetric effect of RV, Barndorff-Nielsen et al. (2008) and Patton and Sheppard 
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(2015) propose the signed jump variance and added signed parameters into the HAR model. 

Apart from the signed jump, Corsi et al. (2012) add negative returns into the HAR model to 

investigate the asymmetric effect.  

Several issues arise from the existing empirical papers. First, there is no clear evidence 

across international indices to show which volatility components contain superior forecasting 

information of RV models. Second, the different horizons of investment decisions, which 

volatility components are appropriate over different forecasting horizons, corresponding to the 

long-term and short-term investing strategies. Third, the question of whether the superior 

volatility model can remain unchanged for the choice of loss function used in forecast 

evaluation. 

Therefore, the aim of this chapter is to make an empirical comparison of three 

additional components in the basic HAR model, namely volatility jumps, realised semi-

variance, and leverage effect. These three components are reported to have good forecasting 

performance in separate previous works (e.g. Andersen et al., 2007; Patton and Sheppard, 2015 

and Corsi et al., 2012). To obtain a more specific assessment of each volatility component, this 

chapter extends three different models for every component based on existing works5. Further, 

this chapter employs various forecasting evaluations to assess the forecasting performance of 

the models, including symmetric loss functions, asymmetric loss functions, pairwise 

comparisons and equal predictive ability tests.  

In the preview of the results, this chapter highlights that the leverage effect incorporated 

into the HAR-RV model can provide superior performance over daily, weekly and monthly 

horizons. There seems to be a slight improvement in considering more sophisticated HAR-RV 

models with realised semi-variance, as well as the signed jumps. However, taking into account 

 
5 To the best of my knowledge previous studies that those extensions are the most commonly used in the empirical 

works of these three additional components. (e.g., Sevi, 2014; Bucic and Gisler, 2017 and Horpestad et al., 2019.) 
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the jumps with the HAR models, the forecasting performance is the worst, which means the 

volatility jumps contain limited forecasting information. Moreover, for the overpredictions and 

underpredictions in each model, the asymmetric forecasting errors are broadly mixed, and there 

are no volatility components that can dominate. 

The rest of the chapter proceeds as follows. Section 2 provides a review of relevant 

literature. Section 3 introduces the HAR-type models considered in this chapter and the 

methodology of forecasting evaluation. The data description and empirical findings of in-

sample estimation and out-of-sample forecasting are presented in section 4 and 5. The 

conclusions are provided in section 6. 

 

3.2 Literature Review  

It is widely acknowledged that the daily returns of financial assets are difficult to predict, but 

the volatility of the assets returns are relatively predictable. Volatility is not observed directly. 

Thus the volatility forecasting models are based on the characteristics of volatility, such as 

volatility clustering, asymmetric effects and long memory. Since the ARCH (Engle, 1982) and 

GARCH (Bollerslev, 1982) models have been introduced, the GARCH model and its 

extensions obtained remarkable achievement in modelling and forecasting the volatility.   

 

Realised Volatility  

One of the main drawbacks of using daily squared returns is that they are noisy, to solve this 

shortage, Andersen and Bollerslev (1998) first propose the RV by using high-frequency data, 

conducting their calculations using the sum of squared intraday returns in a trading day. 

Moreover, based upon the evidence of Meddahi (2002) and Andersen et al. (2003), they notice 

that without market microstructure noise and the jumps, the RV converges to integrated 

volatility. Following this finding, the empirical evidence is increasingly concentrated on RV.  
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The high-frequency data could contain more information than daily data, although the 

high-frequency data could be affected by the microstructure noise. The widespread 

measurement to reduce the influence of microstructure noise is to select the optimal sampling 

frequency. Andersen et al. (2000, 2003) and Bandi et al. (2008) recommend using the sampling 

frequency from five-minutes to 30-minutes. Further investigation of Liu et al. (2015) finds that 

other frequency RV could not beat five-minute frequency RV. In addition to the deal with 

microstructure noise, there are other approaches for estimating integrated volatility such as the 

realised kernel (Hansen and Lunde, 2004, 2006; and Barndorff-Nielsen et al., 2008), realised 

range-based volatility (Martens and van Dijk, 2007), subsampling ways of realised volatility 

(Zhang et al., 2005) and quantile-based realised variance (Christensen et al., 2010). 6 

 

The HAR Model  

According to the Heterogeneous Market Hypothesis of Müller et al. (1997), the volatility of 

assets return is affected by different trading behaviours and trading expectations at different 

investment horizons, which could reveal the dynamic change in the market. Given this, Corsi 

(2009) proposes the HAR model, which assumes that there are three fundamental trading 

horizons based upon daily, weekly and monthly periods, which correspond to short-, medium- 

and long-term investing behaviours. Thus, each trading behaviour affects volatility and can 

capture the long memory feature of volatility. The HAR model has a simple auto-regressive 

structure of RV with economically meaning. Corsi et al. (2008) compare the HAR model with 

other long memory models, ARFIMA model, and consider that the fractional integrated models 

cannot completely reflect market information and the HAR model might be more suitable for 

the long memory feature of RV. The HAR model has been widely employed in recent years 

because not only can it be simply estimated using the OLS approach, but it reproduces the 

 
6 More details can be found in Section 2.2.  
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persistence and incorporates the long-memory feature with economic meanings. Therefore, the 

basic HAR model allows for the various extensions to accommodate volatility characteristics.  

 

Volatility Jumps   

The assets price occurs in large changes in a short period of time in some cases, which is called 

volatility jumps, and the volatility jumps are usually related to the news announcement in the 

market. The normal news and important news have different influences on the volatility of 

assets return: the normal news makes the assets return changes in the markets smoothly, but 

the important news causes unusual huge changes in the market that are the volatility jumps 

(Maheu and McCurdy, 2004). Since Aït-Sahalia (2004) considers that the continuous-time 

model of volatility is composed of continuous parts and discrete finite large jumps, as per the 

volatility measurement of Bipower Variation (BPV) proposed by Barndorff-Nielsen and 

Shephard (2004, 2006), the jump components are computed as the positive part of the 

difference between 𝑅𝑉𝑡 and 𝐵𝑃𝑉𝑡. In order to detect the volatility jump-diffusion, the Z Test 

(Huang and Auchen, 2005) and C_TZ Test (Corsi et al., 2010) are developed to identify the 

discontinuous jump variation. The Z test and the C_TZ test have the same predictive ability 

when there is no jump, but the Z test does not recognize the jump if the jump is continuous. 

Therefore, some parts of the continuous jump are included in the continuous component of the 

volatility that leads the Z test to underestimate the predictive power (Corsi et al., 2010).  

For the empirical works of volatility jump in the HAR model, Andersen et al. (2007) 

initially propose the HAR-RV-J model and HAR-RV-CJ model, which incorporated the jump 

and continuous components. They employ those two models on three different financial assets, 

and both of those models outperform the basic HAR-RV model. Andersen et al. (2011) 

consider the jump and continuous component, as well as the overnight return variance 

following the GARCH process. The evidence surrounding volatility jumps is controversial. 
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Some evidence finds the jumps have a statistically significant impact on the estimation and 

prediction of volatility, which can improve the forecasting performance of RV (e.g. Andersen 

et al., 2007; Dumitru and Urga 2012; Maneesoonthorn et al. 2017; Liu et al., 2018); however, 

some also find that the persistence of volatility is not affected by the jumps and has limited 

forecasting ability (e.g. Sevi, 2014; Prokopczuk et al., 2016; Bucic and Gisler, 2017; Baur and 

Dimphl, 2019). In particular, Bucic and Gisler (2017) find the jump and continuous component 

is only important for the American market and has limited predictive power for many 

international equity markets.  

 

Realised Semi-Variance  

Although the continuous parts and discrete finite jumps constitute the volatility in the markets 

(Aït-Sahalia, 2004), the jumps cannot capture the significant effect of returns. Ang et al. (2006) 

consider the semi-variance in the asset pricing model and illustrate its relevance in financial 

asset pricing. To capture the sign effect of intraday returns, Barndorff-Nielsen et al. (2008) 

refer to the works of Aït-Sahalia (2004) to decompose the RV into downside realised semi-

variance and upside realised semi-variance, which depends on the sign of intraday returns. And 

they find the downside RV could provide more informative forecasts than the normal RV. 

Taking the analysis of Barndorff-Nielsen et al. (2008) one step further, Patton and Sheppard 

(2015) propose the signed jump variation which is calculated by the difference between 

positive and negative semi-variance, as well as decomposed the signed jump into negative and 

positive parts, finding that volatility has a strong relationship with negative jumps and that 

negative jumps cause higher volatility than positive jumps.  

Therefore, those signed parameters have provided new insight into sign effect for 

forecasting volatility. As for the empirical evidence of semi-variance and signed jump, those 

new parameters having better forecasting estimation depends on the in-sample forecast.  Recent 
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papers indicate that the realised semi-variance and the signed jump contain more information 

for forecasting the volatility than the discontinuous jump (Sevi, 2014; Wen et al., 2016; Fang 

et al., 2017; Kilic and Shaliastovich, 2019). Furthermore, the negative realised semi-variance 

has better predictive power than positive semi-variance (Patton and Sheppard, 2015) 

 

Leverage Effect 

The asymmetric volatility effects first noticed by Black (1976) and Christie (1982) and refer to 

the volatility of the stock market having a negative relationship with the stock return. In other 

words, when the stock prices of a firm decline, the firm's debt and equity will become highly 

leveraged and riskier, leading to the value of the firm typically falling. Moreover, the other two 

explanations of the leverage effect are the feedback effect and the investors' behaviours: first, 

Engle et al. (1987) and Pindyck (1984) note the volatility feedback effect that suggests there is 

a high rate of asset return in the market that only occurs when the asset price drop, so that this 

effect leads to volatility increasing; and second, Avramov et al. (2006) posit that the main 

reason for asymmetric volatility is the investment behaviour of traders who have not informed.  

Regarding recent literature on RV, Christensen et al. (2015) and Baur and Dimpfl (2019) 

note that negative return appears to be strongly affected by the positive return. Due to one of 

the main volatility features being asymmetric volatility effects, the empirical evidence of 

leveraged HAR model is a simplified modification that incorporates only the negative returns. 

Corsi et al. (2012), Asai et al. (2012) and Patton and Sheppard (2015) provide the Leveraged 

HAR-RV model, not only for the lagged average RV at the different horizons, but also the 

lagged negative returns over each horizon. Those leveraged models do improve the forecasting 

capacity and show that leveraged parameters have a negative relationship with RV and strongly 

improve the forecasting ability. Empirically, the leveraged HAR model leads to more accurate 
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volatility forecasts (e.g. Souček and Todorova, 2014; Buncic and Gisler, 2017; Horpestad et 

al., 2019). 

 

3.3 Empirical Methodology 

The calculations of volatility components and all the forecasting models are presented in this 

section. This section starts with a description of the basic HAR model, then introduce the 

extension models with the jump and continuous components, realised semi-variance and the 

leverage effect. To examine the forecasting accuracy, the symmetric loss function, asymmetric 

loss functions, the Diebold-Mariano test and Model Confidence Set test are introduced at the 

end.   

 

3.3.1 Empirical Models  

HAR model  

According to the calculation method of the RV by Andersen and Bollerslev (1998), assume the 

rt,i = pt,i − pt,i−1 , (t = 1,⋯ , T;  i = 1,⋯ , N) , where T means the total trading days, pt,I 

means the log assets price at day t and 𝑖th intraday interval, thus, rt,I means the log assets return 

at day 𝑡 and 𝑖th intraday interval. Therefore, the RV on trading day 𝑡 (RVt) can be calculated 

as: 

RVt =∑(rt,i)
2

n

i=1

 (3.1) 

where the n is the number of intraday returns in day 𝑡. Based on the heterogeneous market 

hypothesis, the HAR-RV model (Corsi, 2009) is given as: 

𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑑𝑅𝑉𝑡−1 + 𝛽𝑤𝑅𝑉𝑡−1:𝑡−5 + 𝛽𝑚𝑅𝑉𝑡−1:𝑡−22 + 𝑢𝑡 (3.2) 

where the coefficients, 𝛽𝑑 , 𝛽𝑤 and 𝛽𝑚, can be estimated using the OLS method, in which the 

weekly and monthly averages of RV are calculated as:  
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𝑅𝑉𝑡−1:𝑡−5 =
1

5
∑𝑅𝑉𝑡−𝑖

5

𝑖=1

 (3.3) 

𝑅𝑉𝑡−1:𝑡−22 =
1

22
∑𝑅𝑉𝑡−𝑖

22

𝑖=1

 (3.4) 

The HAR model predicts future volatility using daily, weekly and monthly lagged average of 

RV. Apart from the original HAR model, the chapter employs several extensions of the HAR-

RV model to carry out the modelling estimation and volatility comparison.  

 

HAR model with jumps and continuous components  

To obtain the robust jumps, this chapter follows the jump-diffusion process of Barndorff-

Nielsen and Shephard (2004, 2006). The logarithm of an asset price is denoted by 𝑝𝑡 at the 

time t, while 𝑝𝑡 is assumed to follow a continuous time stochastic volatility diffusion process: 

𝑑𝑝𝑡 = 𝜇𝑡𝑑𝑡 + 𝜎𝑡𝑑𝑊𝑡 + 𝑘𝑡𝑑𝑞𝑡 (3.5) 

where 𝜇𝑡 and 𝜎𝑡 are the drift and instantaneous volatility, 𝑊𝑡 is standard Brownian motion, 𝑞𝑡 

is a counting process with time-varying intensity and 𝑘𝑡 = 𝑝𝑡 − 𝑝𝑡−1 refers to the size of the 

discrete jump process. The Quadratic Variation (QV) of the assets price 𝑝𝑡 is shown as follows: 

𝑄𝑉 = ∫ 𝜎2(𝑠)𝑑𝑠
𝑡

0

+ ∑ 𝑘2(𝑠)

0<𝑠≪𝑡

 (3.6) 

where ∫ 𝜎2(𝑠)𝑑𝑠
𝑡

0
 on the right side is the integrated variance of the continuous components, 

and the second term,  ∑ 𝑘2(𝑠)0<𝑠≪𝑡  , is the squared jump component between 0 to 𝑡. In other 

words, the QV is separated into its continuous and jump components. Meanwhile, Barndorff-

Nielsen and Shephard (2004, 2006) note that, when 𝑛 → ∞, the RV is a consistent estimator of 

QV which can be written as: 

𝑅𝑉𝑡 =∑(𝑟𝑡,𝑖)
2

𝑛

𝑖=1

→ ∫ 𝜎2(𝑠)𝑑𝑠
𝑡

0

+ ∑ 𝑘2(𝑠)

0<𝑠≪𝑡

, 𝑤ℎ𝑒𝑛 𝑛 → ∞  (3.7) 
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Then, they set the continuous components in the QV which can be estimated by the Bi-power 

Variation (BPV). The BPV is shown as: 

𝐵𝑃𝑉𝑡 = √
𝜋

2
∑|𝑟𝑡,𝑖||𝑟𝑡,𝑖−1|

𝑛

𝑖=2

→ ∫ 𝜎2(𝑠)𝑑𝑠
𝑡

0

, 𝑤ℎ𝑒𝑛 𝑛 → ∞  (3.8) 

So the jump components can be calculated using the difference between the 𝑅𝑉𝑡 and 𝐵𝑃𝑉𝑡 and  

due to the difference between two estimators potentially being negative, Nielsen and Shephard 

(2004) and Andersen et al. (2007) suggest using the positive value as the jumps. Therefore, the 

jumps in the RV can be calculated as: 

𝐽𝑡 = 𝑅𝑉𝑡 − 𝐵𝑃𝑉𝑡 

= max(𝑅𝑉𝑡 − 𝐵𝑃𝑉𝑡 , 0) 
(3.9) 

Subsequently, as the volatility is composed of continuous parts and discrete finite jumps, 

Andersen et al. (2007) decompose the RV into jump variation and continuous variation, which 

is 𝑅𝑉𝑡 = 𝐽𝑡 + 𝐶𝑡. Therefore, the continuous components can be calculated using: 

𝐶𝑡 = 𝑅𝑉𝑡 − 𝐽𝑡 

= 𝑅𝑉𝑡 −max(𝑅𝑉𝑡 − 𝐵𝑃𝑉𝑡, 0) 
(3.10) 

 

To incorporate the jumps with the HAR model, Andersen et al. (2007) add the one 

lagged jump component into the HAR-RV model as an explanation estimator and proposed the 

HAR-RV-J model. They find the jump component in this model negative and statistically 

significant.  The model is shown as follows:  

𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑑𝑅𝑉𝑡−1 + 𝛽𝑤𝑅𝑉𝑡−1:𝑡−5 + 𝛽𝑚𝑅𝑉𝑡−1:𝑡−22 + 𝛽𝑗𝐽𝑡−1 + 𝑢𝑡 (3.11) 

Furthermore, the HAR-RV-CJ model is also proposed by Andersen et al. (2007). They add the 

jump and continuous components, respectively, and separate at daily, weekly and monthly 

horizons. So the HAR-RV-CJ model is given by: 
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𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑐𝑑𝐶𝑡−1 + 𝛽𝑐𝑤𝐶𝑡−1:𝑡−5 + 𝛽𝑐𝑚𝐶𝑡−1:𝑡−22 + 𝛽𝑗𝑑𝐽𝑡−1

+ 𝛽𝑗𝑤𝐽𝑡−1:𝑡−5 + 𝛽𝑗𝑚𝐽𝑡−1:𝑡−22 + 𝑢𝑡 
(3.12) 

Inspired by the HAR-RV-J model, the HAR-CJ model is the new specification where this 

chapter considers that the jump component is only provided by the daily horizon, which is 

integrated the main content of HAR-RV-J and HAR-RV-CJ model. So the HAR-CJ model is 

shown as: 

𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑐𝑑𝐶𝑡−1 + 𝛽𝑐𝑤𝐶𝑡−1:𝑡−5 + 𝛽𝑐𝑚𝐶𝑡−1:𝑡−22 + 𝛽𝑗𝑑𝐽𝑡−1 + 𝑢𝑡 (3.13) 

  

HAR model with realised semi-variance  

To examine the potential asymmetric effect of RV, Barndorff-Nielsen et al. (2008) decompose 

the realised variance into downside realised semi-variance (RSV-) and upside realised semi-

variance (RSV+) corresponding to the daily bad and good RV, and thus the RSV- and RSV+ 

are calculated as the sum of positive and negative intraday returns in a day, respectively, which 

is given as: 

𝑅𝑉 = 𝑅𝑆𝑉+ + 𝑅𝑆𝑉− (3.14) 

𝑅𝑆𝑉− =∑𝑟𝑡,𝑖
2𝐼(𝑟𝑡,𝑖 < 0)

𝑛

𝑖=1

 (3.15) 

𝑅𝑆𝑉+ =∑𝑟𝑡,𝑖
2𝐼(𝑟𝑡,𝑖 > 0)

𝑛

𝑖=1

 (3.16) 

where 𝐼(. ) denotes the indicator variable. Besides the RSV, Barndorff-Nielsen et al. (2008) 

defined the signed jump variance (SJV), which is calculated by the difference between the 

RSV- and RSV+: 

SJV2 = RSV+ − RSV− (3.17) 

Moreover, Patton and Sheppard (2015) divide the signed jump variance and propose the 

positive jumps and negative jumps. The signed jumps variances are provided as follows: 
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𝑆𝐽𝑉2+ = (𝑅𝑆𝑉+ − 𝑅𝑆𝑉−)𝐼{(𝑅𝑆𝑉+ − 𝑅𝑆𝑉−) > 0} (3.18) 

𝑆𝐽𝑉2− = (𝑅𝑆𝑉+ − 𝑅𝑆𝑉−)𝐼{(𝑅𝑆𝑉+ − 𝑅𝑆𝑉−) < 0} (3.19) 

For the empirical models with RSV, Patton and Sheppard (2015) incorporate the RSV 

to HAR model and provide the HAR-PS model, which only decomposed the one-lagged RV 

into the negative semi-variance and positive semi-variance, shown as:  

𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑑
+𝑅𝑆𝑉𝑡−1

+ + 𝛽𝑑
−𝑅𝑆𝑉𝑡−1

− + 𝛽𝑤𝑅𝑉𝑡−1:𝑡−5 + 𝛽𝑚𝑅𝑉𝑡−1:𝑡−22 + 𝑢𝑡 (3.20) 

For the HAR model with signed jump variance, Patton and Sheppard (2015) also provide the 

HAR-RV-SJV model. It decomposes the daily horizon RV into one-lagged negative and 

positive signed jumps variances and the continuous component. 

𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑗
+𝑆𝐽𝑉𝑡−1

+ + 𝛽𝑗
−𝑆𝐽𝑉𝑡−1

− + 𝛽𝑐𝐶𝑡−1 + 𝛽𝑤𝑅𝑉𝑡−1:𝑡−5 + 𝛽𝑚𝑅𝑉𝑡−1:𝑡−22

+ 𝑢𝑡 

(3.21) 

Additionally, to capture the positive and negative semi-variance with different horizons based 

on the heterogeneous structure of the market, Patton and Sheppard (2015) decompose semi-

variances into different lags, which is HAR-RSV shown as follows: 

𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑑
+𝑅𝑆𝑉𝑡−1

+ + 𝛽𝑑
−𝑅𝑆𝑉𝑡−1

− + 𝛽𝑤
+𝑅𝑆𝑉𝑡−1:𝑡−5

+ + 𝛽𝑤
−𝑅𝑆𝑉𝑡−1:𝑡−5

−

+ 𝛽𝑚
+𝑅𝑆𝑉𝑡−1:𝑡−22

+ + 𝛽𝑚
−𝑅𝑆𝑉𝑡−1:𝑡−22

− + 𝑢𝑡 

(3.22) 

       

HAR model with leverage effect  

Asai et al. (2012) mention the leveraged HAR-RV model, which is based on the HAR model 

of Corsi (2009), they add the negative value of daily return 𝑟𝑡
− as a leveraged parameter into 

HAR-RV model and separated it at the different horizons. Furthermore, inspired by Horpestad 

et al. (2019), who only use the one-lagged negative return as the leverage factor, this chapter 

generates another new specification of LHAR-RV with only a one-lagged negative return. 

Therefore, this chapter classifies these two models as LHAR-RV1 and LHAR-RV2 model, 

which are shown as follows: 
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𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑑𝑅𝑉𝑡−1 + 𝛽𝑤𝑅𝑉𝑡−1:𝑡−5 + 𝛽𝑚𝑅𝑉𝑡−1:𝑡−22 + 𝛽𝑙𝑑𝑟𝑡−1
− + 𝑢𝑡 (3.23) 

𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑑𝑅𝑉𝑡−1 + 𝛽𝑤𝑅𝑉𝑡−1:𝑡−5 + 𝛽𝑚𝑅𝑉𝑡−1:𝑡−22 + 𝛽𝑙𝑑𝑟𝑡−1
− + 𝛽𝑙𝑤𝑟𝑡−1,𝑡−5

−

+ 𝛽𝑙𝑚𝑟𝑡−1,𝑡−22
− + 𝑢𝑡 

(3.24) 

And Corsi et al. (2012) provide the LHAR-RV-CJ model which separates the jump, continuous 

and leveraged components, respectively, with each three-lagged components having different 

forecasting horizons: 

𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑐𝑑𝐶𝑡−1 + 𝛽𝑐𝑤𝐶𝑡−1:𝑡−5 + 𝛽𝑐𝑚𝐶𝑡−1:𝑡−22 + 𝛽𝑗𝑑𝐽𝑡−1 + 𝛽𝑗𝑤𝐽𝑡−1:𝑡−5

+ 𝛽𝑗𝑚𝐽𝑡−1:𝑡−5 + 𝛽𝑙𝑑𝑟𝑡−1
− + 𝛽𝑙𝑤𝑟𝑡−1,𝑡−5

− + 𝛽𝑙𝑚𝑟𝑡−1,𝑡−22
− + 𝑢𝑡 

(3.25) 

 The Appendix 1 from Appendix provides a table summing up the all model 

specifications in this chapter. 

 

3.3.2 Evaluation Methodology 

As for the loss function, there are many ways to evaluate and compare the accuracy of the 

different forecasting models. However, it is not obvious which loss function is more 

appropriate. Thus, the four loss functions which are commonly used in the empirical research 

are employed in this chapter, including Mean Absolute Error (MAE), Mean Squared Error 

(MSE), Quasi-Likelihood (QLIKE) and the adjusted R2 of Mincer-Zarnowitz regressions. In 

addition, Patton (2011) indicates that QLIKE and MSE are the most robust loss functions for 

heteroscedasticity. The four loss functions this chapter uses are shown as follows: 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑅𝑉𝑡 − 𝑅𝑉�̂�|

𝑛

𝑡=1

 (3.26) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑅𝑉𝑡 − 𝑅𝑉�̂�)

2
𝑛

𝑡=1

 (3.27) 

𝑄𝐿𝐼𝐾𝐸 =
1

𝑛
∑(log( 𝑅𝑉�̂�) +

𝑅𝑉𝑡

𝑅𝑉�̂�
)

𝑛

𝑡=1

 (3.28) 
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𝑅𝑉𝑡 = 𝑎0 + 𝑎1𝑅𝑉�̂� + 𝜖𝑡  (3.29) 

The actual volatility is denoted as 𝑅𝑉𝑡, and the volatility forecast obtained is indicated by 𝑅𝑉�̂�.  

However, these errors of loss functions above are assumed to be symmetric. In practice, 

not all investors need to treat the underpredictions and overpredictions of volatility equally. 

For example, as the volatility of the underlying asset is positively correlated with the call option 

price, the underpredicted volatility will lead to the decline of the call option price, and so the 

sellers pay more attention to the underpredictions. In contrast, the overpredicted volatility is 

more likely to attract the attention of the buyer than seller. To account for the potential 

asymmetry of error statistics in the loss function, this chapter also employs the mean mixed 

error (MME) of underpredictions and overpredictions (Brailsford and Faff, 1996 and McMillan 

et al., 2000).  

𝑀𝑀𝐸(𝑈) =
1

𝑛
[∑|𝑅𝑉𝑡 − 𝑅𝑉�̂�|

𝑂

𝑡=1

+∑√|𝑅𝑉𝑡 − 𝑅𝑉�̂�|

𝑈

𝑡=1

] (3.30) 

𝑀𝑀𝐸(𝑂) =
1

𝑛
[∑√|𝑅𝑉𝑡 − 𝑅𝑉�̂�|

𝑂

𝑡=1

+∑|𝑅𝑉𝑡 − 𝑅𝑉�̂�|

𝑈

𝑡=1

] (3.31) 

where the O means the number of over-prediction observations and U means the number of 

underprediction observations among the out-of-sample forecasts. The underpredictions are 

penalized more heavily in MME (U) and over-predictions are penalized heavily in MME (O). 

Next, this chapter employs the pairwise comparison of the Diebold-Mariano (DM) test 

(Diebold and Mariano, 1995). The use of this forecasting evaluation test is to compare the 

forecasting ability of two forecasting models, which requires a loss function that is a measure 

of the difference between the RV and the forecast value in the out-of-sample period.  Harvey 

et al. (1997) propose the modified DM test as it is an approximately unbiased measurement 

beyond one-step ahead forecasting in terms of mean squared prediction error. Notably, Diebold 

(2015) indicates that the estimation errors of the DM test decrease with the expanding out-of-
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sample size, which generate the pseudo-out-of-sample. Nonetheless, the original DM test fared 

well as it provides direct comparative information from historical predictive performance. The 

loss function of the DM-test is defined as:  

𝑋𝑡;𝑗
(𝐴,𝐵) = 𝐿𝑡;𝑙

(𝐴) − 𝐿𝑡;𝑙
(𝐵) (3.32) 

where the A, B are two compared models, and  𝐿𝑡;𝑙
(𝐴)

 and 𝐿𝑡;𝑙
(𝐵)

 are the loss function of each model. 

Then the DM statistic is given by: 

𝐷𝑀 =
�̅�𝑡=1,2,…,𝑡;𝑙
(𝐴,𝐵)

∑ �̂�

√𝑛

 (3.33) 

The  ∑ 𝜏 ̂ is the standard deviation of  �̅�𝑡=1,2,…,𝑡;𝑙
(𝐴,𝐵)

. The statistics follow a standard normal 

distribution and allow for easy comparison of model pairs at each horizon. Thus this chapter 

compares the forecasting ability of every two HAR-type models, and the loss function used is 

the mean squared error. 

Selecting the best optimal model which could adequately describe the data generating 

process from several alternative models produces the issue about selecting the optimality 

criterion. Besides loss function, Hansen and Lunde (2005) propose the superior predictive 

ability test to compare the model's model accuracy. However, due to the superior predictive 

ability test having to select a model as a benchmark, the benchmark selection would affect the 

comparison results directly. Thus, this chapter considers the Model Confidence Set (MSC) test 

developed by Hansen et al. (2011). The MSC test utilizes the bootstrap implementation and 

removes the worst model sequentially according to the rejection of the null hypothesis of equal 

predictive ability (EPA). The specific process of MCS is introduced as follows. First, assume 

there are 𝑚0  alternative forecasting models to be tested, so  𝑀0 = {1, 2 ,⋯ ,𝑚0} . Let 

𝑑𝑖𝑗,𝑡 demote the loss function differences between any two models at time 𝑡: 

𝑑𝑖𝑗,𝑡 = 𝑙𝑖,𝑡 − 𝑙𝑗,𝑡   (𝑖, 𝑗 ∈ 𝑀0) (3.34) 
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Second, the MSC test is a process that sequentially removes the worst forecasting model 

from 𝑀0. Thus, in each step, the null hypothesis is set as any two models that have EPA: 

𝐻0,𝑀: 𝐸(𝑑𝑖𝑗,𝑡 = 0),   𝑓𝑜𝑟 𝑎𝑙𝑙  𝑖, 𝑗 ∈ 𝑀0 (3.35) 

𝐻𝐴,𝑀: 𝐸(𝑑𝑖𝑗,𝑡 ≠ 0),   𝑓𝑜𝑟 𝑠𝑜𝑚𝑒  𝑖, 𝑗 ∈ 𝑀0 (3.36) 

Third, in each step of the MSC test, if the null hypothesis of EPA is rejected at a certain 

significant level, the worst foresting model would be removed sequentially until the null 

hypothesis of EPA is accepted. However, there is one drawback in this test: the prediction 

ability of any two forecasting models need to recalculate the test statistics at every step of the 

process. In order to overcome this shortage, Hansen et al. (2011) construct the Range Statistics 

and Semi-Quadratic Statistics to test the hypotheses above, and the two tests are shown as 

follows: 

𝑇𝑅 = max
𝑖,𝑗 ∈𝑀0

||
�̅�𝑖,𝑗

√𝑣𝑎�̂�(�̅�𝑖,𝑗)

||   𝑎𝑛𝑑  𝑇𝑆𝑄 = ∑
(�̅�𝑖,𝑗)

2

𝑣𝑎�̂�(�̅�𝑖,𝑗)𝑖,𝑗 ∈𝑀0

 (3.37) 

where �̅�𝑖,𝑗  is the mean value of the loss functions difference, calculated as �̅�𝑖,𝑗 =
1

𝑀
∑𝑑𝑖𝑗,𝑡 . 

Finally, though sequentially removing the worst model, the �̂�0 is a subset of models which 

contains the surviving models from 𝑀0.  

 

3.4 Data  

All the high frequency data and daily returns are obtained from the Oxford-Man Institute of 

Quantitative Finance. To deal with the influence of microstructure noise, this chapter employs 

the five-minute RV data for the eight international indices7, including the UK (FTSE), Japan 

 
7 This chapter relies on a common 5-minute sampling frequency for all indices. This choice directly mirrors the 

sampling frequency used in much of the existing realized volatility literature. The empirical study by Liu et al. 

(2015), comparing more than 400 different RV estimators across multiple asset, concludes that it is difficult to 

significantly beat 5-mintue RV.  
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(N225), the US (SPX), Germany (DAX), China (SSEC), India (NSEI), Brazil (BVSP) and 

Mexico (MXX). The data sample includes both developed countries and emerging countries, 

since the majority of empirical work concentrates on developed markets. The RV and returns 

are obtained over the 15-year sample size ranging from 1st January 2003 to 31st December 

2017. The total data are divided into the five-year in-sample estimation period (1st January 

2003 to 31st December 2007) and 10-year out-of-sample forecasting period (1st January 2008 

to 31st December 2017).  

Table 3.1 is the descriptive statistics results of all variables for eight indices, including 

daily realised volatility (RV), jump and continuous components (J and C), negative and 

positive realised semi-variance (RSV- and RSV+), negative and positive signed jump variance 

(SJV- and SJV+), and daily negative return (R-). The RV of all indices exhibit a non-normal 

distribution with excess kurtosis and are right-skewed. The one special series is the RV of 

SSEC with the highest skewness and the smallest kurtosis exhibiting a fatter tail than other 

series. The statistics of the Jarque-Bera test for all variables are statistically significant at the 

1% level, which shows all the data do not follow a normal distribution. The last column 

presents the results of the augmented Dickey-Fuller test, which shows that all variables 

significantly reject the null hypothesis of a unit root at a confidence interval of 99%, and thus 

every series is stationary and allows for further modelling analysis.  

 

3.5 Empirical Results 

The forecasts are generated from all considered forecasting models under both rolling window 

and recursive approaches. The out-of-sample period is from 1st January 2008 to 31st December 

2017. All forecasting models produce the RV forecasts over the daily, weekly, and monthly 

horizons. To produce the multi-step-ahead forecast for the long-term horizon, this chapter 

simply replaces the data frequency of the volatility model. In other words, to replace 𝑅𝑉𝑡+1 on 
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the lift-head side over the forecasting horizon h, say  𝑅𝑉𝑡+ℎ
ℎ =

1

ℎ
∑ 𝑅𝑉𝑡−ℎ+𝑖
ℎ
𝑖=1 , thus  ℎ =

1, 5 𝑎𝑛𝑑 228. First, the forecasts are evaluated by the symmetric loss functions, including MSE, 

MAE, QLIKE and the adjusted R2 of Mincer-Zarnowitz regressions, as well as the MME (O) 

and MME (U) to account the potential asymmetry of forecasting error. Second, the DM test 

using MSE criteria is employed to compare the forecasting performance between every two 

models. Last, the MCS in terms of MSE criteria is used to select the optimal models with EPA.  

 

3.5.1 Symmetric Forecast Error Results  

Table 3.2, 3.3, 3.4 and 3.5 report the statistics of the MSE, MAE, QLIKE and the adjusted R2 

of Mincer-Zarnowitz regressions using the rolling window, respectively, for all indices 

sampled over daily, weekly, and monthly frequencies (h = 1, 5 and 22). Overall, according to 

the results of symmetric error, the rolling window approach obtains more accurate forecasts 

than the recursive method.  

Table 3.2 shows the MSE comparison results. For the one-day-ahead forecast, the 

LHAR-RV-CJ model performs the best for almost every series, except for the BVSP. The 

HAR-RV-J model performs worse than the basic HAR model. For the one-week-ahead forecast, 

the LHAR-RV2 model produces the best forecasting performance for three indices, FTSE, SPX 

and DAX. The LHAR-RV1 model and HAR-RSV model also have good forecast ability. Again, 

the LHAR-RV2 model performs the best for the one-month-ahead forecast. Table 3.3 presents 

the forecasting error of MAE; the results are mixed. For four of the eight indices at the one-

day-ahead forecasting horizon, the LHAR-RV-CJ model yields the lowest forecasting error. 

 
8 This chapter uses a simple approach for constructing multi-day-ahead forecasts by replacing the daily RV on the 

left-hand side of forecasting models. For instance, to generate weekly forecasts, I compute the average of five 

daily RVs and replace these 5 daily RVs with five identical averages. The approach of monthly forecast is the 

same. In the forecasting literature, this approach is commonly referred to as direct forecasts and has been 

extensively studied in the literature of Ghysels et al. (2009). Chapters 4 and 5 use the same method to generate 

weekly and monthly forecasts. 
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The HAR-RSV model provides the best performance for the N225, DAX and MXX at the 

weekly horizon. For the one-month-ahead forecast, both the HAR-RSV and LHAR-RV2 

models are preferred, whilst the three HAR models with jumps perform poorly. In Table 3.4 of 

the QLIKE loss function, the superiority of the LHAR-RV2 model is evident for four of the 

eight indices over the daily horizon. At weekly and monthly horizons, the LHAR-RV2 model 

gains a leading role compared with others. In Table 3.5 of adjusted R squared, the best 

performance is given by the LHAR-RV-CJ model for almost all indices over the daily horizon, 

whereas the LHAR-RV2 model provides the best performance over the weekly and monthly 

horizons.  

In terms of the recursive approach results, Table 3.6, 3.7, 3.8 and 3.9 present the 

forecast error for loss functions using over three different forecasting horizons. The four 

recursive approach tables present roughly consistent results, in which the jumps cannot provide 

enough forecasting information in the HAR model compared with semi-variance and leverage 

effect. According to the MSE in Table 3.6, the LHAR-RV-CJ model performs the best with 

the lowest error on almost all indices at the daily forecasting horizon, except for the N225 and 

BVSP. The LHAR-RV2 model outperforms other models over the daily and monthly horizons. 

For Table 3.7 of MAE results, the LHAE-RV-CJ model also offers top performance at the daily 

horizon. For a one-week-ahead forecast, the HAR-RSV model can provide more accurate 

forecasts than others. The LHAR-RV2 model is preferred over the monthly horizon. Table 3.8 

and Table 3.9 obtain the same results as Table 3.6. Again, the LHAR-RV-CJ model 

outperforms at the daily horizon and the LHAR-RV2 model at weekly and monthly horizons.  

 

3.5.2 Asymmetric Forecast Error Results  

To account for the asymmetric error of considered models, the MME (U) and MME (O) under 

both rolling window and recursive approaches are presented in Table 3.10 to Table 3.13. The 



 44 

results of the MME (U) loss function penalizes the underpredictions more heavily, which 

means the models with lower statistics provide fewer underpredicted forecasts. In contrast, the 

models with lower MME (O) statistics generate fewer overpredictions.  

Generally, the results of asymmetric forecast error are broadly mixed and the 

differences between all considered models are small, and the best model could outperform on 

several indices rather than dominating the asymmetric performance. For the rolling window 

method of MME (O) in Table 3.10, the LHAR-RV2 model has the best performance, closely 

followed by the HAR-PS model at the daily horizon. The HAR-RV model produces fewer 

overpredictions for the one-week-ahead forecast, while the HAR-CJ and LHAR-RV model 

also perform well. For monthly prediction, the HAR-RV, LHAR-RV1 and LHAR-RV2 models 

perform equivalently to obtain fewer overpredictions. For the MME (U) under the rolling 

window method in Table 3.11, the LHAR-RV-CJ model is the best model if underpredictions 

are penalized more heavily over the daily horizon. The HAR-PS model provides the best 

forecasting performance with fewer underpredictions over the weekly forecast. The 

indistinguishable evidence at the monthly horizon indicates no model performs better than any 

other. 

Considering the recursive method in Table 3.12 and 3.13 of MME (O) and MME (U), 

as with the rolling window approach, the statistics are mixed. Table 3.12 shows the MME(O) 

comparison results, demonstrating that the HAR-PS model has fewer overpredictions at the 

daily horizon, and that the HAR-CJ and LHAR-RV2 models also perform well. For the weekly 

forecasting series, the HAR-CJ model is preferred. The HAR-CJ, LHAR-RV1 and LHAR-RV2 

model display the same ability to obtain the lowest results over the daily horizon. Notably, for 

Table 3.13 of MME (U), the results are much less obvious, and no one model can perform well 

on more than three indices over daily, weekly and monthly forecasting horizons. 

 



 45 

3.5.3 Testing For Differential Predictive Accuracy  

To compare the difference in predictive accuracy between every two HAR models, Table 3.14, 

15 and 16 offer the statistics and p-values from the DM test in terms of MSE criteria over daily, 

weekly and monthly forecasting horizons. In the three tables, the rolling window results are 

reported in the cells above the main diagonal; below the main diagonal, recursive forecasting 

results are presented. The results with a p-value below the 5% significant level mean the null 

hypothesis of identical predictive performance between two models is rejected, while a positive 

value indicates that the model in the row outperforms the model in the column. 

Table 3.14 presents the DM test of the daily forecasting horizon. As the results of basic 

HAR-RV for all indices, besides the SPX, are negative, the extensions of the HAR model can 

significantly improve the forecasting performance. Then, for the HAR model with jumps and 

continuous components, the HAR-RV-J model significantly performs the worst for all indices 

with the exception of SSEC. The HAR-CJ model and HAR-RV-CJ model have positive results 

on the N225, DAX, NSEI and BVSP, whilst those two models perform as poorly as the HAR-

RV-J model on other indices. In terms of the HAR models with realised semi-variance, the 

results are mixed: the HAR-RSV model provides significantly better results than other models 

for FTSE, SPX and SSEC. For the leveraged HAR models, the LHAR-RV-CJ model is only 

superior to other models on the DAX and BSVP. Notably, in the case of the MXX, the LHAR-

RV1 model and LHAR-RV2 model perform well with significantly positive value. But, for the 

three leveraged HAR models for the FTSE and NSEI, the results are statistically insignificant, 

meaning the leverage effect does not contain competitive forecasting information on those two 

indices.  

The DM test for the one-week-ahead forecast is displayed in Table 3.15. In most cases, 

the null hypothesis of equal predictive accuracy test between the HAR model and other 

sophisticated models is significantly negative, and therefore the HAR model performs worst 
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for the one-week-ahead forecast. For the HAR models with jumps, the HAR-CJ model 

significantly improves the forecasting ability only for the DAX and NSEI, whilst the HAR-

RV-CJ outperforms other models for the N225, DAX and BVSP. The results are mixed for the 

HAR models with realised semi-variance, and only the HAR-RSV is preferred to the SSEC. 

As with the daily forecasts, the leveraged HAR models do not perform well for the FTSE and 

NSEI. However, the LHAR-RV2 model performs the best for the SPX and BVSP, and the 

LHAR-RV-CJ model performs best for the N225, MXX, respectively.  

Table 3.16 provides the DM test results of the one-month-ahead forecast. Table 3.16 

produces roughly similar results to Table 3.14 and 3.15. Again, the HAR model performs worse 

than the extension HAR models.  For the HAR models with jumps, almost all indices showed 

significantly negative value except for the DAX and NSEI. The results obtained for the HAR 

models with realised semi-variance in Table 16 are the same as that of Table 3.15, they are 

both mixed and only the HAR-RSV is the best model for the SSEC. The LHAR-RV-CJ model 

performs the best among all considered models, which accounts for the vast majority of indices, 

including SPX, N225, DAX and BSVP.  

 

3.5.4 Testing Models With Equal Predictive Ability 

Moreover, the MSC test results in terms of MSE metrics for rolling window and recursive 

approaches are reported in Table 3.17 and 3.18. In the MCS test, the optimal model is chosen 

by the value 1 means, whereas the value 0 means the model is eliminated. The MCS test selects 

a subset of models with EPA at the 75% confidence level.  

Generally, the HAR model incorporated with jumps performs worse than the HAR 

model with semi-variance and leverage effect, the basic HAR model also performs poorly. 

Specifically, as for the rolling window results in Table 3.17, the LHAR-RV-CJ model performs 

best for most series on the daily horizon. The LHAR-RV1 also provides good forecasting 



 47 

performance on the N225, SSEC and NSEI. For the weekly forecasting, the HAR-RSV model 

is preferred, while the LHAR-RV1 and LHAR-RV2 model also have competitive forecasting 

performance for two series, respectively. At the monthly horizon, the LHAR-RV1 and LHAR-

RV2 model yield equivalent forecasting performance and outperform others.   

Table 3.18 reports the MCS test under the recursive window approach. In comparison 

with Table 3.17 and Table 3.18, they obtain similar results and show the HAR model with 

jumps does not produce accurate forecasts compared with semi-variance and lever. At the daily 

forecasting horizon, the LHAR-RV-CJ model is the best model, while the other two leveraged 

HAR models, the LHAR-RV1 and LHAR-RV2 models, have good forecasting ability as well. 

The one-week-ahead forecasting results indicate that LHAR-RV2 is the best performing 

forecast model and the HAR-RSV model also performs well on the N225, BVSP and MXX. 

The LHAR-RV-CJ dominates all the models for all indices, except for the FTSE, over the 

monthly horizon.  

To summarise, according to the statistics in the symmetric loss functions, DM-test and 

MCS test above, both the rolling window and recursive approaches indicate that the HAR 

models with leverage effect have significant forecasting ability, achieving the best performance 

in most cases over daily, weekly and monthly horizons. Specifically, the LHAR-RV-CJ model 

is preferred at the daily level, whilst at the weekly and monthly horizons, the LHAR-RV2 

dominates. That means the leverage effect in the HAR model contains the most accurate 

information. This result is consistent with the findings of Buncic and Gisler (2017) and 

Horpestad et al. (2019). However, the HAR model with jumps performs poorly for all indices, 

and it indicates that the RV jumps do not have efficient forecasting information. The results 

also indicate the realised semi-variance in the HAR model can slightly improve the forecasts. 

Meanwhile, all the forecasting models produce indistinguishable statistics for asymmetric loss 
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functions, which means it is not obvious for all considered models to evaluate the 

overpredictions and underpredictions. 

 

3.6 Summary and Conclusion 

The previous empirical works show that adding the characteristics of RV into the HAR-RV 

model provides more accurate predictions. To comprehensively compare the volatility 

components which are commonly used, this chapter investigates the RV forecasting 

performance of volatility jumps, realised semi-variance and leverage effect in the HAR-RV 

model. For the purpose of acquiring more specific results, the HAR models with the jumps, 

realised semi-variance and leverage effect are extended based on recent research. This chapter 

employs eight international RV indices to generate the forecasts over daily, weekly and 

monthly horizons using both rolling window and recursive approaches. For the forecasting 

evaluations, this chapter reports various loss functions to assess forecasting error, including the 

widely used symmetric loss functions, asymmetric loss functions, pairwise comparison and 

equal predictive ability test.  

In summary of the results, the main finding is that this chapter provides strong evidence 

that the HAR-RV model with leverage effect produces the top performance over daily, weekly 

and monthly horizons. This finding is consistent with recent studies (Buncic and Gisler, 2017 

and Horpestad et al., 2019), which considers that the asymmetric effect improves forecasting 

performance. When considering more sophisticated HAR models with realised semi-variance, 

as well as the signed jumps, the forecasting accuracy is improved, which is the same results as 

Sevi (2014) and Kilic and Shaliastovich (2019). But the performance is not as good as the 

leverage effect. This chapter also notes the HAR models with volatility jumps are merely better 

than the HAR-RV model and the jumps have limited forecasting information compared with 
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the leverage effect and realised semi-variance. This evidence directly conflicts the results of 

Maneesoonthorn et al. (2017) and Liu et al. (2018). 

The current literature extends the HAR-RV model (Corsi, 2009) by adding specific 

components, which are based on the features of RV, to improve the forecasting ability. Overall, 

this chapter shows a generally greater number of situations in which the leverage effect in the 

HAR model displays the best forecasting performance, and the results are consistent for the 

different forecasting horizons. The results of this chapter emphasise the priority of negative 

returns in forecasting RV for both developed countries and emerging countries. Although this 

chapter does not find the best model in asymmetric loss functions, it is still worth it for future 

works to consider the asymmetry of forecasts for different investing purposes.  
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Table 3.1Summary statistic for all variables 

 

  Mean Median Std.dev Skewness Kurtosis Jarque-Bera ADF test 

FTSE 

RV 1.13*10-04 5.19*10-05 2.85*10-04 18.535 554.22 4.81*107*** -8.2131*** 

J 3.02*10-05 8.70*10-06 1.12*10-04 31.186 1404.4 3.10*108*** -11.831*** 

C 8.29*10-05 3.90*10-05 2.01*10-04 13.140 253.81 1.00*107*** -7.6676*** 

RSV- 5.80*10-05 2.23*10-05 2.06*10-04 26.831 1007.8 1.60*108*** -9.4094*** 

RSV+ 5.51*10-05 2.52*10-05 1.18*10-04 9.5582 137.17 2.90*106*** -6.9296*** 

SJV- -2.32*10-05 0.0000 1.56*10-04 -32.793 1362.1 2.92*108*** -11.388*** 

SJV+ 2.04*10-05 9.43*10-07 7.94*10-05 14.307 304.91 1.45*107*** -8.2338*** 

R- 1.47*10-04 4.33*10-04 1.10*10-04 -0.1635 11.324 1.09*104*** -16.873*** 

SPX 

RV 1.02*10-04 4.01*10-05 2.65*10-04 11.798 236.81 8.68*106*** -6.3651*** 

J 2.35*10-05 5.17*10-06 7.85*10-05 12.351 236.19 8.64*106*** -7.9335*** 

C 7.82*10-05 3.05*10-05 2.14*10-04 11.944 224.38 7.79*106*** -6.1354*** 

RSV- 5.13*10-05 1.74*10-05 1.44*10-04 10.727 176.94 4.83*106*** -6.7218*** 

RSV+ 5.04*10-05 1.96*10-05 1.39*10-04 12.972 277.11 1.19*107*** -5.9628*** 

SJV- -1.72*10-05 0.0000 7.32*10-05 -11.657 202.93 6.37*106*** -7.9827*** 

SJV+ 1.63*10-05 2.61*10-07 6.60*10-05 11.283 183.92 5.22*106*** -7.5169*** 

R- 2.49*10-04 6.31*10-04 1.08*10-02 -0.2816 14.623 2.13*104*** -15.827*** 

N225 

RV 9.70*10-05 5.68*10-05 1.79*10-04 8.6577 106.74 1.69*106*** -7.6110*** 

J 1.43*10-05 6.21*10-06 3.40*10-05 15.139 376.52 2.15*107*** -11.029*** 

C 8.27*10-05 4.72*10-05 1.65*10-04 9.6100 130.65 2.55*106*** -7.5660*** 

RSV- 5.01*10-05 2.60*10-05 1.12*10-04 10.561 153.87 3.55*106*** -7.8068*** 

RSV+ 4.69*10-05 2.65*10-05 8.51*10-05 8.5629 109.58 1.78*106*** -7.6613*** 

SJV- -1.68*10-05 -1.81*10-07 6.99*10-05 -13.121 222.63 7.48*106*** -9.9579*** 

SJV+ 1.35*10-05 0.0000 4.72*10-05 13.133 271.68 1.11*107*** -9.4373*** 

R- -2.39*10-04 -1.08*10-04 1.12*10-02 -0.7191 17.556 3.27*104*** -15.665*** 

DAX 

RV 1.39*10-04 7.25*10-05 2.57*10-04 9.9060 166.96 4.33*106*** -7.2686*** 

J 1.84*10-05 5.60*10-06 6.15*10-05 14.726 331.12 1.72*107*** -8.6111*** 

C 1.21*10-04 6.32*10-05 2.22*10-04 9.4408 150.31 3.50*106*** -7.3710*** 

RSV- 7.12*10-05 3.49*10-05 1.38*10-04 9.8041 174.42 4.73*106*** -7.8558*** 

RSV+ 6.80*10-05 3.54*10-05 1.37*10-04 12.661 272.74 1.17*107*** -7.0454*** 

SJV- -1.88*10-05 0.0000 6.27*10-05 -10.689 176.08 4.83*106*** -10.798*** 

SJV+ 1.56*10-05 1.34*10-08 7.11*10-05 21.584 641.45 6.50*107*** -10.666*** 

R- 1.07*10-06 4.10*10-04 1.18*10-02 0.0431 9.5029 6.72*103*** -16.648*** 

(continued on next page) 
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Table 3.1 (continued) 
 

  Mean Median Std.dev Skewness Kurtosis Jarque-Bera ADF test 

SSEC 

RV 1.89*10-04 9.17*10-05 3.01*10-04 5.5786 51.041 3.69*105*** -6.5219*** 

J 2.13*10-05 5.98*10-06 5.43*10-05 8.4829 108.93 1.74*106*** -8.0632*** 

C 1.68*10-04 8.17*10-05 2.71*10-04 5.8781 57.737 4.75*105*** -6.5888*** 

RSV- 9.27*10-05 4.15*10-05 1.59*10-04 5.3981 46.014 2.98*105*** -6.5530*** 

RSV+ 9.63*10-05 4.68*10-05 1.61*10-04 6.2153 64.007 5.87*105*** -7.0522*** 

SJV- -2.27*10-05 0.0000 6.68*10-05 -5.9103 48.832 3.39*105*** -8.7285*** 

SJV+ 2.63*10-05 2.56*10-06 7.44*10-05 8.3349 108.55 1.73*106*** -9.1347*** 

R- 1.36*10-03 1.38*10-03 1.48*10-02 -0.2781 6.7102 2.13*103*** -14.658*** 

NSEI 

RV 1.52*10-04 7.41*10-05 4.61*10-04 24.467 792.44 9.71*107*** -10.378*** 

J 2.57*10-05 4.73*10-06 2.17*10-04 37.595 1614.7 4.04*108*** -13.916*** 

C 1.26*10-04 6.35*10-05 2.89*10-04 15.154 337.37 1.75*107*** -9.0091*** 

RSV- 8.12*10-05 3.59*10-05 2.87*10-04 29.557 1156.0 2.07*108*** -10.885*** 

RSV+ 7.06*10-05 3.47*10-05 1.95*10-04 20.998 641.58 6.36*107*** -10.082*** 

SJV- -2.60*10-05 -2.52*10-06 1.58*10-04 -44.630 2410.5 9.01*108*** -12.727*** 

SJV+ 1.54*10-05 0.0000 6.19*10-05 14.931 309.93 1.48*107*** -11.401*** 

R- -4.44*10-04 -3.22*10-04 1.28*10-02 -0.6809 9.3800 6.61*103*** -13.851*** 

BVSP 

RV 1.57*10-04 9.48*10-05 2.81*10-04 8.8839 116.79 2.05*106*** -5.6919*** 

J 2.27*10-05 6.82*10-06 9.41*10-05 20.556 572.84 5.04*107*** -8.8325*** 

C 1.34*10-04 8.28*10-05 2.25*10-04 8.1821 98.848 1.46*106*** -5.4013*** 

RSV- 8.00*10-05 4.43*10-05 1.62*10-04 11.210 206.22 6.46*106*** -6.1541*** 

RSV+ 7.71*10-05 4.47*10-05 1.51*10-04 10.344 151.96 3.49*106*** -4.9887*** 

SJV- -2.50*10-05 -7.36*10-07 9.87*10-05 -18.090 496.66 3.79*107*** -8.5745*** 

SJV+ 2.21*10-05 0.0000 9.18*10-05 15.082 299.97 1.38*107*** -6.7595*** 

R- 1.97*10-04 3.54*10-04 1.41*10-02 -0.0166 8.5211 4.71*103*** -14.856*** 

MXX 

RV 8.14*10-05 3.94*10-05 1.84*10-04 13.763 293.85 1.34*107*** -8.1310*** 

J 2.37*10-05 3.40*10-05 1.16*10-04 19.253 506.10 4.00*107*** -10.592*** 

C 5.77*10-05 3.26*10-05 9.43*10-05 9.5008 156.09 3.74*106*** -6.8069*** 

RSV- 4.15*10-05 1.69*10-05 1.35*10-04 20.222 581.63 5.29*107*** -9.3099*** 

RSV+ 3.99*10-05 1.89*10-05 8.91*10-05 13.148 280.42 1.22*107*** -6.9439*** 

SJV- -1.92*10-05 0.0000 1.13*10-04 -23.508 741.37 8.61*107*** -10.928*** 

SJV+ 1.76*10-05 1.07*10-06 7.25*10-05 15.857 365.63 2.08*107*** -9.3135*** 

R- 4.50*10-04 8.77*10-04 1.16*10-02 0.0140 9.8943 7.47*103*** -14.756*** 

Note: This table reports the summary statistics for all variables of eight indices for whole period from 1st 

January 2003 to 31st December 2017.  *** denotes significant at the 1% level. 

  



 52 

 
Table 3.2: Out-of-sample forecasting performance of MSE under rolling window 

 

  FTSE SPX N225 DAX SSEC NSEI BVSP MXX 

  H=1 

HAR-RV 0.3466 0.4140 0.3228 0.2839 0.2772 0.2968 0.2718 0.4187 

HAR-RV-J 0.3470 0.4180 0.3243 0.2840 0.2783 0.2958 0.2760 0.4249 

HAR-CJ 0.3211 0.3843 0.3224 0.2779 0.2757 0.2962 0.2700 0.3964 

HAR-RV-CJ 0.3218 0.3856 0.3225 0.2800 0.2764 0.2962 0.2729 0.3991 

HAR-PS 0.3240 0.3861 0.3196 0.2743 0.2714 0.2981 0.2695 0.4081 

HAR-RSV-SJV 0.3283 0.3842 0.3316 0.2779 0.2713 0.2974 0.2678* 0.4037 

HAR-RSV 0.3197 0.3841 0.3197 0.2719 0.2726 0.2987 0.2690 0.4035 

LHAR-RV1 0.3265 0.3995 0.3191 0.2751 0.2688 0.2917 0.2684 0.4132 

LHAR-RV2 0.3159 0.3949 0.3191 0.2712 0.2709 0.2925 0.2682 0.4059 

LHAR-RV-CJ 0.3012* 0.3779* 0.3190* 0.2679* 0.2700* 0.2911* 0.2707 0.3885* 

  H=5 

HAR-RV 0.1291 0.1706 0.1605 0.1063 0.1015 0.1272 0.0919 0.1526 

HAR-RV-J 0.1303 0.1722 0.1615 0.1066 0.1018 0.1271 0.0919 0.1538 

HAR-CJ 0.1294 0.1778 0.1651 0.1095 0.0999* 0.1333 0.0939 0.1517 

HAR-RV-CJ 0.1306 0.1792 0.1658 0.1112 0.1006 0.1329 0.0932 0.1508 

HAR-PS 0.1234 0.1660 0.1606 0.1033 0.1016 0.1282 0.0916 0.1507 

HAR-RSV-SJV 0.1273 0.1672 0.1632 0.1050 0.1011 0.1287 0.0920 0.1514 

HAR-RSV 0.1221 0.1637 0.1602 0.1013 0.1025 0.1286 0.0912* 0.1495* 

LHAR-RV1 0.1242 0.1667 0.1601* 0.1035 0.1018 0.1261* 0.0917 0.1514 

LHAR-RV2 0.1196* 0.1630* 0.1603 0.1010* 0.1010 0.1266 0.0916 0.1516 

LHAR-RV-CJ 0.1263 0.1759 0.1659 0.1051 0.1004 0.1316 0.0931 0.1502 

  H=22 

HAR-RV 0.1365 0.1669 0.1693 0.1102 0.1243 0.1152 0.1012 0.1549 

HAR-RV-J 0.1367 0.1676 0.1687* 0.1106 0.1246 0.1150 0.1013 0.1558 

HAR-CJ 0.1327 0.1779 0.1715 0.1084 0.1251 0.1197 0.1117 0.1653 

HAR-RV-CJ 0.1347 0.1760 0.1708 0.1123 0.1256 0.1181 0.1129 0.1676 

HAR-PS 0.1344 0.1648 0.1691 0.1091 0.1240* 0.1154 0.1009 0.1518 

HAR-RSV-SJV 0.1340 0.1648 0.1715 0.1094 0.1243 0.1207 0.1029 0.1560 

HAR-RSV 0.1333 0.1628* 0.1688 0.1087 0.1248 0.1153 0.1002 0.1509* 

LHAR-RV1 0.1341 0.1649 0.1692 0.1088 0.1241 0.1150* 0.1007 0.1530 

LHAR-RV2 0.1309* 0.1647 0.1693 0.1078* 0.1250 0.1157 0.1001* 0.1497 

LHAR-RV-CJ 0.1315 0.1764 0.1709 0.1091 0.1267 0.1186 0.1135 0.1634 

Note: This table reports the symmetric forecasting evaluation (MSE) of eight RV indices for all forecasting 

models considered using rolling window approach over daily, weekly and monthly horizons (h=1, 5 and 22) 

and the out-of-sample period from 1st January 2008 to 31st December 2017. The forecasting model with the 

best performance is highlighted with *. 
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Table 3.3Out-of-sample forecasting performance of MAE under rolling window method 

  FTSE SPX N225 DAX SSEC NSEI BVSP MXX 

  H=1 

HAR-RV 0.4489 0.5006 0.4249 0.4091 0.3991 0.4072 0.3949 0.4944 

HAR-RV-J 0.4473 0.4981 0.4249 0.4090 0.3996 0.4064 0.3953 0.4957 

HAR-CJ 0.4303 0.4812 0.4250 0.4050 0.3986 0.4069 0.3948 0.4801 

HAR-RV-CJ 0.4307 0.4816 0.4244 0.4059 0.3985 0.4071 0.3965 0.4823 

HAR-PS 0.4331 0.4828 0.4206 0.4000 0.3924 0.4072 0.3949 0.4877 

HAR-RSV-SJV 0.4334 0.4816 0.4255 0.4030 0.3938 0.4101 0.3926* 0.4846 

HAR-RSV 0.4304 0.4816 0.4197 0.3969* 0.3953 0.4087 0.3948 0.4852 

LHAR-RV1 0.4349 0.4906 0.4209 0.4018 0.3913 0.4037* 0.3933 0.4916 

LHAR-RV2 0.4317 0.4895 0.4205* 0.3994 0.3929 0.4046 0.3931 0.4889 

LHAR-RV-CJ 0.4173* 0.4768* 0.4208 0.3971 0.3916* 0.4038 0.3948 0.4771* 

  H=5 

HAR-RV 0.2531 0.2998 0.2704 0.2313 0.2379 0.2516 0.2118 0.2688 

HAR-RV-J 0.2535 0.3005 0.2712 0.2319 0.2379 0.2514* 0.2120 0.2702 

HAR-CJ 0.2569 0.3092 0.2794 0.2370 0.2349* 0.2591 0.2142 0.2721 

HAR-RV-CJ 0.2575 0.3092 0.2747 0.2368 0.2363 0.2588 0.2156 0.2689 

HAR-PS 0.2491* 0.2972 0.2704 0.2289 0.2381 0.2534 0.2119 0.2674 

HAR-RSV-SJV 0.2508 0.2946* 0.2710 0.2302 0.2375 0.2567 0.2120 0.2677 

HAR-RSV 0.2473 0.2951 0.2695* 0.2251* 0.2393 0.2540 0.2117 0.2672* 

LHAR-RV1 0.2499 0.2970 0.2698 0.2293 0.2384 0.2517 0.2115 0.2679 

LHAR-RV2 0.2461 0.2950 0.2716 0.2274 0.2376 0.2521 0.2109* 0.2707 

LHAR-RV-CJ 0.2540 0.3083 0.2754 0.2339 0.2353 0.2586 0.2151 0.2708 

  H=22 

HAR-RV 0.2499 0.2834 0.2796 0.2245 0.2562 0.2379 0.2320 0.2816 

HAR-RV-J 0.2498 0.2842 0.2791 0.2246 0.2566 0.2377 0.2322 0.2822 

HAR-CJ 0.2486 0.2989 0.2851 0.2277 0.2583 0.2424 0.2393 0.2924 

HAR-RV-CJ 0.2505 0.2982 0.2841 0.2285 0.2585 0.2390 0.2404 0.2934 

HAR-PS 0.2479 0.2822 0.2796 0.2232 0.2558 0.2381 0.2322 0.2792 

HAR-RSV-SJV 0.2465 0.2815 0.2827 0.2238 0.2558 0.2394 0.2318 0.2799 

HAR-RSV 0.2485 0.2789* 0.2788* 0.2231* 0.2584 0.2378 0.2314 0.2780 

LHAR-RV1 0.2480 0.2824 0.2795 0.2238 0.2551* 0.2376* 0.2315 0.2816 

LHAR-RV2 0.2449* 0.2834 0.2789 0.2250 0.2564 0.2379 0.2310* 0.2791* 

LHAR-RV-CJ 0.2479 0.3000 0.2842 0.2283 0.2593 0.2394 0.2397 0.2913 

Note: This table reports the symmetric forecasting evaluation (MAE) of eight RV indices for all forecasting 

models considered using rolling window approach over daily, weekly and monthly horizons (h=1, 5 and 22) 

and the out-of-sample period from 1st January 2008 to 31st December 2017. The forecasting model with the 

best performance is highlighted with *. 
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Table 3.4: Out-of-sample forecasting performance of QLIKE under rolling window method 

  FTSE SPX N225 DAX SSEC NSEI BVSP MXX 

  H=1 

HAR-RV 0.002036 0.002235 0.001833 0.001678 0.001803 0.001737 0.001688 0.002336 

HAR-RV-J 0.002047 0.002257 0.001842 0.001682 0.001814 0.001726 0.001716 0.002366 

HAR-CJ 0.001900 0.002061 0.001828 0.001639 0.001794 0.001729 0.001716 0.002203 

HAR-RV-CJ 0.001906 0.002077 0.001831 0.001659 0.001801 0.001730 0.001754 0.002224 

HAR-PS 0.001909 0.002079 0.001812* 0.001622 0.001764 0.001741 0.001671 0.002276 

HAR-RSV-SJV 0.001999 0.002093 0.001904 0.001683 0.001761 0.001771 0.001714 0.002255 

HAR-RSV 0.001921 0.002154 0.001816 0.001625 0.001734* 0.001695* 0.001658 0.002304 

LHAR-RV1 0.001887 0.002131 0.001813 0.001599 0.001752 0.001700 0.001658* 0.002254 

LHAR-RV2 0.001789* 0.002062* 0.001816 0.001582* 0.001750 0.001686 0.001749 0.002155* 

LHAR-RV-CJ 0.001836 0.002155 0.001822 0.001598 0.001768 0.001704 0.001776 0.002302 

  H=5 

HAR-RV 0.000788 0.000943 0.000933 0.000664 0.000671 0.000799 0.000607 0.000878 

HAR-RV-J 0.000802 0.000959 0.000942 0.000668 0.000673 0.000796 0.000607 0.000888 

HAR-CJ 0.000930 0.000985 0.000965 0.000700 0.000658* 0.000864 0.000660 0.000870 

HAR-RV-CJ 0.000940 0.001005 0.000977 0.000725 0.000665 0.000867 0.000630 0.000866 

HAR-PS 0.000753 0.000915 0.000933 0.000645 0.000670 0.000804 0.000604* 0.000867 

HAR-RSV-SJV 0.000854 0.000934 0.000961 0.000671 0.000667 0.000834 0.000616 0.000875 

HAR-RSV 0.000761 0.000925 0.000931 0.000647 0.000673 0.000792* 0.000605 0.000871 

LHAR-RV1 0.000741* 0.000902* 0.000928* 0.000626* 0.000670 0.000796 0.000605 0.000869 

LHAR-RV2 0.000978 0.001000 0.000976 0.000670 0.000667 0.000848 0.000627 0.000858 

LHAR-RV-CJ 0.000878 0.000983 0.000956 0.000668 0.000683 0.000798 0.000606 0.000865* 

  H=22 

HAR-RV 0.000841 0.000947 0.000987 0.000698 0.000815 0.000737 0.000647 0.000891 

HAR-RV-J 0.000846 0.000952 0.000983* 0.000703 0.000818 0.000735* 0.000648 0.000899 

HAR-CJ 0.000823 0.001002 0.001003 0.000690 0.000821 0.000763 0.001248 0.001091 

HAR-RV-CJ 0.000837 0.001003 0.001001 0.000721 0.000826 0.000755 0.001009 0.001092 

HAR-PS 0.000829 0.000935 0.000986 0.000692 0.000813 0.000738 0.000644 0.000872 

HAR-RSV-SJV 0.000847 0.000938 0.001009 0.000697 0.000813 0.000891 0.000730 0.000973 

HAR-RSV 0.000829 0.000939 0.000989 0.000691 0.000812* 0.000736 0.000643 0.000879 

LHAR-RV1 0.000808* 0.000934* 0.000986 0.000680* 0.000821 0.000741 0.000638* 0.000853* 

LHAR-RV2 0.000818 0.001012 0.001002 0.000694 0.000834 0.000759 0.001145 0.001041 

LHAR-RV-CJ 0.000820 0.000946 0.000987 0.000699 0.000817 0.000739 0.000987 0.000911 

Note: This table reports the symmetric forecasting evaluation (QLIKE) of eight RV indices for all forecasting 

models considered using rolling window approach over daily, weekly and monthly horizons (h=1, 5 and 22) 

and the out-of-sample period from 1st January 2008 to 31st December 2017. The forecasting model with the 

best performance is highlighted with *. 
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Table 3.5: Out-of-sample forecasting performance of MZ regression adjusted R2 under rolling window method 

  FTSE SPX N225 DAX SSEC NSEI BVSP MXX 

  H=1 

HAR-RV 0.6785 0.7444 0.6675 0.7209 0.7634 0.7212 0.6507 0.5269 

HAR-RV-J 0.6780 0.7415 0.6659 0.7208 0.7625 0.7218 0.6452 0.5199 

HAR-CJ 0.7022 0.7636 0.6681 0.7271 0.7650 0.7214 0.6531 0.5517 

HAR-RV-CJ 0.7014 0.7627 0.6680 0.7251 0.7643 0.7213 0.6500 0.5486 

HAR-PS 0.6995 0.7617 0.6709 0.7303 0.7685 0.7203 0.6537 0.5388 

HAR-RSV-SJV 0.6955 0.7625 0.6586 0.7268 0.7687 0.7208 0.6558 0.5437 

HAR-RSV 0.7035 0.7633 0.6707 0.7327 0.7679 0.7198 0.6545 0.5441 

LHAR-RV1 0.6973 0.7533 0.6715 0.7296 0.7707* 0.7263 0.6551 0.5332 

LHAR-RV2 0.7071 0.7567 0.6716 0.7335 0.7688 0.7259 0.6555* 0.5415 

LHAR-RV-CJ 0.7206* 0.7679* 0.6717* 0.7368* 0.7698 0.7264* 0.6528 0.5607* 

  H=5 

HAR-RV 0.8574 0.8772 0.7757 0.8745 0.8941 0.8629 0.8304 0.7413 

HAR-RV-J 0.8561 0.8759 0.7743 0.8740 0.8938 0.8628 0.8304 0.7389 

HAR-CJ 0.8573 0.8732 0.7693 0.8711 0.8961 0.8561 0.8270 0.7415 

HAR-RV-CJ 0.8561 0.8722 0.7684 0.8694 0.8954 0.8564 0.8281 0.7432 

HAR-PS 0.8638 0.8806 0.7755 0.8780 0.8941 0.8619 0.8311 0.7445 

HAR-RSV-SJV 0.8596 0.8797 0.7721 0.8760 0.8947 0.8608 0.8301 0.7430 

HAR-RSV 0.8652 0.8826 0.7760 0.8803 0.8941 0.8615 0.8317* 0.7469* 

LHAR-RV1 0.8629 0.8801 0.7763* 0.8778 0.8938 0.8642* 0.8309 0.7433 

LHAR-RV2 0.8679* 0.8831* 0.7761 0.8807* 0.8945 0.8636 0.8312 0.7431 

LHAR-RV-CJ 0.8611 0.8748 0.7683 0.8760 0.8953* 0.8579 0.8284 0.7441 

  H=22 

HAR-RV 0.8301 0.8621 0.7960 0.8496 0.8818 0.8655 0.8421 0.7795 

HAR-RV-J 0.8298 0.8614 0.7967 0.8490 0.8815 0.8656 0.8419 0.7783 

HAR-CJ 0.8350 0.8545 0.7936 0.8525 0.8812 0.8604 0.8260 0.7645 

HAR-RV-CJ 0.8327 0.8562 0.7944 0.8472 0.8807 0.8623 0.8247 0.7616 

HAR-PS 0.8327 0.8638 0.7962 0.8510 0.8821* 0.8653 0.8247 0.7839 

HAR-RSV-SJV 0.8332 0.8637 0.7933 0.8506 0.8818 0.8586 0.8394 0.7782 

HAR-RSV 0.8341 0.8651* 0.7965* 0.8517 0.8817 0.8654 0.8438 0.7854 

LHAR-RV1 0.8331 0.8637 0.7962 0.8515 0.8820 0.8658* 0.8430 0.7823 

LHAR-RV2 0.8371* 0.8643 0.7961 0.8530* 0.8811 0.8649 0.8441* 0.7870* 

LHAR-RV-CJ 0.8365 0.8561 0.7944 0.8514 0.8797 0.8615 0.8240 0.7675 

Note: This table reports the symmetric forecasting evaluation (MZ regression adjusted R^2) of eight RV indices 

for all forecasting models considered using rolling window approach over daily, weekly and monthly horizons 

(h=1, 5 and 22) and the out-of-sample period from 1st January 2008 to 31st December 2017. The forecasting 

model with the best performance is highlighted with *. 
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Table 3.6: Out-of-sample forecasting performance of MSE under recursive method 

  FTSE SPX N225 DAX SSEC NSEI BVSP MXX 

  H=1 

HAR-RV 0.3472 0.4143 0.3242 0.2826 0.2760 0.3010 0.2714 0.4205 

HAR-RV-J 0.3501 0.4159 0.3245 0.2820 0.2759 0.3002 0.2768 0.4200 

HAR-CJ 0.3213 0.3853 0.3242 0.2792 0.2750 0.3010 0.2703 0.3991 

HAR-RV-CJ 0.3222 0.3865 0.3245 0.2799 0.2756 0.3005 0.2730 0.4013 

HAR-PS 0.3242 0.3867 0.3206 0.2736 0.2710 0.3020 0.2694 0.4098 

HAR-RSV-SJV 0.3267 0.3845 0.3300 0.2769 0.2693 0.3017 0.2667 0.4065 

HAR-RSV 0.3194 0.3840 0.3208 0.2706 0.2714 0.3023 0.2686 0.4040 

LHAR-RV1 0.3277 0.3991 0.3203 0.2731 0.2674 0.2956 0.2678 0.4153 

LHAR-RV2 0.3157 0.3922 0.3196* 0.2681 0.2689 0.2945 0.2674* 0.4079 

LHAR-RV-CJ 0.3013* 0.3755* 0.3205 0.2664* 0.2688* 0.2936* 0.2704 0.3895* 

  H=5 

HAR-RV 0.1290 0.1701 0.1596 0.1056 0.0989 0.1291 0.0923 0.1536 

HAR-RV-J 0.1303 0.1712 0.1594 0.1056 0.0986 0.1289 0.0924 0.1542 

HAR-CJ 0.1306 0.1779 0.1631 0.1097 0.0972* 0.1363 0.0953 0.1574 

HAR-RV-CJ 0.1318 0.1801 0.1631 0.1110 0.0977 0.1357 0.0945 0.1564 

HAR-PS 0.1231 0.1654 0.1595 0.1029 0.0990 0.1300 0.0921 0.1516 

HAR-RSV-SJV 0.1256 0.1663 0.1612 0.1041 0.0984 0.1323 0.0925 0.1522 

HAR-RSV 0.1215 0.1618 0.1594 0.1009 0.0995 0.1306 0.0916 0.1493* 

LHAR-RV1 0.1240 0.1665 0.1590 0.1027 0.0992 0.1281 0.0920* 0.1523 

LHAR-RV2 0.1189* 0.1617* 0.1588* 0.0996* 0.0991 0.1276* 0.0922 0.1509 

LHAR-RV-CJ 0.1274 0.1756 0.1624 0.1046 0.0981 0.1339 0.0943 0.1530 

  H=22 

HAR-RV 0.1368 0.1647 0.1688 0.1091 0.1231 0.1196 0.1013 0.1557 

HAR-RV-J 0.1373 0.1654 0.1680* 0.1093 0.1229 0.1194 0.1013 0.1558 

HAR-CJ 0.1322 0.1767 0.1721 0.1087 0.1238 0.1244 0.1128 0.1646 

HAR-RV-CJ 0.1339 0.1758 0.1726 0.1096 0.1240 0.1229 0.1137 0.1665 

HAR-PS 0.1346 0.1627 0.1686 0.1082 0.1229 0.1198 0.1012 0.1523 

HAR-RSV-SJV 0.1343 0.1628 0.1711 0.1081 0.1229 0.1250 0.1032 0.1540 

HAR-RSV 0.1333 0.1618 0.1685 0.1078 0.1231 0.1190 0.1005 0.1506 

LHAR-RV1 0.1344 0.1629 0.1689 0.1075 0.1227* 0.1195 0.1007 0.1535 

LHAR-RV2 0.1311 0.1609* 0.1683 0.1060* 0.1233 0.1188* 0.1001* 0.1498* 

LHAR-RV-CJ 0.1307* 0.1747 0.1723 0.1063 0.1243 0.1222 0.1141 0.1609 

Note: This table reports the symmetric forecasting evaluation (MSE) of eight RV indices for all forecasting 

models considered using recursive window approach over daily, weekly and monthly horizons (h=1, 5 and 22) 

and the out-of-sample period from 1st January 2008 to 31st December 2017. The forecasting model with the 

best performance is highlighted with *. 
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Table 3.7: Out-of-sample forecasting performance of MAE under recursive method 

 FTSE SPX N225 DAX SSEC NSEI BVSP MXX 

 H=1 

HAR-RV 0.4483 0.5004 0.4256 0.4078 0.3986 0.4102 0.3953 0.4949 

HAR-RV-J 0.4489 0.4980 0.4250 0.4076 0.3984 0.4094 0.3966 0.4950 

HAR-CJ 0.4294 0.4810 0.4264 0.4068 0.3960 0.4107 0.3956 0.4772 

HAR-RV-CJ 0.4300 0.4819 0.4263 0.4071 0.3964 0.4103 0.3974 0.4785 

HAR-PS 0.4327 0.4825 0.4207 0.3998 0.3930 0.4106 0.3950 0.4882 

HAR-RSV-SJV 0.4331 0.4819 0.4253 0.4037 0.3918 0.4139 0.3923* 0.4847 

HAR-RSV 0.4292 0.4814 0.4201 0.3966 0.3939 0.4113 0.3944 0.4851 

LHAR-RV1 0.4351 0.4904 0.4210 0.4001 0.3911* 0.4071 0.3932 0.4927 

LHAR-RV2 0.4302 0.4881 0.4202* 0.3964* 0.3926 0.4060 0.3927 0.4899 

LHAR-RV-CJ 0.4156* 0.4748* 0.4221 0.3966 0.3901 0.4053* 0.3948 0.4731* 

 H=5 

HAR-RV 0.2520 0.2963 0.2657 0.2305 0.2322 0.2557 0.2146 0.2653 

HAR-RV-J 0.2526 0.2969 0.2656 0.2308 0.2319 0.2552 0.2149 0.2662 

HAR-CJ 0.2565 0.3084 0.2750 0.2387 0.2261* 0.2658 0.2184 0.2708 

HAR-RV-CJ 0.2571 0.3091 0.2724 0.2389 0.2286 0.2645 0.2208 0.2682 

HAR-PS 0.2473 0.2935 0.2651 0.2280 0.2325 0.2574 0.2148 0.2636 

HAR-RSV-SJV 0.2482 0.2916 0.2661 0.2298 0.2317 0.2605 0.2147 0.2638 

HAR-RSV 0.2452* 0.2903* 0.2650 0.2246* 0.2319 0.2586 0.2147 0.2612* 

LHAR-RV1 0.2478 0.2935 0.2648* 0.2281 0.2327 0.2561 0.2143 0.2641 

LHAR-RV2 0.2433 0.2901 0.2650 0.2248 0.2349 0.2546* 0.2141* 0.2630 

LHAR-RV-CJ 0.2530 0.3070 0.2714 0.2329 0.2302 0.2635 0.2196 0.2655 

 H=22 

HAR-RV 0.2469 0.2778 0.2773 0.2232 0.2548 0.2466 0.2321 0.2806 

HAR-RV-J 0.2475 0.2783 0.2767 0.2231 0.2547 0.2463 0.2320 0.2810 

HAR-CJ 0.2447 0.2964 0.2843 0.2299 0.2550 0.2516 0.2409 0.2920 

HAR-RV-CJ 0.2457 0.2982 0.2845 0.2291 0.2552 0.2479 0.2423 0.2926 

HAR-PS 0.2450 0.2763 0.2772 0.2220 0.2548 0.2470 0.2324 0.2778 

HAR-RSV-SJV 0.2435 0.2763 0.2805 0.2224 0.2533* 0.2481 0.2322 0.2780 

HAR-RSV 0.2444 0.2753* 0.2772 0.2217 0.2553 0.2448 0.2315 0.2762* 

LHAR-RV1 0.2448 0.2767 0.2772 0.2218 0.2537 0.2466 0.2315 0.2800 

LHAR-RV2 0.2424* 0.2761 0.2761* 0.2213* 0.2558 0.2424* 0.2309* 0.2766 

LHAR-RV-CJ 0.2432 0.2984 0.2842 0.2264 0.2560 0.2443 0.2414 0.2887 

Note: This table reports the symmetric forecasting evaluation (MAE) of eight RV indices for all forecasting 

models considered using recursive window approach over daily, weekly and monthly horizons (h=1, 5 and 22) 

and the out-of-sample period from 1st January 2008 to 31st December 2017. The forecasting model with the 

best performance is highlighted with *. 
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Table 3.8: Out-of-sample forecasting performance of QLIKE under recursive method 

  FTSE SPX N225 DAX SSEC NSEI BVSP MXX 

  H=1 

HAR-RV 0.002040 0.002236 0.001842 0.001670 0.001791 0.001761 0.001688 0.002348 

HAR-RV-J 0.002066 0.002248 0.001845 0.001667 0.001792 0.001752 0.001724 0.002348 

HAR-CJ 0.001913 0.002067 0.001842 0.001647 0.001785 0.001756 0.001719 0.002216 

HAR-RV-CJ 0.001921 0.002079 0.001844 0.001653 0.001791 0.001754 0.001758 0.002234 

HAR-PS 0.001909 0.002083 0.001820 0.001616 0.001758 0.001764 0.001673 0.002287 

HAR-RSV-SJV 0.001990 0.002101 0.001878 0.001643 0.001742 0.001747 0.001703 0.002275 

HAR-RSV 0.001884 0.002073 0.001820 0.001600 0.001760 0.001765 0.001668 0.002253 

LHAR-RV1 0.001922 0.002146 0.001823 0.001609 0.001721* 0.001717 0.001657 0.002318 

LHAR-RV2 0.001865 0.002102 0.001814* 0.001573 0.001735 0.001713 0.001655* 0.002269 

LHAR-RV-CJ 0.001804* 0.002019* 0.001822 0.001565* 0.001736 0.001701* 0.001749 0.002159* 

  H=5 

HAR-RV 0.000787 0.000942 0.000928 0.000659 0.000651 0.000810 0.000609 0.000886 

HAR-RV-J 0.000800 0.000953 0.000927 0.000658 0.000649 0.000807 0.000611 0.000891 

HAR-CJ 0.001065 0.000980 0.000948 0.000696 0.000639* 0.000881 0.000667 0.000894 

HAR-RV-CJ 0.001077 0.001008 0.000952 0.000712 0.000646 0.000883 0.000638 0.000888 

HAR-PS 0.000751 0.000913 0.000927 0.000642 0.000651 0.000814 0.000608 0.000874 

HAR-RSV-SJV 0.000860 0.000930 0.000946 0.000655 0.000648 0.000823 0.000619 0.000878 

HAR-RSV 0.000744 0.000897 0.000925 0.000630 0.000653 0.000818 0.000602* 0.000857 

LHAR-RV1 0.000757 0.000924 0.000925 0.000641 0.000653 0.000804 0.000608 0.000878 

LHAR-RV2 0.000732* 0.000892* 0.000921* 0.000615* 0.000655 0.000803* 0.000609 0.000869* 

LHAR-RV-CJ 0.001169 0.000989 0.000947 0.000660 0.000650 0.000861 0.000635 0.000866 

  H=22 

HAR-RV 0.000846 0.000940 0.000986 0.000690 0.000805 0.000762 0.000648 0.000896 

HAR-RV-J 0.000852 0.000945 0.000980* 0.000692 0.000804 0.000760 0.000648 0.000898 

HAR-CJ 0.000824 0.000996 0.001012 0.000689 0.000810 0.000791 0.001244 0.000949 

HAR-RV-CJ 0.000837 0.001004 0.001017 0.000696 0.000812 0.000783 0.001013 0.000971 

HAR-PS 0.000833 0.000928 0.000986 0.000685 0.000804 0.000764 0.000646 0.000876 

HAR-RSV-SJV 0.000858 0.000930 0.001009 0.000684 0.000802 0.000910 0.000726 0.000894 

HAR-RSV 0.000824 0.000924 0.000983 0.000682 0.000805 0.000758* 0.000643 0.000866* 

LHAR-RV1 0.000833 0.000931 0.000990 0.000680 0.000801* 0.000761 0.000643 0.000883 

LHAR-RV2 0.000811* 0.000917* 0.000982 0.000667* 0.000807 0.000759 0.000638* 0.000856 

LHAR-RV-CJ 0.000817 0.001001 0.001014 0.000670 0.000815 0.000780 0.001142 0.000931 

Note: This table reports the symmetric forecasting evaluation (QLIKE) of eight RV indices for all forecasting 

models considered using recursive window approach over daily, weekly and monthly horizons (h=1, 5 and 22) 

and the out-of-sample period from 1st January 2008 to 31st December 2017. The forecasting model with the 

best performance is highlighted with *. 
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Table 3.9: Out-of-sample forecasting performance of MZ regression adjusted R2 under recursive method 

  FTSE SPX N225 DAX SSEC NSEI BVSP MXX 

  H=1 

HAR-RV 0.6779 0.7441 0.6665 0.7221 0.7642 0.7176 0.6513 0.5259 

HAR-RV-J 0.6752 0.7427 0.6659 0.7227 0.7642 0.7180 0.6442 0.5259 

HAR-CJ 0.7019 0.7625 0.6669 0.7273 0.7649 0.7180 0.6530 0.5517 

HAR-RV-CJ 0.7011 0.7616 0.6668 0.7266 0.7644 0.7180 0.6504 0.5493 

HAR-PS 0.6992 0.7612 0.6704 0.7311 0.7685 0.7171 0.6541 0.5374 

HAR-RSV-SJV 0.6969 0.7622 0.6608 0.7281 0.7698 0.7186 0.6576 0.5414 

HAR-RSV 0.7036 0.7633 0.6701 0.7341 0.7682 0.7165 0.6552 0.5439 

LHAR-RV1 0.6959 0.7536 0.6708 0.7314 0.7715* 0.7235 0.6560 0.5316 

LHAR-RV2 0.7071 0.7583 0.6715* 0.7364 0.7703 0.7235 0.6566* 0.5396 

LHAR-RV-CJ 0.7205* 0.7688* 0.6712 0.7398* 0.7703 0.7242* 0.6539 0.5611* 

  H=5 

HAR-RV 0.8576 0.8771 0.7770 0.8753 0.8969 0.8615 0.8306 0.7427 

HAR-RV-J 0.8561 0.8762 0.7772 0.8753 0.8971 0.8614 0.8302 0.7412 

HAR-CJ 0.8560 0.8722 0.7720 0.8719 0.8981 0.8545 0.8252 0.7420 

HAR-RV-CJ 0.8548 0.8703 0.7720 0.8703 0.8976 0.8544 0.8273 0.7437 

HAR-PS 0.8641 0.8804 0.7772 0.8784 0.8969 0.8608 0.8311 0.7456 

HAR-RSV-SJV 0.8614 0.8798 0.7749 0.8771 0.8973* 0.8564 0.8303 0.7448 

HAR-RSV 0.8658* 0.8831 0.7772 0.8808 0.8962 0.8601 0.8318* 0.7496* 

LHAR-RV1 0.8631 0.8797 0.7778 0.8786 0.8966 0.8629* 0.8312 0.7446 

LHAR-RV2 0.8687 0.8833* 0.7781* 0.8823* 0.8969 0.8626 0.8308 0.7466 

LHAR-RV-CJ 0.8598 0.8737 0.7731 0.8777 0.8972 0.8561 0.8274 0.7473 

  H=22 

HAR-RV 0.8300 0.8626 0.7965 0.8511 0.8829 0.8621 0.8423 0.7790 

HAR-RV-J 0.8283 0.8621 0.7974 0.8509 0.8831 0.8621 0.8422 0.7787 

HAR-CJ 0.8359 0.8534 0.7928 0.8530 0.8820 0.8573 0.8248 0.7698 

HAR-RV-CJ 0.8339 0.8535 0.7924 0.8516 0.8818 0.8582 0.8244 0.7675 

HAR-PS 0.8327 0.8643 0.7968 0.8523 0.8832 0.8620 0.8426 0.7834 

HAR-RSV-SJV 0.8332 0.8643 0.7939 0.8525 0.8829 0.8554 0.8394 0.7816 

HAR-RSV 0.8342 0.8650 0.7969 0.8529 0.8830 0.8622 0.8438 0.7858 

LHAR-RV1 0.8329 0.8642 0.7965 0.8533 0.8833* 0.8624* 0.8432 0.7820 

LHAR-RV2 0.8370 0.8658* 0.7972* 0.8554 0.8828 0.8606 0.8443* 0.7871* 

LHAR-RV-CJ 0.8379* 0.8544 0.7929 0.8561* 0.8816 0.8572 0.8238 0.7743 

Note: This table reports the symmetric forecasting evaluation (MZ regression adjusted R^2) of eight RV indices 

for all forecasting models considered using recursive window approach over daily, weekly and monthly 

horizons (h=1, 5 and 22) and the out-of-sample period from 1st January 2008 to 31st December 2017. The 

forecasting model with the best performance is highlighted with *. 
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Table 3.10: Mean mixed forecasting error overprediction under rolling window method 

  FTSE SPX N225 DAX SSEC NSEI BVSP MXX 

  H=1 

HAR-RV 0.007364 0.006722 0.006623 0.007833 0.009029 0.007177 0.008229 0.006449 

HAR-RV-J 0.007388 0.006740 0.006590 0.007827 0.009009 0.007151 0.008231 0.006445 

HAR-CJ 0.007404 0.006635 0.006589 0.007849 0.009095 0.007213 0.008231 0.006391* 

HAR-RV-CJ 0.007389 0.006676 0.006605 0.007814 0.009120 0.007241 0.008305 0.006411 

HAR-PS 0.007387 0.006674 0.006566* 0.007743 0.008950* 0.007189 0.008225 0.006452 

HAR-RSV-SJV 0.007383 0.006645 0.006622 0.007806 0.009011 0.007185 0.008221 0.006451 

HAR-RSV 0.007415 0.006676 0.006621 0.007741 0.009005 0.007202 0.008193 0.006469 

LHAR-RV1 0.007351* 0.006731 0.006640 0.007791 0.008977 0.007120 0.008201 0.006432 

LHAR-RV2 0.007377 0.006681 0.006663 0.007726* 0.008965 0.007103* 0.008140* 0.006441 

LHAR-RV-CJ 0.007441 0.006618* 0.006593 0.007923 0.009063 0.007161 0.008198 0.006441 

  H=5 

HAR-RV 0.007077* 0.006399 0.006758* 0.007468 0.009278 0.007224 0.008282* 0.006615 

HAR-RV-J 0.007114 0.006360 0.006761 0.007527 0.009291 0.007232 0.008327 0.006618 

HAR-CJ 0.007216 0.006267* 0.006801 0.007744 0.009294 0.007232 0.008359 0.006601* 

HAR-RV-CJ 0.007255 0.006342 0.006806 0.007749 0.009416 0.007174 0.008393 0.006625 

HAR-PS 0.007178 0.006376 0.006857 0.007437 0.009292 0.007202 0.008293 0.006622 

HAR-RSV-SJV 0.007160 0.006319 0.006830 0.007597 0.009267 0.007201 0.008331 0.006621 

HAR-RSV 0.007123 0.006356 0.006793 0.007434 0.009359 0.007188 0.008335 0.006612 

LHAR-RV1 0.007178 0.006388 0.006829 0.007493 0.009325 0.007192 0.008296 0.006629 

LHAR-RV2 0.007086 0.006391 0.006824 0.007427* 0.009132* 0.007174 0.008291 0.006633 

LHAR-RV-CJ 0.007241 0.006364 0.006841 0.007669 0.009182 0.007131* 0.008534 0.006652 

  H=22 

HAR-RV 0.007467 0.006706 0.006577* 0.007822 0.008886 0.007585 0.007844* 0.006217 

HAR-RV-J 0.007430 0.006678 0.006593 0.007832 0.008898 0.007569 0.007844 0.006198 

HAR-CJ 0.007454 0.006544* 0.006593 0.008073 0.008868 0.007565 0.008060 0.006200 

HAR-RV-CJ 0.007541 0.006644 0.006620 0.008060 0.008922 0.007676 0.007998 0.006149 

HAR-PS 0.007410 0.006651 0.006578 0.007849 0.008875 0.007604 0.007923 0.006181 

HAR-RSV-SJV 0.007459 0.006665 0.006588 0.007875 0.008893 0.007605 0.007960 0.006149 

HAR-RSV 0.007441 0.006589 0.006586 0.007874 0.008970 0.007603 0.007927 0.006190 

LHAR-RV1 0.007409* 0.006703 0.006594 0.007818 0.008817 0.007553* 0.007917 0.006253 

LHAR-RV2 0.007472 0.006622 0.006578 0.007715* 0.008809* 0.007572 0.007917 0.006199 

LHAR-RV-CJ 0.007492 0.006630 0.006638 0.007905 0.008894 0.007656 0.008114 0.006141* 

Note: This table reports the asymmetric forecasting evaluation (MME(O)) of eight RV indices for all 

forecasting models considered using rolling window approach over daily, weekly and monthly horizons (h=1, 

5 and 22) and the out-of-sample period from 1st January 2008 to 31st December 2017. The forecasting model 

with the best performance is highlighted with *. 
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Table 3.11: Mean mixed forecasting error underprediction under rolling window method 

  FTSE SPX N225 DAX SSEC NSEI BVSP MXX 

  H=1 

HAR-RV 0.008402 0.007614 0.007470 0.008921 0.009852 0.007957 0.009208 0.007181 

HAR-RV-J 0.008362 0.007574 0.007485 0.008933 0.009877 0.007960 0.009204* 0.007201 

HAR-CJ 0.008289 0.007555 0.007490 0.008878 0.009794 0.007899* 0.009268 0.007159 

HAR-RV-CJ 0.008311 0.007540* 0.007471 0.008917 0.009771 0.007886 0.009268 0.007170 

HAR-PS 0.008281 0.007571 0.007481 0.008931 0.009862 0.007935 0.009215 0.007152 

HAR-RSV-SJV 0.008349 0.007629 0.007505 0.008930 0.009805 0.007945 0.009271 0.007143 

HAR-RSV 0.008260 0.007557 0.007410* 0.008905 0.009850 0.007933 0.009243 0.007130* 

LHAR-RV1 0.008344 0.007563 0.007439 0.008881 0.009801 0.007974 0.009216 0.007212 

LHAR-RV2 0.008387 0.007648 0.007418 0.008941 0.009829 0.008006 0.009273 0.007195 

LHAR-RV-CJ 0.008208* 0.007615 0.007493 0.008750* 0.009706* 0.007933 0.009356 0.007114 

  H=5 

HAR-RV 0.007643 0.007028* 0.006902 0.008120 0.008816 0.007135 0.008034 0.006406 

HAR-RV-J 0.007621 0.007092 0.006908 0.008080 0.008790 0.007128* 0.008005 0.006428 

HAR-CJ 0.007686 0.007207 0.006956 0.007958* 0.008745 0.007228 0.008024 0.006468 

HAR-RV-CJ 0.007662 0.007140 0.006898 0.007987 0.008682* 0.007296 0.008048 0.006394 

HAR-PS 0.007509* 0.007028* 0.006795* 0.008145 0.008803 0.007176 0.008028 0.006386 

HAR-RSV-SJV 0.007640 0.007070 0.006847 0.008035 0.008822 0.007173 0.008021 0.006396 

HAR-RSV 0.007548 0.007032 0.006851 0.008101 0.008726 0.007204 0.007983 0.006393 

LHAR-RV1 0.007551 0.007029 0.006821 0.008125 0.008783 0.007173 0.008012 0.006386 

LHAR-RV2 0.007622 0.007033 0.006855 0.008143 0.008993 0.007205 0.008014 0.006395 

LHAR-RV-CJ 0.007708 0.007174 0.006868 0.008056 0.008910 0.007333 0.007888* 0.006366* 

  H=22 

HAR-RV 0.007465 0.006938* 0.006821 0.007946 0.008991 0.007013 0.008463 0.006586 

HAR-RV-J 0.007499 0.006980 0.006797* 0.007934 0.008993 0.007023 0.008462 0.006624 

HAR-CJ 0.007521 0.007204 0.006842 0.007784* 0.009040 0.007053 0.008574 0.006801 

HAR-RV-CJ 0.007473 0.007213 0.006815 0.007786 0.008995 0.006922* 0.008607 0.006869 

HAR-PS 0.007498 0.006970 0.006820 0.007895 0.008985 0.006996 0.008384 0.006608 

HAR-RSV-SJV 0.007483 0.006982 0.006859 0.007899 0.008962 0.007081 0.008417 0.006716 

HAR-RSV 0.007466 0.007019 0.006802 0.007867 0.008925* 0.006988 0.008367* 0.006594 

LHAR-RV1 0.007532 0.006958 0.006814 0.007956 0.009024 0.007038 0.008379 0.006577* 

LHAR-RV2 0.007446* 0.007052 0.006800 0.008070 0.009057 0.007023 0.008370 0.006581 

LHAR-RV-CJ 0.007527 0.007270 0.006832 0.007957 0.009020 0.006951 0.008533 0.006849 

Note: This table reports the asymmetric forecasting evaluation (MME(U)) of eight RV indices for all 

forecasting models considered using rolling window approach over daily, weekly and monthly horizons (h=1, 

5 and 22) and the out-of-sample period from 1st January 2008 to 31st December 2017. The forecasting model 

with the best performance is highlighted with *. 
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Table 3.12: Mean mixed forecasting error overprediction under recursive method 

 FTSE SPX N225 DAX SSEC NSEI BVSP MXX 

 H=1 

HAR-RV 0.007363 0.006701 0.006608 0.007828 0.009015 0.007214 0.008261 0.006451 

HAR-RV-J 0.007368 0.006720 0.006617 0.007872 0.008972 0.007213 0.008272 0.006413 

HAR-CJ 0.007358 0.006612* 0.006688 0.007924 0.008956 0.007216 0.008232 0.006330* 

HAR-RV-CJ 0.007390 0.006644 0.006677 0.007890 0.009023 0.007278 0.008367 0.006336 

HAR-PS 0.007389 0.006644 0.006606* 0.007791* 0.008915* 0.007213 0.008268 0.006439 

HAR-RSV-SJV 0.007359 0.006641 0.006701 0.007906 0.008958 0.007211 0.008247 0.006443 

HAR-RSV 0.007379 0.006685 0.006665 0.007807 0.008938 0.007232 0.008239 0.006464 

LHAR-RV1 0.007287* 0.006702 0.006622 0.007822 0.008989 0.007162 0.008212 0.006429 

LHAR-RV2 0.007373 0.006683 0.006681 0.007814 0.008992 0.007158* 0.008203* 0.006477 

LHAR-RV-CJ 0.007369 0.006626 0.006660 0.007951 0.008949 0.007175 0.008272 0.006381 

 H=5 

HAR-RV 0.007036 0.006325 0.006728 0.007424* 0.009226 0.007325 0.008406* 0.006446 

HAR-RV-J 0.007050 0.006323 0.006727 0.007504 0.009122 0.007309 0.008414 0.006468 

HAR-CJ 0.007113 0.006173* 0.006698* 0.007918 0.008971* 0.007357 0.008478 0.006154* 

HAR-RV-CJ 0.007119 0.006199 0.006791 0.007882 0.009141 0.007329 0.008663 0.006183 

HAR-PS 0.007052 0.006290 0.006748 0.007463 0.009206 0.007288 0.008429 0.006474 

HAR-RSV-SJV 0.007108 0.006234 0.006778 0.007579 0.009171 0.007263 0.008469 0.006454 

HAR-RSV 0.006975* 0.006259 0.006754 0.007489 0.009197 0.007265 0.008521 0.006449 

LHAR-RV1 0.007103 0.006354 0.006738 0.007472 0.009235 0.007250 0.008426 0.006442 

LHAR-RV2 0.007049 0.006340 0.006746 0.007478 0.009100 0.007282 0.008426 0.006434 

LHAR-RV-CJ 0.007165 0.006201 0.006767 0.007839 0.009030 0.007249* 0.008687 0.006241 

 H=22 

HAR-RV 0.007222 0.006523 0.006590 0.007751 0.008908 0.007662 0.007923 0.006179 

HAR-RV-J 0.007210 0.006490 0.006586 0.007741 0.008874 0.007622 0.007926 0.006167 

HAR-CJ 0.007242 0.006332* 0.006629 0.008245 0.008764* 0.007640 0.008065 0.006053 

HAR-RV-CJ 0.007322 0.006498 0.006582 0.008193 0.008768 0.007729 0.008089 0.006014 

HAR-PS 0.007263 0.006439 0.006564 0.007715 0.008855 0.007671 0.007941 0.006146 

HAR-RSV-SJV 0.007238 0.006428 0.006553 0.007739 0.008788 0.007671 0.007997 0.006064 

HAR-RSV 0.007281 0.006443 0.006543* 0.007760 0.008895 0.007651 0.007959 0.006148 

LHAR-RV1 0.007208* 0.006500 0.006578 0.007720 0.008873 0.007669 0.007887* 0.006212 

LHAR-RV2 0.007282 0.006458 0.006577 0.007695* 0.008849 0.007590* 0.007966 0.006158 

LHAR-RV-CJ 0.007276 0.006458 0.006639 0.008047 0.008893 0.007673 0.008203 0.005969* 

Note: This table reports the asymmetric forecasting evaluation (MME(O)) of eight RV indices for all 

forecasting models considered using recursive window approach over daily, weekly and monthly horizons (h=1, 

5 and 22) and the out-of-sample period from 1st January 2008 to 31st December 2017. The forecasting model 

with the best performance is highlighted with *. 
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Table 3.13: Mean mixed forecasting error underprediction under recursive method 

  FTSE SPX N225 DAX SSEC NSEI BVSP MXX 

  H=1 

HAR-RV 0.008398 0.007642 0.007496 0.008916 0.009860 0.007947 0.009192 0.007190 

HAR-RV-J 0.008404 0.007602 0.007461 0.008877 0.009899 0.007926 0.009192 0.007237 

HAR-CJ 0.008328 0.007565 0.007413 0.008840 0.009892 0.007936 0.009282 0.007171 

HAR-RV-CJ 0.008302 0.007556 0.007422 0.008876 0.009841 0.007877 0.009228 0.007188 

HAR-PS 0.008273 0.007596 0.007442 0.008888 0.009904 0.007945 0.009184* 0.007171 

HAR-RSV-SJV 0.008376 0.007653 0.007411 0.008820 0.009834 0.007901* 0.009247 0.007150 

HAR-RSV 0.008270 0.007547* 0.007374* 0.008842 0.009890 0.007934 0.009206 0.007136 

LHAR-RV1 0.008393 0.007593 0.007455 0.008830 0.009783 0.007970 0.009219 0.007231 

LHAR-RV2 0.008359 0.007615 0.007386 0.008806* 0.009800* 0.007971 0.009219 0.007177 

LHAR-RV-CJ 0.008250* 0.007555 0.007433 0.008729 0.009817 0.007935 0.009287 0.007122* 

  H=5 

HAR-RV 0.007666 0.007071 0.006891 0.008156 0.008769* 0.007085* 0.007971 0.006549 

HAR-RV-J 0.007669 0.007100 0.006885 0.008085 0.008854 0.007097 0.007976 0.006541 

HAR-CJ 0.007826 0.007291 0.007012 0.007791* 0.008917 0.007178 0.007981 0.006848 

HAR-RV-CJ 0.007836 0.007282 0.006891 0.007846 0.008841 0.007208 0.007870 0.006776 

HAR-PS 0.007613 0.007083 0.006853 0.008097 0.008794 0.007139 0.007952 0.006502 

HAR-RSV-SJV 0.007654 0.007134 0.006853 0.008028 0.008820 0.007137 0.007938 0.006436* 

HAR-RSV 0.007664 0.007095 0.006845* 0.008034 0.008773 0.007182 0.007862 0.006590 

LHAR-RV1 0.007578* 0.007032 0.006861 0.008118 0.008776 0.007172 0.007945 0.006541 

LHAR-RV2 0.007609 0.007019* 0.006855 0.008059 0.008968 0.007137 0.007940 0.006531 

LHAR-RV-CJ 0.007820 0.007291 0.006900 0.007830 0.008970 0.007277 0.007818* 0.006678 

  H=22 

HAR-RV 0.007665 0.007085* 0.006795 0.007999 0.008958 0.007031 0.008389 0.006609 

HAR-RV-J 0.007688 0.007128 0.006789* 0.007999 0.008997 0.007064 0.008381 0.006641 

HAR-CJ 0.007690 0.007390 0.006810 0.007650* 0.009108 0.007087 0.008577 0.006847 

HAR-RV-CJ 0.007622 0.007352 0.006860 0.007669 0.009119 0.006966* 0.008538 0.006905 

HAR-PS 0.007613 0.007152 0.006824 0.008016 0.008999 0.007027 0.008371 0.006623 

HAR-RSV-SJV 0.007666 0.007181 0.006879 0.007998 0.009033 0.007110 0.008380 0.006730 

HAR-RSV 0.007587 0.007138 0.006843 0.007966 0.008972 0.007011 0.008336 0.006614 

LHAR-RV1 0.007693 0.007113 0.006822 0.008022 0.008948* 0.007023 0.008411 0.006594* 

LHAR-RV2 0.007598* 0.007164 0.006790 0.008048 0.009027 0.007050 0.008324* 0.006598 

LHAR-RV-CJ 0.007662 0.007416 0.006828 0.007781 0.008984 0.006971 0.008464 0.006913 

Note: This table reports the asymmetric forecasting evaluation (MME(U)) of eight RV indices for all 

forecasting models considered using recursive window approach over daily, weekly and monthly horizons (h=1, 

5 and 22) and the out-of-sample period from 1st January 2008 to 31st December 2017. The forecasting model 

with the best performance is highlighted with *. 
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Table 3.14: Diebold-Mariano’s equal predictive accuracy test of daily forecasting horizon 

FTSE 
HAR-

RV 

HAR-

RV-J 

HAR-

CJ 

HAR-

RV-CJ 

HAR-

PS 

HAR-

RSV-SJV 

HAR-

RSV 

LHAR-

RV1 

LHAR-

RV2 

LHAR-

RV-CJ 
SSEC 

HAR-

RV 

HAR-

RV-J 

HAR-

CJ 

HAR-

RV-CJ 

HAR-

PS 

HAR-

RSV-SJV 

HAR-

RSV 

LHAR-

RV1 

LHAR-

RV2 

LHAR-

RV-CJ 

HAR-RV  -4.799* -2.027* -2.631* -0.681 -2.383* 0.012 -0.195 0.434 -1.751 HAR-RV  -1.715 2.272* 2.205* 0.498 1.598 5.260* 0.343 -3.192* -0.840 

HAR-RV-J 1.447  -0.154 -0.780 1.617 -0.486 2.016* 2.001* 2.030* -0.433 HAR-RV-J -5.424*  2.991* 2.839* 1.020 2.139* 5.571* 0.930 -2.455* -0.355 
HAR-CJ -2.265* 1.739  -3.505* 1.506 -0.503 2.000* 1.612 1.948 -0.495 HAR-CJ -11.91* 10.93*  0.503 -0.948 -0.030 3.504* -1.155 -4.022* -2.620* 

HAR-RV-CJ -2.390* 1.864 0.968  2.119* 0.464 2.586* 2.138* 2.423* 0.205 HAR-RV-CJ -11.71* 10.80* 1.410  -1.032 -0.194 3.247* -1.223 -3.962* -2.936* 

HAR-PS -0.208 -0.752 -2.562* -2.684*  -2.278* 1.266 0.619 1.042 -1.664 HAR-PS -0.362 -1.295 -8.533* -8.563*  0.984 12.58* -0.283 -4.602* -1.544 
HAR-RSV-SJV 1.243 0.728 -2.250* -2.429* 1.684  2.669* 2.335* 2.433* -0.129 HAR-RSV-SJV -3.390* 2.539* -7.519* -7.471* 3.421*  3.698* -1.511 -5.313* -2.980* 

HAR-RSV -0.851 -1.303 -3.081* -3.185* -1.368 -2.190*  -0.217 0.509 -2.294* HAR-RSV -0.694 -1.588 -8.632* -8.690* -1.189 -3.626*  -6.618* -10.46* -6.636* 

LHAR-RV1 -0.259 -0.860 -2.251* -2.367* -0.016 -1.447 0.798  0.851 -2.013* LHAR-RV1 0.925 -0.110 -7.493* -7.547* 1.631 -2.931* 1.975  -9.650* -1.615 

LHAR-RV2 -1.228 -1.587 -2.918* -3.000* -1.135 -2.137* -0.507 -1.447  -3.415* LHAR-RV2 1.195 0.243 -6.916* -6.995* 1.950 -2.437* 2.366* 0.886  2.710* 

LHAR-RV-CJ 1.353 1.005 -0.579 -0.796 1.742 0.763 2.405* 1.685 3.180*  LHAR-RV-CJ 8.216* 7.556* 0.755 0.479 10.51* 8.711* 10.72* 10.89* 11.42*  

SPX 
HAR-

RV 

HAR-

RV-J 

HAR-

CJ 

HAR-

RV-CJ 

HAR-

PS 

HAR-

RSV-SJV 

HAR-

RSV 

LHAR-

RV1 

LHAR-

RV2 

LHAR-

RV-CJ 
NSEI 

HAR-

RV 

HAR-

RV-J 

HAR-

CJ 

HAR-

RV-CJ 

HAR-

PS 

HAR-

RSV-SJV 

HAR-

RSV 

LHAR-

RV1 

LHAR-

RV2 

LHAR-

RV-CJ 

HAR-RV  -5.258* -0.951 0.033 -0.794 -2.480* 1.391 0.031 1.427 -0.073 HAR-RV  -3.205* 0.310 0.232 3.623* 3.383* 2.165* 1.090 1.717 0.538 

HAR-RV-J 7.060*  1.903 2.881* 2.396* 0.510 4.100* 3.281* 3.842* 2.165* HAR-RV-J 7.171*  1.135 1.030 4.681* 4.273* 3.165* 2.019* 2.533* 1.184 

HAR-CJ 8.418* 5.425*  4.505* 0.332 -2.129* 2.230* 0.854 1.822 1.130 HAR-CJ -3.834* -4.970*  -0.480 1.639 2.979* 1.104 0.436 0.900 0.463 
HAR-RV-CJ 6.110* 3.148* -16.81*  -0.690 -3.526* 1.215 -0.011 1.022 -0.168 HAR-RV-CJ -1.006 -2.114* 21.75*  1.655 2.911* 1.138 0.483 0.935 0.556 

HAR-PS 1.071 -2.256* -7.299* -5.088*    -2.161* 4.686* 0.984 2.134* 0.530 HAR-PS -5.446* -7.498* 1.438 -1.418  0.650 -1.032 -1.774 -0.710 -1.173 
HAR-RSV-SJV 4.760* 1.154 -6.035* -2.883* 4.041*  4.211* 2.591* 3.436* 2.627* HAR-RSV-SJV -3.368* -4.996* 2.706* -2.541 -0.019  -1.077 -1.682 -0.987 -1.729 

HAR-RSV -1.518 -4.354* -9.405* -7.228* -5.085* -6.310*  -1.585 0.053 -1.378 HAR-RSV -1.255 -2.968* 2.931* 0.232 3.585* 2.070*  -0.860 -0.072 -0.757 

LHAR-RV1 -0.741 -4.766* -8.044* -5.962* -2.046* -5.752* 1.256  2.163* -0.107 LHAR-RV1 -4.555* -5.898* 0.429 -1.874 -1.426 -0.915 -3.322*  1.794 -0.160 
LHAR-RV2 -2.638* -5.630* -9.166* -7.188* -3.541* -6.820* -0.728 -3.234*  -1.570 LHAR-RV2 4.151* 2.647* 5.788* 3.469* 8.277* 5.810* 5.704* 20.71*  -0.804 

LHAR-RV-CJ 4.720* 2.233* -3.903* -0.605 4.649* 2.005* 7.372* 5.962* 8.795*  LHAR-RV-CJ 0.939 0.031 6.691* 2.991* 3.323* 4.133* 1.799 4.489* -2.239*  

N225 
HAR-

RV 

HAR-

RV-J 

HAR-

CJ 

HAR-

RV-CJ 

HAR-

PS 

HAR-

RSV-SJV 

HAR-

RSV 

LHAR-

RV1 

LHAR-

RV2 

LHAR-

RV-CJ 
BVSP 

HAR-

RV 

HAR-

RV-J 

HAR-

CJ 

HAR-

RV-CJ 

HAR-

PS 

HAR-

RSV-SJV 

HAR-

RSV 

LHAR-

RV1 

LHAR-

RV2 

LHAR-

RV-CJ 

HAR-RV  -3.151* 0.925 0.492 -0.325 0.055 -1.632 0.499 1.528 1.458 HAR-RV  0.692 4.759* 4.364* 2.906* 2.864* 3.082* 0.572 1.536 4.622* 

HAR-RV-J 4.420*  2.841* 2.478* 1.698 1.221 0.320 2.122* 2.805* 2.731* HAR-RV-J 1.893  3.455* 3.274* 1.673 1.632 1.988 -0.071 0.703 3.662* 

HAR-CJ -3.863* -5.880*  -1.125 -0.986 -0.576 -1.930 -0.332 0.569 1.027 HAR-CJ -3.858* -3.883*  -0.446 -2.838* -4.201* -2.393* -3.848* -3.128* 1.168 
HAR-RV-CJ -5.129* -7.133* -3.073*  -0.629 -0.271 -1.616 -0.005 0.864 1.466 HAR-RV-CJ -7.208* -6.709* -7.373*  -2.498* -3.033* -2.073* -3.489* -2.795* 1.782 

HAR-PS -0.544 -2.922* 2.624* 3.500*  0.249 -2.579* 1.016 2.053* 1.904 HAR-PS -4.279* -4.560* 1.437 4.784*  0.554 1.165 -2.774* -1.170 3.626* 

HAR-RSV-SJV -0.935 -2.545* 1.722 2.461* -0.647  -1.116 0.288 1.072 1.416 HAR-RSV-SJV -3.101* -3.099* 2.527* 7.076* 0.036  -0.053 -2.373* -1.357 4.117* 

HAR-RSV -0.530 -2.651* 2.376* 3.171* -0.121 0.564  2.338* 3.648* 3.082* HAR-RSV -4.856* -5.117* 0.715 4.029* -2.372* -0.909  -2.928* -1.797 3.305* 

LHAR-RV1 -0.454 -2.634* 2.516* 3.325* 0.097 0.774 0.149  1.925 1.467 LHAR-RV1 -1.581 -2.361* 2.555* 5.481* 2.884* 1.781 3.645*  2.208* 5.027* 

LHAR-RV2 -1.629 -3.442* 1.414 2.128* -1.411 -0.268 -1.441 -2.321  0.386 LHAR-RV2 -2.244* -2.826* 2.057* 4.941* 1.638 1.071 2.859* -2.034*  4.557* 

LHAR-RV-CJ -4.777* -6.184* -2.668* -1.862 -5.193* -4.028* -5.363* -5.979* -5.809*  LHAR-RV-CJ -7.191* -6.794* -6.082* -2.068* -6.032* -7.810* -5.441* -7.458* -7.182*  

DAX 
HAR-

RV 
HAR-
RV-J 

HAR-
CJ 

HAR-
RV-CJ 

HAR-
PS 

HAR-
RSV-SJV 

HAR-
RSV 

LHAR-
RV1 

LHAR-
RV2 

LHAR-
RV-CJ 

MXX 
HAR-

RV 
HAR-
RV-J 

HAR-
CJ 

HAR-
RV-CJ 

HAR-
PS 

HAR-
RSV-SJV 

HAR-
RSV 

LHAR-
RV1 

LHAR-
RV2 

LHAR-
RV-CJ 

HAR-RV  0.881 10.30* 10.04* 1.478 3.660* 2.676* 0.214 -0.270 4.322* HAR-RV  -2.405* -5.097* -3.904* 0.134 -3.013* 0.888 0.521 2.610* 2.356* 

HAR-RV-J -3.574*  9.486* 9.084* 0.881 2.614* 2.082* -0.233 -0.591 4.000* HAR-RV-J 1.284  -2.985* -1.974 2.005* -0.762 2.375* 2.283* 3.476* -0.839 

HAR-CJ -26.72* -24.82*  0.275 -5.738* -7.214* -3.929* 6.326* -5.666* -1.505 HAR-CJ 17.52* 16.88*  4.598* 5.249* 3.957* 5.570* 4.938* 5.841* 3.494* 

HAR-RV-CJ -25.43* -23.47* 3.935*  -5.762* -6.994* -4.034* 6.332* -5.671* -1.645 HAR-RV-CJ 17.04* 16.45* -2.267*  4.043* 2.185* 4.383* 3.825* 4.805* 1.859 

HAR-PS -5.035* -2.599* 16.87* 16.09*  1.603 2.821* 1.636 -1.599 3.900* HAR-PS -2.807* -3.094* -19.65* -19.15*  -3.536* 1.284 0.383 2.591* 2.750* 

HAR-RSV-SJV -12.15* -8.469* 23.62* 21.76* -5.029*  0.064 2.990* -2.761* 2.991* HAR-RSV-SJV 6.122* 5.447* -18.41* -17.66* 9.070*  3.752* 3.280* 4.475* -0.387 
HAR-RSV -6.345* -4.199* 13.66* 13.04* -4.110* 2.412*  3.051* -3.321* 2.825* HAR-RSV -2.177* -2.622* -19.14* -18.55* -0.064 -7.811*  -0.628 1.836 -3.431* 

LHAR-RV1 -0.882* 1.083 18.74* 17.98* 5.513* 8.903* 6.958*  -0.709 5.804* LHAR-RV1 -2.475* -2.652* -17.51* -16.98* 0.983 -7.548* 0.707  3.061* -2.786* 

LHAR-RV2 -1.862* -0.245 15.29* 14.70* 2.234* 5.971* 4.906* -1.870  8.978* LHAR-RV2 -6.617* -6.027* -19.22* -18.66* -4.426* -10.23* -4.330* -6.783*  -4.743* 

LHAR-RV-CJ -17.89* -16.61* -0.149 -0.707 -16.93* -14.85* -16.05* -22.32* -27.24*  LHAR-RV-CJ -11.75* -11.33* -6.947* -6.269* 14.73* 10.93* 15.51* 13.52* 18.02*  

Notes: This table presents the values of Diebold and Mariano’s test of no difference in predicative accuracy for daily forecasting horizon under both rolling window and recursive forecasting 

approaches. The positive value indicates that the model in the row outperforms the model in the column. In each panel, in cell above the main diagonal this table reports the rolling window results; 

below the main diagonal, recursive forecasting results are presented. The value highlighted with * indicates rejection of the null hypothesis below the 5% significant level. 
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Table 3.15: Diebold-Mariano’s equal predictive accuracy test of weekly forecasting horizon 

FTSE 
HAR-

RV 

HAR-

RV-J 

HAR-

CJ 

HAR-

RV-CJ 

HAR-

PS 

HAR-

RSV-SJV 

HAR-

RSV 

LHAR-

RV1 

LHAR-

RV2 

LHAR-

RV-CJ 
SSEC 

HAR-

RV 

HAR-

RV-J 

HAR-

CJ 

HAR-

RV-CJ 

HAR-

PS 

HAR-

RSV-SJV 

HAR-

RSV 

LHAR-

RV1 

LHAR-

RV2 

LHAR-

RV-CJ 

HAR-RV  -3.829* -0.684 -0.228 -0.655 -0.777 0.712 0.115 0.393 -0.309 HAR-RV  -3.312* 1.712 4.188* 0.807 1.171 12.61* -2.791* -8.935* -2.034* 

HAR-RV-J 1.202  0.150 0.597 1.231 0.403 2.195* 1.927 1.596 0.397 HAR-RV-J -5.270*  3.630* 5.601* 3.235* 3.667* 12.74* 2.340* -6.947* -0.898 
HAR-CJ 1.854 1.583  3.602* 0.448 0.213 1.215 0.710 0.892 0.565 HAR-CJ -17.41* 16.25*  4.581* -1.343 -1.253 8.135* -2.157* -8.512* -3.777* 

HAR-RV-CJ 1.599 1.339 -2.799*  -0.060 -0.504 0.701 0.268 0.462 -0.248 HAR-RV-CJ -10.80* 9.348* -9.372*  -3.846* -3.981* 5.605* -4.540* -10.17* -7.623* 

HAR-PS -0.137 -0.626 -2.136* -1.850  -0.483 2.165* 0.895 0.887 -0.082 HAR-PS -4.82* -7.072* -11.64* 0.000  0.519 12.86* -2.085* -9.040* -2.213* 

HAR-RSV-SJV 0.724 0.380 -2.262* -1.851 1.002  1.516 0.888 1.020 0.220 HAR-RSV-SJV -5.481* 1.214 -9.583* 7.888* 0.000  11.47* -1.951 -9.100* -2.492* 

HAR-RSV -0.825 -1.188 -2.635* -2.335* -1.222 -1.524  -0.683 -0.219 -0.789 HAR-RSV 0.479 -1.507 -8.090* 1.562 -1.987 0.000  -13.0* -19.10* -10.09* 

LHAR-RV1 -0.449 -0.968 -1.988 -1.736 -0.295 -0.979 0.576  0.427 -0.382 LHAR-RV1 1.932 -4.267* -10.46* 5.052* -4.533* -0.217 0.000  -8.672* -1.769 

LHAR-RV2 -1.326 -1.605 -2.557* -2.312* -1.276 -1.684 -0.643 -1.325  -0.694 LHAR-RV2 0.057 -1.445 -7.332* 0.793 -1.801 -0.295 -0.131 0.000  6.898* 

LHAR-RV-CJ 1.038 0.836 -1.345 -0.843 1.230 0.917 1.715 1.234 2.089*  LHAR-RV-CJ -6.250* 5.191* -1.525 6.855* 5.069* 6.080* 6.133* 9.483* 0.000  

SPX 
HAR-

RV 

HAR-

RV-J 

HAR-

CJ 

HAR-

RV-CJ 

HAR-

PS 

HAR-

RSV-SJV 

HAR-

RSV 

LHAR-

RV1 

LHAR-

RV2 

LHAR-

RV-CJ 
NSEI 

HAR-

RV 

HAR-

RV-J 

HAR-

CJ 

HAR-

RV-CJ 

HAR-

PS 

HAR-

RSV-SJV 

HAR-

RSV 

LHAR-

RV1 

LHAR-

RV2 

LHAR-

RV-CJ 

HAR-RV  -5.145* 2.425* 3.757* -0.787 -0.153 2.222* 0.239 2.012* 3.429* HAR-RV  -0.120 1.247 1.173 2.545* 3.179* 0.244 1.125 1.089 0.874 

HAR-RV-J -5.976*  3.526* 4.809* 1.811 1.610 4.088* 3.077* 3.750* 4.368* HAR-RV-J 9.682*  1.274 1.202 2.509* 3.260* 0.264 1.100 1.061 0.893 

HAR-CJ -5.057* 3.889*  5.129* -3.169* -4.041* -1.245 -2.280* -1.213 2.730* HAR-CJ -5.225* -6.048*  -0.191 -0.397 1.181 -1.132 -0.794 -0.731 -0.645 
HAR-RV-CJ -2.618* 1.525 -14.55*  -4.674* -6.053* -2.794* -3.580* -2.520* 0.104 HAR-RV-CJ -2.355* -3.159* 18.28*  -0.346 1.163 -1.058 -0.738 -0.676 -0.605 

HAR-PS -2.022* -0.479 -4.664* -1.970  0.503 4.180* 1.066 2.486* 4.308* HAR-PS -4.597* -6.773* 3.872* 0.891  1.968 -2.111* -1.245 -0.931 0.088 
HAR-RSV-SJV -2.320* 0.385 -5.527* -1.962 0.990  2.368* 0.287 1.708 5.107* HAR-RSV-SJV -3.190* -4.445* 4.975* 0.495 -0.929  -2.792* -2.371* -2.188* -1.369 

HAR-RSV -0.552 -2.327* -6.119* -3.339* -2.936* -2.832*  -2.184* -0.320 2.803* HAR-RSV -2.957* -4.482* 3.750* 0.907 0.132 0.856  0.585 0.734 0.831 

LHAR-RV1 -1.039 -4.299* -5.282* -2.865* -3.156* -2.953* 0.078  2.385* 3.543* LHAR-RV1 -4.536* -6.584* 3.538* 0.814 -0.018 0.779 -0.114  0.255 0.530 
LHAR-RV2 -3.321* -5.281* -6.506* -4.058* -4.661* -4.648* -2.139* -3.397*  2.922* LHAR-RV2 8.441* 6.183* 8.301* 5.482* 12.28* 7.812* 9.991* 23.69*  0.490 

LHAR-RV-CJ 2.375* 1.358 -6.354* -0.189 1.801 1.683 3.298* 2.741* 4.296*  LHAR-RV-CJ -0.274 -1.023 12.59* 5.876* 1.261 2.408* 1.199 1.238 -3.760*  

N225 
HAR-

RV 

HAR-

RV-J 

HAR-

CJ 

HAR-

RV-CJ 

HAR-

PS 

HAR-

RSV-SJV 

HAR-

RSV 

LHAR-

RV1 

LHAR-

RV2 

LHAR-

RV-CJ 
BVSP 

HAR-

RV 

HAR-

RV-J 

HAR-

CJ 

HAR-

RV-CJ 

HAR-

PS 

HAR-

RSV-SJV 

HAR-

RSV 

LHAR-

RV1 

LHAR-

RV2 

LHAR-

RV-CJ 

HAR-RV  -2.401* 0.565 -0.514 0.059 0.616 -4.139* 0.333 2.362* 0.799 HAR-RV  3.277* 4.584* 3.995* 3.169* 3.519* 4.715* 0.440 3.482* 4.451* 

HAR-RV-J 5.028*  1.394 0.256 1.734 1.602 -2.968* 1.646 3.054* 1.458 HAR-RV-J -0.298  4.155* 3.494* -0.095 2.394* 2.526* -1.968 1.561 3.978* 

HAR-CJ -2.782* -3.974*  -1.148 -0.527 -0.060 -3.172* -0.391 0.943 0.337 HAR-CJ -3.013* -3.118*  -0.807 -4.073* -3.974* -2.866* -4.454* -3.292* 0.022 
HAR-RV-CJ -7.334* -8.665* -4.981*  0.511 0.928 -2.123* 0.603 1.819 2.037* HAR-RV-CJ -7.250* -7.411* -6.175*  -3.477* -2.981* -2.273* -3.847* -2.698* 1.941 

HAR-PS -0.779 -3.704* 2.431* 6.679*  0.630 -4.655* 0.381 2.543* 0.812 HAR-PS -5.156* -3.656* 2.337* 6.644*  2.107* 3.654* -2.891* 1.912 4.030* 

HAR-RSV-SJV -2.176* -3.637* 1.076 4.769* -1.939  -3.553* -0.558 1.370 0.405 HAR-RSV-SJV -3.834* -4.667* 1.947 6.708* -1.868  0.344 -3.281* -0.471 3.582* 

HAR-RSV 0.865 -1.292 3.013* 6.705* 1.691 2.504*  4.315* 5.989* 3.238* HAR-RSV -4.294* -3.852* 1.378 5.238* -2.509* -0.186  -4.528* -0.999 2.855* 

LHAR-RV1 -0.512 -2.832* 2.360* 6.329* 0.119 2.426* -1.287  2.672* 0.729 LHAR-RV1 -1.498 -1.080 2.762* 6.938* 3.172* 3.153* 3.545*  3.965* 4.451* 

LHAR-RV2 -1.931 -3.574* 1.383 4.884* -1.750 0.565 -3.136* -2.163*  -0.769 LHAR-RV2 -0.090 0.065 2.932* 7.017* 3.532* 3.511* 4.345* 1.703  3.445* 

LHAR-RV-CJ -7.554* -8.570* -5.343* -2.500* -7.744* -6.328* -8.399* -8.021* -7.944*  LHAR-RV-CJ -6.099* -6.237* -4.336* 5.050* -5.531* -5.417* -4.323* -5.950* -6.154*  

DAX 
HAR-

RV 
HAR-
RV-J 

HAR-
CJ 

HAR-
RV-CJ 

HAR-
PS 

HAR-
RSV-SJV 

HAR-
RSV 

LHAR-
RV1 

LHAR-
RV2 

LHAR-
RV-CJ 

MXX 
HAR-

RV 
HAR-
RV-J 

HAR-
CJ 

HAR-
RV-CJ 

HAR-
PS 

HAR-
RSV-SJV 

HAR-
RSV 

LHAR-
RV1 

LHAR-
RV2 

LHAR-
RV-CJ 

HAR-RV  3.705* 11.50* 10.53* 2.033* 5.248* 2.797* 0.332 -0.781 5.781* HAR-RV  -1.675 -4.687* -3.923* -0.270 -2.221* 0.422 0.356 4.098* -2.380* 

HAR-RV-J -5.040*  9.933* 9.051* 0.210 3.096* 1.410 -1.437 -1.855 4.787* HAR-RV-J 0.956  -3.912* -3.168* 1.061 -0.655 1.323 1.552 4.243* -1.777 

HAR-CJ -27.50* -25.27*  -0.319 -8.494* -9.229* -6.499* -9.266* -8.296* -2.429* HAR-CJ -21.79* 21.23*  3.142* 4.669* 4.450* 4.850* 4.656* 5.916* 4.139* 

HAR-RV-CJ -24.97* -22.61* 7.026*  -7.956* -8.159* -6.215* -8.695* -7.907* -2.571* HAR-RV-CJ -21.35* 20.75* -1.615  3.881* 3.519* 4.088* 3.899* 5.263* 2.996* 

HAR-PS -6.291* -3.221* 21.89* 19.69*  2.926* 1.957 -2.227* -2.276* 5.110* HAR-PS -2.595* -2.541* -23.02* -22.50*  -2.154* 0.787 0.728 4.378* -2.425* 

HAR-RSV-SJV -12.92* -9.495* 25.36* 22.15* -6.586*  -1.014 -4.885* -4.281* 3.945* HAR-RSV-SJV -6.514* 5.899* -22.28* -21.70* 9.039*  2.118* 2.311* 4.863* -1.780 
HAR-RSV -7.782* -5.543* 17.76* 15.80* -4.824* 2.333*  -2.956* -3.798* 4.428* HAR-RSV 1.239 0.569 -22.73* -22.18* 3.337* -3.587*  -0.257 3.002* -2.679* 

LHAR-RV1 -0.930 1.756 23.59* 21.48* 6.881* 11.41* 8.159*  -1.289 6.359* LHAR-RV1 -2.519* -2.339* -21.98* -21.49* 0.519 -7.558* -2.569*  4.718* -2.535* 

LHAR-RV2 -1.991 -0.220 19.31* 17.65* 2.121* 6.717* 5.789* -1.812  9.607* LHAR-RV2 -7.351* -6.018* -23.23* -22.72* -5.284* -10.69* -5.922* -8.052*  -4.447* 

LHAR-RV-CJ -20.04* -18.30* 1.531* -0.566 -18.45* -17.51* -17.39* -21.50* -25.99*  LHAR-RV-CJ -18.51* -18.02* -7.464* -7.727* 19.99* 18.58* 19.59* 19.32* 21.19*  

Notes: This table presents the values of Diebold and Mariano’s test of no difference in predicative accuracy for daily forecasting horizon under both rolling window and recursive forecasting 

approaches. The positive value indicates that the model in the row outperforms the model in the column. In each panel, in cell above the main diagonal this table reports the rolling window results; 

below the main diagonal, recursive forecasting results are presented. The value highlighted with * indicates rejection of the null hypothesis below the 5% significant level. 
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Table 3.16: Diebold-Mariano’s equal predictive accuracy test of monthly forecasting horizon 

FTSE 
HAR-

RV 

HAR-

RV-J 

HAR-

CJ 

HAR-

RV-CJ 

HAR-

PS 

HAR-

RSV-SJV 

HAR-

RSV 

LHAR-

RV1 

LHAR-

RV2 

LHAR-

RV-CJ 
SSEC 

HAR-

RV 

HAR-

RV-J 

HAR-

CJ 

HAR-

RV-CJ 

HAR-

PS 

HAR-

RSV-SJV 

HAR-

RSV 

LHAR-

RV1 

LHAR-

RV2 

LHAR-

RV-CJ 

HAR-RV  -3.643* -0.613 0.568 -0.754 -2.092* -0.352 0.066 0.861 0.293 HAR-RV  -2.651* 2.320* 3.476* 1.249 1.940 10.58* -0.248 -8.450* -0.695 
HAR-RV-J 1.224  0.377 1.534 2.079* -0.107 1.723 2.226* 2.286* 1.153 HAR-RV-J 4.988*  3.161* 4.180* 2.548* 3.084* 10.75* 1.884 -5.685* 0.169 

HAR-CJ -2.883* 2.504*  5.474* 0.414 -0.561 0.504 0.616 1.054 1.722 HAR-CJ -12.23* 11.27*  3.818* -1.482 -1.119 5.172* -2.309* -6.543* -4.882* 

HAR-RV-CJ -2.327* 1.974 -4.387*  -0.831 -2.054* -0.802 -0.524 -0.046 -0.456 HAR-RV-CJ -11.36* 10.36* -8.424*  -2.627* -2.867* 3.884* -3.433* -7.422* -8.300* 

HAR-PS -0.172 -0.931 -3.082* -2.496*  -2.116* 0.201 0.861 1.375 0.529 HAR-PS -2.876* -4.533* -13.17* -12.32*  0.959 14.39* -1.687 -8.663* -1.375 

HAR-RSV-SJV 1.079 0.419 -2.954* -2.261* 1.441  1.869 2.197* 2.492* 1.513 HAR-RSV-SJV 5.931* 4.798* -13.01* -11.73* 7.515*  6.767* -2.143* -7.465* -2.879* 

HAR-RSV 1.147 0.299 -2.812* -2.184* 2.214* -0.279  0.414 1.157 0.499 HAR-RSV -3.476* -4.941* -13.29* -12.47* -2.172* -7.699*  -11.75* -17.48* -7.654* 

LHAR-RV1 -0.484 -1.088 -2.978* -2.432* -0.423 -1.415 -1.608  1.092 0.291 LHAR-RV1 0.777 -2.178* -11.54* -10.70* 3.969* -5.768* 4.419*  -10.15* -0.656 
LHAR-RV2 -1.498 -1.795 -3.529* -3.006* -1.539 -2.223* -2.362* -1.536  -0.195 LHAR-RV2 0.604 -1.228 -10.63* -9.711* 3.187* -4.902* 4.079* 0.200  3.989* 

LHAR-RV-CJ 1.801 1.515 -1.861 -0.647 1.975 1.645 1.672 2.026* 2.904*  LHAR-RV-CJ 9.722* 8.852* -2.689* -0.743 11.78* 9.313* 12.28* 9.961* 10.81*  

SPX 
HAR-

RV 
HAR-
RV-J 

HAR-
CJ 

HAR-
RV-CJ 

HAR-
PS 

HAR-
RSV-SJV 

HAR-
RSV 

LHAR-
RV1 

LHAR-
RV2 

LHAR-
RV-CJ 

NSEI 
HAR-

RV 
HAR-
RV-J 

HAR-
CJ 

HAR-
RV-CJ 

HAR-
PS 

HAR-
RSV-SJV 

HAR-
RSV 

LHAR-
RV1 

LHAR-
RV2 

LHAR-
RV-CJ 

HAR-RV  -4.337* 2.539* 6.380* -0.845 -1.319 -6.576* 0.156 2.205* 6.061* HAR-RV  -0.976 3.543* 3.861* 2.151* 1.899 -0.275 1.054 -0.477 -2.782* 

HAR-RV-J -3.944*  3.347* 7.186* 1.674 0.561 -4.316* 2.488* 3.548* 6.755* HAR-RV-J 5.204*  3.667* 4.004* 2.360* 1.813 0.152 1.417 -0.186 -2.921* 

HAR-CJ -8.112* 7.396*  7.647* -2.938* -3.771* -5.567* -2.417* -1.332 6.370* HAR-CJ -5.617* -6.233*  0.743 -3.074* -2.429* -3.622* -3.225* -3.262* -0.795 

HAR-RV-CJ 1.810 1.183 -18.69*  -6.979* -8.355* -9.458* -6.159* -5.222* 1.016 HAR-RV-CJ -2.056* -2.677* 9.949*  -3.393* -2.732* -3.889* -3.532* -3.559* -1.750 
HAR-PS 1.323 -0.894 -8.039* -1.518  -0.884 -8.691* 1.076 2.777* 6.761* HAR-PS -4.746* -6.790* 4.770* 1.254  1.086 -2.242* -1.172 -1.460 -2.422* 

HAR-RSV-SJV -2.055* 0.196 -8.634* -1.309 1.194  -4.979* 1.388 3.022* 7.794* HAR-RSV-SJV -1.207 -2.141* 4.950* 1.462 0.517  -1.844 -1.432 -1.762 1.774 
HAR-RSV -4.928* 2.741* -7.095* -0.275 6.766* 2.645*  6.875* 6.799* 9.061* HAR-RSV 6.869* 4.444* 7.979* 4.209* 12.17* 5.115*  1.080 -0.313 -2.992* 

LHAR-RV1 -0.910 -3.057* -8.203* -1.997 -2.426* -2.702* -5.995*  2.637* 6.281* LHAR-RV1 -4.240* -6.433* 4.861* 1.381 1.067 -0.192 -9.716*  -1.087 -2.623* 

LHAR-RV2 -3.549* -4.759* -9.643* -3.315* -4.455* -5.015* -7.168* -3.757*  6.015* LHAR-RV2 22.83* 21.21* 15.12* 11.71* 25.29* 17.93* 20.85* 25.85*  -3.222* 

LHAR-RV-CJ 1.604 1.015 -13.91* -0.371 1.350 1.119 0.158 1.855 3.308*  LHAR-RV-CJ 6.015* 5.387* 20.88* 19.11* 6.935* 6.557* 4.414* 6.760* -4.811*  

N225 
HAR-

RV 
HAR-
RV-J 

HAR-
CJ 

HAR-
RV-CJ 

HAR-
PS 

HAR-
RSV-SJV 

HAR-
RSV 

LHAR-
RV1 

LHAR-
RV2 

LHAR-
RV-CJ 

BVSP 
HAR-

RV 
HAR-
RV-J 

HAR-
CJ 

HAR-
RV-CJ 

HAR-
PS 

HAR-
RSV-SJV 

HAR-
RSV 

LHAR-
RV1 

LHAR-
RV2 

LHAR-
RV-CJ 

HAR-RV  -3.897* 1.936 2.543* -0.626 0.404 -1.487 0.313 1.681 2.996* HAR-RV  4.544* 4.462* 3.760* 3.733* 3.416* 3.512* 0.648 1.736 4.213* 

HAR-RV-J 4.645*  3.147* 3.807* 1.953 1.899 0.338 2.740* 3.182* 4.028* HAR-RV-J -1.010  3.865* 3.191* 1.673 2.427* 2.044* -1.509 0.285 3.688* 

HAR-CJ -5.189* -6.194*  1.015 -2.153* -1.830 -2.599* -1.702 -0.660 1.898 HAR-CJ -4.253* -4.280*  -1.218 -3.369* -3.908* -2.914* -4.220* -3.554* 0.340 

HAR-RV-CJ -8.366* -9.192* -5.460*  -2.733* -2.548* -3.103* -2.245 -1.077 1.554 HAR-RV-CJ -7.068* -7.156* -6.581*  -2.651* -2.669* -2.224* -3.511* -2.867* 1.997 
HAR-PS -1.014 -3.549* 4.441* 7.287*  0.783 -1.463 0.963 2.049* 3.378* HAR-PS -5.437* -5.171* 2.666* 5.580*  1.390 1.245 -3.388* -0.994 3.298* 

HAR-RSV-SJV -2.802* -4.460* 3.198* 6.630* -2.307*  -1.446 -0.300 0.832 3.350* HAR-RSV-SJV -4.036* -4.108* 3.057* 7.195* -1.129  -0.673 -3.127* -1.908 3.415* 

HAR-RSV -0.769 -2.621* 3.947* 6.344* -0.129 1.827  1.714 3.330* 4.187* HAR-RSV -5.464* -5.301* 1.850 4.726* -2.415* -0.159  -3.205* -1.855 3.010* 

LHAR-RV1 -0.540 -3.115* 4.617* 7.445* 0.651 2.866* 0.495  1.809 3.071* LHAR-RV1 -1.631 -1.461 3.762* 6.509* 4.247* 3.273* 4.567*  1.720 4.205* 

LHAR-RV2 -1.947 -3.714* 3.416* 5.894* -1.185 1.178 -1.152 -2.048*  2.516* LHAR-RV2 -1.915 -1.816 3.284* 5.939* 1.988 2.326* 3.849* -1.146  3.888* 

LHAR-RV-CJ -8.087* -8.845* -4.964* -2.263* -8.019* -7.500* -8.233* -8.531* -9.012*  LHAR-RV-CJ -6.887* -6.957* -5.393* -3.855* -5.673* -6.854* -5.108* -6.750* -6.759*  

DAX 
HAR-

RV 

HAR-

RV-J 

HAR-

CJ 

HAR-

RV-CJ 

HAR-

PS 

HAR-

RSV-SJV 

HAR-

RSV 

LHAR-

RV1 

LHAR-

RV2 

LHAR-

RV-CJ 
MXX 

HAR-

RV 

HAR-

RV-J 

HAR-

CJ 

HAR-

RV-CJ 

HAR-

PS 

HAR-

RSV-SJV 

HAR-

RSV 

LHAR-

RV1 

LHAR-

RV2 

LHAR-

RV-CJ 

HAR-RV  1.382 15.11* 12.80* 1.410 2.089* 3.643* 0.213 0.580 9.001* HAR-RV  -2.340* -2.439* -1.393 0.047 -1.427 1.039 0.531 1.593 -0.914 

HAR-RV-J -2.836*  14.68* 12.54* 0.608 1.393 2.895* -0.313 0.210 8.762* HAR-RV-J 0.935  -2.022* -1.012 0.938 -0.730 1.660 1.541 2.213* -0.580 
HAR-CJ -39.45* -37.79*  -0.445 -12.56* -13.38* -10.16* -11.67* -9.292* -0.962 HAR-CJ 1.593 15.32*  3.853* 2.590* 2.359* 3.101* 2.522* 2.968* 2.936* 

HAR-RV-CJ -37.72* -35.76* 4.372*  -10.97* -11.44* -8.710* -10.35* -8.444* -0.824 HAR-RV-CJ 1.401 15.15* -1.593  1.487 0.879 2.007* 1.497 1.982 0.924 
HAR-PS -4.956* -3.562* 34.42* 32.76*  0.835 4.048* -1.123 -0.129 9.109* HAR-PS -2.837* -3.074* -17.58* -17.43*  -1.597 1.450 0.441 1.537 -1.021 

HAR-RSV-SJV -8.299* -6.714* 35.62* 33.59* -3.579*  1.659 -1.774 -0.677 9.354* HAR-RSV-SJV 6.949* 6.664* -16.31* -16.24* 9.964*  2.156* 1.635 2.300* -0.263 

HAR-RSV -8.168* -7.041* 32.00* 29.86* -7.420* -0.708  -3.492* -2.208* 7.948* HAR-RSV -1.167 -1.341 -17.55* -17.25* 0.994 -7.154*  -0.805 0.388 -1.617 
LHAR-RV1 -0.869 -0.068 31.86* 30.19* 3.409* 5.906* 6.915*  0.597 10.32* LHAR-RV1 -2.502* -2.699* -15.93* -15.67* 1.055 -7.957* -0.111  1.622 -1.094 

LHAR-RV2 -2.782* -2.211* 25.91* 24.56* -0.664 1.439 2.190* -3.020*  12.17* LHAR-RV2 -4.667* -4.756* -16.81* -16.52* -2.274* -9.152* -2.783* -3.982*  -1.782 
LHAR-RV-CJ -28.76* -27.83* 0.639 -1.287 -29.28* -28.73* -28.96* -32.44* -38.78*  LHAR-RV-CJ -13.02* -12.83* -4.321* -3.897* 15.26* 12.93* 15.81* 14.01* 16.22*  

Notes: This table presents the values of Diebold and Mariano’s test of no difference in predicative accuracy for daily forecasting horizon under both rolling window and recursive forecasting 

approaches. The positive value indicates that the model in the row outperforms the model in the column. In each panel, in cell above the main diagonal this table reports the rolling window results; 

below the main diagonal, recursive forecasting results are presented. The value highlighted with * indicates rejection of the null hypothesis below the 5% significant level. 
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Table 3.17: the Model Confidence Set (MSC) test under rolling window approach 

  FTSE SPX N225 DAX SSEC NSEI BVSP MXX 

  H=1 

HAR-RV 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-RV-J 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-CJ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-RV-CJ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-PS 0.0000 0.0000 0.9788 0.0000 0.9998 0.0000 0.0000 0.0000 

HAR-RSV-SJV 0.0000 0.0000 0.0000 0.0000 0.8780 0.0000 1.0000* 0.0000 

HAR-RSV 0.0000 0.0000 0.9930 0.0000 0.0000 0.0000 0.0000 0.0000 

LHAR-RV1 0.0000 0.0000 1.0000* 0.0000 1.0000* 1.0000* 0.0000 0.0000 

LHAR-RV2 0.0000 0.0000 0.9960 0.0000 0.9646 0.0000 0.0000 0.0000 

LHAR-RV-CJ 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.9066 0.0000 1.0000* 

  H=5 

HAR-RV 0.0000 0.0000 0.8723 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-RV-J 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-CJ 0.0000 0.0000 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 

HAR-RV-CJ 0.0000 0.0000 0.0000 0.0000 0.9842 0.0000 0.0000 0.0000 

HAR-PS 0.0000 0.0000 0.8754 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-RSV-SJV 0.0000 0.0000 0.0000 0.0000 0.9842 0.0000 1.0000* 0.0000 

HAR-RSV 0.0000 1.0000* 1.0000* 1.0000* 0.0000 0.0000 0.0000 1.0000* 

LHAR-RV1 0.0000 0.0000 1.0000* 0.0000 0.0000 1.0000* 0.0000 0.0000 

LHAR-RV2 1.0000* 0.0000 1.0000* 0.0000 0.9908 0.0000 0.0000 0.0000 

LHAR-RV-CJ 0.0000 0.0000 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 

  H=22 

HAR-RV 0.0000 0.0000 0.9238 0.0000 0.9986 0.0000 0.8498 0.0000 

HAR-RV-J 0.0000 0.0000 1.0000* 0.0000 0.9960 0.0000 0.8388 0.0000 

HAR-CJ 0.0000 0.0000 0.0000 1.0000* 0.9814 0.0000 0.0000 0.0000 

HAR-RV-CJ 0.0000 0.0000 1.0000* 0.0000 0.9638 0.0000 0.0000 0.0000 

HAR-PS 0.0000 0.0000 1.0000* 0.9742 1.0000* 0.0000 0.8388 0.0000 

HAR-RSV-SJV 0.0000 0.0000 0.0000 0.8690 0.9816 0.0000 0.8116 0.0000 

HAR-RSV 0.0000 1.0000* 1.0000* 0.9990 0.7834 0.0000 1.0000* 0.0000 

LHAR-RV1 0.0000 0.0000 1.0000* 0.9990 1.0000* 1.0000* 1.0000* 0.0000 

LHAR-RV2 0.9932 0.0000 1.0000* 1.0000* 0.9748 0.0000 1.0000* 1.0000* 

LHAR-RV-CJ 1.0000* 0.0000 0.0000 0.9992 0.0000 0.0000 0.2784 0.0000 

Note: This table reports the MSC test in term of MSE criterion under rolling window approach over daily, weekly 

and monthly horizons (h=1, 5 and 22). The forecasting models with EPA at 75% confidence level are highlighted 

in table. The value 1 in the table means that the optimal model is chosen, the value 0 means the model is 

eliminated.  
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Table 3.18: the Model Confidence Set (MSC) test under recursive approach 

  FTSE SPX N225 DAX SSEC NSEI BVSP MXX 

  H=1 

HAR-RV 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-RV-J 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-CJ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-RV-CJ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-PS 0.0000 0.0000 0.9988 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-RSV-SJV 0.0000 0.0000 0.0000 0.0000 0.8292 0.0000 1.0000* 0.0000 

HAR-RSV 0.0000 0.0000 0.9824 0.0000 0.0000 0.0000 0.0000 0.0000 

LHAR-RV1 0.0000 0.0000 1.0000* 0.0000 1.0000* 0.0000 0.0000 0.0000 

LHAR-RV2 0.0000 0.0000 1.0000* 0.0000 0.9442 1.0000* 0.0000 0.0000 

LHAR-RV-CJ 1.0000* 1.0000* 0.9810 1.0000* 1.0000* 0.9332 0.0000 1.0000* 

  H=5 

HAR-RV 0.0000 0.0000 0.8246 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-RV-J 0.0000 0.0000 0.9653 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-CJ 0.0000 0.0000 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 

HAR-RV-CJ 0.0000 0.0000 0.0000 0.0000 0.8936 0.0000 0.0000 0.0000 

HAR-PS 0.0000 0.0000 0.6816 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-RSV-SJV 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-RSV 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 1.0000* 1.0000* 

LHAR-RV1 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 0.0000 0.0000 

LHAR-RV2 1.0000* 1.0000* 1.0000* 1.0000* 0.0000 1.0000* 0.0000 0.0000 

LHAR-RV-CJ 0.0000 0.0000 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 

  H=22 

HAR-RV 0.0000 0.0000 0.7250 0.0000 0.9382 0.0000 0.8188 0.0000 

HAR-RV-J 0.0000 0.0000 1.0000* 0.0000 1.0000* 0.0000 0.7998 0.0000 

HAR-CJ 0.0000 0.0000 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 

HAR-RV-CJ 0.0000 0.0000 0.0000 0.0000 0.7681 0.0000 0.0000 0.0000 

HAR-PS 0.0000 0.0000 0.3482 0.0000 1.0000* 0.0000 0.6768 0.0000 

HAR-RSV-SJV 0.0000 0.0000 0.0000 0.0000 1.0000* 0.0000 1.0000* 0.0000 

HAR-RSV 0.0000 0.0000 1.0000* 0.0000 1.0000* 0.0000 1.0000* 0.9520 

LHAR-RV1 0.0000 0.0000 1.0000* 0.0000 1.0000* 0.0000 1.0000* 0.0000 

LHAR-RV2 0.0000 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

LHAR-RV-CJ 1.0000* 0.0000 0.0000 0.0000 0.0000 0.0000 0.1582 0.0000 

Note: This table reports the MSC test in term of MSE criterion under recursive approach over daily, weekly and 

monthly horizons (h=1, 5 and 22). The forecasting models with EPA at 75% confidence level are highlighted in 

table. The value 1 in the table means that the optimal model is chosen, the value 0 means the model is eliminated. 
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Chapter 4 Lasso-Based Flexible Lags for Realised Volatility Forecasting 

4.1 Introduction 

Since Ding et al. (1993) and Bollerslev and Mikkelsen (1996) put forward that volatility is 

persistence, a partial history of volatility models captures the long memory feature of volatility 

to model and forecast volatility(Baillie et al., 1996 and Engle and Lee, 1993). The realised 

volatility (RV) is an unbiased estimator of past return volatility (Andersen et al., 2003). The 

current empirical works concentrate on modelling and forecasting RV. The HAR model (Corsi, 

2009) becomes the tendency in forecasting models, as it simply exhibits the volatility 

persistence through aggregating daily, weekly and monthly RV. According to Corsi (2009) 

notes, the HAR model could be regarded as a restricted AR(22) model with an economic 

perspective. Hence, it raises whether there is an appropriate lag length or lag structure that 

could provide more efficient forecasting information.  

An important contribution in model selection within linear models is the least absolute 

shrinkage and selection operator (Lasso) method proposed by Toshigami (1996). The Lasso 

produces parsimonious parameters in the linear model, making the selected parameter more 

efficient (Friedman et al., 2010). The Lasso method can test the validity of efficient variables, 

and it has been increasingly employed in the forecasting model. For example, Audrino and 

Knaus (2016) extend the Lasso method used in the AR model of Nardi and Rinaldo (2011) to 

the case of the HAR model. However, Audrino and Knaus (2016) find the Lasso approach 

limited improve accuracy over the HAR model in the out-of-sample prediction.  

In light of this background, this chapter investigates whether the AR model with 

parsimonious lags could generate a more accurate RV than the HAR model with fixed lags. 

Therefore, this chapter uses the Lasso approach to obtain more sparse coefficients in the AR 

model and compares the forecasting performance with HAR models. This chapter extends and 

updates the work of Audrino and Knaus (2016) and Audrino et al. (2019) in terms of the 
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different lag lengths in the AR model. I consider two AR models, which are the AR(22) model 

and the AR(100) model.9 Then, the chapter also employs the Lasso improvements based on the 

different penalty functions. For example, the more flexible penalization used in adaptive Lasso 

(Zou, 2006), the grouped Lasso is suitable for strongly correlated variables (Yuan and Lin, 

2006), and ordered Lasso (Toshigami and Suo, 2016) to capture the dynamic feature the time 

series model. In addition, this chapter access forecasting performance in management 

applications in calculating the Value at Risk.  

The empirical results in this paper suggest three conclusions. First, the in-sample results 

show that the AR models with parsimonious lags have slightly improved the model fitness over 

the HAR models. In the analysis of coefficients, this chapter finds the forecasting information 

is concentrated in the first 22 lags, but the longer lags beyond 22 also provide some efficient 

information. Second, the out-of-sample results indicate that the AR models using the Lasso 

approach significantly outperform the HAR models. Especially, the AR(100) model with 

ordered Lasso performs the best at daily forecasting, and the AR(22) model with ordered Lasso 

dominates at the weekly and monthly prediction. Consistent results are found in the risk 

management application.  

The rest of this chapter is shown as follows. Section 2 provides a review of relevant 

literature. Section 3 introduces the Lasso-based methods and HAR models considered in this 

chapter and the methodology of forecasting evaluation. The data and empirical findings of in-

sample estimation and out-of-sample forecasting are introduced in sections 4 and 5. Section 6 

 
9 The lag length of AR(22) model is same as the basic HAR model(Coris, 2009). In the empirical work of Audrino 

et al. (2019), the AR(50) does not perform well using Lasso approaches and they conclude that some lags still 

have predictive information beyond the HAR model. The forecasting information is gradually decay in the time 

series data. While AR(100) is arbitrary in this chapter, it is selected partly on the basis that it will be 'too long' and 

therefore capture all information within the data. The Lasso approach sets lags to zero if they do not add 

explanatory power, so minimises any issues in regard of over-fitting. 
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applies the forecasts to risk management application. And the conclusion is provided in section 

7. 

 

4.2 Literature Review 

For many years, the analysis of financial assets with time-varying behaviours has been a vital 

part of asset allocation and risk management. For modelling the volatility, it is well known that 

the volatility of asset returns is persistent, and it can be captured relatively well in the works of 

Ding et al. (1993) and Bollerslev and Mikkelsen (1996), in which the volatility persistence of 

asset returns could be described as long memory feature. It can be shown as highly 

autocorrelation for long lags, which exponentially decay with the number of lags increasing. 

Since then, the feature of long memory is widely used in the forecasting model. In the past 

years, there are some extension models of the GARCH model to indicate the high volatility 

persistence 10(e.g. Engle and Bollerslev, 1986; Baillie et al. 1996 and Engle and Lee 1993). In 

addition, Granger and Ding (1996) provide the generalized fractionally integrated processes 

for the non-GARCH setting. 

 

Long Memory In Realised Volatility 

Andersen and Bollerslev (1998) use the cumulative sum of squared intraday returns as a 

measurement of RV, displaying a long memory feature and high persistence. Over those 

decades, this integrated form has been used extensively to capture the persistence of the 

observed volatility sequence. For instance, Andersen et al. (2003), Lieberman and Philips 

(2008), and Martens et al. (2009) report the evidence of long memory in the high-frequency 

data, modelled by the fractionally integrated process. Since then, it has been found that RV can 

 
10 A more complete review can be found in Section 2.2.3. 
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improve the performance of the fitting and prediction process, and a long memory model can 

improve the prediction performance (Martens and Zein, 2004). 

To capture the long-memory feature of RV, Andersen et al. (2004) suggest that the 

ARMA-type model is directly adapted to RV and performs well under actual forecasting 

conditions. Then the long-memory feature of RV has been accommodated by the ARFIMA 

process. Hol and Koopman (2002) find the relatively simple form of ARFIMA (1, 𝑑, 0) model 

for RV to obtain more accurate predictions than the SV model and GARCH model. However, 

some researchers raise the question of the fractional integrated process. Poskitt (2006) and 

Wang and Hsiao (2012) show the ARFIMA (𝑝, 𝑑, 𝑞) process can be well approximated by the 

AR(𝑘) model using information criterion to determine the order. The empirical work of Wang 

et al. (2013) proves this AR-based method could provide better forecasting performance than 

the fractional integrated process.  

 

Long Memory In HAR Model  

As previous mentioned in section 3.2, to accommodate the long memory of RV, Corsi (2009) 

proposes the HAR model, which corresponds to different trading behaviours with daily, weekly 

and monthly horizons. Corsi (2009) emphasised that the standard HAR model can be regarded 

as a restricted AR(22) model. Following the work of Corsi (2009), the standard HAR model is 

extended along with different patterns in order to account for different stylized facts of 

volatility.11 (E.g. Andersen et al., 2007; Narndorff-Nielsen et al., 2008; Patton and Sheppard, 

2015; Corsi et al., 2012 and Patton and Sheppard, 2015).  

Despite the HAR model having an economically meaningful fixed lag structure (1, 5, 

22) for modelling RV, which represent the daily, weekly, and monthly time horizon and this 

fixed lag structure being widely used in recent research, some empirical works still doubt the 

 
11 More details can be found in Chapter3.  
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validity in the lag structure in a HAR-like structure with the fixed aggregation of the three 

scales. Craioveanu and Hillebrand (2012) extend the fixed lag structure of the HAR model to 

a flexible lag structure; however, they find there is no forecasting improvement in the in-sample 

and out-of-sample fit when employing the flexible lag structure in the HAR model. In addition, 

an enhanced AR model accommodated with structure breaks for forecasting a long memory 

process developed by Wand et al. (2013), the AR-based forecasting method outperforms 

ARFIMA-based methods in the out-of-sample evaluation. Their results of persistence change 

in memory parameter also provide an econometric explanation for the empirical success of the 

HAR model, which can be considered as a special structure of the AR method. Another lag 

structure justification of the HAR model is proposed by Hwang and Shin (2014). They extend 

the basic three lag structure HAR model to an infinite-order HAR model, namely HAR (∞), 

with infinite long memory conditions. The HAR (∞) model has exponentially decaying 

coefficients, but the result of Hwang and Shin's (2014) research shows the forecasting errors 

are mainly dominated by the finite-order HAR (𝑝) instead of HAR (∞).  

 

Lasso Method  

As the empirical works discussed above, the lag structure of daily, weekly, and monthly time 

horizons might be perfect for forecasting volatility. However, the deficiency of those works is 

that they cannot test the forecasting information of each lag separately. To test the validity and 

improve the forecasting ability of every lag in the AR model, the model selection theory is 

employed in the estimation of lag structure coefficients, which can be restored with statistical 

means. Model selection plays an essential role in computational statistics perspective. 

Toshigami (1996) proposes the least absolute shrinkage and selection operator (Lasso), which 

gains great popularity and extensive application in model selection in linear models. To reduce 

the basis of each independent variable, the Lasso process shrinks estimators toward zero based 
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on a tuning parameter. The ordinary least squared (OLS) method gives non-zero coefficients 

to every variable, Lasso is differed in terms of the parsimonious coefficients impose on the 

linear parameters.  

The empirical researches based on the Lasso process are increasingly employed in 

different econometric models. Wand et al. (2007) extend the Lasso to the linear regression 

model and find it could obtain a satisfactorily finite sample performance for exogenous 

variables and lagged dependent variables. Hsu et al. (2008) derive the Lasso estimator under 

vector auto-regressive processes and find the Lasso method perform better than other subset 

selection method for the small sample under several loss functions. For the AR model, Nardi 

and Rinaldo (2011) derive the Lasso is model selection consistent, estimation consistent and 

prediction consistent under certain conditions.  

Due to the Lasso approach provides parsimonious and efficient forecasting variables, it 

has been increasingly used in time series model forecasting research. For the empirical works 

of Li and Chen (2014), Roy et al. (2015) and Ziel (2016), works have proved the Lasso-based 

estimations exhibit superiority from other model approaches. Tian et al. (2015) and Nazemi 

and Fabozzi (2018) both show that the Lasso-selected models have a good predictive 

performance for financial assets. Corsi (2009) indicates that the HAR model is the restricted 

AR(22) with only three coefficients. Subsequently, motivated by Corsi (2009), Audrino and 

Knaus (2016) find the Lasso process of the AR model has the same forecasting performance 

as the HAR model in the out-of-sample prediction at the individual stock level. The fixed lag 

structure of the HAR model is hard to beat by the linear model of the selected lag structure. 

However, Lasso cannot accurately restore the HAR lag structure in its empirical application, 

which raises questions about whether the lag structure of the HAR model is suitable for 

modelling RV (Audrino and Knaus, 2016). 
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Adaptive Lasso  

However, due to every estimator are penalized equally in the basic Lasso method, Fan and Lin 

(2001) indicate the estimator of Lasso is unbiased, which means the Lasso process maybe 

provide an inefficient and inconsistent model selection result. To deal with this drawback, Zou 

(2006) allows more flexible penalization to obtain estimators and proposes the adaptive Lasso, 

which uses the adaptive weight penalty to shrink the variable coefficients. Park and Sakaori 

(2013) and Audrino and Camponovo (2013) both indicate it provides more efficient estimators 

for the adaptive Lasso for time series model.  

Empirically, in the robustness check of Audrino and Knaus' (2016) work, the Lasso and 

adaptive Lasso process have the same prediction ability in the out-of-sample analysis, which 

means the forecasting performance of Lasso and adaptive Lasso is indistinguishable.  

Subsequently, Audrino et al. (2019) consider the HAR model employing the adaptive Lasso 

method to test whether the lag structure of the flexible HAR model could recover that in the 

fixed HAR (1, 5, 22) model. Once more, they provide empirical evidence to show that only 

slightly outperformance in terms of flexible HAR model and it is insignificant outperformed in 

the out-of-sample forecasting test. However, Fang et al. (2020) find that using adaptive Lasso 

as variable selection can significantly improve the predictive ability of long-term volatility.  

 

Group Lasso 

The common drawback of Lasso and adaptive Lasso is that they penalize every estimator 

separately and not suitable to the strongly correlated variable. So, in the cases with correlated 

predictors, the reliable estimators would not be produced by Lasso and adaptive Lasso. 

However, in the many multifactor regressions, the variables are naturally grouped. Such as the 

cases of Corsi (2009), the lagged RV are categorized into different groups in terms of time 

horizon, and none of the coefficients should be omitted. Hillebrand and Medeiros (2010) also 
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indicate that bagging lagged RV is reasonable, improving foresting accuracy. As for the Lasso 

method, Yuan and Lin (2006) propose the Group Lasso considering the problem of group 

model selection, which penalizes coefficients and selects estimators as a group instead of an 

individual variable.  

To check the validity of lag structure further on the classic HAR model, Audrino et al. 

(2019) group the AR(50) model and estimated it by the Group Lasso method. However, this 

lag structure does not survive in the performance testing. Thus they conclude there are still 

some lags that have forecasting information beyond one month. There are two additional 

algorithms of Grouped Lasso. The first one is called the Cluster Group Lasso by Buhlmann et 

al. (2013). As for the variables that are strongly correlated or have a nearly linear relationship 

in the multifactor regression, different from the Group Lasso, the Cluster Group Lasso tend to 

choose only one variable from a group and neglect others. The second one is the Sparse Group 

Lasso (Friedman et al., 2010; Simon et al., 2013), in which the penalized parameter is employed 

at both group and individual levels.  

 

Ordered Lasso 

Another defect of the Lasso is that it cannot capture the dynamic feature of the time series 

model. The prediction ability of the AR process is decay gradually, but the Lasso allows a time 

series model with higher-order lags. Meanwhile, the lower order lag may be absent in the same 

model. The two measurements that both the lower order lags are considered, and higher-order 

lags are included are the Hierarchical Lasso (Bien et al. 2013) and the Ordered Lasso 

(Toshigami and Suo, 2016). Both of these two Lasso-based approaches focus on the selection 

of lower lagged coefficients before higher lagged coefficients. Moreover, the order Lasso 

forces the absolute value of lag effects not to increase. 
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For the empirical work of those extension approaches in the RV forecasting field, 

Wilms et al. (2016) indicate that the ordered Lasso has the best forecasting performance for 

RV between these two Lasso approaches. They also compare Lasso approaches with the HAR 

model and find the ordered slightly outperform HAR model. Moreover, Croux et al. (2018) 

employ the ordered Lasso method into the univariate and multivariate model and find better 

forecasting performance than the HAR model. 

 

4.3 Methodology 

The main idea of this chapter is to investigate the lag structure validity of the Lasso-based 

method and the HAR model. In this section, the standard HAR model and its extension will 

present first, then the considered Lasso-based approaches used in AR(22) and AR(100) models 

will be described follow, the penalization method for Lasso and model compression approaches 

are introduced in the end. The details of the alternative models are given as follow: 

 

4.3.1 Empirical Models 

HAR model 

As mentioned in previous methodology of Section 3.3, the calculations of RV and HAR model 

are shown as follow: 

RVt =∑(rt,i)
2

N

i=1

 (4.1) 

𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑑𝑅𝑉𝑡−1 + 𝛽𝑤𝑅𝑉𝑡−1:𝑡−5 + 𝛽𝑚𝑅𝑉𝑡−1:𝑡−22 + 𝑢𝑡 (4.2) 

where the weekly and monthly averages of RV are calculated as:  

𝑅𝑉𝑡−1:𝑡−5 =
1

5
∑𝑅𝑉𝑡−𝑖

5

𝑖=1

 (4.3) 
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𝑅𝑉𝑡−1:𝑡−22 =
1

22
∑𝑅𝑉𝑡−𝑖

22

𝑖=1

 (4.4) 

Thus, the HAR model can be explained by the expected RV as a linear equation of yesterday's 

RV and the average RV over last week and last month. Emphasized by Corsi (2009), the 

standard HAR model also regards as a restricted AR(22) model, so it could also be written as:  

𝑅𝑉𝑡+1 = 𝜃0 +∑𝜃𝑖𝑅𝑉𝑡−𝑖

22

𝑖=1

+ 𝑢𝑡 (4.5) 

The additional restrictions of coefficients, 𝜃𝑖 , implied by the lag structure of HAR model, 

shown as follow: 

𝜃𝑖 =

{
 
 

 
 𝛽𝑑 +

1

5
𝛽𝑤 +

1

22
𝛽𝑚      𝑓𝑜𝑟 𝑖 = 1;           

1

5
𝛽𝑤 +

1

22
𝛽𝑚                𝑓𝑜𝑟 𝑖 = 2,… ,5;  

1

22
𝛽𝑚                              𝑓𝑜𝑟 𝑖 = 6, … ,22.

 (4.6) 

The simplification from 22 parameters of AR(22) to three regression parameters has been 

empirically proved that possess better fitness (Corsi, 2009). However, the information criteria 

between restricted HAR and unrestricted AR(22) model provide unclear results, so the HAR 

model may be uncertainly successful in capturing the real financial data.   

 

HAR-free model  

To incorporate the sudden unexpected change in the market, Bollerslev et al. (2018) propose 

another form of HAR model, namely HAR-free model, is shown as follow: 

𝑅𝑉𝑡 = 𝛽0 + 𝛽1𝑅𝑉𝑡−1 + 𝛽2𝑅𝑉𝑡−2 + 𝛽3𝑅𝑉𝑡−3 + 𝛽4𝑅𝑉𝑡−4 + 𝛽5𝑅𝑉𝑡−5 + 𝛽6𝑅𝑉𝑡−6

+ 𝛽𝑚𝑅𝑉𝑡−1:𝑡−22 + 𝑢𝑡 
(4.7) 

As an augmented HAR model, the first six daily lagged RV are freely estimated in the HAR-

free model, and 𝛽𝑚𝑅𝑉𝑡−1:𝑡−22 is computed as same as equation (4) above. Comparing with the 

standard HAR model, the HAR-free model is AR(6) with aggregated monthly RV. For 
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comparison purpose, this chapter also includes this HAR-free model in which the model freely 

estimate the impact of the first six daily lagged RVs.  

 

Lasso 

Toshigami (1996) proposes the Lasso method, and it is frequently used in the statistical 

perspective of computer science. According to Friedman et al. (2010), the Lasso method could 

provide an efficient algorithm to select computationally affordable estimators. Recently, the 

lasso method and its extensions play a crucial role in econometrics and forecast financial asset 

performance (Tian et al., 2015; and Nazemi and Fabozzi, 2018).   

The Lasso can be treated as a constrained least square regression, as the tested model 

is linear autoregressive in the regression. Let 𝑅𝑉𝑡 donates the realised variance, The Lasso 

estimator of AR(𝑝) model: 

𝑅𝑉𝑡+1 = 𝜃0 +∑𝜃𝑖𝑅𝑉𝑡−𝑖+1

𝑛

𝑖=1

+ 𝑢𝑡 (4.8) 

where 𝑢𝑡 is independent and identically distributed (i.i.d.) innovations with zero mean. 

Consequently, the Lasso estimator can be defined as: 

�̂�𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑(𝑅𝑉𝑡+1 − 𝜃0 −∑𝛽𝑖𝑅𝑉𝑡−𝑗+1

𝑝

𝑖=1

)

2𝑇

𝑡=𝑝

+ 𝜆∑|𝛽𝑖|

𝑝

𝑖=1

} (4.9) 

where the 𝜆 is the tuning parameter that controls the number of shrinkage estimators in terms 

of penalty strictness. The first part in equation (9) is the least square criterion and the second 

part is the penalty term on the regression parameters. It is clear that let 𝜆 = 0 will lead the 

Lasso estimators to coincide with OLS estimators so that the estimators will be set equal to 

zero. Increasing 𝜆 gradually causes more and more coefficients of Lasso, which is penalized 

exactly to zero and performs a stricter coefficient selection. The penalty term 𝜆 is ranging from 

zero to one, so when the penalty term tends to one, all coefficients will be close to 0.  
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Adaptive Lasso  

According to the basic Lasso method introduced by Toshigami (1996), every estimator is 

penalized equally. To this drawback, Zou (2006) develops adaptive Lasso, which allows more 

flexible penalization to obtain estimators. The Adaptive Lasso is given as follow: 

�̂�𝑎𝑑𝑜𝑝𝑡𝑖𝑣𝑒 𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑(𝑅𝑉𝑡+1 − 𝜃0 −∑𝛽𝑖𝑅𝑉𝑡−𝑗+1

𝑝

𝑖=1

)

2𝑇

𝑡=𝑝

+ 𝜆∑𝜆𝑖|𝛽𝑖|

𝑝

𝑖=1

} (4.10) 

where 𝜆𝑖 are adaptive weights for each coefficient to reduce false positives. When every 𝜆𝑖 are 

equal to 1, the adaptive Lasso transforms into the original Lasso. Compared with the standard 

Lasso method, adaptive Lasso allows stricter penalty for zero coefficients and the lower penalty 

for non-zero coefficients, reducing the estimations bias and improving the efficiency and 

accuracy of variable selection. Following the literature (Audrino and Knaus, 2016), as a 

common choice for the adaptive weights, this chapter sets 𝜆𝑖 = |1 �̂�𝑙𝑎𝑠𝑠𝑜⁄ |, with the notation 

that in case a variable is excluded by the Lasso, this chapter also excludes is from the adaptive 

Lasso estimation.  

 

Group Lasso  

The common drawback of Lasso and adaptive Lasso is that they penalize every estimator 

separately and ignore the correlations between each estimator. They will select one of the 

correlated estimators and omit others in the penalizing process. Thus, besides the Lasso and 

adaptive Lasso approaches, the chapter employs the Group Lasso (Yuan and Lin, 2006) to 

offset this shortcoming. The grouped Lasso penalizes coefficients and selects estimators as a 

group instead of an individual variable. The Group lasso (Yuan and Lin, 2006) shown as follow:  
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�̂�𝑔𝑟𝑜𝑢𝑝 𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑(𝑅𝑉𝑡+1 − 𝜃0 −∑𝛽𝑖𝑅𝑉𝑡−𝑗+1

𝑝

𝑖=1

)

𝑇

𝑡=𝑝

2

+ 𝜆∑√𝑝𝑘√∑𝛽𝑖
2

𝑖∈𝐼𝑘

𝐾

𝑘=1

} 

(4.11) 

Audrino et al. (2019) group the AR(50) model as {1}, {2-5}, {6-22}, {23-50} and estimated 

by Group Lasso method, but this lag structure does not perform well, so they conclude that 

some lags still have predicting information beyond the lag structure HAR model. Taking their 

suggesting and follow the lag structure of standard HAR model, this chapter groups the lag 

length of AR(22) as {1}, {2-5}, {6-22} implied by the lag structure of Corsi (2009), the 

AR(100) also be grouped as {1}, {2-5}, {6-22}, {23-50}, {51-75}, {76-100}.  

 

Ordered Lasso  

The core idea of this approach is time-lagged regression, where the prediction at a particular 

time from the features at the previous time, so they naturally assume that the predictive 

information of coefficients is decay gradually. Toshigami and Suo, (2016) point the auto-

regressive time series where natural feature exists should consider the Lasso approach with an 

additional monotone decreasing constraint, so the order-constrained coefficients of the Lasso 

approach are developed by Toshigami and Suo (2016), namely ordered Lasso. The ordered 

Lasso is proposed as follow: 

�̂�𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑(𝑅𝑉𝑡+1 − 𝜃0 −∑(𝛽𝑗
+ + 𝛽𝑗

−)𝑅𝑉𝑡−𝑗+1

𝑝

𝑖=1

)

2𝑇

𝑡=𝑝

+ 𝜆∑(𝛽𝑗
+ + 𝛽𝑗

−)

𝑝

𝑖=1

} 

(4.12) 
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subject to 𝛽1
+ ≥ 𝛽2

+ ≥ ⋯ ≥ 𝛽𝑝
+ ≥ 0 and 𝛽1

− ≥ 𝛽2
− ≥ ⋯ ≥ 𝛽𝑝

− ≥ 0. The ordered Lasso method 

modifies the penalized parameters from the absolute value (|β𝑗|) of Lasso to positive and 

negative components (𝛽𝑗
+ + 𝛽𝑗

−) that means some coefficients of β𝑗will be estimated as exactly 

zero. In addition, this ordered constraint penalty allows the higher lag order is estimated only 

when lower lag order lags are already included.  

 

4.3.2 Cross-Validation  

As the previous discussion shows, the most important process of the Lasso method is to 

determine the tuning parameter ( 𝜆 ), which determines the flexibility of the parameters' 

estimation by the number of non-zero coefficients.  According to the common ways in previous 

empirical works, this chapter selects the optimal parameters using cross-validation (CV).  

Specifically, this chapter chooses 𝜆 based on the K-folds Cross-Validation method as 

previous literature used (Nardi and Rinadlo, 2011; Audrino et al. 2017; Audrino et al. 2019). 

Toshigami (1996) firstly estimates the prediction error of the Lasso approach by K-folds cross-

validation. Particularly, the whole sample observations are split into K groups, 𝐺𝐾 stand for 

each group, the estimators are obtained on 𝐾 − 1 groups, and the test error is predicted on the 

remaining group. The process is repeated for 𝑘 = 1, 2,⋯  𝐾, and the results of test error are 

averaged so the procedure can be conducted for each value of the tuning parameter  𝜆 . 

Especially, this chapter set 𝑘 = 10 for the CV method. The cross-validation error function is 

the mean square error (MSE) in this chapter, written as follow: 

CV (𝜆) =
1

𝑇
∑∑(𝑦𝑡 − 𝑦𝑡

�̂�(𝑥𝑡))
2

𝐺𝐾

𝐾

𝑘=1

 (4.13) 

where 𝑦𝑡
�̂�(𝑥𝑡) is the predictions of Kth-fold. The optimal 𝜆 is selected by the minimum error 

of CV (𝜆): 
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𝜆𝐶�̂� = argmin
𝜆
𝐶𝑉(𝜆) (4.14) 

Another common approach to select the tuning parameter is to use information criteria, 

including the Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC). 

For example, Audrino and Knaus (2016) determine 𝜆 according to the minimization of the BIC, 

and Nardi and Rinaldo (2008) estimate the AR model use the AIC criterion. Taking the analysis 

of Audrino and Knaus (2016) one step further, Wilms et al. (2016) and Croux et al. (2018) 

produce the tuning parameter 𝜆 by the forecasting combination, which is combination weighted 

BIC. Empirically, the Lasso approaches using forecasting combination in Wilms et al. (2016) 

only slightly improve forecasting performance, but almost the same with the models without 

forecasting combination. The BIC to get the best offset between fitness and complexity in 

models, and the CV method is to select 𝜆 with the best out-of-sample prediction accuracy. 

However, the lasso models with either CV or BIC produces the same model fitting (Wand et 

al., 2007). As the works of Audrino and Knaus (2016) and Audrino et al. (2019) also note that 

even if the approach of selecting tuning parameter switched, the results of estimations would 

remain almost qualitatively identical.  

 

4.3.3 Forecasting Evaluation  

There are many ways to evaluate and compare the accuracy of the different forecasting models, 

but Patton (2011) indicates the Quasi-Likelihood (QLIKE) and Mean Squared Error (MSE) are 

the most robust loss function for heteroscedasticity. Thus, those two loss functions this chapter 

used are shown as follow: 

MSE =
1

n
∑(RVt − RVt̂)

2
n

t=1

 (4.15) 

QLIKE =
1

n
∑(log( RVt̂) +

RVt

RVt̂
)

n

t=1

 (4.16) 
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where the actual volatility denotes as  RVt, and the volatility forecast obtained is indicated 

by RVt̂.  

 

Model Confidence Set  

In addition to loss functions, this chapter also uses the Model Confidence Set (MSC) approach 

to remove the worst model sequentially according to the null hypothesis of equal predictive 

ability is rejected. 12 

 

4.4 Data 

All of the RV data used are from the Oxford-Man Institute of Quantitative Finance. The chapter 

employs the 5 minutes RV of eight international stock indices13, including four developed 

countries: the UK stock index (FTSE), Japanese stock index (N225), the USA stock index (SPX) 

and German stock index (DAX), and four developing countries: Chinese stock index (SSEC), 

Brazilian stock index (BSVP), Indian stock index (NSEI) and Mexican stock index (MXX), 

respectively. This chapter uses the RV in logarithmic form, log-RV. This chapter considers 15-

year data, and the observation period is from 1st January 2003 to 31st December 2017. The 

first 5-year in-sample period is from 1st January 2003 to 31st December 2007, and the last 10 

years (1st January 2008 to 31st December 2017) are out-of-sample periods. 

Table 4.1 describes the summary statistics of log-RV for each index—all series of log-

RV exhibit a non-normal distribution with excess kurtosis and right-skewed. The further 

supportable evidence of non-normal distribution is that the Jarque-Bera test statistic rejects the 

null hypothesis of normal distribution at the 1% level. All log-RV series are persistent, as can 

be seen from the first-order autocorrelation value. Figure 4.1 provides the time-series plots of 

 
12 For more detail about the MCS test see Section 3.3.2. 
13 The discussion of date sample frequency can be seen in Footnote 7.  
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the log-RV, respectively. For all indices, the log-RV occurs a rise around the year 2008 as the 

financial crisis happened.  A standard approach to exam the long memory feature of time-series 

data is to use the exanimation of the sample autocorrelation function. Figure 4.2 shows the 

sample autocorrelation function of log-RV up to 100 lags. The sample autocorrelation function 

of all indices decreases slowly as the lag length increases, while the autocorrelations of BSVP 

around lag 95 are insignificant. Therefore, the evidence in those graphs is that the RV of all 

indices used is consistent with the long memory feature, and this pattern of exponentially 

decaying in autocorrelation function means the AR(p) models with long length lags in those 

graphs this chapter are accessible. 

 

4.5 Empirical Results 

4.5.1 In-Sample Results 

This chapter estimates the RV of eight indices to employ the HAR model and HAR-free model 

with fixed lag structure model estimated by OLS method, and the flexible AR(22) and AR(100) 

models are used by the model selection method including Lasso, adaptive Lasso, group Lasso 

and ordered Lasso, respectively. Especially, the tuning parameter,  𝜆, in the Lasso-method 

approach is the minimum error of the CV. The in-sample period used for estimation is the first 

five years from 1st January 2003 to 31st December 2007. Finally, the coefficient plots 

demonstrate that the estimators from all forecasting models, and the loss functions provide the 

fitness accuracy in the in-sample period.  

The estimated coefficients are plotted as line graphs in Figure 4.3 (a) and (b), in which 

the coefficients are divided by three figures based on the model types for each index. The upper 

figure is the fixed coefficients of the standard HAR model and HAR-free model estimated by 

OLS method. The middle figure is the flexible AR(22) coefficients using Lasso, adaptive Lasso, 

group Lasso, and ordered Lasso approaches, respectively. And the bottom figure is the AR(100) 
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estimated by Lasso-based approaches. As for the fixed coefficients of all indices, the value of 

the first six coefficients of the HAR model and HAR-free model are decreased, and the 

coefficients beyond lags seven are similar, which are above zero.  Then, in terms of the flexible 

structure of AR(22), all four Lasso-based methods select coefficients from lag 1 to 5 with a 

declining trend. The Lasso and adaptive Lasso have a similar pattern, in which select several 

coefficients and set others as zero for the following lags. The grouped Lasso of AR(22) is 

grouped as {1}, {2-5}, {6-22}, which is the same as the HAR model. Thus the coefficients of 

grouped Lasso (the green line in the middle figure) for all RV indices have a similar tendency 

with the HAR model. The coefficients tendency of ordered Lasso (purple lines in the middle 

figure) is monotonically non-increasing and lag length. The bottom figure of all RV indices 

observes that the lags beyond lag 22 are much less flexible selected by all Lasso-based methods. 

In the longer lag length selected by grouped Lasso and ordered Lasso, their coefficients are 

much close to zero or exactly equal to zero. However, the Lasso (blue line) and adaptive Lasso 

(red line) still select some longer lags to have efficient forecasting information, and the 

coefficient number of adaptive Lasso is greater than Lasso.  

Table 4.2 provides the MSE and QLIKE loss function in the in-sample period. 14 While 

the focus is on the out-of-sample forecasting, it is still worth to note whether the alternative 

models provide a better in-sample fit and whether the same model perform well in-sample and 

out-of-sample. In this table, the standard HAR model is set as the benchmark model to compare 

the loss function value, so all the loss function value is standardized by the HAR model to 

simplify the comparison. According to the value of MSE and QLIKE, the AR(100) using 

adaptive Lasso provides the best estimation among all indices, and the AR(22) with the Lasso 

 
14 The in-sample period is usually used to construct forecasting models, in-sample forecasting is the process of 

using observed data to evaluate the predictive capability of the forecasting models. In this chapter, the two 

differences between the Lasso-based forecasting models are the two lag lengths and the coefficients retained by 

the Lasso approaches, therefore, it is worth to generate in-sample forecasting to see how effective these models 

are in reproducing data. 
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method also provides a good performance. This indicates there is still some forecasting 

information in the lags beyond 22 in the RV series.  

To sum up, the best model to estimate the RV for all indices is AR(100) estimated by 

adaptive Lasso according to the loss function of MSE, but all the flexible models only slightly 

improve fitness, this result is consistent with the work of Audrino and Knaus (2016) and 

Audrino et al. (2019). In the coefficient plots, the flexible AR models show that the first 22 

lags are more frequently selected than the lags beyond 22, which means the first 22 lags contain 

almost relevant information to estimate forecasting models. The longer lags also provide 

relevant forecasting information selected by Lasso and adaptive Lasso method. There are no 

differences between developing countries and developed countries. 

 

4.5.2 Out-Of-Sample Results 

This chapter concentrates on the forecasting performance comparison of all models mentioned 

in section 3.2 and the out-of-sample period is ten years from 1st January 2008 to 31st December 

2017. First, all forecasting models considered produce the RV forecasts over the daily, weekly, 

and monthly horizon. A simple approach for generating multi-step-ahead forecasts is to replace 

the data frequency of volatility model with long-term forecasting. To replace 𝑅𝑉𝑡+1 on the lift-

head side in Equation (8) over the forecasting horizon h, say 𝑅𝑉𝑡+ℎ
ℎ =

1

ℎ
∑ 𝑅𝑉𝑡−ℎ+𝑖
ℎ
𝑖=1 , thus ℎ =

1, 5 𝑎𝑛𝑑 22 in this chapter. Second, the rolling window and increasing window approaches are 

used in the out-of-sample period for the data generation process, and the window size is 1000 

daily observations for rolling window forecasting. Third, the forecasting performance is 

measured by the MSE and QLIKE loss function, where the standard HAR model is regarded 

as a benchmark against another forecasting model as well. Last, the MSC test selects optimal 

models with the EPA for rolling windows and increasing window approaches.   
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Table 4.3 and Table 4.4 present the MSE value using rolling window and increasing 

window forecasting approaches over the daily, weekly, and monthly horizon (h= 1, 5 and 22). 

Generally, Table 4.3 and Table 4.4 show the same results. For the one-day-ahead forecast, the 

AR(100) with ordered Lasso perform best on three RV indices. According to the number of 

values greater than 1, the Lasso and adaptive Lasso both on the AR model with 22 lags and 

100 lags perform poorly. The two fixed lag structure models, the HAR model, and the HAR-

free model, have similar forecasting performance in daily forecasts. As for the forecasts of one-

week-ahead, the Lasso-methods overwhelmingly outperform the HAR model and HAR-free 

model, especially, the ordered Lasso used in AR(22) dominates all stock indices. As for the 

one-month-ahead forecast, the HAR model and HAR-free model perform poorly, and the 

ordered Lasso performs best. In terms of the QLIKE comparison, Tables 4.5 and 4.6 show the 

results of the rolling window and increasing forecast over the daily, weekly, and monthly 

horizon. Identically, the QLIKE and MSE provide the same results over three horizons. The 

AR(100) with the ordered Lasso method generates the lowest value of the daily forecasting. 

For the weekly and monthly prediction, the ordered Lasso of AR(22) outperform other models. 

The MCS test results of rolling window approaches are provided in Tables 4.7 and 4.8, 

in which the value 1 means the optimal model has been chosen, and the MSC test chooses a 

subset of models with EPA at a 75% confidence level. Tables 4.7 and 4.8 show the MCS test 

using MSE and QLIKE criterion. Generally, the Lasso-based method performs significantly 

better than the HAR model. Specifically, the AR(100) using the ordered Lasso method has the 

best performance for daily forecasts. As for weekly forecasting, there is overwhelming 

evidence of the superiority of the AR(22) using ordered Lasso specifications. Due to the 

volatility predictions obtained from monthly forecasting are smoother than daily and weekly 

forecasting, several models have EPA for the monthly forecast. Monthly results show the 
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AR(22) with Lasso, group Lasso and ordered Lasso seem to perform better jointly, while 

ordered Lasso account for more EPA. 

On the other hand, Tables 4.9 and 4.10 present the MSC test to increase the window 

approach. To comparing with Tables 4.7 and 4.8, similar results are obtained in the increasing 

window approach. Again, the AR(100) using ordered Lasso is the best model for daily 

forecasting. The weekly results indicate the AR(22) using ordered Lasso is the best performing 

forecast method, and the AR(100) using ordered Lasso also performs well at the DAX and 

NSEI. Similarly, the AR(22) using Lasso, ordered Lasso, and AR(100) using Lasso perform 

equally in the monthly forecasting, while the AR(22) using ordered Lasso account for all 

indices. 

To summarize, according to the lowest loss function value and MSC test based on MSE 

in rolling window and increasing window forecasting, the best forecasting model for the daily 

forecast is the AR(100) model with ordered Lasso, the AR(22) estimated by ordered Lasso has 

best forecasting ability for both weekly and monthly prediction. Corresponding with the 

estimation of coefficients, the AR(100) used adaptive Lasso has the best performance in model 

fitting, while it does not perform well in getting predictions. Identically, the differences 

between four developing countries and four developed countries are not observed for 

forecasting comparison in the out-of-sample results. 

 

4.6 Risk Management Application 

To further access the predictions obtained from the Lasso-based models and HAR model from 

the risk management aspect, this paper also uses the Value at Risk (VaR) measures. The VaR 

is a vital application to define and monitor the risk of specific financial assets as it illustrates 

the maximum loss occurring with a possibility over a specific period. The VaR of an asset is 

calculated as: 
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𝑉𝑎𝑅 = 𝜇𝑡 + 𝜎𝑡𝑁(𝛼) (4.21) 

where 𝜇𝑡 is the mean of asset's log-return, 𝜎𝑡 is the predicted volatility, and 𝑁(𝛼) defines the 

left 𝛼th quantile of the normal distribution.  

To evaluate the accuracy of VaR forecasting, the first test is to compute the failure rate 

for daily return, which is the number of times daily returns exceed the forecasted VaR. 

Therefore, the failure is computed as the number of actual losses divided by the number of 

observations. Then, this chapter uses the Dynamic Quantile (DQ) test of Engle and Manganelli 

(2004) to examine if the present violations of the VaR measure are not correlated with the past 

violations. So, they define the hit sequence as follow: 

𝐻𝑖𝑡𝑡 = 𝐼(𝑟𝑡 < −𝑉𝑎𝑅𝑡) − 𝑎 (4.21) 

this sequence assumes that value (1 − 𝑎) whenever the actual returns are less than the VaR 

quantile and the value (−𝑎) otherwise. The expected value of 𝐻𝑖𝑡𝑡 is zero, and the sequence is 

uncorrelated with past information. In this case, there will be no autocorrelation in the hit 

sequence and the fraction of exceptions will be correct. The DQ test statistic is calculated as: 

𝐷𝑄 =
𝛽′̂𝑋′𝑋�̂�

𝑎(1 − 𝑎)
~𝜒2(𝑘) (4.22) 

which X is the explanation variables and �̂�  is OLS estimates. The DQ test follows 𝜒2 

distribution with a degree of freedom equal to the number of parameters. 

 This chapter also computes the Weibull test, a duration-based test of Christoffersen 

and Pelletier (2004). The main idea of this duration-based test is that the duration between VaR 

violations should be independent and no cluster. Thus, the VaR violations should be 

memoryless and should follow an exponential distribution. Therefore, Christoffersen and 

Pelletier (2004) consider a Weibull distribution to be used for the duration variable. The 

Weibull distribution has the density function: 

𝑓𝑤(𝑥, 𝑎, 𝑏) = 𝑎
𝑏𝑏𝑥𝑏−1𝑒−(𝑎𝑥)

𝑏
 (4.23) 
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where the exponential distribution is the special case when 𝑏 = 1, the null hypothesis of VaR 

violations are independent and memoryless corresponds to 𝑏 = 1, so 𝐻0: 𝑏 = 1. 

This chapter uses the same in-sample and out-of-sample period to produce the daily, 

weekly, and monthly VaR forecasts at both 1% and 5% VaR levels to examine which 

forecasting model provides more accurate VaR estimates. 15The VaR results for the HAR 

model and Lasso-method forecasting are reported in Tables 4.11 and 4.12. In addition, the VaR 

forecasts are obtained from the rolling window and increasing window forecasting method, 

respectively. 

The daily VaR forecasts for the rolling window are shown in Table 4.11 for the 1% and 

5% VaR levels. The lowest average failure rate is the AR(100) with the ordered Lasso method, 

which is close to the specific level (i.e. 1% and 5%), and the Lasso and adaptive Lasso method 

used in AR(22) and AR(100) are both perform poorly16. In terms of the Weibull test and DQ 

test, the HAR model and HAR-free model perform best and only indicate the FTSE 

significance on the Weibull test at 1% VaR level. All models reject the null hypothesis of non-

autocorrelation in the sequence of exceptions on the DQ test.  For the weekly VaR forecasts, 

the AR(22) with the ordered Lasso method has the best performance, the HAR model and 

HAR-free model perform poorly, having the highest average failure rate across all models and 

having four markets significant at 1% level and all market significant at 5% on the Weibull test. 

The Lasso-method models improve the accuracy of the weekly VaR, comparing with the HAR 

model. Notably, the AR(22) with the ordered Lasso method outperforms the best among the 

models at the 5% VaR level. Examining the monthly VaR results makes volatility forecasts are 

 
15 This chapter directly uses the daily, weekly, and monthly predictions generated from forecasting models to 

compute VaR. In addition, this chapter employs the RV in the logarithmic form to generate forecasts, so the 

exponential RV is used when computing VaR.   
16 Although a higher failure rate is determined to be poor performance, a too low failure rate is also considered 

poor performance, because a too low failure rate represents that investors may miss out potentially higher returns 

when choosing low-risk and low-yield investments, it is related to opportunity cost. From an academic perspective, 

the common way to determine the best forecasting model is to find the violation rate or failure rate that is close to 

a specified level (i.e. 1% or 5%). 
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more smooth and flat, so the failure rate is lower than daily and weekly VaR results. The lowest 

average failure rate is the AR(22) with the ordered Lasso method at monthly horizon, which is 

close to the specific level. Moreover, all models do not reject the null hypothesis that VaR 

violations are independent and memoryless of the Weibull test and reject the null hypothesis 

of non-autocorrelation in the sequence of exceptions of the DQ test.   

Table 4.12 provides the VaR results for the increasing forecasting method. Generally, 

Table 4.12 has similar results to Table 4.11. For the daily VaR forecasts, the AR(100) with the 

ordered Lasso method achieve the lowest average failure rate. The HAR model and HAR-free 

model show only one market significant on the Weibull test at a 1% VaR level. Examining the 

weekly VaR forecasts, the HAR model and HAR-free model also perform worse in terms of 

average failure rate and the Weibull test. For the monthly VaR results, identically with Table 

4.11, the AR(22) with the ordered Lasso method outperforms the best among the models. All 

models do not reject the null hypothesis of the Weibull test and reject the null hypothesis of 

the DQ test. 

 

4.7 Summary and Conclusion 

The Lasso approach is originally noticed in the computational statistics perspective. 

The increasing availability of Lasso-based modelling has led to the developments of time series 

econometrics filed to deal with financial data. These developments have potential importance 

in selecting efficient parameters, generating models, obtaining predictions, and applying risk 

management. This chapter aims to investigate whether the AR model using the Lasso-based 

method could provide more accurate forecasts than the HAR model. Specifically, this chapter 

compares the RV forecasting ability between the flexible models of the Lasso method and fixed 

models of the HAR model. This chapter extends and updates the previous works of Audrino 

and Knaus (2016) and Croux et al. (2018). The four Lasso approaches and two different lag 
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structures in the AR model are utilized to obtain volatility forecasts and VaR measures for daily, 

weekly and monthly forecasting horizons.  

The in-sample analysis provides slight evidence that the flexible AR models outperform 

the HAR model. The best model for model fitness is the AR(100) with adaptive Lasso. All the 

flexible models only slightly improve fitness according to the loss function value.  In the 

coefficients plots, the frequent selection of coefficients indicates most forecasting information 

is contained in the first 22 lags, but Lasso and adaptive Lasso of AR(100) indicate longer lags 

are still efficient and contain relevant information. The out-of-sample forecasting results 

present the ordered Lasso method performs best, in which the AR(100) model with ordered 

Lasso outperforms at the daily foresting horizon, and the AR(22) model with ordered Lasso 

performs significantly better than other models in the weekly and monthly prediction. The 

Lasso-based models overwhelmingly outperform the HAR model for the risk management 

application, especially the order Lasso approach performs best. In addition, this result finds no 

obvious differences between developing countries and developed countries. 

The current paper shows that the HAR model dominants the forecasting models; its 

extensions have become the leading research trend for forecasting the RV. This chapter 

questions the fixed lags structure in the HAR model and follows Audrino and Knaus (2016) 

and Audrino et al. (2019) to generate flexible lags in the AR models using the four Lasso 

method. The results show that the Lasso approaches provide more accurate forecasts than the 

HAR model and also indicate that the longer lags contain relevant forecasting information. In 

addition, identical results are presented in the VaR application. 
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Figure 4.1: The plots of the time series of log-RV of eight market indices  
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Figure 4.2: The Autocorrelation Function of eight stock indices 
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Figure 4.3: The plots of coefficients for eight stock indices in the in-sample period 

  

  
- Continued on next page - 
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Figure 4.3: (continued) 

 
 

  
Note: This figure shows the estimated coefficients for eight stock index in the in-sample period from 1st January 2003 to 31st December 2007. The upper figure is the fixed 

coefficients of the standard HAR model and HAR-free model. The middle figure is the flexible coefficients of AR(22) using Lasso-based method, and the bottom figure is the 

AR(100) estimated by Lasso-based method. Adalasso means the adaptive Lasso method, grpLasso means the grouped Lasso method, ordLasso means the ordered Lasso 

method, respectively.  
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Table 4.1: Statistics Description of Log-RV 

  FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

Mean -9.7402 -10.007 -9.7491 -9.4562 -9.1845 -9.4308 -9.2092 -10.002 

Std.Dev. 1.0135 1.1337 0.9116 0.9930 1.0466 0.9983 0.8326 0.9455 

Kurtosis 3.5395 3.7275 3.9222 3.4039 2.9057 3.7974 4.5988 3.8934 

Skewness 0.6308 0.5336 0.4646 0.4171 0.4157 0.5109 0.6781 0.7380 

Median -9.8656 -10.124 -9.7761 -9.5317 -9.2967 -9.5095 -9.2636 -10.1405 

25%-quantile -10.472 -10.768 -10.339 -10.129 -9.9390 -10.123 -9.7399 -10.666 

75%-quantile -9.1138 -9.3334 -9.2109 -8.8467 -8.4997 -8.8174 -8.7582 -9.4284 

AutoCorrlag=1 0.7711 0.8128 0.7714 0.8121 0.8269 0.7957 0.7441 0.6752 

Jarque-Bera 297.00*** 262.06*** 262.06*** 136.40*** 106.09*** 260.79*** 679.10*** 468.11*** 

Obs. 3786 3771 3670 3811 3637 3726 3708 3774 

Note: This table repots the summary statistics of log-RV of eight different stock index for the whole period 

from 1st January 2003 to 31st December 2017. *** indicate significant level at 1%. 
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Table 4.2: In-sample estimation error of MSE and QLIKE 
 FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

MSE 

HAR model 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model 0.9991 0.9940 0.9946 0.9973 0.9924 0.9946 0.9951 0.9948 

AR(22)-Lasso 0.9719 0.9685 0.9714* 0.9571 0.9847* 0.9808 0.9681 0.9677* 

AR(22)-adalasso 0.9743 0.9683 0.9715 0.9575 0.9859 0.9803 0.9676 0.9710 

AR(22)-grpLasso 0.9837 0.9784 0.9827 0.9769 1.0038 0.9931 0.9770 0.9772 

AR(22)-ordLasso 0.9785 0.9725 0.9758 0.9700 0.9888 0.9789 0.9717 0.9773 

AR(100)-Lasso 0.9682 0.9481 0.9832 0.9767 0.9856 0.9788 0.9962 0.9745 

AR(100)-adalasso 0.9585* 0.8981* 0.9801 0.9432* 0.9889 0.9721* 0.9633* 0.9773 

AR(100)-grpLasso 0.9941 0.9905 0.9995 0.9925 1.0025 1.0007 1.0017 0.9903 

AR(100)-ordLasso 0.9910 0.9882 0.9913 0.9893 0.9953 0.9963 0.9964 0.9907 

QLIKE 

HAR model 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model 0.9993 0.9940 0.9950 0.9975 0.9898 0.9936 0.9950 0.9955 

AR(22)-Lasso 0.9880 0.9804 0.9754* 0.9793 0.9723* 0.9728 0.9703 0.9620* 

AR(22)-adalasso 0.9900 0.9793 0.9756 0.9794 0.9736 0.9715 0.9698 0.9643 

AR(22)-grpLasso 1.0006 0.9909 0.9859 1.0026 0.9924 0.9847 0.9792 0.9716 

AR(22)-ordLasso 0.9939 0.9836 0.9796 0.9918 0.9766 0.9698* 0.9739 0.9707 

AR(100)-Lasso 0.9702 0.9486 0.9834 0.9774 0.9843 0.9814 0.9975 0.9758 

AR(100)-adalasso 0.9600* 0.8960* 0.9803 0.9447* 0.9864 0.9729 0.9642* 0.9774 

AR(100)-grpLasso 0.9955 0.9916 0.9990 0.9925 1.0017 1.0015 1.0024 0.9912 

AR(100)-ordLasso 0.9916 0.9884 0.9915 0.9892 0.9942 0.9962 0.9971 0.9909 

Note: This table reports the MSE and QLIKE value of eight RV indices for all forecasting models considered for the 

in-sample period from 1st January 2003 to 31st December 2007. The standard HAR model is regarded as 

benchmark against other forecasting models, the forecasting model with best performance is highlighted with *.
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Table 4.3: Out-of-sample forecasting evaluation using MSE of rolling window forecasting 

 FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

 h=1 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  1.0021 0.9971 1.0034 1.0062 0.9977 0.9945 1.0048 0.9999 

AR(22)-Lasso 1.2724 1.0729 1.0438 1.1079 1.1124 1.2088 1.0833 1.3920 

AR(22)-adaLasso 1.0348 1.0352 0.9532 1.0771 1.0200 1.1500 1.0322 1.3291 

AR(22)-grpLasso 0.8237 0.7726 0.6755 0.6167* 0.6101 0.7803 0.7359 0.9786 

AR(22)-ordLasso 0.8365 0.4355* 0.8025 1.0188 0.9341 1.1335 0.4972* 1.1906 

AR(100)-Lasso 1.2627 1.0771 1.0322 1.0985 1.0972 1.2016 1.0804 1.4006 

AR(100)-adalasso 1.1490 1.0447 1.0262 1.0805 0.3150* 1.1694 0.8513 1.4000 

AR(100)-grpLasso 0.8360 0.7735 0.6327 0.6631 0.6079 0.7379 0.6993 0.9297* 

AR(100)-ordLasso 0.7678* 0.7094 0.6246* 0.8337 0.7400 0.7215* 0.9652 1.0031 

 h=5 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  0.9810 0.9680 0.9946 0.9755 0.9852 0.9834 0.9782 0.9629 

AR(22)-Lasso 0.3677 0.3493 0.3674 0.3840 0.3137 0.3607 0.3722* 0.4209 

AR(22)-adalasso 0.3798 0.3641 0.3969 0.4436 0.3667 0.4105 0.6261 0.4665 

AR(22)-grpLasso 0.4137 0.3547 0.3757 0.4696 0.4402 0.3859 0.4000 0.4708 

AR(22)-ordLasso 0.3442* 0.3282* 0.3414* 0.3620* 0.2904* 0.3431* 0.3764 0.4016* 

AR(100)-Lasso 0.3737 0.3513 0.3734 0.3853 0.3199 0.3686 0.3900 0.4377 

AR(100)-adalasso 0.3992 0.3626 0.4982 0.4744 0.4162 0.4778 0.5475 0.4840 

AR(100)-grpLasso 0.4138 0.3599 0.3980 0.4296 0.4970 0.4091 0.4247 0.5147 

AR(100)-ordLasso 0.3539 0.3365 0.4342 0.3735 0.4651 0.3811 0.4271 0.5398 

 h=22 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  0.9963 0.9976 0.9898 0.9994 0.9954 0.9970 0.9939 0.9958 

AR(22)-Lasso 0.5175 0.5276 0.5501 0.5406 0.5489 0.5420 0.6595 0.4640 

AR(22)-adalasso 0.5292 0.5441 0.6075 0.5403 0.5512 0.8091 0.7109 0.4629 

AR(22)-grpLasso 0.5325 0.5332 0.5546 0.5797 0.6260 0.5493 0.6612 0.4760 

AR(22)-ordLasso 0.5083* 0.5213* 0.5433 0.5303* 0.5359* 0.5537* 0.6467* 0.4547* 

AR(100)-Lasso 0.5276 0.5339 0.5410 0.5364 0.5448 0.5670 0.6518 0.4856 

AR(100)-adalasso 0.5616 0.6370 0.6207 0.6062 0.5803 0.7718 0.6877 0.5338 

AR(100)-grpLasso 0.5309 0.5284 0.5418 0.5414 0.6409 0.5733 0.6519 0.4955 

AR(100)-ordLasso 0.5217 0.5426 0.5258* 0.5341 0.5498 0.5765 0.6922 0.4755 

Note: This table reports the forecasting evaluation (MSE) of eight RV indices for all forecasting models considered 

using rolling window approach (window size = 1000) over daily, weekly and monthly horizons (h=1, 5 and 22) and 

the out-of-sample period from 1st January 2008 to 31st December 2017. The standard HAR model is regarded as 

benchmark and the forecasting model with the best performance is highlighted with *. 

 

  



 101 

Table 4.4: Out-of-sample forecasting evaluation using MSE of increasing window forecasting 

 FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

 h=1 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  0.9975 0.9938 1.0013 0.9967 0.9972 0.9946 1.0010 0.9924 

AR(22)-Lasso 1.2744 1.0725 1.0462 1.1106 1.1194 1.1858 1.0771 1.3904 

AR(22)-adalasso 0.9912 1.0244 0.9433 1.0751 1.0265 1.1240 1.0280 1.3124 

AR(22)-grpLasso 0.8072 0.7350 0.6482 0.6029* 0.6001 0.7561 0.7285 0.9524 

AR(22)-ordLasso 1.0439 0.6534 0.9308 1.0698 1.0345 1.1559 0.4838* 1.2890 

AR(100)-Lasso 1.2657 1.0767 1.0346 1.1022 1.1065 1.1800 1.0751 1.4001 

AR(100)-adalasso 1.1285 1.0375 1.0277 1.0788 0.2403* 1.1511 0.8366 1.3915 

AR(100)-grpLasso 0.8219 0.7352 0.6082 0.6501 0.5842 0.7141 0.6906 0.9029* 

AR(100)-ordLasso 0.5660* 0.4937* 0.4401* 0.9755 0.9308 0.4548* 0.7162 1.1842 

 h=5 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  0.9796 0.9656 0.9950 0.9731 0.9825 0.9810 0.9776 0.9622 

AR(22)-Lasso 0.3683 0.3318 0.3716 0.3763 0.3207 0.3487 0.3664 0.4042 

AR(22)-adalasso 0.3855 0.3513 0.4048 0.4451 0.3785 0.3921 0.6226 0.4654 

AR(22)-grpLasso 0.4145 0.3557 0.3859 0.4465 0.3929 0.3461 0.3861 0.4629 

AR(22)-ordLasso 0.3479* 0.3207* 0.3516* 0.3617 0.3035* 0.3382 0.3467* 0.3929* 

AR(100)-Lasso 0.3740 0.3354 0.3750 0.3795 0.3250 0.3546 0.3851 0.4196 

AR(100)-adalasso 0.4046 0.3460 0.4975 0.4701 0.4209 0.4453 0.5361 0.4770 

AR(100)-grpLasso 0.4174 0.3609 0.4105 0.4143 0.4308 0.3603 0.4083 0.5084 

AR(100)-ordLasso 0.3537 0.3218 0.3691 0.3506* 0.3324 0.3228* 0.3659 0.4479 

 h=22 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  0.9945 0.9958 0.9887 0.9971 0.9927 0.9945 0.9926 0.9939 

AR(22)-Lasso 0.5088 0.5399 0.5560 0.5135 0.5376 0.5205 0.6454 0.4603 

AR(22)-adalasso 0.5192 0.5538 0.6111 0.5151 0.5444 0.7618 0.6959 0.4597 

AR(22)-grpLasso 0.5146 0.5418 0.5647 0.5261 0.5780 0.5130* 0.6521 0.4628 

AR(22)-ordLasso 0.5046* 0.5363* 0.5520 0.5101* 0.5288* 0.5139 0.6319* 0.4563* 

AR(100)-Lasso 0.5185 0.5505 0.5496 0.5114 0.5417 0.5331 0.6417 0.4823 

AR(100)-adalasso 0.5502 0.6706 0.6300 0.5807 0.5758 0.7163 0.6797 0.5424 

AR(100)-grpLasso 0.5212 0.5499 0.5600 0.5191 0.5884 0.5227 0.6460 0.4905 

AR(100)-ordLasso 0.5193 0.5603 0.5353* 0.5111 0.5550 0.5345 0.6473 0.4792 

Note: This table reports the forecasting evaluation (MSE) of eight RV indices for all forecasting models considered 

using increasing window approach over daily, weekly and monthly horizons (h=1, 5 and 22) and the out-of-sample 

period from 1st January 2008 to 31st December 2017. The standard HAR model is regarded as benchmark and the 

forecasting model with the best performance is highlighted with *. 
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Table 4.5: Out-of-sample forecasting evaluation using QLIKE of rolling window forecasting 

 FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

 h=1 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  1.0018 0.9980 1.0028 1.0064 0.9974 0.9950 1.0040 1.0004 

AR(22)-Lasso 1.2850 1.0946 1.0550 1.0941 1.1251 1.2198 1.0902 1.4162 

AR(22)-adaLasso 1.0324 1.0520 0.9608 1.0617 1.0244 1.1563 1.0357 1.3453 

AR(22)-grpLasso 0.8219 0.7790 0.6799 0.6076* 0.6145* 0.7774 0.7372 0.9817 

AR(22)-ordLasso 0.8322 0.4416 0.8088 1.0043 0.9416 1.1405 0.5018* 1.2025 

AR(100)-Lasso 1.2836 1.1085 1.0480 1.0919 1.1154 1.2215 1.0899 1.4292 

AR(100)-adalasso 1.1570 1.0730 1.0411 1.0730 0.3322 1.1853 0.8550 1.4285 

AR(100)-grpLasso 0.8409 0.7861 0.6412* 0.6567 0.6185 0.7402 0.7029 0.9346* 

AR(100)-ordLasso 0.7852* 0.7430* 0.6456 0.8250 0.7491 0.7253* 0.9912 1.0096 

 h=5 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  0.9781 0.9695 0.9924 0.9780 0.9844 0.9860 0.9774 0.9645 

AR(22)-Lasso 0.3660 0.3462 0.3776 0.3752 0.3179 0.3759 0.3717* 0.4200 

AR(22)-adalasso 0.3800 0.3653 0.4103 0.4332 0.3712 0.4172 0.6214 0.4661 

AR(22)-grpLasso 0.4207 0.3604 0.3922 0.4725 0.4479 0.3920 0.4072 0.4760 

AR(22)-ordLasso 0.3443* 0.3255* 0.3517* 0.3538* 0.2930* 0.3575* 0.3819 0.4022* 

AR(100)-Lasso 0.3757 0.3538 0.3864 0.3806 0.3273 0.3864 0.3952 0.4384 

AR(100)-adalasso 0.4055 0.3684 0.5095 0.4752 0.4246 0.4881 0.5512 0.4818 

AR(100)-grpLasso 0.4231 0.3698 0.4188 0.4341 0.5116 0.4165 0.4355 0.5220 

AR(100)-ordLasso 0.3557 0.3406 0.4572 0.3699 0.4765 0.3877 0.4378 0.5485 

 h=22 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  0.9958 0.9972 0.9884 0.9988 0.9961 0.9958 0.9943 0.9957 

AR(22)-Lasso 0.5222 0.5294 0.5475 0.5378 0.5611 0.5368* 0.6509 0.4637 

AR(22)-adalasso 0.5367 0.5503 0.6061 0.5379 0.5625 0.7800 0.7071 0.4630 

AR(22)-grpLasso 0.5437 0.5415 0.5549 0.5896 0.6430 0.5379 0.6578 0.4794 

AR(22)-ordLasso 0.5133* 0.5243* 0.5404* 0.5282* 0.5487* 0.5439 0.6361* 0.4547* 

AR(100)-Lasso 0.5393 0.5454 0.5474 0.5423 0.5625 0.5590 0.6489 0.4888 

AR(100)-adalasso 0.5734 0.6530 0.6305 0.6143 0.5996 0.7482 0.6841 0.5352 

AR(100)-grpLasso 0.5499 0.5455 0.5512 0.5555 0.6595 0.5621 0.6552 0.5025 

AR(100)-ordLasso 0.5381 0.5642 0.5304 0.5472 0.5699 0.5598 0.6994 0.4804 

Note: This table reports the forecasting evaluation (QLIKE) of eight RV indices for all forecasting models considered 

using rolling window approach (window size = 1000) over daily, weekly and monthly horizons (h=1, 5 and 22) and the 

out-of-sample period from 1st January 2008 to 31st December 2017. The standard HAR model is regarded as benchmark, 

the forecasting model with the best performance is highlighted with *. 
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Table 4.6: Out-of-sample forecasting evaluation using QLIKE of increasing window forecasting 

 FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

 h=1 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  0.9975 0.9943 1.0012 0.9973 0.9971 0.9949 1.0004 0.9928 

AR(22)-Lasso 1.2876 1.0936 1.0580 1.0968 1.1339 1.1987 1.0848 1.4134 

AR(22)-adalasso 0.9912 1.0408 0.9514 1.0599 1.0328 1.1331 1.0325 1.3262 

AR(22)-grpLasso 0.8066 0.7423 0.6531 0.5940* 0.6040 0.7551 0.7298 0.9554 

AR(22)-ordLasso 1.0404 0.6468 0.9383 1.0545 1.0438 1.1645 0.4822* 1.3049 

AR(100)-Lasso 1.2872 1.1075 1.0512 1.0959 1.1269 1.2017 1.0857 1.4273 

AR(100)-adalasso 1.1366 1.0657 1.0433 1.0717 0.2546* 1.1693 0.8422 1.4175 

AR(100)-grpLasso 0.8276 0.7487 0.6169 0.6444 0.5934 0.7182 0.6944 0.9079* 

AR(100)-ordLasso 0.5898* 0.5307* 0.4596* 0.9645 0.9417 0.4738* 0.7476 1.1958 

 h=5 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  0.9774 0.9669 0.9937 0.9752 0.9819 0.9837 0.9768 0.9636 

AR(22)-Lasso 0.3674 0.3313 0.3831 0.3667 0.3245 0.3650 0.3673 0.4043 

 AR(22)-adalasso 0.3865 0.3557 0.4195 0.4329 0.3826 0.4014 0.6209 0.4653 

AR(22)-grpLasso 0.4238 0.3668 0.4037 0.4457 0.3958 0.3594 0.3961 0.4706 

AR(22)-ordLasso 0.3476* 0.3200* 0.3626* 0.3518* 0.3067* 0.3531* 0.3517* 0.3937* 

AR(100)-Lasso 0.3767 0.3405 0.3899 0.3735 0.3318 0.3740 0.3922 0.4216 

AR(100)-adalasso 0.4106 0.3549 0.5099 0.4662 0.4274 0.4612 0.5415 0.4750 

AR(100)-grpLasso 0.4284 0.3758 0.4325 0.4154 0.4397 0.3764 0.4226 0.5193 

AR(100)-ordLasso 0.3553 0.3265 0.3894 0.3442 0.3370 0.3376 0.3761 0.4579 

 h=22 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  0.9942 0.9955 0.9878 0.9966 0.9931 0.9936 0.9931 0.9939 

AR(22)-Lasso 0.5134 0.5405 0.5554 0.5081 0.5509 0.5208 0.6384 0.4591 

AR(22)-adalasso 0.5269 0.5614 0.6129 0.5103 0.5570 0.7445 0.6945 0.4589 

AR(22)-grpLasso 0.5264 0.5524 0.5676 0.5298 0.5919 0.5112* 0.6514 0.4672 

AR(22)-ordLasso 0.5092* 0.5378* 0.5509* 0.5046* 0.5427* 0.5124 0.6219* 0.4551* 

AR(100)-Lasso 0.5297 0.5619 0.5573 0.5130 0.5595 0.5337 0.6399 0.4840 

AR(100)-adalasso 0.5609 0.6833 0.6420 0.5834 0.5945 0.7085 0.6780 0.5406 

AR(100)-grpLasso 0.5397 0.5693 0.5708 0.5274 0.6032 0.5236 0.6516 0.4987 

AR(100)-ordLasso 0.5309 0.5777 0.5425 0.5155 0.5771 0.5323 0.6520 0.4814 

Note: This table reports the forecasting evaluation (QLIKE) of eight RV indices for all forecasting models considered 

using increasing window approach over daily, weekly and monthly horizons (h=1, 5 and 22) and the out-of-sample 

period from 1st January 2008 to 31st December 2017. The standa rd HAR model is regarded as benchmark, the 

forecasting model with the best performance is highlighted with *. 
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Table 4.7: The Model Confidence Set test of MSE criterion for rolling window forecasting 

 FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

h=1 

HAR model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-grpLasso  0.0000 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 0.0000 

AR(22)-ordLasso  0.0000 1.0000* 0.0000 0.0000 0.0000 0.0000 1.0000* 0.0000 

AR(100)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-adalasso  0.0000 0.0000 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 

AR(100)-grpLasso  0.0000 0.0000 0.4220 0.0000 0.0000 0.3382 0.0000 1.0000* 

AR(100)-ordLasso  1.0000* 0.0000 1.0000* 0.0000 0.0000 1.0000* 0.0000 0.0000 

h=5 

HAR model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000* 0.0000 

AR(22)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-ordLasso  1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.9748 1.0000* 

AR(100)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-ordLasso  0.0000 0.0000 0.0000 0.3062 0.0000 0.0000 0.0000 0.0000 

h=22 

HAR model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 1.0000* 0.8446 0.7626 0.5592 0.0000 1.0000* 1.0000* 1.0000* 

AR(22)-adalasso  0.0000 0.0000 0.0000 0.4852 0.0000 0.0000 0.0000 1.0000* 

AR(22)-grpLasso  0.7292 0.8700 0.7400 0.0000 0.0000 0.9818 1.0000* 0.4914 

AR(22)-ordLasso  1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.8410 1.0000* 1.0000* 

AR(100)-Lasso 0.7944 1.0000* 0.9996 1.0000* 1.0000* 0.4626 1.0000* 0.0000 

AR(100)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2748 0.0000 

AR(100)-grpLasso  0.9636 1.0000* 1.0000* 1.0000* 0.0000 0.0000 1.0000* 0.0000 

AR(100)-ordLasso  1.0000* 0.9998 1.0000* 1.0000* 0.8534 0.5212 0.6980 0.9754 

Note: This table reports the MSC test in terms of MSE criterion for eight RV indices over daily, weekly and 

monthly horizons (h=1, 5 and 22). The forecasting models with EPA at 75% confidence level are highlighted 

in table. The value 1 in the table means that the optimal model is chosen, the value 0 means the model is 

eliminated. 
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Table 4.8: The Model Confidence Set test of QLIKE criterion for rolling window forecasting 

 FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

h=1 

HAR model 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0560 

HAR-free model 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0598 

AR(22)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-adalasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-grpLasso 0.0000 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 0.0000 

AR(22)-ordLasso 0.0000 1.0000* 0.0000 0.0000 0.0000 0.0000 1.0000* 0.0000 

AR(100)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-adalasso 0.0000 0.0000 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 

AR(100)-grpLasso 0.0000 0.0000 1.0000* 0.0000 0.0000 0.3184 0.0000 1.0000* 

AR(100)-ordLasso 1.0000* 0.0000 0.8654 0.0000 0.0000 1.0000* 0.0000 0.0000 

h=5 

HAR model 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.9294 1.0000* 0.0000 

AR(22)-adalasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-grpLasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-ordLasso 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.3844 1.0000* 

AR(100)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.3896 0.0000 0.0000 

AR(100)-adalasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-grpLasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-ordLasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.6110 0.0000 0.0000 

h=22 

HAR model 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 1.0000* 1.0000* 0.9996 1.0000* 0.8272 1.0000* 1.0000* 1.0000* 

AR(22)-adalasso 0.5454 0.0000 0.0000 1.0000* 0.4976 0.0000 0.0000 1.0000* 

AR(22)-grpLasso 0.4128 0.9042 0.6218 0.0000 0.0000 1.0000* 1.0000* 0.2638 

AR(22)-ordLasso 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.9950 1.0000* 1.0000* 

AR(100)-Lasso 0.9998 1.0000* 0.9290 1.0000* 1.0000* 0.9556 1.0000* 0.0000 

AR(100)-adalasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4628 0.0000 

AR(100)-grpLasso 0.4506 1.0000* 0.7836 0.5426 0.0000 0.6166 1.0000* 0.0000 

AR(100)-ordLasso 0.9980 0.5332 1.0000* 0.9758 0.9798 0.5134 0.4462 0.7268 

Note: This table reports the MSC test in terms of QLIKE criterion for eight RV indices over daily, weekly and 

monthly horizons (h=1, 5 and 22). The forecasting models with EPA at 75% confidence level are highlighted 

in table. The value 1 in the table means that the optimal model is chosen, the value 0 means the model is 

eliminated. 
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Table 4.9: The Model Confidence Set test of MSE criterion for increasing window forecasting 

 FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

h=1 

HAR model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-grpLasso  0.0000 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 0.0000 

AR(22)-ordLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000* 0.0000 

AR(100)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-adalasso  0.0000 0.0000 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 

AR(100)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000* 

AR(100)-ordLasso  1.0000* 1.0000* 1.0000* 0.0000 0.0000 1.0000* 0.0000 0.0000 

h=5 

HAR model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-ordLasso  1.0000* 0.8316 1.0000* 0.0000 1.0000* 0.0000 1.0000* 1.0000* 

AR(100)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-ordLasso  0.0000 1.0000* 0.0000 1.0000* 0.0000 1.0000* 0.0000 0.0000 

h=22 

HAR model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 1.0000* 0.9994 0.9384 0.9996 1.0000* 1.0000* 0.9656 1.0000* 

AR(22)-adalasso  0.4268 0.4296 0.0000 0.9712 0.2510 0.0000 0.0000 1.0000* 

AR(22)-grpLasso  1.0000* 1.0000* 0.4736 0.9364 0.0000 1.0000* 0.9534 1.0000* 

AR(22)-ordLasso  1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

AR(100)-Lasso 0.9850 1.0000* 1.0000* 1.0000* 1.0000* 0.8360 1.0000* 0.2800 

AR(100)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-grpLasso  1.0000* 1.0000* 0.8130 1.0000* 0.0000 1.0000* 1.0000* 0.4392 

AR(100)-ordLasso  0.9554 0.9672 1.0000* 1.0000* 0.5804 0.7936 0.9982 0.6746 

Note: This table reports the MSC test in terms of MSE criterion for eight RV indices over daily, weekly and 

monthly horizons (h=1, 5 and 22). The forecasting models with EPA at 75% confidence level are highlighted 

in table. The value 1 in the table means that the optimal model is chosen, the value 0 means the model is 

eliminated. 
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Table 4.10: The Model Confidence Set test of QLIKE criterion increasing window forecasting 

 FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

h=1 

HAR model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-grpLasso  0.0000 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 0.0000 

AR(22)-ordLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000* 0.0000 

AR(100)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-adalasso  0.0000 0.0000 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 

AR(100)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000* 

AR(100)-ordLasso  1.0000* 1.0000* 1.0000* 0.0000 0.0000 1.0000* 0.0000 0.0000 

h=5 

HAR model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 0.0000 0.0000 0.6630 0.0000 0.8950 0.0000 0.5874 0.0000 

AR(22)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-ordLasso  1.0000* 1.0000* 1.0000* 0.0000 1.0000* 0.0000 1.0000* 1.0000* 

AR(100)-Lasso 0.0000 0.0000 0.3592 0.0000 0.4018 0.0000 0.0000 0.0000 

AR(100)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-ordLasso  0.0000 0.3756 0.7478 1.0000* 0.3962 1.0000* 0.3280 0.0000 

h=22 

HAR model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.9870 1.0000* 1.0000* 

AR(22)-adalasso  0.5228 0.4144 0.0000 1.0000* 0.7708 0.0000 0.0000 1.0000* 

AR(22)-grpLasso  0.9976 1.0000* 0.3062 0.4004 0.0000 1.0000* 0.4178 0.5058 

AR(22)-ordLasso  1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

AR(100)-Lasso 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.9546 1.0000* 0.0000 

AR(100)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-grpLasso  0.5468 0.7796 0.5360 0.5926 0.0000 1.0000* 0.6544 0.0000 

AR(100)-ordLasso  0.9942 0.5448 1.0000* 1.0000* 0.3514 0.9916 0.8990 0.0000 

Note: This table reports the MSC test in terms of QLIKE criterion for eight RV indices over daily, weekly 

and monthly horizons (h=1, 5 and 22). The forecasting models with EPA at 75% confidence level are 

highlighted in table. The value 1 in the table means that the optimal model is chosen, the value 0 means the 

model is eliminated. 
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Table 4.11: Summary of 1% and 5% VaR failure rates of rolling window forecasting 
 1% 5% 

 Ave. failure 

rate 
Sig. Weibull test 

Sig. DQ 

test 

Ave. failure 

rate 
Sig. Weibull test 

Sig. DQ 

test 

h=1 

HAR model  5.3714% FTSE All 9.1453% SPX, NSEI, N225, BSVP All 

HAR-free model  5.3713% FTSE All 9.0895% SPX, NSEI, N225, BSVP All 

AR(22)-Lasso 5.5575% 
FTSE, SPX, NSEI, BSVP, 

DAX 
All 9.3298% 

SSEC, SPX, NSEI, N225, 

MXX 
All 

AR(22)-Lasso 5.4286% 
SSEC, SPX, NSEI, N225, 

BSVP, DAX 
All 9.2454% 

SSEC, SPX, NSEI, N225, 

MXX 
All 

AR(22)-grpLasso 4.7532% SPX, BSVP, DAX All 8.7333% 
SSEC, SPX, NSEI, N225, 

DAX, MXX 
All 

AR(22)-ordLasso 4.7745% SSEC, SPX, NSEI, DAX All 8.8177% 
SSEC, SPX, NSEI, N225, 

DAX, MXX 
All 

AR(100)-Lasso 5.6025% 
SSEC, SPX, NSEI, BSVP, 

DAX 
All 9.3873% 

SSEC, SPX, NSEI, N225, 

DAX, MXX 
All 

AR(100)-adaLasso 5.4000% SPX, NSEI, BSVP, DAX All 9.1458% 
SPX, NSEI, N225, DAX, 

MXX 
All 

AR(100)-grpLasso 4.7948% SPX, N225, BSVP, DAX All 8.7888% 
SSEC, SPX, NSEI, N225, 

DAX, MXX 
All 

AR(100)-ordLasso 4.4469%* SPX, NSEI, BSVP, DAX All 8.5669%* 
SSEC, SPX, NSEI, N225, 

DAX, MXX 
All 

h=5 

HAR model  4.5038% NSEI, N225, DAX, MXX All 8.4064% All All 

HAR-free model  4.5234% NSEI, N225, DAX, MXX All 8.3861% All All 

AR(22)-Lasso 4.5122% N225 All 8.3489% FTSE, NSEI, N225, DAX All 

AR(22)-adaLasso 4.5038% N225 All 8.3275% FTSE, SSEC, N225, DAX All 

AR(22)-grpLasso 4.3012% N225 All 8.0391% FTSE, SSEC, N225, DAX All 

AR(22)-ordLasso 4.2845%* N225 All 7.8476%* FTSE, NSEI, N225 All 

AR(100)-Lasso 4.3444% N225 All 8.2072% 
FTSE, SSEC, NSEI, N225, 

DAX, MXX 
All 

AR(100)-adaLasso 4.3444% N225 All 8.1275% 
FTSE, SSEC, NSEI, N225, 

DAX, MXX 
All 

AR(100)-grpLasso 4.3245% N225 All 8.0857% 
FTSE, SSEC, NSEI, N225, 

DAX 
All 

AR(100)-ordLasso 4.3452% N225 All 7.9486% FTSE, SSEC, N225 All 

h=22 

HAR model  3.4849% None All 7.3307% None All 

HAR-free model  3.4826% None All 7.3307% None All 

AR(22)-Lasso 3.4109% None All 7.1315% None All 

AR(22)-adaLasso 3.4109% None All 7.0558% None All 

AR(22)-grpLasso 3.3519% None All 6.8932% None All 

AR(22)-ordLasso 3.3379%* None All 6.6159%* None All 

AR(100)-Lasso 3.4502% None All 6.9558% None All 

AR(100)-adaLasso 3.4226% None All 6.8127% None All 

AR(100)-grpLasso 3.4488% None All 6.8127% None All 

AR(100)-ordLasso 3.4249% None All 6.7307% None All 

Notes: this table provides the VaR results of rolling window test at the 1% and 5% VaR level. The average failure rate for each model over 

each index. The series are significant in the Weibull test and DQ test are listed.   
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Table 4.12: Summary of 1% and 5% VaR test of increasing window forecasting 
 1% 5% 

 Ave. failure 

rate 
Sig. Weibull test 

Sig. DQ 

test 

Ave. failure 

rate 
Sig. Weibull test 

Sig. DQ 

test 

h=1 

HAR model 5.3532% NSEI All 9.1382% 
SPX, NSEI, N225, 

BSVP 
All 

HAR-free model 5.3390% FTSE All 9.1173% 
SPX, NSEI, N225, 

BSVP 
All 

AR(22)-Lasso 5.5421% 
FTSE, SPX, NSEI, 

DAX 
All 9.3158% 

SSEC, SPX, NSEI, 

N225, MXX 
All 

AR(22)-adaLasso 5.3986% 
SPX, NSEI, BSVP, 

DAX 
All 9.2429% 

SSEC, SPX, NSEI, 

N225, MXX, BSVP 
All 

AR(22)-grpLasso 4.7291% SPX, BSVP All 8.7509% 
SSEC, SPX, NSEI, 

N225, DAX, MXX 
All 

AR(22)-ordLasso 5.0889% SPX, NSEI, DAX All 9.1211% 
SSEC, SPX, NSEI, 

N225, DAX, MXX 
All 

AR(100)-Lasso 5.6850% 
SSEC, SPX, NSEI, 

BSVP, DAX 
All 9.3886% 

SSEC, SPX, NSEI, 

N225, DAX, MXX 
All 

AR(100)-adaLasso 5.3490% 
FTSE, SPX, NSEI, 

BSVP, DAX 
All 9.1603% 

SPX, NSEI, N225, 

DAX, MXX 
All 

AR(100)-grpLasso 4.7988% 
SPX, N225, BSVP, 

DAX 
All 8.7822% 

SSEC, SPX, NSEI, 

N225, DAX, MXX 
All 

AR(100)-ordLasso 4.4332%* 
FTSE, SSEC, SPX, 

DAX 
All 8.5790%* 

SSEC, SPX, NSEI, 

N225, DAX, MXX 
All 

h=5 

HAR model 4.5458% 
NSEI, N225, DAX, 

MXX 
All 8.6420% All All 

HAR-Free model 4.5431% 
NSEI, N225, DAX, 

MXX 
All 8.5185% All All 

AR(22)-Lasso 4.4451% N225 All 8.4774% 
FTSE, NSEI, N225, 

DAX 
All 

AR(22)-adaLasso 4.3444% N225 All 8.1720% 
FTSE, SSEC, N225, 

BSVP, DAX 
All 

AR(22)-grpLasso 4.3241% N225 All 7.6132% 
FTSE, SSEC, NSEI, 

N225 
All 

AR(22)-ordLasso 4.3045%* N225 All 7.2774%* FTSE, NSEI, N225 All 

AR(100)-Lasso 4.5038% N225 All 8.5597% 
FTSE, NSEI, N225, 

DAX, MXX 
All 

AR(100)-adaLasso 4.4934% N225 All 8.4362% 
FTSE, SSEC, NSEI, 

N225, DAX, MXX 
All 

AR(100)-grpLasso 4.3491% N225 All 7.8021% 
FTSE, SSEC, NSEI, 

N225 
All 

AR(100)-ordLasso 4.3300% N225 All 7.6601% FTSE, N225 All 

h=22 

HAR model  3.6206% None All 7.4216% None All 

HAR-free model  3.6127% None All 7.4097% None All 

AR(22)-Lasso 3.5266% None All 7.0782% None All 

AR(22)-adaLasso 3.5407% None All 7.0251% None All 

AR(22)-grpLasso 3.4238% None All 6.5821% None All 

AR(22)-ordLasso 3.3417%* None All 6.5044%* None All 

AR(100)-Lasso 3.6502% None All 7.2074% None All 

AR(100)-adaLasso 3.6431% None All 7.1809% None All 

AR(100)-grpLasso 3.5069% None All 7.0016% None All 

AR(100)-ordLasso 3.5106% None All 6.8104% None All 

Notes: this table provides the VaR results of increasing window test at the 1% and 5% VaR level. The average failure rate for 

each model over each index. The series are significant in the Weibull test and DQ test are listed.   
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Chapter 5 Forecasting Realised Volatility Using Non-linear Threshold and Regime-

Switching Approach 

5.1 Introduction 

Accurately modelling and forecasting financial volatility is of crucial importance for risk 

management, derivative allocation, and asset pricing. Andersen and Bollerslev (1998) propose 

the Realised Volatility (RV), which employs the sum of squared intraday returns as an alternative 

approach to measure financial volatility. Unlike low-frequency data, the RV is observable rather 

than latent. Subsequently, the RV has been increasingly used in current research and has 

overtaken the GARCH and stochastic volatility setup. The vital feature of RV is that it exhibits 

high persistence and has a long memory feature (Andersen et al., 2003 and Lieberman and 

Philips, 2008). The HAR model (Corsi, 2009) uses the aggregated daily, weekly, and monthly 

RV to simply exhibit the volatility persistence. Currently, the HAR model and its extensions 

have dominated modelling and forecasting volatility (Andersen et al., 2012; Buncic and Gisler, 

2017; Patton and Sheppard, 2015; Horpestad et al., 2019). 

One of the primary investigations of current papers is that the forecasting performance 

of the HAR model dominates among forecasting models, as it effectively captures the high 

persistence of RV. However, Granger and Ding (1996) and Longin (1997) provide evidence that 

the persistence of volatility is not always consistent, and suggest that the persistence is nonlinear. 

In fact, the volatility occasionally exhibits high and low regimes, the high regimes in the market 

are associated with extreme events, including financial crisis or sudden policy changes, and in 

which the high regimes are usually short-lived (Medeiros, 2008 and Cipollini et al. 2017). In 

addition, the low and high regimes are also linked to cyclical economic expansions and 

recessions (Hamilton, 1989). 

Baillie and Kapetanios (2007) and Ohanissian et al. (2008) confirm that the nonlinearity 

and long memory also exist in RV. Thus, the nonlinear persistence of RV can lead to a better 
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prediction (Raggi and Bordignon, 2012). In order to obtain more accurate forecasts, the 

forecasting models should require different ways to treat structural breaks and regime-switching. 

For such reasons, the HAR models are incorporated with nonlinear models in regime-switching 

frameworks, such as smooth transition (McAleer and Medeiros, 2008; Qu et al., 2016) and 

Markov-switching (Liu et al., 2012 and Ma et al., 2017), which consider the existence of two 

different volatility regimes.  

Against this backdrop, there are inherent limits in the literature; thus far, they have 

refrained from performing a systematic forecasting performance assessment of the nonlinear 

frameworks combined with the HAR model. This chapter seeks to improve upon the previous 

literature for a range of international stock indices in three ways. First, this chapter explores the 

question of whether nonlinear models combined with the HAR model could improve the 

forecasting performance of RV over linear alternatives, and seeks to investigate which nonlinear 

models could accomplish this. Most of those models have been considered separately in the 

specific papers, but the wider range of nonlinear models and different forecasting horizons are 

novel. Therefore, this chapter begins with the linear AR model and HAR model, and then 

incorporates them with the smooth transition and Markov-switching approaches to compare the 

forecasting performance among the considered models. Second, to examine the time-variation 

in the regime-switching model, this chapter extends the Markov-switching model by considering 

the time-varying transition probability. In addition, this chapter also considers the variance shifts 

between the regimes in the Markov-switching model and implies the heteroscedasticity in the 

Markov-switching dynamics. Finally, this chapter evaluates the forecasting performance not 

only in the statistical aspect, which entails similar work to existing papers, but also in economic 

forecasting evaluation in terms of calculating the Value at Risk (VaR) and Expected Shortfall 

(ES).  
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To preview the results in this chapter, first, for in-sample results, the regime-switching 

HAR models are preferred over linear models. Additionally, the Markov-switching HAR models 

have a better goodness-of-fit than the smooth transition approaches. Second, for out-of-sample 

results, there is no clear evidence that the regime-switching HAR models improve forecasting 

performance on the daily forecasting horizon, though the linear HAR model also performs well. 

In contrast, the Markov-switching HAR model dominates forecasting performance for weekly 

and monthly horizons. Lastly, the regime-switching models hardly improve forecasting 

evaluation on the daily level for risk management application. The same applies for the smooth 

transition AR models at the daily level and the Markov-switching models with time-varying 

transition probability at the weekly and monthly levels.  

The rest of this chapter is shown as follows. Section 2 provides a review of relevant 

literature. Section 3 introduces the smooth transition and Markov-switching models considered 

in this chapter, as well as the forecasting evaluation methodology. Sections 4 and 5 provide the 

empirical data and findings of in-sample estimation and out-of-sample exercise. Then, section 6 

provides the results of risk management applications. The conclusion is provided in section 7. 

 

5.2 Literature Review 

The volatility of financial returns has been widely recognized as a latent proxy for obtaining 

accurate estimators, as well as risk management. It plays a crucial role in financial research. Thus 

far, in the field of volatility modelling, the most popular nonlinear model is the GARCH model 

proposed by Bollerslev (1986), A growing number of volatility models have been developed to 

incorporate the volatility features to extend and modify the GARCH model 17(e.g., Engle and 

Bollerslev, 1986; Engle and Lee, 1993 and Baillie et al., 1996; Zakoian, 1990; Nelson, 1991 and 

Glosten et al., 1993). The GARCH family models have made great empirically achievements 

 
17 A more complete literature can be seen in Section 2.2. 
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and obtained outstanding performance in forecasting conditional volatility (see Hansen and 

Lunde, 2005; Awartani and Corradi 2005 and Wei et al., 2010).  

Additionally, the Stochastic Volatility (SV) model (Taylor, 1986) is considered to be an 

alternative to the GARCH model to estimate conditional volatility. Similar to the GARCH 

model, the various nonlinear extensions of SV models have also been widened. Robinson and 

Zaffaroni (1998) and Robinson (2001) capture the nonlinear long memory of the SV model, Yu 

(2005) incorporates the nonlinear SV model with leverage effect, and Elliott et al. (2012) add the 

impact of business cycles. However, none of these aforementioned models dominate the others. 

As noted by Carnero et al. (2004) and Malmsten and Teräsvirta (2010), these models hardly 

reproduce the stylized facts in typical financial volatility.  

 

Nonlinearity in Realised Volatility  

Due to the inappropriateness mentioned above of GARCH models and SV models, it is always 

important to find superior estimators. The estimators of these models are usually daily or lower-

frequency data; therefore, intraday information is neglected. Hence, the empirical research is 

increasingly concentrated on the RV approach proposed by Andersen and Bollerslev (1998). The 

RV thus becomes a dominant estimator of volatility modelling and forecasting.18  

Although the property of financial volatility is persistence, Granger and Ding (1996) note 

that the persistence of volatility is not constant over time. Login (1997) also provides evidence 

that the high volatility is less persistent than low volatility; thus, the persistence of market 

volatility is nonlinear. One interpretation of the nonlinear volatility refers to the business cycle 

(Hamilton, 1989), which is commonly related to economic expansions and recessions. Moreover, 

another explanation, which is more widely applied, indicates that the nonlinearity is caused by 

the financial breaks usually associated with important events such as financial crises or sudden 

 
18 For a more complete literature review, see Section 3.2.  
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changes in government policies. McAleer and Medeiros (2008) and Cipollini et al. (2017) 

indicate that the high regimes are short-lived, whereas the low regimes have longer persistence.  

 

Threshold Models  

The applications of nonlinearity in volatility models can be found in a wide range of empirical 

works. The asymmetric GARCH models capture the leverage effect by switching between two 

different parameters in which negative past returns have a greater impact on future volatility 

(Zakoian, 1990 and Glosten et al., 1993). Besides GARCH models, another widespread model 

used to set a threshold of regime-switching is the Threshold Autoregressive (TAR) model (Tong, 

1978). Subsequent developments have extended the threshold model to adapt the abrupt regime-

switching. Chen et al. (2008) developed the range-based threshold model to improve forecasting 

performance, Glodman et al. (2013) found that the threshold ARFIMA model with regime-

switching outperforms the ARFIMA model, and Zhang et al. (2019) introduced the TAR models 

with a non-Gaussian error, which are well fitted the RV. In order to maintain the simplicity of 

estimation and inference, the number of lags in the TAR model are restricted to be small; the 

threshold depends on the state of the market and it is constant over time, which is an unreasonable 

assumption.  

As the HAR model has multiple groups of lags, an available solution to incorporate the 

HAR model with a threshold is the moving average threshold HAR model proposed by Motegi 

et al. (2020). Their model combines the TAR and HAR models to generate the moving average 

threshold by time-varying parameters in each group of the HAR model. Empirically applying 

the moving average threshold HAR model, Salisu et al. (2020) show that this model improves 

forecasting accuracy over the basic HAR model and fixed threshold HAR model. 
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Smooth Transition Models  

The threshold models that capture the regime-switching allow only two possible regimes: usually 

low and high-volatility regimes (Guidolin and Timmermann, 2005). The threshold model 

expresses an abrupt regime-switching behaviour depending on whether the variables are below 

or above a threshold value, while the smooth transition model allows for a gradual transition 

between regimes. Teräsvirta (1994) firstly considers the Smooth Transition Autoregressive 

model (STAR) model, which embeds the regime-dependent linear specification in the smooth 

transition nonlinear framework. Teräsvirta (1994) also introduces two types of STAR model 

based on the shape and location of the smooth threshold, namely the logistic (LSTAR) and 

exponential (ESTAR) STAR models. Those extensions of smooth transition models allow 

different types of market behaviours according to the nature of transition function.  

Subsequently, the smooth transition methods have been incorporated with various 

models. Following the work of González-Rivera (1998), which proposes the smooth transition 

GARCH (ST-GARCH) model, Taylor (2004) presents the ST-GARCH model with time-varying 

parameters to adapt to changes over time. Khemiri (2011) and Cheikh et al. (2020) utilize the 

ST-GARCH in the international stock index and cryptocurrency markets, respectively.  

Additionally, the smooth transition model has been combined with the HAR model. For 

instance, Qu et al. (2016) employ the logistic smooth transition in the HAR model and find that 

it can improve in-sample fit and out-of-sample forecasting performance. Izzeldin et al. (2020) 

use the exponential smooth transition HAR model to assess the impact of COVID-19 at both 

aggregate and sectoral levels. Moreover, although two regimes are commonly used, the smooth 

transition models can also accommodate multiple regimes transition. McAleer and Mediros 

(2008) introduce a multiple-regime smooth transition HAR model (HARST); however, in their 

forecasting results, the HARST model performs worse than the linear HAR model. The 

forecasting ability only improves when the HARST model and linear HAR model are combined.   
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Markov-switching Models  

An alternative approach to smooth transition models is the family of nonlinear regime-switching 

models with unobserved transition variables, namely the Markov-switching model. The state-

dependent process of the Markov-switching model only depends on the current state, not on the 

previous state. The number of optimal switching regimes is controversial, whereas it is generally 

recognized that volatility models combined with the Markov-switching model take into account 

the two different volatility regimes: high and low volatility regimes. Hamilton (1989) proposes 

using the Markov-switching model with the maximum likelihood methodology to estimate the 

unknown parameters of the transition probability matrices. Then, Hamilton and Susmel (1994) 

allow the parameters of the ARCH model to be governed by unobserved Markov Chain.  

The numerous empirical works of the MS-GARCH model have been used to estimate 

and forecast various types of financial time series, including stock returns (Henry, 2009), 

exchange rate returns (Bohl et al., 2011), and cryptocurrency volatility (Ardia et al., 2018 and 

Caporale and Zekokh, 2019). All of this research indicates that the MS-GARCH models 

outperform single-regime specifications in generating forecasts, and are also effective in risk 

management. Specially, Gallo and Otranto (2016) combine Markov-switching and smooth 

transition in modelling realised kernel volatility, this method tradeoff the performance between 

these two approaches.  

 

Markov-switching HAR Model and Its Extensions 

Although the HAR-type models are linear models that exhibit RV's high persistence, persistence 

always undergoes structure breaks in the market. Raggi and Bordignon (2012) provide evidence 

of nonlinearities and indicate that both the persistence and nonlinearities are significant for to 

improve the description of RV. In their work, the persistence shifting between low and high-
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volatility regimes is simulated by the Markov-switching approach. The forecasting results show 

that nonlinearities can improve forecasting ability over several horizons. As the HAR models 

have dominated modelling and forecasting volatility recently, it is appropriate to use HAR 

models with regime-switching to describe RV dynamics.  

Considering the nonlinearity and high persistence of RV, Ma et al. (2017) add the 

Markov-switching approach into the HAR models and find all of the HAR-type models with 

Markov-switching to yield more accurate forecasts. Luo et al. (2019) suggest that the HAR model 

with infinite hidden Markov-switching models has better prediction ability than the basic HAR 

model on the RV of agricultural commodity futures. Notably, Ma et al. (2019) also note that 

Markov-switching and volatility of volatility to HAR-type models could lead to better 

forecasting accuracy. Overall, the Markov-switching approach combined with HAR models can 

significantly improve forecasting accuracy. 

The drawback of the Markov-switching model is that the transition probability between 

regimes is fixed and cannot model the time variation. As a result, Diebold et al. (1994) and 

Filardo (1998) provide an extension that the transition probability of the Markov-switching 

model could vary over time, dependent on explanatory variables. However, it is usually uncertain 

which variables or specifications should be employed to express time variation in the transition 

probability. Bazzi et al. (2017) propose a new Markov-switching model with time-varying 

transition probability (MS-TVTP) where the transition probability is driven by the mean of 

observations over time. After that, Wang et al. (2019) and Wang et al. (2020) incorporate the 

MS-TVTP model with the basic linear HAR model and find that the MS-HAR model with TVTP 

can obtain superior forecasting performance than the basic HAR model and the MS-HAR model 

with constant transition probability.  

In addition, the variances in the Markov-switching model are state-independent. This 

means that the variance of each regime is the same; the switching only involves the predictive 



 118 

regression parameters. Kim and Nelson (1999) consider an alternative extension of the MS 

model, which involves the variance shifts in the Markov-switching model. Subsequently, 

Guidolin and Timmermann (2006) extend the Markov-switching model and imply the 

heteroscedasticity in the Markov-switching dynamics. In the empirical works of Guidolin et al. 

(2009) and Guidolin et al. (2013), the Markov-switching model with heteroscedasticity has good 

forecasting performance of stock and bond returns.  

 

5.3 Methodology 

This chapter compares the forecasting performance of regime-switching models combined with 

the HAR model. In this section, I introduce the models used in this study. This section starts with 

introducing two linear models as benchmarks, which are the AR1 and HAR models, and then 

describe the extensions of the smooth transition and Markov-switching models. The loss 

functions used in this chapter and MCS test are introduced in the end.  

 

5.3.1 Empirical Models  

As mentioned in previous methodology of Section 3.3, the calculation of RV is shown as follow: 

𝑅𝑉𝑡 =∑(𝑟𝑡,𝑖)
2

𝑁

𝑖=1

 (5.1) 

 

AR(1) Model  

The first linear model used in this chapter is the autoregressive (AR) model. The AR model 

indicates that it is a regression of the variable against itself. In this chapter, the AR model restricts 

the autoregressive order to be one. Thus, the AR1 model is given as: 

𝑅𝑉𝑡 = 𝜃0 + 𝜃𝑖𝑅𝑉𝑡−1 + 𝑢𝑡 (5.2) 

where 𝑢𝑡~𝑖𝑖𝑑(0, 𝜎
2). 
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HAR Model 

As mentioned in previous methodology of Section 3.3, the standard HAR-RV model is given as: 

𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑑𝑅𝑉𝑡−1 + 𝛽𝑤𝑅𝑉𝑡−1:𝑡−5 + 𝛽𝑚𝑅𝑉𝑡−1:𝑡−22 + 𝑢𝑡 (5.3) 

where weekly and monthly averages of RV are calculated as:  

𝑅𝑉𝑡−1:𝑡−5 =
1

5
∑𝑅𝑉𝑡−𝑖

5

𝑖=1

 (5.4) 

𝑅𝑉𝑡−1:𝑡−22 =
1

22
∑𝑅𝑉𝑡−𝑖

22

𝑖=1

 (5.5) 

  

Smooth Transition Models 

The financial volatility usually presents the existence of two regimes: the low volatility and high 

volatility regimes. Consequently, this chapter allows the AR and HAR models to depend on the 

smooth transition model in which the transition variable is observed. Different from the abrupt 

transition of the threshold model, the smooth transition model allows for a gradual transition 

between regimes. A two-regime smooth transition model is given as: 

𝑅𝑉𝑡 = 𝑋𝑡𝛼 + 𝐺(𝑠𝑡; 𝛾, 𝜓)𝑍𝑡
′𝛽 + (1− 𝐺(𝑠𝑡; 𝛾, 𝜓))𝑍𝑡

′𝛿 + 휀𝑡 (5.6) 

where 𝑋𝑡  denotes the regime invariant variables, 𝑍𝑡 denotes regime transition variables, 𝐺 

denotes the continuous transition function with a return value between 0 and 1, and 휀𝑡 is the 

stochastic error team. The smooth transition models allow different types of market behaviours 

according to the nature of transition function 𝐺.  

First, the logistic smooth transition model depends on whether the transition variable is 

above or below the transition value, and the logistic transition function is shown as: 
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𝐺(𝑠𝑡; 𝑐, 𝛾) =
1

1 + 𝑒𝑥𝑝(−𝛾(𝑠 − 𝑐))
, 𝛾 > 0 (5.7) 

where 𝑠 is the smoothing parameter, 𝑐 is the transition parameter to determine the point at which 

regimes are weighted equally, and 𝛾 is the slope value to control the speed and smoothness of 

the transition process.  

 Second, the exponential smooth transition function depends on the distance between the 

transition value and threshold value, and is given as: 

𝐺(𝑠𝑡; 𝑐, 𝛾) = 1 − 𝑒𝑥𝑝(−𝛾(𝑠 − 𝑐)
2), 𝛾 > 0 (5.8) 

where 𝑠 is the smoothing parameter, 𝑐 is the transition parameter, and 𝛾 is the slope value.  

This chapter employs both the LSTAR and ESTAR models, which allow for a logistic 

and exponential smooth transition in the autoregressive process. Following common practice 

(Guidolin et al., 2009), the LSTAR and ESTAR models restrict the number of delay parameter 

to be one. Moreover, this chapter also uses the smooth transition HAR model, which allows for 

a smooth transition between two regimes governed by both LST function and EST function, 

namely the LST-HAR model and EST-HAR model. Due to there are multiple parameters  in the 

HAR model, the model selection of the smallest sum-of-squared residuals is used to determine 

the best regime transition variable, which is 𝑍𝑡
′ in Eq(5.6).  

 

Markov-switching Models  

An alternative approach to smooth transition models is nonlinear regime-switching models in 

which the transition variable is unobserved. This chapter considers the regime-switching models 

that depend on a set of unobservable states, and which follow the Markov process, and then 

combines the Markov-switching method with the linear HAR model, namely the Markov-

switching HAR (MS-HAR) model, given as:  
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𝑅𝑉𝑡 = 𝛽0,𝑆𝑡 + 𝛽𝑑,𝑆𝑡𝑅𝑉𝑡−1 + 𝛽𝑤,𝑆𝑡𝑅𝑉𝑡−1:𝑡−5 + 𝛽𝑚,𝑆𝑡𝑅𝑉𝑡−1:𝑡−22 + 𝑢𝑡,𝑆𝑡 

𝑢𝑡,𝑆𝑡|휁𝑡~𝑁(0, 𝑣𝑡,𝑆𝑡) 
(5.9) 

where the constant 𝛽0,𝑆𝑡 , the HAR model coefficients 𝛽𝑑,𝑆𝑡, 𝛽𝑤,𝑆𝑡𝑎𝑛𝑑𝛽𝑚,𝑆𝑡 , and the variance 

𝑣𝑡,𝑆𝑡all depend on the unobservable states. In particular, this chapter imposes and estimates two-

state predictive regression (𝑆𝑡 = 1  or  𝑆𝑡 = 2 ), which presents the low volatility and high 

volatility regimes, respectively. The unobserved regime variable 𝑆𝑡 is assumed to follow the first 

order Markov chain process with a constant transition probability matrix with the generic 

element 𝑃𝑗𝑖, which is defined as: 

𝑃𝑟(𝑆𝑡 = 𝑖|𝑆𝑡−1 = 𝑗) = 𝑃𝑗𝑖       𝑓𝑜𝑟 𝑖, 𝑗 = 1,2 (5.10) 

This is the probability of transition from regime 𝑗 to regime 𝑖 between 𝑡 − 1 and 𝑡. In matrix 

notation shown as:  

𝑃 = ቂ𝑃
11 𝑃21

𝑃12 𝑃22
ቃ = ቂ 𝑃11 1 − 𝑃11

1 − 𝑃22 𝑃22
ቃ (5.11) 

Therefore, the RV at time 𝑡 is formulated based on the two-regime Markov-switching model 

given as: 

𝑅𝑉𝑡 = 𝑃11(𝛽0,𝑆1 + 𝛽𝑑,𝑆1𝑅𝑉𝑡−1 + 𝛽𝑤,𝑆1𝑅𝑉𝑡−1:𝑡−5 + 𝛽𝑚,𝑆1𝑅𝑉𝑡−1:𝑡−22)

+ 𝑃22(𝛽0,𝑆2 + 𝛽𝑑,𝑆2𝑅𝑉𝑡−1 + 𝛽𝑤,𝑆2𝑅𝑉𝑡−1:𝑡−5 + 𝛽𝑚,𝑆2𝑅𝑉𝑡−1:𝑡−22) + 𝑢𝑡 

𝑢𝑡|휁𝑡~𝑁(0,𝑃
11𝑣𝑡,𝑆1 + 𝑃

22𝑣𝑡,𝑆2) 

(5.12) 

In order to gain more flexibility, the transition probability of the Markov-switching model 

can be assumed as a time-varying transition probability (MS-TVTP). According to Diebold et 

al. (1994), the transition probability follows an independent regime-switching process. The 

Eq(10) could be changed as:  
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𝑃(𝑆𝑡 = 𝑖|𝑆𝑡−1 = 𝑖) = 𝑝𝑖𝑖 =
𝑒𝑥𝑝(𝑐𝑖 + 𝑑𝑖𝛿𝑡−1)

1 + 𝑒𝑥𝑝(𝑐𝑖 + 𝑑𝑖𝛿𝑡−1)
 (5.13) 

where 𝑐𝑖 is a constant, 𝑑𝑖 is the exogenous observable in regime 𝑖, and 𝛿𝑡−1 is coefficient, where  

𝑑𝑖 is the transition probabilities of MS-TVTP model become constant and coincide with MS 

model. Identically, the MS-TVTP method is also combined with the linear HAR model to model 

RV. 

In addition, the variance of MS model is independent of the state (𝑣𝑡,𝑆1 = 𝑣𝑡,𝑆2), which is the 

homoscedastic case. In addition, this chapter also follows the works of Guidolin et al. (2009) and 

Guidolin et al. (2013) to consider the heteroskedastic case, in which the variance is regime-

specific (𝑣𝑡,𝑆1 ≠ 𝑣𝑡,𝑆2) . Thus, this chapter makes the Markov-switching dynamics imply 

heteroscedasticity, namely MSH. The MSH model combined with HAR (MSH-HAR) model 

assumes Markov-switching probabilities with two regimes and constant transition probabilities. 

 

5.3.2 Forecasting Evaluation  

Loss Functions 

As mentioned in previous Chapter3, Subsection 3.3.2, the loss functions in this chapter are given 

by: 

𝑄𝐿𝐼𝐾𝐸 =
1

𝑛
∑(log(𝑅𝑉�̂�) +

𝑅𝑉𝑡

𝑅𝑉�̂�
)

𝑛

𝑡=1

 (5.14) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑅𝑉𝑡 − 𝑅𝑉�̂�)

2
𝑛

𝑡=1

 
(5.15) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑅𝑉𝑡 − 𝑅𝑉�̂�|

𝑛

𝑡=1

 
(5.16) 

𝑅𝑉𝑡 = 𝑎0 + 𝑎1𝑅𝑉�̂� + 𝜖𝑡 (5.17) 
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where 𝑅𝑉𝑡 and 𝑅𝑉�̂� denote the actual volatility and forecast volatility, respectively.  

The loss functions are used to determine the best model with the smallest forecasting 

error overall time. However, the forecasting performance of models may change over time, 

especially during unstable periods. To evaluate whether the forecasting performance changes 

over time, this chapter considers the cumulative forecast error of the MSE to display the sum of 

the forecasting error as it grows with time.   

 

Model Confidence Set (MCS) Test  

While the loss functions above could obtain an optimal value to determine a model with the best 

performance, this chapter also considers the Model Confidence Set (MSC) approach19 to remove 

the worst model sequentially according to the null hypothesis of equal predictive ability is 

rejected.  

 

5.4 Data 

All of the RV data used are from the Oxford-Man Institute of Quantitative Finance. The chapter 

employs the 5 minutes RV of eight international stock indices20, including the UK stock index 

(FTSE), Japanese stock index (N225), the USA stock index (SPX), German stock index (DAX), 

Chinese stock index (SSEC), Brazilian stock index (BSVP), Indian stock index (NSEI), and 

Mexican stock index (MXX), respectively. This chapter uses the RV in logarithmic form (log-

RV) to produce results with more normal distribution. The data sample considered over fifteen 

years, from 1st November 2006 to 31st October 202021. The first five years are set as the in-

 
19 More details for the MCS test can be found in Section 3.3.2. 
20 The discussion of date sample frequency can be seen in Footnote 7. 
21 Due to the subsequent development of this chapter, the sample is updated and use the latest date at that time, so 

the data period is different from previous chapters.   
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sample period (i.e., 1st November 2006 to 31st October 2010), and the last ten years (i.e., 1st 

November 2010 to 31st October 2020) are used in the out-of-sample forecast generation.  

Table 5.1 describes the summary statistics of log-RV for each index. All series of log-

RV exhibit a non-normal distribution with excess kurtosis and is right-skewed. Further 

supportable evidence of non-normal distribution is that the Jarque-Bera test statistic rejects the 

null hypothesis of normal distribution at the 1% level. The first-order autocorrelation values 

indicate that all log-RV series are highly persistent and allow for further modelling analysis. 

Figure 5.1 shows the time-series plots of all log-RV, respectively. For all indices, the log-RV 

occurs around 2008 and 2020, when the financial crisis and global pandemic happened.   

 

5.5 Empirical Results 

5.5.1 In-Sample Results  

This chapter starts with the linear models using the AR(1) and basic HAR models and the 

extensions of the smooth transition and Markov-switching model, which are combined with the 

AR(1) and HAR model. As noted above, this chapter considers the two-regime predictive 

regression in the smooth transition and Markov-switching models, which represents the low and 

high-regime volatility. The first five years of data samples are set as the in-sample period from 

1st November 2006 to 31st October 201022. 

Table 5.2 provides the three model selection criteria for each forecasting model, namely 

the Akaike information criteria (AIC), Bayesian information criterion (BIC), and log-likelihood 

(LL), respectively. Overall, as the three criteria show, the MSH-HAR model performs best 

among all forecasting models, while the MS-TVTP-HAR model performs well for N225 in AIC 

and BIC diagnostics. Comparing the linear AR1 model and HAR model, the nonlinear regime-

 
22 As the recursive method are used to obtain forecasts in the chapter, the in-sample estimates will change each 

period continuously,  so the final in-sample estimates are quite different from the initial ones. The in-sample results 

presented here are the initial in-sample estimates, it is included largely for illustrative purpose.   
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switching models of the smooth transition and Markov-switching are generally preferred in terms 

of more accurate criteria value. This result is consistent with the work of Raggi and Bordignon 

(2012). The regime-switching AR model performs poorly. Moreover, the Markov-switching 

models exhibit a better goodness-of-fit compare to the smooth transition model. 

As the MSH-HAR model outperforms others in the model selection criteria all the time. 

The analysis of in-sample estimation results concentrates on it. Table 5.3 reports the parameter 

estimates for MSH-HAR models for each index. The models are allowed to switch between the 

two regimes (𝑆𝑡 = 1 and 𝑆𝑡 = 2), which are the low and high volatility regimes. Due to the 2008 

financial crisis being included in the in-sample period, the statistically significant coefficients in 

the high regimes are more than that of low regimes, besides SPX and MXX. In each regime, the 

MSH-HAR models have different standard deviation of the error, 𝜎𝑡, so the regime-switching 

dynamics imply heteroscedasticity. Except for the low regimes for NSEI and MXX, the standard 

deviations of error are significant at the 1% level. The effects of the financial crisis are also 

manifested in the regime transition probability. For all RV indices, the transition probability of 

high regime, 𝑝22, is greater than that of low regime, 𝑝11, which means the high-volatility regimes 

exhibit more persistence than low-volatility regimes in the in-sample period.   

Figure 5.2 plots the smoothed transition probability of the MSH-HAR model for all 

indices in the high and low-volatility regime. The upper charts are low-regime smoothed 

transition probability, showing that when the low-regime-switching occurs, and the lower charts 

are smoothed transition probability of high regime. The overall patterns of the transition 

probability are very sensitive, this is related to the unstable financial markets during the in-

sample period. The transition probability of FTSE, SPX, N225, and DAX experienced a stable 

period in 2009, but it has been in a period of instability for SSEC, NSEI, BSVP, and MXX. 
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5.5.2 Out-Of-Sample Results 

The forecasts are recursively generated 23from all forecasting models in section 3.1 over the out-

of-sample period from 1st November 2010 to 31st October 2020. All forecasting models 

considered produce the RV forecasts over the daily, weekly, and monthly horizons. For long-

term forecasting, a simple approach for generating multi-step-ahead forecasts is to replace the 

data frequency of the volatility model. In other words, to replace 𝑅𝑉𝑡+1 on the lift-head side over 

the forecasting horizon h, say 𝑅𝑉𝑡+ℎ
ℎ =

1

ℎ
∑ 𝑅𝑉𝑡−ℎ+𝑖
ℎ
𝑖=1 , thus ℎ = 1, 5 𝑎𝑛𝑑 22 . Moreover, 

forecasting performance is measured by the loss functions of MSE, MAE, QLIKE, and adjusted 

R2 of MZ regression, as well as the MSC tests of MSE and QLIKE criterion select the optimal 

models with EPA, respectively.   

The out-of-sample results of four loss functions are reported over daily, weekly, and 

monthly horizon from Tables 5.4 to 5.7. Overall, the AR1 model and smooth transition AR 

models perform worse than regime transition HAR models. For the smooth transition models of 

AR and HAR models, the forecasting results of the logistic smooth transition and exponential 

smooth transition are very close. Especially, the ESTAR and LSTAR have almost identical 

forecasts. Table 5.4 presents the MSE loss functions over the daily, weekly, and monthly 

horizons (h= 1, 5 and 22). For one-day-ahead forecasts, the MS-TVTP-HAR model performs the 

best, whilst the EST-HAR model and MSH-HAR have good performance for two series, 

respectively. For the one-week-ahead forecasts, the MS-HAR model provides the best 

forecasting performance among all indices. Additionally, the nonlinear regime-switching models 

outperform the linear AR1 and HAR models. Specifically, the Markov-switching models can 

provide more accurate forecasts than smooth transition models. Again, the MS-HAR model 

 
23 The Markov-switching models are estimated by the maximum likelihood, it is very time-consuming to generate 

10-year out-of-sample predictions. Therefore, different from Chapter 3 and 4, this chapter only uses the recursive 

approach to generate forecasts. 



 127 

performs best for the one-month-ahead forecasts, and the linear AR1 and HAR models perform 

poorly.  

Table 5.5 shows the MAE comparison results, consistent with Table 5.3, the AR1 and its 

smooth transition extensions do not have good forecasts. Specifically, the linear HAR model has 

the best forecasting performance at the one-day horizon, and the MSH-HAR model has 

competitive forecasting performance for three series as well. The MS-HAR model dominates all 

stock indices except FTSE at the one-week-ahead forecast horizon. The MS-HAR model also 

has the best forecasting ability at the monthly horizon, and the MSH-HAR model performs well 

for the DAX and SSEC.  

For the QLIKE comparison in Table 5.6, it shows similar results to those in Table 5.5. 

The HAR model performs best at the one-day horizon, and the MS-TVTP-HAR and MS-HAR 

models also have good performance. At the weekly and monthly horizons, the MS-HAR model 

dominates. In terms of the adjusted R2 of MZ regression in Table 5.7, the MS-TVTP-HAR and 

MSH-HAR models have the best performance for three series at the daily horizon, respectively. 

Again, the MS-HAR model outperforms others.  

Moreover, to further strengthen the out-of-sample results and observe the forecasting 

error of all considered models over time, the cumulative forecasting error of MSE loss function 

over the daily, weekly, and monthly horizons are plotted in Figures 5.3, 5.4, and 5.5. The daily 

forecasting error in Figure 5.3 shows that the AR1, ESTAR, and LSTAR models perform worse, 

while there is no observable difference of daily forecasting error among the HAR model, smooth 

transition HAR models, and Markov-switching HAR models for all indices. In Figure 5.4, it can 

be observed that the MS-HAR model (blue lines) generates the lowest cumulative MSE all the 

time. This reveals that the MS-HAR model consistently maintains the most accurate weekly 

forecasting performance over time. Besides, the three types of Markov-switching HAR models 

perform better than smooth transition HAR models. The cumulative monthly forecasting error 
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in Figure 5.5 presents similar results to Figure 5.4. The MS-HAR model produces the lowest 

forecasting error, except for DAX, the MS-HAR model is the best model for DAX. 

The MSC test results for the MSE and QLIKE criteria are provided in Tables 5.8 and 5.9. 

The value 1 in the table means that the optimal model is chosen, and the MSC test chooses a 

subset of models with EPA at 75% confidence level. For the MSC test of MSE criterion in Table 

5.8, the AR1 model and its smooth transition models perform worse. All of them are eliminated 

from EPA selection. For daily forecasts, the MS-TVTP-HAR model has the best performance 

for DAX, BSVP and MXX, whilst the EST-HAR model has good performance for N225 and 

NSEI, and the MSH-HAR model for FTSE and SPX, respectively. For weekly and monthly 

forecasting horizon, there is overwhelming evidence of the superiority of the MS-HAR model.  

Table 5.9 presents the MSC test of QLIKE criterion. Compared to Table 5.8, similar 

results are obtained. The linear HAR model and MSH-HAR model outperform for daily 

forecasting, while the MS-TVTP-HAR model has good forecasting ability. Specifically, the 

linear HAR model provides the best forecasting performance for DAX, SSEC, and MXX, and 

the MSH-HAR model is the best model for FTSE, SPX, and DAX. The MS-TVTP-HAR model 

also yields good forecasts for N225 and BSVP. Again, the weekly results indicate that the MS-

HAR model is the best-performing forecast model, and the MS-TVTP-HAR model also performs 

well at the NSEI and MXX. The MS-HAR dominates at the monthly horizon.  

In summary, according to the lowest loss function value and the MSC test, the linear 

HAR model, MS-TVTP-HAR model, and MSH-HAR model have better predictive ability at 

daily forecasting horizon, while no model clearly outperforms each other. For both weekly and 

monthly horizons, the MS-HAR model has the best forecasting performance. Markov-switching 

models can provide more accurate forecasts than smooth transition models. Compared with 

present works, the results of this article are completely different from Wang et al. (2019) and 

Wang et al. (2020), which show that the Markov-switching model time varying transition 
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probability has better performance than the Markov-switching model. Notably, the differences 

between four developed countries and four emerging countries are not clearly observed for 

forecasting comparison in the out-of-sample results. 

 

5.6 Risk Management Application 

Since one more typical forecasting performance application is the adoption of financial risk 

management, this chapter also considers a risk management backtesting and loss function, which 

is based upon the calculations of the Value at Risk (VaR) and Expected Shortfall (ES). The VaR 

is calculated to measure the maximum amount of loss for financial assets under a certain 

confidence level, and ES is designed to measure the expected loss value when a VaR violation 

has occurred. The VaR of an asset is calculated as: 

𝑉𝑎𝑅 = 𝜇𝑡 + 𝜎𝑡𝑁(𝛼) (5.22) 

where 𝜇𝑡 is the mean of asset’s log-return, 𝜎𝑡 is the predicted volatility, and 𝑁(𝛼) defines the 

left 𝛼th quantile of the normal distribution. Then, the calculation of ES given as: 

𝐸𝑆 = 𝜇𝑡 + 𝜎𝑡
𝑓(𝑁(𝛼))

1 − 𝛼
 (5.23) 

where 𝜇𝑡  is the mean of asset’s log-return, 𝜎𝑡  is the predicted volatility, and f(𝑁(𝛼)) is the 

density function of a standard normal distribution at the left 𝛼th quantile. 

To examine the accuracy of VaR forecasts, the first test is to compute the failure rate for 

daily return, which is the number of daily returns exceed the forecasted VaR divided by the total 

forecasted observations. 

Second, the VaR backtesting is examined using both the Kupiec (Kupiec, 1995) and 

Christoffersen (Christoffersen, 1998) tests, which are the unconditional and conditional coverage 

tests for the correct number of exceedances. Specifically, the Kupiec test is an unconditional 

coverage test with the null hypothesis that the observed violation rate is statically equal to the 



 130 

expected violation rate. Kupiec (1995) notes that this test ignores all observations after the first 

value, which leads the value to be oversized. Christoffersen’s conditional coverage test examines 

the null hypothesis that the failure rate occurred independently at every point in time and against 

the alternative hypothesis that the failure rate is stylized in volatility clustering. Both tests are 

carried out in the likelihood ratio (LR) framework. The LR for each test is shown as: 

1. LR statistic for the test of correct unconditional coverage: 

𝐿𝑅𝑈𝐶 = 2 𝑙𝑜𝑔((1 − 𝜋0)
𝑇−𝑁𝜋0

𝑁) − 2 log((1 − 𝛼0)
𝑇−𝑁𝛼0

𝑁)~𝜒1
2 (5.24) 

 

where 𝜋0  is the observed violation rate and calculated by the number of the days 𝑁  when 

violations occurred divide by forecasting period 𝑇.  

2. LR statistic for the test of correct conditional coverage: 

𝐿𝑅𝐶𝐶 = 2 𝑙𝑜𝑔((1 − 𝜋01)
𝑛00𝜋01

𝑛01(1 − 𝜋11)
𝑛10𝜋11

𝑛11)

− 2 log((1 − 𝜋0)
𝑛00+𝑛10𝜋0

𝑛01+𝑛11)~𝜒1
2 

(5.25) 

 

where the 𝑛𝑖,𝑗 is the number of 𝑖 followed by 𝑗 (for 𝑖, 𝑗 = 0,1), 𝜋𝑖,𝑗 means the probability when 

the 𝑖 occurs at time 𝑡 followed by the 𝑗 occurs at time 𝑡 − 1.  

Third, this chapter uses the Dynamic Quantile (DQ) test of Engle and Manganelli (2004) 

to examine if the present violations of the VaR measure are not correlated with the past 

violations. The DQ test defines the hit sequence as follows: 

𝐻𝑖𝑡𝑡 = 𝐼(𝑟𝑡 < −𝑉𝑎𝑅𝑡) − 𝑎 (5.26) 

 

This sequence assumes that value (1 − 𝑎) whenever the actual returns are less than the VaR 

quantile and the value (−𝑎) otherwise. The expected value of 𝐻𝑖𝑡𝑡 is zero and the sequence is 

uncorrelated with past information. In this case, there will be no autocorrelation in the hit 

sequence and the fraction of exceptions will be correct. The DQ test statistic is calculated as: 
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𝐷𝑄 =
𝛽′̂𝑋′𝑋�̂�

𝑎(1 − 𝑎)
~𝜒2(𝑘) (5.27) 

 

which X is the explanatory variables and �̂� is the OLS estimates. The DQ test also follows 𝜒2 

distribution with degree of freedom equal to the number of parameters. 

Lastly, the VaR backtesting chooses more than one model. In order to choose the best 

performing model, this chapter uses the Quantile Loss (QL) (Koenker and Bassett, 1978) to rank 

the model with best VaR performance. So, the QL for predicted VaR of confidence level 𝛼 at 

time 𝑡 given as: 

𝑄𝐿𝑡(𝛼) = (𝛼 − 𝑑𝑡)(𝑟𝑡 − 𝑉𝑎𝑅𝑡(𝛼)) (5.28) 

 

QL is an asymmetric loss function. As the weight (1 − 𝛼) increases, the penalties will be heavy, 

for the returns exceed the VaR. Models with lower average QL are preferred.  

To date, there is no specific loss function for ES (see Bellini and Bignozzi, 2015, and Ziegel, 

2016). The loss function introduced by Fissler and Ziegel (2016) (FZL) shows that VaR and ES 

can be assessed jointly. For predicted VaR and ES at risk level 𝛼 for time 𝑡, the joint VaR and 

ES loss function of FZL given as: 

𝐹𝑍𝐿𝑡(𝛼) =
1

𝛼𝐸𝑆𝑡(𝛼)
𝑑𝑡(𝑟𝑡 − 𝑉𝑎𝑅𝑡(𝛼)) +

𝑉𝑎𝑅𝑡(𝛼)

𝐸𝑆𝑡(𝛼)
+ 𝑙𝑜𝑔(−𝐸𝑆𝑡(𝛼)) − 1 (5.29) 

 

where 𝐸𝑆𝑡(𝛼) ≪ 𝑉𝑎𝑅𝑡(𝛼) < 0. The losses of FZL are averaged over the forecasting period and 

the model with the lowest average is preferred. 

 This chapter uses the same in-sample and out-of-sample period to produce the daily, 

weekly, and monthly VaR and ES forecasts at both 1% and 5% levels to examine which 

forecasting model provides more accurate VaR and ES estimates.  24 

 
24 For more detail about the weekly and monthly risk management setting see Footnote 15.  
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The results of VaR and ES forecasts for the 1% level are presented in Table 5.10. For the 

daily forecasting horizon, the LSTAR model is preferred as the lowest average failure value is 

provided. In terms of the Kupiec, Christoffersen, and DQ tests, all forecasting models are 

statistically significant across all series. The null hypotheses of the Kupiec and Christoffersen 

tests are rejected. This means that all considered models produce the unexpected proportion of 

VaR violations and those VaR violations occur dependently. The null hypothesis of the DQ test 

is also rejected; thus, the VaR violations are correlated. The average QL and FZL show that the 

ESTAR model performs best for daily VaR and ES, while the EST-HAR model provides the 

worst forecasts. The LSTAR model also performs well, and it is close to the ESTAR model. For 

weekly forecasts, the ESTAR model has the lowest average failure rate. Again, all forecasting 

models are statically significant in the Kupiec, Christoffersen, and DQ tests. The MS-TVTP-

HAR model is preferred in terms of the lowest QL and FZL value, but the ESTAR and LSTAR 

models perform worst for the monthly horizon. Examining monthly forecasts, which is consistent 

with weekly forecasts, the ESTAR model has the best performance in terms of failure rate, all 

three null hypotheses are rejected and the MS-TVTP-HAR model performs best for QL and FZL.  

Table 5.11 presents the VaR and ES results at the 5% level. The results are broadly similar 

to Table 5.10. For the Kupiec, Christoffersen, and DQ tests across daily, weekly, and monthly 

forecasting horizons, all models do reject the null hypothesis of expected VaR violations (i.e., 

Kupiec test). VaR violations occurred independently (i.e., Christoffersen test) and VaR 

violations were not correlated (i.e., DQ test). For the daily forecasts, the ESTAR models achieve 

the lowest average failure rate, and the ESTAR model has the best performance for QL and FZL. 

The results for weekly and monthly results are consistent with that at the 1% level. The LSTAR 

model has the lowest average failure rate, and the MS-TVTP-HAR model is preferred in terms 

of the lowest QL and FZL value.  
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To sum up, all models do reject the null hypothesis of the Kupiec, Christoffersen, and 

DQ tests across daily, weekly, and monthly forecasting horizons, which means all forecasting 

models provide the VaR violation is unexpected, dependent, and correlated. There is no clear 

evidence that the nonlinear regime-switching model could improve the forecasting ability at the 

daily horizon. The smooth transition AR models have good performance. However, for weekly 

and monthly horizons, the ESTAR model, LSTAR model and the MS-TVTP-HAR model have 

better performance.  

 

5.7 Conclusion and Discussion 

Previous papers have shown that the nonlinear persistent dynamics of the RV can improve 

predictive performance. In order to systematically assess the predictive power of the nonlinear 

regime-switching models in combination with the HAR model, this chapter comprehensively 

integrates and compares the predictive performance of the linear and nonlinear regime-switching 

models for eight RV indicators. In addition to the linear AR and HAR models as benchmarks, 

the chapter considers smooth transition and Markov-switching methods for different prediction 

time horizons. In addition, this chapter also considers the basic Markov-switching model, the 

Markov-switching model with time-varying transition probability and the heteroscedasticity in 

the Markov-switching dynamics. Following most of the work, this chapter employs two regimes 

in the regime-switching model, presenting low and high volatility regimes respectively. Finally, 

all forecasts are used in risk management in terms of calculating Value at Risk (VaR) and 

Expected Shortfall (ES).  

The in-sample results support that the nonlinear regime-switching models exhibit better 

goodness-of-fit than linear models, the Markov-switching model that allows for regime 

switching in the variance is better than the Markov-switching models that don’t. (i.e., MSH-HAR 

model is preferred). For the out-of-sample results, there is no evidence that nonlinear regime-
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switching models outperform the HAR model for the daily forecasting horizon, while for both 

weekly and monthly horizons, the Markov-switching HAR model dominates forecasting 

performance. Moreover, Markov-switching models can provide more accurate forecasts than 

smooth transition models. For risk management applications, the daily forecasting ability of the 

smooth transition AR model is non-negligible and performs best. Markov-switching models with 

time-varying transition probabilities are preferred in the weekly and monthly ranges. Notably, 

no differences between the four developed and four emerging countries were clearly observed in 

the comparison of forecasts for out-of-sample results. 

In contrast to previous work, the HAR model is a simple linear model to predict RV; 

however, RV also exhibits nonlinear persistence. This chapter systematically evaluates the 

forecasting performance of the nonlinear framework and concludes that combining nonlinear 

HAR models improves forecasting accuracy, with the Markov-switching HAR model 

performing best among the regime-switching models. In addition, all regime switching models 

are applied to risk management.  

This chapter presents the same results as the previous papers, which is the nonlinear 

models have stronger forecasting performance. This chapter estimate the simple nonlinear 

frameworks25, which outperform all linear models in terms of predictive performance. The two 

nonlinear regime-switching models are quite different in nature; the smooth transition model 

allows for a gradual transition between two regimes, whereas the transition in the Markov 

switching model is abrupt and unobservable. Empirically, the abrupt transition technique is better 

suited to real financial market changes and therefore outperforms smoothed changes in terms of 

forecasting performance. 

 

 
25 The “simple” means that the models are considered by two regimes. e.g., 𝑆𝑡 = 1 or 𝑆𝑡 = 2 in the Markov-

switching models, and there is an imposed threshold in the LST and EST models.  
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Figure 5.1: The plots of the whole period of log-RV of eight market index 
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Figure 5.2: The smoothed transition probability of MSH-HAR model 
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Figure 5.3:  The sum of cumulative MSE forecasting error for one-day-ahead forecast 
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Figure 5.4:  The sum of cumulative MSE forecasting error for one-week-ahead forecast 
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Figure 5.5: The sum of cumulative MSE forecasting error for one-month-ahead forecast 
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Table 5.1: Descriptive statistic of log-RV 

 FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

Mean -9.6253 -9.9753 -9.8512 -9.4991 -9.2238 -9.6553 -9.2901 -9.8426 

St.Dev. 1.0289 1.2418 0.9759 0.9824 1.0784 1.0239 0.8881 0.8965 

Kurtosis 0.7981 0.3428 0.9749 0.6954 -0.1832 0.9356 1.8284 1.0329 

Skewness 0.6497 0.4930 0.6467 0.4802 0.4387 0.7223 0.8595 0.7881 

Median -9.7546 -10.088 -9.9397 -9.5673 -9.3426 -9.8042 -9.3765 -9.9778 

25%-quantile -10.355 -10.841 -10.506 -10.159 -9.986 -10.359 -9.849 -10.490 

75%-quantile -9.021 -9.216 -9.319 -8.910 -8.438 -9.063 -8.836 -9.316 

AutoCorr 0.7600 0.8324 0.7748 0.8021 0.8383 0.8269 0.7671 0.6407 

Jarque-Bera 343.41*** 159.93*** 374.53*** 208.22*** 113.91*** 106.09*** 906.68*** 520.49*** 

Obs. 3537 3515 3419 3545 3402 3465 3448 3511 

Note: This table reports the summary statistics of log-RV of eight stock index for the whole period from 1st 

November 2006 to 31st October 2020. *** indicate the significant level at 1%. 
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Table 5.2: In-sample diagnostics 

  FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

  AIC 

AR1 1.7959 1.9126 1.6333 1.6606 1.7391 1.7994 1.8577 2.2080 

HAR 1.6245 1.7517 1.4782 1.4991 1.6370 1.6526 1.7290 2.0299 

LSTAR 1.7996 1.9093 1.6246 1.6351 1.7329 1.7838 1.8392 2.1973 

ESTAR 1.7996 1.9093 1.6292 1.6351 1.7295 1.6337 1.8396 2.0262 

LST-HAR 1.6313 1.7507 1.4811 1.4930 1.6428 1.6500 1.7321 2.0337 

EST-HAR 1.6266 1.7319 1.4685 1.4917 1.6361 1.6337 1.7273 2.0262 

MS-HAR 1.5865 1.7398 1.4374 1.4548 1.5985 1.5829 1.7102 2.0156 

MS-TVTP-HAR 1.5856 1.7399 1.4364* 1.4569 1.5983 1.5787 1.7084 2.0099 

MSH-HAR 1.5779* 1.7089* 1.4367 1.4453* 1.5515* 1.5488* 1.6899* 2.0082* 

  BIC 

AR1 1.8056 1.9224 1.6433 1.6703 1.7491 1.8093 1.8676 2.2178 

HAR 1.6443 1.7716 1.4986 1.5189 1.6575 1.6727 1.7492 2.0499 

LSTAR 1.8288 1.9386 1.6546 1.6642 1.7631 1.8135 1.8691 2.2268 

ESTAR 1.8288 1.9387 1.6592 1.6643 1.7597 1.6842 1.8695 2.0761 

LST-HAR 1.6808 1.8004 1.5319 1.5424 1.6939 1.7005 1.7828 2.0836 

EST-HAR 1.6762 1.7816 1.5194 1.5411 1.6872 1.6842 1.7779 2.0761 

MS-HAR 1.6410 1.7945 1.4933 1.5092 1.6547 1.6384 1.7658 2.0705 

MS-TVTP-HAR 1.6400 1.7946 1.4924* 1.5211 1.6545 1.6342 1.7641 2.0648* 

MSH-HAR 1.6374* 1.7686* 1.4977 1.5046* 1.6128* 1.6093* 1.7506* 2.0681 

  LL 

AR1 -904.92 -959.07 -795.86 -839.08 -842.31 -886.01 -911.05 -1102.01 

HAR -799.30 -857.82 -702.60 -739.58 -773.58 -794.19 -827.64 -989.66 

LSTAR -902.78 -953.41 -787.63 -822.18 -835.34 -874.30 -897.97 -1092.66 

ESTAR -902.79 -953.44 -789.86 -822.19 -833.69 -779.10 -898.18 -981.84 

LST-HAR -796.69 -851.36 -697.94 -730.52 -770.32 -786.96 -823.16 -985.48 

EST-HAR -794.38 -842.09 -691.95 -729.87 -767.13 -779.10 -820.81 -981.84 

MS-HAR -773.52 -844.98 -676.07 -710.60 -748.26 -753.55 -811.59 -975.63 

MS-TVTP-HAR -773.07 -845.03 -675.60 -709.62 -748.18 -751.53 -810.75 -972.84 

MSH-HAR -768.29* -828.78* -674.72* -704.87* -724.96* -736.07* -800.82* -971.02* 

Note: This table reports the AIC, BIC and Log Likelihood (LL) of eight RV indices for all forecasting models 

considered for the in-sample period from 1st November 2006 to 31st October 2010. The forecasting model 

with best performance is highlighted with *. 
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Table 5.3: Maximum Likelihood Estimates of MSH-HAR models in in-sample period 

  FTSE SPX N225 DAX 

  

Low  

Regime 

High  

Regime 

Low  

Regime 

High  

Regime 

Low  

Regime 

High  

Regime 

Low  

Regime 

High  

Regime 

𝛽0,𝑆𝑡 
-0.7878 -0.7916** -0.6419*** -0.4431 -0.8865 -0.6529 -0.9142*** -0.1247 

(1.7850) (0.3933) (0.2384) (0.3844) (3.4328) (0.4959) (0.3497) (0.3129) 

𝛽𝑑,𝑆𝑡 
0.1950 0.3507*** 0.4440*** 0.0503 0.1177 0.3781*** 0.4352*** 0.3679*** 

(0.2194) (0.0610) (0.0537) (0.1040) (0.9360) (0.1301) (0.0664) (0.0671) 

𝛽𝑤,𝑆𝑡 
1.1838*** 0.2459*** 0.3587*** 0.7040*** 1.0340 0.2651*** 0.3818*** 0.4114*** 

(0.3529) (0.0737) (0.0729) (0.2500) (0.6886) (0.0699) (0.0870) (0.0874) 

𝛽𝑚,𝑆𝑡 
-0.4880 0.3310*** 0.1352*** 0.2058 -0.2728 0.2989 0.0890 0.2134*** 

(0.3229) (0.0721) (0.0611) (0.2309) (0.6590) (0.1923) (0.0844) (0.0690) 

log(𝜎𝑡) 
-0.2992*** -0.8497*** -0.4421*** -0.9898*** -0.2762*** -0.8723*** -0.4628*** -1.0427*** 

(0.0819) (0.0879) (0.0441) (0.0683) (0.0988) (0.0744) (0.0682) (0.0624) 

𝑝11 0.3570 0.9869 0.4590 0.9522 

𝑝22 0.8215 0.9689 0.9066 0.9528 
 

SSEC NSEI BSVP MXX 
 

Low  

Regime 

High  

Regime 

Low  

Regime 

High  

Regime 

Low  

Regime 

High  

Regime 

Low  

Regime 

High  

Regime 

𝛽0,𝑆𝑡 
-2.6935*** -0.7418* -1.1445 -0.9534*** -0.7171 -0.6548** -1.4089 -1.2463 

(0.7064) (0.3937) (0.9835) (0.1871) (0.4395) (0.2850) (1.7059) (1.1348) 

𝛽𝑑,𝑆𝑡 
0.2982*** 0.4470*** 0.2920** 0.3694*** 0.5472*** 0.2649** 0.3258** 0.1148 

(0.0883) (0.0624) (0.1421) (0.0536) (0.0875) (0.1055) (0.1192) (0.3298) 

𝛽𝑤,𝑆𝑡 
0.1616 0.0948 0.1944 0.3268** 0.1030 0.4804*** 0.3537 0.5195 

(0.1214) (0.1488) (0.3627) (0.0758) (0.1672) (0.1057) (1.2370) (1.1310) 

𝛽𝑚,𝑆𝑡 
0.1920* 0.3916** 0.3485 0.2120*** 0.2614 0.1977** 0.1708 0.2517 

(0.1118) (0.1508) (0.3467) (0.0559) (0.1618) (0.0888) (1.4299) (1.3648) 

log(𝜎𝑡) 
-0.3956*** -0.9238*** -0.1927 -0.8623*** -0.3039*** -0.8105*** -0.1900 -0.6985*** 

(0.1191) (0.0682) (0.1320) (0.0820) (0.0986) (0.0630) (0.2234) (0.2257) 

𝑝11 0.9226 0.8155 0.8851 0.8754 

𝑝22 0.9529 0.9543 0.9419 0.9071 

Note: This table reports two-regime MSH-HAR model of each RV index considered for the in-sample period 

from 1st November 2006 to 31st October 2010. 𝜎 is the standard deviation of error in each regime. 𝑝11and 

𝑝22 are the transition probability of being in the low and high regime, respectively. Standard errors are in 

parentheses. ***, ** and * refer the significant at 99%, 95% and 90% confidence level, respectively.  
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Table 5.4: Out-of-sample forecasting performances of MSE 

  FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

  H = 1 

AR1 0.4854 0.5045 0.4137 0.3591 0.3515 0.3759 0.3050 0.4515 

HAR 0.3915 0.4408 0.3655 0.2959 0.2820 0.3086 0.2635 0.3808 

LSTAR 0.4784 0.5036 0.4136 0.3546 0.3498 0.3672 0.3005 0.4521 

ESTAR 0.4778 0.5038 0.4145 0.3547 0.3495 0.3628 0.3006 0.4514 

LST-HAR 0.3934 0.4424 0.3672 0.2974 0.2843 0.3073 0.2636 0.3808 

EST-HAR 0.3943 0.4426 0.3651* 0.2973 0.2842 0.3071* 0.2638 0.3887 

MS-HAR 0.3908 0.4403 0.3667 0.2971 0.2842 0.3097 0.2664 0.3813 

MS-TVTP-HAR 0.3913 0.4411 0.3651* 0.2959* 0.2825* 0.3084 0.2629* 0.3812* 

MSH-HAR 0.3900* 0.4397* 0.3682 0.2961 0.2868 0.3077 0.2644 0.3854 

  H = 5 

AR1 0.2488 0.2849 0.2432 0.1714 0.2053 0.2034 0.1536 0.2251 

HAR 0.1556 0.2002 0.1850 0.1032 0.1324 0.1316 0.0989 0.1502 

LSTAR 0.2428 0.2829 0.2424 0.1671 0.2026 0.1979 0.1474 0.2255 

ESTAR 0.2427 0.2828 0.2427 0.1670 0.2022 0.1978 0.1475 0.2255 

LST-HAR 0.1560 0.2018 0.1857 0.1036 0.1333 0.1303 0.0983 0.1512 

EST-HAR 0.1565 0.2222 0.1865 0.1065 0.1337 0.1402 0.0992 0.1505 

MS-HAR 0.1255* 0.1673* 0.1514* 0.0965* 0.1007* 0.1153* 0.0853* 0.1274* 

MS-TVTP-HAR 0.1431 0.1807 0.1683 0.0975 0.1174 0.1226 0.0891 0.1275 

MSH-HAR 0.1424 0.1918 0.1742 0.0978 0.1225 0.1259 0.0914 0.1424 

  H = 22 

AR1 0.2803 0.3706 0.2984 0.2144 0.2628 0.2453 0.1843 0.2532 

HAR 0.1356 0.2009 0.1814 0.0999 0.0984 0.1147 0.0842 0.1266 

LSTAR 0.2721 0.3635 0.2997 0.2059 0.2511 0.2372 0.1748 0.2503 

ESTAR 0.2719 0.3636 0.2999 0.2055 0.2509 0.2341 0.1747 0.2499 

LST-HAR 0.1351 0.1977 0.1822 0.0975 0.0976 0.1128 0.0823 0.1261 

EST-HAR 0.1338 0.1996 0.1839 0.1052 0.0976 0.1762 0.0932 0.1284 

MS-HAR 0.0921* 0.1314* 0.1039* 0.0865 0.0582* 0.0810* 0.0548* 0.0708* 

MS-TVTP-HAR 0.1230 0.1640 0.1385 0.0850 0.0781 0.1066 0.0641 0.0800 

MSH-HAR 0.1164 0.1669 0.1586 0.0831* 0.0596 0.0899 0.0704 0.0925 

Note: This table reports the forecasting evaluation (MSE) of eight RV indices for all forecasting models 

considered using recursive method over daily, weekly and monthly horizons (h=1, 5 and 22) and the out-

of-sample period from 1st November 2010 to 31st October 2020. The forecasting model with the best 

performance is highlighted with *. 
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Table 5.5: Out-of-sample forecasting performances of MAE 

  FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

  H = 1 

AR1 0.5379 0.5616 0.4893 0.4663 0.4646 0.4633 0.4266 0.5245 

HAR 0.4761 0.5232 0.4525 0.4229* 0.4051* 0.4163 0.3905* 0.4725* 

LSTAR 0.5333 0.5628 0.4904 0.4658 0.4633 0.4578 0.4220 0.5247 

ESTAR 0.5331 0.5631 0.4899 0.4657 0.4632 0.4574 0.4220 0.5242 

LST-HAR 0.4780 0.5247 0.4539 0.4242 0.4067 0.4153* 0.3897 0.4729 

EST-HAR 0.4778 0.5248 0.4512* 0.4254 0.4066 0.4158 0.3896 0.4819 

MS-HAR 0.4757 0.5227 0.4531 0.4244 0.4077 0.4169 0.3908 0.4728 

MS-TVTP-HAR 0.4760 0.5231 0.4521 0.4239 0.4054 0.4162 0.3892 0.4726 

MSH-HAR 0.4753* 0.5222* 0.4541 0.4229* 0.4091 0.4164 0.3906 0.4749 

  H = 5 

AR1 0.3797 0.4143 0.3635 0.3259 0.3542 0.3495 0.3053 0.3651 

HAR 0.2772 0.3222 0.2901 0.2388 0.2641 0.2618 0.2276 0.2732 

LSTAR 0.3758 0.4143 0.3628 0.3206 0.3518 0.3441 0.2975 0.3664 

ESTAR 0.3757 0.4144 0.3633 0.3206 0.3513 0.3443 0.2976 0.3662 

LST-HAR 0.2793 0.3271 0.2911 0.2401 0.2648 0.2605 0.2267 0.2738 

EST-HAR 0.2790 0.3298 0.2906 0.2446 0.2647 0.2758 0.2288 0.2746 

MS-HAR 0.2538 0.2884* 0.2681* 0.2347* 0.2242* 0.2431* 0.2056* 0.2524* 

MS-TVTP-HAR 0.2676 0.3043 0.2782 0.2351 0.2500 0.2539 0.2154 0.2555 

MSH-HAR 0.2532* 0.3086 0.2774 0.2269 0.2471 0.2500 0.2121 0.2615 

  H = 22 

AR1 0.4117 0.4798 0.4257 0.3636 0.4114 0.3914 0.3361 0.3975 

HAR 0.2548 0.3118 0.2977 0.2264 0.2311 0.2356 0.2066 0.2474 

LSTAR 0.4049 0.4761 0.4255 0.3567 0.3998 0.3884 0.3274 0.3955 

ESTAR 0.4049 0.4760 0.4263 0.3561 0.3992 0.3880 0.3273 0.3954 

LST-HAR 0.2547 0.3110 0.2970 0.2240 0.2280 0.2317 0.2051 0.2468 

EST-HAR 0.2528 0.3120 0.3017 0.2402 0.2317 0.2935 0.2276 0.2481 

MS-HAR 0.2185* 0.2607* 0.2306* 0.2196 0.1748 0.1960* 0.1707* 0.1881* 

MS-TVTP-HAR 0.2435 0.2904 0.2604 0.2181 0.2020 0.2271 0.1811 0.2045 

MSH-HAR 0.2216 0.2660 0.2565 0.1927* 0.1738* 0.1967 0.1775 0.2029 

Note: This table reports the forecasting evaluation (MAE) of eight RV indices for all forecasting models 

considered using recursive method over daily, weekly and monthly horizons (h=1, 5 and 22) and the out-

of-sample period from 1st November 2010 to 31st October 2020. The forecasting model with the best 

performance is highlighted with *. 
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Table 5.6: Out-of-sample forecasting performances of QLIKE 

  FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

  H = 1 

AR1 0.002701 0.002592 0.002225 0.001991 0.002112 0.002019 0.001794 0.002411 

HAR 0.002166 0.002244 0.001971 0.001638* 0.001685* 0.001649 0.001547 0.002030* 

LSTAR 0.002671 0.002582 0.002231 0.001975 0.002102 0.002005 0.001768 0.002419 

ESTAR 0.002667 0.002584 0.002238 0.001975 0.002102 0.001966 0.001769 0.002413 

LST-HAR 0.002175 0.002252 0.001981 0.001650 0.001699 0.001646 0.001545 0.002032 

EST-HAR 0.002188 0.002256 0.001978 0.001646 0.001699 0.001641* 0.001545 0.002079 

MS-HAR 0.002162 0.002242 0.001981 0.001643 0.001699 0.001658 0.001570 0.002034 

MS-TVTP-HAR 0.002164 0.002246 0.001970* 0.001639 0.001689 0.001651 0.001542* 0.002035 

MSH-HAR 0.002157* 0.002239* 0.001988 0.001639 0.001713 0.001647 0.001551 0.002058 

  H = 5 

AR1 0.001432 0.001506 0.001345 0.000981 0.001251 0.001110 0.000927 0.001231 

HAR 0.000893 0.001054 0.001036 0.000593 0.000795 0.000723 0.000606 0.000828 

LSTAR 0.001407 0.001493 0.001348 0.000964 0.001235 0.001108 0.000890 0.001235 

ESTAR 0.001406 0.001493 0.001350 0.000964 0.001233 0.001104 0.000890 0.001235 

LST-HAR 0.000895 0.001059 0.001039 0.000596 0.000803 0.000716 0.000601 0.000835 

EST-HAR 0.000897 0.001451 0.001045 0.000612 0.000807 0.000776 0.000606 0.000831 

MS-HAR 0.000726* 0.000884* 0.000857* 0.000544* 0.000604* 0.000679 0.000522* 0.000707 

MS-TVTP-HAR 0.000812 0.000943 0.000941 0.000551 0.000698 0.000669* 0.000539 0.000697* 

MSH-HAR 0.000814 0.001012 0.000977 0.000561 0.000741 0.000697 0.000560 0.000789 

  H = 22 

AR1 0.001634 0.001986 0.001662 0.001251 0.001635 0.001391 0.001141 0.001387 

HAR 0.000803 0.001089 0.001021 0.000595 0.000593 0.000675 0.000529 0.000691 

LSTAR 0.001595 0.001946 0.001684 0.001208 0.001568 0.001366 0.001083 0.001376 

ESTAR 0.001595 0.001944 0.001687 0.001206 0.001567 0.001339 0.001083 0.001372 

LST-HAR 0.000798 0.001061 0.001026 0.000580 0.000589 0.000661 0.000513 0.000688 

EST-HAR 0.000788 0.001079 0.001037 0.000626 0.000588 0.001130 0.000586 0.000702 

MS-HAR 0.000545* 0.000721* 0.000593* 0.000504* 0.000346* 0.000486* 0.000345* 0.000391* 

MS-TVTP-HAR 0.000724 0.000874 0.000777 0.000494 0.000460 0.000636 0.000393 0.000434 

MSH-HAR 0.000689 0.000905 0.000904 0.000497 0.000356 0.000538 0.000444 0.000514 

Note: This table reports the forecasting evaluation (QLIKE) of eight RV indices for all forecasting models 

considered using recursive method over daily, weekly and monthly horizons (h=1, 5 and 22) and the out-of-sample 

period from 1st November 2010 to 31st October 2020. The forecasting model with the best performance is 

highlighted with *. 
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Table 5.7: Out-of-sample forecasting performances of MZ regression adjusted R2 

  FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

  H = 1 

AR1 0.4691 0.6206 0.5284 0.5868 0.6296 0.4827 0.4826 0.2937 

HAR 0.5601 0.6605 0.5771 0.6540 0.6881* 0.5477 0.5426 0.3815* 

LSTAR 0.4752 0.6227 0.5295 0.5906 0.6306 0.4891 0.4845 0.2892 

ESTAR 0.4754 0.6226 0.5286 0.5905 0.6310 0.4337 0.4844 0.2902 

LST-HAR 0.5580 0.6599 0.5753 0.6522 0.6857 0.5491 0.5416 0.3795 

EST-HAR 0.5568 0.6599 0.5769 0.6522 0.6856 0.5489 0.5414 0.3794 

MS-HAR 0.5606 0.6610 0.5760 0.6535 0.6864 0.5463 0.5367 0.3804 

MS-TVTP-HAR 0.5602 0.6603 0.5775* 0.6550* 0.6877 0.5477 0.5431* 0.3799 

MSH-HAR 0.5617* 0.6612* 0.5749 0.6536 0.6836 0.5490* 0.5408 0.3758 

  H = 5 

AR1 0.6585 0.7450 0.6671 0.7551 0.7590 0.6590 0.6643 0.5339 

HAR 0.7792 0.8146 0.7426 0.8488 0.8330 0.7554 0.7732 0.6694 

LSTAR 0.6649 0.7491 0.6690 0.7603 0.7610 0.6621 0.6712 0.5298 

ESTAR 0.6651 0.7491 0.6690 0.7604 0.7613 0.6621 0.6712 0.5302 

LST-HAR 0.7785 0.8134 0.7414 0.8481 0.8318 0.7567 0.7737 0.6669 

EST-HAR 0.7779 0.7971 0.7402 0.8447 0.8310 0.7489 0.7721 0.6687 

MS-HAR 0.8224* 0.8454* 0.7916* 0.8592* 0.8740* 0.7853* 0.8033* 0.7188* 

MS-TVTP-HAR 0.7971 0.8322 0.7661 0.8575 0.8515 0.7707 0.7940 0.7171 

MSH-HAR 0.7982 0.8229 0.7585 0.8569 0.8468 0.7677 0.7903 0.6870 

  H = 22 

AR1 0.5617 0.6146 0.5260 0.6462 0.6802 0.5672 0.5147 0.3672 

HAR 0.7760 0.7785 0.7040 0.8266 0.8625 0.7556 0.7568 0.6439 

LSTAR 0.5728 0.6297 0.5255 0.6607 0.6867 0.5759 0.5261 0.3666 

ESTAR 0.5730 0.6295 0.5260 0.6613 0.6868 0.5790 0.5263 0.3668 

LST-HAR 0.7769 0.7830 0.7026 0.9307 0.8617 0.7593 0.7609 0.6447 

EST-HAR 0.7789 0.7799 0.7006 0.8237 0.8618 0.6834 0.7493 0.6403 

MS-HAR 0.8483* 0.8569* 0.8373* 0.8523 0.9189* 0.8213* 0.8393* 0.7987* 

MS-TVTP-HAR 0.7951 0.8195 0.7739 0.8546 0.8880 0.7711 0.8116 0.7710 

MSH-HAR 0.8078 0.8152 0.7416 0.8557* 0.9171 0.8086 0.7967 0.7398 

Note: This table reports the Mincer-Zarnowitz regression adjusted R2 of eight RV indices for all 

forecasting models considered using recursive method over daily, weekly and monthly horizons (h=1, 5 

and 22) and the out-of-sample period from 1st November 2010 to 31st October 2020. The forecasting 

model with the highest adjusted R2 is highlighted with *. 
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Table 5.8: The Model confidence set test of MSE criterion 

  FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

  H = 1 

AR1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR 0.0000 0.7168 0.2858 0.9992 1.0000* 0.5386 0.8680 0.9998 

LSTAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ESTAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

LST-HAR 0.0000 0.9216 0.0000 0.9102 0.2106 0.9987 0.5636 0.9998 

EST-HAR 0.0000 0.9416 1.0000* 0.8226 0.5702 1.0000* 0.6332 0.0000 

MS-HAR 0.0000 0.9982 0.0000 0.2578 0.0000 0.0000 0.0000 0.9736 

MS-TVTP-HAR 0.0000 0.7470 0.9162 1.0000* 0.7868 0.7228 1.0000* 1.0000* 

MSH-HAR 1.0000* 1.0000* 0.0000 0.9992 0.0000 0.9996 0.0374 0.0000 

  H = 5 

AR1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

LSTAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ESTAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

LST-HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

EST-HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

MS-HAR 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

MS-TVTP-HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.6778 

MSH-HAR 0.0000 0.0000 0.0000 0.8212 0.0000 0.0000 0.0000 0.0000 

  H = 22 

AR1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

LSTAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ESTAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

LST-HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

EST-HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

MS-HAR 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

MS-TVTP-HAR 0.0000 0.0000 0.0000 0.4698 0.0000 0.0000 0.0000 0.0000 

MSH-HAR 0.0000 0.0000 0.0000 0.0000 0.3678 0.0000 0.0000 0.0000 

Note: This table reports the MSC test in term of MSE criterion for eight RV indices over daily, weekly 

and monthly horizons (h=1, 5 and 22). The forecasting models with EPA at 75% confidence level are 

highlighted in table. The value 1 in the table means that the optimal model is chosen, the value 0 means 

the model is eliminated. 
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Table 5.9: The Model confidence set test of QLIKE criterion 

  FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

  H = 1 

AR1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR 0.0000 0.5932 0.9878 1.0000* 1.0000* 0.8224 0.9684 1.0000* 

LSTAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ESTAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

LST-HAR 0.0000 0.8848 0.6200 0.5978 0.2676 0.8804 0.9138 0.9920 

EST-HAR 0.0000 0.7996 0.9950 0.9020 0.7042 1.0000* 0.9822 0.0000 

MS-HAR 0.0000 0.9874 0.1236 0.9410 0.0010 0.0000 0.0000 0.9238 

MS-TVTP-HAR 0.0000 0.4314 1.0000* 0.9960 0.4658 0.5988 1.0000* 0.5946 

MSH-HAR 1.0000* 1.0000* 0.0430 1.0000* 0.0000 0.8944 0.0000 0.0000 

  H = 5 

AR1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0254 0.0000 0.0000 

LSTAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ESTAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

LST-HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0176 0.0000 0.0000 

EST-HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

MS-HAR 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.9900 1.0000* 0.5928 

MS-TVTP-HAR 0.0000 0.0000 0.0000 0.3786 0.0000 1.0000* 0.0000 1.0000* 

MSH-HAR 0.0000 0.0000 0.0000 0.5782 0.0000 0.3712 0.0000 0.0000 

  H = 22 

AR1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

LSTAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

ESTAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

LST-HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

EST-HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

MS-HAR 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

MS-TVTP-HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

MSH-HAR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Note: This table reports the MSC test in term of QLIKE criterion for eight RV indices over daily, weekly 

and monthly horizons (h=1, 5 and 22). The forecasting models with EPA at 75% confidence level are 
highlighted in table. The value 1 in the table means that the optimal model is chosen, the value 0 means 

the model is eliminated. 
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Table 5.10: The backtesting and model comparison summary of 1% VaR and ES  

 Ave. 

failure rate 

Sig. Kupiec 

test 

Sig. Christoffersen 

test 

Sig. DQ 

test 

Ave. 

QL*10-4 
Ave. FZL 

 H=1 

AR1 2.7487% ALL ALL ALL 3.6110 -3.2553 

HAR 2.9665% ALL ALL ALL 3.6568 -3.2289 

LSTAR 2.6748%* ALL ALL ALL 3.5960 -3.2792 

ESTAR 2.6921% ALL ALL ALL 3.5943* -3.2793* 

LST-HAR 2.9098% ALL ALL ALL 3.6602 -3.2366 

EST-HAR 2.9437% ALL ALL ALL 3.6597 -3.2388 

MS-HAR 2.9495% ALL ALL ALL 3.6517 -3.2331 

MS-TVTP-HAR 2.9327% ALL ALL ALL 3.6507 -3.2344 

MSH-HAR 2.9496% ALL ALL ALL 3.6562 -3.2338 

 H=5 

AR1 2.1302% ALL ALL ALL 2.0394 -3.8271 

HAR 2.1251% ALL ALL ALL 1.9921 -3.8581 

LSTAR 2.0567% ALL ALL ALL 2.0398 -3.8249 

ESTAR 2.0508%* ALL ALL ALL 2.0396 -3.8250 

LST-HAR 2.1135% ALL ALL ALL 2.0033 -3.8520 

EST-HAR 2.0506% ALL ALL ALL 1.9926 -3.8565 

MS-HAR 2.0388% ALL ALL ALL 1.9863 -3.8642 

MS-TVTP-HAR 2.1602% ALL ALL ALL 1.9819* -3.8671* 

MSH-HAR 2.0612% ALL ALL ALL 1.9949 -3.8574 

 H=22 

AR1 1.6153% ALL ALL ALL 2.0937 -3.7824 

HAR 1.7251% ALL ALL ALL 2.0149 -3.8312 

LSTAR 1.5873% ALL ALL ALL 2.0943 -3.7787 

ESTAR 1.5870%* ALL ALL ALL 2.0946 -3.7787 

LST-HAR 1.6844% ALL ALL ALL 2.0386 -3.8205 

EST-HAR 1.6961% ALL ALL ALL 2.0151 -3.8301 

MS-HAR 1.8357% ALL ALL ALL 2.0202 -3.8332 

MS-TVTP-HAR 1.7539% ALL ALL ALL 2.0067* -3.8364* 

MSH-HAR 1.8014% ALL ALL ALL 2.0145 -3.8338 

Notes: this table provides the VaR and ES results at the 1% level. The average failure rate for each model over each 

index. The series are significant in the Kupiec test, Christoffersen test and DQ test are listed. The average asymmetric 

Quantile Loss function (QL) and the Average Fissler and Ziegel (2016) Loss function (FZL) for each model over 

each index. * highlights the forecasting model with best performance.  
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Table 5.11: The backtesting and model comparison summary of 5% VaR and ES 

 Ave. 

failure rate 

Sig. Kupiec 

test 

Sig. Christoffersen 

test 

Sig. DQ 

test 

Ave. 

QL*10-4 
Ave. FZL 

 H=1 

AR1 8.1517% ALL ALL ALL 11.052 -3.7392 

HAR 8.5259% ALL ALL ALL 11.010 -3.7375 

LSTAR 8.0768% ALL ALL ALL 11.051 -3.7466* 

ESTAR 8.0572%* ALL ALL ALL 11.051 -3.7465 

LST-HAR 8.4459% ALL ALL ALL 11.013 -3.7386 

EST-HAR 8.4667% ALL ALL ALL 11.011 -3.7401 

MS-HAR 8.5065% ALL ALL ALL 11.001* -3.7394 

MS-TVTP-HAR 8.4934% ALL ALL ALL 11.007 -3.7395 

MSH-HAR 8.5594% ALL ALL ALL 11.016 -3.7378 

 H=5 

AR1 6.5752% ALL ALL ALL 7.1793 -4.0744 

HAR 6.8636% ALL ALL ALL 7.0046 -4.1046 

LSTAR 6.5209%* ALL ALL ALL 7.1840 -4.0718 

ESTAR 6.5477% ALL ALL ALL 7.1829 -4.0718 

LST-HAR 6.8104% ALL ALL ALL 7.0439 -4.1001 

EST-HAR 6.8303% ALL ALL ALL 7.0066 -4.1034 

MS-HAR 6.9231% ALL ALL ALL 7.0041 -4.1078 

MS-TVTP-HAR 6.9500% ALL ALL ALL 6.9833* -4.1104* 

MSH-HAR 6.8099% ALL ALL ALL 7.0239 -4.1029 

 H=22 

AR1 5.8658% ALL ALL ALL 7.4019 -4.0208 

HAR 6.2953% ALL ALL ALL 7.1232 -4.0697 

LSTAR 5.8461%* ALL ALL ALL 7.4039 -4.0171 

ESTAR 5.8796% ALL ALL ALL 7.4051 -4.0172 

LST-HAR 6.2488% ALL ALL ALL 7.2069 -4.0591 

EST-HAR 6.3368% ALL ALL ALL 7.1241 -4.0685 

MS-HAR 6.3671% ALL ALL ALL 7.1420 -4.0716 

MS-TVTP-HAR 6.4227% ALL ALL ALL 7.0943* -4.0749* 

MSH-HAR 6.2075% ALL ALL ALL 7.1219 -4.0723 

Notes: this table provides the VaR and ES results at the 5% level. The average failure rate for each model over 

each index. The series are significant in the Kupiec test, Christoffersen test and DQ test are listed. The average 

asymmetric Quantile Loss function (QL) and the Average Fissler and Ziegel (2016) Loss function (FZL) for each 

model over each index. * highlights the forecasting model with best performance.  
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Chapter 6 Summary and Conclusion  

6.1 Summary 

Since Andersen and Bollerslev (1998) indicated the daily squared returns is a very noisy proxy 

of volatility, the frontier research of volatility modelling is mainly on RV. Subsequently, the 

current literature suggests that the HAR model (Corsi, 2009) is the preferred approach for 

modelling and forecasting RV. In light of the basic HAR model setting, this thesis consists of 

three empirical chapters entering the ongoing debate on refining the current forecasting models 

and identifying the most accurate model for forecasting RV. 

This thesis starts with a broad literature review on forecasting volatility, including 

previous forecasting models, volatility measurements and features of volatility. Then, in the 

literature review of each empirical chapter, the underlying theory and current research frontiers 

provide the foundation for the empirical research in this thesis. To improve the forecasting 

power of existing volatility models, this thesis considers a number of components in the 

modelling process of volatility (Chapter 3), considers parsimonious lags (Chapter 4), and 

finally a regime-switching approach is also considered (Chapter 5) to achieve better volatility 

predictions. A systematic approach is followed in the modelling and forecasting process in 

each chapter and several models are tested. The results are also evaluated within a risk 

management setting.  

Chapter 3 evaluates the predictive ability of three volatility components in the HAR-

RV setting, including volatility jumps, realised semi-variance, and leverage effect. So far, the 

literature assessed these components individually withing the modelling process (Andersen et 

al., 2007; Patton and Sheppard, 2015 and Corsi et al., 2012). This chapter extends the existing 

work with three different model settings for each component. Several forecast evaluation 

techniques are used in assessing the forecasts such as symmetric loss functions, asymmetric 

loss functions, pairwise comparisons, and equal predictive ability tests. In addition, forecasts 
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are generated by two forecasting approaches, namely the rolling window method and the 

recursive method. 

The results in Chapter 3 find that accommodating the leverage effect into the HAR 

model provides the best forecasting performance over daily, weekly and monthly horizons. 

According to the forecasting evaluation, all three volatility components improve the predictive 

accuracy of RV, however, the sophisticated HAR models with volatility jumps perform the 

worst, barely outperforming the basic HAR model, followed by the HAR models incorporate 

realised semi-variance. This chapter enables the RV to be predicted more accurately in the 

HAR model settings and it is beneficial to everyone involved in the financial market. More 

specifically, this results confirm the superiority of the leverage effect, showing that the 

inclusion of negative returns is the most accurate in the forecasting process. Policymakers can 

judge future market conditions based on volatility information and make full use of short- and 

long-term volatility to formulate macro-policies to reduce the risk of financial markets. If it 

predicts that the volatility of the stock market will increase in the future, the government can 

proactively implement macroeconomic policies to stabilize the economy, which enhances the 

foresight of policy. Investors can also adjust investment strategies timely based on predicted 

values to reduce investment risks.  

Chapter 4 examines the predictive ability of the AR models with parsimonious lags 

generated by the Lasso-based methods, which follows the works of Audrino and Knaus (2016) 

and Audrino et al. (2019). Specifically, this chapter expands previous works in two aspects. 

First, apart from the AR(22) model, which has the same lags as the HAR model, the AR(100) 

with longer lags is also considered. Second, this chapter employs the more recent types of 

Lasso approaches with different parameter penalizations to obtain parsimonious lags, including 

the Lasso(Toshigami, 1996), the adaptive Lasso (Zou, 2006), the grouped Lasso (Yuan and 
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Lin, 2006), and the ordered Lasso (Toshigami and Suo, 2016). In addition, this employs the 

forecasting results into Value at Risk setting.  

The in-sample analysis indicates the AR models with flexible lags can improve the 

model fitness over the HAR models. When plotting the coefficients, I find the forecasting 

information is concentrated in the first 22 lags, meanwhile, the longer lags also contain efficient 

information. In the out-of-sample results, the flexible AR models do significantly improve the 

forecasting ability, in which the ordered Lasso dominates the forecasting performance. 

Specifically, the AR(22) with ordered Lasso performs the best at daily horizon, AR(100) with 

ordered Lasso are preferred at weekly and monthly level. All forecasting results from the 

rolling window and recursive method are confirmed within the VaR setting over daily, weekly 

and monthly horizons. 

The findings in Chapter 4 add a further dimension to the ongoing debate about the 

forecasting ability of a more flexible lag structure in the AR model. Although the Lasso 

approaches are originally used in the computational statistics, this chapter promotes Lasso 

approaches in a financial forecasting setting and show that more flexible lags do improve 

forecasting performance over HAR models. Overall, for the view of the practitioners and 

investors, the current HAR-type models with restricted lag structure might not as good as the 

flexible lag structure in the field of forecasting volatility, the parsimonious lags may contain 

more efficient predictive information. The flexible lags in the AR models give a new direction 

to predictive modelling, the Lasso is an important approach worth considering in future 

volatility forecasting exercises.  

According to the finding that the nonlinear persistence of volatility can improve 

prediction (McAleer and Mediros, 2008 and Raggi and Bordignon, 2012), Chapter 5 evaluates 

the performance of nonlinear regime-switching frameworks incorporate the HAR model in 

forecasting RV. Thence, this chapter combines the AR model and HAR model with the smooth 
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transition and Markov switching approaches to generate forecasts. To symmetrically extend   

the regime-switching framework, this chapter also extends the Markov-switching in two 

directions. One is considering the time-varying transition probability, and another one is 

implying the variance shift between regimes. Besides the statistical aspect, this chapter also 

employs the forecasts in the economic evaluation in terms of VaR and ES.  

In the results of Chapter 5, generally, the regime-switching models are preferred over 

linear models in the in-sample analysis, and the Markov-switching models have a better 

goodness-of-fit than the smooth transition approaches. For out-of-sample exercise, although 

the regime-switching models have limited forecasting ability over the daily horizon, these 

models do outperform the linear HAR model over weekly and monthly horizons, where the 

Markov-switching HAR model is the best forecasting model and consistently exhibits the most 

accurate forecasts over time. The identical results are verified within the VaR and ES setting 

over daily, weekly and monthly horizons. 

The current empirical works are preferred the linear HAR model to model and forecast 

volatility, Chapter 5 takes into account the existence of two different volatility regimes, namely 

high- and low-volatility regime. These findings suggest that different volatility levels due to 

sudden changes in the market should be considered. Therefore, the nonlinear regime-switching 

HAR models used in this chapter maintain the same structure of the HAR model and add the 

possibility of sudden changes in the market. From the view of financial practitioners, regime-

switching models are crucial for many aspects of the real financial market. The actual financial 

markets are not consistent all the time, the different market regimes with abrupt transition 

techniques are more suitable for real market changes. Investors could use the appropriate 

market timing to allocate their assets, and policymakers can propose more suitable policies 

through different market regimes. 
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6.2 Conclusions 

This thesis adds knowledge to the literature on RV forecasting, the findings in this thesis are 

crucial to provide a good understanding of finance across international stock markets. 

Currently, the frontier research is mainly concentrate on the HAR model (Corsi, 2009), and the 

HAR model dominates the forecasting model. The empirical chapters in this thesis improve 

the accuracy of forecasting performance from three aspects. First, from the view of volatility 

components, this thesis indicates the leverage effect is a superior component in the HAR model 

setting, which means negative returns have major importance for future volatility. Second, the 

flexible lags in AR models improve forecasting ability over the HAR model, these results 

suggest that the Lasso method with an appropriate penalty function can lead to developments 

in forecasting volatility. Third, the nonlinear regime-switching models exhibit better forecasts 

than linear models, with the Markov-switching model consistently are preferred. Smooth 

transition approaches allow for a more gradual transition between regimes, therefore, the abrupt 

transition of Markov-switching is more suitable than smooth transition in real financial markets.  

In addition to the three main contributions mentioned above, the data sample in all 

empirical chapters is selected from developed and emerging countries to identify any regular 

pattern. It is worth noting that in all the results, there is no obvious difference between the 

developed and emerging markets, and the results are consistent for all markets. This enables 

the results in this thesis can be used by a wider range of market participants.26 

Throughout the thesis, the RV is used in empirical investigations. The measurement of 

intraday data is an important factor in volatility forecasting, the alternative approaches for 

presenting true volatility domain with more recent studies. One aspect worth exploring further 

 
26 Due to data limitation, only four emerging markets are available from the Oxford-Man Institute of Quantitative 

Finance database. This thesis also selects four developed markets for comparison purposes. The consistency of 

the most appropriate forecasting models between developed and emerging markets is a contribution of this thesis. 

Other important factors such as financial liberalisation and sensitivity of information flow also need to be 

accounted for when considering emerging markets. 
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is the impact of alternative approaches on the accuracy of volatility forecasting to answer the 

following question: “Do other intraday measures obtain better forecasts than RV”? Moreover, 

the HAR model is a restricted AR model with 22 lags, noticing in Chapter 4, this thesis 

addresses the question of longer lags could improve accuracy. Based on the underlying 

principles and methodology followed in this thesis a further question is raised: “Are there any 

optimal lag structures perform better than the HAR model”?  It can be seen that the topic of 

volatility prediction is a subject with continuous research potential. 
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Appendix 

Appendix 1: Models specifications in Chapter 3 

Model Name Model specifications Eq. number 

HAR-RV 𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑑𝑅𝑉𝑡−1 + 𝛽𝑤𝑅𝑉𝑡−1:𝑡−5 + 𝛽𝑚𝑅𝑉𝑡−1:𝑡−22 + 𝑢𝑡  Eq. (3.2) 

HAR-RV-J 𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑑𝑅𝑉𝑡−1 + 𝛽𝑤𝑅𝑉𝑡−1:𝑡−5 + 𝛽𝑚𝑅𝑉𝑡−1:𝑡−22 + 𝛽𝑗𝐽𝑡−1 + 𝑢𝑡  Eq. (3.11) 

HAR-RV-CJ 
𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑐𝑑𝐶𝑡−1 + 𝛽𝑐𝑤𝐶𝑡−1:𝑡−5 + 𝛽𝑐𝑚𝐶𝑡−1:𝑡−22 + 𝛽𝑗𝑑𝐽𝑡−1 +

𝛽𝑗𝑤𝐽𝑡−1:𝑡−5 + 𝛽𝑗𝑚𝐽𝑡−1:𝑡−22 + 𝑢𝑡  
Eq. (3.12) 

HAR-CJ 𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑐𝑑𝐶𝑡−1 + 𝛽𝑐𝑤𝐶𝑡−1:𝑡−5 + 𝛽𝑐𝑚𝐶𝑡−1:𝑡−22 + 𝛽𝑗𝑑𝐽𝑡−1 + 𝑢𝑡  Eq. (3.13) 

HAR-PS 
𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑑

+𝑅𝑆𝑉𝑡−1
+ + 𝛽𝑑

−𝑅𝑆𝑉𝑡−1
− + 𝛽𝑤𝑅𝑉𝑡−1:𝑡−5 +

𝛽𝑚𝑅𝑉𝑡−1:𝑡−22 + 𝑢𝑡  
Eq. (3.20) 

HAR-RV-SJV 
𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑗

+𝑆𝐽𝑉𝑡−1
+ + 𝛽𝑗

−𝑆𝐽𝑉𝑡−1
− + 𝛽𝑐𝐶𝑡−1 + 𝛽𝑤𝑅𝑉𝑡−1:𝑡−5 +

𝛽𝑚𝑅𝑉𝑡−1:𝑡−22 + 𝑢𝑡  
Eq. (3.21) 

HAR-RSV 
𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑑

+𝑅𝑆𝑉𝑡−1
+ + 𝛽𝑑

−𝑅𝑆𝑉𝑡−1
− + 𝛽𝑤

+𝑅𝑆𝑉𝑡−1:𝑡−5
+ +

𝛽𝑤
−𝑅𝑆𝑉𝑡−1:𝑡−5

− + 𝛽𝑚
+𝑅𝑆𝑉𝑡−1:𝑡−22

+ + 𝛽𝑚
−𝑅𝑆𝑉𝑡−1:𝑡−22

− + 𝑢𝑡  
Eq. (3.22) 

LHAR-RV1 
𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑑𝑅𝑉𝑡−1 + 𝛽𝑤𝑅𝑉𝑡−1:𝑡−5 + 𝛽𝑚𝑅𝑉𝑡−1:𝑡−22 + 𝛽𝑙𝑑𝑟𝑡−1

− +

𝑢𝑡  
Eq. (3.23) 

LHAR-RV2 
𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑑𝑅𝑉𝑡−1 + 𝛽𝑤𝑅𝑉𝑡−1:𝑡−5 + 𝛽𝑚𝑅𝑉𝑡−1:𝑡−22 + 𝛽𝑙𝑑𝑟𝑡−1

− +

𝛽𝑙𝑤𝑟𝑡−1,𝑡−5
− + 𝛽𝑙𝑚𝑟𝑡−1,𝑡−22

− + 𝑢𝑡  
Eq. (3.24) 

LHAR-RV-CJ 

𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑐𝑑𝐶𝑡−1 + 𝛽𝑐𝑤𝐶𝑡−1:𝑡−5 + 𝛽𝑐𝑚𝐶𝑡−1:𝑡−22 + 𝛽𝑗𝑑𝐽𝑡−1 +

𝛽𝑗𝑤𝐽𝑡−1:𝑡−5 + 𝛽𝑗𝑚𝐽𝑡−1:𝑡−5 + 𝛽𝑙𝑑𝑟𝑡−1
− + 𝛽𝑙𝑤𝑟𝑡−1,𝑡−5

− +

𝛽𝑙𝑚𝑟𝑡−1,𝑡−22
− + 𝑢𝑡  

Eq. (3.25) 

Note: This table lists all model used in Chapter 3.  
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Appendix 2: Models specifications in Chapter 4 

Model Name Model specifications Eq. number 

HAR-RV 𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑑𝑅𝑉𝑡−1 + 𝛽𝑤𝑅𝑉𝑡−1:𝑡−5 + 𝛽𝑚𝑅𝑉𝑡−1:𝑡−22 + 𝑢𝑡  Eq. (4.2) 

HAR-free 
𝑅𝑉𝑡 = 𝛽0 + 𝛽1𝑅𝑉𝑡−1 + 𝛽2𝑅𝑉𝑡−2 + 𝛽3𝑅𝑉𝑡−3 + 𝛽4𝑅𝑉𝑡−4 + 𝛽5𝑅𝑉𝑡−5 + 𝛽6𝑅𝑉𝑡−6

+ 𝛽𝑚𝑅𝑉𝑡−1:𝑡−22 + 𝑢𝑡 
Eq. (4.7) 

AR(𝑝) 𝑅𝑉𝑡+1 = 𝜃0 +∑𝜃𝑖𝑅𝑉𝑡−𝑖+1

𝑛

𝑖=1

+ 𝑢𝑡 Eq. (4.8) 

Lasso �̂�𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑(𝑅𝑉𝑡+1 − 𝜃0 −∑𝛽𝑖𝑅𝑉𝑡−𝑗+1

𝑝

𝑖=1

)

2
𝑇

𝑡=𝑝

+ 𝜆∑|𝛽𝑖|

𝑝

𝑖=1

} Eq. (4.9) 

Adaptive 

Lasso 

�̂�𝑎𝑑𝑜𝑝𝑡𝑖𝑣𝑒 𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑(𝑅𝑉𝑡+1 − 𝜃0 −∑𝛽𝑖𝑅𝑉𝑡−𝑗+1

𝑝

𝑖=1

)

2
𝑇

𝑡=𝑝

+ 𝜆∑𝜆𝑖|𝛽𝑖|

𝑝

𝑖=1

} 

Eq. (4.10) 

Group Lasso 

�̂�𝑔𝑟𝑜𝑢𝑝 𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑(𝑅𝑉𝑡+1 − 𝜃0 −∑𝛽𝑖𝑅𝑉𝑡−𝑗+1

𝑝

𝑖=1

)

𝑇

𝑡=𝑝

2

+ 𝜆∑√𝑝𝑘√∑𝛽𝑖
2

𝑖∈𝐼𝑘

𝐾

𝑘=1

} 

Eq. (4.11) 

Ordered 

Lasso 

�̂�𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑(𝑅𝑉𝑡+1 − 𝜃0 −∑(𝛽𝑗
+ + 𝛽𝑗

−)𝑅𝑉𝑡−𝑗+1

𝑝

𝑖=1

)

2
𝑇

𝑡=𝑝

+ 𝜆∑(𝛽𝑗
+ + 𝛽𝑗

−)

𝑝

𝑖=1

} 

Eq. (4.12) 
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Appendix 3: Models specifications in Chapter 5 

Model Name Model specifications Eq. number 

AR(1) 𝑅𝑉𝑡 = 𝜃0 + 𝜃𝑖𝑅𝑉𝑡−1 + 𝑢𝑡 Eq. (5.2) 

HAR 𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑑𝑅𝑉𝑡−1 + 𝛽𝑤𝑅𝑉𝑡−1:𝑡−5 + 𝛽𝑚𝑅𝑉𝑡−1:𝑡−22 + 𝑢𝑡 Eq. (5.3) 

ST model 𝑅𝑉𝑡 = 𝑋𝑡𝛼 + 𝐺(𝑠𝑡; 𝛾, 𝜓)𝑍𝑡
′𝛽1 + (1− 𝐺(𝑠𝑡; 𝛾, 𝜓))𝑍𝑡

′𝛽2 + 휀𝑡 Eq. (5.6) 

LST function  𝐺(𝑠𝑡; 𝑐, 𝛾) =
1

1 + 𝑒𝑥𝑝(−𝛾(𝑠 − 𝑐))
, 𝛾 > 0 Eq. (5.7) 

EST function  𝐺(𝑠𝑡; 𝑐, 𝛾) = 1 − 𝑒𝑥𝑝(−𝛾(𝑠 − 𝑐)
2), 𝛾 > 0 Eq. (5.8) 

Two-regime 

MS-HAR model 

𝑅𝑉𝑡 = 𝑃11(𝛽0,𝑆1 + 𝛽𝑑,𝑆1𝑅𝑉𝑡−1 + 𝛽𝑤,𝑆1𝑅𝑉𝑡−1:𝑡−5 +

𝛽𝑚,𝑆1𝑅𝑉𝑡−1:𝑡−22) + 𝑃
22(𝛽0,𝑆2 + 𝛽𝑑,𝑆2𝑅𝑉𝑡−1 +

𝛽𝑤,𝑆2𝑅𝑉𝑡−1:𝑡−5 + 𝛽𝑚,𝑆2𝑅𝑉𝑡−1:𝑡−22) + 𝑢𝑡  

Eq. (5.12) 

MS-HAR 𝑢𝑡|휁𝑡~𝑁(0,𝑃
11𝑣𝑡,𝑆1 + 𝑃

22𝑣𝑡,𝑆2) where (𝑣𝑡,𝑆1 = 𝑣𝑡,𝑆2) Eq. (5.12) 

MS-TVTP-HAR 𝑃(𝑆𝑡 = 𝑖|𝑆𝑡−1 = 𝑖) = 𝑝𝑖𝑖 =
𝑒𝑥𝑝(𝑐𝑖 + 𝑑𝑖𝛿𝑡−1)

1 + 𝑒𝑥𝑝(𝑐𝑖 + 𝑑𝑖𝛿𝑡−1)
 Eq. (5.13) 

MSH-HAR 𝑢𝑡|휁𝑡~𝑁(0,𝑃
11𝑣𝑡,𝑆1 + 𝑃

22𝑣𝑡,𝑆2) where (𝑣𝑡,𝑆1 ≠ 𝑣𝑡,𝑆2)  
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