In silico analysis of AhyI protein and AI-1 inhibition using N-cis-octadec-9z-enoyl-l-homoserine lactone inhibitor in Aeromonas hydrophila

Farman Ali 2,3 a, Qilan Cai 2,3 a, Jialing Hu 1,4, Lishan Zhang 2,3, Rowena Hoare 5, Sean J. Monaghan 5, Huanying Pang 1,4,*

1. College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China
2. Fujian Provincial Key Laboratory of Agro ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 35002, China
3. Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University) Fujian Province University, Fuzhou 35002, China
4. Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang 524025, China
5. Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK

*Correspondence: phying1218@163.com (H.P.); Tel./Fax: +86-7592339319 (H.P.)

* Authors to whom correspondence should be addressed.

a. These two authors equally contributed to this work.
Abstract: AhyI is homologous to the protein LuxI and is conserved throughout bacterial species including *Aeromonas hydrophila*. *A. hydrophila* causes opportunistic infections in fish and other aquatic organisms. Furthermore, this pathogen not only poses a great risk for the aquaculture industry, but also for human public health. AhyI (expressing acylhomoserine lactone) is responsible for the biosynthesis of autoinducer-1 (AI-1), commonly referred to as a quorum sensing (QS) signaling molecule, which plays an essential role in bacterial communication. Studying protein structure is essential for understanding molecular mechanisms of pathogenicity in microbes. Here, we have deduced a predicted structure of AhyI protein and characterized its function using *in silico* methods to aid the development of new treatments for controlling *A. hydrophila* infections. In addition to modeling AhyI, an appropriate inhibitor molecule was identified via high throughput virtual screening (HTVS) using mcule drug-like databases. The AhyI-inhibitor N-cis-octadec-9Z-enoyl-L-Homoserine lactone (Could this be abbreviated?) was selected with the best drug score. In order to understand the pocket sites (ligand binding sites) and their interaction with the selected inhibitor, docking (predicted protein binding complex) servers were used and the selected ligand was docked with the predicted AhyI protein model. Remarkably, N-cis-octadec-9Z-enoyl-L-Homoserine lactone established interfaces with the protein via 16 residues (V24, R27, F28, R31, W34, V36, D45, M77, F82, T101, R102, L103, 104, V143, S145, and V168), which are involved with regulating mechanisms of inhibition. These proposed predictions suggest that this inhibitor molecule may be used as a novel drug candidate for the inhibition of auto-inducer-1 (AI-1) activity. The N-cis-octadec-9Z-enoyl-L-Homoserine lactone inhibitor molecule was studied on cultured bacteria to validate its potency against AI-1 production. At a concentration of 40µM, Optimal inhibition efficiency of AI-1 was observed in bacterial culture media. These results suggest that the inhibitor molecule N-cis-octadec-9Z-enoyl-L-Homoserine lactone is a competitive inhibitor of AI-1 biosynthesis.

Keywords: *Aeromonas hydrophila*; LuxI; AhyI; molecular docking; AI-1 biosynthesis; TASSER; high throughput virtual screening
1. Introduction

Members of the Aeromonadeacea are opportunistic pathogens that cause infection predominantly in marine organisms, especially fish, but can also cause infection in humans. *Aeromonas hydrophila* is primarily concerned with motile aeromonad septicemia (MAS), a major fish disease challenge affecting the aquaculture industry[1, 2]. During zoonotic infections, *A. hydrophila* is a zoonotic pathogen that causes gastroenteritis ranging from mild enteritis to severe complications of cholera-like diarrhea. Several fatal *A. hydrophila* induced diseases have also previously been reported such as osteomyelitis, hemolytic uraemic syndrome, peritonitis, and respiratory tract disease[3, 4].

Chemical signals regulate bacterial communication; this mechanism is generally referred to as quorum sensing (QS). QS is a means of communication between cells and enables bacterial species to coordinate mutual behavior in a population density-dependent way. QS is regulated by diffusible signaling molecules, also known as autoinducers (AIs), such as acylhomoserine lactones (AHLs), typically found in Gram-negative bacteria. QS controls a diverse range of phenotypic traits, such as the formation of biofilms, virulence, motility and plasmid conjugation[5]. The AHLs are the most common type of autoinducers and are synthesized by the homologous LuxI family of AHLs synthases in different bacterial species including as *A. hydrophila*. AhyI is responsible for the synthesis of AHLs. Specificity in signaling activity of AHLs are associated with differences in molecular structure. Although all AHLs retain a uniform homoserine lactone ring, the acyl side chain ranges from four to eighteen carbon atoms in length; the saturation level of the side chain and substitutions of oxo- or hydroxyl- groups at the third carbon plays an important role in the variation of AHL structure[5, 6]. The typical biosynthesis mechanisms of AHLs are shown in Figure 1. This whole system of AHLs production consists of two units, AhyI-type synthase (produces autoinducers-1 in the form of N-acyl homoserine lactone) and AhyR-type (transcriptional regulator) which recognizes the autoinducers and is activated. After its activation, AhyR controls the functions of the AhyI gene and regulates the biosynthesis of N-acyl homoserine lactones (autoinducers). In various Gram-negative bacteria models, variations found in the core QS genes can lead to desensitisation of the QS system[7]. The AhyI and AhyR can synthesize and perceive multiple AHLs [8].

There are several molecules found in nature that deactivate QS via blocking different steps of the signaling pathway, and this interference is commonly known as a quorum quenching (QQ). This interference can be controlled by means of: (a) inhibition of AIs synthesis; (b) inhibition of AI
secretion/transport; (c) degradation of AIs by enzymes; (d) sequestration of AIs (e) by antibodies that "mask" and therefore block AI receptors; (f) antagonists of AIs, such as natural or synthetic compounds; (g) inhibition of targets downstream of binding of the AI to the receptor. Furthermore, enzymatically AHLs can be inactivated, and these AHLs QQ enzymes can be categorized into three classes: (a) acylase (amidase or aminohydrolase) that hydrolyses the amide bond between the homoserine lactone ring and acyl chain; (b) lactonase has the capability to open the lactone ring, and (c) oxidoreductase is capable of modifying AHLs by oxi-reduction of the acyl chain at the third carbon without degrading the AHLs. Due to the alarming emergence of antibiotic-resistant bacterial strains, novel antibiotics are demanded for antimicrobial therapy. For this reason QQ research has focused on the finding of new QQ agents to fight against infections [9-14]. In several pathogens, QS regulates virulence factors which can cause disease in host organisms. Therefore, QS blocking can reduce bacterial virulence, providing strategies for new therapies against pathogenic bacteria.

A wide range of QQ enzymes are found in several bacterial species, but there is limited fundamental knowledge regarding the physiological function of these molecules. The LuxI-LuxR QS circuit performs the regulation of lux operon, responsible for producing light in several bacterial species such as A. fischeri. In order to understand the function of this protein family, LuxR and LuxI and the corresponding autoinducer (3-oxohexanoyl homoserine lactone, denoted VAI-1), have been an essential model. LuxR is a receptor for VAI-1 and a transcriptional activator dependent on VAI-1. LuxI directs diffusion into the bacterial envelope for the biosynthesis of N-(3-oxohexanoyl) homoserine lactone (3OC6-HSL)[15, 16]. When 3OC6-HSL/VAI-1 concentration reaches a critical threshold, the DNA binding domain (DBD) transcription activator of the LuxR receptor, activates transcription of lux operon[17, 18]. In addition to the LuxI-LuxR QS, two other QS systems exist, named AinS-AinR and LuxS-LuxP/Q, which indirectly regulate luminescence via modulation of luxR transcription [19]. QS regulates bacterial-pathogen behaviour such as virulence-gene expression, biofilm formation, swarming, antibiotic production, and antibiotic resistance. Regulation of bacterial bioluminescence has previously been studied in two model organisms: A. fischeri and Vibrio campbellii or Vibrio harveyi. Furthermore, 25 bioluminescent species of bacteria have been studied among five genera of three families of the Gamma proteobacteria, such as Shewanellaceae, Enterobacteriaceae, and Vibrionaceae [20]. These studies demonstrate that QS performs a critical role in the control of lipolytic and virulence pathways. Moreover, the luxI homolog cnel gene from Cedeceaneteri was previously cloned and
subjected to overexpression in an E.coli host confirming that this is responsible for the biosynthesis of QS signaling molecules, such as N-butyryl- homoserine lactone (C4-HSL)[21].

The AHL biosynthesis process is catalyzed by the use of AHL synthase LuxI, which plays a role in the transition of the acyl group from the acylated acyl carrier protein (acyl-ACP) to the S-adenosyl-L-methionine amino group (SAM) [22, 23]. The acyl transfer reaction involving an acyl SAM precursor, is reported to occur prior to carboxylate oxygen lactonization to release AHL and Smethylthioadenosine (MTA)[24]. Recently, the LuxI homologue BjaI has now been fully examined to enable the use of acyl-CoA and SAM as substrates, maintaining lactonization to produce the AHL using a preliminary intermediate acyl-SAM[25]. Notably, BjaI's results acknowledged that acyl-CoA may act as BjaI's fatty acyl substrate and could not synthesize AHL in the presence of acyl-ACP. The special AHL biogenesis process indicates that the substrates take on substantially diverse activities from several other LuxI synthases.

Till today, detailed understanding of the structure of AhyI, and the associated binding substrates during the biosynthesis of AHL synthase, is lacking. Furthermore, the functions of each of the amino acid residues during the biosynthesis of ALH remains unknown despite the complete amino acid sequence and conserved residues of AhyI being well documented. Therefore, in this study, a 3D protein model of AhyI of A.hydrophila was predicted based on alignment with known homologous structures using homology modeling and fold recognition, or threading methodology. Besides this approach, various computational predictive methods were used, such as sequence analysis, functional annotation, model building, and structure analysis. The goal of this study was to determine and bioinformatically characterise the structure of AhyI of A.hydrophila. The subsequent predicted model was validated, and docking of an AI-1 inhibitor was performed using the AhyI model. The efficacy of the AI-1 inhibitor was further verified by in vitro methods. These results confirmed that AI-1 QS activity decreased significantly after using an N-cis-octadec-9Z-enoyl-L-Homoserine lactone inhibitor molecule. Overall, these results suggested that this inhibitor molecule reduces the virulence of A.hydrophila.

2. Methods

2.1 In-silico studies

2.1.1 Bioinformatics analysis of AhyI protein
The UniProt database (Q44058) was used to retrieve the amino acids sequences, and sequences were assessed for the prediction of a 3-D structure of the protein while ClustalW was employed for sequence alignment. Both termini, N-terminal, and C-terminal of AhyI protein contains amino acid sequences important for the prediction of AhyI protein. Based on sequence similarity, structurally homologous sequences were retrieved from protein data bank (PDB). In addition, the Port param tool of ExPASy was used to identify the molecular profile of the AhyI protein sequence. For examining structural properties of the protein, SOPMA, SAPS, and FindMod software packages were used. PSortB and CELLOv2.5 were used to predict the subcellular localization. By using the SignalP4.1 server, signal peptides were analyzed within the amino acid sequence. Predicted antigenicity of the protein was finally deduced by applying the Antigenic Peptides program.

2.1.2 Structural modeling, validation, and refinement

The AhyI protein homology was examined by searching against other publically available databases, such as, NCBI and PDB. About 78% homology was identified between the template and the target. Predictions of structural folding was conducted using structural fold recognition techniques, as implemented in the iTASSER and Phyre2 prediction servers. The existence of additional functional domains was identified by the InterPro protein family database and the Evolutionary classification of protein domains (ECOD) database. Furthermore, iTASSER was used to generate the protein structure, while validation was performed using the SAves server. The quality of the predicted structure was assessed by the QMEAN6 program within the SWISS-MODEL workspace. Ramachandran plots were used for the improvement of protein structure and energy minimization. Finally, the modeled structure was visualized by using of PyMOLv1.7.4.5 program.

2.1.3 Active site, ligand, and ligand binding sites evaluation

The active sites were identified using the computed atlas of surface topography of proteins (CASTp). The server locates and measures concave surface regions of modeled proteins. Furthermore, the 3D-ligand binding sites prediction server was employed for the identification of ligand characteristics and potential binding sites. Further confirmation of ligand binding sites was achieved using the COACH server.

2.1.4 High throughput virtual screening and toxicity analysis
High throughput virtual screening (HTVS) was conducted by use of Mcule (https://mcule.com), which is an online drug discovery platform server (Mcule, Inc.PaloAlto, CA 94301, USA). The predicted AhyI protein model was submitted to the mcule database for subsequent ligands searches. During the screening, predicted 3D structures of small molecules are fitted into the binding site of the modeled 3D target structure. Critical interactions of small molecules with the target are predicted based on better (more negative) docking scores and thus ranked higher. Additionally, the OSIRIS property explorer calculator was utilised to optimize the selection of molecules based on their toxicity and other properties such as, mutagenicity, tumorigenicity, and irritant potential, reproductive impact, solubility, molecular weight, hydrophobicity (Clogp value) drug-likeness, and finally the drug score.

2.1.5 Ligand preparation and molecular docking of the target protein

Based on best drug score, N-cis-octadec-9Z-enoyl-L-Homoserine lactone inhibitor was selected for further study. The ligand was extracted in the smile file then transformed into a Mole 2 file format using UCSF chimera, whereby hydrogen was introduced and energy was optimized [26]. After this, using the online Molecular Docking server, docking analyses were carried out[27]. The ligand atoms were supplemented with Gasteiger partial charges. Non-polar atoms of hydrogen were combined and rotatable bonds were established. On the AhyI protein model, docking calculations were performed. Using Auto Dock software, essential hydrogen atoms, Kollman assembled atom type charges, and solvation metrics were applied[28]. The affinity grid was developed using the Autogr id system (Box size: 30x30x30 Å and box center: 60.88 x 60.99x 60.64 for x, y, and z, respectively) with 0.375 Å spacing[29]. For the computation of the van der Waals and the electrostatic terms, the Auto Dock parameter set- and distance-dependent dielectric functions were used, respectively. The Lamarckian genetic algorithm (LGA) and the Solis and Wents local search method were used for docking simulations [30]. The initial position, orientation, and torsion of the molecules of the ligand were randomly set. During docking, all rotatable torsions were recorded. After a maximum of 250,000 energy evaluations, each docking experiment were generated from ten different runs that were configured to terminate. The population size was fixed at 150. A translational step of 0.2 Å, and quaternion and torsion steps of 5 were applied during the analysis.

2.2 In vitro methodology

2.2.1 Bacterial strain and growth conditions
A. hydrophila ATCC 7966 was stored at -80°C in the culture store of laboratory. For culture bacteria were streaked on Luria-Bertani (LB) agar plates, and the next day, a single colony of each bacteria was inoculated into 5 ml LB medium for overnight incubation. For broth culture, bacterial suspension was diluted at 1:10 ratios in 100 ml LB and grown until an OD600 reached ~1.0. The E. coli pSB536 strain was cultured overnight into 1% LB medium with 100 µg/ml ampicillin and incubated at 30°C with shaking at 200 rpm. The selected ligand N-cis-octadec-9Z-enoyl-L-Homoserine lactone from the molecule drug database was purchased from Cayman Chemical (1180 E.Ellsworth Road, Ann Arbor, MI 48108, USA).

2.2.2 Bioluminescence assay AI-1 inhibition

Wild type (A. hydrophila) strain was cultured overnight at 30°C with and without inhibitor N-cis-octadec-9Z-enoyl-L-Homoserine lactone molecule at various concentrations, 10, 20 and 40 µM. Following this, the supernatant was separated by centrifugation at 8000xg for 10 min at 4°C and kept at -20°C for further study. Then, 1 ml bacterial culture of reporter strain, E. coli pSB536 was centrifuged at 8000xg for 10 min, and the supernatant was diluted 1:10 with M9 liquid medium. Furthermore, 100 µl of this diluted sample and 100 µl M9 liquid medium containing 0.1% E. coli pSB536, and were loaded into 96 well plates [31, 32]. Finally, A. hydrophila supernatant and the mixture of reporter strain were added along with, and without, the inhibitor molecule at various concentrations, and the AI-1 biosynthesis intensity was measured using a SpectraMax®i3 Molecular device (Molecular Devices, Sunnydale, CA, USA).

2.3 Statistical analysis

Three independent repeats of each experiment were performed, and data were analyzed using GraphPad Prism 7 software. Evaluation of the data was performed via one way analysis of variance (ANOVA) tests, and values are presented with the standard error of the mean (SEM). A p-value <0.001 was considered to be statistically significant.

3. Results

3.1 Sequence Analysis, subcellular localization and antigenicity profiling of A. hydrophila

AhyI

A. hydrophila AhyI sequence analysis revealed a protein length of 207 amino acids, a molecular weight of 23.61 kDa, and 3328 total atoms. The hydrophobicity of the protein of 0.229 was
determined by measuring a grand average hydrophobicity (GRAVY) index (Figure 2). Further hydrophobicity of the protein was evaluated using Kyte and Doolittle hydropathy plots.

The functioning of proteins is mainly confined to specific locations. Therefore, protein localization predictions help facilitate understanding of particular cellular mechanisms and pathways, such as disease-associated interactions or QS signaling pathways. The cellular localization of AhyI was predicted as cytoplasmic by using Predict protein and CELLO v2.5 online programs, and the highest cellular localization score of AhyI was 4.847*. Hydrophobic residues such as valine, cysteine, and leucine were found on the surface of the protein and are possible primary components of antigenic determinants. Eight antigenic determinants were predicted in AhyI protein, with an average antigenic propensity of 1.0356 from analysis with the anticipated antigenic peptides tool (Figure 3). These eight antigenic determinants consist of sequence fragments that start and end at different positions: 51–57: DTHWVLI, 62–88: GLCGCIRLLSCAKDYMLPSIFPTALAG, 98-105: WELTRLAI, 118–133: SELTCIFREVYAFAK, 136-150: GIRELV-AVVSLPVER, 153-160: RRLGLPIE, 163-180: GHRQAVDLGAVRGGIRF, and 186-196: FARAVGQPLQG. These predicted antigenic sequence segments may play a role in antibody induction.

3.2 *A. hydrophila* AhyI model prediction, refinement and structural analysis

For further, studies at the structural level, homology modeling of the protein was done on the basis of already known protein structure (templates) to predict of 3D-structure of the target sequence. The modeling of the *A. hydrophila* AhyI is more feasible if small variations in protein sequence are present as a small variation is also usually found in the 3D-structure. Differences were found between both the template and the predicted model. The AhyI predicted model contains five beta sheets and has seven alpha-helices. The N-terminus contains long loop residues, and the C-terminus has one short loop residue. The template has 10 alpha helices and five beta-sheets, while the template contains a short loop residue at the N-terminus and a long loop at the C-terminus (Figure 4A and B). Furthermore, the AhyI tertiary structure was accurately predicted by threading methodology using i-TASSER[33-35]. In addition to that, predicted model quality was analyzed using the online package SAVES server [36, 37]. The QMEAN4 server was being used to verify the findings, assess the Ramachandran plot's Psi/Phi values, as well as other quality filtering evaluations against non-redundant protein sets of the data bank. The i-TASSER's prediction analyses of AhyI proteins indicated a higher accuracy than homology modeling.
Furthermore, the Ahyl protein model was chosen for energy minimization and model refining based on i-TASSER results and best QMEAN scores (-2.6) and z-score value -5.71. By knowing the overall residue to residue geometry the structural and stereochemical properties of the Ahyl model was analyzed using PROCHECK. A Psi/Phi Ramachandran plot was used to assess the quality of the model, and it showed that 77.7% of residues were found in the most favored region, with alternative permitting regions containing 16.8% of residues, and outlier regions with 4.5%, while no single residue was found in non-permitting regions. After observing statistics of the non-bonded interfaces between different atom types, the ERRAT was used to verify the consistency of the Ahyl model. Quality evaluation through ERRAT and PROVE indicated that model statistics were suitable and verified the modelling of protein appropriately (Supplemental File 2). Therefore, model validation indicated that the native protein was adequately described by the model.

3.3. Analysis of functional annotation, natural ligand and pocket binding sites/residues within the predicted model of A. hydrophila Ahyl protein

Predict and ProFun servers were used for functional annotations of the predicted A. hydrophila Ahyl protein model. These analyses indicated that the Ahyl protein participates in various biochemical and biological processes. In particular, Ahyl plays a central role in QS, biological regulation, and homeostatic processes and is also involved in biochemical functions linked to the development of biofilm formation, virulence, transferase activity, catalytic activities, and transferring acyl groups. Ahyl was also analyzed for its potential to have co-enzyme (COA) ligand pocket binding residues. The coach meta server was used initially to predict and identify the pocket binding residues within the Ahyl model and ligand. These binding residues were selected based on high MAMMOTH scores. The interactions between ligand and pocket binding residue are shown in Figure 5 A,B,C and D, which contains the following 16 residues: V24, R27, F28, R31, W34, V36, D45, M77, F82, T101, R102, L103, 104, V143, S145, and V168. Further, we docked S-adenosyl-L-methionine (SAM) and O-(S-fatty acylpantetheine-4’-phosphoryl)-L-serine residue (acyl-[ACP]) into the predicted binding pockets of Ahyl protein with binding affinities -8.614 kcal/mol and -7.982 kcal/mol, respectively (Figure 5. E,F).

3.4 Structure-based virtual screening and toxicological analysis

The online Mcule drug database was used for the performing structure based virtual screening. For high throughput virtual screening (HTVs) against the subset of molecules, predictions were made using ligand-binding residues. The maximum identity with A. hydrophila Ahyl protein 971 HTS ligands was generated based on ligand binding. Moreover, the top ten ligands were selected
for the subsequent study. Property calculator and OSIRIS property calculator were used to assess the toxicological properties of ten selected ligands. Seven non-toxic ligands were found based on toxicological properties out of the ten compounds analysed (Table1). The three toxic-compounds that were predicted were N-(3-chloro-4-methylphenyl)-N’[[1(2thienyl)cyclopropyl]methyl]-oxamide, [(6R)-6-hydroxy-1,4-oxazepan-4-yl]-[5(phenylsulfanylmethyl)-2-furyl]methanone and 4-amino-N-methyl-3-nitro-N-[(1S)-1-(2thienyl)ethyl]benzamide. Thus, these molecules were removed for docking studies. The other seven molecules were further screened based on the following parameters, including Mol log P value, Mol log S (solubility), M.W, Mol PSA (A2), drug-likeness, and the drug score (Table2). A molecule was subsequently selected for the docking studies based on the highest drug score.

3.5 Molecular docking

A. hydrophila AhyI protein was docked with selected ligand (N-cis-octadec-9Z-enoyl-L-Homoserine lactone) inhibitor molecule using the online Docking Server. Docking was also performed with all homologous proteins (control). Based on the best binding affinity, docked complexes of protein-ligand were analyzed. The results indicated that an AhyI proteins model had the best binding affinity (-3.53 kcal/mol) with the ligand molecule (Table 3; Figure 6A, B, and C), and the docking results of ligands with homologous proteins were observed (Supplemental File 3).

3.6 *A. hydrophila* AhyI AI-1 biosynthesis inhibition using an N-cis-octadec-9Z-enoyl-L-Homoserine lactone

Bacterial supernatant was used for the detection of AhyI AI-1 activity by performing bioluminescence assay, to assess the effect of AhyI AI-1 QS inhibition on *E.coli* pSB536 and *A.hyrophila*. The inhibitory molecule was applied at different concentrations to the media, and subsequently the inhibitory effect of AhyI AI-1 was analyzed (Figure 7.A). At 40µM concentration of the inhibitory molecule, significant reduction in the activity of AI-1 was observed compared to controls, and treatments with 10 and 20 µM exhibiting lower inhibitory activity of AhyI. The N-cis-octadec-9Z-enoyl-L-Homoserine lactone binds in the pocket sites of the predicted AhyI protein and makes a ligand to the AhyI-synthase complex which then blocks the production of QS signaling molecule AI-1, as shown in schematic illustration (Figure 7.B).

4. Discussion
The QS system of signaling is important for gene regulation, producing virulence factors and other pathogenicity-associated activities in pathogenic bacteria such as *V. cholerae* and *A. hydrophila* [1, 38]. Pathogenic bacteria depend on multiple QS signaling molecules, yet the complicated mechanisms through which they regulate gene expression are largely unknown. As opportunistic pathogens, these bacteria interact with other bacteria during infection by perceiving multiple signaling molecules, which is a normal means of communication rather than the exception [2, 39, 40]. The intra-species communication is regulated and recognized by acylhomoserine lactone molecules (AHLs) [41-43], and thus, these signals will not interfere with the communication mechanism of other bacterial species [24, 44]. Moreover, the QS circuit of LuxI/R homologous genes have been found in more than a hundred Gram-negative bacterial strains [45], including SmaIR in *Serratia marcescens* [46, 47], CviIR in *Chromobacterium violaceum* [48, 49], *hanIR* in *Halomonas anticariensis* [50] and *TraIR* of *Agrobacterium tumefaciens* [51] and in AHLs, based on the LuxI/R principle but with moderate modifications. To date, few studies have described the potential for development of QS inhibitor resistance, perhaps as the anti-bacterial mechanism is not bactericidal [52, 53]. When applied at increased doses, QS inhibitors exerts inhibition on growth [54, 55], which can be effectively applied to control infections of marine species, especially in fish. Hence, this report is the first to focus on the structure and functional characterization of AI-1 QS associated AhyI protein of *A. hydrophila* using *in-silico* methods. We show that AhyI protein is responsible for the synthesis of AHLs/AI-1, and experimentally demonstrate its inhibition by using an inhibitor N-cis-octadec-9Z-enoyl-L-Homoserine lactone. Finally, our results show that bacterial communication can be controlled by inhibition of AI-1 signaling molecules.

The AhyI gene plays a vital role in quorum sensing, and even at high cell densities, produces AI-1 signaling molecules for the intra-species communication [56-58]. For the homology modeling of AhyI structure, sequence alignment of known structures were performed. Homology modeling is merely the modeling method that can provide models with a root mean square error > 2Å. For reliable homology modeling, a basic requirement is to find the similarity between target and template. Therefore we searched for, and found, high sequence identity between target and templates (supplementary file 1, S1.1). The known crystal structures of *Pseudomonas aeruginosa* (PDB ID: 1RO5), *Bradyrhizobium japonicum* (PDB ID: 5W8A) and *Burkholderia glumae* (PDB ID: 3P2H) were used for homology modeling of *A. hydrophila* AhyI and template (PDB ID: 3P2H) and templates were selected with highest structural similarity and sequence alignment of template and AhyI model (Supplemental File 1). The acyl-homoserine lactone (AHL) synthase LasI is
produced by *P. aeruginosa*, which synthesizes 3-oxo-C12-AHL and from the 3-oxo-C12-acyl-carrier protein (acyl-ACP) and S-adenosyl-L-methionine protein substrates, a V-shaped substrate-binding cleft is created by the LasI six-stranded beta sheet structure. This is knotted by three alpha helices, which leads to a tunnel passing via the enzyme that can support the acyl-ACP acyl chain. In comparison to a restrictive hydrophobic pocket seen from the AHL-synthase EsaI, this tunnel places no obvious constraint on acyl-chain length. *B. japonicum* comprises LuxI-type enzymes that use S-adenosyl-l-methionine and either cellular acyl carrier protein (ACP)-coupled fatty acids or CoA-aryl/acyl moieties as progenitor cells to catalyze the biosynthesis of acyl-homoserine lactones (AHL) signals. QS regulates virulence, motility, and protein secretion in *B. glumae* and protein secretion is controlled by the coupling of N-octanoyl-L-HSL (C8-HSL) to its cognate receptor, TofR. The acyl-HSL synthase TofI synthesizes C8-HSL[59]. In order to deal with predicted models, such models can be divided into three categories from which low accuracy models have target-template alignment identity less than 30%, and therefore should be treated with great care. While medium accurate models are those models obtained via target-template sequence similarity between 30-50% and must have 85% of their C-alpha atoms within 3.5 Å at the right position. This type of model is used for a wide range of biological research applications, like examining ligand binding positions via the design of site-directed mutants with altered binding efficacy, and computational screening of small potential molecules or inhibitors from a variety of databases. The third category of model accuracy depends on high protein sequence similarity which should be more than 50%, with a predicted structure whereby the sequence is capable for comparisons to be made with those structures that have 3 Å resolution - this is considered ideal for ligand docking and drug design computation. If the sequence similarity is more than 90% it is useful for the description of the active site[60].

The comprehensive knowledge of the physicochemical properties of the LuxI/AhyI protein, such as quaternary structure, antigenicity, and structural and functional properties, provides information to determine its role in QS. *In silico* modeling approaches using bioinformatics tools have been used to study several unknown proteins to infer such properties [61]. Current existing knowledge is insufficient for determining the crystal structure of the LuxI/AhyI protein. Here, we have predicted the structure of *A. hydrophila* AhyI protein using *in silico* methods to facilitate further characterization to determine potential drug targets. Furthermore, the data is useful for development of diagnostic markers for hosts infected with the aquatic pathogen, *A. hydrophila*. *A. hydrophila* AhyI has vital characteristics of communication because of its metal binding, and QS
activity[62]. AhyI protein is a cytoplasmic protein, and its structure was reconstructed and showed low QMEAN4 scores and Z-score values.

Additionally, the validity of the AhyI structure was substantiated with Psi/Phi Ramachandran plots. Therefore, this model has provided alternative drug targets based on the deduced protein structure. This prediction and substantiation of the AhyI structure implied greater than 95% accuracy, inferring a high possibility that the predicted structure is comparable to the native protein. Accurate torsion angle conventions, as are generally present, were observed in the structure and improper dihydral angles that generally are present were also observed. No atoms were missing from the structure, and irregular dihydral angles RMS-scores were within normal ranges. Additionally, all of the essential oxygen atoms were found at the C-terminus.

Most gram-negative bacteria exhibit QS as a vital regulator of bacterial virulence, and the inhibition of the QS molecule is used as an alternative strategy for the control of bacterial infections[63, 64]. It is well reported that the AHL-based QS system of A. hydrophila consists of LuxR homologous, AhyR, and LuxI homologous to AhyI, which is responsible for the synthesis of C4-HSL. AhyI mutant strains unable to synthesize C4-HSL consequently fail to produce mature biofilms [62]. Several studies have showed that, by the addition of AHL long chains (i.e.,10-14 HSL) exogenously, the biosynthesis of Aeromonas AI-1 system is inhibited leading to reduced biosynthesis of exoproteases[65]. Vibrio anguillarum continuously produces 3-oxo-C10-HSL, which reduces the protease activities from A. salmonicida and A. hydrophila [66]. In addition, synthetic 2(5H)-furanone produced from the marine algae Deliseapulchra as a competitive inhibitor of AHL reduced QS activity against C4-HSL and C6-HSL molecules synthesized by aeromonads[67]. For determining A. hydrophila AI-1 inhibition, potential and active inhibitors were identified by High throughput virtual screening (HTVS). This was achieved using the Mcule database, with follow-up docking studies performed using online docking programs with an AhyI predicted model and its homologous proteins [68]. A total of 971 hits were obtained based on descending ligand binding affinity with the target protein model. For the evaluation of toxicity of ligands, the top ten ligands were selected. Seven molecules subsequently found as non-toxic were further screened for docking studies. The N-cis-octadec-9Z-enoyl-L-Homoserine lactone molecule was finally chosen for docking based on a higher drug score (0.95). From the docking evaluation studies, the AhyI predicted model had a better binding affinity and total intermolecular energy (-3.53Kcal/mol and -7.50Kcal/mol, respectively) with inhibitor N-cis-octadec-9Z-enoyl-L-Homoserine lactone compared to homologous proteins (Table3). Therefore, these results validated the QS activity of the AI-1 inhibitor N-cis-octadec-9Z-enoyl-L-Homoserine lactone. AI-1
production was also inhibited following analysis of the bacterial strain incubated with 10, 20, and 40 μM concentrations of inhibitor-containing media; the AI-1 biosynthesis activity of was inhibited at 40μM. This data highlights the potential of this inhibitor as a drug candidate for reducing *A. hydrophila* virulence.

This study expands knowledge on the structure and function of AhyI, a protein integral to quorum sensing activity of gram-negative bacteria. Use of bioinformatics and computational programs facilitate a cost-effective approach to drug discovery. Such comprehensive analysis of conformational changes of proteins, and post-translational modifications are useful to identify important biological targets. Finally, by modeling protein structure, protein-protein interactions, protein- ligands interactions, and binding efficiency of inhibitors through docking studies are made possible. The structural and inhibitor analyses of AhyI protein, using such approaches here, provide a basic framework for the identification of novel drug candidates that can be used to treat bacterial infections caused by *A. hydrophila*.

5. Conclusions

LuxI/AhyI is responsible for the biosynthesis of quorum sensing signaling AI-1 molecule, which regulates intercommunication in *A. hydrophila* ATCC7966. The 3D-structure of AhyI protein was predicted using in-silico methods, which uncovered the similarity of this structural protein sequence with other homologous proteins. Sixteen pocket sites of protein and ligand-binding residues were predicted (V24, R27, F28, R31, W34, V36, D45, M77, F82, T101, R102, L103, 104, V143, S145, and V168) within the AhyI. By undertaking HTVS the inhibitor molecule N-cis-octadec-9Z-enoyl-L-Homoserine lactone was identified and selected based on the best drug score. This inhibitor molecule was docked with the AhyI model and its homologous proteins and the inhibition was demonstrated on a live *A. hydrophila* strain where AI-1 biosynthesis was significantly reduced using culture media containing 40μM N-cis-octadec-9Z-enoyl-L-Homoserine lactone. These results provide a deeper understanding of AhyI structure and function using state-of-the-art *in silico* tools.

Author Contributions: Huanying Pang and Farman Ali conceived the study. F.A. and Huanying Pang wrote the manuscript; F.A. performed bioinformatics studies, and experiments were done by Qilan Cai, Lishan Zhang and Jialing Hu discussed the results and commented on the main manuscript.
and Rowena Hoare, Sean J. Monaghan critically evaluated the study. All authors read and approved the final manuscript.

Funding: This work was funded by the National Key Research and Development Program of China (2018YFD0900501), National Natural Science Foundation of China (No. 31402344, 31670129, 32073015), Natural Science Foundation of Guangdong Province (No. 2021A1515011078).

Competing Interests: The authors declare no conflict of interest.

References

[66] Li X. The impact of cell-to-cell signaling and host cues on the virulence of *Vibrio anguillarum* towards gnotobiotic sea bass (Dicentrarchus labrax) larvae: Ghent University; 2014.

Figure legends

Figure 1. The auto inducer dependent QS circuit of gram-negative (*Aeromonas hydrophila*) bacteria. AhyI-type synthase homologs produce AHLs signaling molecules consisting of a homoserine lactone ring molecule which binds with an acyl side chain via amide bonds and substitutions. AhyR-type homologs recognize AHLs, the transcriptional regulators consist of two domains: an N-terminal that adhere to AHL and a C-terminal domain identifies a DNA sequence. The protein structures in this diagram are indicated; these are the predicted models of AhyI and AhyR of *A. hydrophila*.

Figure 2. Doolittle hydropathy plot presenting the hydrophilic nature of the *A. hydrophila* AhyI protein.

Figure 3. Profile and antigenic determinants of *A. hydrophila* AhyI. Grey lines show the positions of eight antigenic determinants within the AhyI protein.

Figure 4. (A) *A. hydrophila* AhyI predicted model. (B) AhyI template. Red indicates alpha-helices, yellow indicates sheets, and green indicates loops.

Figure 5. Prediction of pocket binding sites within the *A. hydrophila* AhyI protein and interaction of predicted natural ligand. (A) Predicted AhyI protein pockets, (B) represents the COA ligand binds with AhyI pockets, (C) A COA-ligand (Co-enzyme A in ring structure (red) and pocket binding residues are labeled with amino acid names and numbers, (D) 3-D hydrophobicity view of AhyI-COA complex. (E,F) hydrophobicity view of S-adenosyl-L-methionine (SAM) and butyryl-acyl carrier protein (acyl-[ACP]) with the pockets of AhyI protein, respectively.

Figure 6. (A) *A. hydrophila* AhyI protein docked with ligand (B) the schematic illustration of interaction (C) 3D-hydrophobicity overview of N-cis-octadec-9Z-enoyl-L-Homoserine lactone inhibitor molecule with protein.

Figure 7. AI-1 inhibitor molecule inhibits the *A. hydrophila* AhyI AI-1 biosynthesis (A) Measurement of AI-1 activity using reporter strain *E.coli* pSB536 which was incubated with culture supernatant of *A. hydrophila* in the presence and absence of AI-1 inhibitor molecule. The bioluminescence measurement was analyzed six hours after the addition of the inhibitor molecule. Bioluminescence was lower than that of the untreated control (p <0.001 ***, and p <0.05 *). (B) Schematic illustration of AI-1 inhibition. The error bars calculated by standard error of the mean (SEM).
Table 1. Properties of the ten selected molecules. Molecules were removed based on toxic effects (represented in bold format).

<table>
<thead>
<tr>
<th>Structural Formulae</th>
<th>Name of Molecules</th>
<th>Effects on Reproduction</th>
<th>Irritant to Skin</th>
<th>Mutagenic</th>
<th>Carcinogenic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N-(3-chloro-4-methylphenyl)-N'[(1(2thienyl)cyclopropyl)methyl]-oxamide</td>
<td>Mild risk of reproductive effect</td>
<td>Mild risk of irritant</td>
<td>Non</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>[(6R)-6 hydroxy-1,4-oxazepan-4-yl]-[5-(phenylsulfanyl methyl)-2-furyl]methanone</td>
<td>--</td>
<td>Medium risk of irritant</td>
<td>--</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>N-[(5-chloro-2-thienyl)methyl]-N-methyl-2-methylsulfonyl-benzamide</td>
<td>Non</td>
<td>Non</td>
<td>Non</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>(2S)-N-(3methylsulfanylphenyl)-2-(phenyl-carbamoylamino)propanamide</td>
<td>Non</td>
<td>Non</td>
<td>Non</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>(S)-N-(oxotetrahydro-furan-3-yl)oleamide/(N-cis-octadec-9Z-enoyl-L-Homoserine lactone)</td>
<td>Non</td>
<td>Non</td>
<td>Non</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>(S)-N-(2-oxoTetrahydrofuran-3-yl)octanamide</td>
<td>Non</td>
<td>Non</td>
<td>Non</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>4-amino-N-methyl-3-ni tro-N-[1(1S)-1-(2 thienyl)ethyl]benzamide</td>
<td>Reproductive Effects</td>
<td>Also mild irritant</td>
<td>--</td>
<td>Mild tumorigenic detected</td>
</tr>
<tr>
<td></td>
<td>2-[(2-bromo-4-fluorophenyl)methysulfanyl]-N-isopropyl-acetamide</td>
<td>Non</td>
<td>Non</td>
<td>Non</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>(2S)-2-[3-(4-chloro-2-thienyl)propanoylamino]-3-methylbutanoic</td>
<td>Non</td>
<td>Non</td>
<td>Non</td>
<td>Non</td>
</tr>
<tr>
<td></td>
<td>N-[2-[(5-bromo-2-thienyl)methyl-methyl-amino]-2-oxo-ethyl]-2,2-dimethyl-propanamide</td>
<td>Non</td>
<td>Non</td>
<td>Non</td>
<td>Non</td>
</tr>
</tbody>
</table>
Table 2. Screening of seven non-toxic molecules. A molecule was selected for docking based on high drug scores (shown in bold).

<table>
<thead>
<tr>
<th>Chemical structure</th>
<th>Molecules</th>
<th>Mol.Wt</th>
<th>MolLogS (Solubility)</th>
<th>Mol LogP</th>
<th>Drug likeliness</th>
<th>Mol PSA(A^2)</th>
<th>Drug Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N-[5-chloro-2-thienyl]methyl]-N-methyl-2-methylsulfonyl-benzamide</td>
<td>343.8</td>
<td>-4.45</td>
<td>2.33</td>
<td>-0.02</td>
<td>47.16</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>(2S)-N-(3methylsulfanylphenyl)-2-(phenyl-carbamoylamino)propanamide</td>
<td>329.4</td>
<td>-5.11</td>
<td>3.17</td>
<td>-1.35</td>
<td>56.39</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>(S)-N-(oxotetrahydrofuran-3-yl)oleamide / (N-cis-octadec-9Z-enoyl-L-Homoserine lactone)</td>
<td>365.5</td>
<td>-6.81</td>
<td>6.22</td>
<td>0.29</td>
<td>46.98</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>(S)-N-(2-oxoTetrahydrofuran-3-yl)octanamide</td>
<td>227.3</td>
<td>-3.12</td>
<td>1.86</td>
<td>-0.39</td>
<td>46.98</td>
<td>0.29</td>
</tr>
<tr>
<td></td>
<td>(2S)-2-[3-(4-chloro-2-thienyl)propanoylamino]-3-methylbutanoic</td>
<td>288.7</td>
<td>-3.96</td>
<td>2.49</td>
<td>-1.19</td>
<td>53.49</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>N-[2-[5-bromo-2-thienyl]methyl-methyl-amino]-2-oxo-ethyl]-2,2-dimethyl-propanamide</td>
<td>347.2</td>
<td>-3.52</td>
<td>2.31</td>
<td>0.20</td>
<td>41.84</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>2-[(2-bromo-4-fluorophenyl)methylsulfonyl]-N-isopropyl-acetamide</td>
<td>320.2</td>
<td>-4.62</td>
<td>3.53</td>
<td>0.09</td>
<td>23.68</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Table 3. The calculation of energy binding affinity and intermolecular energy of A. hydrophila Ahyl proteins with ligand, identified using the docking server.

<table>
<thead>
<tr>
<th>Protein PDB: ID and Species Name</th>
<th>Energy Binding Affinity</th>
<th>Total Intermolecular Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahyl (predicted model) A. hydrophila</td>
<td>-3.53 Kcal/mol</td>
<td>-7.50 Kcal/mol</td>
</tr>
<tr>
<td>AHL synthase (3P2H) B. glumae (control)</td>
<td>-4.82 Kcal/mol</td>
<td>-9.44 Kcal/mol</td>
</tr>
<tr>
<td>AHL synthase (5W8A) B. japonicum (control)</td>
<td>-6.22 Kcal/mol</td>
<td>-11 Kcal/mol</td>
</tr>
<tr>
<td>AHL synthase (1RO5) P. aeruginosa (control)</td>
<td>-2.84 Kcal/mol</td>
<td>-5.74 Kcal/mol</td>
</tr>
</tbody>
</table>

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Figure 6