Contextualising courtship: Exploring male body odour effects on vocal modulation

Juan David Leongómez^{1#, 2}, Oscar R. Sánchez¹, Milena Vásquez-Amézquita³, S. Craig Roberts²

¹Human Behaviour Lab, Faculty of Psychology, Universidad El Bosque. Bogota, Colombia.

² Faculty of Natural Sciences, University of Stirling. Stirling, United Kingdom.

³ Experimental Psychology Lab, Faculty of Psychology, Universidad El Bosque. Bogota,

Colombia.

*Corresponding author: Juan David Leongómez, <u>jleongomez@unbosque.edu.co</u> #Current affiliation

Highlights

- Presence of male body odour does not change vocal parameters or attractiveness ratings
- Odour quality or added androstadienone do not have measurable voice effects
- Attractiveness ratings are predicted by mean F₀ and especially F₀ variability

Abstract

Voice characteristics are important to communicate socially relevant information. Recent research has shown that individuals alter their voices depending on the context of social interactions and perceived characteristics of the audience, and this affects how they are perceived. Numerous studies have also shown that the presence of bodily odours can elicit psychological changes in people. Here, we tested whether the presence of male axillary odour would influence vocal modulations in courtship contexts. We analysed differences in vocal parameters and attractiveness ratings across 950 recordings from 80 participants as they responded to oppositesex target stimuli. Using these, we tested whether men's and women's vocal parameters and perceived attractiveness differed in the presence or absence of the odour. We expected women to speak with increased voice F_0 , and men to lower their pitch, when exposed to male body odour, especially if it were of high quality. However, neither the presence of male odour, its quality, nor the addition of androstadienone produced any consistent changes in vocal parameters. Nevertheless, rated stimulus attractiveness was predicted by F₀ and especially F₀ variability, suggesting that this is a key parameter in signalling attraction during human courtship, and supporting the idea that vocal modulations are context-sensitive.

Keywords: androstadienone; fundamental frequency; male body odour; mate choice; voice modulation

1

1. Introduction

2	In recent years, numerous studies have shown that mere presence of odours can bring about
3	psychological changes in people in a range of different contexts. For example, ambient odours can
4	influence people's mood and creativity (Knasko, 1992) and reduce stress (Lehrner et al., 2005).
5	Such effects are not ubiquitous but vary depending on the interaction between specific odours and
6	situations. For example, scents that are perceived to be more associated with one or other gender
7	alter gender-congruent shopping behaviour (Doucé et al., 2016; Spangenberg et al., 2006).
8	Furthermore, subliminal presence of citrus scent, an odour associated with cleanliness, can
9	influence hygienic behaviour (Holland et al., 2005; King et al., 2016), while odours associated with
10	faeces and vomit trigger behaviour associated with disgust and avoidance, including more positive
11	attitude towards safe sex (Tybur et al., 2011) and more conservative attitudes towards sexual
12	behaviour (Adams et al., 2014).

13 Such effects are not limited to ambient fragrances and those associated with disease risk, 14 but also involve bodily odours and their influence on social interactions. For example, the odours 15 of people in fearful or anxious emotional states can alter brain activation, mood and cognition in 16 others (e.g. Albrecht et al., 2011; Pause et al., 2004). Odours can also influence social judgments 17 in other sensory modalities, as the subliminal presence of male axillary odour alters attractiveness 18 ratings of men's faces by women (Thorne et al., 2002). This effect was supported and extended in 19 a recent study (Mutic et al., 2016) showing that axillary odour of both sexes affected the evaluations 20 of masculinity and femininity and the social perception of faces.

At least with attractiveness judgments, we should expect effects to vary depending on the individual odour donor, because perceived odour quality varies between individuals. Just as some individuals have faces that most people would view as relatively attractive (models would be an 24 extreme example), some individuals have relatively attractive body odour. Indeed, some studies 25 report positive correlations between individual facial attractiveness and the perceived pleasantness 26 of their axillary odour (Rikowski and Grammer, 1999; Thornhill et al., 2003; but see Roberts et al., 2011), suggesting that both are underpinned by a common biological mechanism. Although the 27 28 specific components of axillary odour that are responsible for such effects remain unknown, several 29 studies (Cornwell et al., 2004; Grosser et al., 2000; Jacob et al., 2001; Jacob and McClintock, 2000) 30 focus on a group of naturally occurring steroids, the 16-androstenes, and mainly the compound 31 androstadienone. Although the theoretical relevance of such studies has been questioned (e.g. 32 Wyatt, 2020), researchers have reported numerous effects of androstadienone exposure on 33 individuals. These include effects on positive mood (Jacob and McClintock, 2000), emotional processing (d'Ettorre et al., 2018), assessment of body movement (Hornung et al., 2017; Niu and 34 35 Zheng, 2020; Parma et al., 2012; Ye et al., 2019) and facial information (Hornung et al., 2017; Niu 36 and Zheng, 2020; Parma et al., 2012; Ye et al., 2019) Zhou et al., 2014), as well as facial 37 attractiveness judgements, such that presence of androstadienone led to higher attractiveness 38 ratings (Saxton et al., 2008; Verhaeghe et al., 2013).

39 Voice characteristics are another important means of communicating socially relevant 40 information (e.g., Valentova et al., 2019). Recent research has shown how people alter their voices 41 during social interactions, depending on the social context of such exchange and the perceived 42 characteristics of the audience (for a review, see Pisanski et al., 2016). This has been demonstrated, for example, for interactions in which social status is important (Leongómez et al., 2017; Puts et 43 44 al., 2006; Sorokowski et al., 2019) and in courtship scenarios (e.g. Leongómez et al., 2014; Pisanski 45 et al., 2018). Voice modulations can increase the prospect of attracting preferred partners, for two 46 reasons. First, the characteristics of an attractive voice can, at least to a certain extent, be imitated

47	or exaggerated (Fraccaro et al., 2011; Leongómez et al., 2014). Second, they exploit the fact that,
48	just like faces and odours, some voices are judged to be relatively more attractive than others.
49	This latter point illustrates that, in a courtship context, there may be a further correlation
50	between perception of odours and voices, as they may both give information about the underlying
51	quality of an individual as a potential partner, affecting perceived attractiveness (Feinberg et al.,
52	2005). Although the literature on this relationship is scarce, it has been found that odours,
53	according to their hedonic valence, can influence certain acoustic characteristics of voice (Millot
54	and Brand, 2001). In fact, because previous research has showed that (1) women's perception of
55	a man's attractiveness is increased both by the presence of male axillary secretion (Thorne et al.,
56	2002) and exposure to androstadienone (Saxton et al., 2008), and (2) voice modulation is
57	sensitive to attractiveness cues (Leongómez et al., 2014; Pisanski et al., 2018), it is possible that
58	body odours, as signals of the quality of a potential partner, could induce non-conscious vocal
59	modulations in courtship scenarios. However, the potential effects of body odours on voice
60	characteristics have not yet been explored in courtship contexts, for either sex.
61	In view of this, we set out here to test whether presence of male axillary odour, and
62	androstadienone in particular, would influence vocal modulation in courtship contexts. We used
63	the same experimental paradigm and measures of vocal parameters as in Leongómez et al (2014),
64	to test changes in men's and women's voices as they responded to opposite-sex targets, in the
65	presence and absence of the allocated odour. The vocal parameters we extracted were the mean
66	fundamental frequency (F ₀) and its variability (both standard deviation, SD, and coefficient of
67	variation, CV; see Eguchi and Hirsh, 1969), and mean intensity. We also asked participants to
68	rate how attractive they found each target stimulus, and modelled the acoustic parameters as
69	predictors of perceived attractiveness. Despite the study being largely exploratory due to its
70	novelty, we had some specific predictions. First, we predicted that the presence of male body

odour and androstadienone would tend to increase the perceived attractiveness of male targets,
causing women to speak with increased voice F₀, which tends to be attractive to gynephilic men
(Feinberg et al., 2005; Jones et al., 2008). Likewise, given that low F₀ provides a cue of
masculinity and dominance (Puts et al., 2007; Wolff and Puts, 2010), we expected men to lower
their pitch when exposed to male body odour as a response to perceived intrasexual competition.
Finally, we expected both sexes to increase pitch variability when responding to attractive target
stimuli (Leongómez et al., 2014).

78

2. Materials and Methods

79 2.1 Ethics Approval

80 The study was performed in line with the principles of the Declaration of Helsinki. All 81 procedures were approved by the Ethics Committee of the Department of Psychology, Faculty of 82 Natural Sciences, University of Stirling. All participants provided written informed consent and 83 were offered course credit for their participation.

84 **2.2 Participants**

85 We recruited 80 heterosexual participants who were students at the University of Stirling, 86 half of whom were men (mean age \pm SD = 20.48 \pm 0.41) and half women (20.50 \pm 0.49). 87 Participants were not suffering from vocal hoarseness or nasal congestion at the time of testing. 88 To ensure they had a normally functioning sense of smell, all participants were asked to complete 89 a brief screening test, in which they had identify 12 odorants in a multiple choice task with 4 90 alternatives for each odorant (the Sniffin' Sticks Screening 12 test, www.burghart-mt.de); only 91 data from participants who could correctly identify at least 9 odorants were included in the 92 analysis. One participant (male, 20 years old) correctly identified only 7 and so was excluded

93 from the final sample, but recruitment continued until the final, balanced sample size was94 achieved.

95 2.3 Target videos

We used videos that were selected as target stimuli for a previous study (Leongómez et al., 2014). These target stimuli were selected from an initial set of 40 videos: 20 of men (mean age \pm SD = 22.5 \pm 2.41) and 20 of women (22.1 \pm 1.65), each of 20 seconds length. Their task was presented as: "Please introduce yourself to an attractive person of the opposite sex". Each video was then scored for attractiveness by 24 opposite-sex raters. Based on the mean attractiveness scores, the videos of the 3 most and 3 least attractive men and women were selected for use in the study (12 videos in total).

103 **2.4 Odour stimuli**

104 Body odour samples were collected from 12 men (mean age 21.4 ± 1.9). Each wore a 105 cotton pad in each armpit for one night. They were instructed to wash with unperfumed soap 106 before going to bed, to avoid spicy foods, and to place the pads into the provided sealable bags on 107 waking. These are standard and well-used procedures for axillary odour perception studies 108 (Havlíček et al., 2005; Roberts et al., 2008, 2005). Each odour sample was then frozen 109 immediately until use; freezing does not alter the perception of axillary odours (Lenochova et al., 110 2009; Roberts et al., 2008). Male odours were subsequently rated for pleasantness by a separate 111 group of people (5 men, 5 women) using a 7-point scale ranging from -3 (very unpleasant) to +3 112 (very pleasant). Samples from the 4 most pleasant scoring odours were pooled to create a "high 113 quality" (HQ) male odour, while pooling of the 4 lowest scoring odours formed a "low quality" 114 (LQ) male odour. Pooling of such samples to create a composite odour minimises effects of 115 individual differences in odour quality and preference while maintaining the average quality of 116 the constituent samples (Fialová et al., 2018). To create these composites, each cotton pad was

shredded into small pieces and mixed in equal parts with the other odours in either the HQ or LQ category, before being frozen in sealable bags. Additional details on odour presentation are provided in the Supplementary Material available on-line.

120 **2.5 Experimental procedure**

121 Participants were recruited and participated in this study between November 2011 and 122 May 2012. Each was asked to attend two sessions (experimental and control), spaced between 7 123 and 14 days apart. Participants were exposed to odour stimuli only during the experimental 124 session; sessions were otherwise identical. Participants were randomly divided into one of 4 125 experimental odour conditions, according to whether they were exposed to high/low body odour 126 quality (HQ, LQ), and whether androstadienone (ANDR) was added to that odour (the 4 127 conditions were thus: HQ + ANDR, HQ no ANDR, LQ + ANDR, LQ no ANDR). A group of 10 128 women and 10 men were allocated to each condition. Sessions were counterbalanced so that for 129 half of the men and women in each group, the control took place in the first session, and for the 130 other half in the second (Fig 1).

Figure 1. Experimental design. Diagram of the sessions and stimuli used in each case. The order of session
was counterbalanced between participants in each odour stimuli combination (odour quality and ANDR). For body

134 odour quality, HQ = high quality; LQ = low quality. ANDR = androstadienone.

135 Two hours before each experimental session, the appropriate odour sample was removed 136 from the freezer. At this point, when testing participants from the HQ + ANDR and LQ + ANDR 137 groups, 1ml of a 250 µM ANDR solution was added by pipette to the odour sample. We used this 138 ANDR concentration to enable comparison with previous studies (e.g. Jacob and McClintock, 139 2000; Lundström and Olsson, 2005; Saxton et al., 2008) and because it is below the detection 140 threshold for most people (Lundström et al., 2003). Fifteen minutes before the session, the odour 141 sample was placed in the cubicle where the participant would be seated, in a small plastic 142 container wrapped in clean aluminium foil. Odour samples were left in the cubicle for the 143 duration of the experimental session and removed afterwards, leaving the cubicle open and empty 144 for no less than 15 minutes before they were replaced by new odour samples to test other 145 participants. For control sessions, clean pieces of cotton pads were placed in the same manner, so 146 that participants could not visually differentiate between the control and experimental sessions. 147 Sessions were conducted in small, quiet testing cubicles with artificial light and no 148 windows. During the session, participants were alone in the cubicle, sitting in front of a laptop, 149 with the plastic container placed directly on the desk between the participant and the laptop, so 150 that the odour sample was about 25 cm below the participant's nose. 151 The procedure from here on closely followed the methods described in Leongómez et al.

(2014), but here we only analyse data from responses to opposite-sex target videos. The study
was presented to participants as an experiment on selection of potential mates and relationship
formation, examining the relative importance of attractiveness, self-confidence and body

155 language on male and female preferences, as well as to understand the effect that different odours

156 have on these psychological mechanisms. The odours used in the experiment remained 157 undisclosed until participants were fully debriefed after the second session. In both sessions, 158 participants were shown the six opposite-sex target videos, and were asked to record a response 159 message to each one of them using a head mounted microphone. They were told that these 160 messages would be presented to opposite-sex participants who would judge them as a potential 161 date. Based on a study which produced demonstrable effects on mate preferences (Gangestad et 162 al., 2004), participants were instructed to explain whether and why they would like to date the 163 person in the video. Additional details are provided in the Supplementary Material available on-164 line.

165 The video targets were presented electronically to participants using E-Prime 2.0 software 166 (Psychology Software Tools, Inc., 2012; www.pstnet.com), and the order of the target videos was 167 fully randomised for each participant/session. Immediately following each video, participants 168 were asked to rate the attractiveness of each target (on a 7-point scale), and monaural audio 169 responses of the participants were digitally recorded using E-Prime (SoundIn object) on a laptop 170 PC, using a ClearChat Stereo Headset (Logitech, 2007), positioning the microphone about 2 cm 171 from the participant's mouth.

172 As each participant experienced both experimental and control sessions, they recorded a 173 total of 12 responses to opposite-sex targets (6 control, 6 experimental). A grand total of 960 174 recordings were thus obtained. Eight recordings were discarded because of technical problems or 175 background noise that affected audio quality and subsequent acoustic analysis, so 952 were 176 acoustically analysed. Of these, 2 were excluded from statistical analysis because they did not 177 produce acoustically useable data, so 950 were statistically analysed. Similar to the methods 178 described in Leongómez et al. (2014), each participant responded to 3 targets of each 179 attractiveness category (attractive, unattractive) during both the control and experimental

180	sessions. The values used in the analysis were, therefore, the acoustic values of each participant's
181	3 responses on each session/attractiveness combination: control/attractive, control/unattractive,
182	experimental/attractive, and experimental/unattractive.
183	In addition, in the first session and before the experiment, participants were asked to read
184	and sign the consent form, as well as take the short olfactory sensitivity test. In the second
185	session, and after the experimental procedure, participants were debriefed. Their data were only
186	retained and analysed if they still gave consent after being fully debriefed.
187	2.6 Acoustic analysis
188	Acoustical analyses of the recordings were done following the method described in
189	Leongómez et al. (2014). We used a batch-processing script updated and optimised by Jose
190	Joaquin Atria, based on an original script by Setsuko Shirai
191	(https://www.ucl.ac.uk/~ucjt465/scripts/praat/get_formants_praatlist.praat), in Praat, version
192	6.0.41 (P. Boersma and D. Weenink, 2018; www.praat.org). Values on intensity (dB), F ₀ (Hz),
193	and the first three formants (F1, F2, F3) were obtained every 10 ms. A noise-resistant
194	autocorrelation method (75 - 300 Hz for male voices, 100 - 500 Hz for female voices) was used.
195	Additional details are provided in the Supplementary Material available on-line.
196	
197	2.7 Statistical analysis and mixed modelling
198	The coding for all statistical analyses, figures, and tables was created in an R Markdown
199	file, using R version 4.0.0 (R Core Team, 2020) and RStudio version 1.3.947. This file is
200	available from the OSF (<u>https://doi.org/10.17605/OSF.IO/GWBHU</u>). The output of that R
201	Markdown file (in PDF format) constitutes the Supplementary Material to this article. All models

- 202 were fitted using the *lmer* function from the *lmerTest* package (Kuznetsova et al., 2017). All
- 203 statistical tests are two-tailed. Figures were created using ggplot2 (Wickham, 2016) and ggpubr

(Kassambara, 2019), and tables were generated and formatted using *knirt* (Xie, 2015) and
 kableExtra (Zhu, 2019). For a full list of R packages used, see Section 4 in the Supplementary
 Material.

207 2.7.1 Models of measured variables

To test the effects of the presence or absence of body odour (i.e. control/experimental sessions), the quality of body odour (HQ, LQ), and the presence or absence of added ANDR (+ ANDR, no ANDR) on the acoustic parameters and attractiveness ratings, while taking into account the sex of the participants and the attractiveness category of the target stimuli, we used linear mixed models (LMM). Separate (but with identical factor structure) models were fitted for mean F_0 , F_0 SD, F_0 CV, mean intensity, and attractiveness ratings.

214 Because the main focus was to test the effects of the body odour, and participants were 215 only exposed to these in the experimental session, we only report the main effect of odour 216 Condition, as well as all its interactions with sex, odour quality, ANDR, and Stimuli 217 Attractiveness. We do not report here the main effects of sex, body odour quality, nor the effect 218 of adding ANDR, as these would be confounded with characteristics other than the experimental 219 manipulation, but full factorial models are reported in Section 2.4 of the Supplementary Material 220 (Tables S2, S4, S6, S8 and S10). For all models, Subject (the participant ID), was also included 221 as random factor, with correlated random slopes and intercepts for each participant between 222 Sessions (control, experimental).

In all cases, residuals were closer to a normal or gamma (inverse link) distribution. These models, and their diagnostics (residual distribution, homoscedasticity, and linearity of each fixed factor), are detailed in Section 2.4 of the Supplementary Material.

226 Contrasts comparing the effect of the condition for each sex, odour quality, ANDR and 227 target stimuli attractiveness category combination (used in model figures), were performed using 228 the functions *emmeans* and *contrast* from the *emmeans* R package (Lenth, 2019).

229

2.7.2 Models to predict attractiveness ratings

230 Finally, to explore the association between the perceived attractiveness of each target 231 stimulus to the participant and the acoustic characteristics of their responses, we fitted mixed 232 linear regressions predicting the attractiveness ratings given by participants to each target 233 stimulus, in each session.

234 In the initial model, fixed predictors were: participant sex, mean F₀, F₀ CV, minimum F₀, (mean) intensity, odour quality and ANDR, as well as the sex \times mean F₀, sex \times F₀ CV, sex \times 235 236 Minimum F_{0} , and sex \times Intensity interactions. The interaction between participant ID (Subject) 237 and Session was entered as a random intercept factor, to account for the two times that each 238 participant rated and responded to each target stimulus (one in each condition), and to avoid 239 pseudoreplication.

240 This parameterised initial model was then reduced to include only the most relevant 241 acoustic variables (intermediate model): mean F₀, minimum F₀ and F₀ CV, as well as sex and 242 their interactions with sex were entered as fixed predictors. Finally, this was further reduced, to 243 include as fixed predictors only mean F_0 , F_0 CV and sex, with no interactions (final model). 244 Initial, intermediate and final models were then compared using the Akaike information 245 criterion (AIC) and Akaike weights and the best-supported model (i.e. the model with the lowest 246 AIC with a \triangle AIC higher than two units from the second most adequate model, and higher Akaike 247 weight) is reported (Wagenmakers and Farrell, 2004). To do this, we used the *ICtab* function from the *bbmle* package (Bolker, 2017). Pseudo- R^2 values for these model were obtained using 248

the function r.*squaredGLMM* from the package *MuMIn* (Bartoń, 2020).Once a final model was
fitted, model diagnostics were performed.

251 The residual distribution of the final model was bimodal, and hence differed from a 252 normal distribution. Also, given that the outcome variable (attractiveness ratings) is discrete. 253 Poisson, quasi-Poisson and negative binomial distributions could be tentatively appropriate, but 254 none of these converged, even when separate models were fitted for women and men. 255 Furthermore, the function check distribution from the package performance (Lüdecke et al., 256 2020) showed that the most likely family distribution for this final model was the normal 257 distribution, based on its residuals. Therefore, we used a normal distribution (i.e. a general 258 LMM), but calculated percentile bootstrap confidence intervals for the model estimates, based on 259 1000 simulations, using the *confint.merMod* function, from the *lme4* package (Bates et al., 2015). 260 In these models we included F₀ CV and not F₀ SD, for three reasons: first, given that both 261 are measures of F₀ variability, they are highly correlated (see Tables S3 to S5 in the 262 Supplementary Material). Second, unlike F₀ SD, F₀ CV was not significantly correlated with 263 mean F₀ in women, nor in men (Tables S4 and S5 in the Supplementary Material, respectively). 264 Finally, we preferred F₀ CV given that it is a better representation of the perceptual variability, as 265 it takes into account the mean F_0 of each recording (Eguchi and Hirsh, 1969; see also Pisanski et 266 al., 2018). These models, and the diagnostics of the final model (residual distribution, 267 homoscedasticity, and linearity of each fixed factor), are detailed in Section 2.5 of the 268 Supplementary Material.

269

3. Results

270 **3.1 Descriptives**

271	Descriptive statistics for each measured variable for each group, in each session (control,
272	experimental), and for each target attractiveness category (attractive, unattractive), are presented
273	in Table S1 (female participants) and Table S2 (male participants) in the Supplementary Material.
274	Figure 2 shows the distribution of mean F ₀ (Hz), F ₀ SD (Hz), F ₀ CV (Hz), mean intensity
275	(dB), F1 (Hz), F2 (Hz), F3 (Hz), recording length (ms), time recognised as speech (ms), speech
276	proportion (i.e. the proportion of the length of each recording that was recognised as speech), age
277	(years) and attractiveness ratings, for each group of women (Fig. 2A) and men (Fig. 2B).

Figure 2. Distribution of all measured variables by sex and condition. (A) Women. (B) Men. Vertical lines
represent the mean for each group. Detailed descriptives are found in Table S1 for women, and Table S2 for men, in
the Supplementary Material.

Bivariate (Pearson) correlations between the continuous variables included in the statistical models are found in Tables S3 to S5, for all participants combined, men and women, respectively. Mean F_0 was positively and significantly correlated with F_0 SD and Intensity in both men and women, as well as with the length of the recording in men, and marginally positively associated (*r* = 0.09) with the attractiveness ratings given by men. The two measures of F₀ variability, SD and CV, were highly correlated, and were positively associated with mean intensity and (particularly in women) with the attractiveness ratings given to target stimuli.

289 3.1.1 Time recognised as speech

Time recognized as speech was highly associated with recording length in both women and men (Fig. 3A). The actual speaking time (recognized as speech), although significantly higher for men than for women, was not affected by the presence of body odour (i.e. it did not change between

and unattractive target stimuli. (C) Proportion of time recognised as speech by sex. Comparisons between men and women were performed using *t*-tests: **** p < 0.0001.

The proportion of time recognised as speech, however, was significantly higher in women's than in men's responses. That is, although men tended to record longer voice responses, women tended to spend proportionally less time in *silence* (Fig. 3C).

302 **3.2 Models of measured variables**

To avoid the possibility that apparent differences between groups might be an artefact of between-subject differences, we tested each participant in two sessions: control (no odour stimuli), and experimental (odour stimuli).

The within-subject effects involving Session are reported in Table 1, reflecting the experimental design (full models, including Satterthwaite's approximation to degrees of freedom and sum of squares, are provided in Tables S2, S4, S6, S8 and S10 in the Supplementary Material).

		Attractiveness								
Effect	Mea	ın Fo	F ₀ SD		F ₀ CV		Intensity		Ratings	
	F	р	F	р	F	р	F	р	F	р
S	1.44	0.234	3.97	0.05	2.66	0.107	0.11	0.736	0.02	0.887
$S \times SA$	1.01	0.316	1.79	0.181	1.14	0.286	1.13	0.288	0	0.956
$S \times Sex$	3.6	0.062	0.54	0.465	0.38	0.539	0.02	0.891	1.83	0.18
$\mathbf{S} \times \mathbf{OQ}$	0.85	0.36	0.01	0.912	0.05	0.831	0.17	0.677	0.77	0.383
$S \times ANDR$	0.46	0.499	1.19	0.279	0.95	0.334	0.41	0.524	0.06	0.812
$S \times SA \times Sex$	2.21	0.137	0.08	0.773	0.06	0.812	0.01	0.929	2.12	0.146
$\mathbf{S}\times\mathbf{S}\mathbf{A}\times\mathbf{O}\mathbf{Q}$	0.13	0.714	0.23	0.633	0.28	0.594	0.25	0.617	0.54	0.465
$S \times Sex \times OQ$	0.77	0.382	1.32	0.254	1.32	0.253	0.03	0.856	0.98	0.325
$S \times SA \times ANDR$	0.08	0.782	0.97	0.324	1.16	0.282	0.07	0.788	8.77	0.003
$S \times Sex \times ANDR$	1.39	0.242	1.56	0.215	1.2	0.276	0.35	0.557	1.74	0.191
$S \times OQ \times ANDR$	0.52	0.471	1.97	0.165	2.16	0.146	1.44	0.234	0.46	0.501
$\mathbf{S}\times\mathbf{S}\mathbf{A}\times\mathbf{S}\mathbf{e}\mathbf{x}\times\mathbf{O}\mathbf{Q}$	0.01	0.932	0.04	0.833	0.47	0.494	1.49	0.223	0.97	0.326
$\mathbf{S}\times\mathbf{S}\mathbf{A}\times\mathbf{S}\mathbf{e}\mathbf{x}\times\mathbf{A}\mathbf{N}\mathbf{D}\mathbf{R}$	0.57	0.449	0.19	0.659	0.13	0.715	0.37	0.546	0.27	0.603
$\mathbf{S}\times\mathbf{S}\mathbf{A}\times\mathbf{O}\mathbf{Q}\times\mathbf{A}\mathbf{N}\mathbf{D}\mathbf{R}$	0	0.947	1.28	0.259	1.5	0.22	0.47	0.493	0.05	0.819
$S \times Sex \times OQ \times ANDR$	2.23	0.14	1.36	0.247	1.33	0.252	0.04	0.851	3.08	0.083

309 Table 1. Context-dependent variation in vocal parameters and attractiveness ratings.

	$S \times SA \times Sex \times OQ \times ANDR$	1.88	0.171	0	0.947	0.01	0.933	1./2	0.19	2.09	0.149
310	S = Session (control, experimental)	; Sex =	 particip 	oants so	ex (wom	en, mei	n); OQ =	= odour	quality	(high qu	ality, low
311	quality); ANDR = androstadienone	(ANDF	R, no AN	DR); \$	$SA = tar_{s}$	get stim	uli attra	ctivenes	ss (attrac	tive, una	ttractive).
312	For all results, including all main	effects	, <i>df</i> and	Sums	of Squa	res, see	e Tables	S2, S4	4, S6, S	8 and S	10 in the
313	Supplementary Material.										

a 00

314

Analysis revealed that the inclusion of odour stimuli did not have a significant main effect on any of the models for measured acoustic variables (Table 1; Fig. 4A), except for variability in F_0 (measured as F_0 SD), in which the inclusion of body odour in the experimental session caused participants to decrease their pitch variability. However, this effect was only marginally significant, and it was not found when variability in F_0 was measured as F_0 CV (i.e. controlling for perceptual variability), suggesting that it was not a robust effect.

321 In addition, we found a significant, 3-way interaction between session, stimuli 322 attractiveness, and ANDR for the attractiveness ratings given to target stimuli (Table 1; Fig. 4B). 323 The inclusion of body odour (either high or low quality) with added ANDR in the experimental 324 session caused participants to give more extreme ratings to target stimuli (i.e. higher ratings to 325 attractive stimuli and lower ratings to unattractive stimuli). However, for participants who were 326 exposed to male body odour without added ANDR in the experimental session, this effect was in 327 the opposite direction (i.e. a tendency to give lower ratings to attractive, and higher ratings to 328 unattractive, stimuli). Pairwise contrasts, however, showed that these changes (after adjustment for 329 multiple comparisons) between the control and experimental sessions were not significant (Fig. 330 4B).

331

332

Figure 4. Significant Session effects and interactions. (A) Main effect of Session for F₀ SD. (B) Interaction

between session, target stimuli attractiveness and ANDR for Attractiveness ratings. The black dashed line represents

337 the general within-subject change across sessions (pairwise contrasts using *emmeans*; https://cran.r-

338 project.org/web/packages/emmeans/vignettes/interactions.html). Significant effects of session are represented with

solid lines and stars above violin plots: * p < 0.05.

340 3.3 Models to predict attractiveness ratings

The initial mixed linear regressions included Sex, Mean F_0 , F_0 CV, (mean) Intensity, odour quality and ANDR, as well as the interactions between sex and mean F_0 , sex and F_0 CV, and sex and intensity were included as fixed predictors of the attractiveness rating given to each target stimulus, by each participant in each session. The interaction between subject (participant ID) and session was also kept as a random intercept factor.

In this initial model, only F_0 CV was a significant predictor of the attractiveness ratings (see Table S11, in the Supplementary Material). We then reduced this highly parameterised model to an intermediate model, including only the most relevant acoustic variables: mean F_0 , minimum F_0 and F_0 CV, but maintaining sex and the interactions between of sex with mean F_0 , minimum F_0 and F₀ CV as fixed predictors, and the interaction between subject and session as a random factor (see Table S12, in the Supplementary Material). Here, again, only F_0 CV was a significant predictor of the attractiveness ratings. This intermediate model was further reduced to only include, as fixed factors, sex, mean F_0 and F_0 CV, in an additive model with no interactions (see Table S13, in the Supplementary Material). The random term was not changed.

This final model, however, was much more likely to be the best of the three models, as revealed by AIC and w_i (AIC) (see Table S14, in the Supplementary Material). The AIC of the final model about 64 units below that of the initial model and more than 2 below the intermediate model. In addition, Akaike weights established that the final model, given its increased parsimony and similar predictive power, was most likely to be the best of the three models (in fact, more than three times more likely in comparison to the intermediate model, and several million times more likely to be the best model compared to the initial model).

362 The final model, however, did not meet the assumptions of residual distribution or 363 homoscedasticity (see Fig. S11 in the Supplementary Material). In particular, the residual 364 distribution was extremely bimodal, even when separate models were fitted for women and men, 365 and no distribution attempted from generalised linear mixed models that converged produced an 366 appropriate model. For this reason, and because a normal distribution was the most probable (see 367 Table S15 in the Supplementary Material), we calculated bootstrap confidence intervals for the 368 model estimates, as this helps in dealing with these issues (Fox, 2016) and can facilitate the 369 assessment of associations even in the absence of p values.

Within this model, sex, mean F_0 and F_0 CV were found to significantly predict attractiveness ratings. Men rated the attractiveness of target stimuli by an estimate of 0.87 units higher than women. For all participants, both mean F_0 and F_0 CV positively predicted attractiveness

373	ratings (Table 2). For each increment of 1 Hz in mean F ₀ , ratings were estimated to increase by
374	0.01 units, and by each increment of 1 in F_0 CV, the model estimated an increase of 3.18 points in
375	rated attractiveness (or, to use more realistic F_0 CV units, attractiveness ratings increased by 0.318
376	units for each 0.1 increment in F ₀ CV).

377 Table 2. Final model summary (with bootstrap 95% CI).

	Estimate	Lower 95% CI	Upper 95% CI	Std. Error	df	t	р
(Intercept)	2.02	0.83	3.09	0.59	299.83	3.42	<0.001
Sex (men)	0.87	0.33	1.47	0.29	267	2.98	0.003
Mean F_0 (Hz)	0.01	0	0.01	0	274.69	2.1	0.037
$F_0 CV (Hz)$	3.18	1.86	4.61	0.72	714.5	4.39	<0.0001

³⁷⁸ $\overline{R^2_{\text{marginal}}} = 0.03, R^2_{\text{conditional}} = 0.13$. Confidence intervals were calculated as the 2.5 and 97.5 percentiles from bootstrap

379 (1000 simulations). Women were used as reference category for Sex. Significant effects are in bold.

Interestingly, however, while the slope of the association between mean F_0 and the attractiveness ratings predicted by this final model was close to 0 for women, and only slightly positive for men (Fig. 5A), for F_0 CV it was clearly positive not only for both men and women, but for every single participant (Fig. 5B), regardless of the odour condition to which they were exposed.

Group - HQ + ANDR - HQ no ANDR - LQ + ANDR - LQ no ANDR

Figure 5. Single term predictor slopes. Slope of coefficients for each (single term) fixed predictor, against
predicted attractiveness ratings for the Final Model (linear relationship between each model term and predicted
response), for women (left) and men (right). (A) Mean F₀. (B) F₀ CV. Lines represent the slope for each participant,

according to their group. The black line with error represents the general effect.

390

4. Discussion

4.1 Odour effects on voice modulation and attractiveness ratings

Previous research showed that men's perceived attractiveness to women is increased by the presence of male axillary secretions (Thorne et al., 2002), as well as by exposure to androstadienone (Saxton et al., 2008). Because of this, we expected that men portrayed in the target videos would be regularly perceived as more attractive during the experimental session than the control session, leading women to speak with increased voice F_0 , which tends to be attractive to gynephilic men (Feinberg et al., 2005; Jones et al., 2008). Similarly, and because low F_0 signals masculinity and is a robust cue of dominance (Puts et al., 2007; Wolff and Puts, 2010), we expected men to lower their pitch when exposed to male body odour, especially if it was of high quality, as the perception of competition was likely to increase. Contrary to these expectations, the addition of male odour did not produce any consistent changes in vocal parameters. There was only a main effect of pitch variability when measured as F_0 SD, but not when measured as F_0 CV, and the latter could thus be an artefact of the measurement of variability without controlling for perceptual differences arising from tone (and sex) of the voice.

405 However, we did find that the presence of body odour with added ANDR caused 406 participants to tend to give target videos more extreme ratings corresponding to the attractiveness 407 category of the targets, while the presence of body odour without added ANDR caused the opposite 408 tendency in participants of both sexes. While the reasons for these effects are unclear, we speculate 409 that this could be because the presence of male body odour may decrease selectiveness in both 410 women and men, or make targets appear as more similarly attractive (because the odour stimulus, 411 a signal of quality, was always the same for each participant, regardless of the target evaluated). 412 However, the addition of ANDR seem to have had the opposite effect: increasing selectiveness. 413 For example, in women, this could be because the presence of ANDR may increase the preference 414 for attractive targets. In men, instead of increasing the perception of competition for men, ANDR 415 may have boosted their own confidence and/or self-perceived attractiveness, affecting their 416 selectiveness. An explanation for these results would require future studies to specifically control 417 for changes in variables such as self-confidence and self-perceived attractiveness in the presence 418 of ANDR. However, it is important to note that pairwise contrasts revealed that the difference in 419 attractiveness ratings between the control and experimental sessions (for participants exposed to 420 odours either with or without added ANDR, separately), did not reach significance after adjustment 421 for multiple comparisons (see Fig. 4B).

422 It was unexpected that neither high-quality odour nor added and rost adienone had additional 423 effects. It may be that the difference in odour quality between the high and low quality composites 424 was insufficient to elicit quality-related changes in modulation. Using a larger sample of odour 425 donors, and therefore accentuating differences between high- and low-quality odours, could 426 potentially make the effect of odour quality measurable. In addition, measuring participants' 427 subjective evaluations of intensity and pleasantness of the odour stimuli would enable a 428 manipulation check and further exploration of differences in odour condition (e.g., Oren and 429 Shamay-Tsoory, 2019). Alternatively, lack of effects could be due to methodological choices, 430 including the time that odour samples were left in the cubicle before each session (15 minutes), 431 and the time that cubicles were left open before testing another participant (>15 minutes), that may 432 have been insufficient to avoid the residual presence of previously used stimuli, potentially creating 433 some level of smell mixture and confounding any effects of different odour stimuli.

434 With respect to added androstadienone, there are several possibilities: for example, other 435 constituents of the axillary odour could have a more prominent role in odour evaluation (see 436 d'Ettorre et al., 2018), or these other constituents may be more perceivable in the odour mixture. 437 A more general, evolutionary hypothesis for the lack of effects of ANDR on voice modulation, 438 could be related to an inactivation of the vomeronasal system that would have occurred in 439 catarrhines with the appearance of trichromacy in primates (Gilad et al., 2004; Zhang and Webb, 440 2003). This tendency can also be observed in primates when comparing nocturnal and diurnal lineages: the former maintain a much greater olfactory brain structure, while the latter have larger 441 442 cerebral visual structures (Barton et al., 1995). This inactivation could be associated with 443 pseudogenization, in this case leading to decreased functions or changes in the genes related to the 444 vomeronasal organ. In addition, the main olfactory system suffered a progressive inactivation, such 445 that only 70% of the olfactory receptor genes are functional in Old World primates, and only 40% in humans (Gilad et al., 2003), potentially leading to a reduced (or non-existent) role of at least *some* molecules that function as social chemosignals in related species.

448 Nevertheless, the lack of consistent ANDR effects in our study is consistent with Hare et 449 al. (2017), who found no effects of ANDR on sex perception or evaluation of masculinity-related 450 sex-specific characteristics. Ultimately, the null effect is also in line with recent doubts cast on the 451 existence of specific pheromones in humans and thus should not be expected to have any special 452 effects on any and all cognitive functions and human behaviours (Wyatt, 2015).

453

454 **4.2** Voice characteristics as predictors of perceived attractiveness

Our experimental paradigm was closely based on Study 1 of Leongómez et al. (2014), but there were some important differences. First, of course, the current study incorporated the addition of male body odour and androstadienone in the experimental sessions. Second, it enabled further investigation of vocal modulation in courtship contexts by asking participants to rate each target video, in the two experimental sessions, providing us with the opportunity to test how voice characteristics are related to perceived attractiveness.

461 Voice modulation, and specifically vocal modulation during courtship, is a complex 462 phenomenon that has gained increasing interest in recent years (e.g. Farley et al., 2013; Fraccaro 463 et al., 2013, 2011; Hughes et al., 2010; Leongómez et al., 2014; Pisanski et al., 2018). 464 Understanding what voice parameters are modulated, in which direction, and what social and 465 perceptual effects these modulations have, are still matters of debate that call for more research. 466 For example, in a tightly controlled experiment, Leongómez et al. (2014) found that both men and 467 women increase pitch variability when responding to attractive target stimuli. The same finding in 468 both sexes suggests pitch variability is a key parameter, but women did so when competing with 469 an attractive woman. In a less controlled but more ecologically valid experiment, Pisanski et al. 470 (2018) recorded participants during real, face-to-face interactions in a speed-dating game, finding 471 that women increased both their average fundamental frequency and its variability (measured as 472 either F_0 SD or F_0 CV) with people they selected as dates. However, although men lowered their 473 F_0 towards individuals selected as dates, their pitch variability (either F_0 SD or F_0 CV) was not 474 correlated with selection of dates.

475 Such disparities in results could be due to differences in experimental design, such as 476 between responses to muted videos (Leongómez et al., 2014) (to avoid possible effects of pitch 477 convergence; see Gregory et al., 2001), and real-life interactions (Pisanski et al., 2018). 478 Furthermore, participants in the former study were instructed to explain whether and why they 479 would like to go on a date with the person in the video, and this was done in isolation in a cubicle, 480 while in the latter recordings were of free conversations between two participants in a noisy and 481 busy speed-dating game setting. This suggests two things: first, that voice modulations do occur 482 during courtship, and so can play an important part in shaping how we are perceived by others. 483 And second, that vocal modulations are very context sensitive.

Our results, mostly congruent with Leongómez et al. (2014), suggest that pitch variability is modulated according to the attractiveness of the listener in this courtship scenario. Here, our model of perceived attractiveness (measured as attractiveness ratings given to target stimuli), shows that pitch variability (measured as F₀ CV) was a better predictor than mean F₀. Moreover, F₀ CV was predicted to be robust across participants and conditions, and in all fitted models regardless of their complexity. Importantly, F₀ CV is a measure of pitch variability, that controls for perceptual differences that depend on the average pitch of a voice sample.

491 **4.3 Conclusions**

492 Our study is the first to test the effects of male odour quality and ANDR in voice modulation
493 and attractiveness ratings. We did not find support for either odour quality or ANDR effects.

Furthermore, we did not detect any consistent effects of the presence of body odour. Although the null effects of ANDR are in line with recent evidence (Hare et al., 2017), the lack of effects of odour quality, and especially of the presence of body odour (vs responses in a no-odour, control session), are somewhat surprising.

498 However, consistent with evidence of vocal modulations in courtship scenarios, we found 499 that voice characteristics predict attractiveness ratings given to target videos, regardless of the 500 presence or absence of any body odour. Recent evidence, however, is inconsistent regarding the 501 expected direction of such modulations and the relative importance of each acoustic parameter 502 found in different studies (Leongómez et al., 2014; Pisanski et al., 2018). This, we think, suggests 503 that human voice modulation is extremely context-sensitive; for example, it could be that an 504 attractive opposite-sex person could elicit an increase in pitch variability (Leongómez et al., 2014), 505 while the presence of people nearby (as in Pisanski et al., 2018) could create an opposite tendency 506 to decrease these modulations, therefore confounding these effects. If this is true, experimental 507 tests of vocal modulation in courtship (and likely other) scenarios would need to consider these 508 differences and their potential confounding effects.

509

5. Declarations

510 **5.1 Funding**

JDL and ORS were funded by Universidad El Bosque (grant number PCI.2015-8207), and JDL was supported by the Ministry of Science, Technology, and Innovation of Colombia (https://minciencias.gov.co/).

514 **5.2** Compliance with Ethical Standards

515 All procedures performed in studies involving human participants were in accordance with the 516 ethical standards of the institutional research committee and with the 1964 Helsinki Declaration

- 517 and its later amendments or comparable ethical standards. Written informed consent was obtained
- 518 from all individual adult participants included in the study.

519 **5.3 Conflicts of Interest**

520 The authors declare that they have no conflict of interest.

521 **5.4 Data and Code availability**

522 All data used for this article openly available OSF are at the 523 (https://doi.org/10.17605/OSF.IO/53BZK). Code to perform data wrangling, tables, figures, and 524 all analyses, is available in PDF ('Supplementary-Material.pdf') and R Markdown 525 ('Supplementary-Material.Rmd') formats, so that it can be fully reproduced and explored in depth 526 (https://doi.org/10.17605/OSF.IO/GWBHU).

527 **5.5 Author contributions**

Juan David Leongómez: Conceptualisation, Methodology, Formal analysis, Software, Data
curation, Writing- Original draft preparation, Visualization, Investigation, Funding acquisition.
Oscar R. Sánchez: Writing- Original draft preparation, Funding acquisition. Milena VásquezAmézquita: Writing- Original draft preparation, Writing - Review & Editing. S. Craig Roberts:
Conceptualisation, Methodology, Writing- Original draft preparation, Writing - Review & Editing,
Supervision.

534 **5.6 Acknowledgments**

535 Special thanks to A. Murray for her help in designing this study and collecting data. We are grateful

- to E. Valderrama and A. Castellanos-Chacón for their insightful comments, and all our participants.
- 537 We thank Universidad El Bosque and MINCIENCIAS for their support.

6. References

- Adams, T.G., Stewart, P.A., Blanchar, J.C., 2014. Disgust and the politics of sex: exposure to a
 disgusting odorant increases politically conservative views on sex and decreases support
 for gay marriage. PLOS ONE 9, e95572. https://doi.org/10.1371/journal.pone.0095572
- Albrecht, J., Demmel, M., Schopf, V., Kleemann, A.M., Kopietz, R., May, J., Schreder, T.,
 Zernecke, R., Bruckmann, H., Wiesmann, M., 2011. Smelling Chemosensory Signals of
 Males in Anxious Versus Nonanxious Condition Increases State Anxiety of Female
 Subjects. Chem. Senses 36, 19–27. https://doi.org/10.1093/chemse/bjq087
- 546 Bartoń, K., 2020. MuMIn: Multi-Model Inference.
- 547 Barton, R.A., Purvis, A., Harvey, P.H., 1995. Evolutionary radiation of visual and olfactory brain
 548 systems in primates, bats and insectivores. Philos. Trans. R. Soc. B Biol. Sci. 348, 381–
 549 392. https://doi.org/10.1098/rstb.1995.0076
- Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting Linear Mixed-Effects Models Using
 Ime4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01
- Bolker, B., 2017. bbmle: Tools for General Maximum Likelihood Estimation. R package version
 1.0.20.
- Cornwell, R.E., Boothroyd, L., Burt, D.M., Feinberg, D.R., Jones, B.C., Little, A.C., Pitman, R.,
 Whiten, S., Perrett, D.I., 2004. Concordant preferences for opposite-sex signals? Human
 pheromones and facial characteristics. Proc. R. Soc. B Biol. Sci. 271, 635–640.
 https://doi.org/10.1098/rspb.2003.2649
- d'Ettorre, P., Bueno, S., Rödel, H.G., Megherbi, H., Seigneuric, A., Schaal, B., Roberts, S.C.,
 2018. Exposure to Androstenes Influences Processing of Emotional Words. Front. Ecol.
 Evol. 5, 169. https://doi.org/10.3389/fevo.2017.00169
- Doucé, L., Janssens, W., Leroi-Werelds, S., Streukens, S., 2016. What to diffuse in a gender specific store? The effect of male and female perfumes on customer value and behaviour.
 J. Consum. Behav. 15, 271–280. https://doi.org/10.1002/cb.1567
- Eguchi, S., Hirsh, I.J., 1969. Development of speech sounds in children. Acta Oto-Laryngol.
 Suppl. 257, 1–51.
- Farley, S.D., Hughes, S.M., LaFayette, J.N., 2013. People Will Know We Are in Love: Evidence
 of Differences Between Vocal Samples Directed Toward Lovers and Friends. J.
 Nonverbal Behav. 37, 123–138. https://doi.org/10.1007/s10919-013-0151-3
- 569 Feinberg, D.R., Jones, B.C., DeBruine, L.M., Moore, F.R., Law Smith, M.J., Cornwell, R.E.,
- 570 Tiddeman, B.P., Boothroyd, L.G., Perrett, D.I., 2005. The voice and face of woman: One
 571 ornament that signals quality? Evol. Hum. Behav. 26, 398–408.
 572 https://doi.org/10.1016/j.evolhumbehav.2005.04.001
- Fialová, J., Sorokowska, A., Roberts, S.C., Kubicová, L., Havlíček, J., 2018. Human body odour
 Composites are not perceived more positively than the individual samples. -Percept. 9.
 https://doi.org/10.1177/2041669518766367
- Fox, J., 2016. Bootstrapping Regression Models, in: Applied Regression Analysis and
 Generalized Linear Models. Sage, Thousand Oaks, CA, pp. 587–606.
- Fraccaro, P.J., Jones, B.C., Vukovic, J., Smith, F.G., Watkins, C.D., Feinberg, D.R., Little, A.C.,
 DeBruine, L.M., 2011. Experimental evidence that women speak in a higher voice pitch
 to men they find attractive. J. Evol. Psychol. 9, 57–67.
- 581 https://doi.org/10.1556/JEP.9.2011.33.1

- 582 Fraccaro, P.J., O'Connor, J.J.M., Re, D.E., Jones, B.C., DeBruine, L.M., Feinberg, D.R., 2013. 583 Faking it: deliberately altered voice pitch and vocal attractiveness. Anim. Behav. 85, 127– 584 136. https://doi.org/10.1016/j.anbehav.2012.10.016 585 Gangestad, S.W., Simpson, J.A., Cousins, A.J., Garver-Apgar, C.E., Christensen, P.N., 2004. 586 Women's preferences for male behavioral displays change across the menstrual cycle. 587 Psychol. Sci. 15, 203–207. https://doi.org/10.1111/j.0956-7976.2004.01503010.x 588 Gilad, Y., Bustamante, C.D., Lancet, D., Pääbo, S., 2003. Natural Selection on the Olfactory 589 Receptor Gene Family in Humans and Chimpanzees. Am. J. Hum. Genet. 73, 489-501. 590 https://doi.org/10.1086/378132 591 Gilad, Y., Wiebe, V., Przeworski, M., Lancet, D., Pääbo, S., 2004. Loss of Olfactory Receptor 592 Genes Coincides with the Acquisition of Full Trichromatic Vision in Primates. PLoS 593 Biol. 2, e5. https://doi.org/10.1371/journal.pbio.0020005 594 Gregory, S.W., Green, B.E., Carrothers, R.M., Dagan, K.A., Webster, S.W., 2001. Verifying the 595 primacy of voice fundamental frequency in social status accommodation. Lang. Commun. 596 21.37-60. 597 Grosser, B.I., Monti-Bloch, L., Jennings-White, C., Berliner, D.L., 2000. Behavioral and 598 electrophysiological effects of androstadienone, a human pheromone. 599 Psychoneuroendocrinology 25, 289–299. https://doi.org/10.1016/S0306-4530(99)00056-6 Hare, R.M., Schlatter, S., Rhodes, G., Simmons, L.W., 2017. Putative sex-specific human 600 601 pheromones do not affect gender perception, attractiveness ratings or unfaithfulness 602 judgements of opposite sex faces. R. Soc. Open Sci. 4, 160831. 603 https://doi.org/10.1098/rsos.160831 604 Havlíček, J., Roberts, S.C., Flegr, J., 2005. Women's preference for dominant male odour: effects 605 of menstrual cycle and relationship status. Biol. Lett. 1, 256–259. 606 https://doi.org/10.1098/rsb1.2005.0332 607 Holland, R.W., Hendriks, M., Aarts, H., 2005. Smells like clean spirit. Nonconscious effects of 608 scent on cognition and behavior. Psychol. Sci. 16, 689-693. 609 https://doi.org/10.1111/j.1467-9280.2005.01597.x 610 Hornung, J., Kogler, L., Wolpert, S., Freiherr, J., Derntl, B., 2017. The human body odor 611 compound androstadienone leads to anger-dependent effects in an emotional Stroop but 612 not dot-probe task using human faces. PLOS ONE 12, e0175055. 613 https://doi.org/10.1371/journal.pone.0175055 Hughes, S.M., Farley, S.D., Rhodes, B.C., 2010. Vocal and physiological changes in response to 614 615 the physical attractiveness of conversational partners. J. Nonverbal Behav. 34, 155–167. 616 https://doi.org/10.1007/s10919-010-0087-9 Jacob, S., Hayreh, D.J.S., McClintock, M.K., 2001. Context-dependent effects of steroid 617 618 chemosignals on human physiology and mood. Physiol. Behav. 74, 15–27. 619 https://doi.org/10.1016/S0031-9384(01)00537-6 620 Jacob, S., McClintock, M.K., 2000. Psychological state and mood effects of steroidal 621 chemosignals in women and men. Horm. Behav. 37, 57-78. 622 https://doi.org/10.1006/hbeh.1999.1559 623 Jones, B.C., Feinberg, D.R., DeBruine, L.M., Little, A.C., Vukovic, J., 2008. Integrating cues of 624 social interest and voice pitch in men's preferences for women's voices. Biol. Lett. 4, 625 192.
- 626 Kassambara, A., 2019. ggpubr: "ggplot2" Based Publication Ready Plots.

- King, D., Vlaev, I., Everett-Thomas, R., Fitzpatrick, M., Darzi, A., Birnbach, D.J., 2016.
 "Priming" hand hygiene compliance in clinical environments. Health Psychol. 35, 96–
 101. https://doi.org/10.1037/hea0000239
- Knasko, S.C., 1992. Ambient odor's effect on creativity, mood, and perceived health. Chem.
 Senses 17, 27–35. https://doi.org/10.1093/chemse/17.1.27
- Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., 2017. lmerTest Package: Tests in Linear
 Mixed Effects Models. J. Stat. Softw. 82, 1–26. https://doi.org/10.18637/jss.v082.i13
- Lehrner, J., Marwinski, G., Lehr, S., Johren, P., Deecke, L., 2005. Ambient odors of orange and
 lavender reduce anxiety and improve mood in a dental office. Physiol. Behav. 86, 92–95.
 https://doi.org/10.1016/j.physbeh.2005.06.031
- Lenochova, P., Roberts, S.C., Havlíček, J., 2009. Methods of human body odor sampling: the
 effect of freezing. Chem. Senses 34, 127–138. https://doi.org/10.1093/chemse/bjn067
- 639 Lenth, R., 2019. emmeans: Estimated Marginal Means, aka Least-Squares Means.
- Leongómez, J.D., Binter, J., Kubicová, L., Stolařová, P., Klapilová, K., Havlíček, J., Roberts,
 S.C., 2014. Vocal modulation during courtship increases proceptivity even in naive
 listeners. Evol. Hum. Behav. 35, 489–496.
- 643 https://doi.org/10.1016/j.evolhumbehav.2014.06.008
- Leongómez, J.D., Mileva, V.R., Little, A.C., Roberts, S.C., 2017. Perceived differences in social
 status between speaker and listener affect the speaker's vocal characteristics. PLoS One
 12, e0179407. https://doi.org/10.1371/journal.pone.0179407
- 647 Lüdecke, D., Makowski, D., Waggoner, P., Patil, I., 2020. performance: Assessment of
 648 Regression Models Performance.
- Lundström, J.N., Hummel, T., Olsson, M.J., 2003. Individual Differences in Sensitivity to the
 Odor of 4,16-Androstadien-3-one. Chem. Senses 28, 643–650.
 https://doi.org/10.1093/chemse/bjg057
- Lundström, J.N., Olsson, M.J., 2005. Subthreshold amounts of social odorant affect mood, but
 not behavior, in heterosexual women when tested by a male, but not a female,
 experimenter. Biol. Psychol. 70, 197–204.
- 655 https://doi.org/10.1016/j.biopsycho.2005.01.008
- Millot, J.-L., Brand, G., 2001. Effects of pleasant and unpleasant ambient odors on human voice
 pitch. Neurosci. Lett. 297, 61–63. https://doi.org/10.1016/S0304-3940(00)01668-2
- Mutic, S., Moellers, E.M., Wiesmann, M., Freiherr, J., 2016. Chemosensory Communication of
 Gender Information: Masculinity Bias in Body Odor Perception and Femininity Bias
 Introduced by Chemosignals During Social Perception. Front. Psychol. 6, 1980.
 https://doi.org/10.3389/fpsyg.2015.01980
- Niu, C., Zheng, L., 2020. Androstadienone resulted in a rightward shift of women's preference
 for sexually dimorphic male faces across the continuum of femininity-masculinity. Horm.
 Behav. 118, 104635. https://doi.org/10.1016/j.yhbeh.2019.104635
- Oren, C., Shamay-Tsoory, S.G., 2019. Women's fertility cues affect cooperative behavior:
 Evidence for the role of the human putative chemosignal estratetraenol.
- 667 Psychoneuroendocrinology 101, 50–59. https://doi.org/10.1016/j.psyneuen.2018.10.028
- Parma, V., Tirindelli, R., Bisazza, A., Massaccesi, S., Castiello, U., 2012. Subliminally Perceived
 Odours Modulate Female Intrasexual Competition: An Eye Movement Study. PLoS ONE

670 7, e30645. https://doi.org/10.1371/journal.pone.0030645

Pause, B.M., Ohrt, A., Prehn, A., Ferstl, R., 2004. Positive emotional priming of facial affect
perception in females is diminished by chemosensory anxiety signals. Chem. Senses 29,
797–805. https://doi.org/10.1093/chemse/bjh245

- Pisanski, K., Cartei, V., McGettigan, C., Raine, J., Reby, D., 2016. Voice Modulation: A
 Window into the Origins of Human Vocal Control? Trends Cogn. Sci.
 https://doi.org/10.1016/j.tics.2016.01.002
- Pisanski, K., Oleszkiewicz, A., Plachetka, J., Gmiterek, M., Reby, D., 2018. Voice pitch
 modulation in human mate choice. Proc. R. Soc. B Biol. Sci. 285, 20181634.
 https://doi.org/10.1098/rspb.2018.1634
- Puts, D.A., Gaulin, S.J.C., Verdolini, K., 2006. Dominance and the evolution of sexual dimorphism in human voice pitch. Evol. Hum. Behav. 27, 283–296.
 https://doi.org/10.1016/j.evolhumbehav.2005.11.003
- Puts, D.A., Hodges, C.R., Cárdenas, R.A., Gaulin, S.J.C., 2007. Men's voices as dominance
 signals: vocal fundamental and formant frequencies influence dominance attributions
 among men. Evol. Hum. Behav. 28, 340–344.
- 686 https://doi.org/10.1016/j.evolhumbehav.2007.05.002
- R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for
 Statistical Computing., Vienna, Austria.
- Rikowski, A., Grammer, K., 1999. Human body odour, symmetry and attractiveness. Proc. R.
 Soc. B Biol. Sci. 266, 869–874. https://doi.org/10.1098/rspb.1999.0717
- Roberts, S.C., Gosling, L.M., Carter, V., Petrie, M., 2008. MHC-correlated odour preferences in humans and the use of oral contraceptives. Proc. R. Soc. B Biol. Sci. 275, 2715–2722.
 https://doi.org/10.1098/rspb.2008.0825
- Roberts, S.C., Gosling, L.M., Spector, T.D., Miller, P., Penn, D.J., Petrie, M., 2005. Body odor
 similarity in noncohabiting twins. Chem. Senses 30, 651–656.
 https://doi.org/10.1093/chemse/bji058
- Roberts, S.C., Kralevich, A., Ferdenzi, C., Saxton, T.K., Jones, B.C., DeBruine, L.M., Little,
 A.C., Havlíček, J., 2011. Body odor quality predicts behavioral attractiveness in humans.
 Arch. Sex. Behav. 40, 1111–7. https://doi.org/10.1007/s10508-011-9803-8
- Saxton, T.K., Lyndon, A., Little, A.C., Roberts, S.C., 2008. Evidence that androstadienone, a
 putative human chemosignal, modulates women's attributions of men's attractiveness.
 Horm. Behav. 54, 597–601. https://doi.org/10.1016/j.yhbeh.2008.06.001
- Sorokowski, P., Puts, D., Johnson, J., Żółkiewicz, O., Oleszkiewicz, A., Sorokowska, A., Kowal,
 M., Borkowska, B., Pisanski, K., 2019. Voice of Authority: Professionals Lower Their
 Vocal Frequencies When Giving Expert Advice. J. Nonverbal Behav. 43, 257–269.
 https://doi.org/10.1007/s10919-019-00307-0
- Spangenberg, E.R., Sprott, D.E., Grohmann, B., Tracy, D.L., 2006. Gender-congruent ambient
 scent influences on approach and avoidance behaviors in a retail store. J. Bus. Res. 59,
 1281–1287. https://doi.org/10.1016/j.jbusres.2006.08.006
- Thorne, F., Neave, N., Scholey, A., Moss, M., Fink, B., 2002. Effects of putative male
 pheromones on female ratings of male attractiveness: influence of oral contraceptives and
 the menstrual cycle. Neuroendocrinol. Lett. 23, 291–297.
- Thornhill, R., Gangestad, S.W., Miller, R., Scheyd, G., McCollough, J.K., Franklin, M., 2003.
 Major histocompatibility complex genes, symmetry, and body scent attractiveness in men and women. Behav. Ecol. 14, 668–678. https://doi.org/10.1093/beheco/arg043
- Tybur, J.M., Bryan, A.D., Magnan, R.E., Hooper, A.E.C., 2011. Smells like safe sex: olfactory
 pathogen primes increase intentions to use condoms. Psychol. Sci. 22, 478–480.
 https://doi.org/10.1177/0956797611400096
- Valentova, J.V., Tureček, P., Varella, M.A.C., Šebesta, P., Mendes, F.D.C., Pereira, K.J.,
 Kubicová, L., Stolařová, P., Havlíček, J., 2019. Vocal Parameters of Speech and Singing

- Covary and Are Related to Vocal Attractiveness, Body Measures, and Sociosexuality: A
 Cross-Cultural Study. Front. Psychol. 10, 2029. https://doi.org/10.3389/fpsyg.2019.02029
- Verhaeghe, J., Gheysen, R., Enzlin, P., 2013. Pheromones and their effect on women's mood and
 sexuality. Facts Views Vis. ObGyn 5, 189–195.
- Wagenmakers, E.-J., Farrell, S., 2004. AIC model selection using Akaike weights. Psychon. Bull.
 Rev. 11, 192–196. https://doi.org/10.3758/BF03206482
- Wickham, H., 2016. ggplot2: Elegant Graphics for Data Analysis, 2nd ed, Use R! Springer, New
 York. https://doi.org/10.1007/978-3-319-24277-4
- Wolff, S.E., Puts, D.A., 2010. Vocal masculinity is a robust dominance signal in men. Behav.
 Ecol. Sociobiol. 64, 1673–1683. https://doi.org/10.1007/s00265-010-0981-5
- Wyatt, T.D., 2020. Reproducible research into human chemical communication by cues and
 pheromones: learning from psychology's renaissance. Philos. Trans. R. Soc. B Biol. Sci.
 375, 20190262. https://doi.org/10.1098/rstb.2019.0262
- Wyatt, T.D., 2015. The search for human pheromones: the lost decades and the necessity of
 returning to first principles. Proc. R. Soc. B Biol. Sci. 282, 20142994–20142994.
 https://doi.org/10.1098/rspb.2014.2994
- Xie, Y., 2015. Dynamic Documents with R and knitr, 2nd ed. Chapman and Hall/CRC, New
 York. https://doi.org/10.1201/9781315382487
- Ye, Y., Zhuang, Y., Smeets, M.A.M., Zhou, W., 2019. Human chemosignals modulate emotional perception of biological motion in a sex-specific manner. Psychoneuroendocrinology 100, 246–253. https://doi.org/10.1016/j.psyneuen.2018.10.014
- Zhang, J., Webb, D.M., 2003. Evolutionary deterioration of the vomeronasal pheromone
 transduction pathway in catarrhine primates. Proc. Natl. Acad. Sci. 100, 8337–8341.
 https://doi.org/10.1073/pnas.1331721100
- 745 Zhu, H., 2019. kableExtra: Construct Complex Table with "kable" and Pipe Syntax.

Supplementary Material

Supplementary Materials and Methods and Results (code and analyses) for **Contextualising** courtship: Exploring male body odour effects on vocal modulation

Juan David Leongómez*

26 June, 2020

Description

This R Markdown document contains the supplementary materials and methods, as well as results, including all code, and step by step detailed explanations for all analyses, figures and tables included in Leongómez, J.D., Sánchez, O.R., Vásquez-Amézquita, M., & Roberts, S.C. (2019). *Contextualising courtship: Exploring male body odour effects on vocal modulation*. Data available from the Open Science Framework (OSF): https://osf.io/px7m6/.

Contents

1	Sup	pleme	ntary Materials and Methods	3
	1.1	Odour	Stimuli	3
	1.2	Exper	imental procedure	3
	1.3	Acous	tic analysis	3
2	Sup	pleme	ntary Results	3
	2.1	Prelim	ninaries	3
		2.1.1	Load Packages	3
		2.1.2	Custom functions	4
			2.1.2.1 lmeSig	4
			2.1.2.2 summaSig	5
			2.1.2.3 modDiag and lmerDiag	6
			2.1.2.4 corstars1	8
			2.1.2.5 contr.stars	9
			2.1.2.6 data.summary	9
			2.1.2.7 pvalr	9
		2.1.3	Load and organise data	10
		2.1.4	Figure 1. Experimental design	11
			2.1.4.1 Colour version	11
			2.1.4.2 Grevscale version	12
	2.2	Descri	ptives	13
		2.2.1	Table S1. Women 1	4
		2.2.2	Table S2. Men 1	18
		2.2.3	Figure 2. Distribution by Sex and Group	22
			2.2.3.1 Colour version	22
			2.2.3.2 Grevscale version	24
		2.2.4	Correlations	26
			2.2.4.1 Table S3	26
			2.2.4.2 Table S4	27
			2.2.4.3 Table S5	28
				.0

*Human Behaviour Lab, Faculty of Psychology, Universidad El Bosque. Bogota, Colombia. jdleongomez@unbosque.edu.co, jdleon-gomez.info

	2.3	Time 1	recognised as speech
		2.3.1	Figure 3. Time recognised as speech and Recoding Length
			2.3.1.1 Colour version
			2.3.1.2 Greyscale version
	2.4	Model	s of measured variables
		2.4.1	Mean F_0
			2 4 1 1 Model fitting 33
			24111 Figure S1 Diagnostics
			$2.4.1.1.7$ Tigure 51. Diagnosoles \dots 34
			2.4.1.1.2 Table 50. Mean Γ_0 model
		040	2.4.1.2 Figure 52. Mean F_0 Modulation
		2.4.2	$F_0 SD$
			2.4.2.1 Model fitting
			2.4.2.1.1 Figure S3. Diagnostics
			2.4.2.1.2 Table S7. F_0 SD model $\ldots \ldots 38$
			2.4.2.2 Figure S4. F_0 SD Modulation
		2.4.3	$F_0 CV \ldots $
			2.4.3.1 Model fitting
			2.4.3.1.1 Figure S5. Diagnostics
			2.4.3.1.2 Table S8. F_0 CV model
			2.4.3.2 Figure S6. F_0 CV Modulation
		2.4.4	Mean intensity
			2441 Model fitting 45
			24411 Figure S7 Diagnostics 45
			2.4.4.1.7 Table S0 Intensity model 46
			2.4.4.1.2 Table 59. Intensity model
		045	2.4.4.2 Figure 58. Mean intensity modulation 47 Attractional and antipation 40
		2.4.5	Attractiveness ratings
			2.4.5.1 Model fitting
			2.4.5.1.1 Figure S9. Diagnostics
			2.4.5.1.2 Table S10. Attractiveness ratings model
			2.4.5.2 Figure S10. Odour effects on attractiveness ratings
		2.4.6	Table 1. All models 53
		2.4.7	Figure 4. Session effects and interactions
			2.4.7.1 Colour version
			2.4.7.2 Greyscale version
	2.5	Model	s to predict attractiveness ratings 58
		2.5.1	Initial Model
			2.5.1.1 Model fitting
			2.5.1.1.1 Table S11. Initial model regression table
		2.5.2	Intermediate Model 60
			2.5.2.1 Model fitting 60
			2.5.2.1.1 Table S12 Intermediate model regression table 60
		253	Final Model 61
		2.0.0	$25.21 \qquad \text{Model fitting} $
			2.5.5.1 Model noting
			2.5.5.1.1 Table 515. Final model regression table
			$2.5.5.2$ Table 514. Model comparison and selection $\ldots \ldots \ldots$
			2.5.3.3 Final model diagnostic
			2.5.3.3.1 Figure S11. Final model diagnostics
			2.5.3.3.2 Table S15. Final model distribution family
			2.5.3.4 Table 2. Final model regression table (with bootstrap 95% CI)
		2.5.4	Figure 5. Voice predictor slopes
			$2.5.4.1 \text{Colour version} \dots \dots \dots \dots \dots \dots \dots \dots \dots $
			2.5.4.2 Greyscale version
3	Refe	erences	s 69

4	Session	info	(for	reproducibility)	
---	---------	------	------	------------------	--
1 Supplementary Materials and Methods

1.1 Odour stimuli

Between-individual differences in attractiveness of body odour, when averaged across a number of different raters, likely reflect a measure of absolute quality such as psychosocial dominance (Havlíček et al., 2005) or low fluctuating asymmetry (Gangestad, 2003; Rikowski and Grammer, 1999), rather than a relative measure of mate compatibility based on MHC, because the latter effect will differ between different odour donor/rater pairs. Differences in mean ratings of pleasantness given by each rater to the composite odours in the HQ category (M = 0.35, SD = 0.57) were significantly higher than those given in the LQ category (M = -1.35, SD = 0.27) (paired-samples t-test: $t_9 = 10.52$, p < 0.001). Note also that use of composite samples (i.e. pooling odours of 4 men in each category) further avoids the potential confounding influence of differences in genetic similarity between sniffer and odour donor (Roberts et al., 2008; Wedekind et al., 1995), and that composite body odours preserve comparable hedonic perceived qualities as the individual odours (Fialová et al., 2018).

1.2 Experimental procedure

To avoid possible effects of pitch convergence (Gregory et al., 2001), all videos were played without sound.

Participants were told that "at this stage" (to maintain the illusion that they might meet the judges) they had to base their responses only on visual characteristics of the person in the video (e.g. attractiveness, body language and clothing style). Additionally, the laptop video camera was on (but not recording) during the experiment, to create the illusion that their videos were going to be shown to opposite-sex participants; to assure this, the experimenters highlighted the video by adjusting the videorecorder in the presence of participants, while they viewed a real-time image of themselves on the monitor.

1.3 Acoustic analysis

Acoustic relevant variables were analysed and compiled using R version 4.0.0 (R Core Team, 2020), for each output produced by Praat (one for each recording), using a custom script (https://osf.io/6vcu4/). This script first creates subsets of data from each Praat output, eliminating data from times in which there are no registered values of F_0 or intensity, to avoid times when the participant was silent could affect acoustic mean, minimum, or SD values. Then, it computes the relevant values for each recording: mean F_0 , F_0 SD, F_0 CV (F_0 SD/mean F_0), minimum and maximum F_0 (all in Hz), mean intensity (dB), mean F_1 , F_2 , and F_3 (Hz), as well as the length of the recording, the time recognised as speech (in ms), and the proportion of the length of each recording recognised as speech.

All Praat outputs, as well as the custom script to create the final database with the relevant variables, are available at the Open Science Framework, in the Acoustic data folder of this project's data component (https://osf.io/53bzk/), so that this procedure can be reproduced and explored in depth.

2 Supplementary Results

2.1 Preliminaries

2.1.1 Load Packages

Used packages include osfr to download and open data files directly from the Open Science Framework (OSF), using the osf_retrieve_file and osf_download functions. All packages used in this file (full list in the code below) can be directly installed from the Comprehensive R Archive Network (CRAN).

```
library(tidyverse)
library(plyr)
library(ggpubr)
library(gridExtra)
library(xtable)
library(kableExtra)
library(data.table)
library(lemon)
library(car)
```

library(dplyr)
library(psych)
library(lme4)
library(lmerTest)
library(emmeans)
library(gridExtra)
library(osfr)
library(rstatix)
library(sciplot)
library(bbmle)
library(performance)
library(broom)
library(MuMIn)

2.1.2 Custom functions

2.1.2.1 lmeSig Function to bold significant effects from anova-type tables, specifying correctly formatted predictor names for the models here reported. This function highlights significant p values, and formats the output table in HTML using kable.

#List of predictor names ordered and formatted.
prednames <- c("S",
"SA",
"Sex",
"OQ",
"ANDR",
"S \$\\times\$ SA",
"S \$\\times\$ Sex",
"SA \$\\times\$ Sex",
"S \$\\times\$ OQ",
"SA \$\\times\$ OQ",
"Sex \$\\times\$ OQ",
"S \$\\times\$ ANDR",
"SA \$\\times\$ ANDR",
"Sex \$\\times\$ ANDR",
"OQ \$\\times\$ ANDR",
"S \$\\times\$ SA \$\\times\$ Sex",
"S \$\\times\$ SA \$\\times\$ OQ",
"S \$\\times\$ Sex \$\\times\$ OQ",
"SA \$\\times\$ Sex \$\\times\$ OQ",
"S \$\\times\$ SA \$\\times\$ ANDR",
"S \$\\times\$ Sex \$\\times\$ ANDR",
"SA \$\\times\$ Sex \$\\times\$ ANDR",
"S \$\\times\$ OQ \$\\times\$ ANDR",
"SA \$\\times\$ OQ \$\\times\$ ANDR",
"Sex \$\\times\$ OQ \$\\times\$ ANDR",
"S \$\\times\$ SA \$\\times\$ Sex \$\\times\$ OQ",
"S \$\\times\$ SA \$\\times\$ Sex \$\\times\$ ANDR",
"S \$\\times\$ SA \$\\times\$ OQ \$\\times\$ ANDR",
"S \$\\times\$ Sex \$\\times\$ OQ \$\\times\$ ANDR",
"SA \$\\times\$ Sex \$\\times\$ OQ \$\\times\$ ANDR",
"S \$\\times\$ SA \$\\times\$ Sex \$\\times\$ OQ \$\\times\$ ANDR")
#Function
<pre>lmeSig <- function(modTab, capti){</pre>
anoTab <- anova(modTab)
anoTab[,6] <- ifelse(anoTab[,6] < 0.0001, "\\textbf{<0.0001}",

```
ifelse(anoTab[,6] < 0.001, "\\textbf{<0.001}",</pre>
                                 ifelse(anoTab[,6] < 0.05,
                                        paste0("\\textbf{", round(anoTab[,6], 3), "}"),
                                        round(anoTab[,6], 3))))
  rownames(anoTab) <- prednames</pre>
  anoTab$DF <- paste0(anoTab$NumDF, " - ",</pre>
                        round(anoTab$DenDF, 2))
 anoTab <- anoTab[,c(1, 7, 5:6)]</pre>
finTab <- kable(anoTab,</pre>
                 caption = capti,
                 col.names = c("Sum of Squares",
                                 "$df$",
                                 "$p$"),
                 escape = FALSE) %>%
  kable_styling(latex_options = "HOLD_position") %>%
  footnote(general = "S = Session (control, experimental);
           escape = FALSE)
  return(finTab)
}
#Function
lmeSigFin <- function(modTab, capti){</pre>
  anoTab <- anova(modTab)</pre>
  anoTab[,6] <- ifelse(anoTab[,6] < 0.0001, "\\textbf{<0.0001}",</pre>
                         ifelse(anoTab[,6] < 0.001, "\\textbf{<0.001}",</pre>
                                 ifelse(anoTab[,6] < 0.05,</pre>
                                        paste0("\\textbf{", round(anoTab[,6], 3), "}"),
                                        round(anoTab[,6], 3))))
  rownames(anoTab) <- prednames</pre>
  anoTab$DF <- paste0(anoTab$NumDF, " - ",</pre>
                        round(anoTab$DenDF, 2))
  anoTab <- anoTab[,c(1, 7, 5:6)]
  colnames(anoTab) <- c("Sum of Squares",</pre>
                          "$p$")
  return(anoTab)
```

2.1.2.2 summaSig Function to bold significant p values from model tables, including summary\$coefficients, and lmerTest::ranova. It highlights significant p values, and formats the output table in LATEX, ready to be used with kable.

2.1.2.3 modDiag and lmerDiag Functions to create a plot of model diagnostics, including residual distribution, homoscedasticity (constant variance of residuals) and linearity in each (single term) predictor.

```
modDiag <- function(model){</pre>
  pa <- qplot(residuals(model,</pre>
    geom_histogram(aes(y = ..density..),
    stat_density(fill = "red",
    labs(y = "Density",
         x = "Residuals")
  pb <- ggplot(augment(model), aes(.fitted, .resid)) +</pre>
    geom_point() +
    stat smooth(method="loess") +
    geom_hline(yintercept=0,
    labs(x = "Fitted values",
  pc1 <- ggplot(data.frame(x1 = db$Session,</pre>
                                pearson = residuals(model,
                    aes(x = x1,
                        y = pearson)) +
    geom_jitter(alpha = 0.1,
    geom_boxplot(width=0.2,
    geom_smooth(method = "lm",
                 aes(group=1)) +
    labs(x = "Session",
  pc2 <- ggplot(data.frame(x1 = db$Sex,</pre>
                                pearson = residuals(model,
                                                     ype = "pearson")),
                    aes(x = x1,
                        y = pearson)) +
    geom_jitter(alpha = 0.1,
    geom_boxplot(width=0.2,
    geom_smooth(method = "lm",
                aes(group=1)) +
    labs(x = "Sex")
  pc3 <- ggplot(data.frame(x1 = db$ANDR,
```

```
pearson = residuals(model,
                    aes(x = x1,
                       y = pearson)) +
    geom_jitter(alpha = 0.1,
    geom_boxplot(width=0.2,
    geom_smooth(method = "lm",
                aes(group=1)) +
    labs(x = "ANDR",
  pc4 <- ggplot(data.frame(x1 = db$Odour_Quality,</pre>
                               pearson = residuals(model,
                    aes(x = x1,
                       y = pearson)) +
    geom_jitter(alpha = 0.1,
    geom_boxplot(width=0.2,
    geom_smooth(method = "lm",
                aes(group=1)) +
    labs(x = "Odour Quality",
  pc5 <- ggplot(data.frame(x1 = db$Stimuli_Attractiveness,</pre>
                               pearson = residuals(model,
                    aes(x = x1,
                       y = pearson)) +
    geom_jitter(alpha = 0.1,
    geom_boxplot(width=0.2,
    geom_smooth(method = "lm",
                aes(group=1)) +
    labs(x = "Stimuli Attractiveness",
  Fig <- ggarrange(ggarrange(pa, pb,</pre>
                    ggarrange(pc1, pc2, pc3, pc4, pc5,
                   heights = c(1, 2))
  return(Fig)
}
lmerDiag <- function(model, data){</pre>
 pa <- qplot(residuals(model,</pre>
```

```
geom_histogram(aes(y = ..density..),
  stat_density(fill = "red",
  labs(y = "Density",
      x = "Residuals")
pb <- ggplot(augment(model), aes(.fitted, .resid)) +</pre>
  geom_point() +
  stat_smooth(method="loess") +
  geom_hline(yintercept=0,
 labs(x = "Fitted values",
       y = "Residuals")
pc1 <- ggplot(data.frame(x1 = data$Mean_F0,</pre>
                          pearson = residuals(model,
                                               type = "pearson")),
              aes(x = x1,
                   y = pearson)) +
 geom_point() +
  geom_smooth(method = "lm") +
 labs(x = expression(paste("Mean F"[0], " (Hz)")),
pc2 <- ggplot(data.frame(x1 = data$F0_CV,</pre>
                          pearson = residuals(model,
                                               type = "pearson")),
              aes(x = x1,
                   y = pearson)) +
  geom_point() +
  geom_smooth(method = "lm") +
  labs(x = expression(paste("F"[0], " CV (Hz)")),
Fig <- ggarrange(ggarrange(pa, pb,</pre>
                 ggarrange(pc1, pc2,
                 nrow = 2)
return(Fig)
```

2.1.2.4 corstars1 Function to create a correlation matrix, and display significance (from http://myowelt. blogspot.com/2008/04/beautiful-correlation-tables-in-r.html)


```
R <- format(round(cbind(rep(-1.11, ncol(x)), R), 2))[,-1]
## build a new matrix that includes the correlations with their apropriate sta
Rnew <- matrix(paste(R, mystars, sep = ""), ncol = ncol(x))
diag(Rnew) <- paste(diag(R), " ", sep = "")
rownames(Rnew) <- colnames(x)
colnames(Rnew) <- paste(colnames(x), "", sep = "")
## remove upper triangle
Rnew <- as.matrix(Rnew)
Rnew[upper.tri(Rnew, diag = TRUE)] <- ""
Rnew <- as.data.frame(Rnew)
## remove last column and return the matrix (which is now a data frame)
Rnew <- cbind(Rnew[1:length(Rnew)-1])
return(Rnew)</pre>
```

2.1.2.5 contr.stars Function to create a dataframe of model contrasts, representing significance levels from an emmeans::emmeans output. These dataframes are formatted to be called by the ggpubr::stat_pvalue_manual function used in model figures.


```
data.summary <- function(x) {
  m <- mean(x)
  ymin <- m - se(x)
  ymax <- m + se(x)
  return(c(y=m,ymin=ymin,ymax=ymax))
}</pre>
```

2.1.2.7 pvalr This function takes *p*-values and formats them (from rawr).

```
pvalr <- function(pvals, sig.limit = .001, digits = 3, html = FALSE) {
  roundr <- function(x, digits = 1) {
    res <- sprintf(paste0('%.', digits, 'f'), x)
    zzz <- paste0('0.', paste(rep('0', digits), collapse = ''))
    res[res == paste0('-', zzz)] <- zzz
    res
}</pre>
```

s	<pre>apply(pvals, function(x, sig.limit) {</pre>	
	<pre>if (x < sig.limit)</pre>	
	if (html)	
	<pre>return(sprintf('< %s', format(sig.limit)))</pre>	else
	<pre>return(sprintf('< %s', format(sig.limit)))</pre>	
	if $(x > .1)$	
	<pre>return(roundr(x, digits = 2)) else</pre>	
	<pre>return(roundr(x, digits = digits))</pre>	
}	, sig.limit = sig.limit)	
L		

2.1.3 Load and organise data

All individual Praat outputs were compiled into the Database.csv file using an R script (https://osf.io/6vcu4/). Attractiveness ratings given to each target stimulus by each participant in each session are available in the Attractiveness Ratings.csv file. Both files are available from the Data component in the Open Science Framework (OSF) project site (https://osf.io/53bzk/).

Merge both acoustic data and attractiveness ratings.

Final dataframe structure

str(db)

'data.frame': 950 obs. of 24 variables:

##	\$ Recording	: chr	"F_A_01_Con_0S_Att_01.txt" "F_A_01_Con_0S_Att_02.txt" "F_A_01_Con_0S_At
##	\$ Subject	: chr	"F_A_01" "F_A_01" "F_A_01" "F_A_01"
##	\$ Sex	: Fac	tor w/ 2 levels "Women","Men": 1 1 1 1 1 1 1 1 1 1
##	\$ Group	: chr	"HQ no ANDR" "HQ no ANDR" "HQ no ANDR" "HQ no ANDR"
##	\$ Odour_Quality	: chr	"НQ" "НQ" "НQ"
##	\$ ANDR	: chr	"no ANDR" "no ANDR" "no ANDR"
##	\$ Session	: chr	"Control" "Control" "Control"
##	\$ Stimuli_Sex	: chr	"Opposite Sex" "Opposite Sex" "Opposite Sex" "Opposite Sex"
##	\$ Stimuli_Attractiveness	: chr	"Attractive" "Attractive" "Attractive" "Unattractive"
##	\$ Mean_FO	: num	172 178 169 169 174
##	\$ F0_SD	: num	17.2 27.2 22.5 23.7 35.5
##	\$ FO_CV	: num	0.0996 0.153 0.1337 0.1402 0.2044
##	\$ Min_FO	: num	113.3 100.1 99.9 102.9 101.5
##	\$ Max_FO	: num	229 383 250 262 499
##	\$ Intensity	: num	76.4 77.3 74.9 75.1 77
##	\$ F1	: num	523 537 556 542 550
##	\$ F2	: num	1970 1942 1730 1859 1847
##	\$ F3	: num	2933 2876 2887 2880 2821
##	\$ Recording_length	: int	6140 5430 10430 9490 12560 18140 8320 11240 12260 8510
##	\$ Voice_length	: int	3460 2940 5670 5470 6130 9020 3910 5660 6640 4830
##	\$ Prop	: num	0.564 0.541 0.544 0.576 0.488
##	\$ Age	: int	23 23 23 23 23 23 23 23 23 23
##	\$ AttractivenessRatings	: num	5.33 5.33 5.33 4.33 4.33
##	\$ Stimulus_ID	: int	1 2 3 4 5 6 1 2 3 4

2.1.4 Figure 1. Experimental design

```
2.1.4.1 Colour version Online version.
```

```
Fig1 <- osf_retrieve_file("w6c4s") %>%
    osf_download(conflicts = "overwrite")
knitr::include_graphics("Fig1_col.pdf")
```


Figure 1. Experimental design. Diagram of the sessions and stimuli used in each case. The order of session was counterbalanced between participants in each odour stimuli combination (odour quality and ANDR). For body odour quality, HQ = high quality; LQ = low quality. ANDR = androstadienone.

2.1.4.2 Greyscale version Print version.

```
Fig1 <- osf_retrieve_file("5ftgh") %>%
    osf_download(conflicts = "overwrite")
knitr::include_graphics("Fig1_BW.pdf")
```


Figure 1. Experimental design. Diagram of the sessions and stimuli used in each case. The order of session was counterbalanced between participants in each odour stimuli combination (odour quality and ANDR). For body odour quality, HQ = high quality; LQ = low quality. ANDR = androstadienone.

2.2 Descriptives

"Max")

2.2.1 Table S1. Women

Table S1. Descriptive statistics of measured variables for women

Measured characteristic	Group	Session	Stimuli attractiveness	n	Mean	SD	Median	Min	Max
		Control	Attractive	30	203.98	21.06	200.01	179.13	267.45
			Unattractive	30	201.05	22.36	192.79	177.89	264.45
	HQ + ANDR		Attractive	30	201.89	25.95	198.52	136.27	267.12
		Experimental	Unattractive	29	201.87	22.32	199.97	170.35	264.65
		Control	Attractive	30	196.02	21.04	198.37	160.30	237.20
			Unattractive	30	195.66	18.75	195.10	158.54	229.50
	HQ no ANDR	Experimental	Attractive	30	196.13	17.87	195.05	164.02	231.53
			Unattractive	30	199.08	19.56	196.43	165.52	238.85
			Attractive	30	214.11	23.38	206.18	184.52	264.03
		Control	Unattractive	30	206.43	19.38	201.94	173.44	251.90
	LQ + ANDR		Attractive	30	214.27	22.99	207.17	187.75	268.07
		Experimental	Unottroativo	20	911 11	24.26	203 79	183.87	268.27

Mean F_0 (Hz)

			Attractive	30	209.04	15.64	208.77	179.62	243.62
		Control	Unattractive	30	202.25	15.25	201.89	174.21	226.17
	LQ no ANDR		Attractive	30	207.72	13.37	204.84	188.26	236.74
		Experimental	Unattractive	30	200.61	14.48	199.16	176.40	224.64
			Attractive	30	37.94	15.11	37.31	18.01	83.24
		Control	Unattractive	30	31.73	12.85	27.20	14.55	62.16
	HQ + ANDR		Attractive	30	37.74	13.16	35.64	14.83	71.10
		Experimental	Unattractive	29	33.29	11.16	32.70	12.17	52.89
			Attractive	30	42.10	13.85	41.88	17.17	66.58
		Control	Unattractive	30	41.02	19.45	34.78	15.24	102.77
	HQ no ANDR		Attractive	30	34.88	12.78	33.37	11.95	59.04
		Experimental	Unattractive	30	36.21	18.78	28.01	16.68	91.46
			Attractive	30	41.62	12.92	39.99	20.62	72.13
		Control	Unattractive	30	39.92	14.03	38.81	12.39	79.36
	LO + ANDB		Attractive	30	41.08	17.10	37.81	14.98	79.62
$F_0 \mathrm{SD} (\mathrm{Hz})$	146 111.010	Experimental	Unattractive	30	38.17	14.28	35.03	16.27	71.30
			Attractive	30	40.21	11.94	38.57	21.60	66.92
		Control	Unattractive	30	31.84	10.51	29.37	13.85	53.67
	LO no ANDR		Attractive	30	37.31	13.92	35.25	9.24	71 79
	EQ IO ANDI	Experimental	Unattractive	30	33.06	12.56	30.33	16.34	61 74
			Attractive	30	0.19	0.08	0.19	0.10	0.43
		Control	Unattractive	30	0.16	0.07	0.14	0.07	0.32
	HQ + ANDR		Attractive	30	0.10	0.08	0.17	0.08	0.38
		Experimental	Unattractive	20	0.17	0.06	0.15	0.03	0.30
			Attractive	20	0.21	0.07	0.13	0.10	0.25
		Control		20	0.21	0.07	0.21	0.10	0.35
	HQ no ANDR		Attac ation	30	0.19	0.09	0.19	0.08	0.49
		Experimental	Attractive	30	0.18	0.07	0.17	0.06	0.36
			Unattractive	30	0.18	0.08	0.15	0.09	0.42
		Control	Attractive	30	0.19	0.06	0.19	0.10	0.31
			Unattractive	30	0.19	0.07	0.19	0.07	0.37
$F_0 \ \mathrm{CV} \ \mathrm{(Hz)}$	LQ + ANDR	Experimental	Attractive	30	0.19	0.08	0.17	0.08	0.38
		-	Unattractive	30	0.18	0.07	0.17	0.09	0.34
		Control	Attractive	30	0.19	0.06	0.19	0.10	0.34
			Unattractive	30	0.16	0.05	0.15	0.08	0.29
	LQ no ANDR	Experimental	Attractive	30	0.18	0.06	0.17	0.04	0.33
		1	Unattractive	30	0.17	0.07	0.15	0.08	0.34
		Control	Attractive	30	114.28	28.66	100.40	99.77	216.22
			Unattractive	30	110.50	19.75	101.03	99.77	176.33
	HQ + ANDR	Experimental	Attractive	30	116.07	25.61	102.48	99.81	179.28
		PP	Unattractive	29	111.50	26.93	100.64	99.80	229.75
		Control	Attractive	30	107.02	15.11	100.69	99.79	164.30
			Unattractive	30	112.07	22.88	101.50	99.82	178.94
	HQ no ANDR	Experimental	Attractive	30	110.75	20.05	102.37	99.82	176.80
		Experimental	Unattractive	30	110.01	18.01	101.89	99.78	167.82
		Control	Attractive	30	114.57	30.24	102.59	99.84	211.55
		Control	Unattractive	30	109.64	20.12	101.40	99.79	202.46
Minimum F_0 (Hz)	LQ + ANDR		Attractive	30	124.46	36.09	104.54	99.78	212.19
/		Experimental	Unattractive	30	113.00	25.44	102.21	99.80	211.07
			Attractive	30	113.33	24.39	102.59	99.82	178.27
		Control	Unattractive	30	108.16	20.55	100.94	99.81	176.62
	LQ no ANDR		Attractive	30	113.26	27.05	100.78	99.81	187.42
		Experimental	Unattractive	30	106.48	16.31	100.86	99.76	178.45

			Attractive	30	404.23	102.76	460.36	232.44	499.79
		Control	Unattractive	30	394.18	104.13	454.03	228.12	499.83
	HQ + ANDR		Attractive	30	367.82	90.90	323.78	252.34	497.72
		Experimental	Unattractive	29	346.20	92.12	305.33	219.73	499.90
			Attractive	30	372.07	105.89	378.57	204.68	499.57
		Control	Unattractive	30	385.00	106.92	423.14	216.09	499.22
	HQ no ANDR		Attractive	30	349.11	104.72	283.74	222.20	499.61
		Experimental	Unattractive	30	356.46	100.75	310.89	235.05	499.85
			Attractive	30	379.67	84.95	393.99	249.23	499.61
		Control	Unattractive	30	392.20	98.23	431.27	213.53	499.16
	LO L ANDR		Attractive	30	397.87	96.04	442.01	239.05	499.41
Maximum F_0 (Hz)	EQ + ARDR	Experimental	Unattractive	30	381.25	97.57	429.02	242.76	496.86
			Attractive	30	407 57	91.14	437.60	262.95	499.41
		Control		20	250.94	07.76	205 10	202.30	402.00
			Unattractive	30	350.84	97.76	305.12	219.22	493.99
	LQ no ANDR	Experimental	Attractive	30	360.75	94.44	321.11	220.01	497.75
		-	Unattractive	30	317.85	69.85	297.79	236.27	481.83
		Control	Attractive	30	67.17	4.91	69.95	56.09	73.81
			Unattractive	30	67.59	5.30	70.28	56.01	73.00
	HQ + ANDR	Experimental	Attractive	30	65.09	9.83	69.14	40.59	77.65
		P	Unattractive	29	65.11	10.38	69.40	39.22	76.18
		Control	Attractive	30	67.03	6.02	68.24	54.10	77.30
			Unattractive	30	66.78	6.62	69.00	55.16	77.04
	HQ no ANDR	E	Attractive	30	67.61	4.75	67.87	58.45	74.83
		Experimental	Unattractive	30	67.75	3.91	68.03	60.61	74.16
		<i>a</i>	Attractive	30	67.18	5.46	67.05	54.15	74.21
		Control	Unattractive	30	66.49	5.41	65.99	53.40	73.40
Intensity (dB)	LQ + ANDR	Experimental	Attractive	30	66.72	5.05	67.91	54.55	72.98
			Unattractive	30	66.82	5.34	67.90	52.64	74.52
			Attractive	30	65.59	3.32	65.63	59.90	70.62
		Control	Unattractive	30	65.44	3.72	66.02	56.07	70.70
	LQ no ANDR		Attractive	30	65.86	5.70	65.15	54.06	74.00
		Experimental	Unattractive	30	65.63	5.61	65.35	54.30	73.35
			Attractive	30	598.46	52.07	588.94	496.07	698.50
		Control	Unattractive	30	594.99	50.48	590.61	484.78	721.89
	HQ + ANDR		Attractive	30	557.07	115.22	573.03	259.86	807.04
		Experimental	Unattractive	29	553.29	111.21	591.72	240.25	717.77
			Attractive	30	572.86	57.46	567.70	472.42	695.74
		Control	Unattractive	30	597.37	60.82	592.65	477.99	729.40
	HQ no ANDR		Attractive	30	607.41	63.98	594.46	504.95	738.77
		Experimental	Unattractive	30	603.59	41.46	595.48	513.32	714.39
			Attractive	30	569.82	55.60	576.43	428.62	715.33
		Control	Unattractive	30	587.26	54.77	568.71	488.12	713.16
	$LO \pm ANDP$		Attractive	30	575.99	68.18	574.35	445.05	697.93
F_1 (Hz)	$E_{W} + ARDR$	Experimental	Unattractive	30	583 26	60.15	577 20	482.32	711 72
			Attractive	30	558 36	57.88	566 54	445 58	671 49
		Control	Unattractive	30	565.00	68 76	578 56	440.17	664.84
			Attractive	20	567.02	61 90	513.30	459.66	792.00
LQ no ANDR	Experimental	Hundthalt	30	507.03	01.80	557.96	408.00	183.20	
			Unattractive	30	577.41	69.34	566.78	417.09	800.50
		Control	Attractive	30	1995.37	158.19	2015.55	1702.32	2315.69
			Unattractive	30	1944.17	156.24	1951.02	1723.10	2244.60
	HQ + ANDR	Experimental	Attractive	30	1986.91	177.20	1982.20	1609.49	2278.17
		Printental	Unattractive	29	1961.78	171.27	1979.67	1612.21	2202.21
			Attractive	30	1981.53	118.99	1968.19	1729.62	2297.70

		Control							
			Unattractive	30	1993.66	169.72	1978.53	1730.25	2631.69
	HQ no ANDR	Experimental	Attractive	30	1971.38	100.66	2003.17	1803.55	2132.80
		Experimental	Unattractive	30	1959.54	113.98	1985.17	1557.19	2160.75
			Attractive	30	1956.81	126.28	1994.09	1618.41	2151.79
		Control	Unattractive	30	1931.18	96.40	1962.02	1708.99	2108.90
E_{0} (Hz)	LQ + ANDR		Attractive	30	1915.28	100.07	1926.59	1711.96	2121.35
12 (112)		Experimental	Unattractive	30	1856.58	113.64	1858.42	1565.90	2040.78
			Attractive	30	1933.58	83.88	1935.68	1722.09	2095.48
		Control	Unattractive	30	1908.73	70.42	1914.56	1758.21	2037.50
	LO no ANDR		Attractive	30	1977 62	91 71	1977 24	1804 17	2187 74
	LQ IIO ANDR	Experimental	Unattractive	20	1045.91	99.10	1019 22	1917.09	2156.70
			Au	30	1945.21	100 51	1918.32	1017.00	2150.79
		Control	Attractive	30	3003.44	106.71	3006.00	2815.01	3199.91
			Unattractive	30	2972.03	106.54	2969.69	2766.93	3161.56
	HQ + ANDR	E	Attractive	30	3008.31	143.48	2999.56	2851.38	3392.23
		Experimental	Unattractive	29	2985.90	151.14	2946.64	2790.06	3307.27
			Attractive	30	2975.58	132.96	2938.51	2672.73	3369.74
		Control	Unattractive	30	2975.80	149.76	2949.96	2709.09	3426.78
	HQ no ANDR		Attractive	30	2973.43	105.60	2947.89	2862.75	3230.57
		Experimental	Unattractive	30	2980.93	111.46	2981.55	2790.82	3205.30
			Attractive	30	2994.92	114.77	2982.85	2777.96	3249.45
		Control	Unattractive	30	2974.64	115.06	2971.71	2781.94	3249.23
	LO + ANDB		Attractive	30	2966.25	86.53	2963.69	2805.52	3128.70
F_3 (Hz)		Experimental	Unattractive	30	2945.75	101.24	2972.90	2744.19	3124.36
			Attractive	30	2997 53	88.63	2974 30	2828 34	3220.25
		Control		20	2331.00	00.00 05 70	2014.00	2020.04	2150.20
			Unattractive	30	2978.48	85.70	2989.99	2788.90	3159.88
	LQ no ANDR	Experimental	Attractive	30	3012.95	83.94	2993.68	2864.48	3235.28
			Unattractive	30	3003.48	92.88	2986.39	2884.83	3211.54
		Control	Attractive	30	8352.67	3153.36	8155.00	3180.00	14680.00
			Unattractive	30	10020.00	3862.51	11005.00	2860.00	18600.00
	HQ + ANDR		Attractive	30	8211.67	3569.81	8660.00	2630.00	16620.00
		Experimental	Unattractive	29	8933.79	3936.55	9680.00	3000.00	18620.00
			Attractive	30	7059.67	3415.50	5900.00	3260.00	16650.00
		Control	Unattractive	30	8681.00	4986.63	7815.00	2190.00	18140.00
	HQ no ANDR		Attractive	30	7409.00	4057.22	6220.00	2650.00	18530.00
		Experimental	Unattractive	30	7650.33	4111.44	6010.00	2100.00	18610.00
			Attractive	30	7590.33	2997.11	7210.00	2830.00	14690.00
		Control	Unattractive	30	9069.33	3727.17	8275.00	3120.00	16550.00
	LQ + ANDR		Attractive	30	8002.67	2825.56	8065.00	2740.00	14950.00
Recording lenght (ms)		Experimental	Unattractive	30	8682.33	3920.16	8405.00	3290.00	18760.00
			Attractive	30	8813.00	2607 19	9140.00	3280.00	14090.00
		Control	Unattractive	30	10265.00	4321.47	0030.00	3340.00	19230.00
			Attas ations	20	8744.00	4321.47	7705.00	2800.00	10200.00
	LQ no ANDR	Experimental	Attractive	30	8744.00	4370.40	1195.00	3890.00	19300.00
			Unattractive	30	9174.33	3883.70	8510.00	2980.00	17810.00
		Control	Attractive	30	3652.00	1367.86	3865.00	1240.00	6690.00
			Unattractive	30	4431.67	1576.84	4695.00	1080.00	6720.00
	HQ + ANDR	Experimente ¹	Attractive	30	3742.00	1441.12	3895.00	1220.00	7340.00
		Experimental	Unattractive	29	4178.97	1880.03	4390.00	1310.00	7210.00
			Attractive	30	3116.00	1710.57	2730.00	1070.00	8330.00
		Control	Unattractive	30	3743.67	2353.83	3170.00	810.00	9020.00
	HQ no ANDR		Attractive	30	3507.33	2011.92	3230.00	1290.00	8420.00
		Experimental	Unattractive	30	3582.67	2210.25	3340.00	1030.00	11120.00
			Attractive	30	3352.67	1497.90	3115.00	280.00	6820.00
		Control	Unattractive	30	3819.00	1477.65	3580.00	1870.00	7750.00

Time recognised as speech (ms)	LQ + ANDR		Attractive	30	3628.00	1072.63	3805.00	1610.00	5700.00
()		Experimental	Unattractive	30	3996.33	1646.48	3765.00	1890.00	7960.00
			Attractive	30	3883.67	976.26	3805.00	1800.00	5860.00
		Control	Unattractive	30	4477.33	1521.89	4570.00	2190.00	7930.00
	LQ no ANDR		Attractive	30	4122.00	1785.03	3790.00	1700.00	7520.00
		Experimental	Unattractive	30	4132.00	1615.00	4180.00	1090.00	7720.00
			Attractive	30	4.37	0.63	4.50	3.00	5.00
		Control	Unattractive	30	3.30	0.95	3.33	2.00	4.67
	HQ + ANDR		Attractive	30	4.60	1.00	4.67	2.33	6.00
		Experimental	Unattractive	29	3.46	1.36	3.67	1.00	5.33
	HQ no ANDR	Control	Attractive	30	4.77	0.70	4.67	4.00	6.33
			Unattractive	30	2.80	0.92	2.50	1.67	4.33
		Experimental	Attractive	30	4.60	0.45	4.67	3.67	5.33
			Unattractive	30	2.83	0.93	2.67	1.33	4.00
			Attractive	30	4.90	0.66	4.67	3.67	6.00
		Control	Unattractive	30	3.30	0.60	3.33	2.00	4.00
Attractiveness Batings	LQ + ANDR		Attractive	30	5.07	0.72	5.00	4.00	6.33
		Experimental	Unattractive	30	3.30	0.39	3.33	2.67	4.00
			Attractive	30	4.50	0.78	4.67	3.33	5.33
		Control	Unattractive	30	2.20	0.68	2.17	1.33	3.33
	LQ no ANDR		Attractive	30	4.40	1.05	4.33	2.67	5.67
		Experimental	Unattractive	30	2.47	0.91	2.17	1.33	4.00

2.2.2 Table S2. Men

kable(
descM,	
booktabs = TRUE,	
align = c("l", "l", "l", "l", "c", "c", "c", "c",	
<pre>caption = "\\textbf{Table S2.} Descriptive statistics of</pre>	
measured variables for men",	
<pre>col.names = linebreak(varinames),</pre>	
longtable = TRUE,	
escape = FALSE) %>%	
<pre>kable_styling(latex_options = c("HOLD_position"),</pre>	
font_size = 6) %>%	
collapse_rows(1:3)	

Table S2.	Descriptive	statistics	of measured	variables for	or men

Measured characteristic	Group	Session	Stimuli attractiveness	n	Mean	SD	Median	Min	Max
			Attractive	26	112.67	14.23	108.00	88.43	139.36
		Control	Unattractive	27	109.16	14.01	109.37	87.61	137.73
	HQ + ANDR		Attractive	30	110.70	13.21	110.64	88.63	140.26
		Experimental	Unattractive	30	107.74	14.43	106.58	85.56	137.55
	HQ no ANDR		Attractive	29	104.16	15.10	103.21	83.70	136.30
		Control	Attractive Unattractive	30	105.27	16.58	105.30	83.04	138.37
		Experimental	Attractive	30	105.19	15.57	100.32	82.55	133.72
			Unattractive	30	104.52	15.98	103.36	82.12	143.07
			Attractive	29	111.55	17.43	104.86	89.91	153.90
LQ -		Control	Unattractive	30	111.35	17.52	106.99	87.86	160.76
	LQ + ANDR		Attractive	30	107.21	15.33	100.99	90.60	153.11
		Experimental	Unattractive	30	104.56	14.52	97.70	89.01	145.36

Supplementary Material

Mean F_0 (Hz)

			Attractive	30	113.11	15.19	110.34	91.90	163.45
		Control	Unattractive	30	110.27	12.07	106.90	90.43	132.45
	LQ no ANDR		Attractive	30	110.88	12.47	111.76	88.94	131.03
		Experimental	Unattractive	30	109.23	11.63	109.28	90.72	128.42
			Attractive	26	15.47	7.64	14.82	4.92	33.08
		Control	Unattractive	27	11.80	4.77	10.89	4.37	22.04
	HQ + ANDR		Attractive	30	14.21	5.64	14.46	6.59	28.24
		Experimental	Unattractive	30	13.10	6.33	13.66	5.06	33.90
			Attractive	29	13.41	7.46	11.65	5.67	33.07
		Control	Unattractive	30	11.80	6.40	10.41	4.53	33.79
	HO no ANDR		Attractive	30	12.67	6.45	10.81	4.59	29.01
	ng no mubri	Experimental	Unattractive	30	12.18	5.38	10.78	5.56	26.16
			Attractive	29	13.56	7.04	13.67	3.26	26.29
		Control	Unattractive	30	14.22	7 10	11 58	5 76	31.48
			Attactive	20	19.45	6.66	10.54	4 59	07.60
F_0 SD (Hz)	LQ + ANDR	Experimental		20	11.40	5.00	10.34	4.52	21.09
			Attend	30	11.00	0.00	10.39	4.19	21.75
		Control	Attractive	20	10.24	5.90	12.00	0.18	20.07
			Attend	30	12.62	5.10	10.00	4.47	20.07
	LQ no ANDR	Experimental	Attractive	30	12.84	5.32	12.00	4.68	25.46
			Unattractive	30	12.66	5.48	10.88	4.12	26.92
		Control	Attractive	26	0.14	0.06	0.12	0.05	0.26
			Unattractive	27	0.11	0.04	0.10	0.04	0.22
-	HQ + ANDR	Experimental	Attractive	30	0.13	0.05	0.12	0.06	0.29
			Unattractive	30	0.12	0.05	0.10	0.05	0.27
		Control	Attractive	29	0.12	0.06	0.10	0.06	0.30
			Unattractive	30	0.11	0.05	0.10	0.05	0.24
	HQ no ANDR	Experimental	Attractive	30	0.12	0.06	0.10	0.04	0.32
			Unattractive	30	0.12	0.05	0.11	0.05	0.21
		Control	Attractive	29	0.12	0.06	0.11	0.03	0.27
			Unattractive	30	0.13	0.07	0.11	0.06	0.29
F_0 CV (Hz)	LQ + ANDR		Attractive	30	0.12	0.06	0.10	0.05	0.27
		Experimental	Unattractive	30	0.11	0.05	0.10	0.04	0.23
			Attractive	30	0.13	0.06	0.13	0.06	0.36
		Control	Unattractive	30	0.12	0.05	0.12	0.04	0.20
	LQ no ANDR		Attractive	30	0.12	0.05	0.11	0.05	0.24
		Experimental	Unattractive	30	0.12	0.05	0.10	0.04	0.26
			Attractive	26	84.80	9.99	81.10	74.80	109.83
		Control	Unattractive	27	82.18	10.35	76.96	74.83	105.19
	HQ + ANDR		Attractive	30	81.07	9.68	77.17	74.74	113.87
		Experimental	Unattractive	30	83.46	11.43	78.41	74.75	112.44
			Attractive	29	80.45	8.44	75.19	74.77	102.72
		Control	Unattractive	30	84.80	12.02	77.57	74.75	107.03
	HQ no ANDR		Attractive	30	81.79	10.00	76.21	74.75	109.39
	·	Experimental	Unattractive	30	81.61	9.63	75.85	74.76	105.11
			Attractive	29	83.79	9.07	79.54	74.77	101.74
		Control	Unattractive	30	82.65	9.50	78.35	74.76	115.39
	LO + ANDP		Attractive	30	81.13	7 75	77.30	74 77	99.61
Minimum F_0 (Hz)	$\mathbf{D}_{\mathbf{Q}} \perp \mathbf{M} \mathbf{D} \mathbf{R}$	Experimental	Unattractive	30	79.75	5 75	77.14	74 76	95.57
			Attractive	30	81.22	0.88	77.06	74 78	115.82
		Control	Inattractive	30	84.69	12.00	78.74	74 90	117 99
			Attractive	20	84.00	11.00	70.66	74.77	112.00
	LQ NO ANDR	Experimental		20	04.00	12.00	76.01	74.76	114.74
			Attractive	30	100 70	62 27	180.01	110.12	200.01
			AUTACUIVE	20	100.14	00.07	104.09	110.10	400.01

		Control	Unattractive	27	178.71	58.28	163.13	113.57	295.87
	HQ + ANDR		Attractive	30	187.04	59.35	170.74	109.75	298.96
		Experimental	Unattractive	30	185.18	59.52	175.02	114.03	299.91
			Attractive	29	175.15	63.83	155.44	106.69	295.86
		Control	Unattractive	30	165 69	57.26	149.61	102.96	299.40
			Attractivo	20	175 70	62.70	150.05	111 70	200.10
	HQ no ANDR	Experimental	Attractive	30	175.70	02.79	100.95	111.79	299.00
		-	Unattractive	30	180.68	55.77	163.96	107.80	292.27
		Control	Attractive	29	200.34	71.83	165.08	107.52	297.31
			Unattractive	30	205.32	70.59	188.41	114.93	298.45
Maximum F_0 (Hz)	LQ + ANDR		Attractive	30	170.76	58.29	143.63	113.25	297.54
		Experimental	Unattractive	30	174.72	69.16	139.42	106.35	297.07
			Attractive	30	178.86	43.21	171.26	121.61	290.10
		Control	Unattractive	30	193.42	60.82	168.75	116.13	299.97
	LQ no ANDR		Attractive	30	191.02	56.89	173.32	123.05	291.62
	-	Experimental	Unattractive	30	180.21	50.13	169.19	112.39	298.67
			Attractive	26	65 40	8.12	67.12	47.51	73 69
		Control	Unattractive	27	63.83	7 76	66.89	47 52	73 32
			Attas stins	20	62 56	F 94	64.20	52.72	70.76
	HQ + ANDR	Experimental	Attractive	30	00.00	0.24	04.39	51.13	71.00
		- "	Unattractive	30	63.03	4.77	64.43	54.55	71.68
		Control	Attractive	29	63.07	6.84	61.58	51.12	73.12
			Unattractive	30	62.77	7.26	62.70	47.48	73.00
	HQ no ANDR	Experimental	Attractive	30	63.29	7.48	65.22	50.11	73.34
			Unattractive	30	63.71	6.81	65.36	50.35	72.96
		Cantural	Attractive	29	63.73	6.28	64.05	53.20	73.44
		Control	Unattractive	30	63.49	6.17	62.92	53.29	72.98
Intensity (dB)	LQ + ANDR	Experimental	Attractive	30	64.72	5.72	66.60	55.38	75.37
			Unattractive	30	64.19	5.39	65.40	56.74	75.43
		Control	Attractive	30	63.24	6.82	62.75	53.64	73.25
	LQ no ANDR		Unattractive	30	63.10	6.81	62.12	53.91	73.30
		Experimental	Attractive	30	62.31	4.95	64.76	52.57	70.68
			Unattractive	30	62.31	5.27	64.56	52.88	72.84
			Attractive	26	686.82	173.56	633.59	418.75	1095.34
		Control	Unattractive	27	720.63	196.38	669.27	477.24	1167.50
	$HO \pm ANDR$		Attractive	30	718.17	192.16	693.07	462.56	1105.45
	ing intbit	Experimental	Unattractive	30	725.08	205.87	639 54	494.63	1103 38
			Attas stins	20	729.06	140.95	719.07	409 90	1011.00
		Control	Attractive	29	728.00	140.85	718.07	498.82	1011.90
			Unattractive	30	762.85	141.52	746.95	525.02	1011.78
	HQ no ANDR	Experimental	Attractive	30	796.28	174.58	798.86	471.99	1190.78
		Enperimental	Unattractive	30	801.13	165.24	787.20	514.68	1227.95
			Attractive	29	734.37	183.70	739.33	507.75	1105.10
		Control	Unattractive	30	742.42	196.66	729.11	462.22	1091.47
F_1 (Hz)	LQ + ANDR		Attractive	30	733.30	167.67	729.79	536.35	1075.42
1 ()		Experimental	Unattractive	30	718.59	141.33	704.05	498.81	1107.56
			Attractive	30	738.97	115.91	742.22	536.59	1066.51
		Control	Unattractive	30	713.09	98.68	729.09	550.01	902.43
	LQ no ANDR		Attractive	30	682.29	94.86	670.85	539.12	901.99
		Experimental	Unattractive	30	690.92	98.16	690.85	514.93	897.06
			Attractive	26	1808 70	120.10	1005 62	1657.65	2104 62
		Control	Innttractive	20	1027 75	159.01	1020.00	1615.05	2134.02
			Unattractive	27	1937.75	108.01	1932.60	1015.65	2289.40
	HQ + ANDR	Experimental	Attractive	30	1935.42	148.75	1932.32	1562.56	2218.35
		1	Unattractive	30	1932.45	152.20	1895.05	1646.29	2218.82
		Control	Attractive	29	1939.80	173.97	1963.69	1421.50	2147.59
		CONTIN	Unattractive	30	1937.22	173.36	1979.37	1485.39	2212.95

	HQ no ANDR		Attractive	30	1980.33	110.38	1968.27	1784.07	2210.72
		Experimental	Unattractive	30	1998.15	111.41	2002.40	1701.48	2236.46
			Attractive	29	1949.81	185.41	1954.55	1577.34	2200.72
		Control	Unattractive	30	1954.96	176.05	1954.90	1622.21	2255.36
E_0 (Hz)	LQ + ANDR		Attractive	30	1879.92	182.16	1821.84	1567.29	2341.10
12 (112)		Experimental	Unattractive	30	1860.75	194.06	1811.94	1497.63	2333.35
			Attractive	30	1904.66	203.47	1953.71	1542.51	2429.13
		Control	Unattractive	30	1898.28	187.49	1935.75	1558.25	2179.69
	LQ no ANDR		Attractive	30	1906.77	132.34	1918.25	1682.55	2205.14
		Experimental	Unattractive	30	1879.01	124.39	1914.89	1628.28	2053.03
			Attractive	26	2902.65	121.47	2886.84	2681.71	3175.36
		Control	Unattractive	27	2930.39	108.21	2942.94	2757.86	3222.86
	HO + ANDB		Attractive	30	2961.21	134.36	2963.44	2737.88	3182.37
	1146 1111210	Experimental	Unattractive	30	2961.33	145.12	2969.62	2659.34	3188.47
			Attractive	29	2986 42	203 84	3071 29	2571.09	3217 87
		Control	Unattractive	30	2000.12	157 32	3050 77	2659.23	3218 58
	HO no ANDR		Attractive	30	3005.10	80.25	3001.82	2873.01	3177.04
	HQ IIO ANDR	Experimental	Unattractive	20	2024 19	101.87	2026 72	20750.25	2224.07
			Attactive		2017 20	162.74	2022.14	2709.33	2270.94
		Control	Attractive	29	3017.30	150.20	3022.14	2796.63	3379.84
			Unattractive	30	3023.80	159.30	3012.26	2738.82	3360.95
F_3 (Hz)	LQ + ANDR	Experimental	Attractive	30	2985.38	162.76	2972.39	2686.06	3313.89
			Unattractive	30	2980.03	166.79	2966.53	2620.79	3324.20
		Control	Attractive	30	2968.34	190.74	2997.81	2675.26	3385.35
			Unattractive	30	2964.27	193.30	3014.02	2618.93	3273.17
	LQ no ANDR	Experimental Control	Attractive	30	2972.08	118.24	2951.79	2791.19	3205.89
			Unattractive	30	2965.73	114.10	2989.13	2747.52	3145.89
			Attractive	26	9707.31	3961.49	9445.00	1880.00	18660.00
	HQ + ANDR		Unattractive	27	11392.22	4877.01	10350.00	2340.00	19660.00
		Experimental	Attractive	30	12004.33	5134.80	11925.00	2620.00	19720.00
			Unattractive	30	11836.67	4990.77	11780.00	2530.00	19210.00
		Control	Attractive	29	12270.00	4757.07	12570.00	3580.00	19550.00
			Unattractive	30	12588.67	4775.83	13220.00	4630.00	19380.00
	HQ no ANDR		Attractive	30	12466.33	4973.77	12505.00	4840.00	19220.00
		Experimental	Unattractive	30	12749.67	5275.41	14220.00	3410.00	19770.00
			Attractive	29	9775.17	4823.64	8790.00	3330.00	18050.00
		Control	Unattractive	30	10233.33	4588.38	11230.00	3730.00	18630.00
Recording lenght (ms)	LQ + ANDR		Attractive	30	7610.33	3296.80	7410.00	3640.00	19180.00
		Experimental	Unattractive	30	8602.00	4163.50	7545.00	3850.00	19400.00
			Attractive	30	10804.67	4401.40	10365.00	2550.00	19730.00
		Control	Unattractive	30	11583.00	4690.28	11070.00	2910.00	19720.00
	LQ no ANDR		Attractive	30	10763.33	4817.68	9365.00	4660.00	19690.00
		Experimental	Unattractive	30	10859.33	4445.80	9710.00	3760.00	19660.00
			Attractive	26	4108.46	2207.40	3960.00	680.00	9650.00
		Control	Unattractive	27	4384.44	2468.10	3680.00	790.00	10380.00
	HQ + ANDR		Attractive	30	5050.33	2467.22	4955.00	490.00	9510.00
		Experimental	Unattractive	30	4964.00	2314.64	4750.00	580.00	9290.00
			Attractive	29	4512.76	1715.03	4350.00	1520.00	8700.00
		Control	Unattractive	30	4643.33	1741.09	4930.00	1790.00	7630.00
	HO DO ANDP		Attractive	30	4454 67	1744 70	4400.00	1720.00	7820.00
	ING IIO ANDR	Experimental	Unattractivo	30	4530.33	2310.22	4440.00	1150.00	9410.00
			Attractive	20	3808.00	2010.22	3600.00	630.00	8800.00
		Control	Inotter stire	29	4120.67	2211.11	4985 00	1120.00	0270.00
			Attractive	30 20	3004.67	1309.22	3120.00	1220.00	7350.00
			AUTACHIVE		0034.07	1002.00	J1⊿U.UU	1440.00	1000.00

Time recognised as speech (ms)	LQ + ANDR	E							
		Experimental	Unattractive	30	3518.67	1703.92	3650.00	1490.00	6960.00
			Attractive	30	4502.33	1934.00	4555.00	320.00	9060.00
		Control	Unattractive	30	5110.67	1988.15	5110.00	850.00	8320.00
	LQ no ANDR		Attractive	30	4392.67	1631.35	4405.00	1090.00	8210.00
		Experimental	Unattractive	30	4902.33	1980.59	4660.00	1330.00	9420.00
			Attractive	26	5.00	0.54	5.00	4.00	6.00
		Control	Unattractive	27	2.52	0.83	2.67	1.00	4.00
	HQ + ANDR		Attractive	30	4.90	0.90	5.17	3.00	5.67
	Exp	Experimental	Unattractive	30	2.20	0.57	2.00	1.33	3.33
	HQ no ANDR	Control	Attractive	29	5.22	0.57	5.67	4.00	5.67
			Unattractive	30	2.90	0.57	3.17	1.67	3.33
		Experimental	Attractive	30	5.37	0.63	5.00	4.67	6.33
			Unattractive	30	3.30	0.56	3.33	2.67	4.33
			Attractive	29	5.52	0.26	5.67	5.00	5.67
		Control	Unattractive	30	2.83	0.82	3.00	1.00	4.00
Attractiveness Batings	LQ + ANDR		Attractive	30	5.43	0.61	5.67	4.33	6.00
Attractiveness Ratings		Experimental	Unattractive	30	2.57	0.71	2.50	1.67	4.33
			Attractive	30	5.23	0.87	5.17	4.00	6.33
		Control	Unattractive	30	2.50	0.72	2.17	1.67	4.00
	LQ no ANDR	Experimental	Attractive	30	5.03	0.73	5.17	3.33	5.67
			Unattractive	30	2.17	0.61	2.17	1.33	3.67

2.2.3 Figure 2. Distribution by Sex and Group

Kernel density plot for all measured variables by Group and Sex.

```
2.2.3.1 Colour version Online version.
```

```
aes(Value,
                    fill = Group,
                    colour = Group)) +
  geom_density(alpha = 0.3) +
 facet_wrap(~ Measure,
             labeller = label_parsed) +
 labs(y = "Density",
  theme(strip.text.x = element_text(size = 8))
Fig2B <- ggplot(datpM,</pre>
                aes(Value,
                    fill = Group,
                    colour = Group)) +
 geom_density(alpha = 0.3) +
 facet_wrap(~ Measure,
             labeller = label_parsed) +
 labs(y = "Density",
  theme(strip.text.x = element_text(size = 8))
Fig2 <- ggarrange(Fig2A,</pre>
          Fig2B,
Fig2
```


Figure 2. Distribution of all measured variables by sex and group. (A) Women. (B) Men. Vertical lines represent the mean for each group. Detailed descriptives are found in Table S1 for women, and Table S2 for men.

2.2.3.2 Greyscale version Print version.

<pre>Fig2Bbw <- scale_cd scale_f: theme_l: theme(state)</pre>	- Fig2B + plor_grey() + ill_grey() + ight() + trip.text.x = element_text(size = 8,
	<pre>color = "black"))</pre>
#Fig 2 CON	(PLETE
Fig2bw <-	<pre>ggarrange(Fig2Abw, Fig2Bbw, common.legend = TRUE, legend = "bottom", labels = "AUTO", nrow = 2, ncol = 1)</pre>
Fig2bw	

Figure 2. Distribution of all measured variables by sex and group. (A) Women. (B) Men. Vertical lines represent the mean for each group. Detailed descriptives are found in Table S1 for women, and Table S2 for men.

2.2.4 Correlations

2.2.4.1 Table S3 All participants.

	Mean F_0 (Hz)	F_0 SD (Hz)	F_0 CV (Hz)	Intensity (dB)	Recording lenght (ms)	Time recognised as speech (ms)
Mean F_0 (Hz)						
F_0 SD (Hz)	0.74^{***}					
$F_0 \text{ CV (Hz)}$	0.41^{***}	0.89^{***}				
Intensity (dB)	0.29^{***}	0.31^{***}	0.27^{***}			
Recording lenght (ms)	-0.29***	-0.22***	-0.12^{***}	-0.10**		
Time recognised as speech (ms)	-0.15***	-0.12***	-0.07*	0.03	0.86***	
Attractiveness Ratings	-0.02	0.08^{*}	0.12^{***}	0.08^{*}	-0.06	-0.08*

```
Note:
```

p < 0.05, p < 0.01, p < 0.01, p < 0.001

2.2.4.2 Table S4 Women.

	Mean F_0 (Hz)	F_0 SD (Hz)	$F_0 \ \mathrm{CV} \ \mathrm{(Hz)}$	Intensity (dB)	Recording lenght (ms)	Time recognised as speech (ms)
Mean F_0 (Hz)						
F_0 SD (Hz)	0.18^{***}					
$F_0 \text{ CV} (\text{Hz})$	-0.08	0.96^{***}				
Intensity (dB)	0.17^{***}	0.23^{***}	0.18^{***}			
Recording lenght (ms)	-0.05	-0.06	-0.06	0.02		
Time recognised as speech (ms)	-0.01	-0.03	-0.04	0.06	0.89***	
Attractiveness Ratings	0.01	0.21^{***}	0.22***	0.11*	-0.04	-0.01

Table S4. Correlations between measured variables for women

Note:

p < 0.05, p < 0.01, p < 0.01, p < 0.001

2.2.4.3 Table S5 Men.

 Table S5. Correlations between measured variables for men

	Mean F_0 (Hz)	F_0 SD (Hz)	F_0 CV (Hz)	Intensity (dB)	Recording lenght (ms)	Time recognised as speech (ms)
Mean F_0 (Hz)						
$F_0 \text{ SD (Hz)}$	0.37^{***}					
$F_0 \text{ CV} (\text{Hz})$	0.07	0.94^{***}				
Intensity (dB)	0.20^{***}	0.22^{***}	0.19^{***}			
Recording lenght (ms)	-0.18^{***}	-0.01	0.06	-0.08		
Time recognised as speech (ms)	-0.07	-0.01	0.03	0.08	0.84^{***}	
Attractiveness Ratings	0.09*	0.12**	0.10*	0.07	-0.09	-0.14**

Note:

 $p^* < 0.05, p^* < 0.01, p^* < 0.001$

2.3 Time recognised as speech

There were interesting differences between the length of the recordings, and the time recognised as speech (time in which the Praat algorithms, produced an F_0 value).

2.3.1 Figure 3. Time recognised as speech and Recoding Length

2.3.1.1 Colour version Online version.

```
Fig3A <- ggplot(db,</pre>
                aes(x = Recording_length,
                    y = Voice_length,
                    colour = Sex)) +
  stat_smooth(method = 'lm') +
  geom_point(alpha = 0.5) +
 xlab("Recoding Length (ms)") +
  ylab("Time recognised as speech (ms)") +
  theme(legend.position = "none") +
  xlim(0, 20000) +
 ylim(0, 12000) +
  geom_rug(alpha = 0.5) +
  stat_cor(aes(label = paste(..rr.label..,
                             cut(..p..,
                                 breaks = c(-Inf,
                                            Inf),
                                             "'n.s.'")),
                             sep = "~")),
           label.x.npc = "left",
 scale_color_brewer(palette = "Set1") +
  facet_wrap(~Sex)
t.time <- db %>%
  group by(Sex) %>%
 pairwise_t_test(Voice_length ~ Session)
t.time$p.signif[t.time$p.signif == "ns"] <- NA</pre>
Fig3B <- ggplot(db,</pre>
                aes(x = Session,
                   y = Voice_length,
                   color = Sex)) +
 geom_violin(position = position_dodge(1),
 geom_point(alpha = 0.2,
             position = position_jitterdodge(jitter.width = 0.2,
                                              dodge.width = 1)) +
  stat_summary(fun.y = "mean",
               aes(group = Sex),
               position = position_dodge(1)) +
  stat_summary(fun.data = data.summary,
```

```
aes(group = Sex),
               position = position_dodge(1)) +
  geom_line(stat = "smooth",
            aes(group = Sex),
            position = position_dodge(1),
  labs(y = "Time recognised as speech (ms)",
  stat_pvalue_manual(t.time,
  theme(legend.position = "none") +
  scale color brewer(palette = "Set1") +
  labs(fill = "Stimuli_Attractiveness")
t.Prop <- db %>%
  t_test(Prop ~ Sex) %>%
 adjust_pvalue() %>%
 add_significance("p.adj")
t.Prop$p.adj.signif[t.Prop$p.adj.signif == "ns"] <- NA
Fig3C <- ggviolin(db,</pre>
 geom_jitter(aes(color = Sex),
  theme_gray() +
  stat_summary(fun.y = "mean",
  stat_summary(fun.data = data.summary,
  stat_pvalue_manual(t.Prop,
 ylab("Proportion of time \n recognised as speech") +
 scale_color_brewer(palette = "Set1") +
  theme(legend.position = "none")
Fig3 <- ggarrange(Fig3A,</pre>
                  ggarrange(Fig3B,
                            Fig3C,
```


Figure 3. Differences in time recognised as speech and recoding length. (A) Correlation between time recognised as speech and recoding length. (B) Within-subject differences in time recognised as speech in responses to attractive and unattractive stimuli. (C) Proportion of time recognised as speech by sex. Comparisons between men and women were performed using t-tests: **** p < 0.0001.

```
2.3.1.2 Greyscale version Print version.
```

32

Figure 3. Differences in time recognised as speech and recoding length. (A) Correlation between time recognised as speech and recoding length. (B) Within-subject differences in time recognised as speech in responses to attractive and unattractive stimuli. (C) Proportion of time recognised as speech by sex. Comparisons between men and women were performed using t-tests: **** p < 0.0001.

2.4 Models of measured variables

Separate models were created for each dependent variable (Mean F_0 , F_0 SD, F_0 CV, Mean intensity, and Attractiveness ratings). Following the experimental design, and because we were interested in the effects of the presence of body odour, for all models we only included the main effect of Session (control, experimental), as well as all its possible interactions with Sex (women, men), Odour_Quality (HQ, LQ), ANDR (added, not added), and Stimuli_Attractiveness (attractive, unattractive), were included as fixed factors. Session was also included as random factors, with correlated random slopes and intercepts for each participant. No other main effects were tested.

$2.4.1 \quad \mathrm{Mean} \ F_0$

 $\label{eq:linear_state} \textbf{2.4.1.1} \quad \textbf{Model fitting} \quad \text{Linear Mixed Model (LMM) fitting}.$

2.4.1.1.1 Figure S1. Diagnostics Diagnostics included residual distribution, homoscedasticity, and linearity in each fixed factor.

Figure S1. Mean F_0 model diagnostics. (A) Residual distribution. (B) Homoscedasticity (constant variance of residuals); the amount and distance of points above and below the blue line is randomly spread. (C) Linearity in each (single term) fixed factor. ANDR = Androstadienone; For odour quality, HQ = high quality, and LQ = low quality.

2.4.1.1.2 Table S6. Mean F_0 model ANOVA-type table including Sum of squares, degrees of freedom, F and p values, for all main effects and interactions.

lmeSig(m.Mean_F0, "\\textbf{Table S6.} Mean \$F_{0}\$ model")

	Sum of Squares	$d\!f$	F	p
S	91.34	1 - 79.11	1.44	0.234
SA	1416.84	1 - 791.28	22.36	< 0.0001
Sex	48119.25	1 - 80.1	759.31	< 0.0001
OQ	159.90	1 - 80.1	2.52	0.116
ANDR	73.39	1 - 80.1	1.16	0.285
$S \times SA$	63.82	1 - 791.28	1.01	0.316
$S \times Sex$	227.90	1 - 79.11	3.60	0.062
$SA \times Sex$	119.68	1 - 791.28	1.89	0.17
m S imes OQ	53.64	1 - 79.11	0.85	0.36
$SA \times OQ$	551.76	1 - 791.28	8.71	0.003
$Sex \times OQ$	56.55	1 - 80.1	0.89	0.348
$S \times ANDR$	29.18	1 - 79.11	0.46	0.499
$SA \times ANDR$	48.31	1 - 791.28	0.76	0.383
$Sex \times ANDR$	27.79	1 - 80.1	0.44	0.51
$OQ \times ANDR$	13.14	1 - 80.1	0.21	0.65
$S \times SA \times Sex$	140.26	1 - 791.28	2.21	0.137
$S \times SA \times OQ$	8.54	1 - 791.28	0.13	0.714
$S \times Sex \times OQ$	49.00	1 - 79.11	0.77	0.382
$SA \times Sex \times OQ$	537.57	1 - 791.28	8.48	0.004
$S \times SA \times ANDR$	4.86	1 - 791.28	0.08	0.782
$S \times Sex \times ANDR$	87.98	1 - 79.11	1.39	0.242
$SA \times Sex \times ANDR$	3.59	1 - 791.28	0.06	0.812
$S \times OQ \times ANDR$	33.24	1 - 79.11	0.52	0.471
$SA \times OQ \times ANDR$	275.71	1 - 791.28	4.35	0.037
$Sex \times OQ \times ANDR$	24.38	1 - 80.1	0.38	0.537
$S \times SA \times Sex \times OQ$	0.46	1 - 791.28	0.01	0.932
$S \times SA \times Sex \times ANDR$	36.43	1 - 791.28	0.57	0.449
$S \times SA \times OQ \times ANDR$	0.28	1 - 791.28	0.00	0.947
$S \times Sex \times OQ \times ANDR$	141.06	1 - 79.11	2.23	0.14
$SA \times Sex \times OQ \times ANDR$	0.05	1 - 791.28	0.00	0.977
S × SA × Sex × OQ × ANDR	119.10	1-791.28	1.88	0.171

Table	S6 .	Mean	F_0	model
Table	50.	moan	<i>L</i> ()	mouci

Note:

S = Session (control, experimental); Sex = participants sex (women, men); OQ = odour quality (high quality, low quality); ANDR = androstadienone (added, not added); <math>SA = stimuli attractiveness (attractive, unattractive).

2.4.1.2 Figure S2. Mean F_0 Modulation Figure of all effects, including pairwise comparisons between control and experimental sessions, for each group, sex, and stimuli attractiveness category.

```
color = Stimuli Attractiveness))+
  geom_violin(position = position_dodge(1),
  geom_point(alpha = 0.4,
             position = position_jitterdodge(jitter.width = 0.2,
                                             dodge.width = 1)) +
  stat summary(fun.y = "mean",
               aes(group = Stimuli_Attractiveness),
               position = position_dodge(1)) +
  stat_summary(fun.data = data.summary,
               aes(group = Stimuli_Attractiveness),
              position = position_dodge(1)) +
  geom_line(stat = "smooth",
            aes(group = Stimuli_Attractiveness),
            position = position_dodge(1),
  labs(y = expression(paste("Mean F"[0], " (Hz)")),
  facet_grid(Sex ~ Odour_Quality + ANDR,
  stat_pvalue_manual(t.Mean_F0,
                     y.position = rep(c(290, 298, 170, 175),
                                      each = 4),
                     position = position_dodge(width = 2),
 theme(legend.position = "bottom")
FigS2
```


Figure S2. Modulation in Mean F_0 . Kernel density (violin) plots and actual (jittered) data points for each group, and sex (top row = women; bottom row = men), by session (control, experimental), and stimuli attractiveness (red = attractive; blue = unattractive). Black bars represent means \pm SEM. Black, dashed lines represent the within-subject change between sessions. Significant effects of session for each group, sex, and stimuli attractiveness category (pairwise contrasts using emmeans), are represented with coloured lines and stars: * p < 0.05, ** p < 0.01, *** p < 0.001,**** p < 0.0001.

2.4.2 F₀ SD

2.4.2.1 Model fitting Linear Mixed Model (LMM) fitting.

2.4.2.1.1 Figure S3. Diagnostics Diagnostics included residual distribution, homoscedasticity, and linearity in each fixed factor.

FigS3 <- modDiag(m.F0_SD) FigS3

Figure S3. F_0 SD model diagnostics. (A) Residual distribution. (B) Homoscedasticity (constant variance of residuals); the amount and distance of points above and below the blue line is randomly spread. (C) Linearity in each (single term) fixed factor. ANDR = Androstadienone; For odour quality, HQ = high quality, and LQ = low quality.

2.4.2.1.2 Table S7. F_0 SD model ANOVA-type table including Sum of squares, degrees of freedom, F and p values, for all main effects and interactions.

lmeSig(m.F0_SD, "\\textbf{Table S7.} \$F_{0}\$ SD model")
	Sum of Squares	$d\!f$	F	p
S	268.35	1 - 80.13	3.97	0.05
SA	1294.04	1 - 791.83	19.14	< 0.0001
Sex	14858.75	1 - 80.28	219.78	< 0.0001
OQ	7.92	1 - 80.28	0.12	0.733
ANDR	5.93	1 - 80.28	0.09	0.768
$S \times SA$	121.28	1 - 791.83	1.79	0.181
$S \times Sex$	36.51	1 - 80.13	0.54	0.465
$SA \times Sex$	305.36	1 - 791.83	4.52	0.034
m S imes OQ	0.83	1 - 80.13	0.01	0.912
$SA \times OQ$	5.58	1 - 791.83	0.08	0.774
$Sex \times OQ$	6.20	1 - 80.28	0.09	0.763
$S \times ANDR$	80.19	1 - 80.13	1.19	0.279
$SA \times ANDR$	9.24	1 - 791.83	0.14	0.712
$Sex \times ANDR$	0.30	1 - 80.28	0.00	0.947
$OQ \times ANDR$	64.82	1 - 80.28	0.96	0.33
$S \times SA \times Sex$	5.62	1 - 791.83	0.08	0.773
$S \times SA \times OQ$	15.46	1 - 791.83	0.23	0.633
$S \times Sex \times OQ$	89.15	1 - 80.13	1.32	0.254
$SA \times Sex \times OQ$	110.78	1 - 791.83	1.64	0.201
$S \times SA \times ANDR$	65.84	1 - 791.83	0.97	0.324
$S \times Sex \times ANDR$	105.77	1 - 80.13	1.56	0.215
$SA \times Sex \times ANDR$	7.81	1 - 791.83	0.12	0.734
$S \times OQ \times ANDR$	132.92	1 - 80.13	1.97	0.165
$SA \times OQ \times ANDR$	541.79	1 - 791.83	8.01	0.005
$Sex \times OQ \times ANDR$	145.88	1 - 80.28	2.16	0.146
$S \times SA \times Sex \times OQ$	2.99	1 - 791.83	0.04	0.833
$S \times SA \times Sex \times ANDR$	13.16	1 - 791.83	0.19	0.659
$S \times SA \times OQ \times ANDR$	86.37	1 - 791.83	1.28	0.259
$S \times Sex \times OQ \times ANDR$	91.82	1 - 80.13	1.36	0.247
$SA \times Sex \times OQ \times ANDR$	179.53	1 - 791.83	2.66	0.104
$\rm S\timesSA\timesSex\timesOQ\timesANDR$	0.30	1 - 791.83	0.00	0.947

Table S7. F_0 SD model

S = Session (control, experimental); Sex = participants sex (women, men); OQ = odour quality (high quality, low quality); ANDR = androstadienone (added, not added); SA = stimuli attractiveness (attractive, unattractive).

2.4.2.2 Figure S4. F_0 SD Modulation Figure of all effects, including pairwise comparisons between control and experimental sessions, for each group, sex, and stimuli attractiveness category.

```
color = Stimuli_Attractiveness))+
  geom_violin(position = position_dodge(1),
  geom_point(alpha = 0.4,
             position = position_jitterdodge(jitter.width = 0.2,
                                             dodge.width = 1)) +
  stat summary(fun.y = "mean",
               aes(group = Stimuli_Attractiveness),
               position = position_dodge(1)) +
  stat_summary(fun.data = data.summary,
               aes(group = Stimuli_Attractiveness),
              position = position_dodge(1)) +
  geom_line(stat = "smooth",
            aes(group = Stimuli_Attractiveness),
            position = position_dodge(1),
  labs(y = expression(paste("F"[0], " SD (Hz)")),
  facet_grid(Sex ~ Odour_Quality + ANDR,
  stat_pvalue_manual(t.F0_SD,
                     y.position = rep(c(100, 105, 48, 45),
                                      each = 4),
                     position = position_dodge(width = 2),
 theme(legend.position = "bottom")
FigS4
```


Figure S4. Modulation in F_0 SD. Kernel density (violin) plots and actual (jittered) data points for each group, and sex (top row = women; bottom row = men), by session (control, experimental), and stimuli attractiveness (red = attractive; blue = unattractive). Black bars represent means \pm SEM. Black, dashed lines represent the within-subject change between sessions. Significant effects of session for each group, sex, and stimuli attractiveness category (pairwise contrasts using emmeans), are represented with coloured lines and stars: * p < 0.05, ** p < 0.01, *** p < 0.001,**** p < 0.0001.

$2.4.3 \quad F_0 \ \mathrm{CV}$

```
2.4.3.1 Model fitting Linear Mixed Model (LMM) fitting.
```

2.4.3.1.1 Figure S5. Diagnostics Diagnostics included residual distribution, homoscedasticity, and linearity in each fixed factor.

```
FigS5 <- modDiag(m.F0_CV)
FigS5
```


Figure S5. F_0 CV model diagnostics. (A) Residual distribution. (B) Homoscedasticity (constant variance of residuals); the amount and distance of points above and below the blue line is randomly spread. (C) Linearity in each (single term) fixed factor. ANDR = Androstadienone; For odour quality, HQ = high quality, and LQ = low quality.

2.4.3.1.2 Table S8. F_0 CV model ANOVA-type table including Sum of squares, degrees of freedom, F and p values, for all main effects and interactions.

lmeSig(m.F0_CV, "\\textbf{Table S8.} \$F_{0}\$ CV model")

	Sum of Squares	$d\!f$	F	p
S	0.01	1 - 79.94	2.66	0.107
SA	0.03	1 - 791.68	13.33	< 0.001
Sex	0.12	1 - 80.29	48.95	< 0.0001
OQ	0.00	1 - 80.29	0.04	0.842
ANDR	0.00	1 - 80.29	0.00	0.953
$S \times SA$	0.00	1 - 791.68	1.14	0.286
$S \times Sex$	0.00	1 - 79.94	0.38	0.539
$SA \times Sex$	0.00	1 - 791.68	1.20	0.275
$S \times OQ$	0.00	1 - 79.94	0.05	0.831
$SA \times OQ$	0.00	1 - 791.68	0.70	0.402
$Sex \times OQ$	0.00	1 - 80.29	0.02	0.886
$S \times ANDR$	0.00	1 - 79.94	0.95	0.334
$SA \times ANDR$	0.00	1 - 791.68	0.06	0.805
$Sex \times ANDR$	0.00	1 - 80.29	0.05	0.821
$OQ \times ANDR$	0.00	1 - 80.29	0.55	0.46
$S \times SA \times Sex$	0.00	1 - 791.68	0.06	0.812
$\mathrm{S} imes \mathrm{SA} imes \mathrm{OQ}$	0.00	1 - 791.68	0.28	0.594
$S \times Sex \times OQ$	0.00	1 - 79.94	1.32	0.253
$SA \times Sex \times OQ$	0.00	1 - 791.68	0.94	0.332
$S \times SA \times ANDR$	0.00	1 - 791.68	1.16	0.282
$S \times Sex \times ANDR$	0.00	1 - 79.94	1.20	0.276
$SA \times Sex \times ANDR$	0.00	1 - 791.68	0.04	0.849
$S \times OQ \times ANDR$	0.01	1 - 79.94	2.16	0.146
$SA \times OQ \times ANDR$	0.01	1 - 791.68	5.60	0.018
$Sex \times OQ \times ANDR$	0.00	1 - 80.29	1.37	0.246
$S \times SA \times Sex \times OQ$	0.00	1 - 791.68	0.47	0.494
$S \times SA \times Sex \times ANDR$	0.00	1 - 791.68	0.13	0.715
$S \times SA \times OQ \times ANDR$	0.00	1 - 791.68	1.50	0.22
$S \times Sex \times OQ \times ANDR$	0.00	1 - 79.94	1.33	0.252
$\mathrm{SA}\times\mathrm{Sex}\times\mathrm{OQ}\times\mathrm{ANDR}$	0.00	1 - 791.68	1.11	0.293
$\rm S \times SA \times Sex \times OQ \times ANDR$	0.00	1 - 791.68	0.01	0.933

Table S8. F_0 CV model

S = Session (control, experimental); Sex = participants sex (women, men); OQ = odour quality (high quality, low quality); ANDR = and rostadienone (added, not added); SA = stimuli attractiveness (attractive, unattractive).

2.4.3.2 Figure S6. F_0 CV Modulation Figure of all effects, including pairwise comparisons between control and experimental sessions, for each group, sex, and stimuli attractiveness category.

```
color = Stimuli_Attractiveness))+
  geom_violin(position = position_dodge(1),
  geom_point(alpha = 0.4,
             position = position_jitterdodge(jitter.width = 0.2,
  stat summary(fun.y = "mean",
               aes(group = Stimuli_Attractiveness),
               position = position_dodge(1)) +
  stat_summary(fun.data = data.summary,
               aes(group = Stimuli_Attractiveness),
              position = position_dodge(1)) +
  geom_line(stat = "smooth",
            aes(group = Stimuli_Attractiveness),
            position = position_dodge(1),
  labs(y = expression(paste("F"[0], " CV (Hz)")),
  facet_grid(Sex ~ Odour_Quality + ANDR,
  stat_pvalue_manual(t.F0_CV,
                     y.position = rep(c(0.62, 0.66, 0.40, 0.43)),
                                      each = 4),
                     position = position_dodge(width = 2),
 theme(legend.position = "bottom")
FigS6
```


Figure S6. Modulation in F_0 CV. Kernel density (violin) plots and actual (jittered) data points for each group, and sex (top row = women; bottom row = men), by session (control, experimental), and stimuli attractiveness (red = attractive; blue = unattractive). Black bars represent means \pm SEM. Black, dashed lines represent the within-subject change between sessions. Significant effects of session for each group, sex, and stimuli attractiveness category (pairwise contrasts using emmeans), are represented with coloured lines and stars: * p < 0.05, ** p < 0.01, *** p < 0.001,**** p < 0.001.

2.4.4 Mean intensity

2.4.4.1 Model fitting Linear Mixed Model (LMM) fitting.

Because this model failed to converge, we fitted the model forcing **bobyqa** optimizer for both phases, and a large number of evaluations (following the recommendations found here). This fixed initial the converge issues.

2.4.4.1.1 Figure S7. Diagnostics Diagnostics included residual distribution, homoscedasticity, and linearity in each fixed factor.

Figure S7. Intensity model diagnostics. (A) Residual distribution. (B) Homoscedasticity (constant variance of residuals); the amount and distance of points above and below the blue line is randomly spread. (C) Linearity in each (single term) fixed factor. ANDR = Androstadienone; For odour quality, HQ = high quality, and LQ = low quality.

2.4.4.1.2 Table S9. Intensity model ANOVA-type table including Sum of squares, degrees of freedom, F and p values, for all main effects and interactions.

lmeSig(m.Int, "\\textbf{Table S9.} Mean intensity model")

	Sum of Squares	$d\!f$	F	p
S SA Sex	$0.24 \\ 5.67 \\ 14.41$	1 - 79.66 1 - 790.97 1 - 80.19	0.11 2.71 6.88	0.736 0.1
OQ ANDR	0.22 0.46	1 - 80.19 1 - 80.19 1 - 80.19	$0.00 \\ 0.10 \\ 0.22$	$0.749 \\ 0.642$
$\begin{array}{l} S \times SA \\ S \times Sex \\ SA \times Sex \\ S \times OQ \\ SA \times OQ \end{array}$	$2.36 \\ 0.04 \\ 2.23 \\ 0.37 \\ 0.92$	$\begin{array}{c} 1 - 790.97 \\ 1 - 79.66 \\ 1 - 790.97 \\ 1 - 79.66 \\ 1 - 790.97 \end{array}$	$1.13 \\ 0.02 \\ 1.06 \\ 0.17 \\ 0.44$	$\begin{array}{c} 0.288 \\ 0.891 \\ 0.303 \\ 0.677 \\ 0.507 \end{array}$
$\begin{array}{l} \mathrm{Sex} \times \mathrm{OQ} \\ \mathrm{S} \times \mathrm{ANDR} \\ \mathrm{SA} \times \mathrm{ANDR} \\ \mathrm{Sex} \times \mathrm{ANDR} \\ \mathrm{OQ} \times \mathrm{ANDR} \end{array}$	0.06 0.86 3.02 0.33 0.70	$\begin{array}{c} 1 - 80.19 \\ 1 - 79.66 \\ 1 - 790.97 \\ 1 - 80.19 \\ 1 - 80.19 \end{array}$	$\begin{array}{c} 0.03 \\ 0.41 \\ 1.44 \\ 0.16 \\ 0.33 \end{array}$	$\begin{array}{c} 0.863 \\ 0.524 \\ 0.23 \\ 0.694 \\ 0.564 \end{array}$
$\begin{array}{l} S \times SA \times Sex \\ S \times SA \times OQ \\ S \times Sex \times OQ \\ SA \times Sex \times OQ \\ S \times SA \times ANDR \end{array}$	$0.02 \\ 0.53 \\ 0.07 \\ 3.47 \\ 0.15$	$\begin{array}{r} 1 - 790.97 \\ 1 - 790.97 \\ 1 - 79.66 \\ 1 - 790.97 \\ 1 - 790.97 \\ 1 - 790.97 \end{array}$	$\begin{array}{c} 0.01 \\ 0.25 \\ 0.03 \\ 1.66 \\ 0.07 \end{array}$	$\begin{array}{c} 0.929 \\ 0.617 \\ 0.856 \\ 0.198 \\ 0.788 \end{array}$
$S \times Sex \times ANDR$ $SA \times Sex \times ANDR$ $S \times OQ \times ANDR$ $SA \times OQ \times ANDR$ $Sex \times OQ \times ANDR$	$\begin{array}{c} 0.73 \\ 7.35 \\ 3.00 \\ 0.14 \\ 0.27 \end{array}$	$\begin{array}{c} 1 - 79.66 \\ 1 - 790.97 \\ 1 - 79.66 \\ 1 - 790.97 \\ 1 - 80.19 \end{array}$	$\begin{array}{c} 0.35 \\ 3.51 \\ 1.44 \\ 0.06 \\ 0.13 \end{array}$	$\begin{array}{c} 0.557 \\ 0.061 \\ 0.234 \\ 0.799 \\ 0.72 \end{array}$
$\begin{array}{l} S\times SA\times Sex\times OQ\\ S\times SA\times Sex\times ANDR\\ S\times SA\times OQ\times ANDR\\ S\times Sex\times OQ\times ANDR\\ SA\times Sex\times OQ\times ANDR\\ SA\times Sex\times OQ\times ANDR\\ S\times SA\times Sex\times OQ\times ANDR\end{array}$	$\begin{array}{c} 3.11 \\ 0.76 \\ 0.98 \\ 0.07 \\ 4.66 \\ 3.61 \end{array}$	$\begin{array}{c} 1 & - & 790.97 \\ 1 & - & 790.97 \\ 1 & - & 790.97 \\ 1 & - & 79.66 \\ 1 & - & 790.97 \\ 1 & - & 790.97 \end{array}$	$1.49 \\ 0.37 \\ 0.47 \\ 0.04 \\ 2.23 \\ 1.72$	$\begin{array}{c} 0.223 \\ 0.546 \\ 0.493 \\ 0.851 \\ 0.136 \\ 0.19 \end{array}$

 Table S9.
 Mean intensity model

S = Session (control, experimental); Sex = participants sex (women, men); OQ = odour quality (high quality, low quality); ANDR = androstadienone (added, not added); SA = stimuli attractiveness (attractive, unattractive).

2.4.4.2 Figure S8. Mean Intensity Modulation Figure of all effects, including pairwise comparisons between control and experimental sessions, for each group, sex, and stimuli attractiveness category.

```
color = Stimuli_Attractiveness))+
  geom_violin(position = position_dodge(1),
  geom_point(alpha = 0.4,
             position = position_jitterdodge(jitter.width = 0.2,
                                             dodge.width = 1)) +
  stat summary(fun.y = "mean",
               aes(group = Stimuli_Attractiveness),
               position = position_dodge(1)) +
  stat_summary(fun.data = data.summary,
               aes(group = Stimuli_Attractiveness),
              position = position_dodge(1)) +
  geom_line(stat = "smooth",
            aes(group = Stimuli_Attractiveness),
            position = position_dodge(1),
  labs(y = "Mean Intensity (dB)",
  facet_grid(Sex ~ Odour_Quality + ANDR,
  stat_pvalue_manual(t.Int,
                     y.position = rep(c(90, 93, 85, 88),
                                      each = 4),
                     position = position_dodge(width = 2),
 theme(legend.position = "bottom")
FigS8
```


Figure S8. Modulation in mean Intensity. Kernel density (violin) plots and actual (jittered) data points for each group, and sex (top row = women; bottom row = men), by session (control, experimental), and stimuli attractiveness (red = attractive; blue = unattractive). Black bars represent means \pm SEM. Black, dashed lines represent the within-subject change between sessions. Significant effects of session for each group, sex, and stimuli attractiveness category (pairwise contrasts using emmeans), are represented with coloured lines and stars: * p < 0.05, ** p < 0.01, *** p < 0.001,**** p < 0.0001.

2.4.5 Attractiveness ratings

2.4.5.1 Model fitting Linear Mixed Model (LMM) fitting.

2.4.5.1.1 Figure S9. Diagnostics Diagnostics included residual distribution, homoscedasticity, and linearity in each fixed factor.

FigS9 <- modDiag(m.Att) FigS9

Figure S9. Attractiveness ratings model diagnostics. (A) Residual distribution. (B) Homoscedasticity (constant variance of residuals); the amount and distance of points above and below the blue line is randomly spread. (C) Linearity in each (single term) fixed factor. ANDR = Androstadienone; For odour quality, HQ = high quality, and LQ = low quality.

2.4.5.1.2 Table S10. Attractiveness ratings model ANOVA-type table including Sum of squares, degrees of freedom, F and p values, for all main effects and interactions.

lmeSig(m.Att, "\\textbf{Table S10.} Attractiveness ratings model")

	Sum of Squares	$d\!f$	F	p
S	0.00	1 - 79.84	0.02	0.887
SA	1083.66	1 - 791.01	5677.98	< 0.0001
Sex	0.15	1 - 80.25	0.81	0.371
OQ	0.03	1 - 80.25	0.16	0.691
ANDR	0.42	1 - 80.25	2.21	0.141
$S \times SA$	0.00	1 - 791.01	0.00	0.956
$S \times Sex$	0.35	1 - 79.84	1.83	0.18
$SA \times Sex$	47.46	1 - 791.01	248.65	< 0.0001
m S imes OQ	0.15	1 - 79.84	0.77	0.383
$SA \times OQ$	9.61	1 - 791.01	50.33	< 0.0001
$Sex \times OQ$	0.01	1 - 80.25	0.04	0.837
$S \times ANDR$	0.01	1 - 79.84	0.06	0.812
$SA \times ANDR$	2.67	1 - 791.01	13.97	$<\!0.001$
$Sex \times ANDR$	0.95	1 - 80.25	4.99	0.028
$OQ \times ANDR$	1.57	1 - 80.25	8.22	0.005
$S \times SA \times Sex$	0.40	1 - 791.01	2.12	0.146
$S \times SA \times OQ$	0.10	1 - 791.01	0.54	0.465
$\mathrm{S} imes \mathrm{Sex} imes \mathrm{OQ}$	0.19	1 - 79.84	0.98	0.325
$SA \times Sex \times OQ$	0.02	1 - 791.01	0.08	0.771
$S \times SA \times ANDR$	1.67	1 - 791.01	8.77	0.003
$S \times Sex \times ANDR$	0.33	1 - 79.84	1.74	0.191
$SA \times Sex \times ANDR$	9.03	1 - 791.01	47.31	< 0.0001
$S \times OQ \times ANDR$	0.09	1 - 79.84	0.46	0.501
$SA \times OQ \times ANDR$	0.04	1 - 791.01	0.21	0.643
$Sex \times OQ \times ANDR$	0.07	1 - 80.25	0.39	0.535
$S \times SA \times Sex \times OQ$	0.18	1 - 791.01	0.97	0.326
$S \times SA \times Sex \times ANDR$	0.05	1 - 791.01	0.27	0.603
$S \times SA \times OQ \times ANDR$	0.01	1 - 791.01	0.05	0.819
$S \times Sex \times OQ \times ANDR$	0.59	1 - 79.84	3.08	0.083
$SA \times Sex \times OQ \times ANDR$	2.26	1 - 791.01	11.85	< 0.001
$S \times SA \times Sex \times OQ \times ANDR$	0.40	1 - 791.01	2.09	0.149

Table S10.	Attractiveness	ratings	model
Table Stol	110010001101000	raungo	mouor

S = Session (control, experimental); Sex = participants sex (women, men); OQ = odour quality (high quality, low quality); ANDR = androstadienone (added, not added); SA = stimuli attractiveness (attractive, unattractive).

2.4.5.2	Figure S10	. Odour	effects on	attractiv	veness ra	\mathbf{atings}	Figure	of all	effects,	including	pairwise
compariso	ons between c	ontrol and	experimenta	l sessions,	for each	group,	sex, and	stimuli	attract	iveness ca	ategory.

```
color = Stimuli_Attractiveness))+
  geom_violin(position = position_dodge(1),
  geom_point(alpha = 0.4,
             position = position_jitterdodge(jitter.width = 0.2,
                                             dodge.width = 1)) +
  stat summary(fun.y = "mean",
               aes(group = Stimuli_Attractiveness),
               position = position_dodge(1)) +
  stat_summary(fun.data = data.summary,
               aes(group = Stimuli_Attractiveness),
               position = position_dodge(1)) +
  geom_line(stat = "smooth",
            aes(group = Stimuli_Attractiveness),
            position = position_dodge(1),
  labs(y = "Attractiveness ratings",
  facet_grid(Sex ~ Odour_Quality + ANDR,
  stat_pvalue_manual(t.Att,
                     y.position = rep(c(7.4, 7.7, 7.2, 7.5)),
                                      each = 4),
                     position = position_dodge(width = 2),
 theme(legend.position = "bottom")
FigS10
```


Figure S10. Modulation in attractiveness ratings. Kernel density (violin) plots and actual (jittered) data points for each group, and sex (top row = women; bottom row = men), by session (control, experimental), and stimuli attractiveness (red = attractive; blue = unattractive). Black bars represent means \pm SEM. Black, dashed lines represent the within-subject change between sessions. Significant effects of session for each group, sex, and stimuli attractiveness category (pairwise contrasts using emmeans), are represented with coloured lines and stars: * p < 0.05, ** p < 0.01, **** p < 0.001.

2.4.6 Table 1. All models

align = "c",
booktabs = TRUE,
escape = FALSE) %>%
<pre>kable_styling(latex_options = c("HOLD_position", "scale_down")) %>%</pre>
<pre>footnote(general = "S = Session (control, experimental);</pre>
Sex = participants sex (women, men);
OQ = odour quality (high quality, low quality);
ANDR = androstadienone (added, not added);
SA = stimuli attractiveness (attractive, unattractive).
For all results, including all main effects, \$df\$ and Sums of Squares,
see Tables S6 to S10.",
threeparttable = TRUE,
escape = FALSE) %>%
add_header_above(c(" " = 1,
"Mean $F_{0} = 2$,
" $F_{0} \ SD$ " = 2,
$"\$F_{0} $ CV" = 2,
"Intensity" = 2,
"Attractiveness ratings" = 2),
escape = FALSE)

Table 1. Anova-type table for all models, including only main effects and interactions with Session

	Mean F_0 F_0 SD		$F_0 { m CV}$		Intensity		Attractiveness ratings			
	F	p	F	p	F	p	F	p	F	p
S	1.44	0.234	3.97	0.05	2.66	0.107	0.11	0.736	0.02	0.887
$S \times SA$	1.01	0.316	1.79	0.181	1.14	0.286	1.13	0.288	0.00	0.956
$S \times Sex$	3.60	0.062	0.54	0.465	0.38	0.539	0.02	0.891	1.83	0.18
$\mathrm{S} imes \mathrm{OQ}$	0.85	0.36	0.01	0.912	0.05	0.831	0.17	0.677	0.77	0.383
$S \times ANDR$	0.46	0.499	1.19	0.279	0.95	0.334	0.41	0.524	0.06	0.812
$S \times SA \times Sex$	2.21	0.137	0.08	0.773	0.06	0.812	0.01	0.929	2.12	0.146
$S \times SA \times OQ$	0.13	0.714	0.23	0.633	0.28	0.594	0.25	0.617	0.54	0.465
$S \times Sex \times OQ$	0.77	0.382	1.32	0.254	1.32	0.253	0.03	0.856	0.98	0.325
$S \times SA \times ANDR$	0.08	0.782	0.97	0.324	1.16	0.282	0.07	0.788	8.77	0.003
$S \times Sex \times ANDR$	1.39	0.242	1.56	0.215	1.20	0.276	0.35	0.557	1.74	0.191
$S \times OQ \times ANDR$	0.52	0.471	1.97	0.165	2.16	0.146	1.44	0.234	0.46	0.501
$S \times SA \times Sex \times OQ$	0.01	0.932	0.04	0.833	0.47	0.494	1.49	0.223	0.97	0.326
$S \times SA \times Sex \times ANDR$	0.57	0.449	0.19	0.659	0.13	0.715	0.37	0.546	0.27	0.603
$S \times SA \times OQ \times ANDR$	0.00	0.947	1.28	0.259	1.50	0.22	0.47	0.493	0.05	0.819
S × Sex × OQ × ANDR	2.23	0.14	1.36	0.247	1.33	0.252	0.04	0.851	3.08	0.083
$\rm S \times SA \times Sex \times OQ \times ANDR$	1.88	0.171	0.00	0.947	0.01	0.933	1.72	0.19	2.09	0.149

S = Session (control, experimental); Sex = participants sex (women, men); OQ = odour quality (high quality, low quality); ANDR = androstadienone (added, not added); SA = stimuli attractiveness (attractive, unattractive). For all results, including all main effects, df and Sums of Squares, see Tables S6 to S10.

2.4.7 Figure 4. Session effects and interactions

2.4.7.1 Colour version Online version.

```
#Figure
Fig4A <- ggplot(augment(m.F0_SD),</pre>
                aes(x = Session,
                    y = FO_SD) +
  geom_violin(position = position_dodge(1),
  geom_jitter(alpha = 0.4,
  stat_summary(fun.y = "mean",
  stat_summary(fun.data = data.summary,
 geom_line(stat = "smooth",
            se = FALSE,
            color = "black",
            aes(group=1)) +
  labs(y = expression(paste("F"[0], " SD (Hz)")),
       subtitle = expression(paste("Session effects on F"[0],
                                    " SD (Hz)"))) +
  stat_pvalue_manual(tt.F0_SD,
                     y.position = 120,
  theme(legend.position = "bottom")
emmsAtt2 <- emmeans(m.Att,
                    ~ Session |
                      ANDR:Stimuli_Attractiveness,
tt.Att <- contr.stars(emmsAtt2)</pre>
Fig4B <- ggplot(augment(m.Att),</pre>
                aes(x = Session,
                    y = AttractivenessRatings,
                    color = Stimuli_Attractiveness))+
  geom_violin(position = position_dodge(1),
  geom_point(alpha = 0.4,
             position = position_jitterdodge(jitter.width = 0.2,
                                              dodge.width = 1)) +
 stat_summary(fun.y = "mean",
               aes(group = Stimuli_Attractiveness),
               position = position_dodge(1)) +
```

```
stat_summary(fun.data = data.summary,
               aes(group = Stimuli_Attractiveness),
               position = position_dodge(1)) +
  geom_line(stat = "smooth",
            color = "black",
            aes(group = Stimuli_Attractiveness),
            position = position_dodge(1)) +
  labs(y = "Attractiveness ratings",
  stat_pvalue_manual(tt.Att,
                     y.position = rep(c(7.5, 8)),
                                       each = 2),
                     position = position_dodge(width = 2),
  facet_wrap(~ ANDR) +
  theme(legend.position = "bottom")
Fig4 <- ggarrange(Fig4A,</pre>
                  Fig4B,
Fig4
```

A Session effects on F₀ SD (Hz)

```
B Session effects on attractiveness ratings
```


Figure 4. Significant Session effects and interactions. (A) Main effect of Session for F_0 SD. (B) Interactions between Session, Stimuli Attractiveness and ANDR for Attractiveness ratings. The black line represents the general within-subject change between sessions (pairwise contrasts using emmeans). Significant effects of session are represented with lines and stars: * p < 0.05.

2.4.7.2 Greyscale version Print version.

Figure 4. Significant Session effects and interactions. (A) Main effect of Session for F_0 SD. (B) Interactions between Session, Stimuli Attractiveness and ANDR for Attractiveness ratings. The black line represents the general within-subject change between sessions (pairwise contrasts using emmeans). Significant effects of session are represented with lines and stars: * p < 0.05.

2.5 Models to predict attractiveness ratings

To test whether the acoustic characteristics of the participants' voices predicted the attractiveness ratings they gave to each stimulus, in each session, we fitted mixed linear regressions using Sex, Mean_F0, F0_CV, (mean) Intensity, Odour_Quality and ANDR, as well as the interactions between Sex and Mean_F0, Sex and F0_CV, and Sex and Intensity were included as fixed predictors. The interaction between participant ID (Subject) and Session was entered as a random intercept factor, to account for the two times that each participant rated and responded to each stimulus (one in each session), and avoid pseudoreplication. Although it would be ideal to allow random slopes for the acoustic variables for each Subject:Session interaction, these models failed to converge in all cases, with all optimizers.

We included F_0 CV and not F_0 SD, for three reasons: first, given that both are measures of F_0 variability, they are highly correlated (see tables S3 to S5). Second, unlike F_0 SD, F_0 CV is not significantly correlated with mean F_0 in women (Table S4), or men (Table S5). And third, we preferred F_0 CV given that it is a better representation of the perceptual variability, as it takes into account the mean F_0 of each recording.

This initial model was then reduced to include only the most relevant acoustic variables: mean F_0 , and F_0 CV. Initial and Final models were then compared using the Akaike information criterion (AIC) and Akaike weights $(w_i(AIC))$.

2.5.1 Initial Model

2.5.1.1 Model fitting Linear Mixed Model (LMM) fitting.

m1 <- lmer(AttractivenessRatings ~	
Sex +	
Mean_FO +	
FO_CV +	
Min_FO +	
Intensity +	
Mean_F0:Sex +	
FO_CV:Sex +	
Min_F0:Sex +	
Intensity:Sex +	
Odour_Quality +	
ANDR +	
(1 Subject:Session),	
data = db)	

2.5.1.1.1 Table S11. Initial model regression table Regression-type table including estimates, standard errors, degrees of freedom, as well as t and p values for each term.

```
rnames <- c("(Intercept)",</pre>
s1 <- as.data.frame(summary(m1)$coefficients)</pre>
s1 <- summasig(s1, 5)</pre>
row.names(s1) <- rnames</pre>
kable(s1,
      col.names = c("Estimate",
                      "$p$"),
      escape = FALSE) \%>\%
  kable_styling(latex_options = "HOLD_position") %>%
  footnote(general = paste0("$R^2_{marginal}$ = ",
                              round(r.squaredGLMM(m1)[1], 2),
                              round(r.squaredGLMM(m1)[2], 2),
```

```
Women were used as reference category for Sex.
Significant effects are in bold."),
threeparttable = TRUE,
escape = FALSE)
```

	Estimate	Std. Error	$d\!f$	t	p
(Intercept)	1.48	1.04	235.38	1.42	0.156
Sex (men)	0.66	1.45	255.92	0.46	0.649
Mean F_0 (Hz)	0.00	0.00	342.24	0.32	0.745
$F_0 \text{ CV (Hz)}$	3.81	0.96	621.35	3.95	0.0001
$\operatorname{Min} F_0 (\operatorname{Hz})$	0.00	0.00	914.23	1.75	0.08
Intensity (dB)	0.01	0.01	177.95	1.10	0.274
OQ(LQ)	-0.06	0.11	146.10	-0.54	0.59
ANDR (no ANDR)	-0.16	0.11	144.64	-1.49	0.138
Sex (men) \times Mean F_0 (Hz)	0.01	0.01	270.24	1.39	0.165
Sex (men) $\times F_0$ CV (Hz)	-1.76	1.54	744.41	-1.15	0.252
Sex (men) \times Min F_0 (Hz)	-0.01	0.01	883.39	-0.76	0.45
Sex (men) \times Intensity (dB)	-0.01	0.02	184.99	-0.28	0.776

Table S11. Initial model summary

 $R^2_{marginal} = 0.04, R^2_{conditional} = 0.14$. Cond. = Session (control, experimental); Sex = participants sex (women, men); OQ = odour quality (high quality = HQ, low quality = LQ); ANDR = androstadienone (added, not added); Control session, HQ body odour, and added ANDR were used as reference for categorical predictors. Women were used as reference category for Sex. Significant effects are in bold.

2.5.2 Intermediate Model

2.5.2.1 Model fitting Linear Mixed Model (LMM) fitting.

2.5.2.1.1 Table S12. Intermediate model regression table Regression-type table including estimates, standard errors, degrees of freedom, as well as t and p values for each term.

```
s2 <- as.data.frame(summary(m2)$coefficients)
s2 <- summasig(s2, 5)
row.names(s2) <- rnames[c(1:5,9:11)]
kable(s2,
        align = "c",
        digits = 2,
        caption = "\\textbf{Table S12.} Intermediate model summary",
        col.names = c("Estimate",
```

"Std. E:	rror",
"\$df\$",	
"\$t\$",	
"\$p\$"),	
booktabs = TRUE,	
escape = FALSE) %>%	
kable_styling(latex_option	ns = "HOLD_position") %>%
<pre>footnote(general = paste0</pre>	("\$R^2_{marginal}\$ = ",
	round(r.squaredGLMM(m2)[1], 2),
	", \$R^2_{conditional}\$ = ",
	round(r.squaredGLMM(m2)[2], 2),
	". Women were used as reference category for Sex.
	Significant effects are in bold."),
threeparttable =	TRUE,
escape = FALSE)	

 Table S12.
 Intermediate model summary

	Estimate	Std. Error	$d\!f$	t	p
(Intercept)	2.11	0.74	368.12	2.85	0.005
Sex (men)	0.47	0.99	354.29	0.47	0.637
Mean F_0 (Hz)	0.00	0.00	341.83	0.60	0.548
$F_0 \text{ CV (Hz)}$	3.99	0.95	622.27	4.22	0.0001
$\operatorname{Min} F_0 (\operatorname{Hz})$	0.00	0.00	920.94	1.72	0.085
Sex (men) \times Mean F_0 (Hz)	0.01	0.01	264.86	1.50	0.136
Sex (men) $\times F_0$ CV (Hz)	-1.84	1.52	751.39	-1.21	0.225
Sex (men) \times Min F_0 (Hz)	-0.01	0.01	851.00	-0.94	0.348

 $R_{marginal}^2 = 0.04, R_{conditional}^2 = 0.13$. Women were used as reference category for Sex. Significant effects are in bold.

2.5.3 Final Model

2.5.3.1 Model fitting Linear Mixed Model (LMM) fitting.

2.5.3.1.1 Table S13. Final model regression table Regression-type table including estimates, standard errors, degrees of freedom, as well as t and p values for each term.

"\$df\$",
"\$t\$",
"\$p\$"),
booktabs = TRUE,
escape = FALSE) %>%
<pre>kable_styling(latex_options = "HOLD_position") %>%</pre>
<pre>footnote(general = paste0("\$R^2_{marginal}\$ = ",</pre>
<pre>round(r.squaredGLMM(m3)[1], 2),</pre>
", \$R^2_{conditional}\$ = ",
<pre>round(r.squaredGLMM(m3)[2], 2),</pre>
". Women were used as reference category for Sex.
Significant effects are in bold."),
threeparttable = TRUE,
escape = FALSE)

Table S13. Final model summary

	Estimate	Std. Error	$d\!f$	t	p
(Intercept)	2.02	0.59	299.83	3.42	0.001
Sex (men)	0.87	0.29	267.00	2.98	0.003
Mean F_0 (Hz)	0.01	0.00	274.69	2.10	0.037
$F_0 \ \mathrm{CV} \ \mathrm{(Hz)}$	3.18	0.72	714.50	4.39	0.0001

 $R_{marginal}^2 = 0.03, R_{conditional}^2 = 0.13$. Women were used as reference category for Sex. Significant effects are in bold.

2.5.3.2 Table S14. Model comparison and selection Comparison of the Initial, Intermediate and Final models by AIC and Akaike weights.

	round(aict[1,4]/aict[2,4], 2),
	" times more likely to be the best model
	compared to the Intermediate Model, and about ",
	<pre>format(round(aict[1,4]/aict[3,4], 12),</pre>
	<pre>big.mark = ",", scientific = FALSE),</pre>
	" times compared to Initial Model (the Intermediate Model,
	was around ",
	<pre>format(round(aict[2,4]/aict[3,4], 12),</pre>
	<pre>big.mark = ",", scientific = FALSE),</pre>
	" times more likely compared to the Initial Model).
	For a detailed description of values,
	<pre>see the \\\\href{https://www.shorturl.at/iGIKT}{ICtab}</pre>
	function documentation."),
threeparttable = escape = FALSE)	TRUE,

Table S14. Information criteria for the Initial, Intermediate and Final models

	AIC	ΔAIC	$d\!f$	$w_i(AIC)$
Final	3246.879	0.0000	6	$0.7896 \\ 0.2104 \\ 0.0000$
Intermediate	3249.524	2.6445	10	
Initial	3311.105	64.2260	14	

The Final Model is close to 3.75 times more likely to be the best model compared to the Intermediate Model, and about 88,408,423,407,662 times compared to Initial Model (the Intermediate Model, was around 23,563,747,209,244 times more likely compared to the Initial Model). For a detailed description of values, see the ICtab function documentation.

2.5.3.3 Final model diagnostic

2.5.3.3.1 Figure S11. Final model diagnostics. Once a Final model was chosen, diagnostics (residual distribution, homoscedasticity, and linearity in each fixed factor) were performed.

lmerDiag(m3, db)

Figure S11. Final model diagnostics. (A) Residual distribution. (B) Homoscedasticity (constant variance of residuals); the amount and distance of points above and below the blue line is randomly spread. (C) Linearity in each fixed factor.

2.5.3.3.2 Table S15. Final model distribution family. As shown in Fig. S11A, the residual distribution of the Final model was highly bimodal. To test whether a different distribution family was more appropriate (i.e. fitting a generalised, instead of a general, mixed linear model), we checked the probability of the model for each distribution family, using the check_distribution function, from the performance package.

Table S15. Distributional family for the Final model

	Probability for each distribution			
Family	Residuals	Response		
Beta-binomial	0%	31.25%		
Binomial	0%	50%		
Gamma	3.12%	0%		
Normal	87.5%	0%		
Poisson	0%	15.62%		
Weibull	9.38%	3.12%		

Only families with at least one probability higher than 2% are shown, but a total of 17 distribution families were tested by the function.

2.5.3.4 Table 2. Final model regression table (with bootstrap 95% CI) Although the most probable family distribution for the Final model was a normal one (87.5%; Table S15), it still differed (see Fig. S11A) and was highly bimodal, even when separate models were fitted for women and men (not included here). Because of this, we calculated bootstrap confidence intervals for the model estimates, using the confint.merMod function, from the 1me4 package.

kable(s4,				
align = "c",				
digits = 2,				
<pre>caption = "\\textbf{Table 2.} Final model summary (with bootstrap 95\\% CI)",</pre>				
<pre>col.names = c("Estimate",</pre>				
"Lower 95\\% CI",				
"Upper 95\\% CI",				
"Std. Error",				
"\$df\$",				
"\$t\$",				
"\$p\$"),				
booktabs = TRUE,				
escape = FALSE) %>%				
kable_styling(latex_options = "HOLD_position") %>%				
<pre>footnote(general = paste0("\$R^2_{marginal}\$ = ",</pre>				
round(r.squaredGLMM(m3)[1], 2),				
", \$R^2_{conditional}\$ = ",				
round(r.squaredGLMM(m3)[2], 2),				
". Confidence intervals were calculated as the 2.5 and 97.5				
percentiles from bootstrap (1000 simulations).				
Women were used as reference category for Sex.				
Significant effects are in bold."),				
threeparttable = TRUE,				
escape = FALSE)				

Table 2. Final model summary (with bootstrap 95% CI)

	Estimate	Lower 95% CI	Upper 95% CI	Std. Error	$d\!f$	t	p
(Intercept)	2.02	0.83	3.09	0.59	299.83	3.42	0.001
Sex (men)	0.87	0.33	1.47	0.29	267.00	2.98	0.003
Mean F_0 (Hz)	0.01	0.00	0.01	0.00	274.69	2.10	0.037
$F_0 \text{ CV} (\text{Hz})$	3.18	1.86	4.61	0.72	714.50	4.39	0.0001

 $R_{marginal}^2 = 0.03, R_{conditional}^2 = 0.13$. Confidence intervals were calculated as the 2.5 and 97.5 percentiles from bootstrap (1000 simulations). Women were used as reference category for Sex. Significant effects are in bold.

2.5.4 Figure 5. Voice predictor slopes

2.5.4.1 Colour version Online version.

```
labs(x = expression(paste("Mean F"[0],
      subtitle = expression(paste("Mean F"[0],
 facet_wrap(~ Sex, scales = "free_x")
Fig5B <- ggplot(fortify.merMod(m3),</pre>
               aes(x = F0_CV),
                   y = predict(m3),
                   colour = Group)) +
 geom_line(stat="smooth",
           aes(lty=Group,
               group = Subject)) +
 geom_point(alpha = 0.2) +
 geom_rug(aes(colour = Group),
 labs(x = expression(paste("F"[0],
      subtitle = expression(paste("F"[0],
                                  " CV (Hz)"))) +
 facet_wrap(~ Sex, scales = "free_x")
Fig5 <- ggarrange(Fig5A,</pre>
                 Fig5B,
Fig5
```

A Mean F₀ (Hz)

Group - HQ + ANDR - HQ no ANDR - LQ + ANDR - LQ no ANDR

Figure 5. Single term voice predictor slopes. Slope of coefficients for each (single term) fixed predictor, against predicted attractiveness ratings for the Final Model (linear relationship between each model term and predicted response), for women (left) and men (right). (A) Mean F_0 . (B) F_0 CV. Coloured lines represent the slope for each participant, according to their group. The black line represents the general effect.

2.5.4.2 Greyscale version Print version.

Fig5bw

Figure 5. Single term voice predictor slopes. Slope of coefficients for each (single term) fixed predictor, against predicted attractiveness ratings for the Final Model (linear relationship between each model term and predicted response), for women (left) and men (right). (A) Mean F_0 . (B) F_0 CV. Dashed lines represent the slope for each participant, according to their group. The thick black line represents the general effect.

3 References

- Fialová, J., Sorokowska, A., Roberts, S.C., Kubicová, L., Havlíček, J., 2018. Human body odour Composites are not perceived more positively than the individual samples. i-Perception 9. https://doi.org/10.1177/ 2041669518766367
- Gangestad, S.W., 2003. Facial masculinity and fluctuating asymmetry. Evolution and Human Behavior 24, 231–241. https://doi.org/10.1016/S1090-5138(03)00017-5
- Gregory, S.W., Green, B.E., Carrothers, R.M., Dagan, K.A., Webster, S.W., 2001. Verifying the primacy of voice fundamental frequency in social status accommodation. Language and Communication 21, 37–60. https: //doi.org/10.1016/S0271-5309(00)00011-2
- Havlíček, J., Roberts, S.C., Flegr, J., 2005. Women's preference for dominant male odour: Effects of menstrual cycle and relationship status. Biology letters 1, 256–259. https://doi.org/10.1098/rsbl.2005.0332
- R Core Team, 2020. R: A language and environment for statistical computing.
- Rikowski, A., Grammer, K., 1999. Human body odour, symmetry and attractiveness. Proceedings of the Royal Society B: Biological Sciences 266, 869–874. https://doi.org/10.1098/rspb.1999.0717
- Roberts, S.C., Gosling, L.M., Carter, V., Petrie, M., 2008. MHC-correlated odour preferences in humans and the use of oral contraceptives. Proceedings of the Royal Society B: Biological Sciences 275, 2715–2722. https://doi.org/10.1016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.com/10016/j.c

//doi.org/10.1098/rspb.2008.0825

Wedekind, C., Seebeck, T., Bettens, F., Paepke, A.J., 1995. MHC-dependent mate preferences in humans. Proceedings of the Royal Society B: Biological Sciences 260, 245–249. https://doi.org/10.1098/rspb.1995.0087

4 Session info (for reproducibility)

library(pander)
pander(sessionInfo(), locale = FALSE)

R version 4.0.0 (2020-04-24)

Platform: x86_64-w64-mingw32/x64 (64-bit)

attached base packages: stats4, stats, graphics, grDevices, utils, datasets, methods and base

other attached packages: pander(v.0.6.3), Hmisc(v.4.4-0), Formula(v.1.2-3), survival(v.3.1-12), lattice(v.0.20-41), MuMIn(v.1.43.17), broom(v.0.5.6), performance(v.0.4.6), bbmle(v.1.0.23.1), sciplot(v.1.2-0), rstatix(v.0.5.0), osfr(v.0.2.8), emmeans(v.1.4.6), lmerTest(v.3.1-2), lme4(v.1.1-23), Matrix(v.1.2-18), psych(v.1.9.12.31), car(v.3.0-8), carData(v.3.0-3), lemon(v.0.4.4), data.table(v.1.12.8), kableExtra(v.1.1.0), xtable(v.1.8-4), gridExtra(v.2.3), ggpubr(v.0.3.0), plyr(v.1.8.6), forcats(v.0.5.0), stringr(v.1.4.0), dplyr(v.1.0.0), purr(v.0.3.4), readr(v.1.3.1), tidyr(v.1.1.0), tibble(v.3.0.1), ggplot2(v.3.3.1), tidyverse(v.1.3.0) and knitr(v.1.28)

loaded via a namespace (and not attached): readxl(v.1.3.1), backports(v.1.1.7), splines(v.4.0.0), $TH. data (v. 1.0-10), \ urltools (v. 1.7.3), \ digest (v. 0.6.25), \ html tools (v. 0.4.0), \ fansi (v. 0.4.1), \ magrittr (v. 1.5), \ check-indicate (v. 0.4.1), \ check-indic$ mate(v.2.0.0), memoise(v.1.1.0), cluster(v.2.1.0), openxlsx(v.4.1.5), modelr(v.0.1.8), sandwich(v.2.5-1),bdsmatrix(v.1.3-4), jpeq(v.0.1-8.1), colorspace(v.1.4-1), rvest(v.0.3.5), haven(v.2.2.0), xfun(v.0.14), crayon(v.1.3.4),jsonlite(v.1.6.1), zoo(v.1.8-8), glue(v.1.4.1), gtable(v.0.3.0), webshot(v.0.5.2), abind(v.1.4-5), scales(v.1.1.1),mvtnorm(v.1.1-0), DBI(v.1.1.0), Rcpp(v.1.0.4.6), viridisLite(v.0.3.0), htmlTable(v.1.13.3), foreign(v.0.8-78),htmlwidgets(v.1.5.1), httr(v.1.4.1), RColorBrewer(v.1.1-2), acepack(v.1.4.1), ellipsis(v.0.3.1), pkgconfig(v.2.0.3),farver(v.2.0.3), nnet(v.7.3-13), dbplyr(v.1.4.3), crul(v.0.9.0), tidyselect(v.1.1.0), labeling(v.0.3), rlang(v.0.4.6), reshape2(v.1.4.4), munsell(v.0.5.0), cellranger(v.1.1.0), tools(v.4.0.0), cli(v.2.0.2), generics(v.0.0.2), evaluate(v.0.14), cli(v.2.0.2), clyaml(v.2.2.1), fs(v.1.4.1), zip(v.2.0.4), randomForest(v.4.6-14), nlme(v.3.1-147), xml2(v.1.3.2), compiler(v.4.0.0), randomForest(v.4.6-14), nlme(v.3.1-147), randomForest(v.4.6-14), randomForest(v.4.6-14),rstudioapi(v.0.11), curl(v.4.3), png(v.0.1-7), ggsignif(v.0.6.0), reprex(v.0.3.0), statmod(v.1.4.34), stringi(v.1.4.6), $highr(v.0.8), \ nloptr(v.1.2.2.1), \ vctrs(v.0.3.1), \ pillar(v.1.4.4), \ lifecycle(v.0.2.0), \ triebeard(v.0.3.0), \ estimability \ respectively \ respec$ ity(v.1.3), cowplot(v.1.0.0), insight(v.0.8.4), R6(v.2.4.1), latticeExtra(v.0.6-29), rio(v.0.5.16), codetools(v.0.2-16), codetools(v.16), boot(v.1.3-24), MASS(v.7.3-51.5), assert that(v.0.2.1), withr(v.2.2.0), httpcode(v.0.3.0), mnormt(v.1.5-60)7), multcomp(v.1.4-13), mgcv(v.1.8-31), bayestestR(v.0.6.0), parallel(v.4.0.0), hms(v.0.5.3), grid(v.4.0.0), rpart(v.4.1-15), coda(v.0.19-3), minga(v.1.2.4), rmarkdown(v.2.1), numDeriv(v.2016.8-1.1), lubridate(v.1.7.8) andbase64 enc(v.0.1-3)