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Abstract

Stochastic dynamic epidemiological models are key to data-driven understanding of infectious
disease. This thesis aims to expand, develop and provide deeper insights into applications
of direct (DT) and environmental transmission (ET) models as mechanistic descriptions of
environmentally transmitted infections like cholera and diseases affecting aquaculture pro-
duction.

We explore timescale separation between host and environmental pathogens as the factor
determining whether ET may be adequately described by a DT model. When fitting DT
models to data, graphical posterior-prediction demonstrates robustness to departures from
DT.

Rates of environmental transmission and pathogen decay of white spot disease among penaeid
shrimp are estimated from published data and used to formulate the DT, susceptible-exposed-
infected-removed (SEIR), and ET susceptible-exposed-infected-removed-pathogen (SEIR-P)
models. Investigation of regular partial removal of dead and diseased shrimp reveals that
host-disease dynamics of both models are almost indistinguishable with 24-hourly removals.
However, for 6-hourly removals the SEIR model under-estimates average reduction in out-
break size and over-estimates duration compared with the SEIR-P model, demonstrating
limitations of DT models.

Novel methods of Bayesian inference are shown to reliably estimate key model parameters
using data from routine immersion challenge experiments (ICE). How design of such exper-
iments can be aided using simulation and ideas from information theory is shown. Using
published data and particle-marginal Markov chain Monte Carlo (PM-MCMC), we estimate
the transmission rate and mean duration of latent infectiousness for a novel strain of Piscine
orthoreovirus affecting rainbow trout.

Finally, using PM-MCMC, we show that rates of environmental transmission, pathogen
emission and loss of pathogen viability of an ET model that distinguishes between viable
and non-viable pathogen may be estimated from routine ICE data with additional digital
polymerase chain reaction measurements of waterborne pathogen load. This work opens
up application of ET models to develop understanding of pathogen dynamics beyond the
confining assumption of direct transmission.

Supervisors: Dr Andy Hoyle, Dr Darren Green, Prof. Glenn Marion, Dr Ross Davidson
& Prof. Mike Hutchings
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Chapter 1
Introduction

1.1 Background

Modern epidemiology’s basis in the germ theory of disease, which posits that pathogenic micro-
organisms, such as bacteria, viruses, fungi and macroparasites, are the cause of transmissible
illness, has its roots in empirical study by scientists in the nineteenth century. Most notable
among these are John Snow, whose investigations into the spread of cholera [Sno49] offered an
evidence-based refutation of the, then prevailing, miasma theory of disease, as well as Louis
Pasteur, Robert Koch and Joseph Lister [Gay11, BB10, Wor13, McG85]. In a continual arms
race [WSB+21], these pathogens exhibit multifarious ways of invading their hosts’ defences in
order to replicate themselves. The distances and durations that pathogens can travel from
one host to the next vary from immediate, short-range transmission due to contact with bodily
fluids or close proximity, so called direct routes of transmission, to environmental routes involving
disperal of aerosols and contamination of water and food sources.

The aim of this thesis is to improve the understanding of epidemiology through the representa-
tion of complex processes of disease transmission and progression by mechanistic models. Espe-
cially, we will address the quantification of such models using data that is becoming increasingly
available with the advancement of a wealth of technologies. Data-informed mechanistic models
of disease spread will bring predictive power to formation of disease control and surveillance
strategies. Some of the practical challenges in modelling and inference that this raises will be
addressed by the work here. Direct transmission models (DTM) are more widely used for quan-
titative prediction, because the data requirements are reduced, compared with environmental
transmission models (ETM) and partly because modern statistical methods for fitting ETMs are
less developed than for their DTM counterparts. This thesis aims to develop tools and insights
that enable expanded use of both types of transmission models, and in particular to narrow this
gap between them.
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1.1.1. Disease surveillance, monitoring and prediction in the Information Age

1.1.1 Disease surveillance, monitoring and prediction in the Information
Age

Data and mechanistic models together provide the key to understanding the spread of infectious
disease among humans, livestock and wild animal populations. The first instance of systematic
collection and reporting of disease cases came in the nineteenth century, coinciding with early
public health interventions, such as the introduction of the smallpox vaccine [SGOV16] and the
Broad Street water pump investigation of 1854, which by plotting local incidences of cholera
on a streetmap of London, John Snow was able to pinpoint a water source as the source of
infection [fI21] - see Figure 1.1. Reporting developed at the turn of the twentieth century to
include the coding of cause of death on death certificates, and with the advent of computers
in the twentieth century, health reporting went digital [SGOV16]. The leap from an empirical,
observational understanding of disease spread (e.g. studying case incidences) to a mechanistic
one that captures disease outbreaks as a process came in 1927 with Kermack & McKendrick’s
Contribution to the Mathematical Theory of Epidemics [KM27]. Mechanistic disease models
(which we will return to below) enable the close study of the complex patterns of outbreaks,
which themselves are difficult, if not impossible, to observe fully. More importantly, they allow
predictions to be made about future patterns of disease outbreaks. There has since been an
explosion in the field of mathematical epidemiolgy, with particular focus on how these models
are quantified using observational data.

In 2012, Forbes’ magazine heralded the Age of Big Data [Pet12]. Nearly a decade on, we live
in an increasingly data rich world. This is transforming how we understand and respond to
outbreaks of infectious disease. Internet search patterns, digitised health records and social
media now augment classical disease surveillance methods. Between 2008 and 2013, Google
operated Flu Trends, which mapped influenza and influenza-like illnesses in real time using
search engine query data. This was highly successful up until the 2012-2013 winter influenza
epidemic [GMP+09]. Currently, internet search data are being used to map the clinical course
of COVID-19 disease progression [LR21]. GPS tracking and proximity detection technologies,
such as bluetooth, are providing online data flows detailing human movements and interactions
(thanks to smartphones, which by the end of 2021 almost half of the world’s 7.9 billion people are
expected to own [O’D20]). GPS data are also assisting the study of diseases in wild animals, e.g.
bovine TB in badgers [GKM+18] and livestock [BTKT18]. The use of wearable fitness sensors is
projected to exceed 1.1 billion by 2022 [Hol20] and more medically oriented devices integrating
a wide range of technologies, including optical, temperature, movement and chemical sensing
[YMHÜ+18] will provide streams of physiological data. Novel pathogen detection technologies,
such as digital polymerase chain reaction (dPCR) [SJ13], are enabling real-time monitoring for
airborne pathogens in public spaces [FY15, LSJ+20]. Similarly, low cost technologies can provide
autonomous early detection of waterborne pathogens, such as cholera, which is transmitted to
humans via contaminated water sources [WHO21b, ZGH+19] and the many viral and bacterial
pathogens that affect aquaculture production. Fifth generation (5G) networks, allowing up to a
million devices per square kilometre to connect to the internet [ARM21], and distributed, mobile
edge computing and machine learning will bring us closer to the mass adoption of “telemedicine”
and automatic disease diagnosis [ZLZ+20].
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1.1.1. Disease surveillance, monitoring and prediction in the Information Age

An extremely useful dataset describing human movements and interactions was obtained from
a citizen science experiment conducted by the BBC to mark the centenary of the 1918 Spanish
flu pandemic [oC18]. In two experiments, the movements of 28,947 [KKG18] volunteers from
across the UK were tracked. The first experiment tracked people for three days in the southern
English town of Haslemere, and the second experiment tracked a number of participants for
24 hours nationwide. Participants were then asked to report any contacts they had had in
the course of their day, along with some estimated demographic information about those they
came into contact with. The dataset formed from the nationwide experiment was used by
a team of researchers from the University of Cambridge and the London School of Hygiene
and Tropical Medicine to put together a model simulating UK-wide spread of an influenza-
like illness that first emerges in Haslemere. The team noted interesting interactions between
patterns of movement and the participants’ age, gender and whether they live in an urban or
rural setting, with rural dwellers tending to spend more time far from home [KKG18]. By
mapping the origins and destinations of journeys of more than 200 km, and noting that these
tended to coincide predominantly with areas of high population density, such as towns and
cities, the data allowed the researchers to calibrate that part of their model that governs how
the infection jumps between distant areas of higher population density. Rather than relying
on an assumption of how infections jump over long distances, the data informed a much more
specific mechanism [KKG18] and therefore, potentially, a more realistic picture of disease spread.
The BBC Contagion! dataset, now in the public domain, has since been used to model localised
COVID-19 control strategies and how such interventions interact with complex human social
behaviours [FHK+20].

In addition to these data flows there are challenge studies, i.e. observations of the effects of
infectious disease and the dynamics of its progression through a population, under controlled
conditions. These shed light on how various factors, such as the environment and genetics,
interact with the epidemiology of the infection, such as the likely severity of illness and the
ease with which it is transmitted among the population. How genetics can confer greater or
lesser resistance to a disease, influence a host’s infectiousness and the likely severity of resulting
illness are currently the subject of many challenge studies in animals, e.g. a study by [RBM+14]
suggests that resistance to bacterial infection by Aeromonas hydrophila in rohu carp (Labeo
rohita) is linked to genotype and a study by [DAS+21] suggests that breed composition may
influence the progression of bovine spongiform encephalopathy in steers. The effects of envi-
ronmental factors on disease are also the subject of numerous studies, including the effect of
water temperature on expression of nervous necrosis virus in the Australian bass species Mac-
quaria novemaculeata [JFWH19] the effects of acidity and salt concentration on the mortality
of Vietnamese striped catfish, Pangasianodon hypophthalmus due to bacterial infection with Ed-
wardsiella ictaluri [PRC20]. There have been recent developments in the use of models to enable
inference of genetic effects from challenge studies, e.g. [PMB+20].

Challenge studies are not, however, limited to fish, livestock and wild animals. In October
2020, a human challenge study of SARS-CoV-2 in the UK was the first of its kind to have
received ethical approval [Kir20]. Alongside testing the effectiveness of vaccines, an aim of this
study is to ascertain the minimum viral dose required to induce infection in young healthy
people. Such information on minimal dose will help to inform a dose-response relationship,
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1.1.1. Disease surveillance, monitoring and prediction in the Information Age

Figure 1.1: John Snow’s map showing cholera cases (indicated by stacked rectangles) in the
London epidemic of 1854. Clear clustering around Broad Street can be seen from the pattern
of cases and is the location of the contaminated water source. Source https://en.wikipedia.
org/wiki/1854_Broad_Street_cholera_outbreak#/media/File:Snow-cholera-map-1.jpg.

.

relating the likelihood that an individual is infected upon exposure to the virus to the amount
of pathogen that they are exposed to. More broadly, such information can, in turn, be linked
into knowledge of persistence of pathogens in the environment and the dynamics of air flows or
water currents in order to predict the spatial spread of infections. An example of this having
been done is a reproduction, in simulation, of a large community outbreak of SARS in the
Amoy Gardens residential complex in Hong Kong in 2003 [YLW+04]. Using computational fluid
dynamics, researchers were able to reproduce the temporal and spatial pattern of cases observed
to occur around 24-29 March 2003 in the vicinity of an air shaft thought to be the origin of a
virus-laden plume of air. The directional bias in the spatial distribution of cases toward “the
north, west, and southwest of Amoy Gardens” was linked to the prevailing wind direction at the
time [YQTW14]. This and similar studies helped to confirm the airborne spread of SARS and
now work is underway to mitigate the risks of airborne transmission of SARS-CoV-2 in public
buildings and transport infrastructure [CSBM20, MC20, PPS20].
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1.1.2. Waterborne pathogens and the global aquaculture industry

1.1.2 Waterborne pathogens and the global aquaculture industry

A particular focus of application for the work of this thesis are diseases that affect aquaculture
production. Disease poses the most significant threat to aquaculture production, to the tune of
6 billion US dollars annually, according to the World Bank [Ban14]. The Food and Agriculture
Organization of the United Nations (FAO) estimate that aquaculture, i.e. the farming and
harvesting of fish (i.e. “fish, crustaceans, molluscs and other aquatic animals, but exclud[ing]
aquatic mammals, reptiles, seaweeds and other aquatic plants” [FAO20]) accounted for 46%
of the 179 million tonnes (401 billion USD in value) of fish produced in 2018 and 52% of fish
consumed by humans [FAO20]. Overall growth in production in the Americas and Europe
has reversed in recent decades [FAO20] - they contributed 14% and 10% respectively to global
production in 2018. However, Asia and, in particular, China have seen significant growth, both
in overall production, and in the share of this contributed by inland and marine aquaculture
[FAO20]. China has seen rapid development of production capacity in the last 30 years [GTL+18,
Chapter 1.5] and in 2018 accounted for 35% of global fish production [FAO20]. One key driver for
this growth is the low requirement for external feed inputs for many stocks meaning aquaculture
is an efficient means of protein production [GTL+18, Chapter 1.5].

Aquaculture practices vary with geography and environmental conditions. For example, in
Scotland the rearing of Atlantic salmon and other salmonid species, such as rainbow trout, in
addition to shellfish, including Pacific and native oysters, scallops and mussels, accounts for the
bulk Scottish of aquaculture [Sco21]. Atlantic salmon is a major export industry in Scotland,
with over 162 thousand tonnes produced in 2016 [Sco21]. In Southeast Asia production focusses
on freshwater species, such as carp, catfish and tilapia, as well as numerous species of shrimp
in brackish waters and molluscs in marine environments [HBRY09]. Shrimp represent a major
export market for this region [HBRY09].

While overall growth in capture fisheries has stalled since around the late 1980s [FAO20], due to
increased aquaculture, growth in fish production has outpaced all other food production sectors
over the last 40 years [BBS+15]. In the context of the United Nations’ call for the doubling
of food production by 2050 to remain in line with projected population growth [Nat09], fish
consumption is expected to play a critical role in prevention of malnutrition [LMWH18]. The
aquaculture industry is therefore vital to global food security.

The culture of salmonid species, including Atlantic salmon and rainbow trout, alone is threat-
ened by an array of viral pathogens that includes infectious pancreatic necrosis virus (IPNV),
which causes severe mortality [LSB19, SJBPP03] and piscine orthoreovirus (PRV), the cause of
heart and skeletal muscle inflammation (HSMI) [PMSG19]. Many such pathogens have previ-
ously existed endemically in wild populations, only to become a problem when “environmental
conditions become stressful to populations, compromising immunity and thereby the capacity
to cope with pathogens, resulting in epidemics” [VLD+20]. The incursion of pathogens into
populations without natural defences can also result in disease outbreaks [VLD+20].

The outbreak of the viral disease infectious salmon anaemia (ISA) among farmed salmon popu-
lations in Chile beginning around 2007 shows the potential scale of economic impact that disease
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outbreaks can have upon a single country’s aquaculture production. Prior to this, none of the
pathogens affecting salmon farming in Northern Europe, including ISA, had yet reached this
part of the world and Chile was considered to be a “nearly disease-free environment” for Atlantic
salmon farming [FCY+19]. The outbreak is estimated to have cost from 350-400 thousand tons
of fish, 2 billion USD and 20,000 jobs [Ban14]. The plot in Figure 1.2 shows estimated annual
outputs of Atlantic Salmon for Chile for the years 2000 to 2018; the size of the slump in output
around the year 2010 is clear. The World Bank cites rapid, unregulated growth in the salmon
farming industry, and insufficient controls to prevent disease introduction and spread as causal
factors for the outbreak. Measures taken in response to this outbreak included the establishment
of mandatory surveillance and a closer partnership between industry and government [Ban14].

Figure 1.2: Estimated annual output of Atlantic Salmon from Chile 2000-18. The
fall in output in 2010 is due to an outbreak of ISA among farmed salmon populations. Source:
FAO - Fisheries and Aquaculture Information and Statistics Branch http://www.fao.org/
fishery/statistics/global-aquaculture-production/query/en. Query terms: Country,
Chile; Fishing area, All; Environment, All; Species, Atlantic salmon; Years, 2000-2018. Query
date: 24/02/2021.

White spot disease (WSD) in penaeids, caused by the white spot syndrome virus (WSSV),
is another example of a disease affecting aquaculture production with a signficant economic
impact. WSD first emerged in Taiwan in 1992 and spread throughout Southeast Asia and the
Americas by 1999 [SP10, Ban14]. Once the virus has entered a shrimp pond, 100% mortality
can occur within 3 to 10 days [Ban14]. It is known to be long-persistent in numerous substrates
[SAR+13] and affects, or is carried by, a wide range of species [SP10, Ban14, ELEBCH+09].
The particular susceptibility of the giant tiger prawn Penaeus monodon to the virus led to the
precipitous fall in its global share of shrimp production and to its subsequent replacement with
more resistant species, including the whiteleg shrimp Penaeus vannamei (see Figure 1.3). We
present a detailed case study of WSD in Chapter 2.
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Figure 1.3: Estimated percentage share, by weight, of global annual output of shrimp
represented by giant tiger prawn, P. monodon, and whiteleg shrimp, P. vannamei, 1980-
2018. The World Bank cites the particular vulnerability of P. monodon to WSSV as the cause
of its virtual replacement as key penaeid production species [Ban14]. Source: - Fisheries and
Aquaculture Information and Statistics Branch http://www.fao.org/fishery/statistics/
global-aquaculture-production/query/en. Query terms: Country, All; Fishing area, All;
Environment, All; Species, giant tiger prawn & whiteleg shrimp; Years, 1980-2018. Query date:
24/02/2021.

According to [BOM17], the epidemiological challenges that specifically confront disease surveil-
lance in aquaculture include sampling confidence; the authors ask “does the absence of disease
presence really mean the presence of disease absence?” Surveillance of diseases, similar to WSD,
that can wipe out an entire stock within days of introduction are therefore particularly prob-
lematic for classical surveillance methods that involve periodic sampling of animals. The same
authors additionally cite the hierarchical, interconnected nature of aquaculture; ponds are con-
nected within farms, and farms are connected by common water courses. Pathogens can be
carried by water currents to infect neighbouring sea cages [ODW+18]. Modern, data-driven
disease surveillance in the aquaculture sector would therefore benefit greatly from a quantifica-
tion of the risks associated with disease outbreaks in relation to the presence and dynamics of
environmental pathogens.

1.2 Disease modelling

In terms of understanding outbreaks of an infectious disease, often we are looking to answer
a range of questions. For example, what is the likelihood that an outbreak occurs following
the entry of a single infected individual, the index case, into a disease-free population? And
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supposing that an outbreak does happen, how rapidly will it spread, and how much of the
population will be affected? We might be concerned with the progression of disease; how many
will get seriously unwell and how long will it take to recover? Or we may wish to understand
the effect that a range of environmental, genetic, social and physiological factors have on the
patterns of disease outbreaks, or indeed the effects of various interventions, such as vaccination,
social distancing and face masks, or water flow-through in aquaculture production.

Disease outbreaks are often difficult phenomena to observe in their entirety, however. For
example, mild or asymptomatic cases will often go unreported, at least in the early stages,
e.g. the asymptomatic transmission of COVID-19 [PL20]. Data on disease outbreaks are often
sparse and the times of critical events, such as when individuals first became infectious, are
typically unavailable [Bec89]. Dynamic, or mechanistic, epidemiological models (disease models)
are mathematical abstractions of the “the mechanisms of disease transmission and pathogenesis”
[LEH+15]. By providing an approximate, idealised version of these mechanisms, disease models
fill in the gaps in observation due to unobservable events and missing data, enabling prediction
and the testing of hypotheses [LEH+15].

Models vary in terms of the extent to which they present a simplified picture of real-world
complexity. A very common simplifcation in the field of disease modelling is to subdivide
the host population into a small number of definite, clearly defined, disease states. Disease
progression is then described soley in terms of movements of individuals between these disease
states. All disease models used in this thesis are, so-called, compartmental models. The seminal
Susceptible-Infected-Recovered (SIR, see Fig. 1.4) model of Kermack & McKendrick (1927),
which we discuss below, is the cannonical example. As the name suggests, the SIR model splits
up the target population into those who risk catching the disease, those who currently have
it and pose a risk to others, and those who, having had it, are at no further risk of infection.
Using this SIR model, the authors addressed the question of whether disease outbreaks only
come to a halt when either there are no more individuals susceptible to the disease or when the
“virulence of the causative organism has gradually decreased” [KM27]. Through analysis of the
model, the authors suggested that a combination of factors concerning population density and
“various factors of infectivity, recovery and mortality” determine the magnitude of an outbreak.
Many variations of the SIR model have subsequently been employed, e.g. inclusion of additional
disease states to reflect more complex patterns of disease progression (such as latently infected,
or vaccinated states), or demographic structuring of the host population to reflect interactions
with factors such as age and occuption, on an individual’s susceptibility to disease.

When an outbreak of disease spreads sufficiently rapidly that we do not have to take into account
demographic movements, such as births, non disease-related deaths and immigration, etc., then
outbreaks tend to follow a common, general trajectory. There is an initial phase when cases grow
exponentially, followed by a decline in the number of new cases as the number of susceptible
members of the population is depleted. It is commonplace to think in terms of chance, however,
when considering the complex patterns of who is infected when, and by whom. Indeed, we often
ask how likely is an outbreak to occur under certain circumstances or what are our chances
of catching the disease. Stochastic disease models incorporate these chance effects into their
mechanistic representation of the disease system. In small populations, and more generally
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at the early stages of an outbreak when case numbers are still low, stochastic models “are
preferable” [Bri10] to wholly determinstic ones. Since we will predominantly be thinking about
disease spread among small popualtions, in this thesis we consider only stochastic compartmental
models.

1.2.1 Direct transmission models

One use of stochasticity in models is the representation of the mechanisms that drive trans-
mission among the members of the population. We now describe a common class of stochastic
compartmental disease models used to describe infections passed by either physical contact or
close proximity, so called direct transmission models (DTM). The SIR model (Figure 1.4) will
serve as our example.

Figure 1.4: Susceptible-infectious-recovered model diagram. The boxes represent the
three disease states into which the population is divided up and the arrows are the allowed
transitions between states. The parameters β and γ are, respectively, the direct transition and
the recovery rate, assuming exponentially distributed infectious lifetimes.

Disease transmission, according to a DTM, occurs only at random sequences of events that
represent close contacts between pairs of members of the population at which there is a risk that
the infection can be passed from one individual to the other. Depending on the infection, this
can describe direct physical contact, as well as close-range transmission via respiratory droplets
and even faecal-oral transmission. In fact, many infectious human and non-human diseases
have been described with DTMs, as discussed in the introduction to Chapter 2. Following
Diekmann, Heesterbeek & Britton (2012), we use the term infectious contact to refer to these
idealised events. Whenever, an infectious contact occurs between two individuals, one of whom
is susceptible and the other infectious, transmission will occur.

For the DTMs that we employ in this thesis we make two very significant assumptions. The
first of these is that each member of the population’s pattern of infectious contacts follows a
homogeneous Poisson process (PP). A PP is obtained by drawing a sequence of independent
random inter-event times, T0, T1, T2, . . ., with exponential distributions with a fixed rate, known
as the rate of the PP. T0 is the first contact time, and for t < T0, no infectious contacts have
yet happened; for T0 ≤ t < T0 + T1, there has been exactly one, and so on. More precisely, the
number of infectious contacts that an individual experiences up to and including time t is

C(t) = min{n ≥ 0 : t < T0 + · · ·+ Tn}.

(1.1)
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An important feature of PPs is that they are examples of Markov processes. The Markov
property implies that, knowing the number of contacts that have occurred by time t, the parts
of the process occurring before and after t - the “past” and the “future” - are independent of
each other. This property is often expressed as memorylessness, since the process “forgets” its
history if its present state is fully known. In fact, if we have observed c infectious contacts up to
and including time t, then C ′(s) = C(s)− c for s > t, the pattern of contacts going forward, is
yet another PP that is unaffected by what has occurred prior to time t. A typical initial pattern
of contacts for one individual is shown in Figure 1.5.

For our models we always assume a fixed population of size N , and that the rate of PP describing
each member of the population’s sequence of infectious contacts is proportional to this population
size, so that the rate is βN ; this is called density-dependent transmission, since if the population
size is doubled (while keeping the area or volume in which the population lives the same), the rate
of infectious contact is doubled also. The quantity β is the direct transmission rate appearing
above the first arrow in Figure 1.4. Another common relationship between the rate of infectious
contact and population size or density is described by frequency-dependent transmission, where
the contact rate is independent of the population size or density and commonly describes sexual
transmission, for example [LSGW04]. We do not discuss frequency-dependent transmission in
this thesis.

This Markovian PP formulation of the contact and infection process, though widely adopted
(see, e.g. [NTS+16, DGB+19, CRW+20, Mon20]), is not the end of the story. The model may
be equivalently reformulated in terms of accumulation of infection pressure by each susceptible
individual, each of whom posseses an “infection threshold” drawn randomly from an exponential
distribution [Sel83] . As soon as the susceptible individual’s accumulated infection pressure
reaches their threshold, they become infected. Streftaris and Gibson (2012) propose an extension
whereby these infection thresholds are distributed more generally in order to account better for
effects such as previous immunity due to vaccination and variations in susceptibility due to
genetic factors, etc. [SG12].

Figure 1.5: An illustration of a Poisson process describing the temporal pattern of infectious
contacts, C(t), experienced by a singe host. The times between contacts are independent of the
times of previous contacts and are exponentially-distributed with some given, fixed rate. The
value of the process at time t is the number of contacts that have occurred up to this time.
Throughout this thesis we will assume that the rate of this process is βN , where β is the rate
of direct transmission.

The second assumption that we make is that the host population is mixing freely. This means
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that each host comes into contact with all other hosts with equal likelihood, with no preference
for certain members of the population over others, and in particular, no avoidance of infected
individuals. As a consequence, when there are I members of the population currently infected
at the time of some susceptible individual’s infectious contact, the probablility that contact is
with an infectious individual is I

N .

From these two assumptions we can easily calculate the force of infection (FoI) from the current
state of the system. This is a susceptible individual’s immediate risk, or hazard, of getting the
infection at time t when there are currently I infected. Because the process is Markovian, for
some susceptible individual at time t, the probability that their next infectious contact occurs
in the interval (t, t+ δt) is the same as the probability that T ′0 < δt, where T ′0 ∼ exp(βN) is the
first contact time of their contact process set back to zero and started over at time t. Therefore,
the next contact occurs in the interval (t, t+ δt) with probability

P(T ′0 < δt) =
∫ δt

0
βNe−βNs ds = 1− e−βNδt (1.2)

and the probability that such a contact occurs in the interval (t, t + δt) with an infectious
individual is

(
1− e−βNδt

) I
N
. (1.3)

Dividing the above by δt and taking the limit as δt→ 0 gives a susceptible’s immediate risk of
infection at time t under this model

FoI = lim
δt→0

(
1− e−βNδt

)
I
N

δt
= βN · I

N
= βI.

(1.4)

Adding up the βI for the S members of the population who are currently susceptible gives the
overall rate of transmission βSI, which appears above the leftmost arrow in Figure 1.4. Newly
infected individuals remain so for a period of time, known as their infectious lifetime, which is
a random quantity that is typically (but not necessarily) exponentially distributed. Once the
infectious lifetime has passed, the infected individual moves into the R compartment (this is the
second arrow in the Figure).

In the case that the infectious lifetimes are exponentially-distributed (as in Figure 1.4, with rate
γ), the SIR model is an example of a continuous-time Markov chain with transition rates listed
in Table 1.1.

SIR model outbreaks following the introduction of a single infectious individual into a population
of size N − 1 can be efficiently simulated using the Doob-Gillespie algorithm as follows:

1. set the initial compartment sizes, (S, I,R) = (N − 1, 1, 0), and initial time t = 0
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Transition rate description

(S, I,R)→ (S − 1, I + 1, R) βSI infection
(S, I − 1, R+ 1) γI recovery

Table 1.1: Markov transition rates for the SIR continuous-time Markov chain, with
exponentially-distributed infectious lifetimes. The rates are interpreted as, for example,
limh→0

1
h

{
P(St+h = s− 1, It+h = i+ 1|St = s, It = i)− βsi

}
= 0.

2. set t→ t+ ∆t, where ∆t ∼ exp(βSI + γI)

3. draw U ∼ U(0, 1). If

U <
βSI

βSI + γI
(1.5)

an infection has occurred, so set S → S−1, I → I+1. Otherwise, a recovery has occurred,
so set I → I − 1, R→ R+ 1

4. repeat steps 2 and 3 until I = 0.

1.2.2 Environmental transmission models

As explained above, a consequence of modelling disease transmission via series of infectious
contacts between the members of the host population is that the force of infection is directly
proportional to the number of infectious individuals currently present. This may be too re-
strictive for some purposes, such as when considering transmission via environmental pools of
pathogens that have been shed by infectious hosts. We now briefly describe environmental
transmission models (ETM), a second class of stochastic compartmental disease model that we
consider in this thesis.

ETMs describe two populations, the hosts and the environmental pathogens. In addition to
density-dependent transmission between hosts, ETMs allow infection to be transmitted indi-
rectly due to contact between susceptible hosts and the pathogens that have been shed by
infectious hosts. An example is the susceptible-infected-recovered-pathogen (SIR-P) model,
summarised in Figure 1.6. This model has three additional parameters, the environmental
transmission rate, α, and the pathogen emission and decay rates, ε and ρ.

In addition to the free mixing of the host population, as required for the SIR model, we also
assume that the pathogen is also evenly mixed throughout the space occupied by the hosts. its
two routes of transmission, the FoI under the SIR-P model is

FoI = αP + βI (1.6)

where P is the size of the pathogen load.

As for the SIR model, in the case of exponentially-distributed infectious lifetimes, SIR-P trajec-
tories can be simulated using the Doob-Gillespie algorithm, this time with transition rates in
Table 1.2.
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Figure 1.6: Susceptible-infectious-recovered-pathogen model diagram. The boxes rep-
resent the three disease states into which the population is divided up and the arrows are the
allowed transitions between states. The parameters β and γ are the direct transmission and
host recovery rates, as for the SIR model. Additionally, there is the environmental transmission
rate, α, that determines the risk of infection to susceptible hosts, relative to the magnitude of
the pathogen load. The behaviour of the pathogen load itself is determined by the pathogen
emission rate, ε, which is the amount of pathogen infectious hosts emit, per unit of time, and
the rate that pathogen becomes uninfectious in the environment, ρ. Solid arrows represent the
possible changes within the host and pathogen populations and the dashed arrows show how
both the host and the pathogen populations affect the dynamics of the other.

Transition rate description

(S, I,R, P )→

(S − 1, I + 1, R, P ) αSP + βSI infection
(S, I − 1, R+ 1, P ) γI recovery
(S, I,R, P + 1) εI pathogen emission
(S, I,R, P − 1) ρP pathogen decay

Table 1.2: Markov transition rates for the SIR-P continuous-time Markov chain, with
exponentially-distributed infectious lifetimes.

In the following chapters various generalisations of the SIR and SIR-P models will be presented.
For example, models with additional host and pathogen states will be considered, as well as
models with non-exponentially-distributed infectious lifetimes. In Chapter 4 an ETM will be
discussed in detail where the pathogen load is modelled as a continuous, rather than discrete
process.

1.3 Bayesian inference

In order for our understanding of the spread of disease to be data-driven, we have to inform
our models from observation of outbreaks. Model-based Bayesian statistical inference allows
us to express our knowledge about the unknown parameters and unobserved events of a model
in terms of “probablility statements” [GCS+13] and a framework for updating these as more
information about the system is obtained.

Throughout, we will use the generic symbols p(. . .) and p(. . . | . . .) to represent distribtions or
densities. Letting θ, x and y stand respecitively for the model’s unknown parameters, the unob-
served event sequence, such as infection times, and observed data, then their joint probability
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distribution can be factorised

p(y, x, θ) = p(y |x)p(x | θ)p(θ). (1.7)

The first of the three factors on the right hand side of Eq. 1.7 is the observation model that de-
scribes the probabilistic dependence of the observed data y upon the disease model’s unobserved
event sequence and the second factor is the model likelihood, which expresses the distribution of
the model’s event sequence in terms of fixed parameter values.

The third factor on the right hand side of Eq. 1.7 is the prior. This summarises our present
knowledge about the model parameters. There exists a quantity, Shannon entropy [CAFD09,
HK07], that measures the uncertainty of a distribution, which for the prior, p(θ), is

H(θ) = −
∫ ∞
−∞

p(θ) log p(θ) dθ. (1.8)

The Shannon entropy is a key concept in a measure of expected information gained from an
experimental outcome, the mutual information, discussed in Chapter 3. Among priors on a
finite interval, (a, b), the uniform distribution on (a, b) has maximal Shannon entropy [CAFD09].
Generalising this to general distributions, this expresses the idea that “flatter” priors convey less
information about the quantity of interest.

By conditioning p(y, x, θ) on the result of an observation, y, we can use Bayes’ rule to obtain
the posterior distribution

p(x, θ | y) = p(y, x, θ)∫ ∫
p(y, x, θ) dx dθ . (1.9)

For a Bayesian, the posterior is a complete description of the model parameters and event
sequence after observing the data y. For this reason, we sometimes say that we have “updated”
our prior with the data y. The denominator in Eq. 1.9 is called the model evidence and measures
the overall likelihood of the observation y, averaging over the parameters and unobserved events.

Having updated our prior, p(θ) with data, y, how do we get predictions from our model? The
posterior-predictive distribution, p(ỹ | y), can be obtained by averaging the likelihood over the
posterior

p(ỹ | y) =
∫
p(ỹ |θ, y) p(θ | y) dθ

=
∫
p(ỹ |θ) p(θ | y) dθ

(1.10)
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since the observations y and ỹ are conditionally independent, given the parameters, θ. The
posterior-predictive distribution is a key constituent of graphical goodness-of-fit checks for mod-
els, known as graphical posterior-predictive checks (see, e.g. [GCS+13]).

1.3.1 An example from Neal and Roberts (2005)

As a concrete example, we consider the problem presented in [NR05] of obtaining the posterior
distribution, p(I, β, γ |R), where β and γ are the parameters of an SIR model of disease with
exponentially distributed infectious lifetimes. In the case under study the infection times, I =
(I1, . . . , Im), I1 < I2 < · · · < Im, are unobserved and R = (R1, . . . Rm) are the observed recovery
times, forming the data y, using the above notation. In this case, the data y = R are just a
subset of the full SIR event sequence, x = I,R. As in [NR05], we can write down the model
likelihood, p(I,R |β, γ), by working through the sequence of probabilistic events comprising
the Doob-Gillespie algorithm described at the end of the previous Section, and re-arranging to
obtain

p(I,R |β, γ) =
m∏
i=2
{βSIi−IIi−}e

−β
∫ Rmax

0 StIt dt
m∏
j=1

γe−γ
(
Rj−Ij

)
(1.11)

(see Chapter 2 for more detail). In the above equation, SIi− and IIi− are the numbers of
susceptibles and infectives just before the ith infection and Rmax is the last recovery time.
Examining the functional form of Eq. 1.11, as a function of β only (holding all other quantities
fixed), the right hand side of Eq. 1.11 is proportional to

βm−1e−β
∫ Rmax

0 StIt dt (1.12)

and likewise for γ, the right hand side of 1.11 is proportional to

γme
−γ
∑m

j=1(Rj−Ij). (1.13)

This suggests that the family of gamma-distributions are a convenient choice from which to
select priors

p(β) ∝ βνβe−λββ

p(γ) ∝ γνγe−λγγ

p(β, γ) = p(β)p(γ)

Diffuse priors can be obtained by setting the “shape” parameters, νβ and νγ , to unity and the
“rate” parameters, λβ and λγ to a value such as 0.001, as suggested by Neal & Roberts (2005).
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Equation 1.9 will give us the posterior, p(β, γ, I |R) as soon as we calculate the model evidence
for the removal times R

p(R) =
∫
p(I,R |β, γ)p(β, γ) dβ dγ dI1 . . . dIm. (1.14)

However, this problem is analytically intractable due to the integral of the likelihood with respect
to I1 . . . Im. Rather than seeking a closed analytical form for the posterior, we would instead
draw on a large and growing array of approximate sampling techniques, known collectively as
Markov chain Monte Carlo (MCMC). These involve using computer simulation to draw chains
of dependent samples, whose marginal distributions eventually converge to the posterior. Once
this convergence has been judged to have been achieved (typically by inspection of trace plots
or numerical diagnostics), we can begin to collect samples. From these samples we can estimate
various quantities relating to the posterior, such as the posterior mean and variance, as well as to
obtain density estimates etc. MCMC in practice is part-theory-part-art and there are significant
practical challenges relating primarily to the speed at which the marginal distributions of the
samples converge to their target. Selection of sampling routines appropriate to the problem at
hand, and the tuning of these routines, are not trivial tasks. However, in this thesis we present
several methods in application to various problems.

1.4 Thesis outline

The goal of this thesis is to advance an undertanding of the spread of infectious disease through
mechanistic models and Bayesian inference. This comes at a time when technologies ranging
from communication to pathogen detection promise rich disease surveillance and monitoring
data. Because of the enormity of the impact that disease has on the aquaculture sector and its
crucial role in future global food supply, our focus in applications will be environmental spread
of waterborne pathogens that affect these production stocks in particular.

In Chapter 2 we will discuss the wide application of direct transmission models (DTM), such
as the susceptible-infectious-recovered (SIR) model, including in cases of environmental trans-
mission. As described above, the form usually taken by the SIR and similar models can be
derived from the assumptions that the population is mixing freely and disease is transmitted
between members of the population only at discrete points in time described as a Poisson pro-
cess. We see in the literature the wide application of these models to cases of disease where
the second of these assumptions might not apply, such as when disease is transmitted by con-
tact with long-persistent pools of environmental pathogens. Using simulations, we will show
that DTMs offer a faithful picture of the host-disease dynamics in many of these cases and we
will explain why this is the case. We will then fit DTMs to simulated data describing envi-
ronmentally transmitted disease and assess their fit by comparing the data with the model’s
posterior-predictive distribution. This way we will see that we can fit DTMs to data from a
wide array of environmentally-transmitted diseases and get sensible parameter estimates. This
is a great benefit to researchers since DTMs do not require observation of the dynamics of the
pathogen load in order to fit them. The second half of Chapter 2 is an examination of a case
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study of white spot disease among penaeid shrimp. We estimate the parameters of an envi-
ronmental transmission model (ETM) of the disease with both direct and environmental routes
of transmission. We then use this model to compare the effectiveness of two disease control
strategies in production settings, exploring some of the ideas introduced earlier in the chapter.

There are many descriptions of challenge experiments in the recent scientific literature examining
the spread of waterborne infections under controlled conditions. Many of these experiments are
used to form empirical judgements about e.g. the effectiveness of treatments and vaccines.
However, the cases where these data are used to estimate the parameters of mechanistic models
are relatively few. This presents numerous wasted opportunities. Even a very simple model
with parameters estimated from observation of the system of interest would allow researchers
to make a range of predictions and test varied hypotheses about the impacts of interventions on
disease spread. Simulations of mechanistic models with parameters estimated from experiment
are a low cost way to meet the legal and ethical obligations to reduce the number of animals
used in such studies (e.g. the 3R principle in the UK [ASP14]). A fitted model can also
offer a guide as to where the gaps in our knowledge are and so guide further data collection
[LEH+15]. Chapter 3 is an overview of model estimation using Bayesian inference and data
obtained by immersion challenge experiment. We present a case study in which we estimate
the parameters of a susceptible-exposed (i.e. latently infected)-infectious (SEI) model of a novel
Piscine orthoreovirus among rainbow trout from real data gathered in a trial by [HVT+17]. We
then discuss the elements of the design of similar experiments and how this is aided by computer
simulation and ideas from information theory.

Although, as we will discuss in Chapter 2, the mechanisms of the spread of environmentally
transmitted disease are well-described by DTMs, more predictive power can be gained from
understanding how the dynamics of these infections relate to those of the environmental pathogen
load. For example, the risk that a localised viral outbreak poses to clusters of nearby salmon
sea cages could be quantified from models of prevailing water currents and an understanding of
how various environmental conditions affect the longevity of the virus in the water body, along
the lines of the analysis of the Amoy Gardens SARS outbreak of 2003 [YLW+04, YQTW14].
As a first step, an ETM of the disease in a closed population relates the transmission dynamics
between the hosts to the behaviour of the pathogen load. Chapter 4 tackles the problems of
the design of a challenge study and the estimation of the ETM model parameters. We show
that designs of real experiments described in the scientific literature, augmented by a small
number of measurements of waterborne pathogen concentration using digitial polymerase chain
reaction (dPCR) technology, are sufficient to quantify an ETM of the disease. We describe the
application of a novel MCMC method of Bayesian inference to the fitting of ETMs.

Finally, in Chapter 5, we pull together some final observations and suggest directions for future
work. The novel contributions of this thesis include the identification of a stochastic compart-
mental DTM as the timescale separation limit of certain stochastic compartmental ETMs in
Chapter 2 and the fitting to data of stochastic compartmental ETMs that account for the dis-
crepancy between detectable pathogen concentration levels using technologies such as dPCR and
the concentration of viable, infectious pathogen in Chapter 4. In addition, the estimation of the
parameters of an ETM describing white spot disease in penaeid shrimp has not been attempted
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elsewhere and the discussion of stochastic modelling and Bayesian inference in the context of
study of waterborne infection via immersion challenge experiment data seeks to bring greater
appreciation of these tools to a wider audience.
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Chapter 2
When and why direct transmission

models can be used for environmentally
persistent pathogens

2.1 Introduction

The famed Susceptible-Infectious-Recovered (SIR) compartmental model framework of Kermack
and McKendrick [KM27], and its many subsequent extensions (see [KHM19], for example), stand
as prominent examples of what can be gained from simple models of complex systems. In addi-
tion to the assumption that the host population can be divided into a finite number of discrete
states, transmission of infection within such models is characterised by a force of infection that
depends linearly upon the numbers of infectious individuals. Throughout this paper, we call
such a model a direct transmission model (DTM) (as in [McC01]). The proportionality constant,
known as the transmission rate, is often interpreted as the rate at which individuals within the
population come into contact with each other, times the probability that such a contact leads
to the transmission of infection (termed an infectious contact in [Die00]), times the probabil-
ity of successful transmission. However, this simplified representation has been extended, for
example, to account for non-uniform frequency of contact among the population and levels of
infectiousness varying across individuals and over time.

Such approaches have been pivotal in gaining valuable insights into the dynamics and patterns
of the spread of disease throughout many varied populations. Recently, for example, as the basis
for understanding drivers of spatial spread of Ebola virus [MAF+15], the likely effectiveness of
scaling up certain vaccination, treatment and testing regimes in the fight to control hepatitis B
[NTS+16] and the importance of targeting household transmission of MRSA as a preventative
strategy [DGB+19]. Incorporation of a spatial element into the DTM framework enables the
observed spatial-temporal trajectory of the 2001 foot and mouth outbreak in the UK to be closely
replicated and provides insight for control [Kee01, Kee05]. DTMs have also been recently drafted
into the effort to understand and predict the dynamics of SARS-CoV-2 [CRW+20, Mon20].

Despite these sucesses, DTMs may not always be appropriate, e.g. when members of the host
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population are in contact with environmental sources of infection, such as pools of pathogens
residing on surfaces or in water bodies. The focus of this paper is to critique the use of DTMs
in describing the spread of disease in the presence of such environmental pools of persistent
pathogens. Examples of relevant disease systems include Cholera [VPHC10, AMT14], avian
influenza [SSKZ90, HCR+17] and even respiratory infections, such as SARS-CoV-2 [ZLZ+20].
Our case study (Section 2.4) focusses on infectious disease spread in aquaculture systems which
are likely to feature a large degree of environmental transmission. In scenarios such as these it is
prolonged exposure to these sources, in addition to direct infectious contact between individuals,
that gives rise to new infections, in the most general case.

A critical step in applications is the fitting of DTMs to data on disease outbreaks. Using
Bayesian model fitting methods and graphical posterior predictive checks (GPPCs) that target
observable characteristics of an outbreak, such as its final size and when it peaks, we show that
DTMs fit very well to simulated host-disease event times that would occur when the infection is
transmitted environmentally but the rates of pathogen emission and removal are high (Section
2.3). Using a combination of GPPCs each targetting different observable aspects of an outbreak,
increases the likelihood of spotting deficiencies in the fitted model and consequently provides a
more reliable test of the model. Gibson (2018) suggests that the choice of outbreak characteristic
to target with GPPCs should depend on the intended use of the fitted model [GST18]. E.g.
if we are primarily interested in estimating attack rates, then our model’s predictions of final
outbreak size should chiefly interest us.

We show that the fit of DTMs to ET data is explained by the force of infection within an
environmental transmission model (ETM, Section 2.2) behaving increasingly like that of a DTM
when the timescale of the pathogen population is shorter than that of the host population
(Section 2.3). We find that, in terms of predicting outbreak size and duration, when fitted
to outbreak data, DTMs are robust even in the case of long-lived pathogens with low rates of
emission, and it is only the rate at which an outbreak grows toward its peak, and the timing of
that peak that are poorly predicted.

These issues are further highlighted in a case study illustrating the use of DTMs as approximate
descriptions of outbreaks of disease due to an environmentally persistent pathogen (Section 2.4).
Using parameter values estimated from published data on white spot disease (WSD - see Section
2.4) infection in penaeid shrimp, we explore how imperfect interventions that aim to remove
dead and diseased hosts at regular intervals impact outbreak control in closed populations of
this aquaculture disease system. With removal attempts spaced at 24 hourly intervals, average
outbreak trajectories, final outbreak size and outbreak duration are accurately captured using
a DTM without needing to model the pathogen load. When the frequency of the removal
events are increased to every 6 h, we begin to see divergence between the two models, so that
e.g. the DTM predicts slightly larger outbreaks of shorter duration than the ETM. This case
study illustrates the potential practical consequences of ignoring issues of timescale separation
when applying DTMs to environmentally transmitted pathogens. Control and other processes
in such disease systems may be accurately captured by DTMs at one timescale but are poorly
represented at others; in this case under estimating the benefit of high frequency removal.
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2.2 Materials and methods

2.2.1 Models for direct and environmental transmission of disease

2.2.1.1 A direct transmission model: Susceptible-Exposed-Infectious-Removed
(SEIR)

Figure 2.1: Susceptible-exposed-infectious-removed (SEIR) direct transmission
model diagram illustrating the four compartments of the model and the rates of the possible
movements between them. Parameter β is the direct transmission rate while, in the Markovian
case, δ and γ are the rates that hosts move from the E to the I and the I to the R states,
respectively.

The stochastic, compartmental SEIR (see Figure 2.1) model referred to throughout this paper
is a DTM that treats the focal population (the hosts) as compartmentalised into four sub-
populations: hosts that are susceptible to disease (S), have been exposed to the disease but not
yet infectious (E), infectious (I) and recovered or removed from the population (R). Hosts in
the R compartment play no further role in the spread of disease. Here we consider outbreaks
started by the introduction of a single host to a wholly susceptible population of size N (this
is known as the index exposure), however, our results are generalisable to greater numbers of
initial exposures. Additionally, we assume a closed population, so that there is no immigration,
births or non disease-induced mortality. Hosts remain in the E and I compartments for periods
of time determined by the exposed and infectious lifetime distributions, i.e. random variables
with continuous, positive distributions. When exponentially-distributed lifetime distributions
are assumed, the resulting process is a continuous time Markov chain and the current state of
the system is fully determined by the number of hosts in the four compartments. In such a case
we use the symbols δ and γ to respectively represent the rates that hosts move from the E to I
and from the I to the R compartments. The SEIR model may be specialised by stipulating that
hosts spend a period of zero duration in the E compartment (i.e. δ =∞), resulting in the familiar
SIR model. Alternative gamma and Weibull-distributed lifetimes can also be assumed. These
more general distributions model non-constant hazard of becoming infectious after exposure
and recovering (or dying) from the disease after onset of infectiousness. In Section 2.3.2 we
fit a SEIR model with exponentially-distributed lifetimes to simulated SEIR-P data where the
corresponding lifetimes are gamma-distributed. We find that the fitted model at least correctly
produces the expected durations in the E and I states.

In Section 2.4 we modify this model by additionally allowing, at regularly spaced intervals, each
host in the E and the I compartments to go directly to the R compartment with probabilities
πE and πI . This simulates regular attempts, with error, to remove all exposed and infectious
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hosts from the system.

The direct transmission assumption means that secondary cases are generated at a rate depen-
dent on the number of infected individuals. Here we adopt the standard approach to modelling
this. The probability that each susceptible host at time t becomes exposed to disease over the
short time interval (t, t + h], is βIth to first order, where β is the direct transmission rate and
It is the number of infectious hosts present at time t. The force of infection, i.e. the rate of
secondary infections, per susceptible host, or the imminent risk of infection that is faced by each
susceptible host, at time t is therefore expressed as

λ(t) = βIt. (2.1)

This means that the force of infection is proportional (by the factor β) to the number of infected
hosts currently present. When the number of infected hosts increases or decreases, there is a
corresponding instantaneous change in the force of infection. This is a key feature of this and
other DTMs and represents an important modelling assumption.

2.2.1.2 An environmental transmission model:
Susceptible-Exposed-Infectious-Removed-Pathogen (SEIR-P)

Figure 2.2: Susceptible-exposed-infectious-removed-pathogen (SEIR-P) environmen-
tal transmission model diagram illustrating the four host compartments and single pathogen
compartment of the model. The solid arrows indicate the movement of hosts between host com-
partments and the loss of viable pathogen from the system. The dotted arrows indicate how
the host and pathogen parts of the model influence each other. In addition to the parame-
ters β, δ and γ, which are the same as for SEIR (for the Markovian case, see above), α is the
environmental transmission rate and ε and ρ are the rates of pathogen emission and removal.

Here we define a class of models that represent both direct (DT) and environmental transmission
(ET) of disease (see, for example, [SR13]) where the latter occurs via interaction of susceptible
hosts with environmental pools of infectious pathogen. SEIR-P describes the time evolution of
two populations: the hosts, divided into S, E, I and R sub-populations (as in the DTM SEIR,
described above) and the pathogen population (P) in the environment, external to the hosts.
When hosts enter state I they begin to emit pathogen at the fixed rate ε, i.e. they begin to
contribute to an increase in the environmental pathogen load. The pathogen population decays
exponentially at rate ρ.
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Each susceptible host at time t now becomes exposed to disease over the short time interval
(t, t+h] with probability (αPt+βIt)h, to first order, where β and It represent direct transmission,
as in the SEIR model, and α and Pt represent the indirect or environmental transmission rate
and size of the pathogen population at time t, respectively. The force of infection is now

λ(t) = αPt + βIt, (2.2)

which depends linearly on both the size of the environmental pathogen load and the number of
infectious hosts. A change in the number of infected hosts now produces a delayed response in
the force of infection due to the pathogen load taking time to either build up or decay.

Setting α to zero and restricting attention to the four host population compartments recovers
the SEIR model described above. Similarly, β = 0 produces a purely ET model, and finally,
setting δ = ∞, so that hosts pass instantaneously from the E to the I compartment, yields a
SIR-P model with both DT and ET.

2.2.2 Bayesian model fitting and inference

2.2.2.1 SEIR posterior, likelihood and prior densities

In Section 2.3 we fit the SEIR model with exponential exposed and infectious lifetimes to sim-
ulated data generated by both the SEIR and SEIR-P processes. Since in practice, the times of
host exposure, E, are very rarely observed directly, these are treated as missing data. It is often
the case that that the times of onset of infectivity, I, are also unobservable. However, we will be
using the SEIR and SEIR-P models to describe WSD in penaeid shrimp (see Section 2.4), for
which onset of infectiousness coincides roughly with the death of the shrimp. Therefore, in this
particular case, the times of entry into the I state, corresponding to death (and consequent on-
set of infectiousness), and the R state, corresponding to removal from the system (either due to
complete decay or physical removal from the waterbody) are feasibly observable. In cases where
we cannot observe either the onset of infectivity or removal directly then model assessment is
impacted since our data are less informative.

Bayesian inference regarding the parameters, β, δ and γ of the SEIR model is based entirely on
the posterior density

p(β, δ, γ,E | I,R ) ∝ p( E, I,R |β, δ, γ ) p(β, δ, γ ) (2.3)

where I and R are the observed times of onset of infectivity and removal and E are the unob-
served times of exposure. The two factors on the right hand side are respectively the likelihood
and the prior densities. The prior density summarises our knowledge and uncertainty about the
parameters prior to observing the data. Throughout, we will assume that the three parameters
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are a priori independent, i.e.

p(β, δ, γ ) = p(β )p( δ )p( γ ) (2.4)

and that

p(β ) ∼ Exp(λβ)

p( γ ) ∼ Exp(λγ)

p( δ ) ∼ Exp(λδ) or U(0, 10)

(2.5)

where λβ = λγ = λδ = 0.001. Exponentially-distributed priors are chosen since they are
conjugate with the functional form of the likelihood so that the full conditional distributions
of the parameters are easily obtained, and such a value for the hyperparameters λβ, λγ and λδ
means that there is a high prior variance, reflecting a lack of prior knowledge.

In the case of long-lived pathogen, SEIR is far from the “correct” model for the data (e.g. see
[Ber66, Wal13] for accounts of fitting mis-specified models) and this can present issues with the
convergence of the MCMC chains since there are no strong candidates among parameter values
that simultaneously explain the data. In order to aid convergence, therefore, the alternative,
uniformly-distributed, prior for δ is used in the long-lived pathogen case only (Section 2.3.2).
By placing an upper bound (in this case, 10.0) on the support of δ, we prevent the chains from
exploring parts of the sample space that represent exposed lifetimes shrinking to zero.

The likelihood, p( E, I,R |β, δ, γ ), describes how the data depend on the parameters of the
model, which, in the case of exponentially distributed times in the E and I states is

p( E, I,R |β, γ, δ ) ∝
∏
i 6=κ
{βIEi} e

−β
∫∞
Eκ

StIt dt
m∏
j=1

δe−δ(Ij−Ej)
m∏
j=1

γe−γ(Rj−Ij). (2.6)

E1, . . . , Em with integer subscripts denote the times of exposure events, whereas Et, with a real-
valued subscript, is the number of hosts that are exposed at time t. The same applies to Ii, It,
etc. For example, the quantity IEi in (2.6) means the number of infected hosts at time Ei - the
ith chronological time of exposure. The products over j = 1, . . .m in (2.6) are the contributions
to the likelihood from the exponentially-distributed times spent in states E and I. The product
over i 6= κ are the contributions from the exposure times (which each have hazard proportional
to βIt).

The notation used here is similar to that used by Neal and Roberts in [NR05], so that Eκ
represents the (perhaps unobserved) first exposure time. The reason why we write them this
way, as opposed to assuming that the initial infection or exposure occurs at some known time,
is that in Section 2.3 we will be fitting these models in scenarios where the exposure times have
not been observed and so consequently we do not know when the outbreak began.
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For details of model fitting, see Appendix A.

2.2.2.2 Model checking using graphical posterior-predictive checks (GPPC)

Graphical posterior predictive checks (GPPC) [GCSR95, GS13] are used here to test for depar-
ture from DT model assumptions. These are a standard model checking tool, offering a visual
comparison of quantities derived from the observed data, h(I,R), with h(I′,R′), where I′,R′

are simulated from the posterior-predictive distribution of the fitted model, with density

p( I′,R′ | I,R ) =
∫
p( I′,R′ |β, δ, γ,E, I,R ) p(β, δ, γ,E | I,R ) dβ dδ dγ dE

=
∫
p( I′,R′ |β, δ, γ ) p(β, δ, γ,E | I,R ) dβ dδ dγ dE (2.7)

Uncertainty regarding parameter values is expressed by drawing them from their posterior dis-
tribution. The idea is to check that the fitted model replicates the original data with reasonable
probability, with no systematic disagreements between the data and model predictions.

Among the salient features of a disease outbreak are its size, at both peak and completion, and
characteristic timescales, e.g. time from index exposure to peak of outbreak and total duration.
Such statistics are of interest in their own right and there are known formulas in the deterministic
case for peak and final outbreak sizes and initial exponential growth rates for SIR, SEIR and
similar models [Fen07, Mil12, Ma20]. For the GPPCs here we obtain a probabilistic picture of
similar quantities with the timing of the outbreak’s peak standing as proxy for the initial growth
rate. The following four quantities are considered

1. final outbreak size, m

2. outbreak duration, Rmax−Imin, where Imin = min{I1, . . . , Im} andRmax = max{R1, . . . , Rm}

3. time of outbreak peak, tpeak

4. size of outbreak at peak, Itpeak .

Since the simulated data contains times of onset of infectivity and host removal, the above
quantities are indeed directly calculable. Additionally, the outbreak size trajectory, It, over the
course of an outbreak will be examined. Due to likely correlations between m and Rmax − Imin

and between tpeak and Itpeak , these are plotted bivariately.

The time of outbreak peak, tpeak, is interpolated between the first and last times that the
outbreak size is within the range κImax ≤ It ≤ Imax, where 0 < κ < 1, i.e.

tpeak = max {t : It ≥ κImax} −min {t : It ≥ κImax}
2 . (2.8)
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Calculating tpeak this way, rather than simply taking it to be the time that the outbreak size
first reaches its maximum, avoids the complication of the outbreak hitting its maximum size
more than once and, more importantly, aims to reduce the variance of its posterior-predictive
distribution, and therefore produce a sharper test for model departure. Here κ is chosen to be
0.3, since the GPPC outputs were not found to be sensitive to the particular value chosen.

2.3 Investigating direct transmission model performance

2.3.1 The direct transmission approximation as timescale limit of SEIR-P
process

The two populations described by an ETM, the hosts and environmental pathogen, each have a
timescale characterising their evolution, and the extent to which these differ has a qualtitative
effect upon the behaviour of the model. For example, ETMs with shed pathogen retaining infec-
tivity for long durations compared with the typical host infectious lifetime can exhibit outbreaks
that appear to have died out, in terms of infected individuals, only to restart. Figure 2.3 shows
output from a single simulation of the SIR-P model with exponentially-distributed exposed and
infectious lifetimes, host population size N = 2000 and (α, β, γ, ε, ρ) = (0.25, 0.0, 1.0, 0.32, 0.01).
An emission rate of 3.0 part h−1 and host mortality rate of 1.0 h−1 means that infected hosts
shed on average 3 pathogen particles during their period of infectiousness. Nonetheless, this
shed pathogen, with a large indirect transmission rate, α, and low pathogen decay rate, ρ,
eventually causes a large outbreak after a considerable period of time in which the outbreak
appears to be small and contained. SIR-P and SEIR-P models such as this one are able to
exhibit greater variation in the sizes and durations of outbreaks than their SIR and SEIR direct
transmission counterparts due to their dependence upon the stochastic environmental pathogen
load. On the other hand, ETMs with short-lived pathogens produce host-disease dynamics that
are reproducible with a host-only DTM, as we now demonstrate.

(a) St (b) It (c) Rt

Figure 2.3: Susceptible, infectious and removed host output from a single simulation
of SIR-P model with N = 2000 and (α, β, γ, ε, ρ) = (0.25, 0.0, 1.0, 0.32, 0.01). Notice the
delayed onset of the exponential growth phase of the outbreak, with several instances of the
number of infectious hosts reaching zero (shown in the inset in the second plot) before the
outbreak eventually takes off.
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(a) ε = 0.3, ρ = 0.1

(b) ε = 30.0, ρ = 10.0

(c) ε = 3.0× 104, ρ = 1.0× 104

Figure 2.4: Susceptible, infectious and removed host sub-population sizes of SIR-P
(blue) process averaged over 2000 simulations for fixed α = 6.0 × 10−4 and γ = 1.0. The
rates of pathogen emission, ε, and pathogen removal, ρ, are increased while keeping their ratio
fixed, ε

ρ = 3.0. For comparison, the same sub-population sizes for the DTA SIR process with
fixed direct transmission rate β = α ερ = 1.8 × 10−3 and γ′ = 1.0 are plotted in (red). Median
population sizes indicated by bold lines, dashed lines indicate 5th and 95th percentiles. In sub-
figure 2.4a the two processes are visibly distinct in their output with the SIR-P outbreaks tending
to peak later and to be smaller in magnitude. With a hundred-fold increase in the pathogen
decay rate, a closer alignment between the two sets of trajectories can be seen in sub-figure
2.4b. In the last case (sub-figure 2.4c) there is no difference on the scale of the plots between
the SIR-P and SIR model outputs.
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Recalling Section 2.2, the probability that a susceptible host at time t becomes exposed within
the short interval of time (t, t + h] is (αPt + βIt)h, to first order. The relationship between
the qualitative behaviour of the SEIR-P model and pathogen timescale comes down to the
appearance of Pt in this expression. How does Pt behave? At time t, each infectious host is
emitting pathogen at the rate ε so, overall, new pathogen is entering the population at the
rate εIt. At the same time, the pathogen decays exponentially at rate ρ, or equivalently, each
pathogen element remains viable on average for a duration 1/ρ (in appropriate units). This
amounts to Pt being an immigration-death process (IDP) with inhomogenous immigration rate
εIt and death rate ρ. As a consequence of elementary theory of Markov chains (see, e.g. [And91]),
if we momentarily regard the number of infectives as fixed, It = i for t ≥ 0, then the distribution
of Pt tends to Poisson( εiρ ) and

E(Pt)→
εi

ρ
as t→∞. (2.9)

Increasing the values of the parameters ε and ρ, while keeping their ratio constant, increases
the rate of convergence but has no other effect upon this limiting behaviour, with the limiting
distribution unchanged. Returning now to variable It, in the limiting case, Pt’s behaviour can
be characterised approximately as being in equilibrium, i.e. Pt ∼ Poisson( εiρ ) during intervals of
constant It = i, and jumping without transition to a new equilibrium when It changes.

Consequently, for large ε and ρ, we may approximate the probability that a susceptible host
becomes exposed over the interval (t, t+ h] as

(αE(Pt) + βIt)h = (α ε
ρ

+ β)Ith = β̂Ith. (2.10)

The part of the SEIR-P model that describes the host disease dynamics is approximately a
direct transmission SEIR model, with an effective direct transmission rate β̂ and E and I lifetime
distributions unchanged. This SEIR model is the direct transmission approximation (DTA) of
the ETM.

This approximation of the sub-process, Pt, is the stochastic analogue of the “quasi-steady state
approximation” of the pathogen concentration discussed by Tien and Earn in their susceptible-
infected-water reservoir-removed (SIWR) ordinary differential equation model of cholera out-
breaks among humans [TE10], in which the pathogen concentration in water sources is restricted
to the “critical manifold” of fixed points of the flow.

That ET via short-lived pathogen can be approximated as DT is because of the vanishing lag
between changes in the number of shedding, infectious hosts, and the resulting response in the
force of infection. Systems with ET that results from the accumulation of relatively long-lived
pathogen retain a memory of the size of the infectious host sub-population since hosts that
have since been removed, or have ceased to shed, may still be the cause of new exposures via
the pathogen that they had previously emitted. This delay between changes in the number
of infectious hosts and their effect on the system dynamics violates the implicit assumption
of DTMs that the force of infection is directly related to the number of infectious hosts, or
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the number of hosts who are shedding pathogen. As the pathogen lifetime decreases, so does
this memory effect, and we see an increasing similarity with the dynamics produced by direct
transmission.

Figure 2.4 demonstrates this behaviour by showing susceptible, infectious and removed sub-
population sizes averaged over a number of independent simulations from three SIR-P models
with fixed α and γ and increasing ε and δ, with ε

ρ held constant. These are plotted in each
case against similar outputs from a SIR model with the same γ and β chosen to equal α ερ , so
that the SIR model is the DTA of the SIR-P model. As shown in the figure, increasing rates
of pathogen emission and decay rate lead to increasing similarity between the SIR-P and SIR
model outputs, and in the case of short-lived pathogen, the SIR-P and DTA SIR outputs are
indistinguishable on the scale of the plots.

2.3.2 Estimating DTA parameters from outbreak data

The presence of environmental transmission violates an assumption of DTMs: that the force of
infection is directly related to the number of infectious hosts currently in the system. Here we
fit the DT SEIR model, with exponentially-distributed exposed and infectious lifetimes, to data
from simulated SEIR-P outbreaks with varied rates of pathogen emission and decay and assess
the goodness of fit of the model using GPPCs. The simulated data consists of times of onset
of infectivity and host removal, i.e. the times of entry of hosts into the I and the R states, the
observation of which is feasible in cases where onset of infectivity coincides with the death of
the host (see Section 2.4).

The data set specifications are summarised in Table 2.1 and the MCMC methods of model fitting
and a description of the GPPCs are found in Section 2.2 and Appendix A. The first three data
sets are generated using a SEIR-P process in which there is both environmental transmission due
to pathogen as well as direct transmission from host to host. The rates of pathogen emission,
ε, and decay, ρ, are increased with ε

ρ kept constant. The fourth data set has no environmental
transmission rate, and so is the output of a DTM. We additionally test the fitted SEIR model’s
sensitivity to slight deviations from exponentially-distributed exposed and infectious lifetimes
by using gamma-distributions with shape parameter greater than unity to simulate these.

2.3.2.1 MCMC convergence and posterior coverage

Convergence of the MCMC sampling chains is checked by running two separate chains for each
fitted model with separated initial values and observing that they converge to a common sta-
tionary distribution. Figure B1 in Appendix B contains trace plots for the two parameters that
were MCMC sampled, β and δ.

Figure 2.5 is a graphical summary of the samples obtained from the posterior distribution of
the parameters and of the SEIR basic reproduction ratio (the expected number of new cases
of infection that result from addition of a single infected host into a large, wholly susecptible
population), R0 = βN

γ , for each of the fitted models. In order to show that fitting the Marko-
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vian SEIR model to non-Markovian SEIR-P-generated host event times results in meaningful
parameter estimates, these are plotted against certain reference values:

• p(β | I,R) is compared with β̂ = α ερ + β (α, ε, ρ and β are given in Table 2.1) - β̂ is the
effective direct transmission rate for the SEIR-P model, defined in Section 2.3.1

• p(δ | I,R) with δ̂ = (E(Ij − Ej))−1 and p(γ | I,R) with γ̂ = (E(Rj − Ij))−1. This way we
assess the fitted Markovian SEIR model’s ability to recover the mean, gamma-distributed,
SEIR-P exposed and infectious lifetimes

• p(R0 | I,R) (R0 = βN
γ , the basic reproductive ratio for the SEIR-P process, according to

the survival function formulation (see, e.g. [HD96, HSW05]) with R̂0 = β̂N
γ̂ .

The position of β̂, δ̂ and γ̂ close to the centre of the parameter posterior distribution in the
short-lived pathogen case (Figure 2.5c) means that a SEIR process with direct transmission rate
β̂ = α ερ + β and (exponentially-distributed) E and I lifetimes with means that match those
of the underlying process is the most likely model from among the class of SEIR models with
exponential lifetimes. As a result, the fitted model produces a very good estimate of R0 in
relation to the underlying SEIR-P process.

As the pathogen lifetime increases in Figures 2.5a and 2.5d, leading to a lesser degree of timescale
separation, the fitted models both underestimate R0 and β̂, δ̂ and γ̂ lie further from the centre
of the parameter posterior distribution (in the tails in the long-lived pathogen case).

2.3.2.2 Assessing DTA model fit against ET outbreak

First, we compare the outbreak size trajectories predicted by the fitted model with the trajectory
obtained from the data. These are obtained by simulating SEIR event times with parameter
values drawn from the posterior samples, as discussed in Section 2.2. If the model fits well then
we should expect these posterior-predicted trajectories to look similar to the observed trajec-
tory [GCSR95, GS13]. Figure 2.6 graphically compares the posterior-predictive outbreak size
trajectories for the four cases described above with the underlying observed outbreak trajectory.
The outbreak size trajectory from the data is indicated by the solid red line and superposed on
this is a graphical summary of posterior predictive outbreak size trajectories. The solid blue
line indicates the median predicted number of infectious hosts, while the blue dashed lines are
the 5th, 25th, 75th and 95th percentiles. In the cases of intermediate and short-lived pathogen,
the predicted model output appears to agree well with the data, as is the case with DT only.
However, for the long-lived pathogen, the model appears to predict outbreaks that reach their
peak and begin to recede sooner than was actually observed in the data. Nonetheless, the fitted
model does agree with the data in terms of peak outbreak size.

Figure 2.7 compares graphically the final outbreak size and the outbreak duration associated
with each of the four sets of onset of infectivity and removal times with the same quantities
drawn from their respective posterior-predictive distributions. Figure 2.8 is similar, comparing
size and time of outbreak peak (i.e. the outbreak at its largest) (see Section 2.2 for details).
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As is indicated clearly in the plots, for the long-lived pathogen case, the model makes a poor
prediction of when the outbreak peaks and the how long the outbreak persists before finally
dying out. Better agreement is evident for the intermediate and short-lived pathogen, more so,
in fact, than is evident in the DT only case.

Data generating process parameter values N m
long-lived pathogen α = 0.001, β = 0.007 300 295

Ij − Ej ∼ Gamma(1.10, 0.5)
Rj − Ij ∼ Gamma(1.10, 1.0)
ε = 5.4, ρ = 0.8

intermediate pathogen α = 0.001, β = 0.007 300 294
Ij − Ej ∼ Gamma(1.10, 0.5)
Rj − Ij ∼ Gamma(1.10, 1.0)
ε = 54.0, ρ = 8.0

short-lived pathogen α = 0.001, β = 0.007 300 297
Ij − Ej ∼ Gamma(1.10, 0.5)
Rj − Ij ∼ Gamma(1.10, 1.0)
ε = 5.4× 104, ρ = 0.8× 104

direct transmission only α = 0.0, β = 0.0075 300 272
Ij − Ej ∼ Gamma(1.10, 0.5)
Rj − Ij ∼ Gamma(1.10, 1.0)

Table 2.1: Scenarios for simulation study. In order to test the sensitivity of the Markovian SEIR
model when fitted to non exponentially-distributed exposed and infectious lifetimes, these here
are simulated with gamma-distributions. Total host population size = N . Final outbreak size
= m.
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(a) long-lived pathogen

(b) intermediate pathogen

(c) short-lived pathogen

(d) direct transmission only

Figure 2.5: Density estimates of SEIR parameter posterior distributions and R0. The
red dot in the leftmost panels indicates (β̂, δ̂), where β̂ = αε/ρ+β and δ̂ = (E(Ij − Ej))−1. The
red vertical lines in the central and rightmost panels indicate γ̂ = (E(Rj − Ij))−1 and R̂0 = β̂N

γ̂ ,
respectively (see main text for more detail). The marginal posterior distributions γ and (β, δ)
are conditionally independent, given the data, and so are plotted separately.
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(a) long-lived pathogen (b) intermediate pathogen

(c) short-lived pathogen (d) direct transmission only

Figure 2.6: Observed outbreak size trajectories, It (solid red line): long-lived (a), inter-
mediate (b) and short-lived pathogen (c) and direct transmission only (d). These are compared
with the trajectories obtained from SEIR model with 15 000 parameters values taken uniformly
from the MCMC sample chains obtained while fitting the SEIR model, with small outbreaks
(≤ 50) discarded. The time axis was discretised (400 points) and 5th, 25th, 50th (median), 75th

and 95th percentiles of the SEIR-predicted outbreak size were estimated at each discrete time
point. The solid blue line indicates the median outbreak size while the dashed blue lines are
the other percentiles. In the short-lived and direct transmission only cases, the shape of the
predicted outbreak size trajectories (as indicated by the blue lines) mirrors that of the observed
outbreak size, with the solid red and blue lines aligning at the initial exponential growth phase,
as well as at the end of the outbreak when the number of infective hosts dies out. This is not
the case for the long-lived pathogen case, for which the model predicts earlier onset of growth
of the outbreak, peaking somewhat earlier than was observed.
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(a) long-lived pathogen (b) intermediate pathogen

(c) short-lived pathogen (d) direct transmission only

Figure 2.7: Graphical comparisons of final outbreak size (total hosts infected during
outbreak) vs. outbreak duration (latest removal time minus time of first onset of
infectivity) with their posterior predictive distributions. The red dot indicates observed
value of statistics from one outbreak: long-lived (a), intermediate (b) and short-lived pathogen
(c) and direct transmission only (d). The shading and contours were obtained from a kernel
density estimate after simulating 15000 SEIR outbreak trajectories with parameter values taken
at uniform intervals from the MCMC chains obtained while fitting the SEIR model, with small
outbreaks (≤ 50) discarded. In the case of long-lived pathogen, the fitted model tends to predict
shorter duration outbreaks but otherwise agrees with the data in terms of final outbreak size.
This is indicated by the red dot aligning horizontally with the darkest part of the density estimate
but being shifted vertically. Better agreement between the data and fitted model is evident in
the short-lived and intermediate pathogen and DT-only cases.
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(a) long-lived pathogen (b) intermediate pathogen

(c) short-lived pathogen (d) direct transmission only

Figure 2.8: Graphical comparisons of size of outbreak peak, i.e. the size of It at its
largest, and time of outbreak peak, as defined in main body of text with their pos-
terior predictive distributions. The red dot indicates observed value of statistics from one
outbreak: long-lived (a), intermediate (b) and short-lived pathogen (c) and direct transmission
only (d). The shading and contours were obtained from a kernel density estimate after simulat-
ing 15000 SEIR outbreak trajectories with parameter values taken uniformly from the MCMC
sample chains obtained while fitting the SEIR model, with small outbreaks (≤ 50) discarded.
For long-lived pathogen, the fitted SEIR model predicts that outbreaks peak, on average, at the
size observed in the data. However, the model predicts outbreaks that peak earlier. This is also
evident in Figure 2.6a, where the predicted outbreak size trajectories clearly peak earlier than
the observed outbreak size trajectory indicated by the solid red line. Better agreement between
data and model predictions are visible in Figures 2.8c and 2.8d.
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2.4 Case study: white spot disease in penaeid shrimp

In this section we focus on white spot disease (WSD) in penaeid shrimp, since this is a key
example of an infectious disease transmitted via both DT and ET due to a pathogen known to
be long-lived in the environment, under the right conditions. We formulate a SEIR-P model
of the WSD-penaeid system in which attempts are made at regular intervals to remove dead
and diseased hosts from the system. We estimate its parameters from published data and then,
using simulations, we compare the effect upon the outbreak trajectories resulting from stepping
up the frequency of removals from every 24 h to every 6 h.

This increase in the frequency of removals is an example of how relative shortening of the SEIR-
P timescales might come about in practice. We see that with removals every 24 h the SEIR-P
host-disease dynamics are closely replicated by its direct transmission approximation (DTA),
whereas SEIR-P and DTA visibly diverge in their averaged outputs with removals every 6 h.

2.4.1 Background: WSD and its impact

WSD is a viral disease caused by white spot syndrome virus (WSSV) that affects penaeid
shrimp, including the species Asian tiger shrimp, Penaeus monodon (PM) and whiteleg shrimp,
Litopenaeus vannamei (LV). These and similar species are farmed extensively in South East
Asia and Central America [Rön01] and consumed worldwide. By time of publication, the World
Bank Group estimates in its report of 2014 [Ban14] that WSD had caused economic losses
exceeding 8 billion US Dollars globally to the commercial culture of penaeid shrimp since the
first documented emergence of the disease in 1992 in Taiwan. Within three years, the disease
had spread throughout Southeast Asia, reaching South Texas by 1995 and central America by
1999 [SP10, Ban14]. The rapidity and extent to which WSD infected PM, the chief source of
brood stock, was a factor in the move to the culture of alternative species of penaeid, including
LV [Ban14]. WSD is spread between ponds and canals by human activity, by movement of
wild species [SP10] and, potentially, even the action of seabirds [VNL04]. The virus’ wide host
range is one key factor in the extent of the devastation caused by the disease, with hosts and
carriers of the disease known to include 93 species of arthropod, various species of phytoplankton
and zooplankton (ranging from 0.2 to 200 micrometers), micro-algae, polychaetes and rotifers
[SP10, Ban14, ELEBCH+09]. WSSV is transmitted directly as a result of ingestion of infected
material and indirectly due to waterborne virus within algae and plankton or that is free-floating
[ELEBCH+09]). There is evidence of long-term persistence of the virus in ponds where WSD
outbreaks have occurred [QHDA09].

Under laboratory conditions, WSSV has been shown to retain its infectivity in sea water for up
12 days and in sun dried and water-logged pond sediment for up to 19 and 35 days, respectively
[SAR+13]. Through periodic sampling of seawater from abandoned shrimp culture ponds and
surrounding canals in Vietnam, where previously an outbreak of WSD had led to 100% mortality
of cultivated shrimp, the authors of [QHDA09] found that WSSV remained detectable for up to
20 months. The detection rates declined throughout the duration of the study with the steepest
declines observed between July and December of both 2001 and 2002. The authors suggest this
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is linked to decreased plankton biomass during that period, which in turn suggests that WSSV
is able to replicate within certain plankton species. Esparza-Leal, et.al. [ELEBCH+09] suggest
that free-floatingWSSV virions have the potential to infect shrimp in pond water at around 27◦C,
whereas pond water temperatures in range of 30-33◦C prohibit infection. In [ELEBCH+09] it
was noted that detectability of WSSV varied among pond water samples taken simultaneously
from the same pond, leading the authors to note a degree of stochasticity in relation to the
waterborne pathogen load.

2.4.2 Modelling WSD and estimation of SEIR-P parameters

Estimates of rates of WSD transmission via ingestion and cohabitation have been made by Lotz
and Soto [SL01] for LV and by Tuyen, et al [TVVdJ14] for both LV and PM. Each of these
estimates rely on the assumption that the force of infection is proportional to the number of
infected shrimp currently present in the tank (It) and therefore responds immediately to changes
in this number.

Tuyen, et al, decompose the overall rate of transmission into two components relating to ingestion
and cohabitation, β = βingest + βcohab (our notation), so that the force of infection at time
t is βIt

N (where they assume that transmission is frequency dependent). They estimate the
two components of β using regression analysis of data obtained via an immersion challenge
experiment where the relative amounts of exposure via the two routes are controlled. This is
done for LV and PM independently and for both species combined.

Lotz and Soto expose LV to WSSV exclusively via either ingestion or cohabitation for a set
duration and estimate β̃ingest and β̃cohab from the numbers of shrimp that later developed the
disease. Using a Reed-Frost model of epidemics (e.g. see [Abb52]), the latter two quantities are
probabilities of disease transmission per distinct susceptible-infected shrimp pair during a time
interval of duration ∆t. The force of infection here is approximately β̃It

∆t (see Appendix C), where
β̃ is either β̃ingest or β̃cohab. Lotz and Soto found β̃cohab to be not significantly different from zero
in a first experiment and to be over an order of magnitude smaller than β̃ingest when the experi-
ment was repeated (β̃ingest = 0.56, β̃cohab = 0.02). Such a relatively low rate of transmission due
to cohabitation led the authors to omit this from their model of WSD in LM described in [LS02].
Tuyen, et al, found a similar result in the case of PM (βingest = 0.22 h−1, βcohab = 0.0026 h−1)
but for LV they in fact found that the reverse was true, in that the rate of transmission via
cohabitation was greater than via ingestion (βingest = 0.0038 h−1, βcohab = 0.018 h−1).

Underlying the estimates of βcohab and β̃cohab above is the assumption that the force of infection
responds without delay to a change in the number of infected shrimp, It. This assumption is
indeed valid across a wide variety of cases in which the size of the environmental pathogen load
responds more or less rapidly to changes in It, as discussed in the previous section. However,
given the slow rate of decay of infectivity of WSSV and its persistence in water bodies long after
outbreaks have occurred, it is perhaps fruitful to consider the relationship between environmental
pathogen load and the rate of environmental transmission as described, for example, by the
SEIR-P model described in Section 2.2. For example, Wang, et al. (2012) [WJL+12] find that

53



2.4.3. Impact of removal frequency on WSD outbreaks among penaeids

an environmental transmission model similar to SEIR-P of avian flu among duck populations
was able to account for the complex periodic outbreak patterns of the disease over long time
periods.

As far as we know, there is no published estimate of the environmental transmission rate, α, for
WSD among penaeids. Here, however, we obtain a lower estimate of α = 10−4 ml part−1 h−1 for
PM, along with an upper estimate of the pathogen decay rate, ρ = 0.005 h−1, from the results
of the WSSV viability in seawater experiment by Kumar, et al, ([SAR+13], details in Appendix
D). Lotz and Soto ensure use a shrimp density of 12 animals per square metre of water surface
in their experiment in order to mimic densities of wild populations [SL01]. In the simulation
study, described below, we adopt a nominal water volume of 46.2 m3 and water surface area
of 77 m2 to obtain a similar host density with 1000 shrimps initially in the system. Since the
estimates of α and β both have dimensions volume × time−1, we scale them by this nominal
volume before carrying out the simulations.

The pathogen emission rate, ε, is chosen from within a range of known shedding rates for
waterborne viruses (e.g. see [WSKK17, KF12]). Since each dead shrimp contributes ε

ρ to the
environmental pathogen load, at equilibrium, and therefore α ερ to the force of infection via
environmental transmission, we choose a direct transmission rate β = 10×α ε

ρ . This is in accord
with the relative sizes of Lotz and Soto’s estimates of β̃ingest ≈ 10× β̃cohab.

The S, E, I and R compartments of the SEIR-P model (summarised in Figure 2.10) are, re-
spectively, shrimp that are susceptible (S), have been exposed, but still alive (E), dead, and
now causing new infections either via shedding virus into the water body due to decay or being
scavenged upon (I) and physically removed from the system (R). We assume for simplicity that
there is no viral shedding or infectivity during the E stage and that times from exposure to
mortality are gamma-distributed with shape and rate parameters νδ and δ such that the mean
time from exposure to mortality (νδδ ) agrees with the estimate given by [TVVdJ14].

There are two processes by which shrimp are removed from the system. Firstly, there is the
long process of decay characterised by gamma-distributed times in the I compartment, with
shape and rate parameters νγ and γ with mean νγ

γ = 333.3 h ≈ 14 d. Secondly, removals occur
probabilistically from both the E and I compartments at regularly spaced time points with prob-
abilities of success of πE = 0.05 and πI = 0.95, respectively, so that bin(Et, πE) and bin(It, πI)
shrimp are removed at each removal point, t. Shrimp that are dead are therefore removed at
the first removal time, post-mortem, with probability 0.95 and at the second with probability
0.9975. This means that it is highly unlikely that shrimp are removed from the system due to
natural decay in this scenario. We assume that no living, disease-free shrimp are accidentally
removed in this process. All of these model quantities are summarised together in Table 2.2.

2.4.3 Impact of removal frequency on WSD outbreaks among penaeids

Using simulations, we study outbreak patterns under 24 and 6-hourly removals under the SEIR-
P model described above. Alongside these we also look at those of the DTA of this model, where
β̂ = α ερ + β, for comparison. Density plots for the final outbreak size and outbreak duration
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Figure 2.9: Summary of SEIR-P model of WSD among penaeids. Parameter values are
listed in Table 2.2. The arrow from I to R labelled Γ(νγ , γ) represents removal of dead hosts
after a gamma-distributed time to full natural decay. The curved arrow from I to R represents
removal at one of the x-hourly removal attempts, with probability πI , similarly for the curved
arrow from E to I.

(Rmax−E0) of the SEIR-P model and the DTA are displayed in Figures 2.11 and 2.12 for 24 and
6 hourly removals, respectively. Figures 2.13 and 2.14 show the simulated outbreak trajectories
for the four host compartments of the SEIR-P model and DTA. The top row in these two figures
are typical individual outbreak trajectories while the bottom row are trajectories averaged over
3× 104 independent simulations, with “small” outbreaks of fewer than 10 infections.

Figures 2.11 and 2.13 show that attempting to remove the dead shrimp from system at 24 h
intervals, even with a success rate of 95%, is not sufficient to prevent large outbreaks of WSD,
with outbreaks overwhelmingly affecting more than 90% of the shrimp population and lasting
more than 600 h from index exposure to final removal. Increasing the intensity of surveillance,
however, by removing dead and diseased shrimp every 6 h, eliminates such large outbreaks,
limiting the final outbreak size to about 60% of the population. Additionally, outbreaks tend
to be eradicted sooner at around 200 h, although a sizeable proportion continue for longer (see
Figure 2.12).

It is interesting to compare the SEIR-P and DTA trajectories when going from 24 to 6-hourly
removals, since the time that infectious shrimp are in the system is reduced by about a quarter,
on average. This is an example of how two distinct degrees of host and pathogen timescale
separation may be observed for the same host-disease system. The plots in Figures 2.11 and 2.13
suggest very close alignment between the SEIR-P and DTA models in their host compartment
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Figure 2.10: Summary of DTA model of WSD corresponding to the SEIR-P model in Fig-
ure 2.10 (see Section 2.3). This is the direct transmission, SEIR approximation, with direct
transmission rate β̂ = α ερ + β. All other aspects are as for the SEIR-P model.

dynamics, final outbreak sizes and outbreak durations, meaning that we can faithfully reproduce
the environmental transmission without needing to model the pathogen load. Under such a
scenario, most hosts remain infectious for less than 24 h. Nonetheless, we see that the resulting
outbreak patterns are captured as equally well by the DTM as by the full SEIR-P model. The
shortening of the host timescale by removing every 6 h is sufficient, however, to begin to observe
divergence between the SEIR-P and the DTA, most noticeably, perhaps, in the distributions of
the final outbreak size and outbreak duration (Figure 2.12). Indeed, the DTA underestimates,
on average, the reduction in final outbreak size and overestimates the reduction in outbreak
duration. The DTA outbreaks at 6-hourly removals tend to grow slightly faster than the SEIR-
P outbreaks (see Figure 2.14).
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Figure 2.11: Estimated density plots of final outbreak size (left) and outbreak duration
(right) for the SEIR-P (blue) and DTA (red) models of WSD with 24-hourly removals. Both
quantities are distributed very similarly under the two models.

Figure 2.12: Estimated density plots of final outbreak size (left) and outbreak duration
(right) for the SEIR-P (blue) and DTA (red) models of WSD with 6-hourly removals. The
benefit of increasing the removal frequency, in terms of reduction in mean final outbreak size, is
underestimated slightly by the DTA and the reduction in outbreak duration is over-estimated.
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(a)

(b)

Figure 2.13: Simulations of the SEIR-P (blue) and DTA (red) models of WSD in penaeid
shrimp with removals of exposed (E) and dead (I) hosts at 24-hourly intervals, with probabilities
of success 0.05 and 0.95, respectively. Single outbreak trajectories (2.13a) and averages over 30
000 independent simulations with small outbreaks (fewer than 10 infections) excluded (2.13b).
The zig-zag pattern in the 3rd panel of (2.13b) is due to the periodic removals. The averaged
model outputs show a high degree of similarity between SEIR-P and DTA, meaning that at
these timescales the environmental transmission of WSD can be well approximated with direct
transmission among the hosts.
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(a)

(b)

Figure 2.14: Simulations of the SEIR-P (blue) and DTA (red), as in Figure 2.13, with removals
at 6-hourly intervals. Although the outbreaks of single SEIR-P and DTA trajectories appear
similar, a small but definite divergence between the two models appears when studying their
averaged outputs.
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2.5 Discussion

We have seen in Section 2.3 that the SIR and SEIR models approximate the host-disease dy-
namics arising from a combination of direct and environmental transmission, as modelled by
SIR-P or SEIR-P, that this approximation improves with increasing rates of pathogen shedding
and decay and that when fitting these models to data, using Bayesian inference and data aug-
mentation, they are highly robust to violations of the assumption of direct transmission. For
example, these results suggest that the direct transmission approximation will be suitable for
modelling transmission of SARS-CoV-2 within a closed environment, such as a hospital, since
it has a half life of about 1 h in aerosols and 1 h, 3.5 h, 5.75 h and 7 h on copper, cardboard,
stainless steel and plastic surfaces [vDBM+20] but the mean infectious period is considerably
longer: 5 d to 11 d for asymptomatic cases, up to 4 d for presymptomatic cases [BMC+20] and
about 7 d for symptomatic cases [WCG+20].

Tien & Earn, in their investigation of multiple transmission routes of cholera among humans
[TE10], cite the rate of pathogen decay in the waterbody as the important factor in determining
whether one should consider modelling the environmental and direct routes of transmission
separately, or combined as one direct route. As suggested by the simulation study in Section
2.4, a viral lifetime of 200 h versus a much shorter host mean infectious lifetime of around
24 h also results in disease dynamics closely reproducible with a DTM, in spite of the low rate
of pathogen decay. In this case the high rate of pathogen shedding produces sufficient host-
pathogen timescale separation in order that DT provides a good approximate description of
the transmission via both direct and environmental routes. When the rates of shedding and
pathogen decay are both low, as in Figure 2.4a and the long-lived pathogen of Section 2.3.2,
then we do not expect the DT approximation to work. Macro-parasite infections are one class of
disease system within this grouping and our results indicate why models describing the complex
host-parasite interaction, similar to those of similar to that of Anderson & May [AM78, MA78],
are often used for these systems (e.g. see [MNH+12]).

While individual outbreak trajectories appear very similar, statistical comparison over many
runs reveals a strong and practically important divergence between environmental and direct
transmission models of WSD among penaeids under more effective disease control (i.e. more
frequent removals). The model fitting and checking in Section 2.3 was done under the rather
special scenario that both the times of onset of infectivity and host removal are known so as
to construct the outbreak size trajectories displayed in Figure 2.6, which provides the clearest
indication of lack of model fit in the long-lived pathogen case. However, DTMs can and have
been fitted to a wide range of partial epidemic data [NR05, GMP17] and our conclusions will
hold in such scenarios. Nonetheless GPPCs in general may not be the sharpest way to detect
departure from direct transmission when the data from an outbreak is less complete, as is
often the case. Exposure time residuals (ETRs) (Lau, et al [LMSG14]) could potentially yield
a numerical measure of model fit. ETRs are defined, relative to some putative model, as joint
functions of the data, latent variables and parameters and their joint posterior predictive density
should approximate an independent uniform sample when the parameters are close to the mode
of their posterior. However, in the case of there being latent variables, such as when the host
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event times are not fully observed, analysis of their high-dimensional posterior distribution
is not straightforward. A second numerical method of model checking is the use of tail-area
probabilities or posterior-predictive p-values [GCS+13, GST18], which offer a measure of the
probability of observing certain aspects of an outbreak (such as final outbreak size) that are
at least as extreme as what was observed. However, as noted by Gibson (2018), use of low-
dimensional summaries of complex high-dimensional processes may impact upon the power of
model tests based upon poster-predictive distributions to correctly identify model deficiencies
but such impacts can be mitigated by using several low-dimensional summaries, as we did here.

Common methods of model comparison, such as model evidence [PM18] and the Bayesian and
the deviance information criteria (BIC & DIC) would require an alternative ETM fitted to the
same data in order to make a comparison. It is an open question whether ETMs can be fitted
to host-disease events without measurement of the environmental pathogen load or strong prior
information about the pathogen shedding and decay rates. Tien and Earn [TE10] comment
that even when pathogen dynamics are slow, parameters quantifying rates of environmental
and direct transmission (α and β) are still unidentifiable from disease incidence data alone.
Methods that measure pathogen density in the waterbody, such as polymerase chain reaction
[RCLMJ+15, AWS98] are therefore required in order to quantify environmental transmission
from data.

Statistical modelling and prediction are tools, and most prominent among these are direct trans-
mission compartmental models within the SIR framework, are becoming increasingly important
in the control and understanding of infectious disease, with their simple, yet powerful, picture
of disease transmission. It is a common wisdom that a simple model is often preferable over
a more complex one. Nonetheless, all models should be applied critically, in order that the
conclusions and predictions we draw from them are sound. This work should reassure that di-
rect transmission models retain their validity even as their field of application widens to include
environmental tranmission via long-living pathogens. However, even this highly successful and
widely applied assumption should be assessed critically as its validity depends not just on the
host-pathogen system in question but also on the management regimes imposed upon it.
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Chapter 3
Bayesian inference for direct

transmission models as a tool to
analyse and design challenge studies

3.1 Introduction

The purpose of this chapter is to demonstrate that analysis of data obtained via infection
challenge experiment (ICE) using dynamic stochastic disease models enables estimation of key
characteristics of disease dynamics that are not typically considered in such studies and can
be used to improve their design. ICE are the means whereby infectious disease is observed
under controlled conditions and among their numerous and varied objectives are the greater
understanding of modes and mechanisms of transmission, such as the transmission of African
swine fever by carrier pigs [EHW+19] and transmission dynamics of Rift Valley fever virus among
various types of livestock [KBP+20]. Additionally, the purpose of ICE can be to quantify the
minimum infectious dose of a pathogen associated with a transmission route, e.g. transmisison
of foot and mouth disease to pigs via aerosols [ABD02] as well as to study behavioural factors
in disease transmission, such as faecal avoidance in grazing cattle and its impact upon infection
risk [SWMH09].

Efffectiveness of vaccines are typically first demonstrated using ICE, such as the study of the
protection against tuberculosis (TB) in Eurasian badgers following intramuscular injection of
BCG [LPGS+11] and such studies often accompany wider field studies investigating the impacts
of the same interventions on prevalence and transmission in the wild, such as [CCR+12]. At
the time of writing, the first human challenge study of SARS-CoV-2 in humans has received
ethics approval [GOV, Kir20] and will examine the transmission mechanisms of the virus and
test various candidate vaccines.

Because of the magnitude of the economic impact of disease upon aquaculture production (6 bil-
lion USD per annum, as estimated by the World Bank [Ban14]), ICE are widely used for research
on diseases in fish and other aquatic animals. To state some examples published in the first two
months of 2021, susceptibility to tenacibaculosis in conger eels [IA21] and the transmissibility of
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pilchard orthomyxovirus among Atlantic salmon via seawater [SRT+21] have been established
using ICEs. Challenge protocols have been developed for Streptococcus agalactiae in Nile tilapia
[HLLL21] and Piscirickettsia salmonis in various salmon species [LGJ21]. For ameobic gill dis-
ease in Atlantic salmon, the effectiveness of immersion in sodium percarbonate as a treatment
[TSC+21] and presence of Nolandella sp. and Pseudoparamoeba sp. as aggravating factors
[EBA+21] have been investigated using ICE. Recent examples of trials of vaccination regimes
include immersion with live nervous necrosis virus (NNV) of sevenband grouper [KKO21] and
a DNA vaccine against a salmonid alphavirus in Atlantic salmon [TWI+21]. The time variation
of the rate of NNV viral shedding and the within-host viral load among sevenband grouper have
been measured [KQKO21].

None of these studies made use of stochastic dynamic disease models in their analysis of data
that were gathered, in spite of the ongoing development in the fields of dynamic modelling and
statistical inference and their application to the problems of quantification of disease transmis-
sion, prediction and experimental design. Such models provide a dynamic, probabilistic, picture
of the focal population passing between a small number of disease states [CHBCC09, BCCF19]
and are the cornerstone of statistical analysis of disease spread. The continous time Susceptible-
Infectious-Removed (SIR) model of Kermack & McKendrick [KM27] and the discrete time Reed-
Frost model [Abb52] being canonical examples. For a homogeneously mixing population - that
is where each member of the population comes into contact with every other member with equal
likelihood (a reasonable assumption in the context of an ICE) - SIR-like models offer a faithful
picture of population-level disease dynamics, despite their simplicity. Even when there is local
heterogeneity of mixing for subpopulations in a particular trial, SIR-like behaviour is often re-
covered at the large scale, as discussed by [THY+20] concerning COVID-19 transmission in US
cities.

With computing power getting ever less expensive [Nor07], powerful techniques are available
for the fast and efficient simulation of disease outbreaks described by these models. Algorithms
based upon those originally employed to simulate chemical reactions, such as the Doob-Gillespie
algorithm from Markov chain theory [PP13, vK07], allow us to sample disease outbreak tra-
jectories over sets of parameter values, initial conditions and population structures, cheaply
assessing, for example, likely effects of disease prevention and management interventions, com-
parative efficacies of different vaccination regimes, effects upon transmission and mortality of
various environmental factors etc.

It is commonplace that data from disease outbreaks, and indeed ICE, provide only a partial
picture of how a disease progresses through a population. Whereas previously the estimation of
stochastic dynamic model parameters, in the absence of complete data, was an intractable prob-
lem, the increased availability and speed of computation mean that powerful modern statistical
techniques, including a widening array of Markov chain Monte Carlo (MCMC) methods sup-
porting Bayesian inference, may now be brought to bear on such problems. For example, particle
filtering techniques [ADH10] simultaneously estimate unknown parameters of the model and any
unobserved or missing data by building up sequentially sets of “particles”, i.e. samples from
the unobserved parts of the dynamic process. Data augmentation [TW10] alternately samples
the parameters and missing data, often using Gibbs or Metropolis-within-Gibss sampling, and
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has variants such as partial non-centering [NR05] and model-based proposals [PBM15], which
aim to improve efficiency. To assess model structure, besides the various information criteria
([Sch78, Mey16]), we also have at our disposal various means of model checking and compar-
ison, such as latent residuals [LMSG14], which can be used to test the specification of each
component part (e.g. whether durations of infectiousness are exponentially distributed) of the
dynamic model against data. In addition, there are graphical posterior-predictive checks (GP-
PCs) ([GS13], described below) and ways to incorporate estimation of the model evidence (i.e.
the likelihood of the data averaged over the entire parameter prior distribution) into MCMC
sampling routines [PM18]. Finally, it is possible to produce numerical information-theoretic
comparisons of hypothetical experimental designs using Bayesian inference and computer sim-
ulation (e.g. [VTHvR12, LFKS13]) so that prior to carrying out expensive ICEs we can first
assess various aspects of their design.

To give a brief outline of the Chapter, in Section 3.3 we go through two cycles of model fitting
and checking in search of a model of transmission and progression of a novel strain of Piscine
orthoreovirus in rainbow trout using data reported from a trial conducted by [HVT+17]. We
arrive at a stochastic dynamic model of this disease with a susceptible, an exposed (but not yet
infectious) and an infectious disease state and two parameters determining the rate of transmis-
sion and the duration that fish are latently infected (in the E state). Such quantities were not
estimated by the authors of the trial, but we show here that this indeed can be done. In Section
3.4 we explore how trial design influences precision of parameter estimates when fitting models.
As suggested by [LFKS13], we use the mutual information (MI) between the parameter prior
and experimental outcome to compare several variants of the Hauge study design in terms of
their expected information gain. Building on the development of [LFKS13], we give a detailed
account of how we may estimate the Monte Carlo error in the MI estimate.

3.2 Materials and methods

3.2.1 Hauge trial 1A - description and data

The following trial is described in [HVT+17] and was conducted to establish a challenge protocol
for a novel strain of piscine ortheovirus, (PRV-Om), affecting farmed rainbow trout in Norway.
The trial also confirmed the transmissability of the virus due to cohabitation.

The trial begins with N1 = 20 innoculated (“Group 1”) and N2 = 20 disease-naive (“Group 2”)
hosts cohabited in a tank of volume Vt = 150 l. Therefore S0 = N2, I0 = N1. At ti = 1, 2, 4, 6
& 8 wpc (weeks post-challenge) d1

i hosts from Group 1 and d2
i hosts from Group 2 are selected

at random, euthanised and their blood is tested using RT-qPCR for presence of the virus. The
numbers of fish testing positive is reproduced in Table 3.1 below.
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Sample time t (wpc) d1, d2 r

1 4, 4 0
2 4, 4 0
4 4, 3 1
6 4, 4 2
8 3, 5 5

Table 3.1: Group 1 and 2 sample sizes, d1, d2 and positive-testing Group 2 fish, r from
Trial 1A of [HVT+17]. All Group 1 fish tested positive when sampled.

(a) SI

(b) SEI

Figure 3.1: Summaries of SI and SEI models. The arrows show the possible transitions
between disease states. The parameter β wpc−1 is the direct transmission rate, which determines
the force of infection in relation to the number of infectious hosts present in the system. The
time that hosts spend in the exposed (E) state is determined by the rate parameter δwpc−1.

3.2.2 The models

3.2.2.1 Susceptible-Infectious (SI)

The first of two dynamic disease models used in this chapter is the Susceptible-Infected (SI)
stochastic compartmental model, which describes direct transmission of disease among a closed
population of hosts that are in one of two disease states: those that are susceptible to disease
(S) and those that are infected (I). There is a single parameter β, the direct transmission rate,
that determines the force of infection (the rate of secondary infections, per susceptible host).
The probability that some susceptible host becomes infected during the interval (t, t+ δt) is

βStItδt+ o(δt) (3.1)

where St and It are the numbers of susceptible and infected hosts at time t and o(δt) is a generic
symbol for a function of δt for which o(δt)

δt → 0, as δt→ 0. Figure 3.1b summarises the SI model;
the solid arrow represents the only possible transition between disease states.

3.2.2.2 Susceptible-Exposed-Infectious (SEI)

The second model (summarised in Fig. 3.1b) has an additional disease state describing hosts
that are exposed, but not yet infectious (E). Equation 3.1 also describes the probability of a
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susceptible host entering the E state during the interval (t, t + δt). The SEI model has an
additional parameter, δ, that determines the rate that hosts move from the E to the I state, at
which point they become infectious. More precisely, upon entering the exposed state, hosts will
move into the infectious state after a random duration, τ , where

τ ∼ Exponential(δ) (3.2)

so that hosts are in the E state for a duration of 1
δ , on average. Transitions from S to E and

from E to I are the only ones possible.

3.2.2.3 Sampling model

The state of the SI or SEI systems at any time t is not directly observed. Instead, a series
of samples of sizes d are taken at times t and tested for disease. We assume that this test is
perfectly reliable, in terms of sensitivity (no false negatives) and specificity (no false positives),
so that, with probability one, infected fish test positive and susceptible fish test negative, when
sampled. Sampling, considered here, is destructive, i.e. fish are not returned to the tank.

For the SI model considered here, if there are S susceptible and I infectious Group 2 hosts at
time of sampling, then on taking a sample of size d, the number of positive hosts in the sample,
r, follows a hypergeometric distribution:

P(r = r′) =
( I
r′
)( S
d−r′

)(S+I
d

) (3.3)

where e.g.
(S+I
d

)
is the number of different ways of choosing a sample of size d from the S + I

hosts in the tank.

For the SEI model, with S,E and susceptible, exposed and infectious Group 2 hosts

P(r = r′) =
(E+I
r′
)( S
d−r′

)(S+E+I
d

) . (3.4)

3.2.3 Simulation

Appendix F.2 contains sample Python2 code used to simulate counts of Group 2 positive-testing
at sample points similar to the Hauge trial, with underlying model SEI.

3.2.4 Inference

We now describe how we fit the SEI model to Hauge trial data, employing Bayesian inference.
Throughout the rest of this chapter the generic symbol p(x) denotes the density or probability
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mass function (pmf) for the random quantity x and p(x | y) denotes the conditional density or
pmf of x, given y. The posterior density summarises everything we wish to know about the
unknown parameter values, having observed the data

p(β, δ | r). (3.5)

Since the form of this density is analytically intractable, we use techniques associated with
Markov chain Monte Carlo (MCMC) to approximately draw dependent samples from (3.5), as
we now outline. By Bayes’ rule, Eq. 3.5 is proportional to

p(r |β, δ) p(β, δ) (3.6)

The first factor of Eq. 3.6 is the likelihood and second is the prior for the two unknown param-
eters β and δ, where we assumed these to be independently exponentially distributed with rate
λ = 1.0× 10−3 wpc−1, i.e.

p(β, δ) ∝ e−λ(β+δ). (3.7)

Such a diffuse prior, suggested by [NR05], reflects an initial lack of knowledge about the unknown
parameters. Since β and δ take values in the positive real line only, it is convenient to sample
them on the natural logarithmic scale in what follows, so that instead we to draw samples from

p(log β, log δ | r) ∝ p(r |β, δ) p(β, δ)β δ, (3.8)

where the additional factor βδ is the required Jacobian term due to the fact that we have
log-transformed the parameters.

We use a sequential Monte Carlo (SMC) step with bootstrap particle filter ([ADH10, GC01]) to
approximate

p̂(r |β, δ) ≈ p(r |β, δ) (3.9)

which, having sampled a set of parameters, proceeds by forward simulation of a number of “par-
ticles”, consisting of the sequences of unobserved events of the SEI model between measurement
times. At the measurement times, the particles are weighted according to their agreement with
the counts of positive-testing fish, r, and then resampled. This way, those particles with under-
lying states that agree well with the data are more likely to be propagated. Since sampling is
lethal, we must adjust the S, E and I compartment sizes for each particle before the next set of
forward simulations; we remove the ri positive-testing Group 2 hosts randomly from the E and
I compartments, d1

i Group 1 hosts from the I compartment and d2
i − ri negative-testing Group 2

hosts from the S compartment. Any particles with insufficient hosts in the three compartments
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receive a weighting of zero and are not propagated further. See Appendix E for a detailed de-
scription of the routine, implemented using C++, used here. See the introduction to Chapter 4
for a discussion of some of the alternatives to this approach.

The sampling routine for i = 1, 2, 3, . . . , N (with initial Nburn iterations used for burn in and
adaptation) is as follows:

1. Initialise:

a) Set initial values for the log-transformed parameters, log β0, log δ0

b) Initialise the variance-covariance matrix (variances chosen to scale suitably, relative
to initial log β0, etc.)

Σ =


(

log β0
1.96

)2
0

0
(

log δ0
1.96

)2

 (3.10)

2. Propose:

(log β̃, log δ̃) = (log βi−1, log δi−1) + vi

where vi ∼ MVN(0,Σ) is drawn from a multivariate normal distribution with mean vector
0 and variance-covariance matrix Σ. To optimise sampling efficiency, before we can begin
to use or collect useful samples from the parameter posterior distribution we must first
tune Σ - we follow the method used by [PBM15].

3. Estimate:
p̂(r | β̃, δ̃) ≈ p(r | β̃, δ̃) (Eq. 3.9 and App. E)

4. Accept-reject:

set log βi, log δi = log β̃, log δ̃

with probability p̂(r | β̃, δ̃) p(β̃, δ̃) β̃ δ̃
p̂(r |βi−1, δi−1) p(βi−1, δi−1)βi−1 δi−1

otherwise, log βi, log δi = log βi−1, log δi−1.

If i ≤ Nburn, then if accepted set

Σ = 1.002× Σ (3.11)

and if rejected set

Σ = 0.999× Σ. (3.12)

In addition, while i ≤ Nburn, at everyNrescale iterations (usually between 750 and 1000), set
the elements of Σ to the variances and covariances of the sequences of the log-transformed
parameter samples. This step adapts the proposal density to information we have gained
so far about the shape of the joint posterior, improving the acceptance rate of the MCMC
chains.
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3.2.5 Mutual information

Throughout this subsection, the symbols θ, Y and X denote the unknown model parameters, the
experimental outcome and unobserved data. Densities are again denoted generically by p(. . .).

In experimental outcomes there are two sources of randomness. The first comes from our initial
uncertainty about the parameters, θ, of the model, as expressed by the prior distribution. The
prior entropy

H(θ) = −
∫
p(θ) log p(θ) dθ

is a measure of the uncertainty implied by the prior and is maximised when θ’s distribution is
highly dispersed and minimised when its density is concentrated in a small region. The second
source of randomness is the outcome of the experiment, Y (which we model via the likelihood
p(y | θ)). The posterior entropy

H(θ|Y ) = −
∫ ∫

p(θ|Y ) log p(θ|Y ) dθdY

measures the uncertainty in the posterior density, averaged over all experimental outcomes. The
difference between these latter two quantities is the mutual information (see e.g. [HK07])

I(θ, Y ) = H(θ)−H(θ|Y ). (3.13)

The mutual information can be described as the expected loss of uncertainty, or gain of infor-
mation, when updating the prior p(θ) with an observation of Y . [LFKS13] suggest this as a
measure with which to compare the average information gain of different experimental designs
in biology; those designs with a higher mutual information will produce, in the long run, the
greatest redution in uncertainty when passing from the prior to the posterior.

As in [LFKS13], Eq. (3.13) can be rewritten

I(θ, Y ) =
∫ ∫

p(Y | θ)p(θ) log p(Y |θ)
p(Y ) dθdY = EY,θ

[
log p(Y |θ)

p(Y )

]
(3.14)

suggesting how we may obtain a Monte Carlo estimate of I(θ, Y ) by first drawing θi ∼ p(θ) and
then Yi ∼ p(Y |θi), for i = 1, . . . , N1 and calculating

Î = 1
N1

N1∑
i=1

log p(Yi|θi)
p(Yi)

(3.15)

which is straightforward, if we can write down the likelihood and evidence terms, in terms of
Yi and θi. In the current application, however, we cannot calculate these directly since they are
both integrals over the unobserved data likelihood p(X|θ) and / or the prior, i.e.
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p(Yi|θi) =
∫
p(Yi |X, θi)p(X | θi) dX

p(Yi) =
∫ ∫

p(Yi |X, θ)p(X | θ)p(θ) dXdθ

(3.16)

and so these too must be estimated. For each Yi, we estimate the evidences p(Yi) by first
sampling θj ∼ p(θ) and then sampling Xj ∼ p(X | θj) for j = 1, . . . , N2 and putting

p̂(Yi) = 1
N2

N2∑
j

p(Yi|Xj , θj). (3.17)

which converges to p(Yi) by the law of large numbers. Similarly, we estimate the likelihoods,
p(Yi|θi), by sampling Xk ∼ p(X | θi) for k = 1, . . . , N3 and putting

p̂(Yi|θi) = 1
N3

N3∑
k

p(Yi|Xk, θi) (3.18)

and we replace p(Yi) and p(Yi|θi) with p̂(Yi) and p̂(Yi|θi) in Eq. 3.15.

In order to construct approximate confidence intervals for the estimate, Î, we first need to
estimate its standard error

std. err(Î)2 = 1
N1

var
(

log p̂(Y |θ)
p̂(Y )

)
(3.19)

accounting for the error arising both from sampling Y, θ ∼ p(Y |θ) and from estimating the like-
lihoods and evidences in Eq. 3.15. We can partition the variance of log p̂(Y |θ)

p̂(Y ) into contributions
from each of these two sources according to the law of total variance,

var
(

log p̂(Y |θ)
p̂(Y )

)
= var

(
E
[

log p̂(Y |θ)
p̂(Y )

∣∣∣Y, θ])+ E
[
var
(

log p̂(Y |θ)
p̂(Y )

∣∣∣Y, θ)] . (3.20)

The first term on the right hand size of Eq. 3.20 is the variance of the conditional expectation
of log p̂(Y |θ)

p̂(Y ) , given Y and θ. To estimate this term we first note that by expanding log p̂(Y |θ)
p̂(Y ) to

first order around p(Yi|θi) and p(Yi), and then taking conditional expectations

E
[

log p̂(Y |θ)
p̂(Y )

∣∣∣Y = Yi, θ = θi
]

≈ E
[

log p(Yi|θi)
p(Yi)

− 1
p(Yi)

(p̂(Y )− p(Yi)) + 1
p(Yi|θi)

(p̂(Y |θ)− p(Yi|θi))
∣∣∣Y = Yi, θ = θi

]
= log p(Yi|θi)

p(Yi)
(3.21)
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and then take the sample variance

var
(
E
[

log p̂(Y |θ)
p̂(Y )

∣∣∣Y, θ]) ≈ v̂ar
{

log p(Yi|θi)
p(Yi)

: i = 1, . . . , N1
}
.

(3.22)

The second term on the right of Eq. 3.20 is the mean of the conditional variance of log p̂(Y |θ)
p̂(Y ) ,

which given Y and θ is defined as

var
(

log p̂(Y |θ)
p̂(Y )

∣∣∣Y, θ) = E
[(

log p̂(Y |θ)
p̂(Y ) − E

[
log p̂(Y |θ)

p̂(Y )
∣∣Y, θ])2∣∣∣Y, θ]

(3.23)

We can however estimate the conditional variance appearing in second term on the right hand
side of Eq. 3.20 by once more expanding to first order and then taking conditional variances,

var
(

log p̂(Y |θ)
p̂(Y )

∣∣∣Y, θ) ≈ var
(

log p(Y |θ)
p(Y ) −

1
p(Y ) (p̂(Y )− p(Y )) + 1

p(Y |θ) (p̂(Y |θ)− p(Y |θ))
∣∣∣Yi, θi)

= 1
p(Y )2var

(
p̂(Y )

∣∣∣Y, θ)+ 1
p(Y |θ)2var

(
p̂(Y |θ)

∣∣∣Y, θ).
(3.24)

There is no covariance term in the last line since the Monte Carlo estimates p̂(Yi) and p̂(Yi|θi)
for each i = 1, . . . , N1 are respectively generated from the independent sequences

{Xj , θj ∼ p(X, θ), j = 1, . . . , N2}

and {Xk ∼ p(X|θi), k = 1, . . . , N3}

(3.25)

and so are conditionally independent given Yi and θi.

Finally, letting V e
i and V l

i denote the sample variances of the sets {p(Yi|Xj , θj) j = 1, . . . , N2}
and {p(Yi|Xk, θk) k = 1, . . . , N3} we used to estimate p(Yi) and p(Yi|θi) for each i = 1, . . . , N1,
then (replacing the p’s with p̂’s)

E
[
var
(

log p̂(Y |θ)
p̂(Y )

∣∣∣Y, θ)] ≈ 1
N1

N1∑
i=1

var
(

log p̂(Yi|θi)
p̂(Yi)

∣∣∣Yi, θi)

≈ 1
N1

N1∑
i=1

{ 1
p̂(Yi)2

1
N2

V e
i + 1

p̂(Yi|θi)2
1
N3

V l
i

}
(3.26)
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Putting all of the above together, we approximate var(Î) in terms of all the various means and
sample variances

var(Î) ≈ 1
N1

V 0 + 1
N1

N1∑
i=1

{ 1
p̂(Yi)2

1
N2

V e
i + 1

p̂(Yi|θi)2
1
N3

V l
i

} . (3.27)

and a 95% confidence interval for the estimate Î, for example, is

(
Î − 1.96×

√
var(Î), Î + 1.96×

√
var(Î)

)
. (3.28)

3.2.6 Model checking

We use graphical posterior predictive checks (GPPC) [GCSR95, GS13] to graphically compare
the data (e.g., as in Figure 3.3) with corresponding posterior-predictive distributions of similar
quantities. These being in marked disagreement suggests we need to look again at the model.

For example, the posterior-predictive distribution of r1, the number of positive-testing fish found
in the first sample, for the SI model is

p(r̂1 | r1) =
∫
p(r̂1, S1, I1 | r1) dS1dI1

=
∫ ∫

p(r̂1 |S1, I1)p(S1, I1 |β, r1)p(β | r1) dS1dI1dβ. (3.29)

where S1 and I1 are the numbers of susceptible and infectious hosts at the first sample time. We
sample from p(r̂1 | r1) by first sampling βi, i = 1, . . . N independently from the posterior (or a
Guassian density estimate of the posterior estimated from the MCMC posterior sampled using
SciPy’s guassian_kde function [VGO+20]) and then using forward simulation of the SI process
with β = βi to sample the Si1, Ii1. Finally, we approximate

P (r̂ = j | r1) ≈ 1
N

N∑
i=1

P (r̂1 = j |Si1, Ii1). (3.30)

3.3 Case study: novel piscine ortheovirus (PRV-Om) in
rainbow trout [HVT+17]

We present here a case study where we fit a stochastic dynamic disease model to data gath-
ered from an ICE described by [HVT+17] demonstrating how useful quantities that characterise
this and other infections can be estimated from these kinds of data using the theory and tech-
niques described above. We show how the straightforward model checking technique of graphical
posterior predictive checks (GPPC) can alert us to problems with our fitted model.
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3.3. Case study: novel piscine ortheovirus (PRV-Om) in rainbow trout [HVT+17]

In the trial, rainbow trout Onchorhyncus mykiss were intraperitoneally injected with a challenge
innoculum of a novel variant of piscine orthoreovirus (PRV-Om), typically associated with heart
and skeletal muscle inflammation in Atlantic salmon. This new variant was observed to be
causing disease in farmed rainbow trout in Norway [HVT+17] and the particular experiment
that we study here was a small-scale preliminary trial whose purpose was to establish that
innoculation via intraperitoneal injection was effective in initiating infection in healthy fish and
that infection via cohabitation was one of the possible routes of transmission. The innoculated
fish were then cohabited with a group of disease-naive fish and samples of the innoculates and
initially disease naive fish were taken at 1, 2, 4, 6 and 8 weeks post-challenge (wpc). The
trial lasted eight weeks in total. Blood from all of the sampled fish was tested using real-time
polymerase chain reaction (RT-qPCR) to detect presence of viral RNA. In addition tests for
organ pathologies were also carried out for a sub-sample, although we do not use those results
here. All of the innoculate group tested positive for virus throughout the trial with blood
viral levels observed to rise to a peak at 4 wpc. The numbers of positive testing fish in each
sample comprise the data that we use here to fit the model. Due to the results of this trial, the
researchers were able to conclude that the virus replicates in the blood of rainbow trout and the
disease could be transmitted environmentally.

See Section 3.2 for a more detailed description of the trial and the resulting data. We first
attempt to fit the SI model, and so, initially, our assumptions are

1. the underlying dynamic model is SI, i.e. fish are either susceptible or infectious

2. Group 1 (innoculates) occupy the I state throughout the trial

3. Group 2 (naive) are initially in the S state

4. a positive RT-qPCR test on blood implies infectiousness and a negative test implies sus-
ceptibility, i.e. fish in the S state test negative and fish in the I state test positive.

Assumption 4 in the above list is somewhat reasonable in this case since the organs of a subsample
of sampled fish are examined post-mortem for signs of disease, providing validation of the blood
RT-qPCR test. When we cannot assume either 100% sensitivity or specificity (or both) then we
must adjust our observation model to account for the possibility of false positives or negatives.

Figure 3.2a contains a plot of the estimated posterior density and trace plot for the single
parameter of the above model - the transmission rate, β (see caption below figure for detail).
The trace plot is shown to demonstrate that both of the MCMC chains converged to a common
stationary distribution, which the associated theory tells us must be the posterior. Having
started off with a very diffuse exponential prior, with rate 1× 10−3 giving a prior mean for
β of 1000 wpc−1, we see that the data are informative about β, which has a posterior mode
at approximately 0.03 wpc−1 and posterior 2.5 and 97.5 percentiles at about 0.01 wpc−1 and
0.04 wpc−1, so that there is 95% of β’s posterior mass lying between these two values.

However, we must still check that our SI model fits the data. A graphical posterior-predictive
check (GPPC - see Section 3.2) compares the data with the numbers of positive-testing Group

74



3.4. Computer simulation to improve design of experiments

2 fish, r, predicted by the model at the sampling times 1 wpc, 2 wpc, 4, 6 and 8 wpc. We do
this by drawing values of β from its posterior distribution and then peforming a simulated run
of the experimental set-up. After binning up the results, we obtain an approximation of the
posterior-predicted positive sample numbers, which may then be compared graphically with the
data, as in Figure 3.3a. What jumps out immediately from the Figure is the over-prediction
by the model of positive samples at 1 wpc, 2 wpc, 4 and 6, or in other words, the data lie in
a low probability region of the posterior-predictive distribution, p( r̂| r ). In fact, by looking at
the overall number of positive tests from the five samples combined, the model makes an over-
prediction with probability 0.97. The values for the parameter β that are likely, as expressed by
the posterior, would lead to too many infections, implying that the one parameter SI model is
an overly-simplistic picture of the mechanisms of transmission behind the trial data. It should
also be noted that by comparing the model’s prediction of the number of positive testing fish at
each sampling event with the numbers obtained by experiment we have a more sensitive test of
model fit than if we based our test of model fit on low-dimensional summaries of the same data,
as discussed by Gibson (2018) [GST18].

Bearing in mind the assumptions above, a possible step towards improving the model is to
consider the possibility that some of the fish that test positive throughout the trial, while they
have contracted the disease (as evidenced by presence of the virus in their blood) are not yet
infectious to others. This can be accounted for by simply expanding the disease model to include
an exposed (E) state, so that our underlying model is SEI (Section 3.2). We now also need to
link this new state into our observation model by assuming that fish in the E state test positive.
The updated assumptions are

1. the underlying dynamic model is SEI

2. Group 1 occupy the I state throughout the trial and Group 2 are initially in the S state

3. fish in the S state test negative and fish in the E and I states test positive for the disease.

A summary of the posterior distribution for the two parameters of the SEI model, β, δ is shown
in Figure 3.2b and Figure 3.3b shows that an improved fit, with the predicted number of positive
samples much more resembling what was seen in the experiment, with the probability of over-
prediction reduced to 0.78. The SEI transmission rate, β, has a marginal posterior mode of
about 0.013 wpc−1 and δ, the E-I transition rate, has a mode at approximately 166 wpc−1 and
2.5 and 97.5 percentiles at approximately 25 and 3698 wpc−1. Equivalently, our model tells us
that the duration of the latently infected state (i.e. 1

δ ) is in the range 0.05 h to 6.72 h, with a
probability of 0.95.

3.4 Computer simulation to improve design of experiments

There are many variable aspects in the design of a ICE. To list some of these, there are envi-
ronmental factors that can be controlled, such as tank volume, water flow-though rate, water
temperature, pH, salinity, etc. and the characteristics of the tests used to monitor for infection,

75



3.4. Computer simulation to improve design of experiments

(a) SI

(b) SEI

Figure 3.2: Estimated posterior density and trace plots for the parameters of the SI (a)
and SEI (b) models fitted to the data from Trial 1A of [HVT+17]. In the leftmost plots, the
2.5 and 97.5 posterior percentiles and posteriors mode of the marginal parameter densities are
indicated at the bottom. Exponentially-distributed marginal priors (indepently in the case of
(b)) are assumed, reflecting an initial lack of knowledge about the rate of transmission. Particle-
marginal MCMC was used to obtain the samples (see Sec. 3.2), with each iteration consisting
of first a Metropolis-Hastings step for the parameter β followed by an SMC step to sample the
unobserved infection event times. A total of 1200 independent particles were used for each chain
with weighting and resampling at each of the five sampling events at 1 wpc, 2 wpc, 4 wpc, 6 wpc
and 8 wpc. The trace plots are shown as a graphical indication of convergence to stationarity
of the two indepedent MCMC chains started with different initial values, however, Gelman and
Rubin convergence statistics, via the R coda package [R C18, PBCV06], were also inspected
as a numerical confirmation of convergence. 2× 105 iterations are sampled after discarding
2× 104 iterations for burn-in and adaptation. Estimated densities were obtained using SciPy’s
guassian_kde function [VGO+20].
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(a) SI

(b) SEI

Figure 3.3: Estimated posterior-predictive distribution of numbers of positive-testing
Group 2 fish from Trial 1A of [HVT+17] for the SI (a) and the SEI (b) models, where 4, 4, 3, 4
and 5 Group 2 fish were sampled at 1 wpc, 2 wpc, 4 wpc, 6 wpc and 8 wpc, respectively. The black
bars indicate the values r = r1, . . . , r5 observed in the trial. Both models are likely to over-predict
the number of positive tests, in comparison with the data: the posterior-predictive probability
of there being more positive tests in total than were observed in the trial, P (

∑
r̂i >

∑
ri | r), is

0.97 for (a) and 0.78 for (b). Based on this summary statistic, the SEI model therefore, with
its one extra disease state and parameter, provides a better fit to the trial data. Posterior-
predictive samples were generated by taking 5× 104 evenly spaced values of the parameters
from the MCMC-samples and simulating a run of the trial.

i.e. whether they are lethal, as in the Hauge trial, or non-lethal, such as swabbing of the gills
and skin mucus (see e.g. [SRT+21]) and their reliability (sensitivity, specificity). We may also
vary the size of the trial, both in terms of the number of replicate tanks as well as the number of
fish per tank and the sizes and timings of samples taken. How the trials are initiated is another
factor, e.g. innoculated and naive groups of 20 fish, in the cae of Hauge, or prepartion of tank
water to a recorded pathogen density.

Experiments have costs associated with them as well as the ethical requirements to reduce animal
suffering as well as the number of live animals sacrificed in the study. We demonstrate in this
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Section how computer simulation and ideas from information theory may help us explore how
certain design factors will likely influence how much information we can expect to extract from
an experimental outcome.

Figure 3.4 shows posterior summaries for the parameter β after fitting an SI model to six
simulated runs each of a hypothetical infection under two different sampling designs (see caption
beneath Figure for details). The plot shows that, of the two designs, Design 1, where four sets
of 20 samples taken at 24 h-ly intervals, gives uniformly narrower parameter estimates than does
Design 2, where eight sets of 10 samples are taken every 12 h. Although the 1st run of Design 1
produces a poorer estimate than the others, overall, Design 1 gives better results than Design 2.

Returning to the case study of Section 3.3, suppose now that we intend to perform a follow-up
challenge trial of PRV-Om in rainbow trout with the purpose of refining the parameter estimates
that we obtained previous for the SEI model. We wish to select a trial design that best achives
this from among a list of candidates with varying sample sizes and times, summarised in the
first three columns of Table 3.2. Our present knowledge about the two parameters, β and δ,
is now described by their posterior distribution, which is summarised in Figure 3.2b. We take
this posterior to be our new prior, which we intend to update once again with data from this
follow-up trial. In light of Figure 3.4, we want the design that, on average, results in the greatest
reduction in remaining parameter uncertainty. If rZ denotes the experimental outcome of trial
design Z (the counts of positive tests at each of the sample times) then the mutual information
(MI), I(rZ , β, δ) (see Section 3.2) offers a numerical comparison of this reduction in parameter
uncertainty from our current prior (our old posterior) to the new posterior, as described by
[LFKS13]. The measure summarises the reduction in parameter uncertainty, or information
gain, averaged over both the prior and all experimental outcomes, as modelled by the likelihood.

Since, the likelihood p(rZ |β, δ) is an integral over the numbers of susceptible, infectious and
exposed hosts at each of the sample times, weighted by their respective likelihoods according
to the SEI model, it is intractable and cannot be written down as a closed functional form.
Therefore, for each sampled β and δ the likelihoods themselves must be Monte Carlo estimated
along with the evidences, that are used to estimate the MI. This additional source of error must
be taken into account when constructing confidence intervals for Î ≈ I(rZ , β, δ). See Section 3.2
for detailed discussion.

The final column of Table 3.2 contains Monte Carlo estimates of Î for each of the six designs,
along with approximate 95% confidence intervals. These are also plotted in Figure 3.5. Taking
into account the margin of error, Design F turns out to be the clear winner with the highest
estimated MI, while Designs C and D, where for both of these, four sets of 5 samples were taken,
are expected to perform very poorly, in comparison. Designs A, B seem to offer comparable
performance, where two lots of 10 fish are sampled. Based on this exercise, however, it would
be advisable for researchers to simply repeat the trial without altering the design.
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Figure 3.4: Summary of posterior distributions of parameter β of SI model fitted to six
simulated runs each of two experimental designs of an SI disease system with β0 = 0.0009 with
evenly spaced lethal samples, starting with a high variance exponential prior for β with mean
1× 103 h. All trials are initiated when 1 infectious fish is cohabited with 80 susceptible fish. In
Design 1, 4 samples of size 20 are taken 24 h apart, starting at t = 24 h while in Design 2
8 samples of size 10 are taken at every 12 h starting at t = 12 h. Marked on the plot are the
posterior mean (E(β|y), medians (p50.0) and 5 and 95 posterior percentiles (p5.0, p95.0)for each
run. We see a clear difference between the posteriors obtained from the two designs; Design 1
produces the posterior means and medians close to β0 in five out of the size runs, meaning these
are reliable point summaries. The posteriors we get from Design 2 are more variable in two
ways: they are more dispersed, meaning less precise estimates of β, and they are more variable
between runs, so that some experimental runs will produce more precise estimates than others.

3.5 Discussion

We have seen how it is possible to extract useful epidemiological information from ICE data.
Indeed, from data gathered in Trial 1A of [HVT+17] we are able to estimate the rate of disease
transmission of the novel Piscine orthoreovirus PRV-Om among rainbow trout, as well as the
average duration of latent infection. We then explored how computer simulation can be used to
compare the efficiency of a number of experimental designs, via the mutual information, I(θ, Y ).
Adopting the posterior distribution associated with an SEI model fitted to the Hauge data as
our new prior, we compared a number of trial designs with varying sample times of different
sizes and found, in fact, that the orginal design performed the best.
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Design d1,d2 t (wpc) Î (nat) (95% CI)
A 10, 10 3, 5 0.814 (0.812, 0.816)
B 10, 10 3, 6 0.816 (0.814, 0.818)
C 5, 5, 5, 5 3, 5, 7, 9 0.764 (0.762, 0.766)
D 5, 5, 5, 5 3, 6, 9, 12 0.711 (0.709, 0.712)
E 4, 4, 4, 4, 4 1, 2, 3, 4, 5 0.804 (0.803, 0.805)
F 4, 4, 4, 4, 4 1, 2, 4, 6, 8 0.826 (0.824, 0.827)

Table 3.2: Six candidate trial designs for a follow up trial of PRV-Om in rainbow trout. In all
cases, the trial is initiated with 20 innoculates and 20 disease-naive fish. d1 = d1

1, . . . innoculates
and d2 = d1

2, . . . of the initially disease-free fish are removed at times t = t1, . . . for testing. The
prior distribution, p(β, δ), is a Gaussian density (obtained using SciPy’s guassian_kde function
[VGO+20]) estimate of the sampled posterior distribution for these parameters on fitting the
SEI model to the Hauge trial data, described in the previous Section. The third column contains
Monte Carlo estimates of the mutual information (see Section 3.2) along with approximate 95%
confidence intervals summarising the accuracy of these estimates. For Designs A to D, 5000
samples were drawn from p(β, δ), and then for each of these samples, 5000 further samples were
drawn to estimate the likelihood and 5000 to estimate the evidence. These were sufficient to
obtain sufficiently accurate estimates. To see the effect upon increasing the number of samples
on the error, for Designs E and F 20× 103 samples were drawn to estimate both the likelihood
and the prior, for each of 5000 parameter values sampled from the prior. This increase in samples
reduced the width of the confidence interval from about 0.004 to 0.002.

Obtaining a fitted dynamic model of some disease system should not be the end of the story,
however. Returning to the over-prediction of positive tests in the posterior-predictive analysis
summarised in Figure 3.3b, we see that more could be done in terms of forming a mechanistic
picture of the transmission of PRV-Om in rainbow trout. As [LEH+15] suggest, a fitted model
helps to identify where gaps remain in our understanding of the system under study, prompt-
ing ideas about what further data need to be collected. Returning to the stated assumptions
underlying the SEI model, we did not allow for the possibility that some of the positive testing
fish had ceased to be infectious, although they still had detectable blood viral loads. A goal of
a future study could be to better understand the within-host virology of this new viral strain
by using a non-lethal method of testing for shedding of virus, such as taking gill swabs, and
allowing for the possibility that some of the fish cease to shed during the trial. This would be
described by expanding the SEI model to include a recovered (R) state. Another assumption
made when fitting the SEI model was that our test was perfectly reliable both in terms of cor-
rectly detecting cases (i.e. the test is 100% sensitive) without reporting false positives (100%
specific). A better fitting model may be found where these assumptions are tweaked to allow a
degree of unreliability of one or both of these kinds.

While here we estimated the mutual information for six arbitrarily chosen variations of the Hauge
design, a more systematic search of, at least part of, the design space should be straightforward
to implement. Cost is an important factor when considering the design of new trials and there
are also legal and ethical obligations to minimise animal suffering, e.g. the “3R” principles of
“replacement, reduction and refinement” in terms of animals used in research [ASP14]. Simula-
tion of models in order to test hypotheses and for purposes of power analysis [LEH+15], prior to
conducting the trial is a low-cost way to meet these requirements. While the estimation of mea-
sures such as the mutual information is computationally intensive, this is still less expensive than
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Figure 3.5: Plots of mutual information and 95% confidence interval error bars for the
size candidate designs for a follow-up trial of PRV-Om in rainbow trout. The narrowed error
bars for Designs E and F came at the cost of a fourfold increase in the number of independent
samples used to estimate the likelihoods and evidences (see Sec. 3.2).

a poorly designed experiment. An alternative means of experimental design comparison could
be offered by expanding the kind of analysis presented in Figure 3.4. Here posterior location
and dispersion statistics were obtained from fitting models under various experimental designs
to simulated data with fixed parameter values. In this case a “good” experimental design is
one where the posterior distribution has low dispersion and consistently has the true parameter
values in its support. This could work especially well when there is only a single parameter
value to infer.
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Chapter 4
Novel statistical tools for environmental

transmission models and digital-PCR
pathogen load data

4.1 Introduction

The kinetics of pathogen shedding and the viability of pathogen in the environment are two
important factors in the indirect, environmental transmission of diseases including cholera
[WHO21a] in humans, paratuberculosis in cattle [DMW+12, PMH+17, Fec18] and many aquatic
infectious diseases [ODW+18]. The quantification of these processes is therefore important if we
are to understand and make predictions about the spread of environmentally-transmitted dis-
eases. Stochastic compartmental environmental transmission models (ETM) extend the frame-
work exemplified by the susceptible-infectious-removed (SIR) model of Kermack and McKendrick
[KM27] to allow infection to be transmitted indirectly via an external pathogen pool, as well
as directly from host to host. In this Chapter we advance the tools for ETMs in two ways.
Firstly, we develop methods for estimating the parameters from data that can be obtained from
suitably designed challenge trials or observational studies. Secondly, we introduce a modelling
approach that explicitly accounts for loss of viability of environmental pathogens and show how
this can be estimated within our inferential framework. This novel inference framework builds
on Bayesian techniques related to particle filtering and sequential Monte Carlo [ADH10, GC01]
to allow a wider application of ETMs in the study of environmentally-transmitted diseases, es-
pecially those affecting aquaculture production. ETMs offer a natural way to relate the rate of
transmission to environmental conditions that affect the viability of environmental pathogens
[ODW+18, PMPG+16, MÁC+12] and here we develop the methods to fit these models and show
what extra data are required.

As discussed in Chapter 2, although direct transmission models (DTM) are good descriptions of
single outbreaks of environmentally transmitted disease within and between closed populations,
there are circumstances where it is necessary to quantify environmental transmission in terms
of its dependence upon the size or density of the environmental pathogen load. For example,
survival of pathogen external to the host is identified by Grassly and Fraser as one of the factors
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that drives seasonal change in incidence of disease [GF06]. In [WJL+12] the authors show how an
environmental transmission model (ETM) of avian influenza reproduces the complex, multi-year,
patterns of major outbreaks observed among wild duck populations. These authors show that
the frequency of outbreaks is related to intensity of environmental transmission, which is itself
a function of pathogen density in water bodies. Oidtmann, et al., (2018), observe that whereas
“live fish movements are one of the main routes of long-distance spread of viral pathogens,
waterborne spread of virus is the most relevant route for regional spread” and therefore, in
order to piece together a global picture of the spread of waterborne disease, we need local
models of transmission and its dependence upon a spatially and temporally varying pathogen
density.

Experimental challenge allows researchers to study the dynamics of infectious disease and the
efficacies of treatment and prevention strategies under controlled conditions. Some recent work
concerning diseases that impact upon commercial aquaculture production include development of
vaccines against a salmonid alphavirus in Atlantic salmon [TWI+21] and infectious pancreatic
necrosis virus in rainbow trout [LHL+20]. The rate of pathogen shedding as a function of
time has also been studied for various hosts and diseases. Relevant to the work here, are two
interesting studies that track the rate of viral shedding from hosts over the course of an infection.
Wargo et al., (2017) find, from measuring viral RNA copies shed per hour using quantitative
polymerase chain reaction (qPCR), that there is a peak in viral shedding from juvenile rainbow
trout around 2 d after innoculation with infectious hematopoietic necrosis virus, with secondary
and even tertiary peaks thereafter. We show that, despite such complex shedding kinetics at the
individual host level, models that describe a fixed uniform rate of pathogen shedding during each
host’s period of infectiousness provide a good description of disease spread at the population
level.

The study of sexual transmission of Zika virus among immunodeficient AG129 mice by [DRP+17]
goes further in that they measure both the viral RNA copy numbers, using qPCR, and infectious
virion numbers (in plaque-forming units, PFU), via plaque assay, in ejaculate samples taken from
mice at intervals, post-innoculation. Here they find that the measurements of live virions and of
RNA copy numbers are not correlated, with viral material remaining detectable in samples for
up to 40 d past the point at which mice cease to shed live virus. This presents a critical challenge
when attempting to quantify the rate of secondary infections in terms of environmental viral
concentration as measured by qPCR, since not all viral material that is present is able to cause
new infections. Widders, Broom and Broom term this the “viral shedding vs infectivity dilemma”
[WBB20], in relation to SARS-CoV-2. The inability to account for such differences between
qPCR measurements and viable viral load could render fitted ETM models highly misleading.
In response to this, we propose a stochastic compartmental ETM with one compartment each
describing the amounts of live and dead pathogen in the system.

When fitting stochastic compartmental disease models to data, there is the issue of missing data
and unobservable events, e.g. we often cannot observe directly when members of the population
first become exposed to, or “catch”, an infection. Many techniques in the field of Bayesian
inference and Monte Carlo sampling have been brought to bear on this problem. For exam-
ple, data augmentation [TW87, TW10], alternately samples parameter values and values for
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the unobserved events from their respective full conditional distributions, treating all unknown
quantities on an equal footing. Gibson and Renshaw (1998) and O’Neill and Roberts (1999)
further developed these ideas, introducing data-augmented MCMC to infer pathogen transmis-
sion and disease dynamics alongside model parameters from partial observed epidemics, using
continuous time stochastic processes. Notable developments of these ideas, developed to improve
computational tractability, include partial non-centering (PNC) by Neal and Roberts, applied
in their 2005 paper to fitting the SIR model to a set of host-removal times [NR05], as well as the
model-based proposal (MBP) [PBM15]. PNC seeks to improve the speed of convergence of the
MCMC chains produced by data augmentation by seeking an optimal re-parameterisation of the
likelihood that, in some way, lies between a “centred” parameterisation (where the parameters
and the unobserved events are conditionally dependent, given the data) and a “non-centred”
one (where the parameters and the unobserved events are marginally independent). The MBP,
unlike initial data augmentation approaches and PNC, attempts to update both parameters and
unobserved events simultaneously by exploiting knowledge of the model being fitted.

When there are a large number of unknown parameters or unobserved events then we run up
against the so-called “curse of dimensionality” [Bel61] where the volume of the sample space
and the required number of samples grow rapidly with the number of quantities we are required
to estimate. For this reason, it is not appropriate to treat every minute fluctuation of the
pathogen load as an unobserved event. A more appropriate class of methods for the problem-
at-hand are those associated with sequential Monte Carlo (SMC) [DFG01] and particle filtering,
especially particle-marginal MCMC (PM-MCMC) [ADH10]. In our application, each iteration of
the PM-MCMC sampler first chooses a new set of parameter values and then samples a number
of “particles”, which are forward simulations of the pathogen load and unobserved host event
times between subsequent pairs of measurement events. This is why such methods are termed
“sequential”. At each measurement event, the particles are “filtered” probabilistically; those
that do not agree well with the current observed measurements are pruned while others that are
more in agreement with the data are allowed to propogate, continue and be tested against the
next set of measurements in the sequence. The key to PM-MCMC’s applicability here is that it
reduces the dimensionality of the problem, i.e. the number of quantities to be estimated, to the
number of unknown parameters, plus the number of hosts in each disease state, plus the sizes of
the pathogen load compartments at each of the measurement event times. Another significant
advantage of particle methods in general is that the forward simulations of the particles can be
run in parallel batches, greatly speeding up the process on a multi-core machine. In the previous
chapter, PM-MCMC was used to infer parameter values and missing event times for the problem
of fitting SI and SEI models to data describing transmission and progression of a viral disease in
rainbow trout, as described by Hauge, et al. (2017). For that particular application, since the
number of missing event times is modest in comparison, data augmentation or the MBP could
possibly work just as well.

This chapter addresses the problems of estimating the parameters of an ETM from data as fol-
lows. We begin by describing, in Section 4.2.1, the SI-PQ model, which is a two-host (susceptible
& infectious), two-pathogen compartmental (live & dead) ETM, where the pathogen load is de-
scribed by a pair of coupled diffusion processes. ETMs do not typically subdivide the pathogen
population in this way (e.g. [BPK+16, WJL+12, BDSR09]). We then describe an observation
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model that relates the underlying disease states to results of tests of samples of hosts and digital
polymerase chain reaction (dPCR - [SJ13]) measurements, a sensitive and powerful technology
that yields absolute quantification of viral RNA copy numbers, before describing two hypothet-
ical experimental designs (Sec. 4.2.2); the first is an expansion of the one employed by Hauge
et al., (2017) in their study of a novel Piscine orthoreovirus in rainbow trout (Oncorhynchus
mykiss) and Atlantic salmon (Salmo salar L.); and the second is similar to that of Kumar et al.,
(2013) in their study of the viability of white spot syndrome virus (WSSV) in sterile seawater.
Using PM-MCMC we fit the SI-PQ model (Sec. 4.2.3) to a simulated outcome of the trial with
the first of these hypothetical designs (Sec. 4.2.5). The simulation incorporates some of the
characteristics of data collected in real trials and observational studies, such as time-varying
rates of pathogen shedding. We show that as long as external pathogen loses its viability at a
slow rate relative to the known rate of water filtration, we may obtain good estimates of the
rates of environmental transmission and pathogen shedding (defined below). However, combin-
ing data from both designs we are able, in addition, to estimate the rate of pathogen decay, as
well as get improved estimates of the environmental transmission and pathogen shedding rates
(Sec. 4.3).

4.2 Materials and methods

Table 4.2 contains a summary of all symbols used in the current chapter.

4.2.1 Environmental transmission and disease progression model

Figure 4.1: SI-PQ model diagram. Susceptible and infectious hosts in the system are repre-
sented by S and I, respectively. Live pathogen is represented by P while Q represents dead, or
unviable, pathogen (incapable of causing new infections) still present in the tank. The behaviour
of P and Q over time is described by the coupled diffusions, Eq. (4.2). The parameters α and ε
are the rates of environmental transmission and pathogen emission. Pathogen leaves the tank
by water filtration at rate η and loses its viability at rate ρ.
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In order to capture the probabilistic nature of disease transmission among the host population in
relation to the environmental dynamics of the pathogen, we propose a stochastic compartmental
environmental transmission model (ETM) (which we term SI-PQ and describe below) that
subdivides the host and the pathogen populations each into two sub-populations. In light of
the shedding vs. infectivity dilemma [WBB20] mentioned in the Introduction, we wish to allow
for the possibility that only a subset of detectable pathogen in the tank is able to cause new
infections. The SI-PQ model describes the dynamics of the processes by which pathogens decay
from viable to unviable and through which both types are lost from the system due to water
filtration.

The two host sub-populations of the SI-PQ model are those hosts that are susceptible to disease
(S) and those that, having been exposed, are infectious (I). The pathogen in the tank is assumed
either to be viable, and able to infect susceptible hosts (P), or unviable (Q). The model is
summarised in Figure 4.1 where the boxes represent the four sub-populations and the possible
transitions between them are represented by the solid arrows. The transitions shown do not
include any removals of hosts or pathogen from the tank when samples are taken, but these are
accounted for in the inference procedure described below. Letting St, It, Pt and Qt denote the
sizes of the susceptible and infectious host and the viable and unviable pathogen subpopulations,
then conditional upon St and Pt, the probability that an infection occurs during the interval
(t, t+ δt) is

αStPtδt+ o(δt) (4.1)

with α the environmental transmission rate (o(δt) is a generic symbol for a function of δt for
which o(δt)

δt → 0, as δt→ 0). There is no direct route of transmission in this model.

Throughout, we express the sizes of the two parts of the pathogen load, Pt, Qt, in terms of RNA
copy numbers, since the concentration of these is measured by digital polymerase chain reaction
(dPCR, see below). An alternative pathogen quantification (not used here) is the quantum
of infection. This is the amount of pathogen required to infect a susceptible member of the
population with probability 1− e−1 = 0.632 [BNS+03, SC10].

Equations (4.2) describe the time evolution of Pt and Qt in relation to It, the number of infec-
tious hosts. The pathogen emission rate, ε, is the rate that each infected host emits pathogen
into the water, η is the rate at which pathogen is removed from the water via filtration and
the pathogen decay rate, ρ, is the rate that pathogen becomes unviable. The four dBλt terms
are the sources of randomness for each of the sub-processes of pathogen emission (dBE), decay
(dBD) and removal by water filtration from the P and Q subcompartments (dBFP and dBFQ).
These stochastic infinitesimals of Brownian motion, “sped up” by the factor λ, and have normal
distributions with mean zero and variance λdt.
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4.2.1. Environmental transmission and disease progression model

dPt = (εIt − ρPt − ηPt) dt+
[√

εIt dB
E
λt −

√
ρPt dB

D
λt −

√
ηPt dB

FP
λt

]
dQt = (ρPt − ηQt) dt+

[√
ρPt dB

D
λt −

√
ηQt dB

FQ
λt

]
(4.2)

For a small time increment, ∆t, the corresponding increments in Pt and Qt are approximately

∆Pt ≈ (εIt − ρPt − ηPt) ∆t+
[√

εItNE(0, λ∆t)−
√
ρPtND(0, λ∆t)−

√
ηPtNFP (0, λ∆t)

]
∆Qt ≈ (ρPt − ηQt) ∆t+

[√
ρPtND(0, λ∆t)−

√
ηQtNFQ(0, λ∆t)

]
(4.3)

where the ND(0, λ∆t) etc. are independent and normally distributed. Eqs. 4.3 are the key to
how in Section 4.2.5 Pt and Qt are simulated using the Euler-Maruyama method [Hig01]. A well
defined solution to Eqs. 4.2 exists [RW00, Ch. 5] at least when when P0 > 0, Q0 > 0. When
simulating care should be taken that Pt and Qt remain non-negative, for example, by setting

Pt+∆t = max{0, Pt + ∆Pt}

Qt+∆t = max{0, Qt + ∆Qt}.

(4.4)

as in Eq. 4.28.

We require that the form of Eqs. 4.2 continues to hold under a rescaling of the pathogen load,
e.g. from RNA copy numbers to quanta of infection. This is ensured by the parameter λ,
since for a positive scaling factor c, 1√

c
dBcλt ∼ dBλt and P̃t = c−1Pt, Q̃t = c−1Qt, Ĩt = It and

ε̃ = c−1ε, ρ̃ = ρ, η̃ = η, λ̃ = c−1λ. If we remove the terms in square brackets from (4.2) then
what remains is a pair of ordinary differential equations, whose solution, for fixed It, is the
determinstic part of Pt and Qt’s behaviour. The parameter λ can be used to adjust the sizes
of the stochastic fluctuations of Pt and Qt around the values determined by the deterministic
part of (4.2) - small values of λ produce near deterministic pathogen load behaviour, for fixed
It, while larger values produce noisier pathogen load behaviour. However, we will not attempt
to estimate λ in what follows, instead treating it as a nuisance parameter. By fitting two SI-PQ
models with distinct, fixed values for λ we will show that inferences about the other parameters
are not affected by the value we fix for λ.

As outlined in [RW00, Ch. 5], Eqs. 4.2 with fixed It = I and λ = 1, can be derived as an
approximating diffusion process

(
dPt
dQt

)
=
(
b1
b2

)
dt+

(
σ11 σ12

σ21 σ22

)(
dB1

t

dB2
t

)
(4.5)
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4.2.1.1. dPCR measurements of pathogen

to the discrete state space, continuous-time Markov chain (DS-CTMC) (P̃t, Q̃t) with transition

rates in Table 4.1 below, choosing
(b1
b2

)
and

(
σ11 σ12

σ21 σ22

)
in order to match up the first and

second moments of
(dPt
dQt

)
and

( P̃t+∆t−P̃t
Q̃t+∆t−Q̃t

)
to first order. However, the resulting equations do not

have the required scaling property mentioned above.

Transition rate description

(P̃ , Q̃)→

(P̃ + 1, Q̃) εI pathogen emission
(P̃ − 1, Q̃+ 1) ρP̃ pathogen decay
(P̃ − 1, Q̃) ηP̃ water filtration from P
(P̃ , Q̃− 1) ηQ̃ water filtration from Q

Table 4.1: Markov transition rates for discrete state space P̃t, Q̃t process.

4.2.1.1 dPCR measurements of pathogen

The state of the SI-PQ system at any time, t, can only be inferred indirectly via two kinds of
sampling. The first is a dPCR measurement of the total waterborne viral material, Pt +Qt, at
time t, in RNA copy numbers. The dPCR technology biomechanically separates a water sample
into C separate reaction chambers, each of volume Vc, and tests for the presence of at least one
target molecule in each chamber. The number of “hits”, Ht, constitutes a measurement. Dube,
Qin and Ramakrishnan (2008) show that the probability, θt, of a hit is

θt = 1− exp
(
−Vc
Vt

(Pt +Qt)
)
, (4.6)

where Vt is the total volume of the tank or vessel from which the sample is taken. By way of
explanation of Eq. 4.6, the number of target molecules turning up in a given reaction chamber
may be modelled as a Poisson random variable with mean µ = Vc

Vt
(Pt+Qt) and so the probability

of there being no molecule in the chamber is e−µ and the probability of there being one or more
(a hit) is 1− e−µ.

The number of hits, Ht, is therefore assumed to follow the binomial distribution

Ht|θt ∼ binomial(C, θt)

P(Ht = h|θt) =
(
C

h

)
θht (1− θt)C−h.

(4.7)

Dube, Qin and Ramakrishnan discuss a dPCR device with 12 panels each containing 765 cham-
bers (9180 in total) each of volume 6 nl. We assume the same specification throughout this
Chapter. Since
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4.2.2.1. Experiment A: Immersion challenge

E
(Ht

C

)
= θt

var
(Ht

C

)
= 1
C
θt(1− θt)

Ht
C provides an unbiased estimate of θt, and this estimate is improved by increasing the number
of chambers, C.

4.2.1.2 Testing for host disease

The second kind of sampling is the testing of hosts for signs of disease, which we assume to be
perfectly reliable in terms of sensitivity (no false negatives) and specificity (no false positives),
so that, with probability one, infected fish test positive and susceptible fish test negative, when
sampled. This is somewhat reasonable here since in the original trial by Hauge et al., (2017)
sampled fish are euthanised and subjected to thorough post-mortem.

If, at the time of sampling, there are S susceptible and I infectious hosts, and we take a sample
of size d, the number of positive hosts in the sample, r, follows a hypergeometric distribution:

P(r = r′) =
( I
r′
)( S
d−r′

)(S+I
d

) (4.8)

where e.g.
(S+I
d

)
is the number of different ways of choosing a sample of size d from the S + I

hosts in the tank.

4.2.2 Experimental designs

4.2.2.1 Experiment A: Immersion challenge

What data are required to fit the SI-PQ model? We consider first an experimental design
“Experiment A” based on that by Hauge et al., (2017), used to establish the possibility of
environmental transmission of a novel strain of PRV among both rainbow trout Onchorhyncus
mykiss and Atlantic salmon Salmo salar. We make a hypothetical modifcation to the trial design
by simulating the taking of dPCR measurements of the viral concentration of the tank water at
the same times that fish are sampled.

1. The trial begins with N1 innoculated (“Group 1”) and N2 disease-naive (“Group 2”) hosts
cohabited in a tank of volume Vt, so that S0 = N2, I

1
0 = N1, I

2
0 = 0. Fish from one of

the two groups are marked so that they can be distinguished from the those in the other
group.

2. Viral matter is removed from the tank by the water filtration system at the rate η.

90



4.2.2.2. Experiment B: Viral viability

3. At pre-determined times 0 < t1 < · · · < tn:

a) d1
1, . . . , d

1
n hosts from Group 1 are selected at random and removed. Samples are

taken from Group 1 only to conform with the original trial design of [HVT+17]

b) d2
1, . . . , d

2
n hosts from Group 2 are sampled at random and tested for disease, with

the number of these testing positive, r1, . . . , rn, recorded and

c) a dPCR measurement, H1, . . . ,Hn, with C chambers, each of volume Vc, is taken.

All aspects of the design: sampling sizes d1
i and d2

i , number of dPCR chambers, C, sampling
times ti, tank volume Vt and water filtration rate µ are fixed in advance. Let r = (r1, . . . , rn)
and H = (H1, . . . ,Hn) denote the vectors of Group 2 positive sample sizes and dPCR readings.

Fixing It = I and setting dPt = dQt = 0 in the determinstic part of Eq. 4.2 we can solve for Pt
and Qt at temporary equilibrium, P I and QI

P I = εI

ρ+ η

QI = ρ

η
P I

P I

P I +QI
= 1

1 + ρ
η

.

(4.9)

The water filtration rate, η, is fixed in the design of the experiment, and so if the unknown
pathogen decay rate, ρ, is signifcantly smaller than η then

P I

P I +QI
≈ 1 (4.10)

i.e. nearly all of the pathogen in the system is viable. We will show below that when fitting the
SI-PQ model, if we can assume that ρ = 0, or equivalently that all pathogen is viable until it is
removed by water filtration, data from this trial design are sufficient for the estimation of both
the rates of environmental transmission, α, and pathogen shedding ε.

Rather than assuming that ρ = 0, if instead we attempt to estimate the rate of pathogen decay,
alongisde the rates of environmental transmission, α, and pathogen emission, ε, then in the
absence of an informative prior, we run into a problem of parameter identifiability. This is due
to the fact that the total pathogen load, Pt +Qt, and the force of infection, αPt, are measured
directly (by dPCR and counting positive-testing hosts, respectively), but neither α nor the
proportion of viable pathogen Pt can be identified.

4.2.2.2 Experiment B: Viral viability

The second trial design we consider, “Experiment B”, allows the estimation of the rates of
environmental transmission, α, and pathogen decay, ρ and is based on the investigation of the
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4.2.3. Inference methodology

viability of white spot syndrome virus in sterile seawater by [SAR+13]:

1. k containers of identical volume are prepared with the same predetermined pathogen load,
p0.

2. The filtration mesh is large enough to avoid filtering out viral particles from the tank
water.

3. At pre-determined times, 0 = t0 < t1 < · · · < tk, one host is introduced into an unoccupied
container (chosen at random).

4. At time T > tk all hosts are tested for disease (again assumed to be perfectly sensitive
and specific).

The number of containers, k, trial duration, T , introduction times, ti and initial pathogen load
p0 are fixed. The trial is repeated, yielding y = (y0, y1, . . . , yk) counts of positive-testing fish
in each of the containers, out of a total of m repetitions. As we shall see below, these counts
together with the numbers of positive tests, r, and dPCR readings, H from Experiment A
enable the estimation of the rate of viral decay, ρ, and to improve our estimates of the rates of
environmental transmission, α, and viral emission, ε.

We will show that data from Experiments A and B combined allow estimation of the parameters
α, ε and ρ simultaneously.

4.2.3 Inference methodology

We outline here the process of fitting the SI-PQ model to data from Experiments A and B
combined, where the data from A consist of counts of positive tests, r = (r1, . . . , rn) and dPCR
readings H = (H1, . . . ,Hn) taken at the n sampling times t1, . . . , tn and data from B are the
counts of positive testing fish in each of the k containers y = (y1, . . . , yk) out of m repetitions.
Table 4.2 contains a summary of all symbols employed in the current Chapter. It should also
be clear from the following how to fit the model to data from Experiment A only. The methods
described here, such as sequential Monte Carlo (SMC), are generic and can, in principle, be
easily adapted to account for specifics of disease systems of interest by, for example, adapting
the process model to have more compartments, e.g. SEIR etc, or by adjusting the observation
model.

Throughout, we employ Bayesian inference with densities represented by the generic symbols
p(. . .) and p(. . . | . . .). Everything we wish to know about the unknown parameter values,
α, ε and ρ, having observed the data, is encapsulated by the posterior density

p(α, ε, ρ |H, r,y). (4.11)
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Symbol description
SI-PQ state variables:
St, It susceptible / infectious hosts at time t
Pt, Qt viable / unviable environmental pathogen load at time t
N1, N2 Initial sizes of Groups 1 and 2
SI-PQ model parameters:
α environmental transmission (h−1)
ε pathogen shedding (h−1)
ρ pathogen decay (h−1)
η water filtration (h−1)
λ relative size of stochastic fluctuations of Pt, Qt (dimensionless)
Experiment A:
d1
i , d

2
i ith Group 1 and 2 samples sizes

ri Number of positive tests in ith Group 2 sample
Ht dPCR reading at time t (RNA copy numbers)
C total dPCR chambers
θt probability of a single dPCR hit
Vt, Vc tank (l) and dPCR chamber (nl volumes
dBt infinitesimal increment of Brownian motion
a, b,m parameters of variable shedding rate (simulation only)
t1, . . . , tn sampling and dPCR measurement times (wpc)
Experiment B:
yi, k positive-testing hosts in ith container, out of k repetitions
p0 initial pathogen load (part ml−1)
t0, . . . , tk introduction times (d)
T trial duration (h)

Table 4.2: Table of symbols used in current Chapter. Occasionally we add the indices ij
to symbols assoicatied with Experiment B - i refers to container and j denotes repetition. Bold
face r,y,H, denote corresponding vectors.

Since such densities are analytically intractable, we use techniques associated with Markov chain
Monte Carlo (MCMC) to approximately draw dependent samples from (4.11), as we now outline.
By Bayes’ rule, (4.11) is proportional to

p(H, r |α, ε, ρ) p(y |α, ρ) p(α, ε, ρ). (4.12)

The first and second factors of (4.12) are respectively the likelihoods for the outcomes of Experi-
ments A and B. These describe how the data depend upon the parameter values. Conditional on
the parameters, H, r are indepedent of y. The third factor is the prior density for the three pa-
rameters and encapsulates our knowledge and beliefs about the parameters prior to performing
the experiments and obtaining the data. We will assume flat (improper) priors, i.e.

p(α, ε, ρ) ∝ 1 (4.13)

which means roughly that, before carrying out the experiments, any set of values for these
parameters is, for us, as likely as any other to be the “true values”. However, more precise
knowledge of these parameters can be accounted for when this is available. The three parameters
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take values in the positive real line only, and so it is more convenient to instead sample them
on the natural logarithmic scale in what follows, so that instead we are to draw samples from

p(logα, log ε, log ρ |H, r,y) ∝ p(y |α, ρ) p(H, r |α, ε, ρ) p(α, ε, ρ)αερ, (4.14)

where the additional factor αερ is the required Jacobian term due to the fact that we have
transformed the parameters.

Having obtained the data H, r and y, we will need to estimate p(H, r |α, ε, ρ) and p(y |α, ρ) for
given α, ε and ρ. To do so we must relate the state of the simulated system to the observations
as now described.

Concerning Experiment B, letting κi be the probability that the host in container i not is infected
at time T after introduction to the bucket at time ti with initial pathogen load p0

p(y |α, ρ) =
(
m

yi

)∏
i

κyii (1− κi)m−yi (4.15)

where, conditional on P it , the pathogen load in container i,

κi = 1− exp
(
−α

∫ T

ti

P it dt

)
(4.16)

since the host in container i becomes infected with hazard αPt, between the times t = ti and T .

To simplify, we replace P it with a deterministic process of exponential decay at rate ρ, the right
hand side of Eq. (4.16) is approximately

κ̂i = 1− exp
(
−α

∫ T

ti

p0e
−ρt dt

)

=1− exp
(
−αp0

ρ

(
e−ρti − e−ρT

))
(4.17)

and

p̃(y |α, ρ) =
(
m

yi

)∏
i

κ̂yii (1− κ̂i)m−yi ≈ p(y |α, ρ). (4.18)

We use a sequential Monte Carlo (SMC) step ([ADH10, GC01]) to numerically estimate

p̃(H, r |α, ε, ρ) ≈ p(H, r |α, ε, ρ) (4.19)
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which proceeds by forward simulation between measurement times of a number of “particles”,
each representing a simulation of the system based in the model with (potentially) different pa-
rameter values. Once the measurement times are reached, the particles are reweighted according
to Eqs. 4.8 and 4.7, so that those particles with underlying states that agree well with the data
are more likely to be propagated. Since sampling in Experiment A is lethal, we must adjust
the S and I compartment sizes for each particle after sampling and reweighting; we remove the
ri positive-testing Group 2 hosts from the I compartment, d1

i Group 1 hosts from the I com-
partment and d2

i − ri negative-testing Group 2 hosts from the S compartment. Any particles
with insufficient hosts in either compartment receive a weighting of zero and are not propagated
further. See Appendix E for a detailed description of the routine used here, however, the upshot
is that we obtain an unbiased estimate of the likelihood (Eq. 4.19) that can be used within the
following algorithm

The sampling routine for i = 1, 2, 3, . . . , N (with initial Nburn iterations used for burn in and
adaptation) is as follows:

1. Initialise:

a) Set initial values for the log-transformed parameters, logα0, log ε0, log ρ0

b) Initialise the variance-covariance matrix (variances chosen to scale suitably, relative
to initial logα0, etc.)

Σ =


(

logα0
1.96

)2
0 0

0
(

log ε0
1.96

)2
0

0 0
(

log ρ0
1.96

)2

 (4.20)

2. Propose:

(log α̃, log ε̃, log ρ̃) = (logαi−1, log εi−1, log ρi−1) + vi

where vi ∼ MVN(0,Σ) is drawn from a multivariate normal distribution with mean vector
0 and variance-covariance matrix Σ. To optimise sampling efficiency, before we can begin
to use or collect useful samples from the parameter posterior distribution we must first
tune Σ - we follow the method used by [PBM15].

3. Estimate:

p̂(y | α̃, ρ̃) ≈ p(y | α̃, ρ̃)

p̂(H, r | α̃, ε̃, ρ̃) ≈ p(H, r | α̃, ε̃, ρ̃) (Eqs. 4.18, 4.19 & App. E)

4. Accept-reject:

set (logαi, log εi, log ρi) = (log α̃, log ε̃, log ρ̃)

with probability p̂(y | α̃, ρ̃) p̂(H, r | α̃, ε̃, ρ̃) p(α̃, ε̃, ρ̃)α̃ε̃ρ̃
p̂(y |αi−1, ρi−1) p̂(H, r |αi−1, εi−1, ρi−1) p(αi−1, εi−1, ρi−1)αi−1εi−1ρi−1

otherwise, (logαi, log εi, log ρi) = (logαi−1, log εi−1, log ρi−1).
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4.2.5.1. Simulation routine for Data Set A

If i ≤ Nburn, then if accepted set

Σ = 1.002× Σ (4.21)

and if rejected set

Σ = 0.999× Σ. (4.22)

In addition, while i ≤ Nburn, at everyNrescale iterations (usually between 750 and 1000), set
the elements of Σ to the variances and covariances of the sequences of the log-transformed
parameter samples. This step adapts the proposal density to information we have gained
so far about the shape of the joint posterior, improving the acceptance rate of the MCMC
chains.

4.2.4 Model checking

The least we ought to expect from a fitted model is that the data are not viewed as unlikely with
regards to the posterior distribution. Graphical posterior predictive checks (GPPC) [GCSR95,
GS13] are a standard model checking tool we use to compare a fitted model’s predictions with
the data it is fitted to.

Given (αi, εi, ρi), i = 1, 2, 3, . . . sampled approximately from p(α, ε, ρ |H, r,y), as described
above, we simulate new data Ĥi, r̂i, ŷi and compare these graphically with H, r,y.

4.2.5 Data simulation

We describe below how the simulated data sets for Experiments A and B are obtained. The
fitted SI-PQ model assumes a constant rate of pathogen shedding during each host’s period of
infectiousness, this rate being uniform across the population. However, in order to show that
the model is robust to the kinds of complexities in shedding kinetics similar to those observed
by [DRP+17], we also allow each infectious host’s rate of shedding to vary over time. In our
simulation of results from Experiment B we introduce a small amount of variability into the
simulation parameters for each container and repetition.

4.2.5.1 Simulation routine for Data Set A

Table 4.4 summarises the simulated data set for Experiment A (Data Set A), for a trial com-
mencing at t = 0 with N1 = 20 inncoulated hosts in Group 1 and N2 = 20 disease-naive hosts
in Group 2. Five samples of four hosts from each of Groups 1 and 2 are taken at 24 hourly
intervals, starting at t = 24 h. Additionally a dPCR reading is taken with C = 12× 765 = 9180
chambers, each of volume 6 nl, as in [DQR08]. Samples are taken from Group 1 only to conform
with the original trial design of [HVT+17]; we are not concerned with the disease status of hosts
in these samples.
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4.2.5.1. Simulation routine for Data Set A

Parameter(s) description (experiment) value(s)
α env. transmission 5.0× 10−10 h−1

a, b, σ time-varying pathogen shedding rate 482.36 h−1, 3.4, 2× 103

ρ pathogen decay 0.005 h−1

η water filtration (A) 0.1 h−1

λ stochastic fluctuation of pathogen load 1.0× 103

N1, N2 initial size Group 1 & 2 (A) 20, 20
Vt tank volume (A) 150 l
Vc dPCR chamber volume (A) 6 nl
C number of dPCR chambers (A) 9180
p0 mean initial pathogen load per container (B) 1× 107

T trial duration (B) 432 h

Table 4.3: Summary of values used to simulate Data Sets A & B.

Time (hrs) r (/4) H (/9180)
24.0 0 64
48.0 3 65
72.0 2 57
96.0 2 40
120.0 3 30

Table 4.4: Simulated data set for Experiment A - “Data Set A”. Initially, there are
N1 = 20 hosts in the innoculate group (Group 1) and N2 = 20 in the disease-naive group
(Group 2). Simulation parameters are in Table 4.3. At the times indicated, 4 hosts are sampled
at random from Group 1, and 4 are sampled from Group 2. Those from Group 2 are tested for
disease and the number of positive tests, r, is record. At the same time, a dPCR measurement,
H, of pathogen load in the tank water is taken, with C = 9180, Vc = 6 nl.

For the purposes of simulating data to test our inference approach we allow a time-dependent
rate of shedding,

ε(t) = a

Γ(b)σb t
b−1e−

t
σ (4.23)

for each infected host, where t is time since infection. Our choice of functional form for ε(t),
and the values for the parameters a, b and σ, allow for an initial increase in the rate of shedding
up to a peak at 48.0 h post-infection, at the rate of 1.0× 106 part h−1 before falling away slowly
- see Figure 4.2). Studies quantifying the shedding kinetics of various pathogens are rare (but
see [WSKK17] and [DRP+17]) but a general pattern of shedding initially increasing with time,
post-infection, and then falling back away, is reasonable.

Rather than initially innoculating all Group 1 hosts precisely at t = 0, for each host i in Group
1, we draw τi from an exponential distribution of mean 0.5 h−1 and set host i’s shedding rate
from the beginning of the trial until they are sampled to be

εi(t) = ε(t+ τi) t ≥ 0 (4.24)

which is equivalent to innoculating each host in Group 1, on average, half an hour prior to
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4.2.5.1. Simulation routine for Data Set A

Figure 4.2: Time-dependent rate of pathogen shedding, ε(t), (left panel) in simulation of
Data Set A. In the right panel is a corresponding typical P-Q pathogen trajectory of one host
with the parameter values selected above (ρ = 0.005, η = 0.1).

the start of the trial. Values chosen for the model parameters for the simulations are α =
5.0× 10−10, ρ = 0.005, η = 0.1 and λ = 1.0× 10−3 and the experimental tank volume is Vt =
150 l.

After intialisation, simulation of Data Set A proceeds by alternately forward-simulating the
underlying SI-PQ process (with time-varying total rate of shedding) between each subsequent
pair of sampling times, and then when a sampling time is reached, simulating the random sample
and testing, as well as the dPCR measurement before making the appropriate adjustments to
the underlying state, to account for destructive sampling. We now describe the process in detail.

1. Initialise:

a) Fix sampling times 0 < t1 < · · · < tn and Group 1 and 2 sample sizes (d1
1, . . . , d

1
n)

and (d2
1, . . . , d

2
n)

b) choose a stepping distance h - this should be several orders of magnitude smaller than
the inter-sampling times ti − ti−1

c) set state variables S0 = N2, I
1
0 = N1, I

2
0 = 0 (S are susceptibles, I1 and I2 correspond

to infectious hosts in Groups 1 and 2)

d) Initialise shedding rates for Group 1. For i = 1, . . . , N1, draw

τi ∼ Exponential(2.0) (4.25)

The shedding rate for Group 1 host number i, until it is removed, is εi(t) = ε(t+ τi).
This models the fact that Group 1 are not innoculated precisely at t = 0, but on
average half an hour prior to then (due to the choice of rate in Eq. 4.25).

2. Simulate between sampling times, ti−1 and ti. Divide the interval [ti−1, ti] into small
time steps ti−1 = s0 < s1 < · · · < sn = ti of equal duration h. For each time step

a) sum all the current shedding rates for all infected hosts and set

ε =
∑

εi(sj) (4.26)
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4.2.5.2. Simulation routine for Data Set B

b) sample Psj+1 and Qsj+1 using an Euler-Maruyama step:

i. Draw independently

∆E ,∆D,∆FP and ∆FQ ∼ Normal(0, λh) (4.27)

ii. Set

∆Psj = (ε(I1
sj + I2

sj )− ρPsj − ηPsj )h+
√
ε(I1

sj + I2
sj )∆

E −
√
ρPsj∆D −

√
ηPsj∆FP

∆Qsj = (ρPsj − ηQsj )h+
√
ρPsj∆D −

√
ηQsj∆FQ

Psj+1 = max{0, Psj + ∆Psj}

Qsj+1 = max{0, Qsj + ∆Qsj}

(4.28)

c) an infection occurs in the interval (sj , sj+1] with approximate hazard αPsjSsj , there-
fore

i. draw w ∼ Exponential(αPsjSsj )

ii. if sj + w < sj+1 then an infection in Group 2 has occurred. Set

Ssj+1 = Ssj − 1

I2
sj+1 = I2

sj + 1

(4.29)

otherwise,

Ssj+1 = Ssj

I2
sj+1 = I2

sj .

(4.30)

3. Simulate measurements at sample time ti

a) Take dPCR measurement:

Draw Hi ∼ Binomial(C, θi)

where θi = 1− exp
(
−Vc
Vt

(Pti +Qti)
)

(4.31)

b) Remove d1
i hosts from Group 1 (all infected)

I1
ti = I1

ti − d
1
i (4.32)

and choose d2
i hosts from Group 2 at random. With ri infectious out of sample of

size d2
i , adjust the state variables

Sti = Sti − (d2
i − ri)

I2
ti = I2

ti − ri − d
1
i

(4.33)

99



4.2.5.2. Simulation routine for Data Set B

Time (hrs) y (/10)
0.0 6
48.0 7
96.0 6
144.0 3
192.0 4
240.0 1
288.0 1
336.0 1
384.0 0

Table 4.5: Simulated data set for Experiment B - “Data Set B”. Ten repetitions of the
Experiment B are performed with nine containers each. Repetition j of container i is prepared
with an initial viral concentration of p0,ij part ml−1. Table lists the times that hosts are added
to the containers and the counts (out of 10) of infected hosts found therein at the end of the
trial at T = 432 h.

4.2.5.2 Simulation routine for Data Set B

Table 4.5 contains Data Set B, which are the counts of infected hosts from k = 10 repetitions of
Experiment B. Simulation of Data Set is much more straightforward. At each repetition of the
trail, hosts are introduced into one of nine containers starting at t = 0 and every 48 h thereafter.
The trial then continues until T = 432.0 h.

Each container within each repetition has its own values for the parameters α and ρ, as well as
the initial pathogen load, p0, drawn as

logαij ∼ N
(
log(5.0× 10−10), 0.05

)
log ρij ∼ N (log(0.005), 0.05)

log10 p0,ij ∼ N
(
log10(1× 107), 0.05

)
(4.34)

The means of the normal distributions above match the values used to simulate Dataset A, and
the variances are chosen to introduce a small amount of noise into the simulation.

Whether container i contains an infected host at repetition j is simply a draw from a Bernoulli
trial with probability θij , where

θij = 1− exp
{
−αijp0,ij

ρij

(
e−ρijt0,i − e−ρijT

)}
(4.35)

(see Eq. 4.16).
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4.3 Results

Our aim in this chapter is to show that, using particle-marginal MCMC (PM-MCMC), we can
estimate the SI-PQ model rates of environmental transmission, α, pathogen shedding, ε, and
decay, ρ, from the kinds of data that are routinely collected in challenge studies of waterborne
infectious disease, augmented with dPCR.

Figure 4.3 summarises the samples drawn from the posterior distribution resulting from updat-
ing the flat prior p(α, ε) ∼ 1 with simulated data from Experiment A, under the assumption that
ρ = 0. This is equivalent to assuming that all of the pathogen in the tank is viable, which is a
reasonable approximation for systems in which only a small amount of the measured pathogen
load corresponds to dead pathogen, as is the case when the rate of removal of pathogen due to
water filtration, η, is sufficiently greater than ρ (see Eq. 4.9). In order to assess the effect of
the particular value we choose for the scale parameter λ, we perform two repetitions of this ex-
ercise with (a) λ = 1× 103 and (b) λ = 1× 104. Experiment A is based on the trial conducted
by [HVT+17] with the addition of five dPCR measurments accompanying the taking of host
samples. We see Data Set A is very informative about the two quantities α and ε since we get
posterior estimates with bounded support that are at the correct orders of magnitude in relation
to the known values chosen for simulation, as listed in Table 4.3, and that inferences for α and ε
are not affected by the value of λ. Figure 4.3 also contains trace plots demonstrating the rapid
convergence of two independent sampling chains given different initial values. Such rapid conver-
gence is highly desirable, since “slow mixing” can be a bar to practical usage of certain MCMC
sampling routines. Visual inspection of trace plots is the primary means of checking convergence
is achieved, however, the Gelman and Rubin convergence diagnostic [R C18, PBCV06, GR92]
(not reported), showed no evidence of lack of convergence in any of the cases of model fitting.

In Figure 4.4 a graphical posterior-predictive check (GPPC) comparing this fitted model’s pre-
dictions of the postive sample numbers and dPCR readings with those of Data Set A is pre-
sented, drawing parameter values from the first of the two sets of posterior samples drawn,
with λ = 1× 103. From this we see that the predicted dPCR readings agree well with the
data. However, the host samples are somewhat under-predicted from t = 48 h onwards, where a
better-fitting model would correctly predict these quantities.

Figures 4.5 and 4.6 similarly show samples from the posterior of all three parameters after
updating p(α, ε, ρ) ∼ 1 this time with data additionally from Data Set B, which is a simulation
of a second hypothetical trial similar in design to that of [SAR+13]. Again, we perform this
exercise twice with λ = 1× 103 (Fig. 4.5) and λ = 1× 104 (Fig. 4.6). Table 4.6 lists sample
statistics for all marginal parameter posteriors. In addition to an estimate of the rate of pathogen
decay, which was not available to us with data from Experiment A alone, we have narrower,
more precise, estimates of α and ε, with the difference between the 5 and 95 percentiles reducing
from 1.8× 10−10 h to 1.4× 10−10 h in the case of α and from 4.1× 105 h to 3.6× 105 h for ε.
What is more, the GPPC, presented in Figures 4.7 and 4.8, with samples drawn from the first
set of posterior samples, with λ = 1× 103 shows an improvement in terms of predicted positive
sample sizes.
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The crosses on the univariate and bivariate density subplots in Figures 4.3, 4.5 and 4.6 indicate
the values of α and ρ (where appropriate) used to simulate the data sets (see Table 4.3) as well
as the peak rate of pathogen emission of 1× 106 h−1. Since in our simulations, the pathogen
emission rate was assumed to be variable, rising rapidly to a peak of 1× 106 h−1 and then
declining, one would expect the inferred value for a steady rate of pathogen emission (as implied
by the fitted SIR-PQ model) to lie somewhere below this peak value, which is the case here.

Another interesting feature of the fitted posteriors in Figures 4.5 and 4.6 is the marked correlation
between the parameters α and ρ. Such a correlation suggests that appropriately increasing or
decreasing the environmental transmission and pathogen decay rates together produces a range
of models consistent with the data. This correlation is also an artefact of the of lack model
identifiability when attempting to infer values for the three parameters α, ε and ρ from Data
Set A alone. Addition of a second source of information, such as Data Set B, allows us to learn
something about ρ, independently of α, and narrows down the plausible ranges of values for
these two parameters, albeit with some residual correlation.

mean 5%-ile median 95%-ile

(i) A p(α |H, r) 1.3× 10−10 0.4× 10−10 1.2× 10−10 2.2× 10−10

p(ε |H, r) 9.5× 105 7.6× 105 9.4× 105 11.7× 105

(ii) A & B
p(α |H, r,y) 2.1× 10−10 1.5× 10−10 2.1× 10−10 2.9× 10−10

p(ε |H, r,y) 9.3× 105 7.5× 105 9.2× 105 11.1× 105

p(ρ |H, r,y) 1.0× 10−3 0.1× 10−3 1.0× 10−3 3.0× 10−3

Table 4.6: Summary statistics (mean, median, 5 and 95 percentiles) of marginal posterior
distributions resulting from fitting SI-PQ model to (i) Data Set A and (ii) Data Sets A and
B with λ = 1× 103. All units are h−1.

4.4 Discussion

In this chapter we have developed and implemented a Bayesian methodology that enables the
inference of the parameters of an ETM, as well as shown what kinds of data are required.
While our focus has been on the SI-PQ model, the methods used here are generic and very
versatile. The PM-MCMC routine can be implemented in C++ in a generic way, allowing, for
example, extra compartments to the SI-PQ model to be added without significant recoding. The
forward simulations of particles can be run in batches within independent threads of execution,
significantly speeding up the PM-MCMC routine on a multi-core machine. The required data
can be collected using experimental protocols already in use in aquaculture studies.

By making appropriate changes to the forward simulations of the particles as part of the PM-
MCMC routine (see Appendix E) we may easily include a latently infected (E) state within a
SEI-PQ model, corresponding to a per-host shedding rate that remains low for an initial period
before growing to a peak. If the shedding rate falls away quickly after reaching a peak then we
may also include a recovered (R) state in a SIR-PQ, or even a SEIR-PQ model.

By making appropriate changes to how we adjust host states we can also expand upon the
observation model presented here. For example, a method of non-lethal testing (e.g. gill and
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skin swabs) would be modelled in the same way but without reductions to the numbers of
hosts following the measurement, as we do in the case studied here. We can also allow for the
possibilities of false positives or false negatives in testing by making adjustments to the host
states, after sampling and reweighting, subject to a probabilistic rule determined by the test’s
sensitivity and specificity.

What should be considered carefully, however, is whether the data collected and the observation
model allow all of the parameters to be estimated. For example, the pathogen decay rate cannot
be estimated using data from Experiment A alone and although in some circumstances loss of
pathogen viability can be ignored, where it cannot transmission studies such as Experiment A
can be supplemented with relatively straightforward experiments that enable the rate of viability
loss to be estimated, such as Experiment B. Fitting models to simulations of trials (as we have
done in this Chapter and in Chapter 3) is a low-cost way of detecting any model identifiability
problems ahead of committing expensive resources.

The SI-PQ parameter λ governs the expected size of the stochastic fluctuations of both parts of
the pathogen load around the solution to the deterministic part of Eq. 4.2. This was introduced
so that these equations hold after rescaling the size of Pt and Qt, e.g. to reflect different scales
on which pathogen load can be measured. If we set λ = 0, then conditional upon It, Pt and Qt
become deterministic functions of t that responds to changes in the number of shedding hosts.
Conversely, as λ grows, the pathogen load gets increasingly “noisy” and the fluctuations of
Pt and Qt dominate the pathogen dynamics. We have not attempted here to estimate this
quantity from data, treating λ instead as a nuisance parameter and fixing its value when fitting
the model. The value at which λ is fixed does not affect the inferences about the other param-
eters. A suggested strategy when model fitting is first to set λ either to zero or to some small
value, and then to increase it if problems are encountered either in the assessment of the model
fit or in the model fitting prodedure itself, e.g. slow mixing of the MCMC chains.

ETMs, informed by data, offer a deeper understanding of the relationship the dynamics of
environmental pathogen levels and the risk of outbreaks of environmentally transmitted diseases,
such as cholera, paratuberculosis and the many aquatic infectious diseases affecting aquaculture
production. Real-time waterborne pathogen detection technologies will boost surveillance for
aquatic infectious diseases in aquaculture production settings. The tools we have begun to
develop here enable such impacts to be quantified and opens up the environmental transmission
of disease to a more granular analysis of its constituent sub-processes, e.g. shedding kinetics
and pathogen viability in the environment.
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(a)

(b)

Figure 4.3: Summary of posterior distribution of environmental transmission and
pathogen emission rates, p(α, ε |H, r), and MCMC trace plots for SI-PQ model fitted
to Data Set A with (a) λ = 1× 103 and (b) λ = 1× 104. Axes are rescaled by 1× 105 for
ε. Univariate marginal posterior density estimates are shown on the diagonal along with full
bivariate density estimate. Data Set A was simulated with α = 5× 10−10 h−1, ρ = 0.005 h−1

and variable pathogen emission peaking at 1× 106 h−1. Crosses are used to indicate these values
on the plots for comparison and we see that posterior estimates for these parameters are at the
correct order of magnitude. In order to estimate these two parameters from Data Set A alone, we
made the approximating assumption that ρ = 0 (for the simulation we set ρ = 0.005 h, η = 0.1 h,
i.e. ρ � η). The fitted model, however, still provides good estimates of the parameters α and
ε. The trace plots indicate that two chains run independently with different initial values have
converged to a common stationary distribution after discarding 5000 iterations from each chain
for burn-in and adaptation of the proposal density.
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Figure 4.4: Marginal posterior predictive distributions for dPCR readings H and
positive test results r, p(Ĥi |H, r) and p(r̂i |H, r) corresponding to samples drawn from
posterior summarised in Fig. 4.3a above with λ = 1× 103. The numbers of positive-testing
hosts in each sample and dPCR readings comprising Data Set A are indicated by � on the
plot. We see that the posterior-predictive distribution of the dPCR counts are roughly centered
upon the values in Data Set A (apart from the reading at t = 120 h), however, fewer positive
samples from t = 48 h onwards are predicted by the model than were actually observed. This
suggests that another model might provide a better fit. To sample from the posterior-predictive
distributions, 5× 104 evenly spaced values were taken from the MCMC parameter samples.
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Figure 4.5: Summary of posterior distribution of environmental transmission,
pathogen decay and emission rates, p(α, ε, ρ |H, r,y), and MCMC trace plots for SI-PQ
model fitted to Data Sets A and B with λ = 1× 103. Axes are rescaled by 1× 105 for ε. Having
begun with flat priors for all parameters, p(α, ε, ρ) ∝ 1 (see Sec. 4.2.3), we see that Data Sets A
and B together are informative, and lead to estimates of all three unknown parameters of the
model. Data Set A and B were simulated with α = 5× 10−10 h−1, ρ = 0.005 h−1 and variable
pathogen emission peaking at 1× 106 h−1. Crosses are used to indicate these values on the
plots for comparison and we see that posterior estimates for these parameters are at the correct
order of magnitude. As before, the trace plots are shown to indicate the rapid mixing of the
two MCMC chains (started separately and run independently). Between 10 and 15 thousand
iterations were discarded before calculating each of the above density estimates.
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Figure 4.6: Summary of posterior distribution of environmental transmission,
pathogen decay and emission rates, p(α, ε, ρ |H, r,y), and MCMC trace plots for SI-PQ
model fitted to Data Sets A and B with λ = 1× 104. Axes are rescaled by 1× 105 for ε. Having
begun with flat priors for all parameters, p(α, ε, ρ) ∝ 1 (see Sec. 4.2.3), we see that Data Sets A
and B together are informative, and lead to estimates of all three unknown parameters of the
model. Data Set A and B were simulated with α = 5× 10−10 h−1, ρ = 0.005 h−1 and variable
pathogen emission peaking at 1× 106 h−1. Crosses are used to indicate these values on the
plots for comparison and we see that posterior estimates for these parameters are at the correct
order of magnitude. As before, the trace plots are shown to indicate the rapid mixing of the
two MCMC chains (started separately and run independently). Between 10 and 15 thousand
iterations were discarded before calculating each of the above density estimates.
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Figure 4.7: Marginal posterior predictive distributions for dPCR readings H and
positive test results p(Ĥi |H, r,y) and p(r̂i |H, r,y) corresponding to samples drawn from
posterior summarised in Fig. 4.5 above, with λ = 1× 103. The numbers of positive-testing
hosts in each sample and dPCR readings comprising Data Set A are indicated by � on the
plot. As before, the model’s predictions of the dPCR readings are in good agreement with those
of Data Set A. However, we see an improvement in the model’s predictions of the numers of
positive-testing fish in the samples at t = 72, 96 and 120 h.

Figure 4.8: Marginal posterior predictive distributions for positive bucket counts,
y, p(ŷi |H, r) corresponding to corresponding to samples drawn from posterior summarised in
Fig. 4.5 above, with λ = 1× 103. The numbers of positive testing hosts in each container are
indicated by � on the plots, where we see in each case that the fitted model’s predicted counts
are similar to those seen.
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Chapter 5
Discussion

The aim of this thesis has been to expand and develop the tools employed in stochastic epidemi-
ological modelling and computationally intensive Bayesian inference. A greater understanding
of disease spread through mechanistic models, informed by observation, offers greater predictive
power, more accurate quantification of the risk of outbreaks and better assessment of the effects
of potential treatments and interventions [LC16].

In Chapter 2 we took a critical look at direct transmission (DT) models [McC01] and pro-
vided insight into their application to infections with environmental transmission (ET) routes
(e.g. [BDSR09, ZLZ+20, PKF+21]). We identified timescale separation between the hosts and
pathogens as the factor that determines whether simple DT is an accurate model description,
even when the infection is also transmitted via contact with environmental pathogens. The
demonstrated robustness of DT models to departure from the DT assumption, and their reduced
data requirement (since they model the host-disease dynamics without describing the pathogen
load) means these models are a sound and parsimonious choice as a dynamic description of a
wide range of host-pathogen interactions.

In Chapter 3 we showed how the large and growing body of observational data obtained from
immersion challenge experiments (ICE) can be used to build DT models of aquatic infectious
diseases and how computer simulation and an information-theoretic measure of the expected
information gain [VTHvR12, LFKS13] can help in the design of such experiments. Furthermore
we demonstrated that, using data-informed simulations, researchers can maximise the benefits
of their experiments by testing hypotheses about treatments and interventions not included in
the original design. Fitted models can help to identify remaining gaps in knowledge, motivating
further data collection [LEH+15] and efficient design of future experiments.

Finally, in Chapter 4, by novel application of particle filtering Markov chain Monte Carlo meth-
ods, we tackled the problem of estimating the parameters of an ET model. We showed that
adding digital polymerase chain reaction (PCR) measurements [DQR08, SJ13] of waterborne
pathogen load to common ICE designs yields estimates of important quantities that charac-
terise ET: the rates of environmental transmission, pathogen emission and loss of pathogen
viability. By proposing an ET model that differentiates between infectious pathogens and non-
infectious pathogenic material (which is also detected by PCR), we addressed the “shedding
versus infectivity dilemma” discussed by [WBB20] in relation to SARS-CoV-2. Although, as
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discussed Chapter 2, in many cases DT models accurately describe ET, there are benefits to
considering how pathogen levels affect the likelihood and severity of outbreaks. For example,
Wang, et al. (2012) found that a simple, stochastic ET model of avian influenza could explain
complex phenomena relating to multi-year patterns of outbreaks in the wild [WJL+12].

There are many promising directions for future work. These include a measure of the departure
from DT in the system under study, which would complement the graphical posterior-predictive
checks used throughout this thesis. The first place to look would be the exposure time residuals
(ETR), which are a subclass of more general latent residuals (LR) [LMSG14]. The posterior
distribution of a sequence of LRs, which are a function of the data, unobserved events and
parameters, can be examined in order to assess whether the assumptions made about particular
parts of the fitted model are valid. However, the posterior distribution of the ETRs is often high
dimensional (one dimension per disease exposure), and requires graphical inspection.

Supporting real-time surveillance for environmental pathogens that have become endemic within
the wider host population requires longer-term modelling that includes demographic movements,
which in food production can include trading and restocking [BJK+18]. The models considered
in this thesis assume that the timescales over which outbreaks occur are sufficiently short that
these demographic movements can be neglected. However, by adding extra routes of entry into
and exit out of the host and pathogen population compartments, a closed-population ET model
with parameter estimates using ICE data may be adapted to include demographic movements,
as well as incursions of pathogens into the local environment from outside.

By providing predictions about outbreaks based upon measurements of pathogens in the local
water body, ET models can inform real-time disease surveillance and management operations in
aquaculture production systems [Sub05]. Models that better describe the relationship between
background pathogen levels and the risks of local outbreaks would complement surveillance
methods that focus on the detection of cases. By simulating a number of scenarios covering
different disease management and surveillance strategies, as in Chapter 2, ET models will help
to find optimal trade-offs between outbreak risk reduction and the costs associated with disease
surveillance and any consequent control actions undertaken. The development of approaches
that assimilate data in real time and provide information to support decision making for disease
control, or even provide automated decision making and action, could be an important step in
realizing the potential benefits of digital farming [FotUN21].

ET models could additionally be combined with computational fluid dynamics (CFD) models
of water currents, such as the one used to study the airborne spread of SARS at the Amoy
Gardens housing complex [YLW+04, YQTW14], so that the risks posed from disease outbreaks
at neighbouring farms can be modelled and quantified [DD21].

Understanding how environmental conditions affect the epidemiology of ET diseases would sig-
nificantly improve predictions about disease outbreaks and inform prevention and mitigation
strategies. An additional refinement to ET models would be to take into account how epidemi-
ological parameters are affected by environmental factors, such as water temperature (observed
to affect the virulence of white spot syndrome virus [SP10]). This would possibly take the form
of a simple generalised linear model regression model relating e.g. the pathogen decay rate
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parameter to explanatory variables. The regression parameters could be quantified using ICE
and then plugged into an ET model.

However, the work of this thesis should already serve to encourage epidemiological researchers
in aquaculture, and other fields, on two fronts. Firstly, to apply well-known DT models crit-
ically, but with confidence in their effectiveness. And secondly, to take full advantage of the
increasing richness of observational disease data in order to quantify both DT and ET models
using inferential methods, such as particle-marginal MCMC, described here. The result of this
will be future disease surveillance and prevention systems that are smarter, more proactive and
will ultimately save lives.
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Appendix A
Appendices

A Metropolis-cooled MCMC routine for Chapter 2

A.1 SEIR likelihood

As stated in Section 2.2 the SEIR likelihood is,

p( E, I,R |β, γ, δ ) ∝ βm−1B(E, I,R)e−βA(E,I,R)
m∏
j=1

δe−δ(Ij−Ej)
m∏
j=1

γe−γ(Rj−Ij)

where m is the final outbreak size (i.e. number of exposure, onset of infectivity and removal
events) and Eκ (below) is the unobserved time of the index exposure

A =
∫ ∞
Eκ

StIt dt

B =
∏
i 6=κ
{IEi}

The integral
∫∞
Eκ
StIt dt in (2.6) has an easily computable form, found in [NR05]

A =
m∑
j=1

N∑
i=1
{min (Rj , Ii)−min (Ij , Ii)} (A.1)

where j sums over all exposure events and i sums over the entire host population. This quantity
represents the total susceptible-infectious host contact time throughout the outbreak.

To explain the form of the likelihood, each exposed host, j, contributes terms δe−(Ij−Ej) and
γe−(Rj−Ij), since they spend Exp(δ) and Exp(γ) times in the E and I states, respectively. After
exposure, all onsets of infectiousness and recoveries are observed. Ordering the exposure events,
Eκ = E1 < · · · < Em, each exposure except the first also contributes a term
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A.2. Markov chain Monte Carlo (MCMC)

βSEiIEie
−β
∫ Ei
Ei−1

StIt dt
i > 1

since the ith exposure event has hazard βStIt beginning at time Ei−1. There is a final factor of

e
−β
∫∞
Ei

StIt dt = e
−β
∫ Rmax
Ei

StIt dt

Since no further exposures occurred. Since SE1SE2 . . . SEm = (N − 1)(N − 2) . . . (N − m) =
constant, these factors are omitted from the likelihood.

A.2 Markov chain Monte Carlo (MCMC)

Since we can write down the posterior density for γ, and within the MCMC routine described
in Section 2.2, samples of δ and E do not depend on previous samples of β, the main routine
need only consist in sampling δ and E and recording these values along with A,B and Eκ.
The parameter β can then be sampled from its full conditional distribution, which given an
exponential prior p(β) ∼ Exp(λβ) is

p(β|δ, γ,E, I,R) ∼ Gamma(m,A+ λβ)

Since the full posterior distribution of parameters and exposure times, p(β, δ, γ,E | I,R ) does
not have a closed form, we use MCMC methods to sample from it. This is done by setting
initial values for the parameters and exposure times, β0, δ0, γ0,E0 and then, for some T ≥ 1.0
(the temperature - see below), iterating through the following steps for i = 1, . . . , n:

1. Update δ via Metropolis-Hastings, i.e., propose δ′ ∼ N(δi−1, σ2
δ ) and with probability α1

set δi = δ′, otherwise δi = δi−1, where

α1 = min
(

1, fT (δ′,E|I,R)
fT (δi−1,E|I,R)

)

fT is the marginal conditional density for δ,E at temperature T (see below). The parameter
σδ is tuned during an number of iterations in order to get an acceptance rate of between
20% and 40%.

2. Choose an exposure time to update (with index j) uniformly at random. Propose E′,
where E′k = Ei−1

k for k 6= j and Ij − E′j ∼ Exp(δi) and with probability α2 set Eij = E′j ,
otherwise set Eij = Ei−1

j (all other exposure times are unaltered), where

α2 = min
(

1, fT (δi,E′|I,R)
fT (δi,Ei−1|I,R)e

−δi(E′j−E
i
j)
)

3. Update β by the Gibbs sampler, i.e. sample from the full conditional distribution βi ∼
Γ(m,A+ λβ).
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The above follows a fully-centred parameterisation, as discussed by Neal and Roberts for the
SIR model ([NR05]). Note that there is no need to sample γ as part of the above routine, since
having assumed an exponentially-distributed prior p(γ) = λγe

−λγγ , its posterior density

p(γ|E, I,R) ∝ γme−γ
∑m

j=1(Rj−Ij) × e−λγγ

and therefore p(γ|E, I,R) ∼ Gamma(m+ 1,
∑m
j=1(Rj − Ij) + λγ).

Due to the high dimensionality of the sample space and the likelihood function having local
maxima, the sampling chains can sometimes be slow to converge to stationarity and even become
stuck at certain parameter values, with an acceptance rate going towards zero. Metropolis
coupled MCMC, or (MC)3 [ADHR04] is the strategy adopted here to alleviate poor mixing
and is summarised as follows: several of the above chains are run with several closely spaced
temperatures 1.0 = T1 < T2 < · · · < Tr. The first chain, with temperature 1.0, is termed the
cold chain and is the only chain from which we obtain samples. The other chains are known as
the heated chains. After performing a fixed number of iterations for each chain in parallel, two
are selected uniformly at random, with temperatures T ′ and T ′′ and current states X ′ = β′, δ′,E′

and X ′′ = β′′, δ′′,E′′. The states are then exchanged with probability α3, where

α3 = min
(

1, fT1(X ′′|I,R)
fT1(X ′|I,R)

fT2(X ′|I,R)
fT2(X ′′|I,R)

)

Although the samples from the heated chains are ultimately discarded, the method has the
advantage that is easily parallelised on a multi-core machine. For this work, this was achieved
using Python’s multiprocessing module. Six chains were run in parallel with the temperatures
T = 1.00, 1.02, 1.04, 1.06, 1.08, 1.10 and exchanges of state were attempted every 400 iterations.

We can therefore marginalise the posterior density at temperature T , obtaining fT which is, for
p(δ) ∼ Exp(λδ)

fT (δ,E|I,R) ∝ p( δ,E | I,R )
1
T

∝
{∫ ∫

p( E, I,R |β, δ, γ )p(β)p(δ)p(γ)dβ dγ
} 1
T

∝


∏
i 6=κ
{IEi} (A+ λβ)−m

 m∑
j=1

(Rj − Ij) + λγ

m+1

δme
−δ(
∑m

j=1(Ij−Ej)+λδ)


1
T

and for p(δ) ∼ U(0, 10)

fT (δ,E|I,R) ∝


∏
i 6=κ
{IEi} (A+ λβ)−m

 m∑
j=1

(Rj − Ij) + λγ

m+1

δme
−δ
∑m

j=1(Ij−Ej)1δ∈(0,10)


1
T

131



B. MCMC summary plots for Chapter 2

B MCMC summary plots for Chapter 2
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B. MCMC summary plots for Chapter 2

(a) Long-lived (b) Long-lived

(c) Intermediate (d) Intermediate

(e) Short-lived (f) Short-lived

(g) Direct transmission only (h) Direct transmission only

Figure B1: Trace plots using R coda package. In the case of long-lived pathogen (b), a restricted
prior was adopted for δ: p(δ) ∼ U(0, 10.0) in order to aid mixing. In all other cases p(β), p(δ) ∼
exp(0.001) independently. Trace plots show all iterations, including those later discarded for
burn in, in order to demonstrate convergence of two independent chains to stationarity.
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D.1. Estimation of pathogen decay rate, ρ

C Force of infection in Reed-Frost epidemic model

Lotz and Soto in [SL01] adopt a Reed-Frost model in order to describe transmission of WSD
among shrimp in a controlled experiment in which transmission may either be exclusively direct,
via ingestion of dead infected shrimp, or exclusively environmental, via cohabitation with a live,
infected shrimp. Reed-Frost (see e.g. [Abb52]) is a discrete time model of the numbers of
susceptible (St), infected (It) and removed (Rt) individuals at each of a series of closely spaced
time points, separated by a duration ∆t. The transmission parameter β is the probability
of transmission from some particular infected individual to some other particular susceptible
individual during one time step, so that the probability of some susceptible individual not being
infected during one time step is

(1− β)It (A.2)

and the probability that there is transmission from at least one infected individual to this
specified susceptible is therefore

1− (1− β)It (A.3)

and the expected number of new infections occuring is

St(1− (1− β)It). (A.4)

The force of infection is therefore

1− (1− β)It
∆t ≈ βIt

∆t . (A.5)

D Estimation of α, ε and ρ for SEIR-P model of WSD in
shrimp

D.1 Estimation of pathogen decay rate, ρ

By a challenge experiment in which P. monodon were immersed in sterile seawater that had
been spiked with WSSV a variable number of days prior to immersion, Kumar et.al. were able
to estimate how long a known quantity of WSSV remains viable in seawater under laboratory
conditions. Ten experimental and one control bucket were filled with 10l of sterile seawater.
To the experimental buckets pure WSSV was added to a final concentration of 1000 part ml−1,
meaning that around 107 particles were present in each bucket. On days 0 up to 18, 10 juvenile
P. monodon were added to one of the unoccupied buckets and all shrimp were monitored at 8h
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D.2. Estimation of environmental transmission rate, α

intervals for mortality or signs of WSSV infection. Dead shrimp were removed from the buckets
and proportions of living shrimp were recorded daily for each bucket. The authors found that
under the conditions of the experiment seawater-borne WSSV remains infective for up to 12
days.

The plots given in [SAR+13, Figure 2] for buckets 0 to 8 indicate similar rates of mortality
across these buckets, suggesting that the WSSV lost little of its infectivity during the first eight
days in seawater. Total mortality occurred at around the four day mark following introduction
to the 0 to 8-day buckets. A reduction in mortality rates is then noticeable following immersion
in the 10 day and 12 day buckets, where 100% mortality was observed each at the 7 day mark
(i.e 7 days after immersing the shrimp). No mortalities occurred following immersion in the 14,
16 and 18 day buckets, at least during the experimental period, suggesting that the amount of
viable WSSV had decayed significantly by 12-14 days in seawater. Since at 8 days there was
still a sufficient quantity of WSSV to inoculate all 10 of the shrimp, we expect that the mean
infectious lifetime a WSSV particle in seawater to be no less than 8 days, giving pathogen decay
rate, ρ, no greater than 0.005 h−1.

D.2 Estimation of environmental transmission rate, α

The second column of Table D1 contains the time in hours, t100, from immersion to 100%
mortality of shrimp in each of the buckets, labelled by the number of days after the introduction
of WSSV to the bucket that the shrimp were immersed. A lower, order of magnitude, estimate
for α (indirect rate of WSD transmission) can be obtained from the same data by assuming that
mortality comes immediately upon infection (thus underestimating the infectivity) and assuming
that the pathogen density remained at its initial level of 1000 part ml−1, at least for buckets 0
to 8, where the rates of mortality were similar.

The transmission rate α should be no more than 10/(103 × t100), since 10 exposures occurred
in t100 hours, and the rate of new exposures is αP = 103α. These values are in Column 3 of
Table D1. Similarly, upper estimates for each bucket by supposing that 100% of the exposures
had happened at t100 - 48, i.e. fixing a period of 2 days between exposure and death for each
shrimp since no deaths occurred before 2 days, post-immersion. These are in Column 4. Taking
medians, we can say that α is of the order of 10−4 ml part−1 h−1.

Bucket t100 h αml part−1 h−1

0 96 1.0× 10−04 2.1× 10−4

2 120 8.3× 10−05 1.4× 10−4

4 96 1.0× 10−04 2.1× 10−4

6 72 1.4× 10−04 4.2× 10−4

8 96 1.0× 10−04 2.1× 10−4

Table D1: From graphical plots by Kumar, et.al. ([SAR+13, Fig 2]). Buckets are labelled
by time in days between addition of WSSV to bucket and immersion of shrimp. t100 - the time
in hours to 100% mortality. Upper and lower estimates of α are given to 1 decimal place and
calculations are described in main body of text.
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E.1. General outline

E Bootstrap sequential Monte Carlo routine for
particle-marginal MCMC

E.1 General outline

Here we describe in detail the bootstrap SMC routine used to obtain the approximations
p̂(r |β, δ) ≈ p(r |β, δ) and p̂(H, r |α, ε, ρ) ≈ p(H, r |α, ε, ρ) used to fit the SI, SEI and SI-PQ
models of Chapters 3 and 4. Such a routine is a key step in the Particle-Marginal MCMC
routine of [ADH10]. Key references also include [GC01, DFG01, LC98]. We shall follow closely

the notation and development in [ADH10, GC01]. Let θ be a vector of unknown parameters
of some stochastic mechanistic disease model, Y1:m = (Y1, . . . , Ym) a sequence of observations
of the system at the observation times 0 = t0 < t1 < · · · < tm and let X1:m = (X1, . . . , Xm)
denote event sequences, Xj , of the underlying disease model between the times tj−1 and tj . For

a Markovian disease model, X1:m can equivalently be the state of the system at the observation
times t1, . . . , tm. For example, Xi = (Sti , Iti , Pti , Qti) is the state of the Markovian SI-PQ model
of Chapter 4 at time t = ti and Yi = (Hti , rti) are the results of a dPCR reading (measuring
Pti+Qti), taken at time ti, and the number of positive-testing hosts found in a sample taken from
the entire host population at t = ti, of size di. SMC allows us to obtain, for fixed θ, a weighted

set of N particles Xk
1:m importance sampled sequentially from the conditional distributions

Xk
1 ∼ p(X1 |Y1, θ)

Xk
1:2 ∼ p(X1:2 |Y1:2, θ)

· · ·

Xk
1:m ∼ p(X1:m |Y1:m, θ).

(A.6)

Each completed particle Xk
1:m comes with a normalised, W k

m, and an unnormalised weight, wkm,

such that

p̂(X1:m |Y1:m, θ) =
N∑
k=1

W k
mδXk

1:m
≈ p(X1:m |Y1:m, θ) (A.7)

(where the δXk
1
are probability measures degenerate at Xk

1 - i.e. for some measureable set B,

δXk
1
(B) equals 1 if Xk

1 ∈ B and 0 otherwise), and taking the mean of the unnormalised weights
we get, by the law of large numbers

1
N

N∑
k=1

wkm ≈ p(Y1:m | θ). (A.8)

At each generation, r, we use importance sampling to update the particles from the previous

generation and their weights. To avoid numerical instability arising from a subset of the weights
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underflowing to zero, we then perform a re-sampling step from the set of particles. The purpose
of this is to cut out particles with low weights and increase the representation in the sample of
those with higher weights. This is the essence of the bootstrap particle filter [GC01]. Since we
are sampling by forward simulation, working from t = 0 onwards, no account is taken of the
information contained in future observations, Yr+1, Yr+2, . . . , Ym. Some particles may currently
have low weights due to outliers occuring early in the observation sequence. To avoid too many
of these getting prematurely killed off, we follow a recommendation of Liu, et al. [DFG01,
Chapter 11] and smooth the weights, as described below. We now describe the routine in detail.

Generation 1:

To begin, we forward simulate the underlying disease model from t = 0 to t = t1 with initial
condition X0 and parameter values θ in order to obtain samples from the importance density

X1
1 , . . . , X

N
1

iid∼ p(X1 | θ) (A.9)

which, since θ is fixed, receive the weights

wk1 = w1(Xk
1 ) = p(Y1 |Xk

1 ) (A.10)

The weights are normalised

W k
1 = wk1∑N

k=1w
k
1
. (A.11)

and we have the approximate distribution

p̂(X1 |Y1, θ) =
N∑
k=1

W k
1 δXk

1
≈ p(X1 |Y1, θ). (A.12)

By the law of large numbers

1
N

N∑
k=1

wk1 ≈
∫
p(Y1 |X1)p(X1 | θ) dX1

= p(Y1 | θ). (A.13)

Generation r:

Suppose that we have so far sampled the particles X1
1:r−1, . . . ,XN

1:r−1 with normalised weights
W 1
r−1, . . . ,W

N
r−1, such that

p̂(X1:r−1 |Y1:r−1, θ) =
N∑
k=1

W k
r−1δXk

1:r−1
≈ p(X1:r−1 |Y1:r−1, θ). (A.14)
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For chosen v1
r−1, . . . , v

N
r−1 with

∑N
k=1 v

k
r−1 = 1 (see below), we form the importance density

q(X1:r | θ) =
N∑
k=1

vkr−1p(Xr|Xk
1:r−1, θ) (A.15)

which we use to sample the rth particle generation. Drawing from q(X1:r | θ) is equivalent to first
selecting, for k = 1, . . . , N , particle k’s parent with index Akr−1 from the previous generation,
with probabilities v1

r−1, . . . , v
N
r−1, and then forward simulating the disease model between the

times t = tr−1 and t = tr, conditional on θ and the parent particle’s history XAkr−1
1:r−1. When the

disease model is Markovian, the state of the parent particle XAkr−1
r−1 at time t = tr−1 determines

the probabilistic behaviour of its offspring, independently of its history prior to tr−1. As in

[ADH10], the vkr−1 are typically the normalised weights W k
r−1 from the first particle generation.

However, it is often beneficial to smooth the weights, for example by setting

vkr−1 ∝
√
W k
r−1

N∑
k=1

vkr−1 = 1.

(A.16)

This pushes those normalised weights that equal neither 0 nor 1 toward the interior of the interval

[0, 1] so that a greater diversity of particles is propagated into the next generation. There are
numerous options for how weights are smoothed, Liu, et al. [DFG01, Chapter 11] discuss an
adaptive method based on calculating the effective sample size at each generation. However,
taking the square root, as above, before normalising, again as suggested by Liu, et al., works
sufficiently well for our purposes. In all applications of SMC discussed in this thesis, the weights
are smoothed in this way. Since by Eq. A.14, WAkr−1

r−1 ≈ p(XAkr−1
1:r−1 |Y1:r−1, θ),

p(Xk
1:r |Y1:r, θ)
q(X1:r | θ)

=
p(Xk

r ,X
Akr−1
1:r−1 |Y1:r, θ)

q(X1:r | θ)

= 1
p(Yr |Y1:r−1, θ)

×
p(Yr |Xk

r )p(Xk
r |X

Akr−1
1:r−1, θ)p(X

Akr−1
1:r−1 |Y1:r−1, θ)

q(X1:r | θ)

= 1
p(Yr |Y1:r−1, θ)

×
p(Yr |Xk

r )p(Xk
r |X

Akr−1
1:r−1, θ)p(X

Akr−1
1:r−1 |Y1:r−1, θ)

p(Xk
r |X

Akr−1
1:r−1, θ)v

Akr−1
r−1

≈ 1
p(Yr |Y1:r−1, θ)

×
W

Akr−1
r−1

v
Akr−1
r−1

p(Yr |Xk
r )

(A.17)
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if we set

wkr = wr(Xk
1:r) =

W
Akr−1
r−1

v
Akr−1
r−1

p(Yr |Xk
r ) (A.18)

then by the law of large numbers

1
N

N∑
k=1

wkr ≈
∫
p(Yr |Y1:r−1, θ)

p(Xk
1:r |Y1:r, θ)
q(X1:r | θ)

q(X1:r | θ) dX1:r

= p(Yr |Y1:r−1, θ). (A.19)

We normalise the weights

W k
r = wkr∑N

k=1w
k
r

(A.20)

and obtain the approximate distribution

p̂(X1:r |Y1:r, θ) =
N∑
k=1

W k
r δXk

1:r
≈ p(X1:r |Y1:r, θ). (A.21)

Finally, after m generations

m∏
i=1

( 1
N

N∑
k=1

wki

)
≈ p(Ym|Y1:m−1, θ) · · · p(Y2|Y1, θ)p(Y1|θ)

= p(Y1:m|θ). (A.22)

E.2 Implementation

The above routine is implemented in C++. Because the implementation makes use of abstract
classes and polymorphism, the implementation can be adapted easily for different disease models.
Associated with each disease model is a namespace, under which is defined the mint struct that
stores the states and histories of each of N particles. For example, for the SI-PQ model of
Chapter 4

namespace SIPQ

{

struct mint

{

int parent_id;

int S, I1, I2;
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double P, Q;

mint(){};

mint(int pid, int S, int I1, int I2, double P, double Q)

:parent_id{pid},S{S},I1{I1},I2{I2},P{P},Q{Q}{}

void print(std::ostream&);

};

}

For Markovian disease models, the evolution of the next generation of particles depends only
on the final compartment sizes. To allow for non-Markovian models, such as non exponentially-
distributed infectious liftimes, an additional data structure, such as a priority queue, can be
added to the mint struct to hold, e.g. future recovery times.

The struct job

struct job

{

job(){};

virtual ~job(){}

virtual void run()=0;

virtual void run(std::mt19937_64&)=0;

};

is an abstract handle by which various computation tasks related to a particular mint, e.g.
performing a forward simulation of a particle between two measurement times or calculating the
likelihood of a particular measurement, such as that of a dPCR reading, given the amount of
live and dead pathogen currently in the system, p(Ht |Pt, Qt), can be called and manipulated
polymorphously.

At each generation, pointers to jobs are loaded onto a generic job queue and a number of
worker threads, running in a loop, take jobs off the queue and executing them. Once a thread
finds the queue empty, it breaks out of the loop and exits. This is how the implementation
leverages multiple cores to break down the computations and perform them in parallel batches,
for example

void do_jobs(std::deque<job*>& jobq)

{

job* local_jobptr;

while(true)

{

job_mutex.lock();
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if( jobq.empty() )

{

job_mutex.unlock();

break;

}

local_jobptr = jobq.front();

jobq.pop_front();

job_mutex.unlock();

local_jobptr->run();

delete local_jobptr;

}

}

Generally, between 1000 and 1500 particles operating in 4 or 5 independent threads are found
to be sufficient for the work in this thesis.

The function reshuffle sets up the correct number mints and their current weights as parents
for the next generation of particles. It does this in-place by making two passes through the array
of mints

void reshuffle(

std::vector< std::tuple< int, int > >& uniq_cnts

,mint marray[num_experiments][num_particles]

,double* lv

,double* lw

)

{

std::vector< std::tuple< int, int > >::iterator u{uniq_cnts.begin()};

while( std::get<1>(*u) == 0 ) ++u;

for(int n{0}; n < num_particles; ++n)

{

//is particle n in the list?...

if( any_of(uniq_cnts.begin(), uniq_cnts.end()

,[n](std::tuple<int, int> x){return (std::get<0>(x)==n); }))

//...yes. Do nothing...

for( int j{0}; j < num_experiments; ++j )

marray[j][n].parent_id = n; //...apart from set parent_id

else //Otherwise, produce an offspring...
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{

for( int j{0}; j < num_experiments; ++j )

{

marray[j][n] = marray[j][std::get<0>(*u)];

marray[j][n].parent_id = std::get<0>(*u);

}

lv[n] = lv[std::get<0>(*u)];

lw[n] = lw[std::get<0>(*u)];

--std::get<1>(*u);//...and decrement.

}

//skip past parents with no more offspring to produce

while( std::get<1>(*u) == 0 ) ++u;

}

}

The helper function count_uniques takes as input a vector a of integer values and populates
the vector uniq_cnts with distinct values and their counts. a is a vector of sampled indices
from a multinomial distribution determining the parents of the next generation of particles.
count_uniques is called by the function reshuffle

void count_uniques(

std::vector< std::tuple< int, int > >& uniq_cnts

,const std::vector< int >& a

)

{

/*

Assumptions:

a is sorted

Returns:

vector of tuples {a,m} - particle a will have m+1 offspring

*/

#ifdef DEBUG

assert( std::is_sorted( a.begin(), a.end() ));

#endif

uniq_cnts.clear();

uniq_cnts.push_back( std::tuple<int, int>{a[0], 0} );

for( int n{1}; n < num_particles; ++n )

{

if( a[n] == std::get<0>( uniq_cnts.back() ))
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++std::get<1>(uniq_cnts.back());

else uniq_cnts.push_back( std::tuple<int, int>{a[n], 0} );

}

}

F Sample code

F.1 Python code to implement metropolis-cooled MCMC routine from
Chapter 2

The following Python2 code uses the multiprocessing module in the standard library to im-
plement several parallel Metropolis-Hastings samplers comprising the Metropolis-cooled MCMC
routine of Altekar, et al. (2004) [ADHR04]. The details of the sampling for each chain are con-
tained within the seir_sampler member of class SamplerThread. The concepts of Barrier and
Reusable barrier are from The Little Book of Semaphores, Allen B. Downey [Dow16].

import multiprocessing as m_proc

import numpy as np

import time

’’’

Little Book of Semaphores

’’’

class Barrier:

def __init__(self, n):

self.n = n

self.count = m_proc.Value(’i’,0)

self.mutex = m_proc.Semaphore(1)

self.barrier = m_proc.Semaphore(0)

def wait(self):

self.mutex.acquire()

self.count.value += 1

self.mutex.release()

if self.count.value == self.n:

self.barrier.release()

self.barrier.acquire()

self.barrier.release()
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class ReusableBarrier:

def __init__(self, n):

self.n = n

self.count = m_proc.Value(’i’,0)

self.mutex = m_proc.Semaphore(1)

self.barrier_one = m_proc.Semaphore(0)

self.barrier_two = m_proc.Semaphore(1)

def wait_phase_one(self):

self.mutex.acquire()

self.count.value += 1

if self.count.value == self.n:

self.barrier_two.acquire() #lock second barrier

self.barrier_one.release() #unlock first barrier

self.mutex.release()

self.barrier_one.acquire()

self.barrier_one.release()

def wait_phase_two(self):

self.mutex.acquire()

self.count.value -= 1

if self.count.value == 0:

self.barrier_one.acquire() #lock first barrier

self.barrier_two.release() #unlock second barrier

self.mutex.release()

self.barrier_two.acquire()

self.barrier_two.release()

class SamplerThread(m_proc.Process):

def __init__(self,

index,

sampler,

reusable_barrier,

mutex,

connection,

block_size,

num_blocks,

blocks_to_burn,

thin,

file_handles,
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sh_temperatures,

sh_cross_temperatures,

sh_likelihoods,

sh_cross_likelihoods,

sh_sigma_delta,

sh_write):

m_proc.Process.__init__(self)

self.index = index

self.reusable_barrier = reusable_barrier

self.mutex = mutex

self.seir_sampler = sampler

self.connection = connection

self.block_size = block_size

self.num_blocks = num_blocks

self.blocks_to_burn = blocks_to_burn

self.thin = thin

self.file_handles = file_handles

self.sh_temperatures = sh_temperatures

self.sh_cross_temperatures = sh_cross_temperatures

self.sh_likelihoods = sh_likelihoods

self.sh_cross_likelihoods = sh_cross_likelihoods

self.sh_sigma_delta = sh_sigma_delta

self.sh_write = sh_write

def run(self):

’’’

burn-in phase.

Iterate <block_size> number of times and then report current sigma_delta

’’’

self.seir_sampler.T = self.sh_temperatures[self.index]

self.seir_sampler.sigma_delta = self.sh_sigma_delta[self.index]

self.seir_sampler.write = self.sh_write[self.index]

for i in range(self.blocks_to_burn):

self.seir_sampler.run( self.block_size, self.thin, self.file_handles, True )

self.sh_sigma_delta[self.index] = self.seir_sampler.sigma_delta

self.reusable_barrier.wait_phase_one()

self.reusable_barrier.wait_phase_two()

’’’

sampling phase. Iterate <block_size> number of times

’’’

for i in range(self.num_blocks):
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’’’

1.

main thread:

draw random transposition (k,l)

update sh_cross_temperatures (kth and lth positions transposed)

’’’

self.reusable_barrier.wait_phase_one()

’’’

2.

main thread waits

’’’

self.reusable_barrier.wait_phase_two()

self.seir_sampler.T = self.sh_temperatures[self.index]

self.seir_sampler.sigma_delta = self.sh_sigma_delta[self.index]

self.seir_sampler.write = self.sh_write[self.index]

self.seir_sampler.run( self.block_size, self.thin, self.file_handles, False )

self.sh_likelihoods[self.index]

= self.seir_sampler.log_likelihood_partial_integrated(

self.seir_sampler.T)

self.sh_cross_likelihoods[self.index]

= self.seir_sampler.log_likelihood_partial_integrated(

self.sh_cross_temperatures[self.index] )

’’’

3.

main thread:

calculate acceptance probability

accept / reject

if accept:

transpose sh_<>

’’’

self.reusable_barrier.wait_phase_one()

self.reusable_barrier.wait_phase_two()
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F.2 Python code to simulate results of trial by Hauge, et al. (2017) from
Chapter 3

import time

import sys

import numpy as np

seed = int(time.time())

print ’seed = ’, seed

ranD = np.random.RandomState(seed)

N1 = 20

N2 = 20

d1_v = [4, 4, 4, 4, 3]

d2_v = [4, 4, 3, 4, 5]

remtimes = [2.0, 4.0, 6.0, 12.0, 16.]

bet = 0.02

delta = 0.2

def E_sampler( E_params ):

delta, ranD = E_params

return ranD.exponential( scale = 1/delta )

rout = []

Hauge_SEI_Sim( 0.0, bet, E_sampler, (delta, ranD), d1_v, d2_v,

remtimes, N1, N2, rout, ranD )

def Hauge_SEI_Sim( t0, bet, E_sampler, E_params, d1_v, d2_v, remTimes,

N1, N2, rout, ranD ):

ev_queue = []

S = N2; E = 0; I1 = N1; I2 = 0

t = t0

for d1, d2, rt in zip(d1_v, d2_v, remTimes):

#print t0, ’-’, rt, ’d1 = ’, d1, ’d2 = ’, d2

while True:

if S == 0:

while not ev_queue == [] and ev_queue[0] < rt:

E -= 1
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I2 += 1

heapq.heappop(ev_queue)

break

else:

t += ranD.exponential( scale = 1/( bet * S * (I1 + I2) ) )

if t >= rt:

break

elif not ev_queue == [] and t >= ev_queue[0]:

t = ev_queue[0]

E -= 1

I2 += 1

heapq.heappop(ev_queue)

else:

S -= 1

E += 1

heapq.heappush(ev_queue, t + E_sampler( E_params ))

#print ’S =’, S, ’E =’, E, ’I1 =’, I1, ’I2 =’, I2, ’t =’, t, ’ ’, ev_queue

t = rt

#print ’=============================\n’

#print ’Removal time, t = ’, rt, ’hit’, ’(1)’, d1, ’(2)’, d2

#print ’(before) S =’, S, ’E =’, E, ’I1 =’, I1, ’I2 =’, I2, ’t =’, t

I1 -= d1

rout.append(0)

ranD.shuffle( ev_queue )

indices = []

for i in range(S):

indices.append(’s’)

for i in range(E):

indices.append(’e’)

for i in range(I2):

indices.append(’i’)

ranD.shuffle( indices )

#print indices
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for i in range(d2):

j = indices.pop()

if j == ’s’:

S -= 1

elif j == ’e’:

E -= 1

ev_queue.pop()

elif j == ’i’:

I2 -= 1

rout[-1] += 1

else:

print ’Error’

sys.exit()

heapq.heapify( ev_queue )

#print ’(after) S =’, S, ’E =’, E, ’I1 =’, I1, ’I2 =’, I2, ’t =’, t

#print ev_queue

#print ’=============================\n’

t0 = rt

#for loop ends

}
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