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Abstract: Sub-seabed gas is commonly associated with seabed depressions known as pockmarks—the
main venting sites for hydrocarbon gases to enter the water column. Sub-seabed gas accumulations
are characterized by acoustically turbid or opaque zones in seismic reflection profiles, taking the
form of gas blankets, curtains or plumes. How the migration of sub-seabed gas relates to the origin
and distribution of pockmarks in nearshore and fjordic settings is not well understood. Using marine
geophysical data from Loch Linnhe, a Scottish fjord, we show that shallow sub-seabed gas occurs
predominantly within glaciomarine facies either as widespread blankets in basins or as isolated
pockets. We use geospatial ‘hot-spot’ analysis conducted in ArcGIS to identify clusters of pockmarks
and acoustic (sub-seabed) profile interpretation to identify the depth to gas front across the fjord. By
combining these analyses, we find that the gas below most pockmarks in Loch Linnhe is between
1.4 m and 20 m deep. We anticipate that this work will help to understand the fate and mobility of
sedimentary carbon in fjordic (marine) settings and advise offshore industry on the potential hazards
posed by pockmarked seafloor regions even in nearshore settings.

Keywords: pockmarks; ArcGIS; hydroacoustic; hot-spot; marine; geo-hazard

1. Introduction

Gas within marine sediments was first recognised in seismic records 60 years ago and
referred to as the ‘becken effekt’ or basin effect [1]. This acoustic phenomenon, commonly
referred to as acoustic turbidity or gas blanking, is characterised by chaotic reflections with
no apparent structure masking the stratigraphy below. This blanking effect is caused by
gas bubbles affecting the acoustic and mechanical properties of the sediment, which in
turn increases the amount of sound attenuation measured. Sediment cores taken from
within an area of acoustic turbidity in the Irish Sea Basin confirmed this hypothesis [2].
The concentration of methane was high within this Irish Sea zone of acoustic turbidity
with concentrations ranging from >100 nmol−1 to <10 nmol−1 within the uppermost
1.6 m of seabed sediment. Acoustic structures below this zone of turbidity are no longer
visible, with internal reflections below these gas-charged horizons entirely or partially
obscured. Zones of acoustic turbidity on hydroacoustic records can take different shapes
and sizes. Descriptive terms such as acoustic curtains, blankets and plumes have been used
to help differentiate between acoustically turbid zones with different lateral and vertical
distributions [3]. These three forms have been used previously to show how acoustic
signatures of gas-charged sediments can be related to underlying geological controls,
based on acoustic datasets collected from UK nearshore regions (mainly boomer and
pinger records) [3,4]. These workers identified zones of acoustic turbidity, in the form
of curtains and blankets plus two other acoustic facies—white and black fringes—and
showed that the strength and phase of the acoustic signal relates to different depositional
environments. It has been suggested that certain terms (e.g., acoustic curtain and blanking)
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are not necessary [5] and that only two types of gas-related acoustic turbidity can be
reliably identified.

Further acoustic evidence of sub-seabed gas includes gas chimneys and plumes. Gas
plumes are narrow zones of acoustic turbidity with distinct lateral boundaries, typically
<50 m wide, and with an apparent connection to a gas source, which is likely biogenic [3–5].
Gas plumes have been observed as having numerous high-amplitude parabolic reflectors
and can also appear as an amorphous cloud. Gas chimneys are narrow vertical zones of
disturbance caused by gas migration. Some workers support the use of terms that describe
the vertical migration of gas such as plume and chimney, as these indicate direct evidence
of gas migration. Much work has been conducted to detect and map the 3D structures of
gas chimneys in order to understand their role in hydrocarbon migration, as they can create
unfavourable conditions for seabed infrastructure and lead to pockmark formation [6].

Identifying pockmarks and shallow sub-seabed gas is an essential part of determining
the potential hazards posed to offshore infrastructure [7,8]. However, the degree to which
pockmarks are considered a geohazard is still debated [9]. This is largely due to the
formation of pockmarks being dependent on gas pressure, which can vary greatly. As
such, a detailed understanding of pockmark formation and seabed fluid flow in certain
offshore settings is still lacking. Pockmarks that have experienced long-term venting have
been observed in the North Sea, where methane-derived authigenic carbonates (MDAC)
have formed and been exposed on the seabed [10,11]. MDAC is considered an important
geological structure worthy of marine protection status, typically within special areas of
conservation (SAC). There is general agreement that pockmarks are indicators of hazardous
seabed settings including tectonic/seismic activity [12,13], areas of potential gas hydrate
and also potential seabed slumps and slides [13]. Pockmarks can also indicate the presence
of deep hydrocarbon accumulations in offshore basins [14]. However, little work to date
has explored the importance of pockmarks as geohazards in nearshore settings.

Seabed pockmarks are relatively widespread across the continental shelf around
Scotland, occurring mainly in the North Sea sector, discovered during oil and gas sur-
veys [11,15,16]. More recently, pockmarks have also been discovered further inshore within
the fjords and fjord approaches of western Scotland [17,18], similar in size and bathymetric
setting to those identified in the western fjords of Arctic Svalbard [19–21]. These fjordic
environments are shown to be effective stores of organic carbon [22,23]. However, the
presence of pockmarks indicate that these stores are not permanent and that gases, such as
methane, can seep into the water column back into the marine carbon cycle [5,24]. Certain
studies have shown that this gas can also enter the atmosphere [24,25], although this
is dependent on water depth and local hydrographic/meteorological factors [26]. It is
thought that pockmarks in Scotland’s fjords are formed by the release of shallow biogenic
gas, whereas those further offshore in the North Sea sector are related to deeper-seated
thermogenic gas accumulations [15]. This is supported by research into the carbon sig-
nature of fjordic and offshore/shelf sediments, where the majority of organic carbon is
stored within fjordic systems; however, localised hot-spots of organic and inorganic carbon
can also be found in sediments of the wider continental shelf [27]. Regional mapping of
pockmarks in Scottish west-coast waters has suggested a link between pockmark morphol-
ogy, hydrographic setting and the activity history of pockmarks [18]. The authors have
already mapped pockmarks within Loch Linnhe, part of a wider mapping initiative, and
inferred the presence of widespread seabed gas/fluid escape (of unknown age). Previous
unpublished research investigating the glacial history of the wider region also found some
geophysical evidence of sub-seabed gas in the same inlet (or sea loch) [28,29]. However,
neither of these studies fully explored the relationship between sub-seabed gas and the
presence of pockmarks at the seabed. In this paper, we explore the three-dimensional
spatial relationships between sub-seabed gas presence and pockmark formation in Loch
Linnhe, to answer the following questions:

1. How widespread and how deep is the (near-surface) sub-seabed gas stored in Scot-
land’s fjordic sediments?
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2. What can the distribution of sub-seabed gas tell us about pockmark formation and
possible trigger mechanisms?

3. Can we infer pockmark age relationships or activity status based on present-day gas
presence or absence?

2. Materials and Methods
2.1. Study Site and Geological Setting

Loch Linnhe, on the west coast of Scotland, is a large fjord or sea loch, trending SW–
NE, separated into two main basins. This study focuses on the outer basin and extends from
the Corran Narrows in the north to the northerly tip of Lismore Island where the sea loch
opens into the less-sheltered waters of the Firth of Lorn (Figure 1a). There are no prominent
sills within the outer basin, so water flow is unrestricted. Hydrography of the region is
estuarine whereby freshwater flows seaward and is replaced by saline water flowing at
depth northward. Loch Linnhe is situated astride the south-westerly extension of the Great
Glen Fault [30], which divides the bedrock of the region into the Moine metamorphic series
and the Dalradian metamorphic series, composing the west and east shores of Loch Linnhe,
respectively [31,32]. The last glacial activity in the Loch Linnhe catchment was during
the Younger Dryas when outlet glaciers draining from Rannoch Moor via Glen Coe and
Loch Leven coalesced with other smaller glaciers in Loch Linnhe forming a substantial
tidewater glacier in the outer basin (Figure 1b). Numerical modelling experiments place the
limit of the Younger Dryas glacier around Shuna Island [33]; empirical reconstructions are
generally in agreement, although the precise timing of this late glacial ice-cap re-advance is
still contested. Deglaciation of Loch Linnhe had probably occurred by 11.0 ka BP [28].

Figure 1. Maps of Loch Linnhe; (a) bathymetry of Loch Linnhe, location of pockmarks and basins; KB—Kentallen Basin,
BB—Balnagowan Basin, B.Bnk—Balnagowan Bank, SB—Shuna Basin, S.Bnk—Shuna Bank, LB—Lismore Basin, L.Bnk—
Lismore Bank; (b) map of the glacial ice cover during the Younger Dryas based on the model by [33]. Arrows show the
main glacial flow from Rannoch Moor (west) and tributary glaciers from the east.

2.1.1. Multibeam Echo-Sounder Bathymetry

Loch Linnhe multibeam echo-sounder bathymetry (MBES) data were collected be-
tween December 2011 and July 2012 under Hydrographic Instruction 1371 as part of the
Civil Hydrography Program (CHP). The data were processed to International Hydro-
graphic Organisation (UKHO) order 1a specification [34]. The resultant raster was gridded
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at 12 m resolution and processed in ESRI ArcGIS. The MBES dataset is made available
through the UKHO bathymetry portal where further information can be found on the
survey methodology, data collection and specification [34].

2.1.2. Sub-Seabed Geophysical Data

The original printed CODA seismic records were used for the analysis; these were
obtained from the Scottish Association for Marine Science (SAMS). The seismic survey
was conducted in 2010 using an Applied Acoustic AA300 surface-tow boomer. Vertical
scale lines show the two-way travel time interval of 20 msec measuring 33 mm on pa-
per records. Following a sound speed of 1500 msec for unconsolidated sediment and
2000 msec for consolidated sediment, this provides us with an approximate depth con-
version of 1 mm = 0.45 m–0.60 m. Horizontal scale lines record the ‘fixes’, which were
recorded at 1-minute time intervals. With an average constant ship speed of 4.5 knots, the
approximate distance between fixes is 140 m; this is confirmed by ArcGIS analysis. Seismic
profiles were scanned (digitised) and interpreted—building on the existing, unpublished
seismo-stratigraphy [28].

An ESRI shapefile containing the position of seismic lines and fixes was obtained from
the British Geological Survey (BGS) Offshore GeoIndex (https://www.bgs.ac.uk/map-
viewers/geoindex-offshore (accessed on 29 January 2019)). Location data for each pock-
mark mapped within Loch Linnhe were taken from our existing published dataset [18]. The
mapping process used the BGS seabed-mapping toolbox [35]. The toolbox uses several tools
within ESRI ArcGIS to analyse the bathymetry, semi-automatically identify pockmarks and
place a point (shapefile) at the deepest point within the delineated pockmark—representing
the centre of the pockmark. A detailed description of the seabed mapping toolbox is pre-
sented elsewhere [35].

2.2. Inverse Distance Weighting

Within ArcGIS the inverse distance weighting (IDW) tool was used to interpolate the
vertical distance to the gas front. IDW uses the principle that further points have less of
an effect on nearby points and interpolates a surface based on this. The distance to the
gas front was measured by recording observations of acoustic turbidity at each seismic
fix—approximately 140 m apart. If no gas was observed, then an NA value was recorded
and not processed during IDW interpolation.

2.3. Hot-Spot Analysis

Optimized hot-spot analysis within ArcGIS was used to identify hot-spots of pockmark
formation. The tool uses the Getis-ord Gi* statistic, which implements the principle that
nearby features are more related than distant features. Two main variables can be set by
the user: cell size and neighbourhood distance. The default values are calculated by the
tool using spatial auto-correlation, which identifies the distance band of peak clustering of
the features. This is generally used as a guide to inform the user, but it is recommended
that variables are set according to the specific question being tested.

For this analysis, variables were set to test the question whether pockmark hot-spots
have formed. Previous studies suggest that when pockmarks form, they act as the primary
drainage channels for all surrounding gas up to half the nearest neighbour distance, at
which point gas theoretically vents from the ‘new’ nearest pockmark to reduce pressure.
This distance of half the nearest neighbour distance is termed the ‘exclusion zone’ [36]
within which theoretically no other pockmarks will form. Nearest neighbour distance was
calculated using the average nearest neighbour tool within ArcGIS. If this assumption
is violated, we consider this a hot-spot, and by inference, that the volume/pressure of
gas within the region is unable to escape effectively through a single pockmark. In these
situations, theory would suggest that one pockmark is not able to sufficiently reduce
the gas pressure within the area. Using this ‘exclusion zone’ concept, the cell size for
hot-spot analysis was set at half the average distance to the nearest neighbour, and the

https://www.bgs.ac.uk/map-viewers/geoindex-offshore
https://www.bgs.ac.uk/map-viewers/geoindex-offshore
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neighbourhood distance was set as the average distance to the nearest neighbour. Thus, if
more than one pockmark occurs within the exclusion zone, then a hot-spot is immediately
recognised; if further pockmarks are observed within the neighbourhood distance then
these areas are also considered hot-spots at varying degrees of confidence.

3. Results
3.1. Hot-Spot Analysis

Hot-spot analysis was conducted over three scales (Figure 2) to identify regions where
statistically more pockmarks have formed in the study region and highlight regions that
require further investigation. The first targeted all pockmarks within the outer basin of
Loch Linnhe. The analysis calculated an average nearest-neighbour distance of 220.4 m,
which was used as the analysis neighbourhood with half this distance (110.2 m) used
as the cell size. The analysis identifies that the majority of pockmarks are forming in
localised hot-spots within basins, with the exception of SB (Figure 2a). The second scale
of analysis targeted only the pockmarks that are within the region covered by the seismic
survey. A nearest-neighbour distance of 285 m was used as the analysis neighbourhood
and 142.5 m for the cell size. This hot-spot analysis produced similar results to the first scale
of analysis (Figure 2b). The third analysis only targeted pockmarks in the region where gas
was observed on seismic records. In this case, a nearest neighbour distance of 402 m was
used as the analysis neighbourhood and 201 m for the cell size. The third analysis shows
hot-spots within LB, KB and B. Bnk (Figure 2c). No hot-spots were identified at any scale
within BB, and the majority of pockmarks within SB do not form hot-spots at any scale.
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Figure 2. Hot-spot analysis using the Getis-ord Gi* statistic of pockmarks within Loch Linnhe along with an inset map
showing main basins mentioned in Figure 1; (a) hot-spot analysis of all pockmarks within Loch Linnhe; (b) hot-spot analysis
of pockmarks that occur within the region of the boomer seismic survey; (c) hot-spot analysis of pockmarks where gas was
observed in seismic profiles.



Geosciences 2021, 11, 283 6 of 16

3.2. Seismic Interpretation

Our seismic interpretation has been adapted from the Loch Linnhe seismic facies
(LLSF) framework outlined by McIntyre (Table 1) [28]. A common feature in every line is
the L1 reflector. This reflector occurs at the base of LLSF5.

Table 1. Seismic facies of Loch Linnhe and their interpretations adapted from McIntyre [28].

Seismic Facies Seismic Characteristic Interpretation Setting

LLSF5
Strong, continuous, parallel

reflectors draped over
topography.

Youngest unit, 3–4 m thick. Thin or
absent on steep slopes.
Terrigenous-derived,

organic/inorganic, deposited under
suspension.

(Holocene) Marine

LLSF4
Continuous, parallel, sheeted

reflectors, draped in deep
basins.

Directly under LLSF5 (L1) reflector.
Up to 45 m deep. Thin or absent on

bathymetric highs.

(Younger Dryas)
Glaciomarine (distal)

LLSF3
Strong, continuous to

discontinuous. Parallel to
sub-parallel.

Occurs below LLSF4, >80 m deep.
Absent from banks and shallows.

(Younger Dryas)
Glaciomarine (proximal)

LLSF2

Lacking internal structure,
chaotic reflections. Sometimes

blanks underlying seismic
structures.

(a) Present at the base of many
slopes, occupying regions that

would otherwise contain LLSF3/4.
Usually does not, or only partially,

obscures underlying facies.
(b) Occurs as wide regions with

abrupt to diffusive initial reflection.
Abrupt vertical boundaries where it

obscures LLSF3/LLSF4. Usually
completely obscures any other

reflectors. May also form as isolated
domes. Interpreted as acoustic

blanking due to gas scattering or
attenuated seismic signal.

(a) Slumps.
(b) Gas.

LLSF1 Strongly hyperbolic to chaotic.
Discontinuous reflectors.

Present as the basal unit in most
regions. In other regions they can
occur as discontinuous reflections

within LLSF2. Interpreted as
ice-contact deposited proglacially as

moraines or sub-glacially.
Compacted, unsorted

clay—boulder in size. Possibly
bedrock (acoustic basement).

(Younger Dryas) Diamict
or bedrock

The clearest representation of gas within the study region is in the form of acoustic
turbidity (blanking) as seen within numerous seismic line profiles (Figure 3). This is
identified as LLSF2b (Table 1) and can be observed at the southerly and northerly regions
of Loch Linnhe. Acoustic turbidity can be observed in the form of undulating curtains
(Figure 3 Line A), or associated with reflector pull-downs interpreted as a chimney structure
(Figure 3 Line B), or as widespread blanket (Figure 3 Line C). Regions of acoustic turbidity
are often found to be near pockmarks, where gas has vented into the water column during
pockmark formation/activity.

Pockmark 2 shown in Figure 4 Line A was identified and described as a ‘deep’ pock-
mark [18]; that is a statistically deeper-than-average pockmark depth (based on depth/area
ratio) across the studied sites around western Scotland. The L1 reflector is not present
within the centre of this pockmark. No clear signs of gas, LLSF2b, are observed beneath
pockmarks 1 and 2 (Figure 4 Line A:B). The seismic facies are chaotic and obscure in places;
however, they do not have the same acoustic turbidity characteristics commonly attributed
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to gas. Seismic lines B and C show the classic example of acoustic turbidity (LLSF2b),
interpreted as gas. Line B shows a variable depth to the gas front and contains a pockmark.
Line C shows widespread coverage of LLSF2b, here termed a ‘gas blanket’.
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Figure 3. Selected Loch Linnhe seismic lines containing evidence of sub-seabed gas/fluid accumulation in the form of
acoustic turbidity (or blanking), seismic chimneys and pull-down reflectors. Map shows the position of seismic lines and
corresponding profiles (colour coded).

The seismic line that extends through BB from KB in the north to SB to the south
contains several examples of pull-down reflectors (Figure 5). The most northern section of
Line B (Figure 5) shows the clearest evidence of LLSF2b, interpreted as gas at this site. This
acoustic turbidity continues at greater depth until it forms the front to a section of LLSF2.
This front is very stable but is not parallel to the seabed. It appears to occupy the region
that would otherwise be filled with the older LLSF4 (1) unit. We are unable to definitely
interpret this facies as gas due to the incomplete blanking of deeper reflectors. Sections of
pull-down reflectors are recorded within LLSF3. It is likely that this area of LLSF2 is slump
material or sediment that has lost all internal structure due to it becoming ‘quick’, with
occasional pockets of gas. A similar interpretation is made for LLSF2 in Line B. No evidence
of LLSF2 is observed in Line C. We interpret this section as not containing gas. A section
of acoustically stronger reflectors lies between the boundary of LLSF4 (2) and LLSF4 (1).
This is interpreted as a unique lens of higher density material—possibly a short-lived
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debris flow event. Further clear evidence of pull-down reflectors is present within Line C,
extending throughout the depth of LLSF3 and towards the boundary with LLSF1.

Figure 4. Seismic analysis of selected lines across pockmarks. Map shows the position of seismic lines, basin boundaries
and the location of pockmarks that appear on the seismic line. Labelled seismic line sections correspond to the seismic
profiles A:C. Profiles B and C are also shown in Figure 4 where gas-associated features are indicated.

Figure 5. Analysis of selected seismic lines that contain pull-down reflectors. Map shows the position of seismic lines, basin
boundaries. Labelled seismic lines sections correspond to the seismic profiles A:C. Dotted lines within seismic profiles show
the position of the surface reflector for LLSF2, where LLSF2b indicates acoustic turbidity.

Further examples of pull-down reflectors are closely related to the presence of pock-
mark 6 within KB (Figure 6 Line A). The pull-down reflectors are directly below pockmark
6 and extend into the underlying LLSF3. Evidence of gas is seen on either side of the
pockmark in this profile but not directly below the pockmark. Further evidence of gas
is recorded at the start of Profile H. Pull-down reflectors are also recorded immediately
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southwest of pockmark 6. The internal reflections at this point of interest are discontinuous
and partially obscured, indicating that sediment containing gas may be present here.

Figure 6. Analysis of selected seismic lines containing pockmarks and pull-down reflectors. Map shows the position of
seismic lines, basin boundaries and the location of pockmarks that appear on seismic line. Labelled seismic lines sections
correspond to the seismic profiles A:B. Seismic Line B is also shown in Figure 4 where gas-associated features are indicated.

3.3. IDW

The interpolated raster shows locations where sub-seabed gas was identified from
seismic data. The gas shows a depth range of 3.7–50 msec two-way travel time (TWTT)
(Figure 7a). Gas was observed within all regions of the outer basin. The regions of most
widespread gas occur in LB and KB (see Figure 1 for locations); in all other regions, gas
forms isolated zones. Generally, gas was seen in close proximity to pockmarks. Figure 7b
shows the number of pockmarks that lie directly above a region of gas-rich sediment.
Thirty-five pockmarks have gas directly beneath their centres. Of these, 29 pockmarks
occur above a gas front 3.7–20 msec deep, five pockmarks above a gas front at 20–30 msec
depth, and one pockmark is located above possible gas at 40–50 msec depth; this pockmark
is further investigated in the discussion. Thirty-two pockmarks occur in regions where gas
could not be observed; however, this result largely reflects the incomplete seismic survey
coverage in Loch Linnhe, making it not possible to observe the presence/absence of gas
between geophysical lines.
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Figure 7. Study area showing boomer seismic survey lines and pockmarks; (a) depth to gas front (TWTT), where gas was
observed in seismic profiles; (b) bar-plot showing number of pockmarks within each depth to gas front band.

4. Interpretation and Discussion

Quantitative hot-spot analysis has been used to investigate whether pockmark hot-
spots in Scottish fjords, such as Loch Linnhe, relate to the distribution of sub-seabed gas
seen in hydroacoustic (boomer seismic) data. We based this analysis on the principle of
an exclusion zone [36]. Depending on the number of pockmarks used in the analysis, the
average nearest-neighbour distance changes. We conducted this analysis on three spatial
scales where the area of interest, and therefore, the number of pockmarks present, decreases
in size.

We found that hot-spots were consistently identified at all scales of analysis within
the KB, LB and SB sub-basins (Figure 2). In these three regions, we also found widespread
evidence of sub-seabed gas, with a gas front between 3.7–20 msec deep (TWTT). We
conclude that by applying the exclusion zone principle [36], we have developed a suitable
model for identifying regional gas-rich sediment through pockmark hot-spot identification.
We note that pockmark hot-spots are absent from much of LB and BB. This is likely due
to the thinner accumulations of glaciomarine sediments containing less organic material
necessary for the formation of pockmarks. The thinning of LLSF4 observed within these
regions [28] is interpreted as areas of non-deposition resulting from increased bottom
currents typical in narrower bathymetric settings.

Interpolating a grid (raster) based on the presence of gas within seismic records is
a useful method for not only mapping the distribution of gas within a region but also
for identifying its depth range. We map sub-seabed gas throughout the study site: either
widespread in KB, northwest LB and S.Bnk, or as isolated pockets, such as in BB (Figure 7).
The depth range to the gas front recorded beneath most pockmark centres is between
3.7–20 msec TWTT (Figure 7b). Our seismic analysis supports the conclusion that gas-rich
sediments, observed in seismic records as LLSF2b, stratigraphically relate to LLSF4 in
age, based on the depths of the gas fronts [28] and surrounding facies. Facies LLSF4 is
interpreted as distal glaciomarine sediment laid down during ice wastage at the end of
the last (Late Weichselian) ice-sheet glaciation or during the Younger Dryas [28]. Despite
being deposited within a fjordic glacial environment, these muddy sediments must contain
enough organic matter to support microbial communities and produce gas. Deposition
of organic matter in contemporary nearshore glacial settings has been found within the
fjords of western Svalbard [37] where gas-charged sediment is observed resulting from
organic matter associated with marine productivity distal to the glacial margin. Further
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examples of biogenic gas accumulations within Late Pleistocene (Weichselian) glacioma-
rine muds are found in the North Sea Basin [38] and in one or two nearshore basins off
northwest Scotland [39–41]. Within Loch Linnhe, total carbon content has been estimated
at 92.28 Mt [23], but with very low C/N ratios recorded within the uppermost 4 m of
sediment [28]. This is likely attributed to relatively high inorganic carbon content resulting
in poor preservation of organic carbon [42,43]. Gas-charged sediments of biogenic origin
have also been found within the glaciomarine Emerald Silt Formation on the Canadian
Atlantic continental shelf [44]. In that setting, however, the authors argue that thermogenic
sources of gas must be present, as they deem it unlikely that the sediment package con-
tained enough organic matter to form a sufficient volume of gas for pockmark formation.
Owing to the predominantly metamorphic Precambrian bedrock, a thermogenic source of
gas is unlikely in Loch Linnhe. Contrary to the findings on the Canadian Atlantic shelf,
distal glaciomarine sediments within fjordic environments off Svalbard can contain enough
organic carbon to generate shallow sub-seabed gas accumulations [19].

Our study suggests that relatively distal glaciomarine material on the floor of Loch
Linnhe contains enough organic material to promote the build-up of shallow biogenic gas
(<50 msec deep). From these findings, we suggest that biogenic gas can form in nearshore
sedimentary basins where sediments containing organic matter were deposited rapidly
during the warming events at the end of the last (Weichselian) ice-sheet glaciation and/or
at the Younger Dryas/Holocene transition. Rapid sediment accumulation in these time
intervals has been reported in nearby Loch Etive [45] and in Loch Broom, NW Scotland,
where there is similar geophysical evidence of shallow (biogenic) gas below the seabed [17].
Rapid sedimentation is also reported in numerous glaciated high-latitude fjords, such as
Kongsfjorden, Svalbard with sedimentation rates as high as 10 cm a−1 [46,47] Svendsen
2002. This organic material would have preferentially accumulated in regions where
hydrodynamic flow was restricted by bathymetric obstacles, such as moraines or bedrock
highs, or in larger deeper-water basins with weak bottom currents [28]. We suggest that
the complex interactions between hydrodynamics and seabed topography in Loch Linnhe
resulted in the patchwork of gas pockets now present within SB and BB and the more
widespread gas accumulations in KB and northwest LB—the latter perhaps representing
local depocentres for organic material in areas of little or no bottom current.

The L1 reflector has been identified on seismic data throughout the study area and is
thought to represent the onset of a full interglacial environment in Loch Linnhe [28]. Through-
out LLSF4, the environment changes from distal glaciomarine to Holocene paraglacial con-
ditions before its transition into full interglacial marine conditions (represented by LLSF5).
LLSF5 represents Holocene sedimentation where vegetation has stabilised much of the sur-
rounding terrestrial topography, resembling the present-day landscape. A similar reflector
termed E1 was identified in the adjacent fjord of Loch Etive [48] where radiocarbon-dated
shells yielded an age of 10,240 +/- 82 cal yr BP. Shells from the L1 reflector in Loch Linnhe
provide radiocarbon dates of 10,313 +/- 100 and 8347 +/- 73 cal yr BP [28]. It is assumed that
the transition from late glacial (cold) to interglacial (warm) marine conditions occurred at a
broadly similar time across western Scotland ca. 10.5–11.5 cal ky BP.

Our results show that this Holocene sediment package (LLSF5) is of approximately
uniform thickness across the study area, even within the majority of pockmarks. We
interpret this to reflect generally constant, spatially uniform sedimentation rates across the
sea loch during the Holocene. Since this unit, including the L1 reflector, is present within
the majority of pockmarks in the study area, it is likely that the majority of pockmarks
formed prior to 10.3 cal ky BP and have, at most, only been periodically venting low
volumes of gas with insufficient fluid flow to remove or inhibit sedimentation. This is
supported by the results on the morphology of pockmarks in the region [18], where 51%
of pockmarks are classed as ‘regular’ due to their shallow profile and low depth: area
ratio. This class of pockmarks is common in the waters around western Scotland. ‘Regular’
pockmarks are interpreted as being less active then ‘deep’ pockmarks [18]. The only
pockmark imaged in seismic records where the L1 reflector is not observed is pockmark
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2 (Figure 4, Line A). Due to the absence of the L1 reflector and the thin cover of LLSF5,
we interpret this as the most recently active pockmark within Loch Linnhe. However,
the strongly V-shaped depth profile of the pockmark and presence of the L1 reflector in
the flanks of the pockmark suggest that it started forming prior to ~10.3 ky BP but has
been regularly active throughout the Holocene. This interpretation is supported by semi-
automated classification of pockmarks in this region [18]. This unusual pockmark was
classed as ‘deep’ by Audsley et al. [18] who interpreted it as one of a number of pockmarks
with a longer activity time or more energetic gas/fluid venting. Interestingly, we find little
seismic evidence of gas directly below this pockmark. We map LLSF2 below pockmark 2,
as separate narrow vertical zones in the surrounding facies and connecting with the base
of the pockmark. However, in this location, this facies does not have the typical acoustic
character commonly associated with gas.

Pockmarks can also form through venting of fluids without gas present. Pockmarks
forming from non-gas-related fluid discharge have been observed in MacBeth fiord, Baffin
Island [49] and Isfjorden, Svalbard [50]. This phenomenon has been described to occur
either in ice-proximal settings, where buried ice can be present regions of very rapid
sediment accumulation or where groundwater is driven under glaciomarine sediments
by the hydrostatic pressure of surrounding topography [49]. From this evidence, we
conclude that this deep pockmark formed prior to 10.1 ky BP and has been regularly active
throughout the Holocene, although the genesis of this pockmark may be related to another
form of fluid discharge and not the expulsion of biogenic gas.

We also observed V-shaped pull-down reflectors on seismic records across much
of the study area, closely related to sub-seabed gas accumulations and/or pockmarks
(Figures 4–6). These V-shaped reflectors are generally found in LLSF3 and terminate near
the lower boundary of LLSF4 but can also be found directly below pockmarks. Where pull-
down reflectors are seen within LLSF3, they were previously interpreted [28] as examples
of faults associated with isostatic rebound or examples of relict fluid-escape pockmarks
below the present-day seabed, as seen elsewhere [49]. Where pull-down reflectors are
recorded directly below pockmarks in Loch Linnhe, we interpret these as acoustic artefacts
resulting from the attenuation of sound waves due to gas or as the morphology of the
former seabed. In the case of pockmark 6 (Figure 6, Line A), we find that the reflectors
change from steep sided V-shaped to more rounded u-shaped reflectors close to seabed. We
conclude that this particular pockmark is probably inactive and that pull-down reflectors
represent the palaeo-seabed at depth.

Throughout the study area, we observe several examples of gas migration. According
to [3], these can be either acoustic blankets, curtains (100–500 m wide) or plumes (<50 m
wide). It has been suggested [5] that terms other than acoustic blanket and plume are
unnecessary and do not add to the interpretation of gas migration within marine sediments.
We argue that additional descriptive terms are useful, as they form a possible continuum
of stages potentially showing the progression of gas migration. Where we observe gas
blankets (Figure 3, Line C), the gas front is uniform and near seabed, even when a pockmark
is present; this is thought to represent a region where gas pressure is controlled by the
diffusion of gas into the Sulphate Methane Transition Zone (SMTZ), where it is consumed
by microbial communities [51]. Within this zone, methane is consumed, which effectively
lowers the pressure of the gas-rich fluids stored below. This finding is supported by the
diffusive boundary at the gas front below 3.7 msec (Figure 3, Line C). At this site, the
pockmark is no longer the primary gas-venting site, and the presence of LLSF5 overlying
the pockmark indicates that it is no longer active. This pockmark probably formed prior
to the widespread migration of gas and provided the only vent in the region to lower the
pressure of shallow gas. We interpret the present-day distribution of gas blankets at this
site to have been caused by the vertical migration of gas and the formation of in situ gas
from microbial communities within younger sediments containing organic matter.

We also observe gas curtains in Loch Linnhe (Figure 4, Line B). These curtains
(100–500 m wide) are seen at the flanks of pockmarks and can be related to deeper gas
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blankets (Figure 4, Line B). Between these gas curtains are regions where the acoustic signal
is not interrupted by gas, these regions are termed ‘acoustic windows’ and provide an
insight into the sediment facies otherwise obscured by gas blanking. From our analysis,
we infer that gas is strongly associated with LLSF4, consistent with the depth of the gas
front (Figure 7b) and the relative thicknesses of acoustic facies (Table 1). It has been shown
that gas concentrations in sediment within curtains and blankets are significantly higher
than within acoustic windows [2], explaining the acoustic turbidity or blanking effect
seen in geophysical profiles. We also infer that curtains form above the deepest parts of
basins where sediment thickness is greatest [3,4]. We propose that curtains and plumes
can form by gas migrating within the flanks of pockmarks. Here, internal weaknesses in
the sediment resulting from previous (now inactive) pockmark formation reach close to
the seabed allowing the gas to be consumed within the SMTZ. Over time, gas migration
and continued in situ gas formation, within shallow sediments containing organic carbon,
spread laterally forming a gas blanket. An alternative hypothesis for the formation of gas
curtains and plumes is that when they are halfway between the seabed and its source, the
chance of an intermittent pockmark formation is high [52]. They may also, in the absence of
structural weaknesses, be associated with further pockmark formation [52]. The migration
of gas and further gas formation by microbial activity can lead to sufficient pressures to
form a pockmark at seabed. It is possible that pockmarks located where gas is observed
within the near-surface sediment are still periodically active [18]. In these settings, gases
such as methane are released into the water column to re-join the marine carbon cycle. The
age and activity status of pockmarks in west coast Scottish waters is still unknown, but
due to the depth of many pockmarks in Loch Linnhe, it is likely that they have experienced
a long activity history [18]. Due to these uncertainties, we cannot calculate the volumes of
‘stored’ carbon released into the marine column in Scottish waters. This should be a key
question for future research.

We show that the distribution of sub-seabed gas and pockmarks in Loch Linnhe are
associated and generally co-occur within localized hot-spots or pockets. The presence
of shallow gas accumulations and pockmarks in Loch Linnhe suggest that these specific
regions represent depocentres of organic carbon since deglaciation. Within these regions,
we would expect higher contents of sedimentary carbon compared to the lower contents
reported elsewhere in the loch [28]. However, the formation of pockmarks within Loch
Linnhe may not be due to gas pressure alone. Due to the unknown quantities of buried
organic carbon and the shallow nature of the sub-seabed gas, we must consider other
trigger mechanisms for pockmark formation. Seismic activity and the reactivation of faults
might also be a trigger. Western Scotland is a region where numerous earthquakes have
been recorded since 1597 [53]. The presence of the Great Glen fault running through Loch
Linnhe makes a seismic trigger for gas release very possible in this region.

Finally, we suggest that the identification of pockmarks and shallow sub-seabed gas
within a nearshore region should not always be considered as a hazard, particularly when
gas is at shallow depth (<100 m deep). It is likely that shallow (3.7–20 msec) gas cur-
tains/blankets contain relatively small volumes of low-pressure gas that can be consumed
by microbial activity in the SMT—seen as a diffusive upper boundary in boomer profiles.
We concur that, in these situations, pockmark formation releases pressure within marine
sediments and may increase overall substrate stability [9]. Additionally, we suggest that
pockmarks in this Scottish fjord probably formed within local depocenters of sediment
containing higher proportions of organic carbon compared to surrounding regions, where
much of the sediment can be gas free. However, we suggest that gas plumes, which are
typically deeper, may pose a potential hazard if pathways of egress are available, as this
gas will have had little opportunity to reduce in pressure. Therefore, to inform industry
on potential geohazards in fjordic environments, both bathymetric and sub-bottom geo-
physical surveys are required to identify (i) fluid-release pockmark hot-spots, (ii) thick
muds potentially containing high-quantities of organic carbon and (iii) the depth of shallow



Geosciences 2021, 11, 283 14 of 16

sub-seabed gas. Assessing these factors could be used to gauge whether gas pressures and
volumes in quaternary sediments would be hazardous to seabed infrastructure.
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