Environmental Science & Technology

This document is the Accepted Manuscript version of a Published Work that appeared in final form in *Environmental Science and Technology*, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.est.1c01183

Organic matter from redoximorphic soils accelerates and sustains microbial Fe(III) reduction

Journal:	Environmental Science & Technology
Manuscript ID	es-2021-01183k.R3
Manuscript Type:	Article
Date Submitted by the Author:	30-Jun-2021
Complete List of Authors:	Fritzsche, Andreas; Friedrich Schiller University Jena, Institute of Geosciences; Intrapore GmbH Bosch, Julian; Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Gesundheit und Umwelt, Institute of Groundwater Ecology; Intrapore GmbH Sander, Michael; Eidgenossische Technische Hochschule Zurich, Environmental Sciences Schröder, Christian; University of Stirling, Biological and Environmental Sciences Byrne, James; Eberhard Karls Universitat Tubingen, Department of Geosciences; University of Bristol, School of Earth Sciences Ritschel, Thomas; Friedrich-Schiller-Universitat Jena, Institute of Geosciences Joshi, Prachi; Eberhard Karls Universitat Tubingen, Department of Geosciences Maisch, Markus; Eberhard Karls Universitat Tubingen, Department of Geosciences Maisch, Markus; Eberhard Karls Universitat Tubingen Fachbereich III Geowissenschaften, Meckenstock, Rainer; Helmholtz Center Munich German Research Center for Environmental Health, Institute of Groundwater Ecology; University of Duisburg-Essen, Biofilm Centre Kappler, Andreas; Eberhard Karls Universitat Tubingen, Center for Applied Geosciences Totsche, Kai; Friedrich-Schiller-Universitat Jena, Institute of Geosciences
	Totsche, Kai; Friedrich-Schiller-Universitat Jena, Institute of Geosciences

Organic matter from redoximorphic soils accelerates and sustains microbial Fe(III) reduction

- 3 Andreas Fritzsche^{a,1,*}, Julian Bosch^{b,1}, Michael Sander^c, Christian Schröder^d, James M. Byrne
- 4 e,2, Thomas Ritschel^a, Prachi Joshi^e, Markus Maisch^e, Rainer U. Meckenstock^{b,3}, Andreas
- 5 Kappler^e, Kai U. Totsche^a
- ⁶ ^a Institute of Geosciences, Friedrich-Schiller-University Jena, Burgweg 11, D-07749 Jena,
- 7 Germany (thomas.ritschel@uni-jena.de, kai.totsche@uni-jena.de)
- ⁸ ^b Institute of Groundwater Ecology, Helmholtz Centre Munich German Research Center for
- 9 Environmental Health, D-85764 Neuherberg, Germany
- 10 ^c Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant
- 11 Dynamics, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
- 12 (michael.sander@env.ethz.ch)

- 13 ^d Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling,
- 14 Stirling FK9 4LA, UK (christian.schroeder@stir.ac.uk)
- ^e Geomicrobiology, Center for Applied Geosciences, University of Tübingen, D-72076
- 16 Tübingen, Germany (prachi.joshi@uni-tuebingen.de; markus.maisch@uni-tuebingen.de;
- 17 andreas.kappler@uni-tuebingen.de)
- ¹ present: Intrapore GmbH, D-45327 Essen, Germany (julian.bosch@intrapore.com)
- ² present: School of Earth Sciences, Bristol BS8 1RJ, UK (james.byrne@bristol.ac.uk)
- 20 ³ present: Environmental Microbiology and Biotechnology, University of Duisburg-Essen, D-
- 21 45141 Essen, Germany (rainer.meckenstock@uni-due.de)
- 22 * Corresponding author. Tel.: +49 3641 948 715; fax: +49 3641 948 742; a.fritzsche@uni-
- 23 jena.de

24 ABSTRACT

25	Microbial reduction of Fe(III) minerals is a prominent process in redoximorphic soils and is
26	strongly affected by organic matter (OM). We herein determined the rate and extent of microbial
27	reduction of ferrihydrite (Fh) with either adsorbed or coprecipitated OM by Geobacter
28	sulfurreducens. We focused on OM-mediated effects on electron uptake and alterations in Fh
29	crystallinity. The OM was obtained from anoxic soil columns (effluent OM, efOM) and included
30	-unlike water-extractable OM- compounds released by microbial activity under anoxic
31	conditions. We found that organic molecules in efOM had generally no or only very low electron-
32	accepting capacity and were incorporated into the Fh aggregates when coprecipitated with Fh.
33	Compared to OM-free Fh, adsorption of efOM to Fh decelerated the microbial Fe(III) reduction
34	by passivating the Fh surface towards electron uptake. In contrast, coprecipitation of Fh with efOM
35	accelerated the microbial reduction, likely because efOM disrupted the Fh structure as noted by
36	Mössbauer spectroscopy. Additionally, adsorbed and co-precipitated efOM resulted in a more
37	sustained Fe(III) reduction, potentially because efOM could have effectively scavenged biogenic
38	Fe(II) and prevented the passivation of the Fh surface by adsorbed Fe(II). Fe(III)-OM

- 39 coprecipitates forming at anoxic-oxic interfaces are thus likely readily reducible by Fe(III)-
- 40 reducing bacteria in redoximorphic soils.

41 Synopsis

- 42 If associated with Fe oxides, mobile OM from anoxic topsoil sustains and frequently accelerates
- 43 the microbial Fe(III) reduction, despite its low-to-absent capacity for electron uptake.

44 Keywords

- 45 Mössbauer spectroscopy, mediated electrochemical reduction, electron-accepting capacity,
- 46 ferrihydrite, iron oxide, dissolved organic matter, DOM

47 INTRODUCTION

Microbial reduction of poorly-soluble Fe(III) to soluble Fe(II) plays an important role in the cycling of iron in circumneutral suboxic and anoxic environments.^{1, 2} Numerous studies have investigated the factors determining the rate and extent of microbial Fe(III) reduction with a prominent focus on the impact of natural organic matter (OM). Apart from serving as energy

52	source and thereby fueling the microbial metabolism, ³⁻⁵ previous studies have provided evidence
53	that dissolved natural OM directly affects microbial Fe(III) reduction by acting (i) as a ligand,
54	which increases the solubility of Fe(III), ⁶ (ii) as a ligand for Fe(II), which helps sustain Fe(III)
55	reduction through removal of adsorbed Fe(II) from mineral surfaces, ⁷ (iii) as redox-active electron-
56	shuttling compound mediating the transfer of electrons from microbial respiration to terminal
57	electron acceptors (iron (oxyhydr-)oxides, dissolved O_2 , etc.), ⁸ and (iv) as an adsorbate on Fe(III)
58	mineral surfaces, thereby blocking access for Fe(III)-reducing bacteria.9 Natural OM can also
59	indirectly affect the microbial Fe(III) reduction by (v) altering the crystallinity 10 and solubility 11
60	of iron (oxyhydr-)oxide minerals as well as (vi) their aggregate sizes, ¹² which can result in diverse
61	and partially opposing impacts depending on the Fe(III)-reducing bacteria present.9, 13-15
62	Many studies have previously confined the impact of natural OM on Fe(III) reduction in soils
63	and sediments to humic isolates from peat, soils, or surface water. Yet, it has been subsequently
64	established that humic substances do not necessarily reflect the properties of OM that is present in
65	soil pore solutions. ¹⁶ Hence, approaches that capture the actual solubilization of OM in soils are
66	gaining preference to the use of alkaline extracts, i.e. humic substances, as proxies for pedogenic
67	OM. ¹⁷ For example, water-extractable OM from organic surface layers was recently used in Fe(III)

68	reduction experiments. ^{9, 18-20} However, it remains unclear if water-extractable OM reflects the
69	composition of OM that occurs in (redoximorphic) soils. Water extractions typically employ i)
70	liquid-to-solid ratios considerably exceeding those in soils, ii) agitation, iii) extraction with
71	ultrapure water, and iv) predominantly oxic conditions. These conditions are known to
72	preferentially extract certain fractions of OM, ²¹ e.g., compounds with elevated aromaticity, ²² and
73	may also ignore OM fractions relevant for redoximorphic soils. For example, oxic conditions
74	during extraction omit the reductive dissolution of pedogenic iron (oxyhydr-)oxides and thereby
75	the release of OM from the minerals upon their reduction. ²³ It has been shown that 72-92% of OM
76	associated with pedogenic iron (oxyhydr-)oxides are not water-extractable, ²⁴ thus they would not
77	be released by conventional batch water extractions. However, this particular OM represents a
78	likely relevant fraction for microbial Fe(III) reduction in redoximorphic soils. It may migrate
79	through redoximorphic soils eventually encountering anoxic-oxic interfaces where it may i)
80	coprecipitate with or adsorb to <i>de novo</i> Fe(III) minerals, ²⁵ and/or ii) re-oxidize and serve as
81	electron shuttles that accept electrons from microbial respiration.
82	Our study explores the impact of OM, which was derived from anoxic systems, on microbial

83 Fe(III) reduction. We assessed the rate and extent of microbial reduction by Geobacter

84	sulfurreducens of organo-mineral ferrihydrite with either adsorbed or coprecipitated OM from an
85	anoxic topsoil. Unlike water-extractable OM, the OM used in our study includes compounds
86	released by microbial activity under anoxic conditions, e.g., OM from the dissolution of pedogenic
87	iron (oxyhydr-)oxides. We focused on OM-mediated effects on electron transfer and mineral
88	crystallinity rather than the potential of these C sources to serve as e ⁻ -donors for microbial Fe(III)
89	reduction. We hypothesize that mobile OM from anoxic topsoil accepts electrons and alters
90	ferrihydrite crystallinity, particularly during coprecipitation. We thus expect this anoxic OM to
91	accelerate and sustain microbial Fe(III) reduction.
92	MATERIALS AND METHODS
93	Origin of soil effluent organic matter (efOM), humic acid (HA) and synthesis of ferrihydrite
94	(Fh)
95	efOM: Organic matter, which is mobile under anoxic conditions, cannot be extracted entirely

96 from intact soils due to the presence of oxic regions, despite e.g., inundation with water.²⁶ We

- 97 therefore used a lab-based soil column setup to overcome the limitations of batch extractions with
- 98 water.²⁷ All mobile OM eluting from anoxic soil columns is herein referred to as effluent OM

99	(efOM). Air-dried and <2 mm-sieved topsoil material (665 ± 25 g; arithmetic mean \pm range of two
100	independent soil column replicates) was filled into two replicate soil columns (stainless steel;
101	length: 15.5 cm, diameter: 9.1 cm, V=1000 cm ³) operated at 295±2 K. The soil material originated
102	from a humus-rich topsoil horizon (Ah; Table S1) of a gleyic Fluvisol ²⁸ from a floodplain site
103	(Mulde river, Sachsen-Anhalt, Germany). The columns were fed via a peristaltic pump (Reglo
104	Analog, Ismatec, Switzerland) with an oxic, low ionic influent (10 ⁻³ M NaCl; Merck, Germany;
105	pH~5.6) at a nominal porewater velocity of 5.5 cm d^{-1} from bottom to top to achieve water-
106	saturated conditions. The average contact time between liquid and solid phase during percolation
107	was ~2.8 d. A detailed description of the percolation protocol is provided in the Supporting
108	Information S1. Fe(III)- and SO_4^{2-} -reducing conditions were established within the soil columns
109	due to the activity of autochthonous microbial communities and led to the reductive dissolution of
110	pedogenic iron (oxyhydr-)oxides (Figure S1). Upon discharge from the soil column, the effluent
111	solution was exposed to the ambient, oxic atmosphere. At a prevailing effluent pH of ~7.5 (Figure
112	S1), this would have resulted in the formation of Fe(III)-OM coprecipitates, which form from
113	Fe(II), which is concomitantly present in the soil solution derived from anoxic compartments. ²⁵
114	Coprecipitation of OM with <i>de novo</i> Fe(III) minerals would result in a fractionation between

115	dissolved and mineral-bound OM according to its molecular composition. ^{29, 30} This could be
116	overcome by keeping the soil solution or soil effluent permanently under anoxic conditions until
117	dialysis, i.e., the removal of effluent Fe(II) has been completed. To deliver efOM in the required
118	quantities, ~1.8 L effluent per soil column had to be dialyzed, which required a total of 43
119	exchanges with ultrapure water (each with ~ 10 L). It was therefore unlikely that anoxic conditions
120	could have been maintained during the complete process of dialysis. We therefore chose the
121	following approach to retrieve the entire efOM from anoxic soil: the effluent was acidified with
122	HCl immediately after its discharge from the soil column (final concentration: 0.25 M HCl). The
123	effluent pH remained <1 by this treatment, which effectively retarded the oxidation of the effluent
124	Fe(II). ³¹ We did not observe any precipitation of OM (e.g., such as humic acids). The acidified
125	effluent was dialyzed to remove coincident Fe(II) and other inorganic ions (100-500 Da,
126	Spectra/Por Biotech CE, Spectrum Laboratories, USA) to prevent the precipitation of iron
127	(oxyhydr-)oxides and of salts during freeze-drying (Alpha 1-4 LSC, Christ, Germany). Although
128	the electric conductivity of the effluent dropped from ~73 mS cm ⁻¹ before dialysis (excess H_3O^+
129	and Cl ⁻) to ~40 μ S cm ⁻¹ after dialysis, some Fe remained in the dialyzed effluent most likely as
130	nano-aggregated Fe-OM coprecipitates (Figure S2). With dialysis, the concentration of effluent Fe

131	decreased from 116±13 mg L ⁻¹ to 24±3 mg L ⁻¹ . Excitation-emission-matrices from the
132	corresponding effluent samples indicated that dialysis did not change the composition of efOM
133	except for a potential partial loss in polyphenolic substances (Figure S3). This may have resulted
134	in a dialysis-induced decrease in the electron-donating capacity of efOM. However, this property
135	is irrelevant for our microbial reduction experiments, in which the investigated OM specimens
136	(efOM, humic acids) did not act as electron donators but rather as potential electron acceptors in
137	microbial reduction. We assumed that the effects on efOM properties by the instant effluent
138	acidification were reversible when pH was raised to higher values. This assumption was supported
139	by the general reversibility of pH-induced changes in the emission-excitation-matrices of efOM
140	(Figure S3 and Table S2). Emission-excitation-matrices are sensitive to changes in OM
141	fluorophores and their molecular environment. ³²
142	<u><i>HA</i></u> : HA was obtained from anoxic OM-rich groundwater 33 (~97 mg dissolved OC L ⁻¹) from a
143	different site (Gorleben, Germany) by enrichment via reverse osmosis and fractionation according
144	to the XAD-8 method. ³⁴ Solid HA was re-dissolved and stirred (1 h) in ultrapure water at pH~10
145	(NaOH; Sigma-Aldrich, Germany). Subsequently, the solution pH was re-adjusted to pH=7 (HCl;

146	Merck), stirred overnight, centrifuged (30 min, 293 K, 10,000 rpm), and filtered (0.22 $\mu m,$ sterile
147	polyethersulfone, Millex-GP; Merck Millipore; Germany).
148	<u><i>Fh:</i></u> 6-line Fh was synthesized by dissolving 5 g $Fe(NO_3)_3 \times 9H_2O$ (Sigma-Aldrich) in 500 ml
149	ultrapure water, stirring at 348 K for 12 minutes, and subsequently cooling down to room
150	temperature in an ice bath (final pH=5.7). ³⁵ For coprecipitation with HA, HA-solutions with 2.0,
151	60.5 and 184 mg OC L ⁻¹ were used instead of water, which corresponds to OC/Fe ratios of 0.01,
152	0.32 and 0.96 $\text{mol}_{\text{C}}/\text{mol}_{\text{Fe}}$, respectively, in the solutions. For coprecipitation with efOM, 1 g
153	$Fe(NO_3)_3 \times 9H_2O$ was dissolved in 200 ml dialyzed, efOM-containing effluent from the duplicate
154	soil columns (OC=65±1 mg L ⁻¹), resulting in OC/Fe ratios of ~0.44 mol _C /mol _{Fe} in the solutions.
155	For adsorption, OM-free Fh was stirred for 3 d in the dark in HA-solutions and in dialyzed soil
156	effluent to obtain OC/Fe ratios of 0.01, 0.32, 0.96 (adsorbed HA) and 0.68 mol_C/mol_{Fe} (adsorbed
157	efOM) in the solutions. With respect to effluents from anoxic soil columns, ²⁵ these initial OC/Fe
158	ratios were comparably low. This was chosen to prevent the formation of organic Fe(III)
159	complexes, which is reported at higher initial OC/Fe ratios. ³⁶ Organically complexed Fe(III) is
160	distinctly more available for microbial reduction, ³⁷ and could therefore mask any effects by OM-
161	mediated alterations in Fh crystallinity and electron-shuttling. To remove residual nitrate from

162 synthesis, all Fh suspensions were dialyzed (6 kDa; ZelluTrans T2, Roth, Germany) against
163 ultrapure water.

164 Analyses

165	The electron-accepting capacity of HA and efOM, i.e., the number of electrons transferred to the
166	redox-active constituents in a given aqueous solution, was quantified by mediated electrochemical
167	reduction. ³⁸ In brief, 9 ml glassy carbon cylinders served as both the working electrode and the
168	electrochemical reaction vessel. The reduction potential (E_h) applied to the working electrode was
169	referenced against Ag/AgCl reference electrodes (Bioanalytical Systems Inc., USA), but is
170	reported vs. the standard hydrogen electrode. We used a Pt wire counter electrode in a counter
171	electrode compartment that was separated from the working electrode compartment by a porous
172	glass frit. Both the reference and the counter electrode compartment (filled with 1 mL of 0.1 M
173	KCl, 0.1 M phosphate, pH=7) were lowered into the glassy carbon cylinder (filled with 5.5 mL of
174	0.1 M KCl, 0.1 M phosphate, pH=7). The mediated electrochemical reduction was conducted at
175	E_h =-0.49 V and used diquat dibromide monohydrate (99.5%, Supelco, USA; final concentration:
176	0.231 mM) as dissolved electron transfer mediator in the cell. The values for the electron-accepting
177	capacity were determined by integration of the reductive current peaks. ³⁸ Since efOM was exposed

178	to the ambient atmosphere after its discharge from the soil column, we propose that it was re-
179	oxidized by O_2 before being assessed with electrochemical mediated reduction. ^{39, 40}
180	Powder X-ray diffractograms (XRD) of Fh specimens were obtained from freeze-dried,
181	mortared samples on Si(911) holders (Cu-Ka, 40 kV, 40 mA; D8 Advance, Bruker, Germany).
182	⁵⁷ Fe Mössbauer spectroscopy was conducted at the Center of Applied Geosciences Tübingen
183	(Eberhard-Karls-University, Germany). Spectra of the freeze-dried Fh samples were collected at
184	room temperature (295 K) and 5 K using a closed-cycle cryostat (Janis Research, USA). Selected
185	samples were measured at 70 K, which was identified in a separate test series as approximate
186	blocking temperature (T_N) of organo-mineral 6-line Fh. Mössbauer spectra were recorded in
187	transmission mode using a constant acceleration drive system (Wissel, Germany) with a source of
188	^{57}Co in a Rh matrix. The spectra were calibrated against a measurement of $\alpha\text{-Fe}(0)$ foil at room
189	temperature and were evaluated with the Recoil software package using Voigt-based fitting. ⁴¹ For
190	spectra obtained at room temperature and 5 K, we chose a single site model with two Gaussian
191	components to reflect the spectral asymmetries in the Mössbauer spectra except for three samples,
192	where a two-site model was more appropriate (see discussion). For spectra obtained at 70 K, we
193	chose a two-site model to reflect the coexistence of a magnetically polarized (sextet) and non-

194 polarized (doublet) component. Iron in efOM-containing soil effluents was analyzed with 195 inductively coupled plasma with optical emission spectrometry (725-ES, Varian). Contents of C, 196 N, S, O and H were determined with an elemental analyzer (Euro EA, EuroVector, Italy). 197 Microorganisms, media and reduction experiments 198 Geobacter sulfurreducens strain DSMZ 12127⁴² was obtained from the German Collection of 199 Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany). The strain was cultivated 200 using standard anaerobic techniques at 303 K in darkness under a N₂/CO₂ (80/20, v/v) atmosphere. 201 The media composition for cell pre-cultivation, cultivation and harvesting is specified elsewhere 202 (Table S3). For the reduction experiments, 1.4 mL of concentrated cell suspension were added to 203 10 mL low salt mineral medium with trace elements and selenium-tungsten, which contained 11% 204 of the concentration of each compound compared to the (pre-)cultivation medium (Table S3E-H), 205 11 µM cAMP and 3.85 mM Na-acetate as C- and energy source. The suspensions were buffered 206 at pH~6.8 (TRIS-HCl; Merck). Dialysis of the Fh-containing microbial medium, which was 207 conducted for separate experiments (SpectraPor Biotech CE 20 kDa), revealed that the organic 208 constituents of the microbial medium were not associated with Fh. As opposed to Fh, the organic 209 molecules were completely removed from the dialyzed suspension. Phosphate was omitted in the

210	media for reduction experiments to avoid the precipitation of vivianite. Stock suspensions with
211	OM-free and organo-mineral Fh were added to achieve 4 mM Fe in each batch. Considering the
212	microbial reduction of 8 mol Fe(III) to oxidize one mole acetate, ¹ acetate was added in excess in
213	our reduction experiments. All reduction experiments were performed in triplicates. As positive
214	control, 30 mM Fe(III)-citrate (AppliChem; Germany) was added as electron acceptor instead of
215	Fh. Negative controls were conducted in absence either of Na-acetate or of G . sulfurreducens (0.22)
216	µm-filtered cell suspension) and did not show Fe(II) formation (Figure S4). Aqueous Fe(II) was
217	measured in triplicate with the ferrozine assay (560 nm; Wallac 1420 Viktor ³ plate reader, Perkin
218	Elmer, USA). ⁴³
219	Quantification of rates and extents of microbial Fe(III) reduction
220	We applied a pseudo 1 st order rate equation (Eq.1) to describe the observed non-linear increase
221	of Fe(II) according to:
222	$\frac{\partial c(t)}{\partial t} = k \times \left(c_{MAX} - c(t) \right) $ (Eq.1)
223	where $c(t)$ is the Fe(II)-concentration (mM) at time $t(h)$, k is the rate constant (h ⁻¹), and c_{MAX} is
224	the Fe(II) concentration (mM), to which $c(t)$ converged during the reduction experiments. We

solved Eq.1 assuming $c(t_0)=c_{INIT}$, i.e. the Fe(II) concentration at the start of the experiment. c_{INIT} ,

226 c_{MAX} , and k were fitted against measured Fe(II) concentrations using the Levenberg-Marquardt 227 algorithm for local optimization.⁴⁴ We calculated the 0.95-confidence interval of each fitted 228 parameter to compute the confidence interval of the predicted Fe(II) concentrations. Assuming 229 that Fe(II) production is exclusively coupled to Fh consumption, the half-life of Fh ($T_{1/2}$; h) 230 converging to the concentration of residual (non-reducible) Fh was calculated according to Eq.2. 231 $T_{1/2} = \frac{ln^2}{k}$ (Eq.2)

232 **RESULTS AND DISCUSSION**

233 Properties of effluent organic matter from anoxic topsoil (efOM)

234	Humic acids commonly facilitate the microbial reduction of iron (oxyhydr-) oxides, but the
235	extent to which these findings apply to redoximorphic soils remains unclear. Compared to HA
236	from anoxic groundwater, efOM from our soil column experiments reproducibly exhibited a very
237	different chemical composition. The combined masses of C, N, S, O and H accounted for only
238	$79\pm3\%$ of the mass of efOM, compared to ~91% of the mass of HA (Table 1). The remaining mass
239	of efOM is attributed to the abundance of residual nano-aggregated Fe-OM coprecipitates (Figure
240	S2). These precipitates contain poorly-crystalline Fh ²⁵ and probably formed from Fe(II), which

241	resided in the effluent despite dialysis, due to the increase in effluent pH from 0.9 (acidified with
242	0.25 M HCl) to 4.8 after dialysis against ultrapure water. Assuming that Fe present in the dialyzed
243	effluent was present as Fh, ²⁵ the mass of Fh must have accounted for $21\pm2\%$ in efOM (Table 1),
244	thereby closing the gap in efOM mass balance. The C/N ratios were clearly lower in efOM than in
245	HA. Assuming that amides are the dominant chemical form of nitrogen in OM from soils and
246	sediments, ¹⁷ the relative content of peptides was likely higher in efOM than in HA, which was also
247	revealed by the corresponding ¹³ C-NMR spectra (Figure S5). Absorbance bands characteristic of
248	proteins and polysaccharides were more pronounced in the FTIR spectra of efOM and of organo-
249	mineral Fh with efOM than in the spectra of HA and HA-associated Fh (Figure S6). efOM also
250	exhibited a comparably low C/S ratio (Table 1). Considering that efOM was mobilized under
251	sulfate-reducing conditions, ²⁶ it is possible that the elevated S content of efOM resulted from
252	reactions of H_2S with organic molecules. ^{45, 46} Since HA was obtained from anoxic groundwater, ³³
253	the C/S ratio was also low in comparison to ancillary OM references, which were retrieved under
254	oxic conditions (i.e., water-extractable OM; Table S4).
255	The electron-accepting capacity (EAC) of efOM was dominated by Fe(III) (Table 1), consistent
256	with complete reduction of Fe(III) in the residual, low-crystalline Fe-OM coprecipitates ²⁵ as

257	previously demonstrated for ferrihydrite. ⁴⁷ This conclusion was based on a close-to-exact match
258	between the number of electrons accepted by the dialyzed effluents and their molar Fe
259	concentrations (Table 1). We exclude the presence of Fe(II) in the dialyzed effluent because Fe(II)
260	is expected to rapidly oxidize to Fe(III) after exposing the effluent to ambient air. ²⁵ Good
261	agreement between EAC values and molar Fe(III) contents implies that organic molecules in efOM
262	did not significantly contribute to the measured EAC values (EAC _{OM} in Table 1), likely reflecting
263	the absence (or very low concentration) of quinones and other reducible organic moieties in
264	efOM. ⁴⁸ We evaluated the possibility of effluent Fe(III) concentration having masked otherwise
265	detectable contributions of reducible moieties in the efOM to EAC: if the efOM had exhibited an
266	EAC representative of terrestrial HA (1.5 mmol e^{-} (g OM) ⁻¹) or of terrestrial fulvic acids (0.8 mmol
267	$e^{\text{-}}$ (g OM)^{-1}),^{48} these moieties would have increased the measured EAC values by $56\pm5\%$ or
268	30±3%, respectively. Such contributions by organic moieties in efOM would have been readily
269	detectable by mediated electrochemical reduction. The absence of OM-mediated EAC was
270	generally reproduced for efOM from an ancillary anoxic topsoil (efOM _{Ap} [1] in Table S4).
271	However, the organic molecules in its independent replicate (efOM _{Ap} [2]) exhibited a small EAC,
272	which was nevertheless clearly below our (Table S4) and reported EAC values ^{48, 49} for humic

273	substances and batch water extracts from organic surface layers. As opposed to efOM, EAC values
274	of HA were dominated by organic redox-active moieties (Table 1).
275	We ascertain that the EAC of humic substances (and water-extractable OM) is significantly
276	higher than the EAC of OM that is likely available at anoxic-oxic interfaces in redoximorphic
277	soils, where electron-shuttling might be a particularly important process. Based on the measured
278	EAC values, we would therefore expect increased microbial Fe(III) reduction rates with increasing
279	amounts of HA, while efOM may rather passivate the Fh aggregate surface for electron uptake and
280	thereby slow down Fe(III) reduction.
281	Effect of efOM on the mineral properties of organo-mineral Fh
281 282	Effect of efOM on the mineral properties of organo-mineral Fh Besides (not) mediating electron transfers, OM may affect the microbial Fe(III) reduction by
281282283	Effect of efOM on the mineral properties of organo-mineral Fh Besides (not) mediating electron transfers, OM may affect the microbial Fe(III) reduction by altering the crystallinity of the iron (oxyhydr-)oxides in organo-mineral associations. ^{23, 49} In our
281282283284	Effect of efOM on the mineral properties of organo-mineral Fh Besides (not) mediating electron transfers, OM may affect the microbial Fe(III) reduction by altering the crystallinity of the iron (oxyhydr-)oxides in organo-mineral associations. ^{23, 49} In our study, the XRD patterns indicated that all syntheses produced 6-line Fh, irrespectively of whether
 281 282 283 284 285 	Effect of efOM on the mineral properties of organo-mineral Fh Besides (not) mediating electron transfers, OM may affect the microbial Fe(III) reduction by altering the crystallinity of the iron (oxyhydr-)oxides in organo-mineral associations. ^{23, 49} In our study, the XRD patterns indicated that all syntheses produced 6-line Fh, irrespectively of whether they were performed in the absence or presence of HA or efOM (Figure 1). Considering the
 281 282 283 284 285 286 	Effect of efOM on the mineral properties of organo-mineral Fh Besides (not) mediating electron transfers, OM may affect the microbial Fe(III) reduction by altering the crystallinity of the iron (oxyhydr-)oxides in organo-mineral associations. ^{23, 49} In our study, the XRD patterns indicated that all syntheses produced 6-line Fh, irrespectively of whether they were performed in the absence or presence of HA or efOM (Figure 1). Considering the reflection width, we observed no consistent change in the long-range ordering of the Fh
 281 282 283 284 285 286 287 	Effect of efOM on the mineral properties of organo-mineral Fh Besides (not) mediating electron transfers, OM may affect the microbial Fe(III) reduction by altering the crystallinity of the iron (oxyhydr-)oxides in organo-mineral associations. ^{23, 49} In our study, the XRD patterns indicated that all syntheses produced 6-line Fh, irrespectively of whether they were performed in the absence or presence of HA or efOM (Figure 1). Considering the reflection width, we observed no consistent change in the long-range ordering of the Fh crystallites. FTIR spectroscopy confirmed that all syntheses produced 6-line Fh (Figure S6). HA-

increasing initial OC/Fe ratios during the Fh synthesis, consistent with increasing relative OM
contents in these specimens.
Mössbauer spectroscopy revealed (super)paramagnetic iron phases (doublets) at room
temperature and magnetically ordered iron phases at 5 K (sextets, Figure S7). The center shifts in

293 the room temperature spectra ranged between 0.33-0.36 mm s⁻¹ (Table S5), which is in agreement

with the presence of Fe(III).⁵⁰ The center shifts are within the range of reported low-crystalline

iron (oxyhydr-)oxides, which either reacted with efOM 25 or water-extractable OM 10 or were

formed by redox cycles in tropical soils.⁵¹ Moreover, center shifts did not reveal a consistent trend

for Fh associated with HA or efOM via adsorption or coprecipitation at variable OM loadings.

298 Two Gaussian components were required to account for the asymmetry in the doublets and sextets,

except for three spectra recorded at room temperature (OM-free Fh; Fh with adsorbed HA and with adsorbed efOM), where an additional component (collapsed sextet) was required to obtain physically meaningful fits (Figure S7; Table S5). This could indicate an incipient magnetic ordering already at room temperature, which may point to the presence of goethite in these synthesized materials. If so, the relative contribution of goethite would be very low considering

- 304 the absence of goethite-specific reflections and bands in the XRD patterns (Figure 1) and FTIR

305	spectra (Figure S6), respectively. The quadrupole splitting (ΔE_Q) contains the most information on
306	the intraparticle atomic order, which can be extracted from a Mössbauer spectrum ^{52, 53} and is
307	influenced by interactions of iron with other atoms in the mineral lattice. ⁵⁴ Higher values of ΔE_Q
308	correspond to a higher degree of distortion relative to a perfect polyhedral ligand electric field. ⁵⁵
309	Such distortion arises due to the presence of foreign ligands other than O and OH, e.g., OM. ¹⁰
310	Although the mean values of ΔE_Q were consistently higher for organo-mineral Fh compared to
311	OM-free Fh, these -contrary to our expectations- were not consistently shifted towards higher
312	values for Fh coprecipitated with increasing amounts of HA (Table S5). The highest mean value
313	of ΔE_Q was observed for Fh coprecipitated with efOM _B , which, however, was less pronounced in
314	its independent replicate (efOM _A _cop in Table S5). The broad distributions of ΔE_Q were positively
315	skewed with most probable ΔE_Q of ~0.6 mm s ⁻¹ and a strong tailing up to 1.5-2 mm s ⁻¹ , with no
316	obvious dependence on the type and amount of added OM and the mode of association with Fh
317	(Figure 2A-B). Shifts in ΔE_Q values towards higher values were previously reported when pure
318	iron (oxyhydr-)oxides were treated with stepwise increased concentrations of organic additives. ^{10,}
319	⁵⁶ Therefore, we infer that Mössbauer spectroscopy is generally capable of detecting such an OM-
320	induced distortion of Fh polyhedra. We therefore expect a similar degree of intraparticle order in

321	all organo-mineral Fh of this study independent of the type and amount of added OM, while the
322	Fh polyhedra in OM-free Fh exhibit a higher degree of atomic order. Mean values of magnetic
323	hyperfine fields (B_{hf}), which were derived from Mössbauer spectra recorded at 5 K, shifted
324	systematically to lower $B_{\rm hf}$ the more HA was coprecipitated with Fh. In contrast, no such decrease
325	was observed for Fh with increasing amounts of adsorbed HA (Table S5). A lower $B_{\rm hf}$ at constant
326	ΔE_Q points to a higher perturbation of crystallite interactions. 57 OM is known to decrease the
327	crystallite interactions due to magnetic dilution. ^{56, 58} Increased contents of such "foreign" species
328	in the iron precipitates will therefore shift the distributions of $B_{\rm hf}$ to lower values. In our study,
329	two components with the same ΔE_Q and $\pmb{\delta},$ but variable $B_{hf},$ were applied to fit the asymmetric
330	sextets in the 5 K spectra. The obtained B_{hf} -distributions were negatively skewed and covered a
331	wide range of 41-53 T. According to our expectations, the coprecipitation of Fh with efOM and
332	HA shifted the B_{hf} -distributions to lower values, while this effect was increasingly pronounced
333	with increasing amounts of HA (Figure 2D). In contrast, adsorption of neither efOM nor HA to Fh
334	shifted the B_{hf} -distributions considerably (Figure 2C). Consequently, we assume decreased
335	crystallite interactions in organo-mineral Fh coprecipitated with efOM and HA. This is likely due
336	to the arrangement of OM molecules between Fh crystallites throughout the entire organo-mineral

337	aggregate. Presumably, this was not the case if the OM molecules were associated with Fh
338	aggregate surfaces via post-aggregation adsorption. If single mineral phases are evaluated, the
339	blocking temperature (T_N) is inversely correlated to the content in impurities ^{10, 59, 60} and positively
340	correlated to the primary particle size of this Fe phase. 53 We found that $T_{\rm N}$ was ~70 K for the
341	organo-mineral Fh from this study (Figure S7). At this temperature, the contribution of a
342	magnetically non-polarized component (doublet) was highest for Fh coprecipitated with efOM and
343	HA, followed by Fh adsorbed with efOM and HA, while OM-free Fh was still fully magnetically
344	ordered (Figure 2E, Figure S7). According to the B_{hf} -distributions extracted from the 5 K spectra
345	(Figure 2C-D), this finding was in general agreement with the expected decrease in $T_{\rm N}$ due to
346	increasing impurities, which had lowered the crystallite interactions particularly in the Fh-efOM
347	and Fh-HA coprecipitates. However, while the B_{hf} -distribution of OM-free Fh (5 K spectra) was
348	nearly identical to those of Fh with adsorbed HA and efOM (Figure 2C), the latter specimens had
349	small, but reproducibly detectable contributions of a magnetically non-polarized component in
350	their 70 K spectra, which was completely absent in OM-free Fh (Figure S7). We cannot therefore
351	exclude that OM also altered the sizes of Fh primary particles (≠ aggregates) besides the
352	perturbation of Fh crystallite interactions. If so, primary particle sizes presumably increased in the

353	following order according to the individual contributions of the doublet component in the 70 K
354	spectra: $Fh_efOM_{cop} < Fh_HA_{cop} << Fh_HA_{ads} \sim Fh_efOM_{ads} << OM$ -free Fh.
355	Considering the inverse relation between abiotic reduction rates and Fh primary particle size, ⁶¹
356	we would expect a faster reduction of Fh that is coprecipitated with efOM and HA. Contrary, given
357	the invariable intraparticle atomic order in organo-mineral Fh, we would not expect an influence
358	by the OM type (HA vs. efOM), its relative content, and the mode of association (adsorbed vs.
359	coprecipitated), on microbial Fe(III) reduction rates driven by changes in the crystal order of Fh.
360	Microbial reduction experiments
361	The microbial reduction of OM-free Fh was relatively fast (half-life \sim 33 h), but incomplete, as
362	indicated by final Fe(II) concentrations that accounted for 50-80% of the total provided Fe(III)
363	(c_{MAX} in Figure 3E). The microbial reduction of Fh with adsorbed HA and efOM was consistently
364	slower (k in Figure 3E), which agrees with previous studies showing that OM passivated Fh
365	surfaces. ^{18, 62} With increasing amounts of adsorbed HA, the microbial reduction accelerated to
366	some extent (Figure 3E). This finding can be rationalized by the beneficial effect of electron-
367	transfer shuttling by HA ³³ above a certain threshold value. ^{9, 12} It was speculated that <i>Geobacter</i>
368	does not use external electron shuttles in natural habitats rich in OM and iron (oxyhydr-)oxides ¹⁹

369	and that external electron-shuttling exerts a minor influence on the reduction of Fe-OM
370	associations. ⁹ Nevertheless, electron-shuttling improved the reduction of ferric minerals. ^{33, 63} As
371	revealed by the lack of a substantial electron-accepting capacity, the organic molecules in efOM –
372	as opposed to HA– could not efficiently accept electrons. This finding supports the idea that efOM
373	passivated the Fh surface for electron uptake. As a consequence, the half-lives of Fh with adsorbed
374	efOM were increased by a factor of 4.8±1.2 compared to OM-free Fh, which was clearly higher
375	than the increase observed in treatments with similar amounts of added HA for adsorption to Fh
376	(Figure 3E).
377	The extent of Fh reduction increased to $\sim 87\%$ of the expected maximum Fe(II) concentration in
378	treatments with the highest addition of HA for adsorption to Fh, which was approximately twice
379	the extent observed for treatments with the lowest addition of HA for adsorption to Fh. If efOM
380	was adsorbed to Fh, complete Fh reduction occurred (Figure 3E). This particular finding
381	contradicts previous studies that reported lower extents of microbial Fe(III) reduction if water-
382	extractable OM and microbial exudates were added to iron (oxyhydr-)oxides.9 Following the
383	Lewis-Hard-Soft-Acid-Base concept, which can be used to explain the affinity of metal ions to
384	bind to topsoil OM, ⁶⁴ we resolve and explain the observed sustained microbial Fe(III) reduction

385	with the specific capability of efOM to form complexes with biogenic Fe(II). The scavenging of
386	(biogenic) Fe(II) is known to extend the Fe(III) mineral reduction by attenuating the Fe(II)-induced
387	passivation of mineral surfaces and microbial cells ^{7,65} and the Fe(II)-mediated recrystallization of
388	Fh to more stable Fe(III) minerals. ⁶⁶ Generally, Fe(II) is considered a comparably soft Lewis acid
389	with a low hardness parameter $\eta_{\rm A}{}^{67}$ that is effectively complexed by soft Lewis bases. Such soft
390	Lewis bases are organic ligands with N- and S-containing moieties, ^{68, 69} which are particularly
391	prevalent in anoxic peats ⁷⁰ and had a higher affinity to Fe(II) than O-containing moieties. ^{69, 71}
392	Sulfate-reducing conditions very likely increased the abundance of S-containing moieties in efOM
393	and HA from anoxic groundwater (C/S in Table 1) presumably due to the reaction with $H_2S.^{45, 46}$
394	Interestingly, S-containing moieties were less abundant in ancillary OM specimens derived from
395	batch extractions with water (Table S4). Presumably, this water-extractable OM had not
396	encountered distinct anoxic conditions before and during extraction. The complexation of biogenic
397	Fe(II) by HA during microbial Fe(III) reduction is in line with the increasing extents of Fh
398	reduction with increasing amounts of added HA independent on the mode of its association with
399	Fh (Figure 3E).

400	The fastest microbial reduction was reproducibly observed for Fh that was coprecipitated with
401	efOM, exceeding the rate constant of OM-free Fh by a factor of 1.48±0.04. Compared to HA at
402	similar initial OC/Fe ratios, the reduction was faster by a factor of ~3. The reduction of Fh
403	coprecipitated with efOM was nearly complete (93±3% of the expected maximum Fe(II)
404	concentration), yet less exhaustive than in the treatments with adsorbed efOM, in which Fe(III)
405	was entirely reduced to Fe(II) (Figure 3E). We attribute the more sustained Fe(III) reduction in the
406	latter treatments to the higher relative concentration of efOM, which likely resulted in a higher
407	total capacity to form complexes with biogenic Fe(II) and thus to sustain the microbial Fe(III)
408	reduction.
409	Besides OM-mediated electron transfer, changes in iron (oxyhydr-)oxide crystallinity, and
410	scavenging of biogenic Fe(II), OM may also affect the aggregation properties of iron (oxyhydr-
411)oxides. ^{72, 73} This effect is relevant considering the inverse correlation of Fe(III) reduction by
412	Geobacter metallireducens vs. aggregate size. ⁹ Based on the following observations, we could not
413	find such a relation in our study: i) Initially, OM-free Fh was dispersed and composed of
414	aggregates with sizes mainly <10 nm (Figure S8). However, when exposed to the microbial

416	experiments (Figure 3E). ii) The HA-Fh coprecipitates were composed of settling aggregates at all
417	initial OC/Fe ratios but exhibited decreasing half-lives with increasing relative abundance of HA.
418	iii) Fh with adsorbed HA (initial OC/Fe=0.96 mol_C/mol_{Fe}) was partly dispersed (Fe _{<0.45}
419	μ m/Fe _{TOTAL} =0.18; data from dynamic light scattering: d _{H1} =56±8 nm and d _{H2} =684±192 nm), but
420	was nevertheless more slowly reduced than the settling aggregates of HA-Fh coprecipitates.
421	Consequently, we could not define a consistent relationship between microbial Fe(III) reduction
422	rates and the actual aggregate sizes of (organo-mineral) Fh.
423	In summary, mobile OM from anoxic topsoil (efOM) i) accepts electrons to a much lesser extent
424	than HA from anoxic groundwater and water-extractable OM from batch extractions, ii) likely
425	strongly binds Fe(II) involving N and S-containing moieties (like HA from anoxic groundwater),
426	and iii) is incorporated in Fh aggregates, which possibly decreases the Fh primary particle size if
427	coprecipitated with Fh (like HA). This resulted -among all tested Fh specimens- in the
428	reproducibly fastest, and nearly complete, microbial reduction of Fh coprecipitated with efOM.

429 ENVIRONMENTAL IMPLICATIONS

430	As indicated by our study, Fe(III)-OM coprecipitates that form at anoxic-oxic interfaces in soils
431	are likely readily and completely reducible by Fe(III)-reducing bacteria. This results from OM
432	inferring with the Fe mineral crystallinity and likely scavenging the potential surface passivator
433	Fe(II), but not from electron-shuttling to mineral Fe(III). This is attributed to the properties of the
434	likely available OM in these environments, which is comparably rich in N- and S-containing
435	moieties, but only has a negligible capacity to accept electrons. An OM-mediated deceleration of
436	the microbial Fe(III) reduction is likely to be expected only in cases when this OM accumulates
437	on the surface of iron (oxyhydr-)oxides; a process that passivates the surface for further electron
438	uptake due to an electron non-conducting layer. Generally, pedogenic Fe(III)-OM coprecipitates
439	were found to become quickly and completely reduced, ⁷⁶ and other work suggests reducibility is
440	maintained or increased through reduction and oxidation events. ⁵¹
441	Our work suggests that OM, which is mobile in anoxic soil regions, may contain much fewer
442	electron-accepting moieties than previously studied OM specimens. This finding is restricted to
443	mobile OM and excludes solid-phase OM, which has a composition different from efOM ¹⁶ and
444	was previously shown to contain redox-active moieties both in wetlands 77 and freshwater
445	sediments. ⁷⁸ However, electron-shuttling by OM and thus OM-enhanced microbial reduction of

446	mineral Fe(III), ⁸ relies on mobile electron acceptors in the OM sensu stricto. Colloidal iron
447	(oxyhydr-)oxides could principally act as alternative electron shuttles at anoxic-oxic interfaces in
448	redoximorphic soils. However, it was shown that these Fe(III)-rich aggregates can remain
449	colloidally stable if formed in soil effluents outside of soils, ²⁵ but are likely to be completely
450	immobilized if precipitated at anoxic-oxic interfaces within soils. ²⁶ Consequently, we propose that
451	neither Fe(III)-OM coprecipitates nor dissolved OM are likely effective electron shuttles in
452	redoximorphic soils due to their immobility or negligible electron-accepting capacities,
453	respectively.
454	Microbial processing of efOM (i.e., its oxidation) will likely affect its functionality, which was
455	not considered in the experimental design of this study. In our study, acetate was added in excess
456	and was likely preferred over efOM or HA as carbon and energy source by G. sulfurreducens
457	during the incubations. ⁷⁹ Furthermore, autochthonous microbial communities –unlike <i>Geobacter</i> – ⁶
458	might produce endogenous electron-shuttling compounds, which could compensate for the lack
459	(or low abundance) of electron-accepting moieties in efOM. Finally, flow and transport processes
460	along variable gradients are prominent in soils and aquifers and tremendously affect the removal
461	of biogenic Fe(II) and therefore increase the extent of microbial iron (oxyhydr-)oxide reduction

462	and associated bacterial growth. ⁸⁰ The sustaining of the microbial Fe(III) reduction by efOM-
463	mediated Fe(II)-complexation might therefore be superimposed by advective flow in natural
464	porous media.

465 ASSOCIATED CONTENT

- 466 Supporting Information.
- 467 Contains details on i) the used topsoil material, ii) the design of the soil column experiment and
- 468 the microbial reduction experiments, iii) the efOM (¹³C-NMR spectra, FTIR spectra, XRD
- 469 patterns), iv) the properties of ancillary OM specimens for comparison purposes, v) the measured
- 470 Mössbauer spectra and corresponding fits, and vi) the aggregate properties of OM-free Fh.

471 ACKNOWLEDGEMENTS

- 472 We thank K. Eusterhues for providing water-extractable OM and M. Steffens for ¹³C-NMR
- 473 spectroscopy. We also thank the reviewers for their valuable comments and suggestions.

474 **REFERENCES**

- Lovley, D. R.; Phillips, E. J. P. Novel mode of microbial energy-metabolism Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. *Appl. Environ. Microbiol.* **1988**, *54*, 1472-1480; DOI 10.1128/AEM.54.6.1472-1480.1988.
- Weber, K. A.; Achenbach, L. A.; Coates, J. D. Microorganisms pumping iron: anaerobic
 microbial iron oxidation and reduction. *Nat. Rev. Microbiol.* 2006, *4*, 752-764; DOI
 10.1038/nrmicro1490.
- 481 3. LaRowe, D. E.; Van Cappellen, P. Degradation of natural organic matter: A thermodynamic
 482 analysis. *Geochim. Cosmochim. Acta* 2011, *75*, 2030-2042; DOI 10.1016/j.gca.2011.01.020.
- 483 4. Chen, C. M.; Hall, S. J.; Coward, E.; Thompson, A. Iron-mediated organic matter
 484 decomposition in humid soils can counteract protection. *Nat. Comm.* 2020, *11*, 2255; DOI
 485 10.1038/s41467-020-16071-5.
- 486 5. Boye, K.; Noel, V.; Tfaily, M. M.; Bone, S. E.; Williams, K. H.; Bargar, J. R.; Fendorf, S.
 487 Thermodynamically controlled preservation of organic carbon in floodplains. *Nat. Geosci.*488 2017, *10*, 415-419; DOI 10.1038/ngeo2940.
- 489 6. Nevin, K. P.; Lovley, D. R. Mechanisms for accessing insoluble Fe(III) oxide during
 490 dissimilatory Fe(III) reduction by *Geothrix fermentans. Appl. Environ. Microbiol.* 2002, *68*,
 491 2294-2299; DOI 10.1128/aem.68.5.2294-2299.2002.
- 492 7. Roden, E. E.; Urrutia, M. M. Ferrous iron removal promotes microbial reduction of crystalline
 493 iron(III) oxides. *Environ. Sci. Technol.* 1999, *33*, 1847-1853; DOI 10.1021/es9809859.
- 494 8. Lovley, D. R.; Coates, J. D.; Blunt-Harris, E. L.; Phillips, E. J. P.; Woodward, J. C. Humic
 495 substances as electron acceptors for microbial respiration. *Nature* 1996, *382*, 445; DOI
 496 10.1038/382445a0.
- 497 9. Poggenburg, C.; Mikutta, R.; Schippers, A.; Dohrmann, R.; Guggenberger, G. Impact of
 498 natural organic matter coatings on the microbial reduction of iron oxides. *Geochim.*499 *Cosmochim. Acta* 2018, 224, 223-248; DOI 10.1016/j.gca.2018.01.004.
- Eusterhues, K.; Wagner, F. E.; Hausler, W.; Hanzlik, M.; Knicker, H.; Totsche, K. U.; KögelKnabner, I.; Schwertmann, U. Characterization of ferrihydrite-soil organic matter
 coprecipitates by X-ray diffraction and Mössbauer spectroscopy. *Environ. Sci. Technol.* 2008,
 42, 7891-7897; DOI 10.1021/es800881w.

504 11. Mikutta, C.; Kretzschmar, R. Synthetic coprecipitates of exopolysaccharides and ferrihydrite.
505 Part II: Siderophore-promoted dissolution. *Geochim. Cosmochim. Acta* 2008, *72*, 1128-1142;
506 DOI 10.1016/j.gca.2007.11.034.

- 507 12. Amstaetter, K.; Borch, T.; Kappler, A. Influence of humic acid imposed changes of
 508 ferrihydrite aggregation on microbial Fe(III) reduction. *Geochim. Cosmochim. Acta* 2012, *85*,
 509 326-341; DOI 10.1016/j.gca.2012.02.003.
- Sutting, R. S.; Coker, V. S.; Fellowes, J. W.; Lloyd, J. R.; Vaughan, D. J. Mineralogical and
 morphological constraints on the reduction of Fe(III) minerals by *Geobacter sulfurreducens*. *Geochim. Cosmochim. Acta* 2009, *73*, 4004-4022; DOI 10.1016/j.gca.2009.04.009.
- 513 14. Bonneville, S.; Van Cappellen, P.; Behrends, T. Microbial reduction of iron(III)
 514 oxyhydroxides: effects of mineral solubility and availability. *Chem. Geol.* 2004, *212*, 255515 268; DOI
- 516 15. Bosch, J.; Heister, K.; Hofmann, T.; Meckenstock, R. U. Nanosized iron oxide colloids
 517 strongly enhance microbial iron reduction. *Appl. Environ. Microbiol.* 2010, *76*, 184-189; DOI
 518 10.1128/aem.00417-09.
- 519 16. Kleber, M.; Johnson, M. G. Advances in understanding the molecular structure of soil organic
 520 matter: Implications for interactions in the environment. In *Advances in Agronomy 106*;
 521 Sparks, D. L., Ed.; Academic Press: San Diego, 2010; Vol. 106, pp 77-142.
- 522 17. Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. *Nature* 2015, *528*, 60523 68; DOI 10.1038/nature16069.
- 18. Eusterhues, K.; Hädrich, A.; Neidhardt, J.; Küsel, K.; Keller, T. F.; Jandt, K. D.; Totsche, K.
 U. Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial
 reduction by *Geobacter bremensis* vs. abiotic reduction by Na-dithionite. *Biogeosciences*2014, *11*, 4953-4966; DOI 10.5194/bg-11-4953-2014.
- S28 19. Cooper, R. E.; Eusterhues, K.; Wegner, C. E.; Totsche, K. U.; Küsel, K. Ferrihydriteassociated organic matter (OM) stimulates reduction by *Shewanella oneidensis* MR-1 and a
 complex microbial consortia. *Biogeosciences* 2017, *14*, 5171-5188; DOI 10.5194/bg-145171-2017.
- 20. Poggenburg, C.; Mikutta, R.; Sander, M.; Schippers, A.; Marchanka, A.; Dohrmann, R.;
 Guggenberger, G. Microbial reduction of ferrihydrite-organic matter coprecipitates by *Shewanella putrefaciens* and *Geobacter metallireducens* in comparison to mediated

- 535 electrochemical reduction. *Chemical Geology* 2016, 447, 133-147; DOI
 536 10.1016/j.chemgeo.2016.09.031.
- 537 21. Zsolnay, A. Dissolved organic matter: artefacts, definitions, and functions. *Geoderma* 2003,
 538 *113*, 187-209; DOI 10.1016/50016-7061(02)00361-0.
- 22. Rennert, T.; Gockel, K. F.; Mansfeldt, T. Extraction of water-soluble organic matter from
 mineral horizons of forest soils. *J. Plant Nutr. Soil Sci.* 2007, *170*, 514-521; DOI
 10.1002/jpln.200625099.
- 542 23. Chen, C. M.; Meile, C.; Wilmoth, J.; Barcellos, D.; Thompson, A. Influence of pO(2) on iron
 543 redox cycling and anaerobic organic carbon mineralization in a humid tropical forest soil.
 544 *Environ. Sci. Technol.* 2018, *52*, 7709-7719; DOI 10.1021/acs.est.8b01368.
- 545 24. Gu, B. H.; Schmitt, J.; Chen, Z. H.; Liang, L. Y.; McCarthy, J. F. Adsorption and desorption
 546 of natural organic matter on iron oxide Mechanisms and models. *Environ. Sci. Technol.*547 1994, *28*, 38-46; DOI 10.1021/es00050a007.
- 548 25. Fritzsche, A.; Schröder, C.; Wieczorek, A. K.; Handel, M.; Ritschel, T.; Totsche, K. U.
 549 Structure and composition of Fe-OM co-precipitates that form in soil-derived solutions.
 550 *Geochim. Cosmochim. Acta* 2015, *169*, 167-183; DOI 10.1016/j.gca.2015.07.041.
- 551 26. Fritzsche, A.; Pagels, B.; Totsche, K. U. The composition of mobile matter in a floodplain
 552 topsoil: A comparative study with soil columns and field lysimeters. *J. Plant Nutr. Soil Sci.*553 2016, *179*, 18-28; DOI 10.1002/jpln.201500169.
- Wehrer, M.; Totsche, K. U. Detection of non-equilibrium contaminant release in soil columns:
 Delineation of experimental conditions by numerical simulations. *J. Plant Nutr. Soil Sci.* 2003, *166*, 475-483; DOI 10.1002/jpln.200321095.
- IUSS Working Group WRB. World reference base for soil resources 2014, update 2015, *International soil classification system for naming soils and creating legends for soil maps.*FAO: Rome, Italy, 2015.
- 560 29. Eusterhues, K.; Rennert, T.; Knicker, H.; Kögel-Knabner, I.; Totsche, K. U.; Schwertmann,
- 561 U. Fractionation of organic matter due to reaction with ferrihydrite: Coprecipitation versus
 562 adsorption. *Environ. Sci. Technol.* 2011, *45*, 527-533; DOI 10.1021/es1023898.
- 30. Kalbitz, K.; Solinger, S.; Park, J. H.; Michalzik, B.; Matzner, E. Controls on the dynamics of
 dissolved organic matter in soils: A review. *Soil Sci.* 2000, *165*, 277-304; DOI
 10.1097/00010694-200004000-00001.

- 566 31. Singer, P. C.; Stumm, W. Acidic mine drainage. Rate-determining step. *Science* 1970, *167*,
 567 1121-1123; DOI 10.1126/science.167.3921.1121.
- 32. Borisover, M.; Lordian, A.; Levy, G. J. Water-extractable soil organic matter characterization
 by chromophoric indicators: Effects of soil type and irrigation water quality. *Geoderma* 2012, *179*, 28-37; DOI 10.1016/j.geoderma.2012.02.019.
- 33. Wolf, M.; Kappler, A.; Jiang, J.; Meckenstock, R. U. Effects of humic substances and
 quinones at low concentrations on ferrihydrite reduction by *Geobacter metallireducens*. *Environ. Sci. Technol.* 2009, *43*, 5679-5685; DOI 10.1021/es803647r.
- 34. Aiken, G. R.; Thurman, E. M.; Malcolm, R. L.; Walton, H. F. Comparison of XAD
 macroporous resins for the concentration of fulvic acid from aqueous solution. *Anal. Chem.*1979, *51*, 1799-1803; DOI 10.1021/ac50047a044.
- 577 35. Schwertmann, U.; Cornell, R. M. *Iron Oxides in the Laboratory*. 2nd ed.; WILEY-VCH
 578 Verlag GmbH: Weinheim, Germany, 2000.
- S79 36. Chen, C. M.; Dynes, J. J.; Wang, J.; Sparks, D. L. Properties of Fe-organic matter associations
 via coprecipitation versus adsorption. *Environ. Sci. Technol.* 2014, *48*, 13751-13759; DOI
 10.1021/es503669u.
- 37. Braunschweig, J.; Klier, C.; Schröder, C.; Handel, M.; Bosch, J.; Totsche, K. U.;
 Meckenstock, R. U. Citrate influences microbial Fe hydroxide reduction via a dissolution
 disaggregation mechanism. *Geochim. Cosmochim. Acta* 2014, *139*, 434-446; DOI
 10.1016/j.gca.2014.05.006.
- 586 38. Klüpfel, L.; Keiluweit, M.; Kleber, M.; Sander, M. Redox properties of plant biomass-derived
 587 black carbon (biochar). *Environ. Sci. Technol.* 2014, *48*, 5601-5611; DOI 10.1021/es500906d.
- 39. Bauer, I.; Kappler, A. Rates and extent of reduction of Fe(III) compounds and O₂ by humic
 substances. *Environ. Sci. Technol.* 2009, *43*, 4902-4908; DOI 10.1021/es900179s.
- 590 40. Klüpfel, L.; Piepenbrock, A.; Kappler, A.; Sander, M. Humic substances as fully regenerable
 591 electron acceptors in recurrently anoxic environments. *Nat. Geosci.* 2014, *7*, 195-200; DOI
 592 10.1038/ngeo2084.
- 41. Rancourt, D. G.; Ping, J. Y. Voigt-based methods for arbitrary-shape static hyperfine
 parameter distributions in Mössbauer spectroscopy. *Nucl. Instrum. Meth. B* 1991, *58*, 85-97;
 DOI 10.1016/0168-583x(91)95681-3.
- 42. Caccavo, F.; Lonergan, D. J.; Lovley, D. R.; Davis, M.; Stolz, J. F.; McInerney, M. J.
 Geobacter sulfurreducens sp. nov., a hydrogen- and acetate oxidizing dissimilatory metal-

- reducing microorganism. *Appl. Environ. Microbiol.* 1994, *60*, 3752-3759; DOI
 10.1128/AEM.60.10.3752-3759.1994.
- 43. Stookey, L. L. Ferrozine A new spectrophotometric reagent for iron. *Anal. Chem.* 1970, *42*,
 779-781; DOI 10.1021/ac60289a016.
- 44. Marquardt, D. W. An algorithm for least-squares estimation of nonlinear parameters. *SIAM J. Appl. Math.* 1963, *11*, 431-441; DOI 10.1137/0111030.
- 45. Casagrande, D. J.; Idowu, G.; Friedman, A.; Rickert, P.; Siefert, K.; Schlenz, D. H₂S
 incorporation in coal precursors Origins of organic sulfur in coal. *Nature* 1979, *282*, 599606 600; DOI 10.1038/282599a0.
- 46. Urban, N. R.; Bayley, S. E.; Eisenreich, S. J. Export of dissolved organic carbon and acidity
 from peatlands. *Water Resour. Res.* 1989, *25*, 1619-1628; DOI 10.1029/WR025i007p01619.
- 47. Aeppli, M.; Voegelin, A.; Gorski, C. A.; Hofstetter, T. B.; Sander, M. Mediated
 electrochemical reduction of iron (oxyhydr-)oxides under defined thermodynamic boundary
 conditions. *Environ. Sci. Technol.* 2018, *52*, 560-570; DOI 10.1021/acs.est.7b04411.
- 48. Aeschbacher, M.; Graf, C.; Schwarzenbach, R. P.; Sander, M. Antioxidant properties of humic
 substances. *Environ. Sci. Technol.* 2012, *46*, 4916-4925; DOI 10.1021/es300039h.
- 49. Piepenbrock, A.; Schröder, C.; Kappler, A. Electron transfer from humic substances to
 biogenic and abiogenic Fe(III) oxyhydroxide minerals. *Environ. Sci. Technol.* 2014, *48*, 16561664; DOI 10.1021/es404497h.
- 617 50. Gütlich, G.; Schröder, C. Mössbauer Spectroscopy. In *Methods in Physical Chemistry*,
 618 Schäfer, R.; Schmidt, P. C., Eds.; Wiley-VCH: Weinheim, 2012; pp 351-389.
- 619 51. Ginn, B.; Meile, C.; Wilmoth, J.; Tang, Y.; Thompson, A. Rapid iron reduction rates are
 620 stimulated by high-amplitude redox fluctuations in a tropical forest soil. *Environ. Sci.*621 *Technol.* 2017, *51*, 3250-3259; DOI 10.1021/acs.est.6b05709.
- 622 52. Rancourt, D. G.; Fortin, D.; Pichler, T.; Thibault, P. J.; Lamarche, G.; Morris, R. V.; Mercier,
- P. H. J. Mineralogy of a natural As-rich hydrous ferric oxide coprecipitate formed by mixing
 of hydrothermal fluid and seawater: Implications regarding surface complexation and color
- banding in ferrihydrite deposits. Am. Miner. 2001, 86, 834-851; DOI
- 53. Rancourt, D. G.; Thibault, P. J.; Mavrocordatos, D.; Lamarche, G. Hydrous ferric oxide
 precipitation in the presence of nonmetabolizing bacteria: Constraints on the mechanism of a
 biotic effect. *Geochim. Cosmochim. Acta* 2005, *69*, 553-577; DOI 10.1016/j.gca.2004.07.018.

629	54. Rancourt, D. G. Mössbauer spectroscopy in clay science. <i>Hyperfine Interact.</i> 1998, 117, 3-38;
630	DOI 10.1023/a:1012651628508.
631	55. Rea, B. A.; Davis, J. A.; Waychunas, G. A. Studies of the reactivity of the ferrihydrite surface

- by iron isotopic exchange and Mössbauer spectroscopy. *Clay Clay Miner.* 1994, *42*, 23-34;
 DOI 10.1346/ccmn.1994.0420104.
- 56. Mikutta, C.; Mikutta, R.; Bonneville, S.; Wagner, F.; Voegelin, A.; Christl, I.; Kretzschmar,
 R. Synthetic coprecipitates of exopolysaccharides and ferrihydrite. Part I: Characterization. *Geochim. Cosmochim. Acta* 2008, *72*, 1111-1127; DOI 10.1016/j.gca.2007.11.035.
- 57. Morup, S.; Ostenfeld, C. W. On the use of Mössbauer spectroscopy for characterisation of
 iron oxides and oxyhydroxides in soils. *Hyperfine Interact.* 2001, *136*, 125-131; DOI
 10.1023/A:1015516828586.
- 58. Cornell, R. M.; Schwertmann, U. *The Iron Oxides.* 2nd ed.; Wiley-VCH: Weinheim,
 Germany, 2003.
- Murad, E. Properties and behavior of iron oxides as determined by Mössbauer spectroscopy.
 In *Iron in Soils and Clay Minerals*; Stucki, J. W.; Goodman, B. A.; Schwertmann, U., Eds.;
 Springer Netherlands: Dordrecht, 1988; pp 309-350.
- 645 60. Murad, E.; Schwertmann, U. The influence of aluminum substitution and crystallinity on the
 646 Mössbauer-spectra of goethite. *Clay Minerals* 1983, *18*, 301-312; DOI
 647 10.1180/claymin.1983.018.3.07.
- 648 61. Anschutz, A. J.; Penn, R. L. Reduction of crystalline iron(III) oxyhydroxides using
 649 hydroquinone: Influence of phase and particle size. *Geochem. Trans.* 2005, *6*, 60-66; DOI
 650 10.1063/1.2037887.
- 651 62. Swindle, A. L.; Madden, A. S. E.; Cozzarelli, I. M.; Benamara, M. Size-dependent reactivity
 652 of magnetite nanoparticles: A field-laboratory comparison. *Environ. Sci. Technol.* 2014, *48*,
 653 11413-11420; DOI 10.1021/es500172p.
- 63. MacDonald, L. H.; Moon, H. S.; Jaffé, P. R. The role of biomass, electron shuttles, and ferrous
 iron in the kinetics of *Geobacter sulfurreducens*-mediated ferrihydrite reduction. *Water Res.*2011, 45, 1049-1062; DOI 10.1016/j.watres.2010.10.017.
- 657 64. Stark, P. C.; Rayson, G. D. Comparisons of metal-ion binding to immobilized biogenic
 658 materials in a flowing system. *Adv. Environ. Res.* 2000, *4*, 113-122; DOI 10.1016/S1093659 0191(00)00012-5.

- 660 65. Royer, R. A.; Burgos, W. D.; Fisher, A. S.; Unz, R. F.; Dempsey, B. A. Enhancement of
 biological reduction of hematite by electron shuttling and Fe(II) complexation. *Environ. Sci.*662 *Technol.* 2002, *36*, 1939-1946; DOI 10.1021/es011139s.
- 663 66. Aeppli, M.; Kaegi, R.; Kretzschmar, R.; Voegelin, A.; Hofstetter, T. B.; Sander, M.
 664 Electrochemical analysis of changes in iron oxide reducibility during abiotic ferrihydrite
 665 transformation into goethite and magnetite. *Environ. Sci. Technol.* 2019, *53*, 3568-3578; DOI
 666 10.1021/acs.est.8b07190.
- 667 67. Parr, R. G.; Pearson, R. G. Absolute hardness Companion parameter to absolute 668 electronegativity. *J. Am. Chem. Soc.* **1983**, *105*, 7512-7516; DOI 10.1021/ja00364a005.
- 669 68. Pullin, M. J.; Anthony, C.; Maurice, P. A. Effects of iron on the molecular weight distribution,
 670 light absorption, and fluorescence properties of natural organic matter. *Environ. Eng. Sci.*671 2007, *24*, 987-997; DOI 10.1089/ees.2006.0040.
- 672 69. Harris, W. R. Iron Chemistry. In *Molecular and Cellular Iron Transport*, Templeton, D. M.,
 673 Ed.; Marcel Dekker, Inc.: New York, 2005; pp 1-40.
- 674 70. Bhattacharyya, A.; Schmidt, M. P.; Stavitski, E.; Martinez, C. E. Iron speciation in peats:
 675 Chemical and spectroscopic evidence for the co-occurrence of ferric and ferrous iron in
 676 organic complexes and mineral precipitates. *Org. Geochem.* 2018, *115*, 124-137; DOI
 677 10.1016/j.orggeochem.2017.10.012.
- 578 71. Jones, A. M.; Collins, R. N.; Rose, J.; Waite, T. D. The effect of silica and natural organic
 579 matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals. *Geochim.*580 *Cosmochim. Acta* 2009, *73*, 4409-4422; DOI 10.1016/j.gca.2009.04.025.
- 72. Narvekar, S. P.; Ritschel, T.; Totsche, K. U. Colloidal stability and mobility of extracellular
 polymeric substance amended hematite nanoparticles. *Vadose Zone J.* 2017, *16*, DOI
 10.2136/vzj2017.03.0063.
- Guhra, T.; Ritschel, T.; Totsche, K. U. Formation of mineral-mineral and organo-mineral
 composite building units from microaggregate-forming materials including microbially
 produced extracellular polymeric substances. *Europ. J. Soil Sci.* 2019, *70*, 604-615; DOI
 10.1111/ejss.12774.
- Voegelin, A.; Kaegi, R.; Frommer, J.; Vantelon, D.; Hug, S. J. Effect of phosphate, silicate,
 and Ca on Fe(III)-precipitates formed in aerated Fe(II)- and As(III)-containing water studied
 by X-ray absorption spectroscopy. *Geochim. Cosmochim. Acta* 2010, *74*, 164-186; DOI
- 691 10.1016/j.gca.2009.09.020.

- 692 75. Hyacinthe, C.; Bonneville, S.; Van Cappellen, P. Effect of sorbed Fe(II) on the initial
 693 reduction kinetics of 6-line ferrihydrite and amorphous ferric phosphate by *Shewanella*694 *putrefaciens. Geomicrobiology J.* 2008, *25*, 181-192; DOI 10.1080/01490450802081911.
- 695 76. Fritzsche, A.; Bosch, J.; Rennert, T.; Heister, K.; Braunschweig, J.; Meckenstock, R. U.;
 696 Totsche, K. U. Fast microbial reduction of ferrihydrite colloids from a soil effluent. *Geochim.*697 *Cosmochim. Acta* 2012, *77*, 444-456; DOI 10.1016/j.gca.2011.10.037.
- Roden, E. E.; Kappler, A.; Bauer, I.; Jiang, J.; Paul, A.; Stoesser, R.; Konishi, H.; Xu, H. F.
 Extracellular electron transfer through microbial reduction of solid-phase humic substances. *Nat. Geosci.* 2010, *3*, 417-421; DOI 10.1038/NGEO870.
- 701 78. Lau, M. P.; Sander, M.; Gelbrecht, J.; Hupfer, M. Solid phases as important electron acceptors
 702 in freshwater organic sediments. *Biogeochemistry* 2015, *123*, 49-61; DOI 10.1007/s10533703 014-0052-5.
- 704 79. Glodowska, M.; Stopelli, E.; Schneider, M.; Lightfoot, A.; Rathi, B.; Straub, D.; Patzner, M.;
 705 Duyen, V. T.; Berg, M.; Kleindienst, S.; Kappler, A. Role of in situ natural organic matter in
 706 mobilizing As during microbial reduction of Fe-III-mineral-bearing aquifer sediments from
 707 Hanoi (Vietnam). *Environ. Sci. Technol.* 2020, *54*, 4149-4159; DOI 10.1021/acs.est.9b07183.
- 80. Roden, E. E.; Urrutia, M. M.; Mann, C. J. Bacterial reductive dissolution of crystalline Fe(III)
 oxide in continuous-flow column reactors. *Appl. Environ. Microbiol.* 2000, *66*, 1062-1065;
 DOI 10.1128/AEM.66.3.1062-1065.2000.
- 81. Michel, F. M.; Ehm, L.; Liu, G.; Han, W. Q.; Antao, S. M.; Chupas, P. J.; Lee, P. L.; Knorr,
 K.; Eulert, H.; Kim, J.; Grey, C. P.; Celestian, A. J.; Gillow, J.; Schoonen, M. A. A.; Strongin,
 D. R.; Parise, J. B. Similarities in 2-and 6-line ferrihydrite based on pair distribution function
 analysis of X-ray total scattering. *Chem. Mat.* 2007, *19*, 1489-1496; DOI
 10.1021/cm062585n.
 82. Downs, R. T.; Hall-Wallace, M. The American Mineralogist crystal structure database. *Am.*
- 717 *Miner.* **2003**, *88*, 247-250
- 718

719 **Table 1.** Contents of C, N, S, O, H and ferrihydrite (Fh), and electron-accepting capacities (EAC)

of humic acids (HA) from anoxic groundwater and soil effluent organic matter (efOM) from an

721 anoxic topsoil of a floodplain site (Table S1). A/B: independent replicates. Grey values:

722 Normalization to OC concentrations invalid as EAC was dominated by Fe(III).

sample	C	N	S	0	Н	Σ	C/N	C/S	Fh ^a	measured EAC		EAC _{OM} ^b
			g]	kg-1			g	g ⁻¹	g kg-1	mmol e ⁻ (mol OC) ⁻¹	mol e- (mol Fe) ⁻¹	µmol e- (g OM)-1
HA	537	3.6	16.5°	309	44.2	911	149	33		25.6±0.3	124.0±1.6	1134±15
efOM _A	302	9.9	14.3°	385 ^d	47.5 ^d	759	31	21	222	91.1±2.1	1.01±0.01	27±33
efOM _B	339	16.3	16.1°	394 ^d	47.4 ^d	813	21	21	191	70.5±2.1	1.02±0.01	42±21

^a estimated from the OC/Fe concentration ratios in the corresponding effluents; assumptions: all Fe bound

724 in 21-Fh and $M_{21-Fh} = 195.7 \text{ g mol}^{-1} (\text{Fe}_2\text{O}_3 \bullet 2\text{H}_2\text{O})^{81}$

^b corrected for contribution of Fe(III) to EAC (assuming $Fe_{total} = Fe(III)$): EAC_{OM} = (EAC (µmol e⁻ L⁻¹) -

 $726 \qquad Fe \; (\mu mol \; L^{\text{-1}})) \; / \; OM \; (g \; L^{\text{-1}})$

^c sulfate detected with ion chromatography \rightarrow subtracted from total-S

728 ^d includes contributions from coexistent organo-mineral ferrihydrite

Figure 1. Powder X-ray diffraction patterns of OM-free and organo-mineral ferrihydrite with adsorbed (ads) and coprecipitated (cop) organic matter (OM). efOM: soil effluent OM from an anoxic topsoil of a floodplain site (Table S1). $_{A/B}$: independent replicates. HA: humic acid from anoxic groundwater. The values in the sample name denote the molar OC/Fe ratio, which was set in the corresponding suspension. Black bars depict the powder diffraction reference file of 6-line ferrihydrite.⁸²

Figure 2. Probability distributions of (A, B) the quadrupole splitting (ΔE_Q) and (C, D) of the magnetic hyperfine field (B_{hf}) obtained from the fitted Mössbauer spectra of the OM-free and organo-mineral ferrihydrites recorded at room temperature and 5 K, respectively. (E) Proportion of the doublet- and sextet-component required to fit Mössbauer spectra recorded at 70 K (near blocking temperature; Figure S7, Table S5). ads: adsorbed organic matter (OM). cop: coprecipitated OM. efOM: soil effluent OM from an anoxic topsoil of a floodplain site (Table S1).

- values in the sample name denote the molar OC/Fe ratio, which was set in the corresponding
- suspension.

Figure 3. (A-D) Evolution of Fe(II) during the microbial reduction of ferrihydrite (Fh) with
adsorbed (ads.) and coprecipitated (cop.) organic matter (OM). HA: humic acid from anoxic
groundwater. efOM: soil effluent OM from an anoxic topsoil of a floodplain site (Table S1). _{A/B}:

750 independent replicates. Symbols depict mean values of three replicate experiments. Solid / dashed

751	lines depict the prediction of mean Fe(II) concentrations and corresponding 95% confidence
752	intervals, respectively, on basis of fitted k, c_{MAX} and c_{INIT} (Eq 1.). (E) Rate constants (k _{normalized}),
753	the corresponding half-life of Fh (<i>italic values</i>) and maximum Fe(II) concentrations
754	$(c_{MAX_normalized})$, which parameterize the observed microbial reduction of OM-free (reference) and
755	organo-mineral Fh. The values in the sample description denote the molar OC/Fe ratio, which was
756	set in the corresponding suspension. k was normalized to the reduction rate of the corresponding
757	OM-free Fh (reference). c_{MAX} was normalized to the total Fe concentration, which was expected
758	in each treatment (Fe from Fh + Geobacter inoculum (Table S3) + residual Fe in efOM (Figure
759	S2)). Error bars and "±" denote the standard error.

762 For Table of Contents Only.