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Abstract 

The HAR model dominates current volatility forecasting. This model implies a restricted lag 

approach, with three parameters accounting for an AR(22) structure. This paper uses the 

Lasso method, which selects a parsimonious lag structure, while allowing both a flexible lag 

structure and lags greater than 22. In-sample results suggest that while significance is 

largely found among the first 22 lags, consistent with the HAR model, there is evidence 

that longer lags contain information, as Lasso models provide an improved fit. Out-of-

sample forecasts for daily, weekly and monthly volatility, evaluated using MSE, QLIKE, 

MCS and VaR measures, suggest that the ordered Lasso model provides the preferred 

forecasts using an AR(100) at the daily level and an AR(22) for the weekly and monthly 

horizons. The results support the view that a more flexible lag structure is preferred over the 

HAR approach.  
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1. Introduction.  

The HAR model of Corsi (2009) is the dominant approach to modelling and forecasting 

volatility of financial asset returns. Following the establishment of realised volatility (RV) as 

a method of obtaining a volatility series (a literature that largely began with Andersen and 

Bollerslev, 1998), the RV approach has overtaken the GARCH model as a way to examine 

volatility, culminating in the HAR model. The HAR model proposes a very specific lag 

structure, with lags aggregated to produce weekly and monthly variables, in addition to a daily 

lag. As Corsi (2009) notes, this model could be regarded as a restricted AR(22). This leads to 

two broad questions. First, could longer lags provide additional information that may improve 

forecasts? Second, is the restricted lag structure the most appropriate?  

 An alternative lag selection approach that is gaining traction within the field of finance 

is the Lasso (least absolute shrinkage and selection operator) modelling procedure proposed by 

Toshigami (1996). The Lasso approach produces a parsimonious parameter specification in a 

linear model, and can improve model efficiency (Friedman et al., 2010). The Lasso approach 

is increasingly employed in forecasting. For example, Audrino and Knaus (2016) extend the 

Lasso method used in the AR model of Nardi and Rinaldo (2011) to the HAR model. However, 

empirical results to date reveal limited, if any, improvement over the HAR model. 

Therefore, this paper reconsiders the ability of the Lasso approach to outperform the 

HAR model in forecasting volatility for a range of international markets. As a baseline, we 

include both the HAR model of Corsi (2009) and the HAR-free extension (Bollerslev, et al., 

2018), which allows the first six daily RV lags to be freely estimated. Nonetheless, both of 

these models use a fixed lag length approach as opposed to the flexible lag Lasso model. Thus, 

to answer the question of whether the fixed lag length is appropriate, we estimate an AR(22) 

model using the Lasso method. To examine the further question of whether longer lags may 

contain additional information, we consider an AR(100) (also used by Audrino and Knaus, 
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2016; Audrino et al., 2017). Furthermore, we include more recent developments in the Lasso 

literature that allows for different parameter penalty functions, including the adaptive Lasso 

(Zou, 2006), the grouped Lasso (Yuan and Lin, 2006), which is more suitable for strongly 

correlated variables, and the ordered Lasso (Toshigami and Suo, 2016).  

To evaluate the performance of the alternative models, we conduct both rolling and 

recursive forecasts for eight international markets, and use both statistical (MSE, QLIKE and 

model confidence set) and economic (value-at-risk, VaR) based forecast evaluation. In preview 

of the results, we find that, in-sample, the Lasso based approaches provide a small improvement 

in model fit, while there is some evidence that lags longer than 22 do contain useful information. 

In the out-of-sample exercise, the Lasso approach significantly outperforms the HAR model in 

forecasting both volatility and VaR. Notably, the ordered Lasso with an AR(100) at the daily 

level and AR(22) at the weekly and monthly levels provide the best forecasts. The results 

presented here should be of interest not only to academics but also those actively engaged in 

risk management practice. They suggest that the Lasso flexible lag length approach can 

outperform the HAR model that currently dominates volatility forecasting.  

 

2. Literature Review. 

The analysis of time-varying behaviour within financial assets is important for asset allocation 

and risk management. Within the sphere of volatility modelling, it is well known that asset 

return volatility is persistent and can be captured using long-memory autoregressive type 

models (e.g., Ding et al., 1993; Bollerslev and Mikkelsen, 1996). While the initial impetus to 

volatility modelling came with the GARCH model (Engle, 1982; Bollerslev, 1986), Engle and 

Bollerslev (1986) first sought to capture long memory with the Integrated GARCH model. 

Subsequent developments include the Fractionally Integrated GARCH model of Baillie et al. 

(1996) and the Component GARCH model of Engle and Lee (1993). In addition, Granger and 

Ding (1996) discuss generalized fractionally integrated processes in a non-GARCH setting. 
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With the greater availability of intraday data, research increasingly focussed on the 

realised volatility (RV) approach of Andersen and Bollerslev (1998). Subsequent research 

examines time series models for RV and the long memory behaviour of high-frequency data 

(see, for example, Andersen et al., 2003; Lieberman and Philips, 2008; Martens et al., 2009). 

Following this, RV dominates the modelling and forecasting of volatility.  

Anderson et al. (2004) suggest that an ARMA-type model for RV performs well in 

forecast exercises. While Hol and Koopman (2002) suggest that the long-memory feature of 

RV can be accommodated by an ARFIMA process, which provides more accurate predictions 

than a GARCH (and stochastic volatility, SV) model. However, some researchers question the 

fractional integrated process, Poskitt (2006) and Wang and Hsiao (2012) show that an 

ARFIMA(𝑝, 𝑑, 𝑞) process can be well approximated by an AR(𝑘) model using information 

criterion to determine the lag order. The empirical work of Wang et al. (2013) suggests that 

this AR-based method can provide better forecasting performance than a fractional integrated 

process. Alternatively, to accommodate RV long memory, Corsi (2009) proposes the HAR 

model. The HAR model has a simple autoregressive structure for RV with economically 

meaningful lagged average variables that represent different time horizons. As emphasized by 

Corsi (2009), the standard HAR model can be regarded as an unrestricted AR(22) model. Corsi 

et al. (2008) note that the forecasting ability of the HAR model outperforms fractional 

integrated models. Similar to other forecasting models, the standard HAR model can be 

extended to accommodate volatility jumps (Andersen et al., 2007) and sign asymmetry (or 

leverage; Narndorff-Nielsen et al., 2008; Corsi et al., 2012; Patton and Sheppard, 2015).  

Despite the HAR model having an economically meaningful fixed lag structure (1, 5, 

22, to represent daily, weekly and monthly time horizons), this fixed lag structure is questioned. 

Craioveanu and Hillebrand (2012) extend the fixed lag structure of the HAR model to a flexible 

lag structure, although they find no significant forecast improvement. Hwang and Shin (2014) 
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extend the three lag HAR model to an infinite-order HAR model, i.e., HAR(∞), with 

exponentially decaying coefficients. However, the results show preference for the finite-order 

HAR(𝑝) forecasts. An enhanced AR model with structural breaks is developed by Wand et al. 

(2013). This model outperforms ARFIMA-based methods in a forecast evaluation. The result 

of a change in the memory parameter provides an econometric explanation for the empirical 

success of the HAR model, which can be considered as a special case of the AR model.   

The above empirical studies suggest that the lag structure of daily, weekly and monthly 

time horizon may be appropriate for forecasting volatility. However, the potential for an 

alternative lag structure exists. Toshigami (1996) proposes the least absolute shrinkage and 

selection operator (Lasso) to consider a larger lag structure. The Lasso process shrinks 

estimators towards exactly zero based on a tuning parameter. Empirical research using the 

Lasso approach is increasingly employed in different econometric settings. This includes Wang 

et al. (2007) and Hsu et al. (2008) in examining regression coefficients. For an AR model, 

Nardi and Rinaldo (2011) demonstrate that Lasso model selection, estimation and prediction is 

consistent under certain conditions. As the Lasso process provides parsimonious and efficient 

forecasting variables, it is increasingly used in a forecasting setting. For example, Li and Chen 

(2014), Roy et al. (2015) and Ziel (2016) demonstrate Lasso-based forecast superiority over 

other model specifications, while Tian et al. (2015) and Nazemi and Fabozzi (2018) both apply 

Lasso selected models to an asset modelling context. As noted, the Corsi (2009) HAR model 

is a restricted AR(22) with only three coefficients. Audrino and Knaus (2016) find the Lasso 

process of the same AR model has the same forecasting performance as the HAR model at the 

individual stock level. In other words, the fixed lag structure of the HAR model is hard to beat. 

However, the Lasso model cannot accurately restore the HAR lag structure, which raises 

questions about the suitability of the HAR lag structure (Audrino and Knaus, 2016). 
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In criticising the Lasso approach, Fan and Lin (2001) indicate potential inefficient and 

inconsistent model selection results. To address this, Zou (2006) allows more flexible 

penalization in obtaining estimators and proposes the adaptive Lasso, which uses an adaptive 

weight penalty to shrink the variable coefficients. Using the adaptive Lasso, Park and Sakaori 

(2013) and Audrino and Camponovo (2013) both indicate it provides more efficient estimators. 

In a robustness check in Audrino and Knaus (2016), the Lasso and adaptive Lasso have the 

same predictive ability as the HAR model. Subsequently, Audrino et al. (2019) consider the 

HAR model employing the adaptive Lasso method to test whether the lag structure of a flexible 

HAR model could recover the fixed HAR(1,5,22) model. They provide empirical evidence that 

shows only slight modelling outperformance for the flexible HAR model, with an insignificant 

out-of-sample difference. However, Fang et al. (2020) suggest using an adaptive Lasso can 

significantly improve the predictive ability of long-term volatility.  

A common drawback of Lasso and adaptive Lasso is that they penalize every estimator 

separately and are not suitable for strongly correlated variables. As a consequence, in cases 

with correlated predictors, unreliable estimators are produced by Lasso and adaptive Lasso. 

However, in many multifactor regressions, variables are naturally grouped, as in the HAR 

model where lagged realised volatility is categorized into different time horizons. In addition, 

Hillebrand and Medeiros (2010) indicate that bagging lagged RV is reasonable and can 

improve foresting accuracy. Yuan and Lin (2006) therefore, propose the Group Lasso that 

considers group model selection and penalizes coefficients and selects estimators on a group, 

instead of an individual, basis. To check the validity of the lag structure for the HAR model, 

Audrino et al. (2019) use an AR(50) model and estimate by the Group Lasso method. However, 

the HAR lag structure is not supported and they conclude that there are lags that contain 

forecasting information beyond one month. Furthermore, there are two additional algorithms 

of Grouped Lasso. The first one is the Cluster Group Lasso by Buhlmann et al. (2013). Where 
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variables are strongly correlated or have a near linear relation in a multifactor regression, the 

Cluster Group Lasso tends to choose only one variable from a group and neglects others. The 

second one is the Sparse Group Lasso (Friedman et al., 2010; Simon et al., 2013), in which the 

penalized parameter is employed at both group and individual level.  

A further issue for the Lasso approach in capturing model dynamics, is the presence of 

both higher- and lower-order lags. Two models that allow lower-order lags to be considered 

with the inclusion of higher-order lags are the Hierarchical Lasso (Bien et al., 2013) and the 

Ordered Lasso (Toshigami and Suo, 2016). Both approaches focus on the selection of lower 

lagged coefficients before higher lagged coefficients. In empirical application, Wilms et al. 

(2016) indicate that the ordered Lasso is the best performing forecast for RV between these 

two Lasso approaches. They also argue that the ordered Lasso slightly outperforms the HAR 

model. Croux et al. (2018) employ the ordered Lasso model and find that it has better 

forecasting performance than the HAR model. 

The current state of the literature suggests that the HAR model is preferred in 

forecasting volatility. However, an increasing amount of research questions the fixed lag length 

approach of the HAR model. To date, there is none, or at best limited, evidence that a more 

flexible lag structure can improve forecast performance. This paper addresses this question 

across a selection of eight international markets and a longer range of lags. 

  

3. Methodology. 

3.1. Empirical Models 

As noted, the HAR model is established as the main volatility forecast model, we consider this 

model against Lasso-based alternatives, which allow for different lag specifications. 
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HAR Model 

Following Andersen and Bollerslev (1998), we define day t realised volatility (RVt) as: 

RVt =∑(rt,i)
2

N

i=1

 (1), 

where 𝑟𝑡,𝑖 refers to the log asset return on day 𝑡 and 𝑖th intraday interval and where rt,i = pt,i −

pt,i−1 , (t = 1,⋯ , T;  i = 1,⋯ , N), with T the total trading days, N the number of intraday 

intervals and pt,i is the log asset price. 

Corsi (2009) proposes the HAR model based on daily, weekly and monthly horizons, 

which correspond to different investing behaviour and is given as: 

𝑅𝑉𝑡 = 𝛽0 + 𝛽𝑑𝑅𝑉𝑡−1 + 𝛽𝑤𝑅𝑉𝑡−1:𝑡−5 + 𝛽𝑚𝑅𝑉𝑡−1:𝑡−22 + 𝑢𝑡 (2). 

The HAR model is thus, a simple linear regression, where weekly and monthly averages of 

realised volatility are calculated as:  

𝑅𝑉𝑡−1:𝑡−5 =
1

5
∑𝑅𝑉𝑡−𝑖

5

𝑖=1

 (3), 

𝑅𝑉𝑡−1:𝑡−22 =
1

22
∑𝑅𝑉𝑡−𝑖

22

𝑖=1

 (4). 

The HAR model thus models RV (volatility) as a linear equation of yesterday’s RV and average 

RV over last week and last month. Corsi (2009) notes that the standard HAR model can be 

rewritten as an unrestricted AR(22) model:  

𝑅𝑉𝑡+1 = 𝜃0 +∑𝜃𝑖𝑅𝑉𝑡−𝑖

22

𝑖=1

+ 𝑢𝑡 
(5). 

The restrictions on coefficients, 𝜃𝑖, implied by the HAR lag structure are given as: 
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𝜃𝑖 =

{
 
 

 
 𝛽𝑑 +

1

5
𝛽𝑤 +

1

22
𝛽𝑚     𝑓𝑜𝑟 𝑖 = 1;           

1

5
𝛽𝑤 +

1

22
𝛽𝑚               𝑓𝑜𝑟 𝑖 = 2,… ,5;  

1

22
𝛽𝑚                             𝑓𝑜𝑟 𝑖 = 6,… ,22.

 (6). 

The simplification from 22 parameters of an AR(22) to three parameters in the HAR model are 

empirically proven to improve model fit (Corsi, 2009). That said, the information criteria 

between the restricted HAR and the unrestricted AR(22) provides less clear cut results.   

 

HAR-free model 

To incorporate sudden unexpected volatility changes, Bollerslev et al. (2018) propose the 

HAR-free model as follow: 

𝑅𝑉𝑡 = 𝛽0 + 𝛽1𝑅𝑉𝑡−1 + 𝛽2𝑅𝑉𝑡−2 + 𝛽3𝑅𝑉𝑡−3 + 𝛽4𝑅𝑉𝑡−4 + 𝛽5𝑅𝑉𝑡−5 + 𝛽6𝑅𝑉𝑡−6

+ 𝛽𝑚𝑅𝑉𝑡−1:𝑡−22 + 𝑢𝑡 
(7). 

This augments the HAR model where the first six daily lagged RV are estimated freely, while 

𝛽𝑚𝑅𝑉𝑡−1:𝑡−22 is computed as in equation (4) above.   

 

Lasso 

Toshigami (1996) proposes the Lasso method, which, according to Friedman et al. (2010), can 

provide an efficient algorithm to select estimators that are computationally efficient. Recently, 

the Lasso method, and extensions, play an increasing role in econometrics and the forecasting 

of financial assets (Tian et al., 2015; Nazemi and Fabozzi, 2018).   

The Lasso can be regarded as a constrained least square regression, where the tested 

model is a linear autoregressive one. The Lasso estimator of an AR(𝑝) model is given as: 

𝑅𝑉𝑡+1 = 𝜃0 +∑𝜃𝑖𝑅𝑉𝑡−𝑖+1

𝑛

𝑖=1

+ 𝑢𝑡 (8), 

where the Lasso estimator can be defined as: 
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�̂�𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑(𝑅𝑉𝑡+1 − 𝜃0 −∑𝛽𝑖𝑅𝑉𝑡−𝑗+1

𝑝

𝑖=1

)

2𝑇

𝑡=𝑝

+ 𝜆∑|𝛽𝑖|

𝑝

𝑖=1

} (9), 

where 𝜆  is the tuning parameter that controls the shrinkage estimators in term of penalty 

strictness. The first part of equation (9) is the least square criterion, and the second part is the 

penalty term on the regression parameters. Where 𝜆 = 0, the Lasso estimators will coincide 

with OLS estimators. Increasing 𝜆 causes more coefficients of the Lasso to be penalized to zero, 

with stricter coefficient selection. All the coefficients will be set to zero when 𝜆 = 1.  

 

Adaptive Lasso 

According to the basic Lasso method introduced by Toshigami (1996), every estimator is 

penalized equally. To address this, Zou (2006) develops the adaptive Lasso, which allows more 

flexible penalization to obtain estimators. The adaptive Lasso is given as follow: 

�̂�𝑎𝑑𝑜𝑝𝑡𝑖𝑣𝑒 𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑(𝑅𝑉𝑡+1 − 𝜃0 −∑𝛽𝑖𝑅𝑉𝑡−𝑗+1

𝑝

𝑖=1

)

2𝑇

𝑡=𝑝

+ 𝜆∑𝜆𝑖|𝛽𝑖|

𝑝

𝑖=1

} (10), 

where 𝜆𝑖 are adaptive weights for each coefficient. When every 𝜆𝑖  is equal to 1, the adaptive 

Lasso transforms into original Lasso. Compared with the standard Lasso, the adaptive Lasso 

allows a stricter penalty for zero coefficients and a lower penalty for non-zero coefficients. 

This reduces estimation bias and improves efficiency and accuracy of variable selection.   

 

Group Lasso 

A common drawback of Lasso and adaptive Lasso is that they penalize every estimator 

separately and ignore any correlation between each estimator. Thus, they can select one of the 

correlated estimators and omit others in the penalizing process. The group Lasso (Yuan and 

Lin, 2006) seeks to address this shortcoming. The group Lasso penalizes coefficients and 

selects estimators as a group instead of an individual variable and is given by:  
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�̂�𝑔𝑟𝑜𝑢𝑝 𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛{∑(𝑅𝑉𝑡+1 − 𝜃0 −∑𝛽𝑖𝑅𝑉𝑡−𝑗+1

𝑝

𝑖=1

)

𝑇

𝑡=𝑝

2

+ 𝜆∑√𝑝𝑘√∑𝛽𝑖
2

𝑖∈𝐼𝑘

𝐾

𝑘=1

} (11). 

Audrino et al. (2019) group an AR(50) as {1}, {2-5}, {6-22}, {23-50} and estimate using the 

group Lasso method. Noting that this lag structure does not perform well, they conclude that 

some lags have predictive information beyond the HAR lag structure. Using this information, 

the group lag structure chosen here includes the standard HAR approach of an AR(22) as {1}, 

{2-5}, {6-22} as well as longer groups based on a AR(100) as {23-50}, {51-75}, {76-100}.  

 

Ordered Lasso  

Toshigami and Suo (2016) argue that the predictive information of the coefficients should 

gradually decay. Thus, they introduce an autoregressive model within the Lasso approach with 

an additional monotonic decreasing constraint, the order-constrained coefficients. The ordered 

Lasso is given by: 

�̂�𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑(𝑅𝑉𝑡+1 − 𝜃0 −∑(𝛽𝑗
+ + 𝛽𝑗

−)𝑅𝑉𝑡−𝑗+1

𝑝

𝑖=1

)

2𝑇

𝑡=𝑝

+ 𝜆∑(𝛽𝑗
+ + 𝛽𝑗

−)

𝑝

𝑖=1

} (12), 

subject to 𝛽1
+ ≥ 𝛽2

+ ≥ ⋯ ≥ 𝛽𝑝
+ ≥ 0 and 𝛽1

− ≥ 𝛽2
− ≥ ⋯ ≥ 𝛽𝑝

− ≥ 0. The ordered Lasso model 

modifies the penalized parameters from the absolute value (|β𝑗|) of Lasso to positive and 

negative components (𝛽𝑗
+ + 𝛽𝑗

−), allowing some β𝑗 coefficients to be estimated as exactly zero. 

In addition, this ordered constraint penalty only allows higher lag orders to be estimated when 

lower lag order lags are already included.  

 

3.2. Cross-Validation  

A key element in the Lasso-method is tuning parameter (𝜆), which determines the flexibility 

of parameter estimation and the number of non-zero coefficients. Two common approaches to 

this in the literature are to use information criteria and cross-validation (CV).  
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Here, we choose 𝜆 based on the K-folds cross-validation method (Nardi and Rinadlo, 

2011; Audrino et al., 2017; Audrino et al., 2019). Toshigami (1996) first estimates the 

prediction error of the Lasso approach using this method. The sample observations are split 

into K groups, denoted 𝐺𝐾, the estimators are obtained on 𝐾 − 1 groups and the test error is 

predicted on the remaining group. The process is repeated for 𝑘 = 1, 2,⋯ , 𝐾, and the results 

of test error are averaged, with the procedure conducted for each value of the tuning 

parameter 𝜆. We set 𝑘 = 10 and the cross-validation error function is the mean square error 

(MSE), given as: 

CV (𝜆) =
1

𝑇
∑∑(𝑦𝑡 − 𝑦𝑡

�̂�(𝑥𝑡))
2

𝐺𝐾

𝐾

𝑘=1

 (13), 

where 𝑦𝑡
�̂�(𝑥𝑡) is the prediction of Kth-fold. The optimal 𝜆 is selected by minimising the error 

of CV (𝜆): 

𝜆𝐶�̂� = argmin
𝜆
𝐶𝑉(𝜆) (14). 

Alternatively, the tuning parameter can be estimated by the AIC (Akaike) or BIC 

(Bayesian) Information Criterion. Audrino and Knaus (2016) determine 𝜆 by minimising the 

BIC, while Nardi and Rinaldo (2008) estimate an AR model using the AIC. Taking the analysis 

of Audrino and Knaus (2016) a step further, Wilms et al. (2016) and Croux et al. (2018) produce 

the tuning parameter 𝜆 with a forecast combination using a weighted BIC. In the empirical 

application, Wilms et al. (2016) note only slight improvement in performance compared to 

non-combination models. Wand et al. (2007) argue that a Lasso model with either CV or BIC 

produces the same fit. Audrino and Knaus (2016) and Audrino et al. (2019) also note that results 

are qualitatively similar across the alternative approaches.  
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3.3. Forecasting Evaluation 

To evaluate and compare the accuracy of the different forecasting models, we follow Patton 

(2011) and use the Quasi-Likelihood (QLIKE) and Mean Squared Error (MSE) measures. 

These are robust to heteroscedasticity and given by: 

MSE =
1

n
∑(RVt − RVt̂)

2

n

t=1

 (15), 

 

QLIKE =
1

n
∑(log ( RVt̂) + RVt/RVt̂)

n

t=1

 (16), 

where RVt and RVt̂ denote actual and forecast volatility, respectively.  

 

Model Confidence Set 

While the above forecast measures provide a value that can be compared across different 

models, it is also important to consider any significant differences in the values. Hansen and 

Lunde (2005) propose the superior predictive ability (SPA) test to compare model accuracy. 

However, this approach requires the selection of a benchmark model, which can affect the 

result comparison. To address this shortcoming, Hansen et al. (2011) introduce the Model 

Confidence Set (MCS). The MCS removes the worst model sequentially according to rejection 

of the null hypothesis of equal predictive ability (EPA).  

More specifically, the process of the MCS is given as. First, assume there are 𝑚0 

alternative forecasting models to be tested, so 𝑀0 = {1, 2 ,⋯ ,𝑚0}. Let 𝑑𝑖𝑗,𝑡 demote the loss 

function difference between any two models at time 𝑡: 

𝑑𝑖𝑗,𝑡 = 𝑙𝑖,𝑡 − 𝑙𝑗,𝑡   (𝑖, 𝑗 ∈ 𝑀0) (17). 

Second, the null hypothesis is set as any two models have EPA: 

𝐻0,𝑀: 𝐸(𝑑𝑖𝑗,𝑡 = 0),   𝑓𝑜𝑟 𝑎𝑙𝑙  𝑖, 𝑗 ∈ 𝑀0 (18), 
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𝐻𝐴,𝑀: 𝐸(𝑑𝑖𝑗,𝑡 ≠ 0),   𝑓𝑜𝑟 𝑠𝑜𝑚𝑒  𝑖, 𝑗 ∈ 𝑀0 (19). 

Third, in each step of MCS test, if the null hypothesis of equal predictive ability (EPA) is 

rejected at a given significant level, the worst forecasting model is removed sequentially until 

the null hypothesis of EPA is not rejected. One drawback of the test is that the predictive ability 

of any two forecast models is recalculated at each step of the process. To overcome this, Hansen 

et al. (2011) construct the Range and Semi-Quadratic statistics to test the above hypotheses: 

𝑇𝑅 = max
𝑖,𝑗 ∈𝑀0

||
�̅�𝑖,𝑗

√𝑣𝑎�̂�(�̅�𝑖,𝑗)

||   𝑎𝑛𝑑  𝑇𝑆𝑄 = ∑
(�̅�𝑖,𝑗)

2

𝑣𝑎�̂�(�̅�𝑖,𝑗)𝑖,𝑗 ∈𝑀0

 (20), 

where �̅�𝑖,𝑗 is the mean value of the loss functions difference, calculated as �̅�𝑖,𝑗 =
1

𝑀
∑𝑑𝑖𝑗,𝑡.  

 

4. Data and Empirical Results. 

Data  

We obtain the RV data from the Oxford-Man Institute of Quantitative Finance. We employ 5-

minute RV data following Liu et al. (2015) for the stock indices of the UK (FTSE), Japan 

(N225), the US (SPX), Germany (DAX), China (SSEC), India (NSEI), Brazil (BSVP) and 

Mexico (MXX). We use the RV data in logarithmic form, log-RV, which produces a more 

normal distribution. The data is obtained over the sample period from 1st November 2006 to 

31st October 2020. For the initial in-sample period, we use 1st November 2006 to 31st October 

2010, while the out-of-sample forecast period covers 1st November 2010 to 31st October 2020.  

Table 1 presents the summary statistics of log-RV for each index. All series exhibit a 

non-normal distribution with excess kurtosis, are right-skewed and present a significant Jarque-

Bera test statistic at the 1% level. The first-order autocorrelation statistic indicates a reasonably 

high degree of persistence. Figure 1 provides the log-RV time-series plots, with noticeable 

increases in 2008 and 2020 as the financial crisis and global covid-19 pandemic unfold.  
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5. Empirical Results. 

5.1. In-sample results 

We begin with estimates of RV for the eight indexes using HAR and HAR-free models with a 

fixed lag structure model estimated by OLS, as well as flexible AR(22) and AR(100) models 

selected using the Lasso, adaptive Lasso, group Lasso and ordered Lasso approaches. As noted 

above, the tuning parameter, 𝜆, is estimated using the minimum error of the CV. As this 

generates a substantial number of coefficients, we represent this with coefficient plots. 

The estimated coefficients are plotted as line graphs in Figure 2 (a) and (b), where the 

coefficients are divided into three figures according to the model type for each index. The upper 

figure represents the fixed coefficients of the standard HAR and HAR-free models. The middle 

figure presents the flexible coefficients of AR(22) using Lasso, adaptive Lasso, group Lasso 

and ordered Lasso approaches. The lower figure is the AR(100), again, estimated using the 

alternative Lasso approaches. For the fixed coefficients across all indexes, the value of the first 

six coefficients of the HAR model and HAR-free model decrease with the lag, while the 

coefficients beyond lag seven are close to zero. For the flexible AR(22) structure, all four 

Lasso-based methods select coefficients from lag 1 to 5 with a declining trend. The Lasso and 

adaptive Lasso have a similar pattern with several longer lagged coefficients selected, although 

many are set to zero. For the grouped Lasso, the selected groups are {1}, {2-5}, {6-22}, which 

follow the HAR model. The coefficients of the ordered Lasso are monotonically decreasing 

with lag length. The lower figure, for the AR(100), reveals that lags beyond lag 22 are rarely 

selected across the Lasso methods. For example, for the grouped ordered Lasso models, the 

coefficients are close or exactly equal to zero. However, the Lasso and adaptive Lasso models 

do select some longer lags, with the adaptive Lasso selecting more than the Lasso. 

Table 2 provides the in-sample MSE and QLIKE loss functions. Here, the standard 

HAR model is set as the benchmark model against which to compare the loss function values. 
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Thus, a value below one indicates preference for the alternative model, while above one 

indicates preference for the HAR model. According to both the MSE and QLIKE, the AR(100) 

using the adaptive Lasso provides the smallest in-sample error across all indexes, while the 

AR(22) with the Lasso method also provides a good performance. This indicates that some 

predictive information exists beyond lag 22 across the RV series.  

The in-sample results suggest two key features. First, the flexible AR models show that 

while the first 22 lags are more frequently selected than longer lags, there are some longer lags 

that provide relevant forecasting information. Second, the flexible lag models slightly improve 

fit over fixed lag models. This result is consistent with the work of Audrino and Knaus (2016) 

and Audrino et al. (2019).  

 

5.2. Out-of-sample results 

The forecasts are conducted over the out-of-sample period from 1st November 2010 to 31st 

October 2020 using both a rolling (fixed window) and recursive (expanding window) approach. 

The initial window size is 500 daily observations. Moreover, while emphasis is typically on 

daily volatility forecasts, we also consider both weekly and monthly forecasts. In generating 

these multi step-ahead forecasts, we replace 𝑅𝑉𝑡+1 on the left-head side of equation (8) with 

𝑅𝑉𝑡+ℎ
ℎ =

1

ℎ
∑ 𝑅𝑉𝑡−ℎ+𝑖
ℎ
𝑖=1 , where the forecast horizon, ℎ = 1, 5 𝑎𝑛𝑑 22 . The forecasting 

performance is measured by the MSE and QLIKE loss function where the standard HAR model 

is regarded as a benchmark, while the MCS test selects optimal models with EPA.   

Tables 3 and 4 present the MSE values using the rolling and recursive window 

approaches respectively for the daily, weekly and monthly horizon (h=1, 5, 22). Tables 3 and 

4 present broadly consistent results. For one-day-ahead forecasts, the AR(100) ordered Lasso 

performs the best across almost all series. The Lasso and adaptive Lasso for both AR(22) and 

AR(100) perform poorly. The two fixed lag structure models, HAR model and HAR-free model, 
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exhibit similar forecasting performance. For the one-week-ahead forecasts, the Lasso-methods 

overwhelmingly outperform the HAR and HAR-free models, especially, the ordered Lasso for 

the AR(22), which dominates across all stock indexes. For the one-month-ahead forecast, again, 

the HAR model and HAR-free model perform poorly and the ordered Lasso performs best. 

Tables 5 and 6 present the equivalent results for the QLIKE measure and show similar results 

to those in Tables 3 and 4. There is predominately a preference for the ordered Lasso model 

with AR(100) at the daily horizon and AR(22) at the weekly and monthly horizons. 

The MCS test results for the rolling window approach are presented in Tables 7 and 8 

for the MSE and QLIKE metrics, respectively. In the tables, the value of 1 means the optimal 

model is chosen, while the MCS test also chooses a subset of models with EPA at the 75% 

confidence level. Generally, the Lasso-based models perform significantly better than the HAR 

model. Specifically, the AR(100) ordered Lasso method performs the best at the daily horizon. 

For weekly forecasting, evidence supports the superiority of the ordered Lasso AR(22). At the 

monthly horizon, the ordered Lasso AR(22) again performs the best, although given the greater 

smoothness of the monthly volatility, several models have EPA for the monthly forecast. 

Notwithstanding this, the Lasso models are preferred over the HAR and HAR free models.  

Tables 9 and 10 present the MCS test for the recursive (increasing window) approach. 

In comparison with Tables 7 and 8, similar results are obtained. Again, the AR(100) using 

ordered Lasso is preferred at the daily horizon. For the weekly results, the ordered Lasso AR(22) 

is generally preferred, although the AR(100) ordered Lasso performs well for the NSEI. The 

same models are also preferred at the monthly horizon, where the Lasso models dominate the 

standard HAR approaches. 

In sum, across the different forecast metrics, the ordered Lasso AR(100) model is 

preferred at the daily level, while at the weekly and monthly horizons, the ordered Lasso AR(22) 
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dominates. It is also of interest to note that there are no clear differences between the four 

develop and four emerging markets in terms of the forecast results. 

 

6. Risk Management Application.  

To further assess the forecast performance of the Lasso-based models in comparison to the 

HAR model, we consider a risk management perspective and the Value-at-Risk (VaR) measure. 

VaR is designed to measure and monitor risk by considering the potential loss occurring with 

a given possibility over a specific time frame. The VaR of an asset is calculated as: 

𝑉𝑎𝑅 = 𝜇𝑡 + 𝜎𝑡𝑁(𝛼) (21), 

where 𝜇𝑡 is the mean of the log-return, 𝜎𝑡 is the forecast volatility, and 𝑁(𝛼) defines the left 

𝛼th quantile of the normal distribution.  

To evaluate the accuracy of VaR forecasts, we utilise three tests. First, we compute the 

failure rate for daily returns, which is the number of times daily returns exceed the forecasted 

VaR. Second, we compute the Dynamic Quantile (DQ) test of Engle and Manganelli (2004) to 

examine whether VaR violations are correlated. The hit sequence is defined as follow: 

𝐻𝑖𝑡𝑡 = 𝐼(𝑟𝑡 < −𝑉𝑎𝑅𝑡) − 𝑎 (21), 

where the value (1 − 𝑎) is when actual returns are less than the VaR quantile, with the value 

(−𝑎) otherwise. The expected value of 𝐻𝑖𝑡𝑡 is zero, while the sequence should be uncorrelated. 

Thus, an AR model for the Hitt sequence is estimated, where the parameters are expected to be 

zero. The DQ test statistic is calculated as: 

𝐷𝑄 =
𝛽′̂𝑋′𝑋�̂�

𝑎(1 − 𝑎)
~𝜒2(𝑘) (22), 

where X are the explanation variables and �̂�  the OLS estimates.1 The DQ test follows 𝜒2 

distribution with degree of freedom equal to the number of parameters. 

 
1 The X variables includes the lags of the Hitt as well as lags of other relevant variables such as returns and 

squared returns. 
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Third, we compute the Weibull test of Christoffersen and Pelletier (2004). The main 

idea of this duration-based test is that the duration between VaR violations which should be 

independent and not cluster. Thus, VaR violations should be memoryless and should follow an 

exponential distribution. Christoffersen and Pelletier (2004) consider a Weibull distribution, 

which has the density function: 

𝑓𝑤(𝑥, 𝑎, 𝑏) = 𝑎
𝑏𝑏𝑥𝑏−1𝑒−(𝑎𝑥)

𝑏
 (23), 

where the exponential distribution is a special case when 𝑏 = 1. The null hypothesis of VaR 

violations being independent and memoryless corresponds to 𝑏 = 1. 

The daily VaR forecasts for the rolling window are presented in Table 11 for the 1% 

and 5% levels. In regard of the lowest average failure rate, the AR(100) ordered Lasso model 

is preferred while the ordered and grouped Lasso models for both AR lags tend to perform 

better than alternative Lasso and HAR models. In term of the Weibull test and DQ test, all 

models fail the DQ test across all series, while equally, no model passed the Weibull test for 

all series, although both the HAR and HAR-free model performs better and only indicate 

significance for the SSEC and N225. For the weekly VaR forecasts, the HAR and HAR-free 

models perform poorly, having the highest average failure rate and having four markets 

significant at 1% level and all market significant at 5% on the Weibull test. The Lasso models 

improve accuracy of the weekly VaR, compared with HAR model. Notably, the AR(22) 

ordered Lasso model performs the best at the 5% VaR level. Examining monthly VaR results, 

as noted above, the smoothness of monthly volatility results in no VaR exceedances. Given 

this, all models do not reject the null hypothesis of VaR violations autocorrelation (DQ test) 

and independence and memoryless (Weibull test).   

Table 12 presents the VaR results for the recursive approach, with the results generally 

similar to those reported above. For the daily VaR forecasts, the AR(100) with the ordered 

Lasso method achieve the lowest average failure rate. The HAR model and HAR-free model 
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show only one market significant on the Weibull test at 1% VaR level. Examining the weekly 

VaR forecasts, the HAR model and HAR-free model perform worse in term of the average 

failure rate and Weibull test. For the monthly VaR results, identically with Table 11, no returns 

exceed the VaR forecasts, no models reject the null hypothesis of the Weibull test and DQ test. 

 

7. Summary and Conclusion.  

The Lasso approach, originally developed in the field of computational statistics, is 

increasingly applied to financial time-series data. This approach has the potential to improve 

model selection and thereby improved forecasts. This paper, therefore, considers whether the 

Lasso-based method can indeed improve volatility forecasts over the HAR model that has come 

dominate the literature. Specifically, we compare the forecasting ability between the flexible 

lag models using four variants of the Lasso approach and fixed lag models using two HAR 

models for realised volatility series across eight international markets. This paper thus, extends 

the work of Audrino and Knaus (2016) and Croux et al. (2018).  

The in-sample results support an AR(100) model estimated using the adaptive Lasso 

approach. However, all the flexible lags models provide a slightly improved fit over the HAR 

models using two loss functions. The coefficients plots suggest that while the first 22 lags are 

the most important, the Lasso AR(100) models indicate that some longer lags do contain 

relevant information. The out-of-sample results present a relatively consistent pattern across 

the MSE, QLIKE, MCS and VaR measures. The AR(100) ordered Lasso is preferred for daily 

forecasts, while the AR(22) ordered Lasso is preferred for the weekly and monthly forecasts. 

The current literature suggests that the HAR model is the preferred approach for 

modelling and forecasting volatility. The HAR model is based on a fixed lag approach, with 

lagged volatility modelled on a day, week and month basis. This model ignores the possibility 

that longer lags may contain information and that the restricted lag structure may not be the 
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most appropriate. The results presented here suggest that a more flexible lag approach does 

improve forecast performance over the HAR model. As our results further show, this has 

implications for risk management.  
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Figure 1: The plots of the time series of log-RV of eight market index from 1st November 2006 to 31st October 
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Figure 2 (a): The plots of coefficients for eight stock index in the in-sample period  

  

  

- Continued on next page - 



 

27 

Figure 2 (b): The plots of coefficients for eight stock index in the in-sample period 

  

 
 

Note: This figure shows the estimated coefficients for eight stock index in the in-sample period from 1st November 2006 to 31st October 2010. The upper figure is the fixed 

coefficients of the standard HAR model and HAR-free model. The middle figure is the flexible coefficients of AR (22) using Lasso-based method, and the bottom figure is 

the AR (100) estimated by Lasso-based method. AdaLasso means the adaptive Lasso method, grpLasso means the grouped Lasso method, ordLasso means the ordered Lasso 

method, respectively.  
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 Table 1: Statistics Description of Log-RV 

  FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

Mean -9.6253 -9.9753 -9.8512 -9.4991 -9.2238 -9.6553 -9.2901 -9.8426 

Std.Dev. 1.0289 1.2418 0.9759 0.9824 1.0784 1.0239 0.8881 0.8965 

Kurtosis 0.7981 0.3428 0.9749 0.6954 -0.1832 0.9356 1.8284 1.0329 

Skewness 0.6497 0.4930 0.6467 0.4802 0.4387 0.7223 0.8595 0.7881 

Median -9.7546 -10.0879 -9.9397 -9.5673 -9.3426 -9.8042 -9.3765 -9.9778 

25%-quantile -10.355 -10.841 -10.506 -10.159 -9.986 -10.359 -9.849 -10.490 

75%-quantile -9.021 -9.216 -9.319 -8.910 -8.438 -9.063 -8.836 -9.316 

AutoCorrlag=1 0.7600 0.8324 0.7748 0.8021 0.8383 0.8269 0.7671 0.6407 

Jarque-Bera 343.41*** 159.93*** 374.53*** 208.22*** 113.91*** 106.09*** 906.68*** 520.49*** 

Obs. 3537 3515 3419 3545 3402 3465 3448 3511 

Note: This table repots the summary statistics of log-RV of eight different stock index for the whole period from 1st 

November 2006 to 31st October 2020. *** indicate significant level at 1%. 
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Table 2: In-sample estimation error of MSE and QLIKE 

 FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

MSE 

HAR model 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model 0.9915 0.9821 0.9902 0.9864 0.9943 0.9946 0.9990 0.9862 

AR(22)-Lasso 1.0169 0.9908 1.0041 0.9798 1.0310 0.9808 0.9919 1.0038 

AR(22)-adalasso 1.0183 0.9884 1.0086 0.9798 1.0315 0.9803 0.9942 1.0046 

AR(22)-grpLasso 1.0339 1.0236 1.0238 1.0487 1.0460 0.9931 1.0084 1.0159 

AR(22)-ordLasso 1.0216 1.0022 1.0063 0.9987 1.0372 0.9789 0.9954 1.0096 

AR(100)-Lasso 0.9765* 0.9687 0.9647 0.9706 0.9473 0.9788 0.9916 0.9516 

AR(100)-adalasso 0.9788 0.8920* 0.9504* 0.9499* 0.9287* 0.9721* 0.9934 0.9439* 

AR(100)-grpLasso 0.9988 0.9987 1.0005 1.0018 0.9860 1.0007 1.0063 0.9901 

AR(100)-ordLasso 0.9861 0.9769 0.9826 0.9500 0.9847 0.9963 0.9915* 0.9806 

QLIKE 

HAR model 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model 0.9886 0.9819 0.9894 0.9864 0.9938 0.9936 0.9988 0.9856 

AR(22)-Lasso 0.9874 0.9675 0.9845 0.9534 1.0327 0.9728 0.9888* 0.9947 

AR(22)-adalasso 0.9883 0.9653 0.9879 0.9529 1.0333 0.9715 0.9905 0.9945 

AR(22)-grpLasso 1.0070 1.0015 1.0082 1.0226 1.0478 0.9847 1.0080 1.0076 

AR(22)-ordLasso 0.9927 0.9774 0.9857 0.9745 1.0400 0.9698* 0.9911 0.9989 

AR(100)-Lasso 0.9740* 0.9730 0.9653 0.9724 0.9461 0.9814 0.9954 0.9544 

AR(100)-adalasso 0.9746 0.8932* 0.9507* 0.9485* 0.9272* 0.9729 0.9946 0.9459* 

AR(100)-grpLasso 0.9993 1.0028 1.0032 1.0047 0.9850 1.0015 1.0107 0.9912 

AR(100)-ordLasso 0.9847 0.9780 0.9804 0.9506 0.9846 0.9962 0.9927 0.9804 

Note: This table reports the MSE and QLIKE value of eight RV index for all forecasting models considered 

for the in-sample period from 1st November 2006 to 31st October 2010. The standard HAR model is 

regarded as benchmark against other forecasting models, the forecasting model with best performance is 

highlighted with *.
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Table 3: Out-of-sample forecasting evaluation using MSE of rolling window forecasting 

 FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

 h=1 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  1.0011 1.0016 1.0020 1.0072 1.0041 0.9945 1.0088 0.9958 

AR(22)-Lasso 1.2796 1.0136 1.0664 1.1650 1.1088 1.2088 1.0920 1.3665 

AR(22)-adaLasso 1.2562 0.9917 0.9960 1.1235 0.7035 1.1500 1.0254 1.3578 

AR(22)-grpLasso 0.7748 0.5588* 0.6312 0.6484 0.6764 0.7803 0.6104 0.9194 

AR(22)-ordLasso 0.9450 0.5757 0.7266 0.9811 0.7118 1.1335 0.7213 0.9949 

AR(100)-Lasso 1.2641 0.9976 1.0440 1.1452 1.1056 1.2016 1.0601 1.3612 

AR(100)-adalasso 1.2322 0.7876 1.0239 1.0438 0.9155 1.1694 0.5852* 1.3484 

AR(100)-grpLasso 0.7572 0.5588* 0.6002 0.6527 0.6528 0.7379 0.6581 0.8905* 

AR(100)-ordLasso 0.6335* 0.6574 0.5240* 0.6301* 0.6420* 0.7215* 1.0280 0.9397 

 h=5 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  0.9874 0.9733 0.9869 0.9747 0.9909 0.9834 0.9916 0.9733 

AR(22)-Lasso 0.4391 0.6759 0.3720 0.4066 0.3896 0.4151 0.3691* 0.7276 

AR(22)-adalasso 0.4267 0.7340 0.3660 0.4037 0.3829 0.4105 0.4752 0.7340 

AR(22)-grpLasso 0.4342 0.5000 0.4172 0.6040 0.3847 0.3859 0.6716 0.5000 

AR(22)-ordLasso 0.4251* 0.4274* 0.3366* 0.3816* 0.3805* 0.3431* 0.4082 0.4584* 

AR(100)-Lasso 0.4396 0.4364 0.3678 0.4045 0.3966 0.3686 0.3870 0.4623 

AR(100)-adalasso 0.5559 0.6719 0.3907 0.4950 0.3933 0.4778 0.5384 0.6719 

AR(100)-grpLasso 0.5269 0.5453 0.4515 0.6683 0.4196 0.4091 0.8376 0.5453 

AR(100)-ordLasso 0.5036 0.4626 0.7203 1.3994 0.7680 0.3811 0.9855 0.4626 

 h=22 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  0.9929 1.0007 0.9923 0.9994 0.9934 0.9970 0.9969 0.9966 

AR(22)-Lasso 0.6150 0.5879 0.5803 0.5406 0.7171 0.5420* 0.7696 0.5792 

AR(22)-adalasso 0.6851 0.5898 0.6365 0.5403 0.8478 0.8091 0.7943 0.6275 

AR(22)-grpLasso 0.6974 0.6654 0.6124 0.5797 0.7514 0.5493 0.9393 0.5935 

AR(22)-ordLasso 0.6018* 0.5875* 0.5678* 0.5303* 0.7346 0.5537 0.7509* 0.5556* 

AR(100)-Lasso 0.6584 0.5944 0.5942 0.5364 0.7083* 0.5670 0.7862 0.6193 

AR(100)-adalasso 0.8292 0.6335 0.6186 0.6062 0.7117 0.7718 0.9050 0.7243 

AR(100)-grpLasso 0.7161 0.6785 0.6254 0.5414 0.7432 0.5733 1.0498 0.6155 

AR(100)-ordLasso 0.7094 0.8017 0.9535 0.5341 0.7697 0.5785 0.8252 0.5970 

Note: This table reports the forecasting evaluation (MSE) of eight RV index for all forecasting models considered using 

rolling window approach (window size = 1000) over daily, weekly and monthly horizons (h=1, 5 and 22) and the out-of-

sample period from 1st November 2010 to 31st October 2020. The standard HAR model is regarded as benchmark and 

the forecasting model with the best performance is highlighted with *. 
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Table 4: Out-of-sample forecasting evaluation using MSE of increasing window forecasting 

 FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

 h=1 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  0.9964 0.9940 1.0001 0.9999 0.9927 0.9946 1.0017 0.9932 

AR(22)-Lasso 1.2830 1.0081 1.0713 1.1623 1.1270 1.1858 1.0917 1.3671 

AR(22)-adalasso 1.2418 0.9793 0.9872 1.1074 0.6424 1.1240 1.0223 1.3496 

AR(22)-grpLasso 0.7250 0.5354 0.5921 0.6017 0.6898 0.7561 0.5708* 0.9346 

AR(22)-ordLasso 1.1679 0.5885 0.9578 1.1026 0.6687 1.1559 0.9744 1.2627 

AR(100)-Lasso 1.2691 0.9953 1.0496 1.1477 1.1238 1.1800 1.0678 1.3635 

AR(100)-adalasso 1.2404 0.7267 1.0135 1.0227 0.9026 1.1511 0.4372 1.3516 

AR(100)-grpLasso 0.7064 0.5321 0.5614 0.5986* 0.6468 0.7141 0.5764 0.8987 

AR(100)-ordLasso 0.5581* 0.4169* 0.4783* 0.9694 0.4650* 0.4548* 0.8090 0.6305* 

 h=5 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  0.9834 0.9671 0.9847 0.9710 0.9837 0.9810 0.9833 0.9671 

AR(22)-Lasso 0.3597 0.3899 0.3505 0.3528 0.3376 0.3487 0.3417 0.3899 

AR(22)-adalasso 0.3970 0.6842 0.3559 0.3531 0.3886 0.3921 0.4361 0.6842 

AR(22)-grpLasso 0.4076 0.4366 0.3912 0.4412 0.3610 0.3461 0.4930 0.4366 

AR(22)-ordLasso 0.3275* 0.3754* 0.3346* 0.3296* 0.3019* 0.3382* 0.3255* 0.3754* 

AR(100)-Lasso 0.3663 0.3970 0.3481 0.3575 0.3396 0.3546 0.3422 0.3970 

AR(100)-adalasso 0.5111 0.6198 0.3483 0.4387 0.3398 0.4453 0.4644 0.6198 

AR(100)-grpLasso 0.4325 0.4636 0.4118 0.4860 0.3900 0.3603 0.5811 0.4636 

AR(100)-ordLasso 0.3371 0.3857 0.3485 0.4848 0.3542 0.3406 0.3972 0.3857 

 h=22 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  0.9893 0.9932 0.9872 0.9971 0.9887 0.9945 0.9876 0.9913 

AR(22)-Lasso 0.5775 0.5478 0.5748 0.5135 0.6557 0.5205 0.6941 0.5591 

AR(22)-adalasso 0.6331 0.5505 0.6253 0.5151 0.8312 0.7618 0.7126 0.5989 

AR(22)-grpLasso 0.5957 0.5722 0.5887 0.5261 0.7013 0.5130* 0.7462 0.5683 

AR(22)-ordLasso 0.5717* 0.5439 0.5709* 0.5101* 0.6712 0.5139 0.6881* 0.5496* 

AR(100)-Lasso 0.5880 0.5359* 0.5766 0.5114 0.6402* 0.5331 0.6898 0.5689 

AR(100)-adalasso 0.7406 0.5746 0.5960 0.5807 0.6602 0.7163 0.7886 0.6689 

AR(100)-grpLasso 0.6156 0.5776 0.5994 0.5191 0.6885 0.5227 0.7824 0.5802 

AR(100)-ordLasso 0.5868 0.5433 0.6281 0.5111 0.6748 0.5345 0.6956 0.5598 

Note: This table reports the forecasting evaluation (MSE) of eight RV index for all forecasting models considered using 

increasing window approach over daily, weekly and monthly horizons (h=1, 5 and 22) and the out-of-sample period 1st 

November 2010 to 31st October 2020. The standard HAR model is regarded as benchmark and the forecasting model 

with the best performance is highlighted with *. 
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Table 5: Out-of-sample forecasting evaluation using QLIKE of rolling window forecasting 

 FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

 h=1 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  1.0009 1.0018 1.0010 1.0075 1.0029 0.9950 1.0086 0.9968 

AR(22)-Lasso 1.2850 1.0339 1.0719 1.1574 1.1197 1.2198 1.0907 1.3997 

AR(22)-adaLasso 1.2589 1.0092 0.9939 1.1144 0.7022 1.1563 1.0207 1.3895 

AR(22)-grpLasso 0.7711 0.5697 0.6338 0.6635 0.6780 0.7774 0.6129 0.9292 

AR(22)-ordLasso 0.9395 0.4586* 0.7278 0.6585 0.5707* 1.1405 0.7167 1.0087 

AR(100)-Lasso 1.2663 1.0131 1.0484 1.1344 1.1200 1.2215 1.0571 1.3939 

AR(100)-adalasso 1.2307 0.7975 1.0269 1.0321 0.9141 1.1853 0.6094* 1.3790 

AR(100)-grpLasso 0.7520 0.5686 0.6054* 0.6543 0.6440 0.7402 0.6644 0.8996* 

AR(100)-ordLasso 0.7436* 0.9365 0.7927 0.6538* 0.9711 0.7253* 1.3687 1.0901 

 h=5 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  0.9880 0.9753 0.9862 0.9750 0.9904 0.9860 0.9903 0.9753 

AR(22)-Lasso 0.4624 0.4241 0.3683 0.4116 0.4044 0.3759 0.3689* 0.5185 

AR(22)-adalasso 0.4438 0.7362 0.3753 0.4074 0.3895 0.4172 0.4791 0.7362 

AR(22)-grpLasso 0.5152 0.5109 0.4358 0.6358 0.3899 0.3920 0.6924 0.5109 

AR(22)-ordLasso 0.3968* 0.4121* 0.3441* 0.3926* 0.3858* 0.3575* 0.4929 0.4970* 

AR(100)-Lasso 0.3991 0.4439 0.3778 0.4101 0.4025 0.3864 0.3877 0.5100 

AR(100)-adalasso 0.5646 0.6765 0.3963 0.5029 0.3907 0.4881 0.5466 0.6765 

AR(100)-grpLasso 0.5484 0.5570 0.4735 0.7025 0.4266 0.4165 0.8615 0.5570 

AR(100)-ordLasso 0.4094 0.4707 0.7335 1.4427 0.7768 0.3877 1.0171 0.4990 

 h=22 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  0.9916 0.9997 0.9910 0.9988 0.9948 0.9958 0.9969 0.9963 

AR(22)-Lasso 0.6233 0.6072 0.5816 0.5378 0.8115 0.5368* 0.7720 0.5919 

AR(22)-adalasso 0.7024 0.6124 0.6390 0.5379 0.7912 0.7800 0.7986 0.6432 

AR(22)-grpLasso 0.7251 0.6928 0.6205 0.5896 0.7664 0.5379 0.9498 0.6092 

AR(22)-ordLasso 0.6104* 0.6056* 0.5691* 0.5282* 0.7521 0.5439 0.7543* 0.5687* 

AR(100)-Lasso 0.6655 0.6086 0.5985 0.5423 0.7246* 0.5590 0.7906 0.6322 

AR(100)-adalasso 0.8470 0.6462 0.6217 0.6143 0.7323 0.7482 0.9152 0.7384 

AR(100)-grpLasso 0.7468 0.7107 0.6368 0.5555 0.7630 0.5621 1.0657 0.6324 

AR(100)-ordLasso 0.7255 0.8386 0.9678 0.5472 0.7913 0.5680 0.8416 0.6094 

Note: This table reports the forecasting evaluation (QLIKE) of eight RV index for all forecasting models considered 

using rolling window approach (window size = 1000) over daily, weekly and monthly horizons (h=1, 5 and 22) and the 

out-of-sample period from1st November 2010 to 31st October 2020. The standard HAR model is regarded as 

benchmark, the forecasting model with the best performance is highlighted with *. 
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Table 6: Out-of-sample forecasting evaluation using QLIKE of increasing window forecasting 

 FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

 h=1 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  0.9967 0.9938 0.9999 1.0007 0.9919 0.9949 1.0014 0.9938 

AR(22)-Lasso 1.2927 1.0244 1.0792 1.1549 1.1412 1.1987 1.0894 1.4018 

AR(22)-adalasso 1.2483 0.9935 0.9881 1.0985 0.6472 1.1331 1.0181 1.3821 

AR(22)-grpLasso 0.7229 0.5391 0.5936 0.5959 0.6925 0.7551 0.5682 0.9468 

AR(22)-ordLasso 1.1729 0.5884 0.9631 1.0939 0.6710 1.1645 0.9707 1.2910 

AR(100)-Lasso 1.2761 1.0086 1.0570 1.1385 1.1416 1.2017 1.0657 1.3985 

AR(100)-adalasso 1.2451 0.7313 1.0200 1.0113 0.9033 1.1693 0.4435* 1.3852 

AR(100)-grpLasso 0.7024 0.5337 0.5640 0.5919* 0.6511 0.7182 0.5758 0.9099 

AR(100)-ordLasso 0.5595* 0.4235* 0.4821* 0.9570 0.4727* 0.4738* 0.8085 0.6387* 

 h=5 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  0.9841 0.9694 0.9851 0.9710 0.9833 0.9837 0.9823 0.9694 

AR(22)-Lasso 0.3660 0.3935 0.3593 0.3529 0.3441 0.3650 0.3365 0.3935 

 AR(22)-adalasso 0.4069 0.6843 0.3618 0.3529 0.3954 0.4014 0.4304 0.6843 

AR(22)-grpLasso 0.4141 0.4407 0.4013 0.4458 0.3655 0.3594 0.4980 0.4407 

AR(22)-ordLasso 0.3313* 0.3785* 0.3424* 0.3293* 0.3065* 0.3531 0.3214* 0.3785* 

AR(100)-Lasso 0.3724 0.4011 0.3584 0.3577 0.3468 0.3740 0.3373 0.4011 

AR(100)-adalasso 0.5136 0.6198 0.3577 0.4380 0.3446 0.4612 0.4619 0.6198 

AR(100)-grpLasso 0.4391 0.4681 0.4233 0.4908 0.3963 0.3764 0.5887 0.4681 

AR(100)-ordLasso 0.3406 0.3886 0.3572 0.4883 0.3595 0.3376* 0.3952 0.3886 

 h=22 

HAR model  1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

HAR-free model  0.9888 0.9921 0.9861 0.9966 0.9891 0.9936 0.9871 0.9912 

AR(22)-Lasso 0.5707 0.5463 0.5757 0.5081 0.6722 0.5208 0.6770 0.5677 

AR(22)-adalasso 0.6328 0.5500 0.6251 0.5103 0.8554 0.7445 0.6964 0.6096 

AR(22)-grpLasso 0.5936 0.5760 0.5903 0.5298 0.7208 0.5112* 0.7354 0.5771 

AR(22)-ordLasso 0.5653* 0.5440* 0.5713* 0.5046* 0.6898 0.5124 0.6709* 0.5589* 

AR(100)-Lasso 0.5817 0.5528 0.5807 0.5130 0.6631* 0.5337 0.6737 0.5773 

AR(100)-adalasso 0.7371 0.5762 0.6002 0.5834 0.6862 0.7085 0.7723 0.6766 

AR(100)-grpLasso 0.6178 0.5868 0.6040 0.5274 0.7108 0.5236 0.7783 0.5893 

AR(100)-ordLasso 0.5821 0.5564 0.6336 0.5155 0.7027 0.5323 0.6808 0.5687 

Note: This table reports the forecasting evaluation (QLIKE) of eight RV index for all forecasting models considered 

using increasing window approach over daily, weekly and monthly horizons (h=1, 5 and 22) and the out-of-sample 

period from 1st November 2010 to 31st October 2020. The standard HAR model is regarded as benchmark, the 

forecasting model with the best performance is highlighted with *. 

  



 

34 

Table 7: The Model Confidence Set test of MSE criterion for rolling window forecasting 

 FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

h=1 

HAR model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-ordLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000* 0.0000 

AR(100)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.3382 0.0000 1.0000* 

AR(100)-ordLasso  1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.0000 0.0000 

h=5 

HAR model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 0.0000 0.0000 0.0000 0.7598 0.0000 0.0000 1.0000* 0.0000 

AR(22)-adalasso  0.0000 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 0.0000 

AR(22)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-ordLasso  1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.0000 1.0000* 

AR(100)-Lasso 0.0000 0.0000 0.0000 0.0000 0.4338 0.0000 0.0000 0.0000 

AR(100)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-ordLasso  0.0000 0.6980 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

h=22 

HAR model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 0.0000 1.0000* 0.9266 0.8238 1.0000* 0.3450 0.0898 1.0000* 

AR(22)-adalasso  0.0000 0.0830 0.0000 0.0000 0.0000 1.0000* 0.0032 0.0000 

AR(22)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5662 

AR(22)-ordLasso  1.0000* 1.0000* 1.0000* 1.0000* 0.9064 0.9268 1.0000* 1.0000* 

AR(100)-Lasso 0.0000 0.7380 0.3464 0.3496 0.8944 0.4378 1.0000* 0.0000 

AR(100)-adalasso  0.0000 0.0000 0.0000 0.0000 0.8080 0.0000 0.7376 0.0000 

AR(100)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

AR(100)-ordLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.5780 0.0000 0.6440 

Note: This table reports the MSC test in term of MSE criterion for eight RV index over daily, weekly and 

monthly horizons (h=1, 5 and 22). The forecasting models with EPA at 75% confidence level is highlighted 

in table. 
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Table 8: The Model Confidence Set test of MSE criterion for rolling window forecasting 

 FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

h=1 

HAR model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-ordLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000* 0.0000 

AR(100)-grpLasso  0.0000 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 0.0000 

AR(100)-ordLasso  1.0000* 1.0000* 1.0000* 0.0000 1.0000* 1.0000* 0.0000 1.0000* 

h=5 

HAR model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 0.0000 0.3110 0.4856 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-adalasso  0.0000 0.0000 0.5088 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-ordLasso  1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 

AR(100)-Lasso 0.0000 0.3052 0.9526 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-adalasso  0.0000 0.0000 0.8978 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-ordLasso  0.0000 0.7502 0.7260 0.0000 0.0000 0.0000 0.0000 0.2932 

h=22 

HAR model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 0.0030 0.5900 0.5952 0.9998 1.0000* 0.0000 0.4958 1.0000 

AR(22)-adalasso  0.0000 0.5900 0.0000 0.0000 0.0000 0.3350 0.0000 0.0000 

AR(22)-grpLasso  0.5826 0.4416 0.5896 0.0000 0.0000 0.0000 0.0000 0.3482 

AR(22)-ordLasso  1.0000* 1.0000* 1.0000* 1.0000* 0.3866 0.0000 1.0000* 1.0000* 

AR(100)-Lasso 1.0000* 1.0000* 1.0000* 0.9748 0.6676 0.0000 1.0000* 0.6060 

AR(100)-adalasso  0.0000 0.3232 0.0080 0.0000 0.0000 0.0000 0.9816 0.0000 

AR(100)-grpLasso  0.4538 0.4218 0.6894 0.0000 0.0000 1.0000* 0.0000 0.0000 

AR(100)-ordLasso  0.5674 1.0000* 0.0000 0.9340 0.0000 0.0000 0.0000 1.0000* 

Note: This table reports the MSC test in term of QLIKE criterion for eight RV index over daily, weekly and 

monthly horizons (h=1, 5 and 22). The forecasting models with EPA at 75% confidence level is highlighted 

in table. 
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Table 9: The Model Confidence Set test of QIIKE criterion for rolling window forecasting 

 FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

h=1 

HAR model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-grpLasso  0.0000 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 0.0000 

AR(22)-ordLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000* 0.0000 

AR(100)-grpLasso  0.0000 0.0000 1.0000* 0.9336 0.0000 0.3184 0.7396 1.0000* 

AR(100)-ordLasso  1.0000* 1.0000* 0.0000 0.8774 1.0000* 1.0000* 0.0000 0.0000 

h=5 MSE MSE MSE MSE MSE MSE MSE MSE 

HAR model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 0.0000 0.0000 0.0000 0.3517 0.1411 0.9294 1.0000* 0.0000 

AR(22)-adalasso  0.0000 0.0000 0.0000 0.4916 0.4478 0.0000 0.0000 0.0000 

AR(22)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-ordLasso  1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.0000 1.0000* 

AR(100)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.3896 0.0000 0.0000 

AR(100)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-ordLasso  0.0000 0.6224 0.0000 0.0000 0.0000 0.6110 0.0000 0.0000 

h=22 MSE MSE MSE MSE MSE MSE MSE MSE 

HAR model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 0.0000 0.9258 0.1892 0.0000 1.0000* 1.0000* 0.0000 1.0000* 

AR(22)-adalasso  0.0000 0.0376 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.2777 1.0000* 0.0000 0.4708 

AR(22)-ordLasso  1.0000* 1.0000* 1.0000* 1.0000* 0.9992 0.6852 1.0000* 1.0000* 

AR(100)-Lasso 0.0000 0.8444 0.2798 0.0000 1.0000* 0.3158 0.0000 0.0000 

AR(100)-adalasso  0.0000 0.0000 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 

AR(100)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.2950 1.0000* 0.0000 0.0000 

AR(100)-ordLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.4782 0.0000 0.7344 

Note: This table reports the MSC test in term of MSE criterion for eight RV index over daily, weekly and 

monthly horizons (h=1, 5 and 22). The forecasting models with EPA at 75% confidence level is highlighted 

in table.  
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Table 10: The Model Confidence Set test of QLIKE criterion increasing window forecasting 

 FTSE SPX N225 DAX SSEC NSEI BSVP MXX 

h=1 

HAR model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-ordLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-Lasso 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-adalasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000* 0.0000 

AR(100)-grpLasso  0.0000 0.0000 0.0000 1.0000* 0.0000 0.0000 0.0000 0.0000 

AR(100)-ordLasso  1.0000* 1.0000* 1.0000* 0.0000 1.0000* 1.0000* 0.0000 1.0000* 

h=5 

HAR model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 0.0000 0.0000 0.9834 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-adalasso  0.0000 0.0000 0.8608 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-ordLasso  1.0000* 1.0000* 1.0000* 1.0000* 1.0000* 0.0000 1.0000* 1.0000* 

AR(100)-Lasso 0.0000 0.0000 0.9796 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-adalasso  0.0000 0.0000 0.8396 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-grpLasso  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-ordLasso  0.0000 0.0000 0.8382 0.0000 0.0000 1.0000* 0.0000 0.2696 

h=22 

HAR model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

HAR-free model  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(22)-Lasso 0.0566 0.8322 0.5288 0.8646 1.0000* 0.0000 0.6154 1.0000* 

AR(22)-adalasso  0.0000 0.3262 0.0000 0.0000 0.0000 0.5948 0.0000 0.0000 

AR(22)-grpLasso  0.3408 0.0000 0.2606 0.0000 0.0000 0.0000 0.0000 0.3688 

AR(22)-ordLasso  1.0000* 1.0000* 1.0000* 1.0000* 0.4752 0.0000 1.0000* 1.0000* 

AR(100)-Lasso 0.9994 1.0000* 1.0000* 0.4628 0.9588 0.0000 1.0000* 0.7608 

AR(100)-adalasso  0.0000 0.0000 0.0006 0.0000 0.0000 0.0000 0.0000 0.0000 

AR(100)-grpLasso  0.0000 0.0000 0.5640 0.0000 0.0000 1.0000* 0.0000 0.0000 

AR(100)-ordLasso  1.0000* 0.7770 0.0000 0.0000 0.0000 0.0000 0.8940 1.0000* 

Note: This table reports the MSC test in term of QLIKE criterion for eight RV index over daily, weekly and 

monthly horizons (h=1, 5 and 22). The forecasting models with EPA at 75% confidence level is highlighted 

in table.  
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Table 11: Summary of 1% and 5% VaR failure rates of rolling window forecasting 

 1% 5% 

 Ave. failure rate Sig. Weibull test Sig. DQ test Ave. failure rate Sig. Weibull test Sig. DQ test 

h=1 

HAR model 0.0369 SSEC, N225 All 0.0833 SSEC, NSEI All 

HAR-free model 0.0375 SSEC, N225 All 0.0830 SSEC, NSEI All 

AR (22)-Lasso 0.0369 
FTSE, SPX, N225, DAX, 

SSEC, NSEI 
All 0.0861 All All 

AR (22)-Lasso 0.0360 
FTSE, SPX, N225, DAX, 

SSEC, NSEI 
All 0.0860 All All 

AR (22)-grpLasso 0.0274 FTSE, SSEC All 0.0801 
N225, DAX, SSEC, NSEI, 

BSVP 
All 

AR (22)-ordLasso 0.0299 
FTSE, SPX, N225, DAX, 

SSEC, NSEI, 
All 0.0790 

FTSE, N225, DAX, SSEC,  

NSEI, BSVP 
All 

AR (100)-Lasso 0.0370 

FTSE, SPX, N225, DAX, 

SSEC 

NSEI 

All 0.0861 
FTSE, N225, DAX, SSEC, 

NSEI, BSVP, MXX 
All 

AR (100)-adaLasso 0.0334 
FTSE, N225, DAX, SSEC, 

NSEI 
All 0.0834 

FTSE, N225, SSEC, NSEI, 

MXX 
All 

AR (100)-grpLasso 0.0277 FTSE, SPX, N225, SSEC All 0.0777 
N225, DAX, SSEC, NSEI, 

MXX 
All 

AR (100)-ordLasso 0.0267 SSEC, NSEI, BSVP All 0.0781 FTSE, DAX, SSEC, NSEI All 

h=5 

HAR model 0.0016 FTSE, SPX, N225, NSEI All 0.0051 
FTSE, SPX, N225, DAX, 

NSEI, BSVP, MXX 
All 

HAR-free model 0.0013 FTSE, SPX, N225, NSEI All 0.0050 All All 

AR (22)-Lasso 0.0002 N225 All 0.0010 
FTSE, SPX, N225, SSEC, 

MXX 
All 

AR (22)-adaLasso 0.0001 None All 0.0013 FTSE, SPX, MXX All 

AR (22)-grpLasso 0.0002 N225 All 0.0010 SPX, N225, SSEC, MXX All 

AR (22)-ordLasso 0.0001 N225 All 0.0008 
FTSE, SPX, N225, SSEC, 

MXX 
All 

AR (100)-Lasso 0.0002 N225 All 0.0013 
FTSE, SPX, N225, SSEC, 

MXX 
All 

AR (100)-adaLasso 0.0003 N225 All 0.0015 FTSE, SPX, N225, MXX All 

AR (100)-grpLasso 0.0002 N225 All 0.0011 SPX, N225, SSEC, MXX All 

AR (100)-ordLasso 0.0002 None All 0.0012 
FTSE, SPX, N225, SSEC, 

MXX 
All 

h=22 

HAR model 0.0000 None All 0.0000 None All 

HAR-free model 0.0000 None All 0.0000 None All 

AR (22)-Lasso 0.0000 None All 0.0000 None All 

AR (22)-adaLasso 0.0000 None All 0.0000 None All 

AR (22)-grpLasso 0.0000 None All 0.0000 None All 

AR (22)-ordLasso 0.0000 None All 0.0000 None All 

AR (100)-Lasso 0.0000 None All 0.0000 None All 

AR (100)-adaLasso 0.0000 None All 0.0000 None All 

AR (100)-grpLasso 0.0000 None All 0.0000 None All 

AR (100)-ordLasso 0.0000 None All 0.0000 None All 

Notes: this table provides the VaR results of rolling window test at the 1% and 5% VaR level. The average failure rate for each model over each index. 

The series are significant in the Weibull test and DQ test are listed.   
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Table 12: Summary of 1% and 5% VaR test of increasing window forecasting 

 1% 5% 

 Ave. failure rate Sig. Weibull test Sig. DQ test Ave. failure rate Sig. Weibull test Sig. DQ test 

h=1 

HAR model 0.0354 SSEC, NSEI All 0.0816 SSEC, NSEI All 

HAR-free model 0.0357 SSEC All 0.0816 SSEC, NSEI All 

AR (22)-Lasso 0.0368 
FTSE, SPX, N225, DAX, 

SSEC, NSEI 
All 0.0856 All All 

AR (22)-adaLasso 0.0347 
FTSE, SPX, N225, DAX, 

SSEC, NSEI 
All 0.0845 All All 

AR (22)-grpLasso 0.0264 FTSE, N225, SSEC All 0.0757 
FTSE, N225, DAX, SSEC, 

NSEI, BSVP 
All 

AR (22)-ordLasso 0.0335 
FTSE, SPX, N225, DAX, 

SSEC, NSEI 
All 0.0825 All All 

AR (100)-Lasso 0.0367 
FTSE, SPX, N225, DAX, 

SSEC, NSEI 
All 0.0855 

FTSE, N225, DAX, SSEC, 

NSEI, BSVP, MXX 
All 

AR (100)-adaLasso 0.0317 
FTSE, N225, DAX, SSEC, 

NSEI 
All 0.0804 

FTSE, N225, DAX, SSEC, 

NSEI, MXX 
All 

AR (100)-grpLasso 0.0263 FTSE, SSEC All 0.0750 
N225, DAX, SSEC, NSEI, 

BSVP, MXX 
All 

AR (100)-ordLasso 0.0237 
N225, DAX, SSEC, BSVP,  

MXX 
All 0.0701 

FTSE, N225, DAX, SSEC, 

NSEI 
All 

h=5 

HAR model 0.0016 FTSE, SPX, N225, NSEI All 0.0048 
FTSE, SPX, N225, DAX, 

NSEI, BSVP, MXX 
All 

HAR-Free model 0.0014 FTSE, SPX, N225, NSEI All 0.0048 
FTSE, SPX, N225, DAX, 

NSEI, BSVP, MXX 
All 

AR (22)-Lasso 0.0002 N225 All 0.0011 
FTSE, N225, DAX, SSEC, 

NSEI, MXX 
All 

AR (22)-adaLasso 0.0001 N225 All 0.0011 FTSE, N225, NSEI, MXX All 

AR (22)-grpLasso 0.0001 N225 All 0.0009 FTSE, N225, MXX All 

AR (22)-ordLasso 0.0001 N225 All 0.0010 FTSE, SPX, N225, MXX All 

AR (100)-Lasso 0.0002 N225 All 0.0011 FTSE, N225, SSEC, MXX All 

AR (100)-adaLasso 0.0002 N225 All 0.0012 FTSE, N225, MXX All 

AR (100)-grpLasso 0.0001 N225 All 0.0010 FTSE, N225, SSEC, MXX All 

AR (100)-ordLasso 0.0001 None All 0.0009 FTSE, SSEC, MXX All 

h=22 

HAR model  0.0000 None All 0.0000 None All 

HAR-free model  0.0000 None All 0.0000 None All 

AR (22)-Lasso 0.0000 None All 0.0000 None All 

AR (22)-adaLasso 0.0000 None All 0.0000 None All 

AR (22)-grpLasso 0.0000 None All 0.0000 None All 

AR (22)-ordLasso 0.0000 None All 0.0000 None All 

AR (100)-Lasso 0.0000 None All 0.0000 None All 

AR (100)-adaLasso 0.0000 None All 0.0000 None All 

AR (100)-grpLasso 0.0000 None All 0.0000 None All 

AR (100)-ordLasso 0.0000 None All 0.0000 None All 

Notes: this table provides the VaR results of increasing window test at the 1% and 5% VaR level. The average failure rate for each model over each index. 

The series are significant in the Weibull test and DQ test are listed.   

 

 

 


