
For Review Only
Some files related to this submission may NOT be included in this proof because of their format or due to 
length. Please check "files" in the reviewer menu.

Opportunities and limitations for the introduction of circular 
economy principles in EU aquaculture based on the 

regulatory framework

Journal: Journal of Industrial Ecology

Manuscript ID 20-JIE-6815.R2

Wiley - Manuscript type: Research & Analysis

Date Submitted by the 
Author: 25-Jun-2021

Complete List of Authors: Regueiro, Leticia; ANFACO-CECOPESCA, Department of Circular 
Economy
Newton, Richard; University of Stirling, Institute of Aquaculture
Soula, Mohamed; ANFACO-CECOPESCA, Department of Aquaculture
Méndez, Diego ; ANFACO-CECOPESCA, Department of Circular Economy
Kok, Björn; University of Stirling, Institute of Aquaculture
Little, David C.; University of Stirling, Institute of Aquaculture
Pastres, Roberto; Università Ca' Foscari, Department of Environmental 
Sciences, Informatics and Statistics
Johansen, Johan; NIBIO
Ferreira, Martiña; ANFACO-CECOPESCA, Department of Aquaculture

Keywords: sustainability, circular economy, industrial ecology, policy analysis, life 
cycle assessment (LCA), animal by-product

User-Supplied Keywords:  

Abstract:

EU aquaculture produces only a small fraction of the internal demand of 
aquatic foods, but boosting this activity must be done in compliance with 
high standards of environmental protection and social benefits, as 
fostered by the policies on circular economy recently launched by the EU. 
Nevertheless, the assessment of the environmental sustainability of 
aquaculture and other food production systems is complex, due to the 
different tools and approached available. Moreover, the current EU 
regulatory framework may be restricting the options to implement some 
circular solutions. This paper revises the controversies related to the 
assessment of environmental impacts of aquaculture processes and 
examines the different available circular solutions, with a focus on the 
best options to valorise aquaculture side streams and how current 
regulatory burdens and gaps should be solved. 
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Abstract 17 

EU aquaculture produces only a small fraction of the internal demand of aquatic foods, but 18 

boosting this activity must be done in compliance with high standards of environmental 19 

protection and social benefits, as fostered by the policies on circular economy recently launched 20 

by the EU. Nevertheless, the assessment of the environmental sustainability of aquaculture and 21 

other food production systems is complex, due to the different tools and approached available. 22 

Moreover, the current EU regulatory framework may be restricting the options to implement 23 
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some circular solutions. This paper examines the controversies related to the assessment of 24 

environmental impacts of aquaculture processes and the different available circular solutions, 25 

with a focus on the best options to valorise aquaculture side streams and how current regulatory 26 

burdens and gaps should be solved.  27 

 28 

1. Introduction 29 

Human population growth exacerbates the demand for food, posing an increasing pressure over 30 

terrestrial and aquatic ecosystems, threatening biodiversity (Crist et al., 2017) and ecosystem 31 

services, and contributing to intensify climate change (Crippa et al., 2021). It is therefore 32 

paramount to prioritise the lowest-impact food production systems, while at the same time 33 

ensuring food security. Many aquaculture activities cause lower environmental impacts 34 

compared to the production of other livestock (Hillborn et al., 2018; Poore&Nemecek, 2018), 35 

and aquaculture plays a significant role in securing nutritious diets, contributing to 52% of the 36 

world supply of aquatic animal-source foods (FAO, 2020). However, aquaculture production is 37 

highly unbalanced among world regions (FAO, 2020). In the EU, aquaculture accounts only for 38 

20% of the ca. 6.6 million t of fisheries products generated every year, and the EU must import 39 

61 % of the fish and seafood that consumes (EUMOFA, 2019). In the context of the stagnation 40 

of EU fishing landings (EUROSTAT, 2021) enhancing internal aquaculture production seems to 41 

be the option to increase the self-sufficiency rate for aquatic products and to reduce the 42 

dependence from imports from third countries, which may not comply with the stringent 43 

requirements in food safety (European Commission, 2001) or environmental protection which 44 

EU applies (Jespersen et al., 2014). 45 

The importance of boosting the sustainable development of EU aquaculture has been 46 

recognised by the European Commission (2002; 2009; 2013). Since environmental protection 47 

must be the bedrock of the development of EU aquaculture, the sector must be able to 48 
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simultaneously intensify its productivity and its environmental performance. In this sense, 49 

circular economy (CE) strategies provide the path towards a better use of resources and less 50 

waste production. Recently, the EU launched the European Green Deal (European Commission, 51 

2019), the roadmap for making EU’s economy environmentally sustainable. As part of this 52 

agenda, a new Circular Economy Action Plan (European Commission, 2020) has been recently 53 

published which aims to involve economic actors, consumers, citizens and civil society 54 

organisations in the dynamization of the regulatory framework. This opens a new horizon for 55 

the implementation of circular economy in aquaculture production; nevertheless, assessing the 56 

environmental sustainability of aquaculture processes and their inputs is usually a complex 57 

matter, due to the diversity of analytical tools and approaches that can be used. Besides, 58 

maintaining or promoting the competitiveness, productivity and durability of the EU aquaculture 59 

sector involves dealing with a corpus of policies and regulations regarding marine and coastal 60 

management, environmental protection, waste or animal health, among others, and at different 61 

institutional levels (Alexander et al., 2015; Soininen et al., 2019), which may complicate or 62 

discourage the implementation of more sustainable aquaculture practices. One way to 63 

guarantee the sustainable aquaculture production is through the adoption of eco-labeling and 64 

certification systems (Nhu et al., 2016). Eco-labeling of the European aquaculture products can 65 

be evaluated in a positive way by the Nutri-score labeling (Purnhagen&Schebesta, 2019), 66 

promoting local products with a positive consumer perception across environmental and 67 

nutritional labels, i.e.  nexus (Leivas et al., 2020). This work examines the main environmental 68 

aspects of European aquaculture under a CE approach and the different insights assessment 69 

tools may provide, together with the regulatory framework and a revision of the opportunities 70 

and constraints it determines.  71 

 72 

2. Circular economy and aquaculture 73 
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Notwithstanding the current interest in CE, it is a controversial concept, since the expected 74 

approaches implied by “CE” can be questioned from the different points of view 75 

(Carew&Mitchell 2008). Nevertheless, there is broad consensus to define the CE based on its 76 

opposite, the linear economy: take, make, consume, and dispose; while the objective of 77 

integrating circular processes is closing loops in industrial ecosystems, minimizing waste (Stahel, 78 

2016). CE pursues minimization of raw material inputs, valorisation of wastes or sidestreams, 79 

preservation of the resource value of a product as long as possible during its life cycle, processes 80 

redesign and reintegration of used products at their end-of-life.  81 

CE, according to Ellen McArthur Foundation (2012), should be restorative and regenerative by 82 

design, and differentiate technical and biological cycles. Technical encompass man-made 83 

materials, whereas the biological pursue the recycling of bio-based materials for the same 84 

manufacturing processes but also for new possible applications. Regarding bio-based processes, 85 

the aquaculture sector has grown rapidly at a global level and is regarded by some as key to 86 

providing essential nutrition (Willet et al., 2019). However, its rapid growth has attracted some 87 

widespread criticism for its environmental and social impacts (Barrett et al., 2002; 88 

Whitmarsh&Wattage, 2006; Bacher, 2015; Osmundsen&Olsen, 2017; Krause et al., 2020). Much 89 

of this criticism has arisen around the provision of feed, particularly marine ingredients (proteins 90 

and oils, mostly from fisheries) and the release of nutrients from farm sites (Naylor et al., 2000; 91 

Deutsch et al., 2007; Martinez-Porchas&Martinez-Cordova, 2012). These issues coincide with 92 

poor markets for fisheries and aquaculture by-products (Stevens et al., 2018), an increasing 93 

requirement for sustainable ingredients for terrestrial and aquaculture livestock (Pelletier et al., 94 

2011), peak phosphorus attainment (Reijnders, 2014; Daneshgar et al., 2018; Udert, 2018), and 95 

increased pressure on land and water resources (Roberts et al., 2015). Therefore, the 96 

aquaculture industry and wider food systems are ripe for application of CE principles that can 97 

solve waste management issues and the need for quality raw material inputs. 98 
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Since CE should be restorative and regenerative, it is necessary to promote the eco-design of 99 

the whole aquaculture processes from the initial phase of facility design, since once facilities are 100 

deployed environmental, economic and social implications remain immovable due to the 101 

complexity of subsequent changes. Decisions made in the design phase, i.e., feed and side-102 

stream uses, effluent treatment..., are critical. Aquaculture future systems should be designed 103 

on the basis of ecological principles, as it is shown in recent systems like Integrated Multi-Trophic 104 

Aquaculture (IMTA), biofloc, aquaponics or aquamimicry.   105 

In sum, new aquaculture models based in CE should explore creative designs that could offer in 106 

the long run the potential to improve profitability and sustainability through the valorisation of 107 

by-products and side-streams. This concept may include from recirculation technologies to the 108 

implementation of IMTA and biofloc schemes, or using sludge for biogas production, co-109 

incineration or fertilisers. More effort in European institutions is required to overcome 110 

socioeconomic, logistic and legislative barriers, as well as producers’ and consumers’ habits, to 111 

address current problems, such as climate change or waste production, linking ecological and 112 

socioeconomic development. 113 

 114 

3. LCA assessment in aquaculture: environmental sustainability considering circular economy 115 

For most products, including food, a Life Cycle Assessment (LCA) approach is often taken to 116 

measure their environmental sustainability. LCA is an ISO accredited environmental impact 117 

accounting system that measures a range of global environmental impacts throughout a 118 

supply/value chain, including carbon footprint, eutrophication, acidification, water and land 119 

footprints amongst other (ISO, 2006a; 2006b). It is a preferred method of assessment in many 120 

cases because it evaluates the whole chain avoiding problem shifting that can lead to unforeseen 121 

consequences in some cases (Ayer&Tyedmers, 2009) and facilitates the identification of 122 

strengths and weaknesses other methods could not reveal (Moura et al., 2016). Despite ISO 123 
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guidelines, there are methodological choices that have a considerable consequence for the 124 

result and interpretation (Ojala et al 2016); critically, the reference (functional) unit against 125 

which impacts are measured, how impacts should be divided between co-products and end-of-126 

life/recycling scenarios. The functional unit (FU) typically used in aquaculture scenarios is the 127 

live weight of fish at the farm. This has consequences for comparing species which have different 128 

edible yields or nutritional value and therefore “functions” and in many cases the utilisation of 129 

the by-product can be very varied also (Stevens et al., 2018), which has important implications 130 

for resource efficiency. However, perhaps the most debated issue is around the allocation of 131 

impacts between co-products emanating from a single process, e.g. the edible portion and then 132 

the by-products from fisheries which may then be used for feed resources. In many cases this is 133 

done by mass so that by-products carry the same proportionate impact as the edible yield, but 134 

many authors argue that by-products should not be assessed in the same way, particularly when 135 

they cause a waste management issue and incentives are required to drive their better 136 

utilisation (Svanes et al., 2011). In such cases, co-product allocation is performed based on its 137 

economic value, so that in they carry very low environmental impacts and incentive is provided 138 

to their use from an environmental impact perspective. However, issues remain with economic 139 

allocation regarding price volatility, temporally and geographically. It has been considered that 140 

the volatile nature of prices may lead to an inconsistency of reporting that may miss real changes 141 

in environmental impacts over time (Svanes et al., 2011).  142 

LCA application to aquaculture has some specific shortcomings in that many of the impacts 143 

associated with aquaculture are local rather than global (Newton&Little, 2018) and some of the 144 

main impacts for which aquaculture has been criticised are not considered within an LCA 145 

framework. A set of three indices for CE evaluation purpose is frequently selected: 146 

measure Global Warming Potential (GWP), non-renewable cumulative energy demand (NRED), 147 

and water scarcity index (WSI; Strazza et al., 2015); nevertheless, in many LCAs aquaculture 148 

products the acidification potential (AP) and eutrophication potential (EP) are also considered 149 
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among the environmental indicators (Kusumowardani&Tjahjono, 2020). While global impacts 150 

such as GWP are important for any industry, academic and NGO criticism of environmental 151 

sustainability towards the aquaculture sector has usually been most concerned by its direct 152 

relationship with ecosystems and “ocean health” (Tlusty et al., 2019). Generally, this has fallen 153 

into two main areas: the acquisition of feed ingredients (particularly marine) and the effects of 154 

disease on wild populations, such as from sea lice (Naylor et al., 2009; Price et al., 2011; Torrissen 155 

et al., 2013). A key example is the use of fishery by-products to produce feed ingredients. 156 

“Marine ingredients”, traditionally derived from small pelagic fish have been at the limit of 157 

exploitation for three decades and as particularly mariculture has grown, it has taken a larger 158 

share of the limited resource (Kok et al., 2020, Naylor et al., 2009; Shepherd et al., 2013). The 159 

impact associated with marine-ingredient use for aquafeeds have usually been measured using 160 

a basic tool called Fish-In Fish-Out (FIFO) ratios (Kok et al 2020). FIFO can be measured using 161 

different methodologies (e.g. Naylor et al., 2000; Tacon&Metian, 2009; Kok et al., 2020), but all 162 

demonstrate the relationship between the quantity of wild caught fish required to produce 163 

farmed fish. In most cases the contribution from fisheries by-products is ignored so that a diet 164 

containing marine ingredients only from by-product resources would have a FIFO of zero. The 165 

discounting of by-product resources from FIFO calculations was to drive waste reduction from 166 

fisheries and reduce the requirement for finite forage fish supplies (Kok et al., 2020) and is 167 

supported by international 3rd party certifiers such as ASC (ASC, 2017), GAA (GAA, 2016) and 168 

GlobalGAP (GlobalGAP, 2019). Consequently, feed formulators have turned to under-utilised 169 

fishery by-products as a new source of raw materials, reducing fishery waste in doing so, so that 170 

around a third of marine ingredients are now derived from by-products (Jackson & Newton, 171 

2016). 172 

 173 

3.1. Impact of aquafeeds provision and opportunities under the LCA perspective 174 
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Most aquaculture LCAs highlight feed as contributing to the majority of LCA impact categories 175 

(e.g. Pelletier et al., 2009, Newton& Little, 2018; Bohnes et al., 2019) except EP impacts were 176 

shared more equally between feed provision and aquaculture farm emissions. Consequently 177 

Feed Conversion Ratio (FCR), i.e., the efficiency of feed conversion is sometimes taken as a proxy 178 

for environmental impacts throughout the value chain and is a key target for reduce impact 179 

(Boyd&McNevin,2016a; 2016b). However, there are many trade-offs between different impacts 180 

related to the formulation of aquafeeds. While in CE strategies the reduction of the FCR should 181 

be a must, the formulation of feed using sustainable ingredients is also imperative.  182 

To reach considerable reductions in FCR, farming practices can be optimized to applying new 183 

technologies such as more efficient feeders, better stock assessment and management using 184 

precision aquaculture techniques. However, although in many cases FCR has shown a decline, 185 

more energy-intensive ingredients such as gluten, soybean concentrate and rapeseed oil have 186 

replaced less energy-intensive marine ingredients, so there is a trade-off between carbon, water 187 

and land footprints against the use of highly limited marine resources (Boissy et al., 2011; 188 

Newton&Little, 2018; Malcorps et al., 2019). Other substitutes such as insects fed with food 189 

waste or seaweed has been considered (Stamer, 2015; Salomone et al., 2016; Tschirner&Kloas, 190 

2017; Swinscoe et al., 2018). However, the reduction of all impacts considered from the LCA 191 

perspective has not been confirmed since this approach is relatively new, and in some cases the 192 

energetic demand to produce new feed materials can be extremely high (Bohnes et al., 2019). 193 

The results of environmental impacts must be exhaustive to avoid future diets displaying worse 194 

environmental profiles than existing ones. For instance, replacing the current marine ingredient-195 

based diets with theoretically more sustainable and circular ones can lead to a second derivative, 196 

which is that the FCR increases since the new foods may be less digestible. This might lead to 197 

increased emissions through the supply chain and at the farm such as eutrophication (Mirto et 198 

al., 2010) and benthic deposition, or higher energetic demand and water consumption in 199 

recirculation systems to eliminate the ammonium nitrogen. In addition, considering the CE goal, 200 
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expensive solutions should be avoided. To reach affordable protein for future aquaculture at a 201 

minimum impact, a clear system to measure farm profits and emissions for all the selected diets 202 

should be performed, also searching for new alternatives such as animal by-products, always 203 

considering possible bioaccumulation and biosecurity issues. 204 

 205 

3.2. Fish by-products as feed ingredients under LCA perspective 206 

In LCA, the appropriation of biotic resources is sometimes measured using the Biotic Resource 207 

Use (BRU) impact category which measures the accumulation of carbon through ecosystems and 208 

supply chains. How much the embodied impact of by-product resources contributes to the 209 

overall footprint depends on the method of co-product partitioning (Svanes et a.,l 2011), which 210 

may lead to LCA studies that either promote or oppose the use of fishery by-products for feed, 211 

depending on the methodology used (e.g. Papatryphon et al., 2004; Pelletier&Tyedmers, 2011). 212 

Svanes et al. (2011) observed that fisheries by-product directed to feed had a GWP over eight 213 

times larger using mass allocation compared to economic. There are many publications that 214 

discuss co-product allocation in detail (e.g. Pelletier&Tyedmers, 2011; Mackenzie et al., 2017) 215 

but few of them regard the problem from a CE perspective. However, the bioeconomy is 216 

different to most recycling in that there is constant transformation. By treating certain parts of 217 

CE in isolation, it is possible to come to completely opposite conclusions regarding the use of by-218 

product resources, particularly when they are redirected from waste. For example, Kim&Kim 219 

(2010) showed that feeding municipal food waste to animals produced significantly less 220 

emissions than disposal options, while Lopes et al. (2015) suggested that producing marine 221 

ingredients from fisheries by-products was equally sustainable to “waste management” options. 222 

Similarly, a SINTEF report (2020) concluded that the use of by-product from seafood processing 223 

offered “considerable improvement potential” over non-utilisation. However, Pelletier et al. 224 

(2009) concluded that aquaculture operations using feeds with higher fisheries by-product 225 
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inclusions were the main driver for considerably poorer GWP, BRU and other impacts compared 226 

to operations using few by-products. Therefore, a contradiction can arise between LCA 227 

publications within the academic literature, depending on methodology, where by-product use 228 

is both encouraged and discouraged at the same time depending on the boundaries of the study 229 

and allocation. Svanes et al. (2011) observed that mass or energy allocation (as used in SINTEF 230 

(2020) and Pelletier et al. (2009)) encourages fish processors to direct their by-products away 231 

from waste but it would discourage any buyer from purchasing them, based on their 232 

environmental footprint. A mass-based allocation treats the utilisation strategies for by-product 233 

use equally, i.e. it would have the same burden if a processor sold them for pet food, fur farming 234 

or human consumption, therefore does not encourage processors to maintain quality for higher 235 

end applications (Svanes et al., 2011) and as circularity increases, by maintaining them within 236 

the food chain, embodied impacts are accumulated. Economic allocation, by contrast would give 237 

higher burdens to human food applications based on their economic value. While this could 238 

seem counter intuitive, consistent use of economic allocation drives the upcycling of wastes, as 239 

it encourages processors to find more lucrative markets for by-products by maintaining their 240 

quality, meeting the objectives of the Food Recovery Hierarchy (US EPA, 2017). Recently Kok et 241 

al., (2020) produced an economically allocated “eFIFO” tool that allows integration with 242 

economically allocated LCA, that take into account the relative value of by-product fractions 243 

throughout the supply chain and differentiation between fishmeal and fish oil, with higher 244 

burdens going to oil as increasingly the more limited ingredient (Kok et al., 2020).  245 

 246 

4. Product Environmental Footprint Category Rules (PEFCR) for aquaculture  247 

Attempts are being made to harmonise approaches to measuring sustainability within the EU 248 

particularly with the development of the Product Environmental Footprint Category Rules 249 

(PEFCR). The PEFCR are the rules which should be applied to measuring the environmental 250 
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footprint of EU products using LCA and have been developed in an effort to harmonise 251 

environmental foot-printing of products (Ojala et al., 2016). The EU is currently developing 252 

PEFCR for major product categories including food and feed products (European Commission, 253 

2016). However, the guide for development of the individual PEFCRs still follows hierarchical 254 

rules based on ISO (2006a; 2006b) and is being conducted by separate expert groups. The result 255 

is inconsistency in how products may be benchmarked against each other. This is especially 256 

critical for circular economy principles which are underpinned by recycling and the use of by-257 

products. Essentially, these principles may be seen favourably or not, depending on the 258 

methodology applied.  259 

There is a risk, not only of inconsistency and lack of joined up thinking between the different 260 

PEFCR, but also that best practice may not be advocated due to lack of circular economy systems 261 

thinking through wider connected industries. In the PEFCR for feed for food producing animals 262 

(FEFAC, 2018) economic allocation is used, consequently low value (particularly near-waste) 263 

materials generally carry lower impacts than virgin raw materials. The PEFCR for beer also 264 

follows an economic allocation so that by-products from the brewing industry, commonly used 265 

in feed, have their impacts allocated using the same methodology. However, the PEFCR for wine, 266 

the last public version of PEFCR screening and recommendations for marine fisheries, and FCR 267 

red meat all use mass allocation so that by-products from these industries carry a larger impact 268 

than they do within the feed PEFCR. Besides creating inconsistent footprints between similar 269 

products, e.g. wine and beer, this causes inconsistency in the circular economy between the 270 

producers and users of by-products which calculate different impacts for the same resource. 271 

Using mass allocation at the point of by-product creation and economic allocation at the point 272 

of use results in some of the impact being unaccounted for and a discrepancy between 273 

benchmarking of products. There is also a danger that using two different allocation procedures 274 

creates a disincentive for by-product producers to provide their sensitive economic data if they 275 

are only required to provide volume data to assess their main product. Broadly, the PEFCR 276 
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harmonisation initiative should be supported but the Circular Footprint Formula supported by 277 

PEFCR is considered complex (Ekvall et al., 2020) and there needs to be consistency between 278 

industries especially those as intrinsically linked as food. Generally, economic allocation may be 279 

regarded as supporting the transition from waste products to utilisation through gradual steps 280 

by identifying more profitable markets, which usually result in more sustainable application and 281 

is the broad goal of the circular economy, and may offer simpler solutions than currently 282 

supported by the PEFCR.  283 

 284 

4.1. LCA and circular economy at local level: the case of effluents and sludge 285 

Despite the encouraging efforts of the PEFCR to harmonise approaches and drive circular 286 

economy approaches, certain areas which are not covered by LCA principles are still of concern 287 

for the environmental impact of European aquaculture. LCA is the summation of several point 288 

sources of emissions for which there is usually little contextualisation to a geographic scale 289 

(Newton&Little, 2018), such as Eutrophication Potential; i.e. does a certain eutrophicating 290 

emission exceed the assimilative capacity of where it is released? Although methods such as 291 

PEFCR-supported ReCiPe include characterisation factors for eutrophication, they are often at 292 

national or regional level and currently marine eutrophication characterisation factors have not 293 

been included to date (Henryson et al., 2017; Dekker et al., 2019). Similarly, acidification or 294 

photochemical oxidation may be considered more regional issues rather than global. There is a 295 

need to harmonise methodologies for different assessments to provide a complementary 296 

measure of different impacts associated with aquaculture that promotes efficient use of 297 

resources, reduced waste and reduced impact on local and global scales. There have been a few 298 

attempts to integrate geographic contextualisation within LCA results, particularly around 299 

freshwater footprints linked to the AWARE method which is now commonly applied (Pfister et 300 

al., 2016). Other attempts to represent impacts geographically were made by Newton&Little 301 
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(2018) and in more detail using LCA integrated with GIS, notably by Geyer et al. (2010), Gasol et 302 

al. (2011), Dresen&Jandewerth (2012) or Mutel et al. (2012), and reviewed by Patouillard et al. 303 

(2018). However, these initiatives have not been well adopted, one of the main barriers being 304 

access to adequate data and their application to the whole supply chain. Individual impact issues 305 

tend to be applied at the production site, such as carrying and assimilative capacity 306 

(Weitzman&Filguera 2020) and few holistic value chain approaches outside of LCA have been 307 

applied. Valenti et al. (2018) produced a list of indicators that could be applied to measure 308 

environmental and socio-economic sustainability in aquaculture, yet their application to broader 309 

value chains still remains a challenge and have not been widely adopted.As it was mentioned in 310 

the first point of this section, a typical circular economy solution, is mainly related with the use 311 

of aquaculture effluent by other aquaculture species (Chatvijitkul et al., 2017), in systems such 312 

as IMTA, being a clear example of an industrial symbiosis case (a clear example of a win-win 313 

solution from a nutritional perspective) which can increase overall biomass production, 314 

mitigating environmental drawbacks at the same time. However, the IMTA systems have had 315 

much lower adoption in Europe, without no commercial success, compared to Asia, thought to 316 

be due to the possible risks related for reducing the water exchange and compromising fish 317 

health (Sanz-Lazaro & Sanchez-Jerez, 2020). Several biomitigation strategies based on IMTA 318 

systems such as the longline aquaculture of seaweeds+bivalves, seaweeds+bivalves+abalone, 319 

seaweeds+bivalves+fish, eelgrass+Manila clam+sea cucumber, etc. (Zhang et al., 2019) are well 320 

practiced in commercial scale in Asia. The IMTA model changes the traditional one-species based 321 

in high-density aquaculture methods, to new business models improving the resilience of 322 

aquaculture farmers. To promote this type of systems in Europe Sanz-Lazaro&Sanchez-Jerez 323 

(2020) propose to evolve from IMTA to Regional Integrated Multi-Trophic Aquaculture (RIMTA) 324 

this new model is based on independent allocation of cultures of low and high trophic level 325 

species and they suggested that this system can be economically supported, for instance, 326 

through nutrient quota. This new scheme can promote not only the aquaculture sustainability 327 
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but also the circular economy, but economic and logistic issues in each particular case should be 328 

assessed.In the case of aquaponics, strategies for its full development must be related to 329 

economies of scale in order to make it viable (Lobillo-Eguíbar et al., 2020). Consolidation of 330 

aquaponics as an economic activity in Europe is still behind initial expectations, and only one 331 

third of the companies truly rely on production of fish and vegetables as their source of income. 332 

Other process in which aquaculture effluents are valorised is aquaponics. Aquaponics is a case 333 

in which the proof of concept of the production system has not been fully validated yet, neither 334 

technologically nor commercially (Turnsek et al., 2020). Technology has to reach maturity and 335 

prove economic viability through the demonstration of large-scale facilities before it can be 336 

commercially implemented. 337 

Regarding sludge Mirzoyan&Gross (2013) suggested the use of upflow anaerobic sludge blanket 338 

reactors to reduce the volume of brackish aquaculture sludge and to produce biogas at the same 339 

time. This could be an attractive option from LCA perspective but the economic impact for 340 

aquaculture plants would be limited by the specific sludge quantities and the use of digestate as 341 

fertiliser according the legislation. Yogev et al. (2020) also demonstrated the use of sludge to act 342 

as medium for phosphorous recovery and their possible use sustainable fertilizer, but again, this 343 

solution would be held back for its economic impact.  344 

Despite the abovementioned issues, it is clear that LCA and CE should be combined to promote 345 

aquaculture sustainability. Looking at similar examples in urban agriculture, the combination of 346 

material circular indicators (MCI) with LCA indicators is shaping up to be very complex (Rufí-Salís 347 

et al., 2021). For instance, data were biased by overweighting of the water subsystem, 348 

accounting 99% of the impacts. As it was mentioned in the case of the PEFCR, this circularity 349 

indicator obscures the potential benefits of applying circular strategies, for example, in this line 350 

of urban agriculture with going to fertilizers or using recycled materials. In this case the proposal 351 

to solve it across linear indicators factors, where decreasing the values of these indicators as 352 

much as possible will correspond to a decrease both in environmental impacts and linearity of 353 
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the system (i.e improving) circularity), seems to see a good approach to surpass the MCI 354 

obstacles. Also, nexus approach as it proposed in NEPTUNUS (Ruiz-Salomon et al., 2021) can be 355 

considered since circular models oriented to economic development on environmental and 356 

resources protection are clearly linked to this concept. Similar linear indicators combined to LCA, 357 

or Nexus approach along the whole aquaculture supply chains, should be applied to adapt the 358 

ideal indexes that support decision-making and prioritization in circular solutions in this field, 359 

always supported by experimental data and current policies.  360 

 361 

5. Strategies/opportunities for eco-intensification or implementation of circular processes in EU 362 

aquaculture under current regulations 363 

The literature reflects that studies of the supply chain in aquaculture systems pointed out 364 

different bottlenecks, such as food, technology, symbiosis, which provokes clear effects in the 365 

studied impact categories, sometimes contradictory, since reducing a specific variable (i.e. FCR), 366 

may improve a specific impact, but clearly worsen others. For this reason, the definition of 367 

specific circular economy strategies for each particular species in a specific area should be 368 

addressed, to take into account the correct impact categories at local level. Therefore, the eco-369 

intensification scenarios should be aligned to sustainable development in economic and 370 

environmental areas but also the legislation across policy-making communities should evolve 371 

with research data to promote potential circular economy business in the aquaculture sector. 372 

Regarding aquaculture, the lack of measures to regulate or incentivize the reinjection of side 373 

streams in productive schemes may pose a burden for the development of circular processes, 374 

with the exception of the valorisation of animal by-products, which is well developed and ruled 375 

by Regulation (EC) No 1069/2009 (European Parliament, 2009a). Although the European Green 376 

Deal and the 2020 Circular Economy Action Plan considered food, water and nutrients as key 377 

resources which should be given priority on policy development, no particular productive 378 
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sectors are pointed out in those documents. Hence, circularity in EU aquaculture is 379 

circumscribed by in-force regulations dealing with different subjects: products, chemicals, 380 

waste, by-products, or water. 381 

 382 

5.1. Aquaculture animal by-products 383 

Fishmeal and fish oil (Tacon&Metian, 2008; Sarker et al., 2016; Jannathulla et al., 2019; 384 

Galkanda-Arachchige et al., 2020),continue to be essential aquafeed ingredients to maintain fish 385 

health and to promote quality attributes desired by consumers (Oliva-Teles et al., 2015; 386 

Glencross et al., 2016). Around 65 % of fishmeal and oil commodities come from wild caught 387 

whole fish. Half of European fishmeal and fish oil production is manufactured from wild caught 388 

whole fish, whereas ca. 40 % and 10 % come from wild caught and aquaculture fish by-products 389 

respectively (Jackson&Newton, 2016). It is estimated that twice the amount of fish by-products 390 

from processing plants are available but not collected for the production of marine ingredients, 391 

around 0.6 million t in Europe. Whereas in some European countries such as Norway and UK the 392 

infrastructure for the processing of aquaculture and fishery by-products is well developed 393 

(Stevens et al., 2018), in southern countries fish is mostly marketed whole to final customers, a 394 

fact that hampers collection and valorisation of by-products (Vázquez et al., 2019). Spain may 395 

be the exception to it, due to its large seafood canning industry with tradition of fish by-product 396 

utilisation (González-López, 2018). 397 

Despite the need for alternatives to forage fish for the production of fishmeal and fish oil, the 398 

use of aquaculture by-products for this purpose was only recently permitted by EU law. 399 

Derogated Regulation (EC) No 811/2003 (European Commission, 2003) stated that only fishmeal 400 

from wild fish and their by-products could be used, since previous Regulation (EC) No 1774/2002 401 

(European Parliament, 2002) defined fishmeal as processed animal protein derived from sea 402 

animals, except sea mammals. Later on, Regulation (EU) No 142/2011 (European Commission, 403 
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2011a) expanded the definition of fishmeal to processed animal protein derived from aquatic 404 

animals, thus permitting the use of aquaculture by-products, and established traceability and 405 

labelling measures for fishmeal and aquaculture feeds in order to avoid intra-species feeding. 406 

The reform of the EU Common Fisheries Policy (CFP), and the obligation of landing all fishing 407 

captures with the aim of gradually eliminate the wasteful practice of discarding, opens an 408 

opportunity to increase the availability of raw materials for the production of fishmeal and fish 409 

oil through the use of catches that cannot be used as food. 410 

The outcomes scenarios should be analysed in terms of economic and environmental profit to 411 

select the best value chain for each by-product, either from fishing or from aquaculture, that 412 

can be also dependent on the country, the neighbouring industries, logistics, end-products 413 

value, etc., since aquaculture farms with “a priori” similar structures can nevertheless pursue 414 

divergent strategies toward developing innovations for by-product utilisation. 415 

 416 

5.2. IMTA and aquaponics 417 

In an IMTA system, two additional trophic levels can be added to high trophic-level fish or 418 

shrimp: a filter-feeder or a detritivore to feed on particulate matter and seaweeds to uptake 419 

dissolved nitrogen and phosphorous (Chopin, 2013; Correia et al., 2020). Faeces and uneaten 420 

feed are rich in organic matter and in the wild both constitute part of the natural diet of filter 421 

feeders and deposit feeders; nevertheless, Regulation (EC) No 767/2009 on the placing on the 422 

market and use of feed (European Parliament, 2009b), prohibits the use of animal waste to feed 423 

any other animal, both for food producing and non-food producing animals. This prohibition de 424 

facto invalidates IMTA schemes in which bivalves, sea anemones or detritivores, thus posing an 425 

insurmountable barrier.  426 

The precautionary principle behind the ban on the use of animal waste as feed is related to the 427 

protection of animal and human health. Concern has arisen about disease transmission (Molloy 428 
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et al., 2013; Alexander et al., 2016a) or the bioaccumulation of substances present in feed such 429 

as organic pollutants or metals, or drugs such as antimicrobials or antiparasitics (Rosa et al., 430 

2020). Whereas the maximum residue limits of pharmacologically active substances are 431 

regulated in fed farmed animals (European Parliament, 2009c; European Commission, 2010), 432 

there is a legal gap regarding extractive aquaculture species such as bivalves or echinoderms. 433 

Nevertheless, other chemical hazards are regulated on these foodstuffs: pesticides (European 434 

Parliament, 2005), metals, hydrocarbons (European Commission, 2006) and persistent organic 435 

pollutants or POPs (European Commission, 2011b). Regarding seaweeds, they naturally present 436 

high concentration potential for minerals and trace elements present in the surrounding waters. 437 

Regulations on the content of certain contaminants in seaweeds and their derivatives is still 438 

recent in the EU (European Commission, 2012), and in some cases only a risk assessment is 439 

available, with a recommendation for the establishment of maximum levels (EFSA, 2019). But in 440 

practice, current limitations to the full implementation of IMTA at commercial scale in the EU 441 

are derived at the national level of regulations, which deal with fundamental aspects of 442 

authorisation and licensing, access to land and water, environmental impact assessment, or the 443 

co-cultivation of different species (Alexander et al., 2016a, 2017; Kleitou et al., 2018). It is likely 444 

that scientific and technical knowledge play an important role to demonstrate the safety of IMTA 445 

operations (Rolin et al., 2016), also helping to develop legislation on health and food safety of 446 

IMTA products (Alexander et al., 2016b) and to correct negative perceptions about IMTA from 447 

public and stakeholders (Alexander et al., 2018). 448 

Regarding aquaponics, currently it has no clear legal status and regulations in the EU. Being a 449 

combination of fish farming and the cultivation of plants, the EU regulatory framework for this 450 

activity would be formed by the Common Fisheries Policy (CFP) and the Common Agricultural 451 

Policy (CAP), together with regulations on food safety, animal health and welfare, plant health, 452 

and the environment. Additionally, national regulations may apply to each particular aspects of 453 

this activity (Joly et al., 2015; Reinhardt et al., 2019). 454 
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 455 

5.3. Sludge and the new regulation on fertilizers 456 

Certain types of aquaculture side streams are not efficiently valorised due to the absence of 457 

regulations that promote their use. This is the case of aquaculture sludge, i.e. particulate, 458 

organic-rich matter made from faeces and uneaten feed typically disposed of or used for low 459 

value applications, i.e. incineration. An opportunity for the upgrading of sludge arose with the 460 

Circular Economy Action Plan (European Commission, 2015), which identified the need for new 461 

valorisation routes for organic waste materials whose nutrient content made them appropriate 462 

to be used as fertilisers. Nevertheless, at that time, differences in rules and in quality and 463 

environmental standards among MS hampered the circulation of fertilisers based on recycled 464 

nutrients in the EU. As a result, only conventional non-organic fertilisers could be freely traded, 465 

according to Regulation (EC) No 2003/2003 (European Parliament, 2003). As part of the 466 

implementation of the Action Plan, this regulation was recently replaced by Regulation (EU) 467 

2019/1009 (European Union, 2019) which harmonises the requirements for fertilisers produced 468 

from organic primary or secondary raw materials, and it could increase the interest towards 469 

organic-rich side streams such as aquaculture sludges. 470 

 471 

6. Conclusions 472 

Eco-intensification across circular economy solutions may provide the ultimate chance for EU 473 

aquaculture to develop its full potential in the supply of aquatic products and maintain 474 

competitiveness in the global market. LCA studies emerged as decision-making methodology for 475 

the environmental evaluation to evaluate circular solutions, but economics and regulations 476 

should be also aligned. Considering what is indicated in this work and the difficulties of 477 

combining LCA tools by the proposed methodologies with circular economy solutions, which to 478 

some extent could be improved through economic allocation instead of mass, the ideal would 479 
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be based on the development of new indicators, considering sector-specific adaptation tools to 480 

minimize data mistrust and move towards homogeneity between results through a coupling of 481 

LCA and reduction of linear indicators or new Nexus approach. The main idea should be not to 482 

hinder eco-innovation across targeted environmental solutions based on flexible criteria. 483 

Recommended future work should, therefore, include the empirical case studies quantifying the 484 

environmetal and economic factors, but also the social and lesgilative issues for each specific 485 

case in order to push the sustainable circular solutions in this field within the circular economy 486 

framework and according to the 2030 EU agenda.  487 
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