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Recent studies have shown that a key strategy of many pathogens is to use post-
translational modification (PTMs) to modulate host factors critical for infection. Lysine
succinylation (Ksuc) is a major PTM widespread in prokaryotic and eukaryotic cells, and is
associated with the regulation of numerous important cellular processes. Vibrio
alginolyticus is a common pathogen that causes serious disease problems in
aquaculture. Here we used the affinity enrichment method with LC-MS/MS to report
the first identification of 2082 lysine succinylation sites on 671 proteins in V. alginolyticus,
and compared this with the lysine acetylation of V. alginolyticus in our previous work. The
Ksuc modification of SodB and PEPCK proteins were further validated by Co-
immunoprecipitation combined with Western blotting. Bioinformatics analysis showed
that the identified lysine succinylated proteins are involved in various biological processes
and central metabolism pathways. Moreover, a total of 1,005 (25.4%) succinyl sites on
502 (37.3%) proteins were also found to be acetylated, which indicated that an extensive
crosstalk between acetylation and succinylation in V. alginolyticus occurs, especially in
three central metabolic pathways: glycolysis/gluconeogenesis, TCA cycle, and pyruvate
metabolism. Furthermore, we found at least 50 (7.45%) succinylated virulence factors,
including LuxS, Tdh, SodB, PEPCK, ClpP, and the Sec system to play an important role in
bacterial virulence. Taken together, this systematic analysis provides a basis for further
study on the pathophysiological role of lysine succinylation in V. alginolyticus and provides
targets for the development of attenuated vaccines.
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INTRODUCTION

Protein post-translational modifications (PTMs) are vital
regulatory mechanisms, which are involved in a plethora of
cellular events such as gene expression, virulence, and cellular
metabolism in both prokaryotic and eukaryotic cells (Avison
et al., 2002; Xie et al., 2014). During these processes simple
chemical groups such as a methyl, hydroxyl, phosphate, and
acetyl groups or more complex groups such as sugars, lipids,
AMP, and ADP-ribose may be added to the protein molecules
(Ribet and Cossart, 2010). Several types of PTMs have been
discovered that are involved in bacterial virulence and
physiology. Hence, determining bacterial proteomes alone may
be limiting and characterization of PTMs is vital to better
understand adaption, virulence, and resistance of bacterial
pathogens (Wu et al., 2019). Among the 20 amino acids
residues, lysine is frequently targeted for a variety of PTMs, for
example the protein Nϵ-acylation targets lysine residues and is
an extensively dispersed PTM (Komine-Abe et al., 2017). Recent
research has consistently revealed that lysine can be post-
translationally modified by numerous types of acylation
(Weinert et al., 2013). Among the hundreds of diverse PTMs,
acylation on lysine residues, such as lysine crotonylation (Kcr),
lysine propionylation (Kpr), lysine glutarylation (Kglu), lysine
butyrylation (Kbu), lysine malonylation (Kmal), lysine b-
hydroxybutyrylation (Kbhb), and lysine 2-hydroxyisobutyrylation
(Khib) are vital for efficient regulation of many prokaryotic and
eukaryotic proteins (Yang et al., 2015).

Protein lysine succinylation (Ksuc), also referred to as Ne-
succinylation, is a newly identified and evolutionarily conserved
reversible PTM from prokaryotes to eukaryotes. It transfers the
succinyl group (-CO-CH2-CH2-CO-) from the succinyl-CoA to
the lysine residue of the protein moiety, resulting in the
formation of succinyl-lysine (Zhang et al., 2011). Recently,
numerous lysine-succinylated proteins have been identified in
various bacterial pathogens, such asMycobacterium tuberculosis,
Porphyromonas gingivalis, Candida albicans (Yang et al., 2015;
Zheng et al., 2016; Wu et al., 2019), and so on. Many are enzymes
involved in various metabolic pathways and regulation of several
central metabolic processes in the bacteria such as glycolysis,
gluconeogenesis, the tricarboxylic acid cycle (TCA cycle), and
fatty acid metabolism (Xie et al., 2014). Furthermore, Ne-
succinylation has been reported in many protein substrates
and involved in the regulation of cellular physiology and
metabolism in both prokaryotic and eukaryotic cells (Nadine
et al., 2017). This PTM can make prominent modifications in
structure regulation and protein function. The identification of
protein succinylation sites has important implications with
regards to understanding of cellular physiology and pathology,
potentially leading to valuable information for drug development
and biomedical research. In recent times, high-throughput
approaches in conjunction with mass spectrometry have been
widely applied to identify the Ksuc in several organisms ranging
from bacteria to humans (Colak et al., 2013; Li et al., 2014; Jin
and Wu, 2016; Xu et al., 2016; Feng et al., 2017; Song et al., 2017;
Xie et al., 2017; Zhang et al., 2017).
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Vibrio alginolyticus is a Gram-negative halophilic bacterium
and an etiological agent of vibriosis, mainly found in marine and
estuarine environments. Outbreaks cause high mortality in
marine animals with serious economic losses worldwide. Being
a zoonotic pathogen, it not only causes vibriosis in marine
animals, but also causes foodborne related infections in
humans by consumption of contaminated raw and half-cooked
seafood (Dan et al., 2019; Zheng et al., 2019). Moreover, several
researchers frequently reported antibiotic resistant strains of the
bacterium from aquaculture and clinical settings (Horii et al.,
2005; Ferrini et al., 2008; Xiong et al., 2010). V. alginolyticus is
able to form biofilms and is capable of flagellar mediated motility
(Echazarreta and Klose, 2019). It also secretes several virulence
factors such as, serine protease, hemolysin, exopolysaccharide,
siderophores, and cell surface hydrophobicity products through
various metabolic pathways (Yang et al., 2015; Hernández-
Robles et al., 2016; Santhakumari et al., 2017; Huang et al.,
2018), which all contribute to mechanisms of pathogenicity that
require further understanding.

Comprehensive lysine succinylome studies conducted in
different bacterial pathogens have revealed the importance of
this PTM. However, to the best of our knowledge, no succinylated
proteins have been discovered so far in V. alginolyticus,
which presents a foremost obstacle for understanding the
regulatory mechanism of Ksuc in this pathogen. We have
therefore conducted the first systematic analysis to identify the
targets of this Ksuc in V. alginolyticus. Following enrichment of
succinylated peptides from digested cell lysates we used mass
spectrometry to explore Ne-succinylation PTMs and identified
2082 Ksuc sites on 671 proteins in V. alginolyticus. Further, the
bioinformatic analysis showed that a large quantity of the
succinylation sites were present on proteins associated with
metabolism pathway, followed by biosynthesis of antibiotics, but
also associated with diverse biological processes and functions,
such as ribosomes, biosynthesis of secondary metabolites. The
results obtained provide the first global lysine succinylation
profiling of V. alginolyticus and sets a foundation for further
investigations on the biological role of lysine succinylation in this
bacterial pathogen.
MATERIALS AND METHODS

Bacterial Strains and Sample Preparation
V. alginolyticus strain HY9901 was isolated from diseased fish
Lutjanus erythopterus in Zhanjiang harbor area of Guangdong
Province (Cai et al., 2007), China, and cultured in Dulbecco’s
Modified Eagle Medium (DMEM) media. The strain was grown
overnight in DMEM media, and culture was diluted 1:100 ratio
in the fresh DMEM media. Cell were harvested when OD600nm
reached 1.0, centrifuged at 8,000×g, and then washed twice with
phosphate buffered saline (PBS, NaCl 136.89 mM, KCl 2.67 mM,
Na2HPO4 8.1 mM, KH2PO4 1.76 mM, pH 7.4). The pellets were
resolved in 8 M urea and 0.2% SDS in 50 mM Tris-HCl buffer
(pH 8.0) and cells were broken by super-sonication on ice for a
total of 10 min with 9 s intervals, and the lysate centrifuged at
February 2021 | Volume 10 | Article 626574
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12,000×g for 15 min at 4°C. The supernatant dithiothreitol
(DTT) was added until a final concentration of 2 mM DTT
was obtained. The sample was then incubated at 56°C for 1 h,
and then the equivalent of 4× the sample volume of pre-cooled
acetone was added to precipitate proteins at −20°C for >2 h. The
sample pellet was washed twice by centrifugation with pre-
cooled acetone. Finally the pellet was dissolved in dissolution
buffer containing 0.1 M triethylammonium bicarbonate (TEAB,
pH 8.5) and 8 M urea. Protein concentration was determined
with a Bradford assay (He et al., 2016).

Enrichment of Lysine-Succinylated
Peptides
Approximately 10 mg of protein sample was used for reduction
and alkylation with 10 mM DTT and 20 mM iodoacetamide
(IAA), respectively, as described previously (Yao et al., 2019).
The treated sample was digested to peptides using trypsin at 1:20
ratio (m/v) at 37°C for 16 h. The lysine-succinylated peptides
were enriched by immunoaffinity using agarose-conjugated anti-
succinyllysine antibody (PTM Biolabs Inc., Hangzhou, China), as
previously described (Yang et al., 2015). Briefly, the digested
peptides were incubated with anti-succinyllysine agarose beads
overnight at 4°C in NETN buffer (100 mM NaCl, 50 mM Tris-
HCl, 1 mM EDTA, and 0.5% (v/v) Nonidet P-40, pH 8.0). The
enriched peptides were eluted with 1% trifluoroacetic acid (TFA)
and desalted with C18 ZipTips (Millipore, Burlington, MA,
USA) before being subjected to MS identification.

LC-MS/MS Analysis
Proteomic analyses were performed using an EASY-nLC™ 1200
UHPLC system (ThermoFisher Scientific, Germany) coupled to
an Orbitrap Q Exactive HF-X mass spectrometer (ThermoFisher)
operating in the data-dependent acquisition (DDA) mode which
was carried out as previously described (Pang et al., 2020).

Data Processing
The resulting MS raw data were processed using Proteome
Discoverer2.2 software for database retrieval and protein
quantification. Tandem mass spectra were compared against the
Uniprot_Vibrio alginolyticus protein database (4,338 sequences).
Trypsin was specified as a cleavage enzyme allowing up to two
missing cleavages. The precursor and fragment ion mass tolerance
were set to 10 ppm and 0.02 Da. Carbamidomethylation on Cys
was specified as a fixed modification and succinylation on protein
N-terminals were specified as variable modifications. False
discovery rate (FDR) thresholds for peptide and protein were
specified at 0.05. Minimum peptide length was set at 7. Lysine
succinylation sites were identified with a localization probability
set as >0.75. The mass spectrometry proteomics data have been
deposited to the ProteomeXchange Consortium (http://
proteomecentral.proteomexchange.org) via the iProX partner
repository with the dataset identifier PXD023153.

Co-Immunoprecipitation
and Western Blotting
Specific polyclonal antibodies to SodB and PEPCK
(Phosphoenolpyruvate carboxykinase, one of the key enzymes
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in gluconeogenesis pathway) were used to precipitate target
proteins. V. alginolyticus strain cell lysates (500 µg) were
interacted with SodB and PEPCK antibody at 4°C overnight.
Protein A/G beads washed three times with PBS buffer were
added to the lysates at 4°C for 1–3 h (Cheng et al., 2019).
The beads were pelleted at 4°C, followed by five washes with
PBS buffer. Then 50 ml of loading sample buffer (250 mM Tric-
HCl pH = 6.8, 10% SDS, 0.5% bromophenol blue, 50% glycerol,
and 5% b-mercaptoethanol) was added to the pellet, boiled
for 5 min, and subsequently analyzed by SDS-PAGE and
Western blotting.

For Western blotting, proteins were run on 12% 1-DE gels
and transferred to a polyvinylidene fluoride (PVDF, Millipore,
Billerica, MA, USA) membrane. The membranes were blocked in
Tris buffered saline (TBS, 500 mM Tris-HCl; 2.8 M NaCl; 60 mM
KCl; pH7.4) containing 0.05% (v/v) Tween 20 with 5% (w/v)
skimmed milk and incubated for 1 h at room temperature. The
primary antibodies used in the western blot were anti-SodB
(1:4,000), anti-PEPCK (1:4,000), and anti-succinyllysine mouse
mAb (PTM Biolabs Inc., Hangzhou, China) (1:5m000 in TBST
with 5% skimmed milk) and incubated overnight at 4°C.
Horseradish peroxidase (HRP) conjugated goat anti-mouse IgG
(H+L) (Beyotime Biotechnology, Shanghai, China) was used as
the secondary antibody at a 1:10,000 dilution in TBST with 3%
skimmed milk. Finally, the membrane was visualized using the
ECL system (Bio-Rad, Hercules, CA, USA), and recorded by the
ChemiDoc™MP (Bio-Rad, Hercules, CA, USA) imaging system
(Wang et al., 2019).

Bioinformatics
Gene Ontology (GO, including cellular components, molecular
functions, and biological processes) and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway annotation of
identified succinylated proteins were performed using online
software OmicsBean (http://www.omicsbean.cn/). The Cluster of
Orthologous Groups of proteins (COG) was analyzed using the
COG database of NCBI (https://www.ncbi.nlm.nih.gov/COG/).
STRING software (version 11.0) was used to annotate protein
domains. Amino acid sequence motifs were analyzed using
online software MoMo (Modification Motifs, version 5.1.1,
http://meme-suite.org/tools/momo?tdsourcetag=s_pcqq_
aiomsg) (Cheng et al., 2017). All analyses with a corrected p-
value <0.05 were considered significant, and using GraphPad
Prism 8.0 software to generate images. Protein-Protein
interactions (PPIs) were predicted using STRING (https://
string-db.org/) combined with Cyctoscape 3.7.1 software.
RESULTS AND DISCUSSION

Identification of Lysine-Succinylated
Peptides and Proteins in V. alginolyticus
We combined immunoaffinity enrichment of lysine-succinylated
peptides with a highly specific succinylation antibody and LC-
MS/MS to profile the succinylated proteins and peptides of V.
alginolyticus. With FDR thresholds below 5% for peptides, 2,082
unique succinylated peptides with 2,082 succinylation sites from
February 2021 | Volume 10 | Article 626574
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671 proteins were identified in V. alginolyticus (Supplemental
Tables S1, S2). The mass error of succinylated peptides ranged
from −5 to 5 ppm, illustrating that the MS dataset was controlled
within an expected error rate (Figure 1A). The peptides exhibit
distinct abundance depending on their lengths, and most were in
range of 7–24 segments (97.65%), with a small number of
peptides with lengths of 24–38, which accounted for about
2.35% (Figure 1B). Moreover, of the 671 succinylated proteins,
43.4% were succinylated at a sole site, 16.7, 12.5, and 7.7% were
modified at two, three, and four sites, respectively, whereas 19.7%
were modified at five or more sites (Figure 1C). In V.
alginolyticus the most heavily succinylated protein was DNA-
directed RNA polymerase subunit beta RpoS (28 sites). In
addition, nine proteins exhibited high abundances (>15) of
succinylated sites including translation process related proteins
D0WXZ6 (RpsA, 19 sites), D0WW35 (RpoC, 18), D0WYY9
(FusA, 17), and D0WX73 (Frr, 16); the major chaperone proteins
D0WYT6 (GroL, 18) and D0WUB9 (DnaK, 16); pyruvate
dehydrogenase E1 component D0WZ79 (18); dihydrolipoyl
dehydrogenase D0WZ77 (LpdA, 16); AAA_PrkA domain-
containing protein A0A2I3BY81 (16). The abundance of lysine
succinylation sites in chaperone proteins found in this study,
which are consistent with the results of pathogenic bacteria such
as Aeromonas hydrophila and M. tuberculosis, is worthy of
further investigation (Xie et al., 2014; Yao et al., 2019).

Functional Annotation of the Lysine
Succinylome in V. alginolyticus
To understand the roles of lysine succinylation, we performed
GO, KEGG, COG, and domain analysis of all identified
succinylated proteins. The classification results relating to
molecular function, biological process, and cellular component
categories showed that the largest protein group of succinyl
proteins are associated with catalytic activity, organonitrogen
compound biosynthetic processes, and cytoplasm, which
accounts for 24, 33, and 34% of the total succinyl proteins,
respectively (Figure 2). Moreover, other molecular functions
include small molecule binding, ion binding, and structural
constituents of ribosomes, representing 22, 12, and 8% of all
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
identified proteins, respectively (Figure 2A). The other large
groups in terms of biological processes are proteins associated
with organonitrogen compound metabolic processes (14%),
organic substance metabolic processes (13%), and metabolic
processes (8%) (Figure 2B). Cell (11%), other cell components
(7%), intracellular (3%), and macromolecular complexes (1%)
are classified in cellular components (Figure 2C). The GO
analysis of the succinylome suggests that the succinylated
proteins are related to different molecular functions, biological
processes, and cellular components, and closely related to
bacterial life activities.

The KEGG analysis of the succinylated proteins showed that
most identified proteins were enriched in metabolic pathways
(17%), biosynthesis of antibiotics (15%), ribosomes (8%), and
29% succinylated protein were not enriched in the metabolic
pathway category (Figure 2D). In this study, we found that 54
ribosomal proteins were succinylated, including 21 30S
ribosomal proteins and 33 50S ribosomal proteins were related
to translation processes. Interestingly, succinylation of ribosomal
proteins was also found in M. tuberculosis, A. hydrophila, and
E. coli (Colak et al., 2013; Xie et al., 2014; Yao et al., 2019).

The COG is a tool for genome-scale analysis of protein
functions and evolution. In this study, COG analysis revealed
that translation, ribosomal structure and biogenesis (134
succinylated proteins), amino acid transport and metabolism
(97), posttranslational modification, protein turnover, chaperones
(62), and general function prediction mechanisms (51), were
significant (Figure 3A). Our results were consistent with
previous succinyl-proteome studies conducted in E. coli,
M. tuberculosis, B. subtilis, and V. parahaemolyticus (Colak et al.,
2013; Kosono et al., 2015; Pan et al., 2015; Yang et al., 2015), which
revealed that the majority of succinyl-proteins consisted of
translation and metabolic proteins.

The domain is the structural basis of protein physiological
function, thus in order to further identify the function associated
with succinylation, the domain of the identified succinylated
proteins were annotated. The results shown in Figure 3B,
indicate enriched succinylated substrates with functional
domains including NAD(P)-binding domain superfamily,
A B C

FIGURE 1 | Profile of V. alginolyticus lysine succinylation proteome. (A) Distributions of mass errors for lysine succinylated peptides. (B) Distribution of lysine
succinylated peptides based on their length. (C) The pie chart shows the distribution of succinylation sites in each protein.
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nucleic acid-binding, OB-fold, NAD(P)-binding domain, and
Rossmann-like alpha/beta/alpha sandwich fold, were the largest.
In addition, 16 aminoacyl-tRNA synthetases and 9 ATP
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
dependent proteases underwent succinylation, suggesting that
succinylation modification may be involved in the protein
synthesis and regulation of ATPase activity, which is consistent
A

B

D

C

FIGURE 2 | Gene ontology functional classification and KEGG pathway analysis of the identified succinylated proteins. (A) Molecular function. (B) Biological
processes. (C) Cell components. (D) KEGG pathway analysis.
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with the succinylation observed in the fish pathogen A.
hydrophila (Yao et al., 2019).

Motif of Succinylated Peptides
in V. alginolyticus
We further evaluated the position-specific amino acid of
succinylated peptides, using MoMo software to analyze the
surrounding sequences (10 amino acids to both termini) of
succinylated lysine sites in the V. alginolyticus succinyl-
proteome (p-value <0.000001). The results showed that four
conserved motifs were significantly over-represented around the
lysine succinylation sites, which tended to have arginine (R) at
position -7, lysine (K) at position -5, methionine (M) at position
-2, and alanine (A) at position +1 (Figure 4A). The frequency of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
KsucA motif was the highest, K(-5)Ksuc and R(-7)Ksuc motif the
second highest, and M(-2)Ksuc motif the lowest (Figure 4B).
Similar results were observed for the succinylome of Deinococcus
radiodurans (K(-5)Ksuc motif), V. parahaemolyticus and rice
leaves (R(-7)Ksuc motif), which suggests bacteria and plants may
share common conserved motifs surrounding lysine succinylated
sites (Pan et al., 2015; Zhou et al., 2018; Zhou et al., 2019). Then,
when we compared our motifs to the reported succinylome of
fish pathogens A. hydrophila and V. parahaemolyticus, the result
found conserved motifs in arginine (R) and lysine (K), although
the precise positions varied (Pan et al., 2015; Yao et al., 2019).
Furthermore, we also found that the preference for alanine (A) at
position +1 (KsucA motif) is a unique feature of a succinylated
modified protein in V. alginolyticus.
A

B

FIGURE 3 | Functional annotation of the lysine succinylome in V. alginolyticus. (A) The COG analysis and (B) domains enrichment analysis of the succinylated proteins.
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Validation of SodB and PEPCK Lysine-
Succinylated Proteins Using Co-
Immunoprecipitation and Western Blotting
To further validate the identified lysine-succinylated results, two
Ksuc proteins (SodB and PEPCK) were selected and analyzed by
Co-IP and Western blotting. The SodB and PEPCK proteins
were captured by their respective antibodies and then Western
blotting was performed with anti-succinylation and anti-target
protein antibody, respectively (Figure 5). The results showed
that SodB and PEPCK proteins exhibited succinylation
modifications consistent with lysine-succinylated proteomic
data, further validating our proteomics results.
Overlap Between Lysine Succinylation
and Acetylation in V. alginolyticus
Previous studies have shown that there are various modifications in
lysine residues, such as acetylation, succinylation, propionylation,
formylation, ubiquitination (Yang and Seto, 2008). In our previous
report on the acetylome of V. alginolyticus we identified 2,883
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
acetylated sites within 1,178 proteins. In order to determine
whether succinylation and acetylation “crosstalk” occurs at the
same lysine site, we compared the lysine succinylation data here to
the previous acetylation data on post-translationally modified
proteins and peptides (Figures 6 and 7). The comparison results
showed that 502 proteins overlapped (Figure 6A), and further
enrichment analysis of KEGG pathways was performed. Of the
overlapped proteins, a total of 10 KEGG pathways are enriched, of
which biosynthesis of antibiotics, ribosome, and metabolic
pathways are dominant (Figure 6B). Among the 169 specific
succinylated modified proteins alone, five KEGG pathways were
enriched, mainly amino acid biosynthesis, ABC transporters, and
cationic antimicrobial peptide (CAMP) resistance (Figure 6C),
while in 676 specific acetylated modified proteins, were enriched
in six KEGG pathways of which metabolic pathways, biosynthesis
of amino acids and pyrimidine metabolism are predominant
(Figure 6D). Further analysis showed that DNA binding protein
RpoB included 28 Ksuc sites and 6 Kace sites, while fatty acid
oxidation complex subunit alpha YfcX included 2 Ksuc sites and 17
Kace sites, suggested that there is a significant difference in the
A

B

FIGURE 4 | Motif analysis of lysine succinylation sites. (A) Sequence logos of motifs (P-value <0.000001) identified by MoMo software. (B) Numbers of each
identified motifs.
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number of acetylation and succinylation sites of the same
modified protein.

At the peptide level, 1,005 peptides were overlapped, and
1,077 Ksuc-specific peptides, and 1,878 Kace-specific peptides
were identified (Figure 7). The conserved motif analysis
showed that the overlapped peptides were not enriched, but in
Ksuc-specific peptides one conserved motif was enriched in
(GKsuc motif), and in Kace-specific peptides eight conserved
motifs were enriched including DKace, LKaceN(+3), KaceK(+4),
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
KaceK(+3), AKaceK(+4), KaceL, EKace, EKaceG(+9) motif, and
EKace motif with the greatest enrichment.

Moreover, we illustrated the occurrence of lysine succinylation
and acetylation in three central metabolic pathways: the glycolysis/
gluconeogenesis, TCA cycle, and pyruvate metabolism. The results
indicated that the enzymes in three pathways were acetylated
(except for frr gene) and the majority of the enzymes were also
found to be succinylated (except for N646_2991, N646_2065,
N646_3544, glnE, and oadB genes) (Figure 8), our results are
A B

DC

FIGURE 6 | Comparison of succinylated and acetylated proteins in V. alginolyticus. (A) Overlap between succinylated and acetylated proteins in V. alginolyticus.
(B–D) KEGG pathway enrichment analysis of the overlapped proteins, specific succinylated modified proteins, and specific acetylated modified proteins.
FIGURE 5 | Validation of SodB and PEPCK lysine-succinylated proteins in V. alginolyticus using Co-Immunoprecipitation and Western blotting. SodB and PEPCK
proteins were enriched by Co-IP with specific antibodies, followed by Western blotting with SodB and PEPCK proteins specific antibodies (above), and Western
blotting with anti-lysine succinylation antibodies (below).
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similar with those obtained in others bacteria, such as
V. alginolyticus, A. hydrophila, Pseudomonas aeruginosa (Pan
et al., 2015; Gaviard et al., 2018; Sun et al., 2019). These results
together reflect that the two types of lysine modification are
highly enriched and widely overlapped in metabolism and
ribosome related proteins (Figures 6B and 8), suggesting that
both types of modifications may play an important role in the
regulation of cellular processes, especially in central metabolism
and ribosome activity.
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Virulence Factors of Succinylated Proteins
in V. alginolyticus
V. alginolyticus is an important pathogen in aquaculture, which
infects a variety of fish, shrimp and shellfish leading to great
economic losses around the world, and also contributes to
disease in humans inducing symptoms such as fever, nausea,
diarrhea, and extra intestinal infections (Sasikala and Srinivasan,
2016; Yu et al., 2019). Previously, it has been reported that
protein post-translational modification is closely related to
FIGURE 8 | Key enzymes with succinylation and acetylation modification in glycolysis/gluconeogenesis, TCA cycle, and pyruvate metabolism pathways.
FIGURE 7 | Comparison of succinylation and acetylation peptides in V. alginolyticus Overlap between succinylated and acetylated peptides in V. alginolyticus, and
motif analysis.
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bacterial virulence, such as acetylation, succinylation, and
phosphorylation (Whitmore and Lamont, 2012; Ren et al.,
2017; Gaviard et al., 2019). Virulence factors (VFs) are the
basis of pathogenicity of V. alginolyticus, so it is of great
significance to study VFs. In this study, using online VFDB
software analysis, we detected a total of 50 (7.45% of total Ksuc

proteins) succinylated VFs in V. alginolyticus, and the protein-
protein interaction network among the 50 VFs proteins using
online STRING database combined with Cytoscape software,
showed that 40 proteins were found to interact (Figure 9). The
results showed that VFs were enriched in the following pathways,
including bacterial chemotaxis, the bacterial secretion system,
TonB-dependent receptor family, and microbial metabolism in
different environments, and previous reports have shown that
these pathways are closely related to bacterial virulence (Wang
et al., 2008; Goldberg et al., 2010; Kapitein and Mogk, 2013;
Erhardt, 2016; Green and Mecsas, 2016; Guo et al., 2017).

Figure 9 showed that S-ribosylhomocystein lyase (LuxS) is a
key enzyme in quorum sensing and has two Ksuc sites. Previous
studies have found that this enzyme plays an important role in
virulence (Coulthurst et al., 2004), and in A. hydrophila research
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
it has been reported that LuxS exhibits cross-talk between lysine
acetylation and succinylation, and Yao et al. research showed
that the succinylation of lysines on LuxS at the K23 and K30 sites
positively regulate the production of the quorum sensing
autoinducer AI-2, and that these PTMs ultimately alter its
competitiveness with V. alginolyticus (Sun et al., 2019; Yao
et al., 2019). This study showed the succinylation of lysines on
LuxS at the K29 and K45 sites. But whether they have the same
function as LuxS in A. hydrophila remains to be further studied
in V. alginolyticus.

In Gram-negative bacteria, the Sec system can transport a
variety of proteins into the extracellular medium, including
toxins and enzymes (Chatzi et al., 2013), which play an
important role in bacterial virulence. In the Sec system SecA
plays a central role in directing Sec-dependent transport, while
SecE and SecY are membrane proteins that form a channel in the
membrane which provides the core molecular machinery to
direct secretion (Crane and Randall, 2017). Another Sec
protein, YidC, is very important to E. coli survival and deletion
of YidC will interfere with the insertion of Sec-dependent
membrane proteins, thus affecting secretion processes of
FIGURE 9 | The PPI network of succinylated virulence factors in V. alginolyticus. The size of the circle represents the number of Ksuc sites.
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bacteria (Samuelson et al., 2000). In this study, we found that
SecAEY and YidC proteins were succinylated, and SecA and
SecY had five and six modification sites, respectively, indicating
that succinylation modification plays a central role in the
Sec system.

Other virulence factors such as tdh, sodB, clpP were also
succinylated. tdh gene encodes thermostable direct hemolysin
(TDH), which is a major virulence factor in V. alginolyticus
(Avsever, 2016). Our previous research found that sodb and clpp
genes are important virulence factors of V. alginolyticus, and
deletion of those genes leads to reduction of bacterial virulence,
suggesting they have potential application for the construction
of live attenuated vaccines (Chen et al., 2019a; Chen et al.,
2019b). Many virulence factors of V. alginolyticus were found
to be succinylated in this study, indicating that lysine
succinylation may play a crucial role in regulating the virulence
of V. alginolyticus.
CONCLUSION

Vibrio alginolyticus is an opportunistic and halophilic Gram-
negative pathogen, which impedes development of the
aquaculture sector for some species of fish and affects human
health. However, the intrinsic biological behavior of V.
alginolyticus is largely unknown. Many studies have shown
that succinylation of lysine within proteins is involved in the
regulation of bacterial physiology and plays a major role in many
biological processes. In this study we successfully identified a
total of 2,082 succinylation sites matched with 671 proteins in V.
alginolyticus. Of these 1,005 peptides and 502 proteins
overlapped with acetylated proteins, indicating extensive
overlap between these two PTMs, and these proteins were
involved in glycolysis/gluconeogenesis, TCA cycle, and
pyruvate metabolism. In conclusion, the succinylome of V.
alginolyticus was analyzed for the first time revealing possible
biological roles of lysine succinylated proteins, 7.5% of which
were predicted to be virulence factors and may thus provide
possible targets for the development of attenuated vaccines.
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