

Contents lists available at ScienceDirect

Ageing Research Reviews

journal homepage: www.elsevier.com/locate/arr

The association of objectively measured physical activity and sedentary behavior with skeletal muscle strength and muscle power in older adults: A systematic review and meta-analysis

Keenan A. Ramsey ^a, Anna G.M. Rojer ^a, Luke D'Andrea ^b, René H.J. Otten ^c, Martijn W. Heymans ^d, Marijke C. Trappenburg ^{e, f}, Sjors Verlaan ^g, Anna C. Whittaker ^{h, i}, Carel G.M. Meskers ^{a, g}, Andrea B. Maier ^{a, b, j, *}

^a Department of Human Movement Sciences, @AgeAmsterdam, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands

^b Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia

^d Department of Epidemiology and Biostatistics, Amsterdam University Medical Center, VU University Medical Center, Amsterdam, the Netherlands

e Department of Internal Medicine, Section of Gerontology and Geriatrics, Amsterdam University Medical Center, VU University Medical Center, Amsterdam, the

Netherlands

^f Department of Internal Medicine, Amstelland Hospital, Amstelveen, the Netherlands

⁸ Department of Rehabilitation Medicine, Amsterdam University Medical Center, VU University Medical Center, Amsterdam Movement Sciences, Amsterdam, the Netherlands

^h School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, England, United Kingdom

ⁱ Faculty of Health Sciences and Sport, University of Stirling, Scotland, United Kingdom

^j Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore

ARTICLE INFO	A B S T R A C T
Keywords: Physical activity Sedentary behavior Accelerometry Muscle strength Muscle contraction Aged	<i>Background</i> : Engaging in physical activity (PA) and avoiding sedentary behavior (SB) are important for healthy ageing with benefits including the mitigation of disability and mortality. Whether benefits extend to key determinants of disability and mortality, namely muscle strength and muscle power, is unclear. <i>Aims</i> : This systematic review aimed to describe the association of objective measures of PA and SB with measures of skeletal muscle strength and muscle power in community-dwelling older adults. <i>Methods</i> : Six databases were searched from their inception to June 21 st , 2020 for articles reporting associations between objectively measured PA and SB and upper body or lower body muscle strength or muscle power in community dwelling adults aged 60 years and older. An overview of associations was visualized by effect direction heat maps, standardized effect sizes were estimated with albatross plots and summarized in box plots. Articles reporting adjusted standardized regression coefficients (β) were included in meta-analyses. <i>Results</i> : A total of 112 articles were included representing 43,796 individuals (range: 21 to 3726 per article) with a mean or median age from 61.0 to 88.0 years (mean 56.4 % female). Higher PA measures and lower SB were associated with better upper body muscle strength (hand grip strength), upper body muscle strength and muscle power (arm curl), lower body muscle strength and lower body muscle confirmed the associations between total PA (MVPA) and light PA (LPA) with hand grip strength ($\beta = 0.014$, $\beta = 0.057$, and $\beta = 0.070$, respectively, all $p \le 0.001$), and TPA and MVPA with chair stand test ($\beta = 0.199$ and $\beta = 0.211$, respectively, all $p \le 0.001$). <i>Conclusions</i> : Higher PA and lower SB are associated with greater skeletal muscle strength and muscle power, particularly with the chair stand test.

^{*} Corresponding author at: Department of Medicine and Aged Care, @Age, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, van der Boechorststraat 7, 1081 BT, Amsterdam, the Netherlands. Tel.: +31 20 5982000.

https://doi.org/10.1016/j.arr.2021.101266

Received 24 September 2020; Received in revised form 4 January 2021; Accepted 2 February 2021 Available online 16 February 2021 1568-1637/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

^c Medical Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands

E-mail address: a.b.maier@vu.nl (A.B. Maier).

1. Introduction

Low physical activity (PA) and high sedentary behavior (SB) present a global health challenge and they are particularly important in older adult populations as PA declines and SB increases with increasing age (Arnardottir et al., 2013; Ortlieb et al., 2014; Reid and Fielding, 2012). PA is defined as any bodily movement produced by skeletal muscle that requires energy expenditure (Caspersen et al., 1985), while SB is defined as periods of waking activity that produce little or no energy expenditure (Tremblay, 2012; Tremblay et al., 2017). Both PA and SB can be most accurately captured by objective devices such as accelerometers or pedometers, which can capture the incidental, unstructured, and light-intensity movement characterizing the majority of PA in older adults that can otherwise be subject to significant bias when self-reported (Amagasa et al., 2017; Lee and Shiroma, 2014; Lohne--Seiler et al., 2014). PA and SB are closely related but distinct behaviors (van der Ploeg and Hillsdon, 2017) that are each independent determinants of adverse outcomes such as morbidity, disability, poor quality of life, and mortality (Cunningham et al., 2020; Fornias et al., 2014; Rojer et al., 2020; Tak et al., 2013; Vagetti et al., 2014). The degree to which objectively measured habitual PA and SB are associated with other determinants of these adverse outcomes, namely skeletal muscle strength and muscle power (Katzmarzyk and Craig, 2002; Rantanen, 2003), has remained to be unexplored by a systematic review.

Skeletal muscle strength (the amount of force a muscle can produce with a single maximal effort) and muscle power (the ability to exert maximal force in a short time) (Beaudart et al., 2019) decline with chronological age (Beenakker et al., 2010; Chodzko-Zajko et al., 2009; Reid et al., 2014) and are not only functionally important (Wang et al., 2020) but are also key determinants of adverse outcomes such as morbidity, disability, poor quality of life, and mortality (Ling et al., 2010; Meskers et al., 2019; Taekema et al., 2010). Muscle strength and muscle power may therefore play a role in the relationship between PA/SB and adverse outcomes. Establishing and quantifying the association between PA and SB with muscle strength and muscle power is thus a priority for informing potential lifestyle guidelines, interventions and, ultimately, mitigating poor health outcomes.

The aim of this systematic review was to describe and quantify the associations of objectively measured PA and SB with muscle strength and muscle power in community-dwelling older adults.

2. Methods

2.1. Information sources and search

The protocol for this review was registered in the PROSPERO International prospective register of systematic review (registration number: CRD42018103910). PubMed, EMBASE, the Cochrane Library (via Wiley), CINAHL, PsycINFO, and SPORTDiscus (via EBSCO) were systematically searched according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement (Moher et al., 2009) by two independent assessors (AR and RO) to identify articles published from inception to June 21st, 2020 investigating PA and SB in older adults. The full search strategy is presented in Appendix A and included the keywords: 'active or inactive lifestyle'; 'motor activity'; 'people over 60 years of age'. Articles investigating PA and SB in relation to muscle strength and muscle power were organized and managed using EndNote (Version X8.2 Clarivate Analytics, Philadelphia, USA) and Rayyan (Ouzzani et al., 2016).

2.2. Eligibility criteria

Articles were considered eligible using the following criteria: 1) English language original article in full text, 2) observational or experimental design, 3) mean or median age of the study population ≥ 60 years old, 4) study population consisting of community-dwelling

individuals (exclusively institutionalized populations were excluded), 5) objective PA/SB measured with an instrument (accelerometer or pedometer), 6) skeletal muscle strength or muscle power reported, 7) the association of objective PA/SB measures and muscle strength/muscle power was reported, 8) associations were reported in control group or using baseline data of intervention studies.

2.3. Article selection

The title and abstract of articles were assessed by two independent reviewers (KR and EvdR), for potential eligibility. The subsequent full text screening was performed in duplicate by two independent reviewers (KR and LD or AR). Disagreement was resolved by an additional reviewer (AM). The references of all included articles as well as relevant systematic reviews (Cunningham et al., 2020; Mañas et al., 2017; Osthoff et al., 2013) were screened for additional articles.

2.4. Data extraction

Data were extracted in duplicate independently by two reviewers (KR and LD or AR): first author; year of publication; number of participants; study population characteristics; country(s); study design; follow-up period (if applicable); mean age; sex; accelerometer or pedometer device for objective assessment of PA/SB; wearing location of device; minimum wearing duration to constitute a valid day; number of valid days assessed; number of valid days required for inclusion in analysis; mean device wear time; measures used to assess PA/SB and their definitions; mean (standard deviation (SD)) or median [interquartile range (IQR)] capacity recorded as upper body or lower body and muscle strength or muscle power; measures used to assess muscle strength/muscle power and their definitions; mean (SD) or median [IQR] muscle strength/muscle power; analysis used to study association (s); adjustment model(s); effect size(s) and significance.

2.5. Study quality & risk of bias

Study quality and risk of bias of the included articles were independently assessed by two reviewers (KR and LD or AR) using the ninepoint Newcastle-Ottawa Scale (NOS) adapted for cross-sectional studies and longitudinal studies as presented in Appendix B (Wells et al., 2000, 2012). Articles were assessed by the following domains: 1. selection (representativeness of cohort and ascertainment of exposure), 2. comparability (adjustments and statistical tests), 3. outcome (assessment of outcome measure). Additional outcome criteria assessed for longitudinal studies were duration of follow up period and adequacy of participant retention after follow-up period. High quality versus low quality of articles was defined as \geq or < 4/7 stars for cross-sectional studies and \geq or < 5/9 stars for longitudinal studies, respectively.

2.6. Statistical analysis and data visualization

Associations between measures of PA/SB and upper body muscle strength, upper body muscle power, lower body muscle strength and lower body muscle power were reported in tables and synthesized in the following ways in accordance with Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) (Liberati et al., 2009) and Synthesis Without Meta-Analysis (SWiM) guidelines (Campbell et al., 2020): 1. an overview of all associations was qualitatively visualized in effect direction heat maps (Thomson and Thomas, 2013), 2. albatross plots provided visualization and quantification of estimated effect sizes (Harrison et al., 2017), and 3. meta-analyses were performed to obtain a pooled estimate of exclusively adjusted associations. Main PA/SB measures and units were continuous steps (#/day), activity counts (#/day), and PA (total PA (TPA), moderate-to-vigorous PA (MVPA), and light PA (LPA)) and SB duration in (all units of time/day). Intensity-based accelerometer measures and PA and SB frequency and accumulation

(bouts) were included in tables within Appendix C. If PA/SB measures were reported in different units or as categorical variables, these were used instead. When more than one statistical test was used, the following hierarchy was applied for reporting each association for all methods of synthesis: 1. adjusted linear regressions, 2. adjusted logistic regressions (for articles reporting ordinal determinants, p-trend was used and if not, p-values comparing relatively best versus worst categories of PA were used), 3. partial correlations, 4. unadjusted regression/Pearson's correlations 5. Spearman's or Biserial correlations 6. ANOVA or ANCOVA 7. Mann U-Whitney, t-test, or chi-squared. Isotemporal substitution models were not included. Data were reported based on the following order of adjustment models: 1. age and sex, 2. age and sex + additional factors, 3. age or sex + additional factors, 4. neither age nor sex, only other factors 5. unadjusted. The direction of effect was defined as positive when higher PA and lower SB were associated with better muscle strength or muscle power and negative when associations indicated worse muscle strength or muscle power. Positive and negative effect directions were represented by an upwards or downwards triangle in effect direction heat maps and points on the right side (positive effect) or left side (negative effect) of albatross plots. If p-values were not reported, they were calculated using the following methods: for linear regression analyses, the upper and lower limits of the 95 % confidence interval (CI) and regression coefficient were used to calculate the standard error (SE) [(upper limit of CI - lower limit of CI)/3.92], which was used to calculate the absolute value of the z-statistic (regression coefficient/SE), and finally the calculated p-value (p(calc))=exp (-0.717 (z) - (0.416 (z²)) (Altman and Bland, 2011). For Pearson's, partial, Spearman's and point-biserial correlations, the sample size (n) and coefficients (Rs)

(including, Pearson's R, partial R, Spearman's Rho, and point-biserial R (Rpb)) were used to calculate the t-statistic using the following formula: t-statistic = $R\sqrt{[(n-2)/(1-R)]}$. The absolute value of the t-statistic and degrees freedom (n-2) were compared to the 2-tailed Student's t-distribution using Microsoft Excel to obtain the p-value. If R² was reported, the square root was calculated and treated as a correlation to calculate the p-value. P-values that were reported as p > 0.05 or p < 0.05 and could not be calculated using the above methods were conservatively estimated as $p \ge 0.25$ (when reported as non-significant) or $0.01\!\le\!p<\!0.05$ (when reported as significant) to be included in the effect direction heat maps and were not included in albatross plots. The following color scheme was used in the effect direction heat maps: p < 0.001 (darkest blue filled triangle), $0.001 \leq p < 0.01$ (blue filled triangle), $0.01 \le p \le 0.05$ (light blue filled triangle), $0.05 \le p \le 0.1$ (light grey empty triangle), $0.1 \le p \le 0.25$ (grey empty triangle), and $p \ge 0.25$ (dark grey empty triangle). Albatross plots were created using Stata Statistical Software: Release 16.0 (StataCorp LLC, College Station, Texas, United States) to assess the approximate magnitude of associations as a function of sample size against two-sided p-values stratified by the observed direction of the effect. Contour lines were superimposed on the plot to evaluate the hypothetical effect sizes, designated as standardized regression coefficients (Bs) and were derived from the following equation: $N=(1-\beta^2/\beta^2) Z_p$ (where Z_p is the z value for the associated 2-sided p-value) (Harrison et al., 2017). Albatross plots were made for each association between PA/SB measures and outcomes if reported in at least five studies. Albatross plots were visually interpreted for scatter of β coefficients relative to three displayed contour lines and β coefficients were summarized in box plots that were made using Plotly (Plotly Technologies Inc., Montreal, Québec, Canada). Articles were included in the meta-analyses if the associations between PA or SB measures and hand grip strength or chair stand test were expressed as adjusted (order of adjustment models as given above) standardized regression coefficients (β) and their 95 % CI or SE or when these could be calculated. PA/SB measures for meta-analyses were grouped into total PA (TPA), moderate-to-vigorous PA (MVPA) duration, and light PA (LPA) duration. TPA included TPA duration, inverse SB duration, steps per day and number of breaks in sedentary behavior (BST). β coefficients were inversed for outcomes where a lower score indicated better performance. Adjusted unstandardized regression coefficients (B) were converted to β coefficients using the following formulas:

$$\beta = \frac{SD_x}{SD_y} B \text{ and } SE(\beta) = \frac{SD_x}{SD_y} SE(B)$$

Where SD_x and SD_y are the standard deviations of PA (x) and hand grip strength or chair stand test (y), respectively (Nieminen et al., 2013). If SDs were not reported, they were calculated from the SE (or 95 % CI) using the following formula: $SD=\sqrt{n}$ (SE) (Cochrane Handb. Syst. Rev. Interv., 2019). If SE (B) was not reported, it was calculated from the 95 % CI of B using the previously mentioned formula. Correlation data from articles that did not perform a linear regression analysis, but reported all intercorrelations between PA/SB, hand grip strength or chair stand test, and age and/or sex Pearson's r (i.e. correlation matrices) and their calculated SE were used to calculate the age and/or sex adjusted β (SE β) using the following formulas:

SE of correlations : SE(r) =
$$\sqrt{\frac{1-r^2}{n-2}}$$

 $\begin{aligned} \text{One covariate model}: \ \ \beta_{x_1 \cdot x_2} &= \frac{r_{yx_1} - r_{yx_2} r_{x_1 x_2}}{1 - r_{x_1 x_2}^2} \text{ and } \text{SE} \ (\beta_{x_1 \cdot x_2}) \\ &= \frac{SE(r_{yx_1}) - SE(r_{yx_2})SE(r_{x_1 x_2})}{1 - SE(r_{x_1 x_2}^2)} \end{aligned}$

Fig. 1. Flowchart of the article selection process.

Fig. 2. Effect direction heat maps of the associations between physical activity and sedentary behavior with upper (A, B, C, D) and lower body (E, F, G) muscle strength and muscle power.

Monteiro 2019 n=60

 $\mathbf{\wedge}$

PA/SB

Articles

Fig. 2. (continued).

Two covariate model :
$$\beta_{x_1.x_2.x_3} = \frac{\left(1 - r_{x_2x_3}^2\right)r_{yx_1} + (r_{x_1x_3}r_{x_2x_3-}r_{x_1x_2})r_{yx_2} + (r_{x_1x_2}r_{x_2x_3-}r_{x_1x_3})r_{yx_3}}{1 - r_{x_1x_2}^2 - r_{x_2x_3}^2 - r_{x_2x_3}^2 + 2r_{x_1x_2}r_{x_1x_3}r_{x_2x_3}}$$

and SE $(\beta_{x_1.x_2.x_3}) \frac{\left(1 - SE(r_{x_2x_3}^2)SE(r_{yx_1}) + (SE(r_{x_1x_3})SE(r_{x_2x_3}) - SE(r_{x_1x_2}))r_{yx_2} + (SE(r_{x_1x_2})SE(r_{x_2x_3}) - SE(r_{x_1x_3}))\right)SE(r_{yx_3})}{1 - SE(r_{x_1x_3}^2) - SE(r_{x_2x_3}^2) - SE(r_{x_2x_3}^2) + 2SE(r_{x_1x_2})SE(r_{x_1x_3})SE(r_{x_2x_3})}$

Where r is Pearson's correlation coefficient, n is the sample size, x1 is the PA/SB variable (independent variable), x2 is age or sex in the onecovariate model and x2 and x3 are age and sex in the two-covariate model (independent variables being held constant for adjustment), and y is hand grip strength or chair stand test (dependent variable)

(Cohen et al., 2003; Fernández-Castilla et al., 2019). All formulas and required data were entered manually and calculations were performed using Microsoft Excel (Version 16.16.22). A random-effects model was used due to heterogeneity between studies and results were visualized by forest plots. Heterogeneity was assessed using I² statistics; an I² value

Fig. 3. Effect sizes of physical activity and sedentary behavior with muscle strength and muscle power derived from albatross plots, expressed as standardized regression coefficients (β).

above 25 % was considered as low, above 50 % as moderate and above 75 % as high heterogeneity. Funnel plots, depicting β coefficient against SE, were used for visual evaluation and Egger's regression test for statistical detection of publication bias (p < 0.05 indicating publication bias) (Egger et al., 1997). Meta-analyses were performed in Comprehensive Meta-Analysis (CMA) software (Biostat, Englewood, New Jersey, United States).

3. Results

3.1. Search results and study characteristics

A total of 18,086 articles were identified and 9,660 were left after removal of duplicates. Full texts were assessed of 1,017 articles and 112 articles were included (Fig. 1); all extracted data are provided in tables in Appendix C (Tables C1-C5), which are synthesized in Figs. 2-4 and in figures in Appendix D (Figs. D1-D8). Included articles represent a total of 43,796 individuals (range across articles: 21 to 3,726) with an average of 56.4 % female and the study populations' mean or median age ranged from 61.0-88.0 years. Sixty-two articles reported exclusively on community dwelling older adults or community-based samples from the general population. Other articles included community dwelling populations selected for specific disease (or health conditions) and included chronic obstructive pulmonary disorder (n = 14), osteoarthritis (n = 6), diabetes (n = 3), limited mobility (n = 3), any chronic disease (n = 1), HIV (n = 1), interstitial lung disease (n = 1), peripheral artery disease (n = 1), global cognitive impairment (n = 1), aortic stenosis (n = 1), stroke (n = 1), chronic idiopathic axonal polyneuropathy (n = 1), and polio (n = 1). All articles reported cross-sectional associations except for four reporting longitudinal associations (Demeyer et al., 2019; Scott et al., 2011; Semanik et al., 2015; Yuki et al., 2019) (Table C1).

According to the NOS scale, 81 out of 112 articles were high quality (Table C2).

3.2. Measures of physical activity and sedentary behavior

PA and SB were measured by use of an accelerometer in 92 of articles, while in 20 articles a pedometer was used. PA was expressed as number of steps (or walking duration), number of activity counts, TPA duration (or standing + walking duration, time on feet, and non-sedentary time), MVPA duration (or vigorous PA and moderate PA duration, individually), and SB was expressed as SB duration (or lying, sitting, basal activity, and inactive time). Intensity-based accelerometer measures were number of vector magnitude units (VMU), total volume (metabolic equivalent tasks/hour), energy-expenditure (EE) (or physical activity level (PAL) (EE/sleeping metabolic rate)), and intensity gradient (intensity vs. time). Measures of PA and SB frequency and accumulation (bouts) were reported as number and duration of PA bouts, number of breaks in SB (BST), number of breaks per sedentary hour (SB break rate), number and duration of SB bouts, and number and duration of long SB bouts (Table C3).

3.3. Associations of PA and SB with muscle strength and muscle power

Table C4 describes muscle strength and muscle power measurement; Table C5 provides all associations, which are visualized by effect direction heat maps in Fig. 2, Figs. D1 and D2; Fig. 3 summarizes β s (median [IQR]) obtained from the albatross plots in Figure D3-D7; and meta-analyses of adjusted β s are presented in Fig. 4 with corresponding funnel plots in Figure D8.

β and 95% CI

Fig. 4. Forest plots and meta-analysis of adjusted standardized regression coefficients (β) and 95 % CI of the associations between of physical activity measures with hand grip strength (A, B, C) and chair stand test (D, E), respectively.

^aBann 2015 reported approximate gender distribution and sample sizes were subsequently estimated for males and females from the total population, respectively. ^bRowlands 2018 reported determinant and outcome driven sample size as a range and the median was subsequently used as the estimate for sample size.

3.3.1. Upper body muscle strength

Hand grip strength was reported in 41 articles. Higher TPA (median [IQR], $\beta = 0.100$ [0.090-0.116]), MVPA ($\beta = 0.081$ [0.059-0.125]), activity counts ($\beta = 0.082$ [0.077-0.110]), LPA ($\beta = 0.066$ [0.024-0.109]), steps ($\beta = 0.070$ [-0.013-0.156]), and lower SB ($\beta = 0.066$ [0.044-0.092]) were associated with higher hand grip strength (Fig. 3 and Fig. D3). However, the association of steps and hand grip strength was inconsistent in direction of effect and significance (Fig. 2). Positive associations were confirmed in the pooled meta-analysis of adjusted βs for the associations of TPA and hand grip strength including 10 articles representing 6,995 individuals ($\beta = 0.041$, 95 % CI: 0.017-0.065, p = 0.001, $I^2 = 52.2$); MVPA and hand grip strength including four articles representing 2,983 individuals ($\beta = 0.070$, 95 % CI: 0.036-0.104, p = 0.000, $I^2 = 0.0$; and LPA and hand grip strength including four articles representing 3,215 individuals ($\beta = 0.057, 95\%$ CI: 0.024-0.090, p = 0.001, $I^2 = 0.0$) (Fig. 4). Intensity-based accelerometer measures of PA were inconsistently associated with hand grip strength (Fig. D1) and measures of PA and SB frequency and accumulation (bouts) were not associated with hand grip strength (Fig. D2). All PA/SB measures were associated with greater shoulder press strength; steps and activity counts were not associated with chest press strength (Fig. 2).

3.3.2. Upper body muscle power

The number of arm curls completed within 30 s was reported in nine articles. Associations between higher steps and lower SB with arm curl were positive and significant, while associations of MVPA with arm curl were positive ($\beta = 0.077$ [0.069-0.170]) but only significant in one out of four associations (Figs. 2 and 3). Activity counts were not associated with chest press power (Fig. 2).

3.3.3. Lower body muscle strength

Knee extension strength was reported in 24 articles, leg press strength in seven, leg strength in six, knee flexion strength in four, knee extension torque in three, hip strength in one, toe grasping strength in one, and calf strength in one. Higher steps ($\beta = 0.244$ [0.118-0.316]), MVPA ($\beta = 0.206$ [0.175-0.386]), TPA ($\beta = 0.193$ [0.160-0.250]), activity counts ($\beta = 0.207$ [0.046-0.263]), and LPA ($\beta = 0.105$ [0.040-0.234]) were associated with better lower body strength (Fig. 3 and Fig. D5). While the positive direction of effect of lower SB with better lower body muscle strength was consistent for all associations ($\beta = 0.140$ [0.033-0.205]), results were only statistically significant in one of nine associations (Fig. 2, Fig. 3, and Fig. D5). Intensity-based accelerometer measures, EE and VMU, were positively associated with lower body muscle strength, while MET was not (Fig. D1)

3.3.4. Lower body muscle power

Chair stand tests were reported in 51 articles. Higher PA and lower SB were consistently associated with better chair stand test performance (Fig. 2 and Fig. D1), with the exception of measures of PA and SB frequency and accumulation (Fig. D2). The largest effect size was identified for steps ($\beta = 0.277$ [0.254, 0.348]) with chair stand test and followed respectively by activity counts ($\beta = 0.225$ [0.167-0.291]), MVPA $(\beta = 0.239 \ [0.145-0.326])$, LPA $(\beta = 0.173 \ [0.0078-0.228])$, and SB $(\beta = 0.169 [0.072-0.275])$ (Fig. 3 and Fig. D6). Pooled adjusted βs of TPA and MVPA with chair stand test included ten articles representing 3,495 individuals and five articles representing 2486 individuals, respectively and both TPA ($\beta = 0.199, 95 \%$ CI: 0.132-0.266, p = 0.000, $I^2 = 61.21$) and MVPA ($\beta = 0.211$, 95 % CI: 0.103-0.319, p = 0.000, $I^2 = 80.00$) were significantly associated with better chair stand test performance (Fig. 3). Leg press power at varying percentages of an individual's 1RM and/or peak power was reported in five articles, and leg extensor power (Nottingham Power Rig), jumping power, the calf raise test (# of calf raises/30 s), and the squat jump test were each reported in one article. Associations between PA and SB with these lower body muscle power measures were not consistently significant (Fig. 2, Fig. D1, Fig. D2). The median magnitude of effect for MVPA and lower body

muscle power (β = 0.220 [0.125-0.269]) was consistent with that of chair stand test (Fig. 3 and Fig. D7).

3.3.5. Longitudinal associations

Seven articles reported longitudinal associations. Neither baseline nor change in PA was associated with changes with hand grip strength in two articles: non-significant associations were found between steps, MVPA, and SB, and change in steps with change in hand grip strength after 2.6 years in a COPD population (Demeyer et al., 2019) and non-significant associations were found between steps, LPA, and MVPA with development of low hand grip strength after 4.2 years in a community dwelling population (Yuki et al., 2019). Bidirectional positive associations of PA and lower body muscle strength were identified in three articles: a highly significant association was found between steps and change in leg strength over 2.6 years in females (B = 1.06, 95 % CI: 0.31, 1.31) but not males (B=-0.28, 95 % CI: -1.27, 0.72) in a general population (Scott et al., 2011); a highly significant association was found between change in lower extremity strength after 4 years and the course of change in steps over four different time points spanning a total follow-up of 4 years (B=-1782, 95 % CI: -3348, -217) in a population with chronic idiopathic axonal polyneuropathy (van Oeijen et al., 2020); KES was associated with change after 1 year in MET and VMU (B=-0.001 (SE = 6.00E-4) and B=-0.005 (SE = 0.002), respectively), but not with steps or MVPA in a COPD population (Boutou et al., 2019). Two articles, including participants from the Osteoarthritis Initiative, showed a highly significant association between SB and change in chair stand test after 2 years (B=-0.58, 95 % CI: -0.92, -0.24) (Semanik et al., 2015) in 1, 659 participants but not for meeting guidelines for MVPA and change in chair stand test after 4 years 687 participants (Hopkins, 2019).

3.3.6. Influence of population

Stratification of the associations of PA/SB and muscle strength and muscle power by population showed similar distributions of effect directions, p-values, and β coefficients (Figs. 2-4 and Figure D1-D7).

3.3.7. Publication bias in meta-analyses

Funnel plots were visually evaluated and did not show asymmetry, indicating no evidence for the presence of publication bias in metaanalyses, except for a positive skew in the meta-analysis of TPA and hand grip strength. Egger's regression tests confirmed that no evidence for publication bias (all p > 0.05) was present, except of the TPA and hand grip strength meta-analysis (p = 0.000) (Fig. D8).

4. Discussion

This systematic review highlights the association between higher PA and lower SB with greater skeletal muscle strength and muscle power. Specifically, strongest associations were with lower body muscle strength and muscle power, and evidence was most consistent for the performance of the chair stand test. The associations were independent of the population studied. Meta-analyses of adjusted associations confirmed these results for hand grip strength and chair stand test. Longitudinal findings indicated bidirectional associations between PA and SB with lower body muscle strength and SB with chair stand test, but, contrastingly, a lack thereof with hand grip strength. These findings were in line with cross-sectional results, which identified larger effect sizes and more frequently significant associations for lower body muscle strength and muscle power than hand grip strength.

Higher PA and lower SB, using various objective measures, were associated with greater muscle strength and muscle power. MVPA was the most often reported measure and often positively associated with muscle strength and muscle power, which was an anticipated finding as MVPA is a strong determinant and predictor of health outcomes (Adelnia et al., 2019; Hupin et al., 2015; Menai et al., 2017). The positive association of activity counts with muscle strength and muscle power is in accordance with our findings for MVPA, as higher activity counts reflect higher intensity. Additional positive associations identified for LPA and negative associations for SB with muscle strength and muscle power are important in light of the substantial amount of time older adults spend in these two behaviors (Amagasa et al., 2017; Arnardottir et al., 2017; Harvey et al., 2015). However, the relatively strongest effect sizes for all outcomes were with steps and TPA, suggesting that all levels of physical activity can contribute to the positive associations with muscle strength and muscle power.

Evidence for the association of higher PA and lower SB with greater hand grip strength was present for all measures, except for PA and SB bout measures, and was most consistent for MVPA and activity counts. Hand grip strength is the most often used measure of muscle strength in clinical practice because of its practical advantages and clinical relevance (Beaudart et al., 2019; Reijnierse et al., 2017) and was also the most often reported measure in this review. Clear positive associations of MVPA and activity counts with hand grip strength can likely be explained by the incorporation for upper body muscle strength in high intensity PA. However, previous studies have cautioned the use of hand grip strength as a proxy for overall muscle strength and highlighted the need for lower body muscle strength measures (e.g. knee extension strength) as part of geriatric assessments (Yeung et al., 2018), which is in accordance with the present findings.

PA and SB were most associated with lower body muscle strength and muscle power measures, particularly, the performance of the chair stand test, which is a highly relevant finding given lower body muscle power, compared to muscle strength, is more important for activities of daily living (Foldvari et al., 2000; Wang et al., 2020) and thus the ability to remain living independently (Luppa et al., 2010; Mlinac and Feng, 2016). Muscle power is most affected by ageing with an annual decline of approximately 3 % compared to muscle strength and muscle mass with annual decline of approximately 2 % and 1 %, respectively (Reid et al., 2014). Furthermore, lower body muscle strength and muscle power decline faster during ageing compared to upper body measures (Hughes et al., 2001). This supports our longitudinal findings that, bidirectionally, PA and SB are associated with lower body muscle strength. However, we identified inconsistent longitudinal results for chair stand test: in 1,659 participants from the Osteoarthritis Initiative, there was a highly significant association between SB and change in chair stand test over 2 years which persisted after additional adjustment for MVPA (Semanik et al., 2015); on the other hand, in 687 participants from the same cohort, meeting MVPA guidelines was not associated with better chair stand test at 4 years follow-up (Hopkins, 2019). While there were substantial differences in loss to follow up in these two articles (13 % vs. 64 %, respectively), results may reiterate the distinction between PA and SB and indicate that, independent of MVPA, sedentary behavior is a stronger determinant of future muscle power than MVPA. This is an important finding given the increasing evidence of the distinct and deleterious effects of SB on future health status. This highlights the importance to design interventions to prevent or slow the decline in lower body muscle strength and power over time with consideration of differences between PA and SB.

Increasing habitual PA has well-established benefits to health (Bravata et al., 2007; Füzéki et al., 2017; Haider et al., 2019). However, inconclusive results on the ability of exercise interventions (structured PA) to improve muscle strength or muscle power have been reported (Clemson et al., 2012; Haider et al., 2019; Liu et al., 2014). Interventions to increase habitual PA in older adults typically include aerobic, balance and strength components. When these multicomponent interventions include resistance exercises, greater increases in muscle strength and muscle power are found (Ferreira et al., 2012; Liu et al., 2014). This is in line with the evidence that progressive resistance exercise training is very effective at increasing muscle strength and muscle power in older adults (Chodzko-Zajko et al., 2009; Guizelini et al., 2018; Straight et al., 2016). However, integrating exercise into lifestyle post-intervention remains a challenge and, subsequently, improvements in PA are often not sustained (McEwan et al., 2020; Sansano-Nadal et al., 2019).

Behavioral change interventions that are complimentary to PA and SB behaviors in daily life, including strength activities such as squatting, lunging and wall sitting, may be more suitable than structured exercise interventions for long-term and sustainable increases in PA and maintenance of muscle strength and muscle power. These behavioral change interventions have been proven feasible in middle aged individuals (Schwenk et al., 2019; Taraldsen et al., 2019) and effective in improving PA, muscle strength, and reducing the number of falls in older individuals (Clemson et al., 2012, 2010).

4.1. Strengths and limitations

To the best of our knowledge, this is the first systematic review summarizing the associations between objective measures of PA and SB with skeletal muscle strength and muscle power in older adults. The primary strength of this review is the broad array of PA, SB, muscle strength and muscle power measures included which led to a high number of articles included. The use of exclusively objective measures of PA and SB represents a strength of this review as questionnaires may not capture unstructured PA or LPA (i.e. shuffling) (Amagasa et al., 2017; Manns et al., 2012) and older adults are susceptible to over-report PA and under-report SB (Colbert et al., 2011; Dyrstad et al., 2014; Van Cauwenberg et al., 2014). However, it is important to acknowledge that objective measures of PA and SB are limited in their capacity to measure the mode or type of PA or SB including resistance loading during activities, which presents a limitation. Furthermore, the inclusion of diverse and disease populations strengthens the generalizability of our results, but a limitation was our inclusion of only English-language articles. We identified considerable heterogeneity in study design, measures of PA/SB and muscle strength and muscle power and their definitions and statistical analyses used to present the associations. This posed methodological challenges to comparing and synthesizing our results. Nonetheless, we were able to show standardized effect estimates in albatross plots for all associations. This also enhanced the synthesis by avoiding reliance on p-values which are heavily driven by sample size regardless of the magnitude of true underlying effects (Sullivan and Feinn, 2012). Furthermore, we performed a meta-analysis for included articles reporting adjusted standardized regression data that confirmed our overall results.

4.2. Implications

There is both a clinical and public health urgency to identify the degree to which PA and SB can affect health (Taylor, 2014). Given the consequences of low muscle strength and muscle power including increased risk of falls, disability, and mortality and the subsequent public health burden of their high prevalence worldwide (Borges et al., 2020; Manini and Clark, 2012; Mitchell et al., 2012), the current study has significant implications for policy making. This systematic review quantifies the relative impact of higher duration, intensity, and frequency of PA and lower SB on muscle strength and muscle power, and thus provides a foundation to inform interventions; absolute quantification is a priority for future lifestyle guidelines and the management of modifiable risk factors.

5. Conclusion

Higher PA and lower SB are associated with greater skeletal muscle strength and muscle power in older adults, particularly with the chair stand test. Future research should investigate habitual resistance exercise components, while increasing PA and decreasing SB, and seek to identify specific thresholds as actionable targets to maintain and improve skeletal muscle strength and muscle power.

Funding

This work was supported by the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement [675003].

http://www.birmingham.ac.uk/panini

Declaration of Competing Interest

The authors report no declarations of interest.

Acknowledgements

We would like to thank Eva van de Rijt, Elvira Amaral Gomes, Waner Zhou, and Alec Tolley for their contributions to this project. We would also like to thank all members of the PANINI consortium: Anna C. Whittaker, School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, UK; Evans A. Asamane, School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, UK; Justin Aunger, School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, UK; Kally Bhartti, School of Sport, Exercise & Rehabilitation Science, University of Birmingham, UK; Maria Giulia Bacalini, Institute of Neurological Sciences (IRCCS), Bologna, Italy; Dmitriy Bondarev, Gerontology Research Center & Faculty of Sport and Health Sciences, University of Jyväskylä, Finland; Bart Bongers, Department of Epidemiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; Andrea Cabbia, Department of Biomedical Engineering, Eindhoven University of Technology, Netherlands; Massimo Delledonne, Personal Genomics, University of Verona, Italy; Paul Doody, School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, UK; Taija Finni, Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland; Claudio Franceschi, Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Paolo Garagnani, Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Noémie Gensous, Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Carolyn Greig, School of Sport, Exercise & Rehabilitation Sciences & MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham,

Appendix A. Full search strategy (June 21, 2020)

PubMed

#	Query	Results
#14	#10 AND #13	5.729
#13	#11 OR #12	2.085.084
#12	"Motor Activity"[Mesh:NoExp] OR "Exercise"[Mesh] OR "Sports"[Mesh] OR "Physical Exertion"[Mesh] OR "Early Ambulation"[Mesh] OR "Exercise	2.061.636
	Therapy"[Mesh] OR "Exercise Movement Techniques"[Mesh] OR "Locomotion"[Mesh] OR "Motor Activit*"[tiab] OR "Physical Activit*"[tiab] OR "Locomotor	
	Activit*"[tiab] OR "Exercis*"[tiab] OR "Physical Exercis*"[tiab] OR "Isometric Exercis*"[tiab] OR "Aerobic Exercis*"[tiab] OR "training"[tiab] OR	
	"stretching"[tiab] OR "Physical Condition*"[tiab] OR "Physical fitness"[tiab] OR "Physical endurance"[tiab] OR "movement therap*"[tiab] OR "fitness	
	training"[tiab] OR "Plyometric"[tiab] OR "Stretch-Shortening"[tiab] OR "Weight-Lifting"[tiab] OR "Weight-Bearing"[tiab] OR "running"[tiab] OR	
	"jogging"[tiab] OR "walk*"[tiab] OR "bicycle"[tiab] OR "cycle"[tiab] OR "bicycling"[tiab] OR "cycling"[tiab] OR "cycling"[tiab] OR "swim*"[tiab] OR	
	"ambulation"[tiab] OR "mobil*"[tiab] OR "pilates"[tiab] OR "yoga"[tiab]	
#11	"Sedentary Behavior"[Mesh] OR "sedent*"[tiab] OR "sitting"[tiab] OR "physical inactivit*"[tiab]	61.174
#10	#3 OR #5 OR #9	10.790
#9	#1 AND #8	4.320
#8	#6 AND #7	19.226
#7	"Monitoring, Physiologic"[Mesh:NoExp] OR "Monitoring, Ambulatory"[Mesh:NoExp] OR "monitoring`'[tiab]	528.186
#6	"Heart Rate" [Mesh:NoExp] OR "cardiac rate*" [tiab] OR "heart rate*" [tiab] OR "pulse rate*" [tiab] OR "cardiac frequency" [tiab] OR "heart frequency" [tiab]	246.877
#5	#1 AND #4	868
#4	"pedomet*"[tiab]	2.755
#3	#1 AND #2	5.977
#2	"Accelerometry"[Mesh] OR "Acceleromet*"[tiab] OR "actigra*"[tiab]	23.701
#1		3.334.172
	(continued	on next page)

UK; Peter Hilbers, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands; Barbara Iadarola, Personal Genomics, University of Verona, Italy; Victor Kallen, The Netherlands Organisation for Applied Scientific Research, The Netherlands; Katja Kokko, Gerontology Research Center & Faculty of Sport and Health Sciences, University of Jyväskylä, Finland; Anna Elisa Laria, Personal Genomics, University of Verona, Italy; Janet Lord, Institute of Inflammation and Ageing, Medical School & MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, UK; Andrea B. Maier, Department of Human Movement Sciences, Amsterdam Movement Sciences, VU University Amsterdam, The Netherlands & Department of Medicine and Aged Care, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia; Carel G.M. Meskers, Department of Rehabilitation Medicine, VU University Medical Center & Amsterdam Movement Sciences, Amsterdam, The Netherlands; Paola Pazienza, Personal Genomics, University of Verona, Italy; Esmee M. Reijnierse, Department of Medicine and Aged Care, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia; Belina Rodrigues, School of Medicine, University of Minho, Portugal; Nadine Correia Santos, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, and ICVS/ 3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Nuno Sousa, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Sarianna Sipila, Gerontology Research Center & Faculty of Sport and Health Sciences, University of Jyväskylä, Finland; Keenan A. Ramsey, Department of Human Movement Sciences, Amsterdam Movement Sciences, VU University Amsterdam, Muhammad Rizwan Tahir; The Netherlands Organisation for Applied Scientific Research, The Netherlands; Marijke C Trappenburg, Department of Internal Medicine, VU University Medical Center & Amstelland Hospital, The Netherlands; Janice L. Thompson, School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, UK; Nico van Meeteren, Health~Holland, The Hague, & Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; Natal van Riel, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands; Suey Yeung, Department of Human Movement Sciences, Amsterdam Movement Sciences, VU University Amsterdam, The Netherlands.

Query Results ("Aged"[Mesh] OR "Aged, 80 and over"[Mesh] OR "Frail Elderly"[Mesh] OR "Geriatrics"[Mesh] OR "Geriatric Psychiatry"[Mesh] OR "Geriatric Nursing"[Mesh] OR "Geriatric Dentistry"[Mesh] OR "Dental Care for Aged"[Mesh] OR "Health Services for the Aged"[Mesh]) OR ("elder*"[tw] OR "eldest"[tw] OR "frail*"[tw] OR "geriatric Dentistry"[Mesh] OR "locate for Aged"[Mesh] OR "Health Services for the Aged"[Mesh]) OR ("elder*"[tw] OR "deldest"[tw] OR "frail*"[tw] OR "geriatric Terminative"[tw] OR "oldest old*"[tw] OR "senior*"[tw] OR "senium"[tw] OR "septuagenarian*"[tw] OR "octagenarian*"[tw] OR "oldegenarian*"[tw] OR "nonagenarian*"[tw] OR "centenarian*"[tw] OR "supercentenarian*"[tw] OR "older people"[tw] OR "older subject*"[tw] OR "older patient*"[tw] OR "older age*"[tw] OR "older adult*"[tw] OR "older man"[tw] OR "older men"[tw] OR "older male"[tw] OR "older woman"[tw] OR "older female"[tw] OR "older population*"[tw] OR "older person*"[tw])

Embase.com

#	Query	Results
#15	#10 AND #14	6.801
#14	#11 OR #12 OR #13	2.695.910
#13	((motor NEXT/1 activit*):ab,ti,kw) OR ((physical NEXT/1 activit*):ab,ti,kw) OR locomot*:ab,ti,kw OR exercis*:ab,ti,kw OR training:ab,ti,kw OR stretching:ab, ti,kw OR ((physical NEXT/1 condition*):ab,ti,kw) OR 'physical fitness':ab,ti,kw OR 'physical endurance':ab,ti,kw OR ((movement NEXT/1 therap*):ab,ti,kw) OR phyometric:ab,ti,kw OR 'stretch shortening':ab,ti,kw OR 'weight lifting':ab,ti,kw OR 'weight bearing':ab,ti,kw OR running:ab,ti,kw OR jogging:ab,ti,kw OR	2.314.193
	walk*:ab,ti,kw OR bicycle:ab,ti,kw OR cycle:ab,ti,kw OR bicycling:ab,ti,kw OR cycling:ab,ti,kw OR rowing:ab,ti,kw OR swim*:ab,ti,kw OR ambulation:ab,ti,kw OR mobil*:ab ti kw OR pilates:ab ti kw OR voga:ab ti kw	
#12	'motor activity'/de OR 'exercise'/exp OR 'sport'/exp OR 'mobilization'/exp OR 'kinesiotherapy'/exp OR 'physical activity'/exp OR 'fitness'/exp OR 'locomotion'/exp	951.571
#11	'sedentary lifestyle'/exp OR 'sitting'/exp OR 'physical inactivity'/exp OR sedent*:ab,ti,kw OR sitting:ab,ti,kw OR ((physical NEXT/1 inactivit*):ab,ti,kw)	91.488
#10	#3 OR #5 OR #9	12.541
#9	#1 AND #8	4.407
#8	#6 AND #7	25.596
#7	'physiologic monitoring'/exp OR 'ambulatory monitoring'/exp OR monitoring:ab,ti,kw	709.204
#6	'heart rate'/de OR 'heart rate variability'/de OR 'resting heart rate'/de OR 'cardiac rate':ab,ti,kw OR 'heart rate':ab,ti,kw OR 'pulse rate':ab,ti,kw OR 'cardiac frequency':ab,ti,kw OR 'heart frequency':ab,ti,kw OR	318.213
#5	#1 AND #4	1.097
#4	'pedometer'/exp OR 'pedometry'/exp OR pedomet*:ab,ti,kw	4.154
#3	#1 AND #2	7.844
#2	'accelerometry'/exp OR 'accelerometer'/exp OR 'actimetry'/exp OR 'actigraph'/exp OR acceleromet*:ab,ti OR actigra*:ab,ti	36.929
#1	'aged'/exp OR 'geriatrics'/exp OR 'elderly care'/exp OR elder*:de,ab,ti OR eldest:de,ab,ti OR frail*:de,ab,ti OR geriatri*:de,ab,ti OR ((old NEXT/1 age*):de,ab, ti) OR ((oldest NEXT/1 old*):de,ab,ti) OR senior*:de,ab,ti OR senium:de,ab,ti OR ((very NEXT/1 old*):de,ab,ti) OR septuagenarian*:de,ab,ti OR cotagenarian*: de,ab,ti OR octogenarian*:de,ab,ti OR nonagenarian*:de,ab,ti OR centarian*:de,ab,ti OR centenarian*:de,ab,ti OR supercentenarian*:de,ab,ti OR 'older people':de,ab,ti OR ((older NEXT/1 subject*):de,ab,ti) OR ((older NEXT/1 patient*):de,ab,ti) OR ((older NEXT/1 age*):de,ab,ti) OR ((older NEXT/1 adult*):de, ab,ti) OR 'older men':de,ab,ti OR 'older men':de,ab,ti OR 'older male':de,ab,ti OR 'older woman':de,ab,ti OR 'older female':de,ab,ti OR ((older NEXT/1 population*):de,ab,ti) OR ((older NEXT/1 person*):de,ab,ti)	3.432.221

The Cochrane Library (via Wiley)

#	Query	Results
#14	#10 and #13	920
#13	#11 or #12	238.188
#12	((motor NEXT activit*) or (physical NEXT activit*) or locomot* or exercis* or training or stretching or (physical NEXT condition*) or (physical NEXT fitness) or (physical NEXT endurance) or (movement NEXT therap*) or plyometric or (stretch NEXT shortening) or (weight NEXT lifting) or (weight NEXT bearing) or running or jogging or walk* or bicycle or cycle or bicycling or cycling or rowing or swim* or ambulation or mobil* or plates or yoga):ti,ab,kw	233.754
#11	(Sedent* or sitting or (physical NEXT inactivit*)):ti,ab,kw	14.465
#10	#3 or #5 or #9	1.334
#9	#1 and #8	406
#8	#6 and #7	6.983
#7	monitoring:ti,ab,kw	59.019
#6	((cardiac NEXT rate):ab,ti,kw or (heart NEXT rate):ab,ti,kw or (pulse NEXT rate):ab,ti,kw or (cardiac NEXT frequency):ab,ti,kw or (heart NEXT frequency)):ti,ab, kw	59.143
#5	#1 and #4	247
#4	pedomet*:ti,ab,kw	1.712
#3	#1 and #2	780
#2	(acceleromet* or actigra*):ti,ab,kw	5.965
#1	(elder* or eldest or frail* or geriatri* or (old NEXT age*) or (oldest NEXT old*) or senior* or senium or (very NEXT old*) or septuagenarian* or octagenarian* or cotagenarian* or centenarian* or supercentenarian* or (older NEXT people) or (older NEXT subject*) or (older NEXT patient*) or (older NEXT age*) or (older NEXT adult*) or (older NEXT man) or (older NEXT men) or (older NEXT male) or (older NEXT woman) or (older NEXT women) or (older NEXT female) or (older NEXT population*) or (older NEXT person*)):ti,ab,kw	76.361

CINAHL (via EBSCO)

#	Query	Results
S14	S10 AND S13	2,995
S13	S11 OR S12	592,088
S12	((MH "Motor Activity") OR (MH "Exercise+") OR (MH "Sports+") OR (MH "Early Ambulation") OR (MH "Therapeutic Exercise+") OR (MH "Locomotion+")) OR TI (("motor activit*" OR "physical activit*" OR locomot* OR exercis* OR training OR stretching OR "physical condition*" OR "physical fitness" OR "physical endurance" OR "movement therap*" OR plyometric OR "stretch shortening" OR "weight lifting" OR "weight bearing" OR running OR jogging OR walk* OR bicycle OR cycle OR bicycling OR cycling OR rowing OR swim* OR ambulation OR mobil* OR pilates OR yoga)) OR AB (("motor activit*" OR "physical activit*" OR locomot* OR exercis* OR training OR stretching OR "physical condition*" OR "physical fitness" OR "physical endurance" OR "movement therap*" OR plyometric OR "stretch shortening" OR "weight lifting" OR "weight bearing" OR "physical endurance" OR "movement therap*" OR plyometric OR "stretch shortening" OR "weight lifting" OR "weight bearing" OR walk* OR bicycle OR cycle OR bicycling OR cycling OR rowing OR swim* OR ambulation OR mobil* OR pilates OR yoga))	582,203
S11	((MH "Life Style, Sedentary") OR (MH "Sitting")) OR TI ((sedent* OR sitting OR "physical inactivit*")) OR AB ((sedent* OR sitting OR "physical inactivit*"))	26,571
S10	S3 OR S5 OR S9	4,531
S9	S1 AND S8	1,003
S 8	S6 AND S7	4,480
S7	(MH "Monitoring, Physiologic") OR TI monitoring OR AB monitoring	111,399
S6	(MH "Heart Rate") OR TI (("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency" or "heart frequency")) OR AB (("cardiac rate" or "heart rate" or "pulse	47,141
	rate" or "cardiac frequency" or "heart frequency"))	
S5	S1 AND S4	643
S4	(MH "Pedometers") OR TI pedomet* OR AB pedomet*	2,279
S 3	S1 AND S2	3,047
S2	((MH "Accelerometry+") OR (MH "Accelerometers") OR (MH "Actigraphy")) OR TI ((acceleromet* or actigra*)) OR AB ((acceleromet* or actigra*))	11,526
S1	MH "Aged+" OR MH "Aged, 80 and Over" OR MH "Frail Elderly" OR MH "Geriatrics" OR MH "Geriatric Psychiatry" OR MH "Gerontologic Nursing+" OR MH "Gerontologic Care" OR MH "Health Services for the Aged" OR TI (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR senior OR senior OR senior * OR senior* OR senior * OR senior* OR senior * OR senior* OR senior * OR "older patient*" OR "older age*" OR "older adult*" OR "older man" OR "older man" OR "older mane" OR "	919,735

APA PsychINFO (via EBSCO)

#	Query	Results
S17	\$13 AND \$16	1,097
S16	S14 OR S15	527,097
\$15	(DE "Physical Activity" OR (DE "Exercise" OR DE "Aerobic Exercise" OR DE "Weightlifting" OR DE "Yoga") OR DE "Physical Fitness" OR (DE "Sports" OR DE "Baseball" OR DE "Football" OR DE "Judo" OR DE "Martial Arts" OR DE "Soccer" OR DE "Swimming" OR DE "Tennis" OR DE "Weightlifting") OR DE "Locomotion" AND #DE "Training" OR DE "Athletic Training" OR DE "Locomotion") OR TI (("motor activit*" OR "physical activit*") OR locomot* OR exercis* OR training OR stretching OR "physical condition*" OR "physical fitness" OR "physical endurance" OR "movement therap*" OR plyometric OR "stretch shortening" OR weight lifting" OR AB (("motor activit*") OR "physical activit*") OR somot* OR exercis* OR ambulation OR mobil* OR pilates OR yoga) OR AB (("motor activit*") OR "physical activit*") OR locomot* OR exercis* OR arbulation OR mobil* OR pilates OR yoga) OR AB (("motor activit*") OR "physical activit*") OR "stretch shortening" OR pilates OR yoga) OR AB (("motor activit*") OR "physical activit*") OR "stretch or "physical fitness" OR "physical endurance" OR "stretch or weight lifting" OR pilates OR yoga) OR AB (("motor activit*") OR "physical activit*") OR locomot* OR exercis* OR arbulation OR mobil* OR pilates OR yoga) OR AB (("motor activit*") OR "physical activit*") OR "stretch shortening" OR "physical fitness" OR "physical endurance" OR "stretch or "stretch or "stretch" OR pilates OR yoga) OR AB (("motor activit*") OR "physical activit*") OR locomot* OR exercis* OR training OR stretching OR "physical endurance" OR "physical activit*" OR locomot* OR "stretch or "stretch or "stretch" oR "physical endurance" OR "physical activit*" OR locomot* OR stretching OR training OR pilates OR yoga) OR AB (("motor activit*") OR "physical activit*") OR "stretch oR "stretch shortening" OR "weight lifting" OR "physical endurance" OR "stretching OR "stretching" OR "weight lifting" OR "physical endurance" OR "stretching OR stretching OR "stretching" OR "stretching") OR "stretching OR "stretching" OR "stretching" OR "stretching" OR "stretching" OR	522,065
S14	TI (sedent* OR sitting OR "physical inactivit*") OR AB (sedent* OR sitting OR "physical inactivit*")	13,285
S13	S6 OR S8 OR S12	1,802
S12	S4 AND S11	131
S11	S9 AND \$10	1,175
S10	DE "Monitoring" OR TI monitoring OR AB monitoring	58,460
S9	DE "Heart Rate" OR TI ("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency" or "heart frequency") OR AB ("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency") or "heart frequency" or "heart frequency")	28,295
S8	S4 AND S7	246
S7	TI pedomet* OR AB pedomet*	860
S6	S4 AND S5	1,478
S5	(DE "Actigraphy") OR TI (acceleromet* OR actigra*) OR AB (acceleromet* OR actigra*)	6,322
S4	S1 OR S2 OR S3	401,336
S 3	TI (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR senium OR "very old*" OR septuagenarian* OR octagenarian* OR octagenarian* OR centenarian* OR supercentenarian* OR solder people" OR "older subject*" OR "older patient*" OR "older geriatri* OR "older age*" OR "older man" OR "older man" OR "older man" OR "older woman" OR "older subject*" OR "older population*" OR "older geriatri* OR "older female" OR "older geriatri* OR "older geriatri* OR "older female" OR "older geriatri* OR "older geriatri* OR "older female" OR "older geriatri* OR "older geri	174,582
S2 S1	DE "Geriatrics" Limiters - Age Groups: Aged (65 yrs & older)	12,654 325,601

-

SPORTDiscus (via EBSCO)

#	Query	Results
S16	\$12 AND \$15	544
\$15	513 OR 514	513,139
S14	DE "PHYSICAL activity" OR (DE "EXERCISE" OR DE "ABDOMINAL exercises" OR DE "AFROBIC exercises" OR DE "ANAEROBIC exercises" OR DE "AOUATIC	503.410
011	BE INTEGENTION OF DEFINITION OF DEFINITION OF DEFINITION OF THE DEFINITION OF DEFINITI	000,110
	OR DE "CHAIR exercises" OR DE "CHEST exercises" OR DE "CIRCUIT training" OR DE "COMPOLIND exercises" OR DE "Do, in" OR DE "CHEST exercises" OR DF "CIRCUIT training" OR DE "COMPOLIND exercises" OR DF "DO, in "OR DF "EXERCISE - Immunological	
	associety OR DE "EXERCISE adharence" OR DE "EXERCISE for children" OR DE "EXERCISE for mirel" OR DE "EXERCISE for mirel" OR DE "EXERCISE for mirel"	
	appears of DE "EXERCISE for older people" OR DE "EXERCISE for people with disabilities" OR DE "EXERCISE for women" OR DE "EXERCISE for women".	
	PETERGESE therapy" OB DF "EXERCISE video cames" OR DF "FACIAL exercises" OR DF "FALIN gong exercises" OR DF "FOOT exercises" OR DF "GOT exercises" FOOT exercises" OR F "GOT exer	
	E "HAND sepreises" OR DF "HATHA viges" OR DF "HD eversises" OR DF "ISOLATION eversises" eversises" eversises "OR DF "ISOLATION eversises" eversises" eversises "OR DF "ISOLATION eversises" eversises" eversises "OR DF "ISOLATION eversises" eversises "OR	
	DE "INDICATESSES OF DE INTERFORMENTES" DE INTERFORME DE IN	
	MUSCIE strength OR DE "PILATES method" OR DE "PILYOMETRICS" OR DE "OLGANO" OR DE "REDUCING evercises" OR DE "RUNNING" OR DE "RUNNING -	
	Social spects" OR DE "SCHOOLS – Exercises & recreations" OR DE "SEXIAL exercises" OR DE "SHOULDER exercises" OR DE "STRENGTH training" OR DE "STRESS	
	management exercises" OR DE "TALchi" OR DE "TREADMILL exercise" OR DE "WHEELCHAIR workouts" OR DE "YOCA" OR (DE "PHYSICAL fitness" OR DE	
	"PHYSICAL fitness for older people") OR (DE "SPORTS" OR DE "AERODYNAMICS in sports" OR DE "AERONALITICAL sports" OR DE "AGE & sports" OR DE	
	"AMATEUR sports" OR DE "ANTISEMITISM in sports" OR DE "ANTISEMITISM in sports" OR DE "AQUATIC sports" OR DE "BALL sports" OR DE "BALLISTICS in sports" OR DE	
	BASEBALL, OR DE "BIOMECHANICS in sports" OR DE "COLLEGE sports" OR DE "COMMUNICATION in sports" OR DE "CONTACT sports" OR DE "CROSS-training	
	Sports" OR DE "DISC golf" OR DE "DISCRIMINATION in sports" OR DE "DOG sports" OR DE "DOPING in sports" OR DE "ENDURANCE sports" OR DE "EXTREME	
	Sports" OR DE "FANTASY Sports" OR DE "FASCISM & Sports" OR DE "FEMINISM & Sports" OR DE "GAELIC cames" OR DE "GAY Games" OR DE "GOODWILL Games"	
	OR DE "GYMNASTICS" OR DE "HOCKEY" OR DE "HOMOPHOBIA in sports" OR DE "HYDRODYNAMICS in sports" OR DE "INDIVIDUAL sports" OR DE "KINEMATICS	
	in sports" OR DE "KNIFE throwing" OR DE "LGBT people & sports" OR DE "LOG-chopping Sports" OR DE "MASCULINITY in sports" OR DE "MASS media & sports"	
	OR DE "MILITARY sports" OR DE "MINORITIES in sports" OR DE "MOTION pictures in sports" OR DE "MOTORSPORTS" OR DE "NATIONAL socialism & sports" OR	
	DE "NATIONALISM & sports" OR DE "NONVERBAL communication in sports" OR DE "OLYMPIC Games" OR DE "PARKOUR" OR DE "PHOTOGRAPHY of sports" OR	
	DE "PHYSICS in sports" OR DE "PRESIDENTS - Sports" OR DE "PROFESSIONAL sports" OR DE "PROFESSIONALISM in sports" OR DE "RACING" OR DE "RACISM in	
	sports" OR DE "RACKET games" OR DE "RADAR in sports" OR DE "RECREATIONAL sports" OR DE "REGIONALISM & sports" OR DE "ROBOTICS in sports" OR DE	
	"RODEOS" OR DE "ROLLER skating" OR DE "SCHOOL sports" OR DE "SENIOR Olympics" OR DE "SEXUAL harassment in sports" OR DE "SHOOTING Sports" OR DE	
	"SHUTOUTS Sports" OR DE "SOCIALISM & sports" OR DE "SOFTBALL" OR DE "SPORT for all" OR DE "SPORTS & state" OR DE "SPORTS & technology" OR DE	
	"SPORTS & theater" OR DE "SPORTS & tourism" OR DE "SPORTS – Collectibles" OR DE "SPORTS – Corrupt practices" OR DE "SPORTS – Economic aspects" OR DE	
	"SPORTS - Finance" OR DE "SPORTS - Folklore" OR DE "SPORTS - Songs & music" OR DE "SPORTS competitions" OR DE "SPORTS for children" OR DE "SPORTS for	
	girls" OR DE "SPORTS for older people" OR DE "SPORTS for people with disabilities" OR DE "SPORTS for women" OR DE "SPORTS for youth" OR DE "SPORTS	
	forecasting" OR DE "SPORTS in antiquity" OR DE "SPORTS penalties" OR DE "SPORTS rivalries" OR DE "SPORTS teams" OR DE "SPORTS tourism" OR DE	
	"STEREOTYPES Social psychology in sports" OR DE "TARGETS Sports" OR DE "TEAM sports" OR DE "TEAMWORK Sports" OR DE "TELEVISION & sports" OR DE	
	"TRACEURS" OR DE "VIDEO tapes in sports" OR DE "VIOLENCE in sports" OR DE "WINTER sports") OR (DE "LOCOMOTION" OR DE "CYCLING" OR DE "HUMAN	
	locomotion")	
S13	DE "SEDENTARY lifestyles" OR DE "SEDENTARY behavior" OR DE "SEDENTARY people" OR DE "SEDENTARY women" OR TI (sedent* OR sitting OR "physical	18,283
	inactivit*") OR AB (sedent* OR sitting OR "physical inactivit*")	
S12	\$3 OR \$5 OR \$11	902
S11	\$1 AND \$10	101
S10	\$8 OR \$9	3,691
S9	DE "HEART rate monitoring"	2,229
S8	S6 AND S7	1,724
S7	DE "Patient Monitoring" OR TI monitoring OR AB monitoring	15,144
S6	DE "PULSE (Heart beat)" OR DE "HEART beat" OR TI ("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency" or "heart frequency") OR AB ("cardiac rate"	30,490
	or "heart rate" or "pulse rate" or "cardiac frequency" or "heart frequency")	
S5	S1 AND S4	214
S4	DE "PEDOMETERS" OR TI pedomet* OR AB pedomet*	1,882
S3		
S2	S1 AND S2	652
S1	S1 AND S2 (DE "ACCELEROMETERS" OR DE "SPEEDOMETERS") OR (TI ((acceleromet* OR actigra*)) OR AB ((acceleromet* OR actigra*)))	652 6,650
	S1 AND S2 (DE "ACCELEROMETERS" OR DE "SPEEDOMETERS") OR (TI ((acceleromet* OR actigra*)) OR AB ((acceleromet* OR actigra*))) ((DE "OLDER people" OR DE "EXERCISE for older people" OR DE "OLDER people – Recreation" OR DE "PHYSICAL education for older people" OR DE "PHYSICAL	652 6,650 57,686
	S1 AND S2 (DE "ACCELEROMETERS" OR DE "SPEEDOMETERS") OR (TI ((acceleromet* OR actigra*)) OR AB ((acceleromet* OR actigra*))) ((DE "OLDER people" OR DE "EXERCISE for older people" OR DE "OLDER people – Recreation" OR DE "PHYSICAL education for older people" OR DE "PHYSICAL fitness for older people" OR DE "SPORTS for older people") OR DE "GERIATRICS") OR (TI (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*"	652 6,650 57,686
	S1 AND S2 (DE "ACCELEROMETERS" OR DE "SPEEDOMETERS") OR (TI ((acceleromet* OR actigra*)) OR AB ((acceleromet* OR actigra*))) ((DE "OLDER people" OR DE "EXERCISE for older people" OR DE "OLDER people – Recreation" OR DE "PHYSICAL education for older people" OR DE "PHYSICAL fitness for older people" OR DE "SPORTS for older people") OR DE "GERIATRICS") OR (TI (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR senior OR very old*" OR septuagenarian* OR octagenarian* OR octogenarian* OR centarian* OR centarian* OR	652 6,650 57,686
	S1 AND S2 (DE "ACCELEROMETERS" OR DE "SPEEDOMETERS") OR (TI ((acceleromet* OR actigra*)) OR AB ((acceleromet* OR actigra*))) ((DE "OLDER people" OR DE "EXERCISE for older people" OR DE "OLDER people – Recreation" OR DE "PHYSICAL education for older people" OR DE "PHYSICAL fitness for older people" OR DE "SPORTS for older people") OR DE "GERIATRICS") OR (TI (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR senium OR "very old*" OR septuagenarian* OR octagenarian* OR octogenarian* OR nonagenarian* OR centenarian* OR supercentenarian* OR "older people" OR "older subject*" OR "older patient*" OR "older age*" OR "older adult*" OR "older man" OR "older male"	652 6,650 57,686
	S1 AND S2 (DE "ACCELEROMETERS" OR DE "SPEEDOMETERS") OR (TI ((acceleromet* OR actigra*)) OR AB ((acceleromet* OR actigra*))) ((DE "OLDER people" OR DE "EXERCISE for older people" OR DE "OLDER people – Recreation" OR DE "PHYSICAL education for older people" OR DE "PHYSICAL fitness for older people" OR DE "SPORTS for older people") OR DE "GERIATRICS") OR (TI (elder* OR eldest OR frail* OR geriatri* OR "olde age*" OR "oldest old*" OR senior* OR senium OR "very old*" OR septuagenarian* OR octagenarian* OR octogenarian* OR nonagenarian* OR centenarian* OR supercentenarian* OR "older people" OR "older subject*" OR "older patient*" OR "older age*" OR "older adult*" OR "older man" OR "older male" OR "older woman" OR "older women" OR "older female" OR "older opatient*" OR "older person*") OR AB (elder* OR eldest OR frail* OR geriatri* OR "older male" OR "older women" OR "older women" OR "older female" OR "older person*") OR AB (elder* OR eldest OR frail* OR geriatri* OR "older male") OR "older women" OR "older women" OR "older female" OR "older person*") OR AB (elder* OR eldest OR frail* OR geriatri* OR "older male") OR "older women" OR "older women" OR "older female" OR "older person*") OR AB (elder* OR eldest OR frail* OR geriatri* OR "older male") OR "older women" OR "older women" OR "older female" OR "older person*") OR ab (elder* OR eldest OR frail* OR geriatri* OR "older male") OR "older women" OR "older women" OR "older people" OR "older person*") OR other person*") OR AB (elder* OR eldest OR frail* OR geriatri* OR "older women" OR "women" OR "women" OR "women" OR "women" OR "women" OR "women" OR "wome	652 6,650 57,686

Appendix B. Newcastle-Ottawa Scale (NOS): adapted for cross-sectional and longitudinal studies

OR "older male" OR "older woman" OR "older women" OR "older female" OR "older population*" OR "older person*"))

The NOS was adapted for cross-sectional and longitudinal studies, respectively, using the identical methods as the with the addition of two outcome criteria regarding follow-up for longitudinal studies. For cross-sectional studies (maximum score of 7 stars) a score greater than or equal to 4 is classified as high and less than 4 as low. For longitudinal studies (maximum score of 9 stars) a score greater than or equal to 5 is classified as high and a score less than 5 is classified as low quality.

Selection (max. 3 stars)

Representativeness of the sample: community-dwelling older adults

a Truly representative of sample population. Age, gender distribution, country, and kind of population is reported *

b Not representative based on factors mentioned above

c No description

K.A. Ramsey et al.

Ascertainment of exposure: physical activity (PA)/sedentary behavior (SB)

- a Ascertainment of all physical activity measures reported is clearly and described by name of device, location, and clear cut-off points are reported when appropriate *
- b Methodological criteria of PA/SB data were clearly described and all of the following information: total wear time and assessment of valid days (mandatory hours/day and number of valid days) *
- c No description

Comparability (max. 3 stars)

Comparability of cohorts on the basis of the design or analysis

- a The study controls for the most important factors, age and sex, for at least one association *
- b The study adjusted for other or additional factor, e.g. level of education, comorbidities, accelerometer wear time, physical activity for at least one association *

c No controlling for any factors

d No description

1 Statistical test: method of quantifying relationship of PA/SB and muscle strength/ power

- a The statistical test used to analyze the data is clearly described and appropriate and the measurement of the association is presented clearly including effect size with confidence intervals, p-value (unless p < 0.001), or standard error for at least one association *
- b The statistical test is not appropriate or incomplete

c No description

Outcome (max. 1 star for cross-sectional studies, 3 stars for longitudinal studies) Assessment of outcome measure: muscle strength/muscle power

a Clear description of an established method for assessing muscle strength/muscle power with measurement device reported (if applicable) for all measures *

b No description

———— The following are additional criteria assessed for <u>longitudinal studies only</u> ————— Was follow-up long enough for outcome to occur?

a Yes \geq 3 months *

b No <3 months

c Not reported

Adequacy of follow-up of cohorts

a Complete follow up with all subjects accounted for or small number lost (<20 %) *

b Large number lost (≥20 %)

c Not reported

Note Quality was assessed for all articles as described regardless if hypothesized exposure-outcome were reversed (meaning if exposure was muscle strength/muscle power and outcome was PA/SB

Appendix C

Table C1

Characteristics of articles assessing the association of physical activity and sedentary behavior with muscle strength and muscle power in older adults.

Author, year	Cohort	Country	Population selection ^a	Sample size (N)	Age in years mean (SD)	F %	PA/SB measures	Muscle strength/ muscle power measures	
Abe et al., 2015	N/A	JP	-	57	66.3 (6.8)	100	Steps, MVPA,	KES, toe grasping	
Abe et al., 2012	N/A	JP	Healthy	48	65.7 (6.4)	100	Steps, VPA, MPA,	KES, knee flexion	
Aggio et al., 2016	BRHS	GB	-	1286 (Non- sarcopenia: 1033; Sarcopenia: 183; Severe sarcopenia: 70)	Non-sarcopenia: 7.6 (4.1); Sarcopenia: 79.7 (4.7); Severe sarcopenia: 83.1 (5.2)	0.0	MVPA, LPA, SB, BST	HGS	
Alcazar et al., 2018	N/A	ES	-	31	75.8 (4.7)	54.8	MVPA, SB	Leg press strength, leg press power	
Alzahrani et al., 2012	N/A	N/R	After stroke	42	70 (10)	31.0	Activity counts, TPA, MVPA	KES	
Andersson et al., 2013	N/A	SE	COPD	72	65 (7)	61.1	EE (PAL)	KES	
André et al., 2018	N/A	PT	Healthy	29	73.2 (6.6)	50.0	MVPA	Calf raise	
André et al., 2016	N/A	PT	Healthy	28	73.9 (7.7)	56.1	MVPA	Calf raise	
Aoyagi et al., 2009	Nakanojo	JP		170	72.7 (4.6)	55.3	Steps, TPA	HGS, knee extension torque	
Ashe et al., 2008	N/A	N/R	-	73	68.8 (3)	100	Activity counts, MVPA	KES, leg press power	
Ashe et al., 2007	N/A	N/R	Chronic disease	200	74.4 (5.7)	65.0	Steps	HGS, KES	
Aubertin-Leheudre et al., 2017	LIFE	US	Mobility limited and sedentary	1453 (Non-obese non- dynapenic: 402; Non- obese dynapenic: 381; Obese non-dynapenic: 414; Obese dynapenic: 256)	78.8 (5.3)	66.0	Steps, activity counts, TPA	HGS	
Balducci et al., 2017	N/A	IT	Diabetes	300	61.6 (9.9)	38.7	MVPA, LPA, SB	Shoulder press strength, leg press strength	
Bann et al., 2015	LIFE	US	Mobility limited and sedentary	1130 (<i>M</i> : N/R; <i>F</i> : N/ R)	M: 79.3 (5.3); F: 78.5 (5.3)	N/R ~67	TPA, LPA, SB	HGS	
Barbat-Artigas et al., 2012	N/A	CN	Post- menopausal	57 (Sedentary: 19; Moderate active: 20; Active: 18)	61 (5)	100	Steps, TPA	HGS, KES, 20 s CST	
Bartlett and Duggal, 2020	N/A	N/R	Healthy	50	Sedentary: 63.4 (4.4); Active: 67.0 (6.0)	Sedentary: 52; Active: 56	Steps	HGS	
Bassey et al., 1988	N/A	GB	-	125	M: 71 (4); F: 72 (4)	53.6	Steps	Calf strength	
Bogucka et al., 2018	N/A	PL	Post- menopausal	46 (Dynapenic: 10; Non-dynapenic: 36)	71.4 (5.6)	100	Steps	HGS	
Bollaert and Motl, 2019	N/A	US	MS and HC	80 (MS: 40; HC: 40)	<i>MS</i> : 65.3 (4.3); <i>HC</i> : 66.5 (6.7)	62.5	MVPA, LPA, SB, PA bouts, SB bouts, long SB bouts	5x CST	
Boutou et al., 2019	PROactive	GB, NL, GR, BE	COPD	157	67.2 (7.8)	24.2	Δ Steps, Δ MVPA, Δ MET, Δ VMU	KES	
Carrasco Poyatos et al., 2016	N/A	ES	-	42 (MPA group: 19; VPA group: 15)	70.1 (4.5)	100	VPA, MVPA, MPA	HGS	
Chastin et al., 2012	N/A	GB	Healthy	30	F: 79.3 (3.4); M: 79.0 (3.6)	46.7	SB, SB break rate	Leg extension power	
Chmelo et al., 2013	IDEA	US	OA, high BMI, and sedentary	160	66 (6)	69.0	Steps, MVPA LPA, EE	KES	
Cooper et al., 2015	MRC NSHD	GB	-	1727	63.3 {60.3-64.9}	51.5	MVPA, SB, EE	HGS, 10x CST	
Davis et al., 2014	OPAL	GB	-	217	78.1 (5.8)	50.2	MVPA, SB, BST	5x CST	
de Melo et al., 2010 ^d	N/A	CN	-	60	77 (7.3)	75.0	Steps	30 s CST	
de Melo et al., 2014 ^d	N/A	CN	-	60	77 (7.3)	75.0	Steps	Arm curl, 30 s CST	
Demeyer et al., 2019	PAC-COPD	ES	COPD	114	70 (8)	N/R	∆Steps, steps, MVPA	ΔHGS	
Distefano et al., 2018	N/A	US	-	29 (Active: 10; Sedentary:19)	Active: 67.5 (2.7); Sedentary: 70.7 (4.7)	Active: 20.0; Sedentary: 42.1	Steps	KES, 5x CST	

Author, year	Cohort	Country	Population selection ^a	Sample size (N)	Age in years mean (SD)	F %	PA/SB measures	Muscle strength/ muscle power measures
Dogra et al., 2017	N/A	CN		1157	64 (95% CI: 64-64)	46.6	BST, long SB bouts	HGS
Dohrn et al., 2020 Dos Santos et al.,	SNAC-K N/A	SE BR	-	656 375	73.3 (9.0) 70 (7)	64.0 69.6	Steps MVPA	5x CST HGS
Duncan et al., 2016	N/A	GB		201	66.1 (7.7)	59.7	Steps	Arm curl, 30 s
Edholm et al., 2019	N/A	SE	-	60	67.5 (15)	100	Activity counts, MVPA	Squat jump test
Foong et al., 2016	TASOAC	AU	-	636	66 (7)	50.8	Activity counts, VPA, MPA, LPA, SB	KES, leg strength
Gennuso et al., 2016	N/A	US	-	44 (<i>M</i> : 16; <i>F</i> : 28)	<i>M</i> : 71 [69-74]; <i>F</i> : 70 [67-78]	63.6	SB, BST, SB break rate, SB bouts,	5x CST
Gerdhem et al., 2007	OPRA	SE	≥ 80 years	57	80.1 (0.1)	100	Activity counts,	KES, Knee flexion strength
Hall et al., 2016	MURDOCK	US	-	775 (<i>60-69y</i> : 196, <i>70-</i> <i>79</i> y: 198, <i>80-90+y</i> : 92)	62.1 (SD N/R) (60- 69y: 64.8, 70-79y: 73.6, 80-90+y: 83.6)	53.2 (60-69y: 50.5, 70-79y: 49.5, 80- 90+y: 64.1)	Steps, MVPA, SB	30 s CST
Harada et al., 2016	NCGG	JP	Global cognitive impairment	192	76.2 (4.1)	44.7	Steps	5x CST
Hartley et al., 2018	COSHIBA	GB	-	242	76.4 (2.6)	100	Activity counts	Jump strength, 5x CST, jump power
Hasegawa et al., 2018	N/A	JP	-	50	77.8 (5.3)	74.0	Steps	30 s CST
Hernandes et al., 2013	N/A	BR	+/- exercise lifestyle	238 (Exercise: 134; Non-exercise: 104)	Exercise: 68 [64- 71]; Non-exercise: 68 [64-71]	Exercise: 39.1; Non-exercise: 69.3	Steps	HGS, 30 s CST
Hernández et al., 2017	N/A	ES	COPD (moderate- severe)	44	70.3 (6.7)	0.0	TPA, MPA, LPA, SB	Quadriceps power at 50% and 70% 1RM, respectively
Hopkins, 2019	OAI	US	OA	687	Inactive: 65.7 (0.44); Active: 61.3 (0.48)	Inactive: 69.8; Active 44.3	MVPA	Δ5x CST
Iijima et al., 2017	N/A	JP	OA	207 (Basal activity: 58; Limited activity: 79; Low Active: 45; Physically active: 25)	Basal activity: 76.4 (8.89); Limited activity: 73.4 (6.83); Low Active: 70.0 (6.48); Physically active: 70.4 (6.00)	71.5	Steps	5x CST
Ikenaga et al., 2014	N/A	JP		178	73.7 (2.6)	0.0	Steps, MPA, LPA, SB	HGS, KES
Iwakura et al., 2016	N/A	N/R	COPD	22	71.6 (6.9)	0.0	Steps	5x CST
Jantunen et al., 2017	Helsinki Birth	FI		695	70.7 (2.7)	54.5	MET	Arm curl, 30 s CST
Jeong et al., 2019	N/A	KR		52	60.3 (5.6)	90.4	Steps	Hip strength, KES
Johnson et al., 2016	TASOAC	AU	-	188	64.0 (7.3)	53.7	VPA, MPA, LPA, SB	Leg strength
Kawagoshi et al., 2013	N/A	JP	COPD	26	77 (6)	0.0	Steps, TPA, LPA, SB	KES
Keevil et al., 2016	EPIC- Norfolk	GB	-	3726 (M: 1674; F: 2052)	M: 69.8 (7.6); F: 68.0 (7.5)	55.1	MVPA, SB	HGS, CST
Kim, 2015 Kim et al., 2015	N/A N/A	JP JP	-	207 101	83.5 (2.6) 81.4 (2.8)	55.5 100	Activity counts Activity counts, MVPA, LPA, SB, long SB bouts	HGS, KES 5x CST
Lai et al., 2020	N/A	TW	Independent walking without assistive device	122	69.9 (5.0)	71.3	MVPA	5x CST
Lee et al., 2015	OAI	US	Knee OA	1168	66 (N/R)	55.0	SB	5x CST
Lerma et al., 2018 Liao et al., 2018	N/A	US JP	-	91 281	70.7 (10.2) 74.5 (5.2)	60.0 38.1	MVPA, LPA, SB SB, SB break rate, long SB bouts	5x CST HGS
Lohne-Seiler et al., 2016	2 N/R cohorts	NO	-	161 (<i>M</i> : 76; <i>F</i> : 85)	M: 72.3 (4.8); F: 73.2 (5.4)	52.8	Steps	HGS
Mador et al., 2011	N/A	US	COPD	28	71.9 (7.7)	N/R	VMU	KES
Master et al., 2018	OAI	US	Knee OA	1925	65.1 (9.1)	55.0	Steps	5x CST

Author, year	Cohort	Country	Population selection ^a	Sample size (N)	Age in years mean (SD)	F %	PA/SB measures	Muscle strength/ muscle power measures
Matkovic et al.,	N/A	HR	COPD	111	67.7 (7.8)	31.5	Steps	HGS, 30 s CST
2020 McDermott et al., 2002	N/A	US	+/- PAD	346	71.2 (8.3)	41.6	Accelerations	5x CST
McGregor et al., 2018	CHMS	CN	-	1454	69.3 (0.3)	52.4	MVPA, LPA, SB	HGS
Meier and Lee, 2020	PAAS	US		304	72.8 (5.8)	58.2	Steps	HGS, chest press strength, leg press strength
Monteiro et al., 2019	N/A	РТ	Caucasian	60	67.7 (5.3)	100	Activity counts	Arm curl, KES, knee flexion strength, 30 s CST
Morie et al., 2010	N/A	US	Mobility limited & low testosterone	82	74.1 (5.3)	0.0	Activity counts	Chest press strength, chest press power, leg press strength, leg press power
Nagai et al., 2018	N/A	JP	-	886	73.6 (7.0)	70.0	MVPA, LPA, SB	HGS
Nawrocka et al., 2017	N/A	PL	-	61 (Not meeting PA guidelines: 39; Meeting PA guidelines: 22)	66.2 (4.4)	100	MVPA	Arm curl
Nawrocka et al., 2019	N/A	PL	-	213 (Not meeting PA guidelines: 108; Meeting PA guidelines: 105)	N/R	100	MVPA	HGS, Arm curl, 30 s CST
Nicolai et al., 2010	N/A	GB	-	44	80.8 (4.1)	N/R	Steps (walking), TPA (standing)	5x CST
Ofei-Doodoo et al., 2018	N/A	US	Sedentary	101	75.0 (7.2)	100	MVPA	Arm curl, 30 s CST
Orwoll et al., 2019	MrOS	US		2741 (No falls: 1777; One fall: 327; ≥ Two falls: 63)	78.8 (5)	0.0	MVPA, LPA	5x CST
Osuka et al., 2015	N/A	JP	-	802	72.5 (5.9)	76.7	MVPA, LPA	5x CST
Park et al., 2018	N/A	KR	-	22	71.5 (3.3)	0.0	Steps	HGS, 30 s CST
Perkin et al., 2018	N/A	GB	Healthy	50	69 (4)	46	MVPA, SB, EE	Leg press strength, leg press power
Pitta et al., 2005	N/A	BE	COPD	50	77.3 (7.0)	28	Steps (walking), TPA (standing)	HGS, knee extension torque
Puthoff et al., 2008	N/A	N/R	Mild-moderate functional limitations	30	77.3 (7.0)	83.3	Steps	Leg press strength, leg press power
Rapp et al., 2012	ActiFE Ulm	DE	-	1271	M: 76.0 (6.46); F: 75.1 (6.58)	43.6	Steps (walking)	HGS, 5x CST
Rausch-Osthoff et al., 2014	N/A	CH	COPD	27	62.3 (5.7)	40.7	Steps, EE, EE (PAL), MET	KES
Rava et al., 2018	N/A	EE	-	81	73.1 (5.3)	100	VPA, MVPA, MPA, LPA, SB	5x CST
Reid et al., 2018	N/A	AU	-	123	70.9 (4.2)	63	SB, BST	KES, leg press strength, 30 s CST
Rojer et al., 2018	Grey Power	NL	-	80	74.4 [72.4-78.0]	60.0	Steps, TPA, SB, PA bouts, SB bouts	HGS
Rosenberg et al., 2015	N/A	US	Retirement communities	307	83.6 (6.4)	72.3	SB	5x CST
Rowlands et al., 2018	CODEC	GB	Type II diabetes	295	63.2 (9.7)	39.7	MVPA, accelerations, intensity gradient, PA bouts	HGS, 60 s CST
Safeek et al., 2018	N/A	US	HIV	21	66.1 (6.3)	33.3	Steps, MVPA, LPA, SB, EE	HGS, 30 s CST
Sánchez-Sánchez et al., 2019	TSHA	ES	-	512	78.1 (5.7)	54.3	Activity counts, MVPA, LPA, SB	HGS
Santos et al., 2012	N/A	PT	-	312	74.3 (6.6)	62.5	MVPA, SB	Arm curl, 30 s CST
Sardinha et al., 2015	N/A	PT	-	215	73.3 (5.9)	59.5	BST	Arm curl, 30 s CST
Scott et al., 2020	Healthy Ageing Initiative	SE		3334 (Non-sarcopenic: 3273; Sarcopenic: 61)	Non-sarcopenic: 70.01 (0.10); Sarcopenic: 70.02 (0.13)	Non- sarcopenic: 50.5;	MVPA, LPA, SB	HGS

A	Coloret	0tur	Denvelation	Complete day	A !	E 0/	DA (CD	Morels stored (
Author, year	Cohort	Country	Population selection ^a	Sample size (N)	Age in years mean (SD)	F%	PA/SB measures	muscle power measures	
						Sarcopenic: 57.4			
Scott et al., 2011	TASOAC	AU	-	697	61.9 (7.2)	49.5	Steps	Leg strength	
Scott et al., 2009	TASOAC	AU	-	982	62 (7)	51	Steps	Leg strength	
Semanik et al., 2015	OAI	US	OA	1659	64.8 (9.0)	54.7	SB	5x CST	
Silva et al., 2019	N/A	PT	Physically independent	83	72.14 (5.61)	67.5	MVPA, LPA, SB	Arm curl, 30 s CST	
Spartano et al., 2019	FOS	US	-	1352	68.6 (7.5)	54.0	Steps, MVPA, SB	HGS, 5x CST	
Tang et al., 2015	N/A	US	Severe Aortic Stenosis	51	88 [85-90]	63	Activity counts	HGS	
Trayers et al., 2014	OPAL	GB	-	240	78 (6)	48	Steps, counts, MVPA	5x CST	
Van Gestel et al., 2012	N/A	SE	COPD	70	62.4 (7.4)	30.0	Steps	HGS, 60 s CST	
Van Lummel et al., 2016	N/A	NL	-	57	84.0 (11.0)	82.5	TPA, PA bouts, SB bouts	5x CST	
van Oeijen et al., 2020	N/A	NL	CIAP	92	65 (13.75)	27.2	Steps	Lower extremity strength	
Van Sloten et al., 2011	N/A	NL	Diabetes	100	64.5 (9.4)	31.0	Steps	HGS	
Walker et al., 2008	N/A	N/R	COPD	23	66 (9)	47.8	TPA	KES	
Ward et al., 2014	N/A	N/R	-	156	68.9 (6.7)	45.5	Activity counts, MVPA	30 s CST	
Waschki et al., 2012	N/A	GB & NL	COPD	104	64.6 (7.2)	39.2	Steps, EE (PAL)	KES	
Watz et al., 2008	N/A	DE	COPD	170	64.0 (6.6)	24.7	Steps, EE (PAL)	HGS	
Westbury et al., 2018	HSS	GB	-	131 (<i>M</i> : 32; F: 99)	M: 78.6 (2.7); F: 78.9 (2.3)	75.6	TPA, MVPA, accelerations	HGS	
Wickerson et al., 2013	N/A	CN	Interstitial lung disease	24	62 [53-65]	41.7	Steps, MVPA	Knee extension torque	
Winberg et al., 2015	N/A	SE	Polio history	77	67 (6)	45.5	Steps	KES, knee flexion strength	
Yamada et al., 2011	N/A	JP	-	629 (Non-frail: 515; Frail: 114)	Non-frail: 77.0 (7.2); Frail: 76.1 (7.5)	67.5	Steps	5x CST	
Yasunaga et al., 2017	N/A	JP	-	287	74.4 (5.2)	37.3	MVPA, LPA, SB	HGS	
Yoshida et al., 2010	N/A	JP	Day care center attendees	147	82.8 (4.3)	100	Steps, TPA, MPA, LPA	HGS, KES	
Yuki et al., 2019	NILS-LSA	JP	-	401	71.1 (4.3)	44.4	Steps, LPA, MVPA	HGS	

Age in years is presented as mean (standard deviation) or otherwise median [interquartile range] or mean {range}. Gender distribution is presented as the percentage of females within the study population. Subgroups are presented in italics with their sample size (N) and any other reported information in parentheses. N = sample size, M = male, F = female, N/R = not reported, N/A = not applicable, BRHS = British Regional Heart Study, LIFE = Lifestyle Interventions and Independence for Elders, IDEA = Intensive Diet and Exercise for Arthritis, MRC NSHD = Medical Research Council National Survey of Health and Development, OPAL = Older People and Active Living, PAC-COPD = Phenotype Characterization and Course of Chronic Obstructive Pulmonary Disorder, CIAP = chronic idiopathic axonal polyneuropathy, TASOAC = Tasmanian Older Adult Cohort, OPRA = Osteoporosis Prospective Risk Assessment study, MURDOCK = The Measurement to Understand the Reclassification of Disease Of Cabarrus/Kannapolis, NCGG = National Center for Geriatrics and Gerontology-Study, COSHIBA=Cohort of Skeletal Health in Bristol and Avon, EPIC-Northfolk = European Prospective Investigation into Cancer in Northfolk, OAI = Osteoarthritis Initiative, CHMS = Canadian Health Measure Survey, MrOS = The Osteoporotic Fractures in Men Study, ActiFE Ulm = Activity and Function in the Elderly in Ulm, CODEC = Chronotype of Patients with Type 2 Diabetes and Effect on Glycaemic Control, TSHA = Toledo Study of Healthy Aging, FOS = Framingham Offspring Study, HSS=Hertford Sarcopenia Study, NILS-LSA = National Institute for Longevity Sciences-Longitudinal Study of Aging, PAAS = Physical Activity and Aging Study, SNAC-K = National study on Aging and Care in Kungsholmen, JP = Japan, GB = Great Britain, ES = Spain, PT = Portugal, US = United States, IT = Italy, CN = Canada, PL = Poland, BR = Brazil, SE = Sweden, FI = Finland, AU = Australia, NO = Norway, DE = Germany, CH = Switzerland, EE = Estonia, NL = Netherlands, HR = Croatia, TW = Tawain, MS = multiple sclerosis, HC = healthy controls, OA = osteoarthritis, BMI = body mass index, COPD = chronic obstructive pulmonary disorder, PAD = peripheral artery disease, N = sample size, M = male, F = female, TPA = total physical activity, MPA = moderate physical activity, VPA = vigorous physical activity, MVPA = moderate to vigorous physical activity, LPA = light physical activity, SB = sedentary behavior, EE = energy expenditure, PAL = physical activity units, BST = breaks in sedentary time, $\Delta = change$, MET = metabolic equivalent of tasks, VMU = vector magnitude units, HGS = hand grip strength, KES = knee extension strength, CST = chair stand test, s = seconds, x = times (repetitions), 1RM = one repetition maximum.

^a Population selection refers to any specific for criteria for selection other than sex (e.g. disease or demographic characteristic), studies with no selection were selected from a community-based sample or the general population left blank with a dash.

Table C2

Assessment of methodological quality of included articles based on the adapted Newcastle-Ottawa Scale (NOS).

Author year	Selection			Comparability			Outcome	e	Score	Quality	
	Q1	Q2 _{a,b}		Q3 _{a,b}		Q4	Q5	$Q6^L$	Q7 ^L		
Abe et al. 2015	*	*		*	*		*			5/7	high
Abe et al., 2013	*	*	-	*	-	-	*			4/7	high
Aggio et al., 2016	*	*	*	*	*	*	*			7/7	high
Alcazar et al., 2018	*	*	-	-	-	-	*			3/7	low
Alzahrani et al., 2012	-	*	-	-	-	*	*			3/7	low
Andersson et al., 2013	*	-	-	*	*	*	*			5/7	high
André et al., 2018	*	*	-	-	-	*	*			4/7	high
André et al., 2016	*	*	-	-	-	*	*			4/7	high
Aoyagi et al., 2009	*	*	-	×	-	-	*			4/7	high
Ashe et al., 2008	-	~		-	-	~	*			4/7	nign
Aubertin Lebeudre et al. 2017	*	-	-	-	-	- *				2/7	low
Balducci et al. 2017		*	-		-		_			1/7	low
Bann et al., 2015	*	*	-	*	*	*	*			6/7	high
Barbat-Artigas et al., 2012	*	*	-	-	-	-	*			3/7	low
Bartlett and Duggal, 2020	-	-	-	-	-	*	-			1/7	low
Bassey et al., 1988	*	-	-	-	-	-	*			2/7	low
Bogucka et al., 2018	*	-	-	-	-	*	*			3/7	low
Bollaert and Motl, 2019	*	-	-	-	*	*	-			3/7	low
Boutou et al., 2019	*	*	-	-	*	*	-	*	-	5/9	high
Carrasco Poyatos et al., 2016	-	-	*	-	-	*	*			3/7	low
Chastin et al., 2012 Chinale et al., 2012	*	*	-	-	-	*	-			3/7	low
Cooper et al., 2015	*	*	- *	-	- *	*	-			3/7	low
Davis et al. 2014	*	*	*	*	*	*	*			7/7	high
de Melo et al. 2010	*		-		*	*	*			4/7	high
de Melo et al., 2014	*	-	-	*	*	*	*			5/7	high
Demeyer et al., 2019	*	*	*	-	-	-	-	*	-	4/9	low
Distefano et al., 2018	*	*	-	*	-	*	*			5/7	high
Dogra et al., 2017	*	*	-	*	*	*	*			6/7	high
Dohrn et al., 2020	*	*	*	*	*	*	*			7/7	high
Dos Santos et al., 2019	*	*	-	-	-	*	*			4/7	high
Duncan et al., 2016	*	*	-	-	-	*	*			4/7	high
Edholm et al., 2019	*	*	*	-	*	*	*			6/7	high
Foong et al., 2016	*	*	-	-	-					4/7	high
Gennuso et al., 2016 Gerdhem et al. 2007	*	*	*		~	-	-			5/7	high
Hall et al. 2016	*		*			*	*			4/7	high
Harada et al., 2016	*	*	-	-	-	*	*			4/7	high
Hartley et al., 2018	*	*	-	*	-	*	*			5/7	high
Hasegawa et al., 2018	*	*	-	*	-	*	*			5/7	high
Hernandes et al., 2013	*	*	-	-	-	-	*			3/7	low
Hernández et al., 2017	*	*	-	-	*	*	*			5/7	high
Hopkins 2019	*	-	-	*	*	-	*	*	-	5/9	high
Iijima et al., 2017	*	-	-	*	*	*	*			5/7	high
Ikenaga et al., 2014	*	-	-	-	*	*	-			3/7	low
Iwakura et al., 2016	*	*	-	-	-	-	*			3/7	low
Januari et al., 2017	*	*			-		*			3/7	lingii
Johnson et al. 2016	*	*	*				*			4/7	high
Kawagoshi et al., 2013	*	*	*	-	-	-	*			4/7	high
Keevil et al., 2016	*	*	*	*	*	*	*			7/7	high
Kim 2015	*	*	-	*	-	*	*			5/7	high
Kim et al., 2015	*	*	*	*	*	*	*			7/7	high
Lai et al., 2020	*	*	*	*	*	*	*			7/7	high
Lee et al., 2015	*	*	*	*	*	*	*			7/7	high
Lerma et al., 2018	*	*	-	*	*	*	*			6/7	high
Liao et al., 2018	*	*	*	*	*	*	*			7/7	high
Lohne-Seiler et al., 2016	*	*	*	*	*	*	*			1/1	high
Mador et al., 2011 Master et al., 2018	*	-		-	-	*	*			4/7	high
Matter et al., 2016	*	_	-		_	*	*			3/7	low
McDermott et al. 2002	*	*	-	-	-	*	*			4/7	high
McGregor et al., 2018	*	*	-	*	*	*	-			5/7	high
Meier and Lee, 2020	*	-	-	*	*	*	*			5/7	high
Monteiro et al., 2019	*	*	-	-	-	*	*			4/7	high
Morie et al., 2010	*	*	-	-	-	-	*			3/7	low
Nagai et al., 2018	*	*	*	-	-	-	*			4/7	high
Nawrocka et al., 2017	*	*	-	-	-	*	*			4/7	high
Nawrocka et al., 2019	-	*	-	-	-	*	*			3/7	low
Nicolai et al., 2010	-	*	-	-	-	-	*			2/7	low
Ore-Doodoo et al., 2018	*	-	-	-	-	*	*			3/7	10W
Orwoll et al., 2019			-	-	-		-			4//	nign

Author year	Selectio	n		Comparability			Outcome			Score	Quality
	Q1	Q2 _{a,b}		Q3 _{a,b}		Q4	Q5	Q6 ^L	Q7 ^L		
Osuka et al., 2015	*	*	*	*	*	*	*			7/7	high
Park et al., 2018	*	*	-	-	-	-	-			2/7	low
Perkin et al., 2018	*	*	-	-	-	-	*			3/7	low
Pitta et al., 2005	*	*	-	-	-	*	*			4/7	high
Puthoff et al., 2008	-	*	*	-	-	-	-			2/7	low
Rapp et al., 2012	*	*	*	*	-	*	*			6/7	high
Rausch-Osthoff et al., 2014	*	*	-	-	-	*	*			4/7	high
Rava et al., 2018	*	*	-	*	*	-	*			5/7	high
Reid et al., 2018	*	-	-	*	*	*	*			5/7	high
Rojer et al., 2018	*	*	*	*	*	*	*			7/7	high
Rosenberg et al., 2015	*	*	*	*	*	*	*			7/7	high
Rowlands et al., 2018	*	*	*	*	*	*	-			6/7	high
Safeek et al., 2018	*	*	*	-	-	-	*			4/7	high
Sánchez-Sánchez et al., 2019	*	*	*	*	*	*	*			7/7	high
Santos et al., 2012	*	*	*	*	*	*	*			7/7	high
Sardinha et al., 2015	*	*	*	*	*	-	*			6/7	high
Scott et al., 2020	*	*	*		*	*	*			6/7	high
Scott et al., 2011	*	*	*	-	*	*	*	*	*	8/9	high
Scott et al., 2009	*	*	*	-	-	*	*			5/7	high
Semanik et al., 2015	*	*	*	*	*	*	*	*	*	9/9	high
Silva et al., 2019	*	*	*	-	-	*	*			5/7	high
Spartano et al., 2019	*	*	*	*	*	*	*			7/7	high
Tang et al., 2015	*	*	-	-	*	*	*			5/7	high
Trayers et al., 2014	*	-	-	*	*	*	*			5/7	high
Sullivan and Feinn, 2012	*	*	-	-	*	*	*			5/7	high
Van Lummel et al., 2016	*	*	-	-	-	*	*			4/7	high
van Oeijen et al., 2020	*	-	-	-	-	*	-	*	-	3/9	low
Van Sloten et al., 2011	*	*	-	-	-	*	-			3/7	low
Walker et al., 2008	-	*	-	-	-	*	*			3/7	low
Ward et al., 2014	*	*	-	*	*	*	*			6/7	high
Waschki et al., 2012	*	*	*	*	*	*	*			7/7	high
Watz et al., 2008	*	*	-	-	*	-	-			3/7	low
Westbury et al., 2018	*	*	-	*	*	*	*			6/7	high
Wickerson et al., 2013	*	*	-	-	-	*	*			4/7	high
Winberg et al., 2015	*	*	-	*	*	-	*			5/7	high
Yamada et al., 2011	*	*	-	*	*	-	*			5/7	high
Yasunaga et al., 2017	*	*	*	*	*	*	*			7/7	high
Yoshida et al., 2010	*	-	-	-	-	-	*			2/7	low
Yuki et al., 2019	*	*	-	*	*	-	-	*	*	6/9	high

K.A. Ramsey et al.

Table C2 (continued)

Q = questions, L = questions applicable to longitudinal studies only, quality was assessed using a cut-off for high quality of \geq 4/7 for cross-sectional studies and \geq 5/9 for longitudinal studies, and otherwise articles were classified low quality.

*represents point awarded, - (dash) represents no point awarded, blank represents N/A, underlined articles are longitudinal design.

Q1:*Age, gender distribution, country, and kind of population is reported $Q2_{a}$:*Ascertainment of all physical activity measures reported is clearly and described by name of device, location, and clear cut-off points are reported when appropriate, $Q2_{a}$:*Methodological criteria of PA/SB data were clearly described and all of the following information: total wear time and assessment of valid days (mandatory hours/day and number of valid days) (2 possible * for Q2) $Q3_{a}$:*The study controls for the most important factors, age and sex, for at least one association, $Q3_{b}$:*The study adjusted for other or additional factor, e.g. level of education, comorbidities, accelerometer wear time, physical activity for at least one association (2 possible * for Q3) Q4:*The statistical test used to analyze the data is clearly described and appropriate and the measurement of the association is presented clearly including effect size with confidence intervals, p-value (unless p < 0.001), or standard error for at least one association Q5:*Clear description of an established method for assessing muscle strength/muscle power with measurement device reported (if applicable) for all measures Q6^L:*Follow-up \geq 3 months (applicable for longitudinal studies only) Q7^L:*Complete follow up with all subjects accounted for or small number lost (<20 %) months (applicable for longitudinal studies only).

K.A.
Ramsey
et
al.

	Device and wearing protocol				Assessi	nent of valid	days	Physical activity and sedentary behavior			
Author year	A/ P	Name	Worn on	# days worn	Defined as minimum (h/day)	# valid days required	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)
Abe et al., 2015	А	Lifecorder EX	Hip	30	N/R	30	N/R	Steps MVPA	#/day Min/day	Device detected ≥3 MET	7974 (3041) 23.7 (17.1)
, ,			1					LPA (LPA- MPA)	Min/day	<3-6 MET	82.2 (29.1)
Abe et al., 2012	A	Lifecorder EX	Hip	30	N/R	30	N/R	Steps VPA MVPA (<i>MPA</i>) LPA EE	#/day Min/day Min/day Min/day Kcal/day	Device detected >6 MET 3-6 MET <3 MET Device detected	7996 (3180) 1.6 (1.6) 22.5 (16.8) 59.4 (20.8) 181 (85)
								MVPA	Min/day	>1040 CPM	Non-sarcopenia: 42.1, (95% CI: 40.1, 44.0); Sarcopenia: 37.9 (95% CI: 32.8, 43.1); Severe sarcopenia: 19.8 (95% CI: 14.4, 25.1)
Aggin et al. 2016	А	Actigraph GT3X	Hin	7	10	3	N/B	LPA	Min/day	100-1040 CPM	Non-sarcopenia: 201.9 (95% CI: 198.1, 205.6); Sarcopenia: 196.4 (95% CI:187.1, 205.7); Severe sarcopenia: 169.2 (95% CI: 152.5, 185.9)
1,550 ct di, 2010		neugruph Gron	mp	,	10	5	Ay K	SB	Min/day	<100 CPM	Non-sarcopenia: 610.9 (95% CI: 606.0, 615.7); Sarcopenia: 614.1 (95% CI: 602.1, 626.1); Severe sarcopenia: 650.6 (95% CI: 632.0, 669.2)
								BST	#/h	N/R	Non-sarcopenia: 7.3 (95% CI: 7.2, 7.4); Sarcopenia: 7.3 (95% CI: 7.0, 7.6); Severe sarcopenia: 6.6 (95% CI: 6.0, 7.1)
Alcazar et al., 2018	А	Acti Trainer	Hip	7	8	4	N/R	MVPA SB	% time/day % time/day	≥1952 CPM <100 CPM	N/R N/R
Alzahrani et al								Activity counts	#/day	Total # of steps + stairs + sit to stands	5656 (4091)
2012	A	IDEEA	Waist	2	N/R	N/R	10.8 (1.3) h/day	TPA (On feet)	Min/day	Total duration of walking + stairs + standing + sit to stands	230 (115)
Andersson et al., 2013	A	ActiReg	Waist, thigh, and chest	7	N/R	N/R	N/R	EE (PAL)	None	Calculated as EE from ActiReg/resting metabolic rate from indirect calorimetry	1.47 (0.19
André et al., 2018	Α	Actigraph GT1M	Hip	5	10 h/day or 3000 activity counts	4	N/R	MVPA	Min/day	\geq 1952 CPM	35.3 (28.8)
André et al., 2016	A	Actigraph GT1M	Hip	7	or 3000 activity counts	4	N/R	MVPA (less vs. more active)	Dichotomous min/day	$<$ vs. \ge 30 min/day	31.83 (28.3)
Aoyagi et al., 2009	А	Kenz Lifecoder	Waist	1 year	N/R	N/R	N/R	Steps	# /day	Device detected	6574 (2715)
Ashe et al., 2008	A	Actigraph GT1M	waist	N/R	10	4 ^a	6 (1) days	IFA	#/day	>3 ME1 Device detected	244384 (116423) (continued on next page)

Table C3	(continued)
----------	-------------

	Devi	ice and wearing proto	col		Assessr	nent of valid	days	Physical ac	ctivity and sedenta	ry behavior	
Author year	A/ P	Name	Worn on	# days worn	Defined as minimum (h/day)	# valid days required	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)
	_	New Lifestyles						Activity counts MVPA Steps	Min/day #/day	>574 CPM Device detected	156 (90)
Ashe et al., 2007	Р	Digiwalker	N/R	3	N/R	N/R	N/R	Steps (high vs.	Dichotomous #/day	< or > 7500 steps/day	6078 (4031)
								Steps	#/day	Device detected	Non-obese non-dynapenic: 2938 (1573); Non-obese dynapenic: 2703 (1703); Obese non-dynapenic: 2622 (1327); Obese dynapenic:
Aubertin-Leheudre et al., 2017	A	Actigraph GT3X	Hip	N/R	10	3	N/R	Activity counts	#/day	Device detected	2406 (1199) Non-obese non-dynapenic: 95617 (49660); Non-obese dynapenic: 84046 (51892); Obese non-dynapenic: 94160 (49862); Obese dynapenic: 84995 (43571) Non-obese non-dynapenic:
								ТРА	Min/day	>500 CPM	55.8 (36.6); Non-obese dynapenic: 46.0 (35.2); Obese non-dynapenic: 57.3 (38.3);
Balducci et al., 2017	A	My Wellness Key	Hip	7	N/R	N/R	N/R	MVPA LPA SB	Min/day H/day H/day	≥1952 CPM 100-1951 <100 CPM	Obese dynapenic: 49.8 (34.4) 12.4 (4.6) 3.93 (1.35) 11.6 (1.2)
								TPA	H/day	Device detected	M: 168.7 (67.0); F: 202.0 (67.9)
Bann et al., 2015	А	Actigraph GT3X	Hip	7	10	3	N/R	Lower-LPA	H/day	100-1040 CPM	M: 152.6 (55.7); F: 187.5 (59.0)
2010 et all, 2010		incugitaphi oroni	mp		10	0		Higher-LPA	H/day	1041-1951 CPM	M: 12.1 (13.1); F: 12.1 (11.6)
								SB	H/day	<100 CPM	M: 663.1 (109.6); F: 634.3 (114.7)
								Steps	#/day	Device detected	Sedentary: 6178 (1381); Moderate active: 8624 (641);
Barbat-Artigas et al., 2012	P/ A	Suzuken Lifecorder PLUS NL2160	Waist	7	N/R	N/R	N/R	TPA	Min/day	≥3 MET (Subgroups – Sedentary: <7500; Moderate active: 7500-10000; Active: >10000)	Active: 13524 (2553) Sedentary: 14.84 (9.36); Moderate active: 24.81
Bartlett and Duggal, 2020	Α	Actigraph GT3X	N/R	7	N/R	N/R	N/R	Steps (Active vs. Sedentary)	#/day	Active: 10500-15000; Sedentary: 1518- 4580	(15.15); Active: 50.06 (23.45) Active: 12019 (1412); Sedentary: 3657 (777)
Bassey et al., 1988	А	N/R	Waist	7	N/R	N/R	N/R	Steps (step score)	#/day x 10^3	Device detected	M: 50 (37); F: 42 (28)
Bogucka et al., 2018	Р	Onwalk 900 Geonaute	N/R	2	N/R	2	N/R	Steps	#/day	Device detected	Dynapenic: 5296 (2892); Non- dynapenic: 7259 (3849)
		Geonaute						MVPA	% wear time	≥1723 CPM	MS: 1.5 (0.02); HC: 4.2 (0.03)
Bollaert and Motl,		Actionark CTOV	N /P	7	N /D	4	<i>MS</i> : 797.8 (97.8)	LPA	% wear time	1722-100 CPM	<i>MS</i> : 30.6 (0.09); <i>HC</i> : 33.0 (0.07) <i>MS</i> : 67.0 (0.00); <i>HC</i> : 62.8
2019	А	Acugraph GISA	1N/ K	/	1N/ R	4		SB	% wear time	<100 CPM	(0.08)
							<i>НС</i> : 851.8 (79.3)	PA bouts PA bouts	#/day Min/bout/day	>2 min PA >2 min PA	MS: 12.4 (4.9); HC: 13.4 (3.7)
											(continued on next page)

	Device and wearing protocol				Assessr	nent of valid	days	Physical activity and sedentary behavior			
Author year	A/ P	Name	Worn on	# days worn	Defined as minimum (h/day)	# valid days required	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)
											MS: 45.9 (29.5); HC: 43.4
								CD houte	# (dan	> 2 min CD	(28.2)
								SB bouts	#/uay Min/bout/day	>2 min SB	MS: 15.2 (3.2); HC: 15.7 (3.1) MS: 24.5 (7.2); HC: 22.0 (3.0)
								Long SB bouts	#/day	>20 min SB	$MS: 5 \circ (1 \ 4) \cdot HC \cdot 5 \circ (1 \ 9)$
								Long SB bouts	m/uay Min/bout/day	>30 min SB	$MS: 51.4 (8.2) \cdot HC \cdot 47.8 (6.0)$
								Actioranh	Will/ Dout/ day	230 mm 3D	Baseline: 4284 (3533): 6-
				14				measures:	#/dav	Device detected	month FU: 3594 (3212): 12-
								ΔSteps	", duj	Device detected	month FU: 3533 (2930)
								Lotepo			Baseline: 8.8 (18.8): 6-month
								Δ MVPA	Ratio	Ratio of moderate to, vigorous PA	FU: 7.4 (17.4): 12-month FU:
											6.1 (15.7)
											Baseline: 374902.4 (265269);
										Vectorial sum of activity counts in three	6-month FU: 330420
								ΔνΜυ	#/day	orthogonal directions	(223152); 12-month FU:
		Actigraphy CT2V									336240 (214432)
		and Dynaport	Hip and					Dynaport			Baseline: 4690 (3708); 6-
Boutou et al., 2019	Α	MiniMod	back		10	1	N/R	measures:	#/day	Device detected	month FU: 4264 (3378); 12-
		(concurrent)	buck	FU: 7				ΔSteps			month FU: 4359 (3425)
		(,						ΔSteps			Baseline: 59.1 (34.9); 6-
								(Walking)	Min/day	Device detected	month FU: 53.2 (34.4); 12-
											month FU: 56.9 (38.7)
									0	March all a service lands	Baseline: 0.183 (0); 6-month
								ΔME1	G	Metabolic equivalents	FU: 0.183 (0); 12-month FU:
											0.181(0)
										Vectorial sum of activity counts in three	6-month EU: 265253.2
								ΔVMU	#/day	orthogonal directions	(218109): 12-month FU
										orthogonal anochons	259447.4 (199472)
Carrasco Poyatos				_		_				>500 CPM (Subgroups – MPA group: 500-	MPA group: 20.6 (1.6); VPA
et al., 2016	Α	Actigraph GT3X	Wrist	7	10	5	N/R	MVPA	CPM	760 CPM; VPA group: >760 CPM)	group: 22.6 (1.1)
Chaptin at al. 2012		A atizz D A I	Thich	7	N/D	N/D	N /D	SB	H/day	Device detected (sitting posture)	F: 16.8 (1.6); M: 17.7 (1.8)
Chastill et al., 2012	A	ACUVPAL	ringn	/	N/K	N/K	N/K	SB break rate	#/sedentary h	N/R	F: 3.3 (0.4); M: 2.6 (0.8)
								Steps	#/day	Device detected	
Chmelo et al 2013	А	Kenz Lifecorder	Waist	7	N/R	N/R	N/R	MVPA	Min/day	\geq 3 MET	6209 (2554) 10.6 (8.9) 131
Gillicio et ul., 2010		Reliz Eliceorder	Whise	,	ity it	14/10	14/10	LPA	Min/day	<3	(39) 237 (124)
								EE	Kcal/day	Device detected	
0 1 0015			<i>c</i> 1 .	_	6 h per		E 00 F4 0 E 01	MVPA	Min/day	≥3 MET	M: 90.5 (64.9); F: 79.9 (54.9)
Cooper et al., 2015	A	Acitheart	Chest	7	quadrant	2	5.03 [4.8-5.2]	SB	H/day	<1.5 MET	M: 17.4 (2.2); F: 17.3 (2.0)
					or day			EE	KJ/Kg/day	Device detected	M: 38.1 (15.7); F: 34.2 (13.3)
Davis et al. 2014	٨	ActiGraph GT1M	Waiet	7	10	5	14.4(1.4) b/day	SB	Min/h	>1951 CPM	0.9 (1.3)
Davis et al., 2014	л	Actionaphi 011m	Walst	/	10	5	14.4 (1.4) II/ day	BST	#/h	Any transition from SB	50(10)
de Melo et al 2010	P	StepsCount SC-01	N/R	3	N/R	N/R	N/R	Stens	#/dav	Device detected	5289 (4029)
ac mero et al., 2010	•	570p500uii 00-01	11/10	5	11/10	11/10	-1/ 10	Steps	<i>"</i> , auy	20110 deleted	
de Melo et al., 2014	Р	StepCount SC-01	N/R	3	N/R	N/R	N/R	(medium vs.	Categorical	>3000-6500 vs. > 6500 steps/day	5289 (4029)
20 31010 00 01, 2011	•			0			, **	high)	#/day	adj	
					70% of			0			
		0			waking		00 (0) 0(- 6.1	ΔSteps	0-4	Active at follow-up and baseline, declined	
Demeyer et al., 2019	Α	Sensewear Pro	Arm	7	hours	3	89 (9) % of day;	persistently	Categorical	at follow-up from baseline, inactive at	N/R
		Armoand			8am-		o (1) days	decline	#/uay	follow-up and baseline	
					10pm			accinic,			

Ageing Research Reviews 67 (2021) 101266

24

Autor year $\frac{1}{2}$ Nameora $\frac{4}{2}$ or $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{4}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Wort ime near $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ <th></th> <th colspan="3">Device and wearing protocol</th> <th></th> <th>Assessi</th> <th>ment of valid</th> <th>days</th> <th colspan="4">Physical activity and sedentary behavior</th>		Device and wearing protocol				Assessi	ment of valid	days	Physical activity and sedentary behavior			
Distribution persistently Steps persistently Mar.day Steps persistently Mar.day Steps persistently Mar.day Steps presistently Steps	Author year	A/ P	Name	Worn on	# days worn	Defined as minimum (h/day)	# valid days required	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)
Instance									persistently			
Norm of all o									inactive)			
$ \begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$									Steps	#/day	Device detected	7362 (4589)
Discless of al. 2015 A. Sense Ware Proposition 2015 Actual Proposition 2016 Actual Proposition 2017 Actual Proposition 2017 Actual Proposition 2017 Actual Proposition 2017 Actual Proposition 2017 Proposition 2017 Proposit									SB	Min/day Min/day	>3 ME1	52 [22-91] 624 (118)
Degret al. 2017 A Aleida Hip 7 10 A Ale Ale and base and bas	Distefano et al., 2018	А	SenseWear Pro Armband	Arm	7	85% day	N/R	N/R	Steps	#/day	Device detected	Active: 8459 (2991); Sedentary: 4883 (2683)
jogen et al., 2010 A Action Inp F Sing in the institute in	Dogra et al 2017	۸	Actical	Uin	7	10	4	N /P	BST	#/day	Transition from SB (<100 CPM) >1 min	44 (95% CI: 43, 45)
behn et al. 2020 A ArtivAL3 Table P<	Dogia et al., 2017	л	Actical	mp	/	10	4	N/K	Long SB bouts	% time/day	>20 min SB bouts	9 (95% CI: 8, 9)
Define et al., 2020 A ActivPAL and Actigraph GT3X Finity Fini									SB	Min/day	Device detected (sitting posture)	512.1 (95% CI: 455.6, 571.7
Delment al., 2020 A ActivPAL 3 Thigh 7 10 4 85 2 (c4) BB bouts									SB break rate	#/sedentary h	Sit to stand transition	5.1 (95% CI: 4.0, 6.4)
Does Satus et al., 2019 A Actigraph GT3X Waik 5 10 4 N/R Minical Microscope Microsc	Dohrn et al., 2020	Α	ActivPAL 3	Thigh	7	10	4	852 (64)	SB bouts	Min/all SB bouts	Midpoint of cumulative distribution of all SB bout durations	30.1 (95% CI: 24.4, 39.1)
Deside state A Atgraph GT3X Waik 5 10 4 NR MINA MinA Corr 30 min MVPA (2 1041 CPM) NR NR Duncan et al., 2010 p preso Eletric transmission value <									Long SB bouts	Min	Longest sedentary bout	132.6 (95% CI: 106.4, 167.2)
Duncan et al, 2010 Rev Picon Beneric Magnetic Magnet Magneti Magnetic Magnet Magnetic Magnetic Magnetic Magnet Magn	Dos Santos et al., 2019	А	Actigraph GT3X	Waist	5	10	4	N/R	MVPA (sufficient vs. insufficient)	Min/day	\geq or <30 min MVPA (\geq 1041 CPM)	N/R
Ducan et al. 2010 P Pedonetrew 2000 Waist P NR NR NR NR Sepsihiary indication *////2000 >2000.0001/0500.250.0000.0000 NR Edolarie et al. 2019 A Arigraph GTSX Waist P			Piezo Electric									
Image: Auguage in the start of the	Duncan et al., 2016	Р	Pedometer New Lifestyles NL-	Waist	7	N/R	N/R	N/R	Steps (high, medium, low)	#/day	>7500, 5001-7500, 2501-5000 steps	N/R
Edolom et al., 2019 A Actigraph GT3X Waist 7 10 4 Activation of app 5.6 (6.0) (arr) of app 5.6 (couris) #/min/day Device detected Device detected <thdevice detected<="" th=""> <thd< td=""><td></td><td></td><td>2000</td><td></td><td></td><td></td><td></td><td>14.2(1.0) b/</td><td>Activity</td><td></td><td></td><td></td></thd<></thdevice>			2000					14.2(1.0) b/	Activity			
Foong et al., 2016 A Actigraph GT1M Waist 7 10 5 MAR Mark with with with with with with with with	Edholm et al. 2019	А	Actigraph GT3X	Waist	7	10	4	day: 5.6 (6.0)	counts	#/min/day	Device detected	307 (128) 32 (26)
Foong et al., 2016 A Actigraph GT1M Waist 7 10 5 N/R Activity VPA (MPA) 10,000/dwy 10 min/dwy 10 min/dwy Bevice detected F 27, 7 (12,5); M: 31,5 (14,3) Foong et al., 2016 A Actigraph GT1M Waist 7 10 5 N/R IO min/dwy MVPA (MPA) 26 MET 10 min/dwy 35,9 MET F 227, 9 (22,5); M: 31,5 (14,3) Foong et al., 2016 A Actigraph GT1M Waist 7 10 5 N/R IO min/dwy MVPA (MPA) 26 MET 10 min/dwy 26 MET 35,9 MET F 227, 9 (22,5); M: 31,5 (14,3) Foong et al., 2016 A ActivryAL A F 227, 9 (22,5); M: 31,5 (14,3) F 227, 9 (22,5); M: 31,5 (14,3) F Dimin/dwy 5,9 MET F 522,60 (80,0); M: 555,1 F 52,60 (80,0); M: 555,1 F 52,9 (80,0); M: 55,1 F 52,9 (80,0); M: 55,1 F 52,9 (80,0); M: 52,1 F 52,7 (11,2); F 3, 7,9 (12,5); F 3,3 (13,-3) F 52,7 (11,2); F 3, 7,9 (12,5); F 3,3 (13,-3) F 52,7 (11,2); F 5, 7,1,7 (12,5); F 3,3 (13,-3) F 52,7 (11,2); F 5, 7,1,7 (12,5); F 3,3 (13,-3) F 52,7 (11,2); F 5, 1,7 (12,5); F 3,3 (13,-3) F 52,7 (11,2); F 5, 7,1,7 (12,5); F 3,3 (13,-3) F 52,7 (11,2); F 5, 1,7 (12,5); F 3,3 (13,-3) <td>Euronn et un, 2019</td> <td></td> <td>incugiupii oron</td> <td>Walde</td> <td>,</td> <td>10</td> <td></td> <td>davs</td> <td>MVPA</td> <td>Min/day</td> <td>>2020 CPM</td> <td>007 (120) 02 (20)</td>	Euronn et un, 2019		incugiupii oron	Walde	,	10		davs	MVPA	Min/day	>2020 CPM	007 (120) 02 (20)
Poong et al., 2016 A Actigraph GTIM Waist 7 10 5 NR IVA IVA <thiva< th=""> IVA IVA</thiva<>									Activity counts	10,000/day	Device detected	F: 27.7 (12.5); M: 31.5 (14.3)
Foong et al., 2016 A Actigraph GTIM Waist 7 10 5 NR MVRA (MPA) 10min/adv 3-5.9 MET F2.9 (22.5), K: 36.3 (26.7) IPA IPA IPA 10min/adv 15.2 9 MET 7 22.6 (7.1), K: 22.7.1 7.30 IPA IPA IPA IPA IPA IPA IPA 10min/adv 15.2 9 MET 7 7.5 82.6 (89.0); K: 58.1 7.30 IPA									VPA	10 min/day	≥6 MET	F: 0.5 (0.3); M: 1.2 (0.4)
Fooding et al., 2015 A Actigraph GTIM Wast 7 10 5 IVR F226.7 (7.1); K: 227.1 (73.0) Gennuso et al., 2016 A Actigraph GT3X Thigh and hip 7 10 5 IVR IPA 10 min/day 1.5 2.9 MET F226.7 (7.1); K: 227.1 (73.0) Gennuso et al., 2016 A ActivPAL and Actigraph GT3X Thigh and hip 7 10 3 IVR SB bouts IVA Device detected (sitting or lying posture) M: 12.7 (10.7.16.0); F. 10.7 (16.0); F. 10.7 (16.2); F. 1	Econo et el 2016		Astisuanh CT1M	Maint	7	10	-	N/D	MVPA (MPA)	10 min/day	3-5.9 MET	F: 27.9 (22.5); M: 36.3 (26.7)
Gennuso et al., 2016 A ActivPAL and Actigraph GT3X Thigh Actigraph GT3X T	Foolig et al., 2016	A	Acugraph GTTM	waist	/	10	5	N/R	IDA	10 min/day	1 5 2 0 MET	F: 226.7 (7.1); M: 227.1
Renuese et al., 2016 A ActivPAL and service Figh SB 10 mi/dw <1.5 MET									LFA	10 mm/ day	1.3-2.9 WIL1	(73.0)
$ \begin{tabular}{ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$									SB	10 min/day	<1.5 MET	F: 582.6 (89.0); M: 585.1 (99.5)
Fermion et al., 2016AActivPAL and Actigraph GT3XThigh and hipPPP <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>SB</td> <td>H/day</td> <td>Device detected (sitting or lying posture)</td> <td><i>M</i>: 9.6 [8.7-11.1]; <i>F</i>: 9.3 [7.9-10.3]</td>									SB	H/day	Device detected (sitting or lying posture)	<i>M</i> : 9.6 [8.7-11.1]; <i>F</i> : 9.3 [7.9-10.3]
Gennuso et al., 2016 A ActivPAL and Actigraph GT3X Thigh and hip P									SB bouts	Min/day	Duration of SB bouts	M: 12.7 [10.7-16.0]; F: 10.7
Gennuso et al., 2016AActigraph GT3Xand hip7103N/R $\geq 40 \min SB$ boutsH/dayDuration of $\geq 40 \min SB$ boutsM: 3.7 [3.1-5.0]; F: 3.8 [3.3-4.5] $A ctigraph GT3X$ and hip7103N/R $\geq 40 \min SB$ boutsH/dayDuration of $\geq 40 \min SB$ boutsM: 3.7 [3.1-5.0]; F: 3.8 [3.3-4.5] $B constrained boutsA ctigraph GT3XA ctigraph GT3X<$			ActivPAL and	Thigh	_	10	0	NO	Long SB bouts (≥20 min)	H/day	Duration of $\geq 20 \text{ min SB}$ bouts	[8.7-13.4] M: 6.2 [5.2-7.1]; F: 5.7 [4.7- 6.9]
$ \begin{array}{c} \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ &$	Gennuso et al., 2016	А	Actigraph GT3X	and hip	7	10	3	N/R	≥40 min SB bouts	H/day	Duration of \geq 40 min SB bouts	M: 3.7 [3.1-5.0]; F: 3.8 [3.3- 4.5]
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$									\geq 60 min SB bouts	H/day	Duration of $\geq 60 \text{ min SB}$ bouts	M: 2.4 [1.8-3.1]; F: 2.4 [1.6- 3.3]
Gerdhen et al., 2007 A MTI AM 71256 Hip 7 8 5 N/R counts MVPA #/min/day Device detected 18 [11-23] Hall et al., 2016 A ActiGraph GT3X or GT3X+ Y 10 4 N/R Steps #/day Device detected 18 [11-23] MVPA Min/day >1952 CPM 13 [6-23] 60-69y: 6311.0 (2668.4);70- 79y: 5275.5 (2717.0); 80- MVPA Min/day Min/day Device detected 90+y: 3591.1 (2133.8)									SB break rate	#/sedentary h	Disruption of SB	<i>M</i> : 4.7 [3.8-5.6]; <i>F</i> : 5.5 [4.5- 6.9]
2007 MVPA Min/day >1952 CPM 13 [6-23] 60-69y: 6311.0 (2668.4);70- 60-69y: 6311.0 (2668.4);70- Hall et al., 2016 A ActiGraph GT3X or GT3X+ 7 10 4 N/R Steps #/day Device detected 79y: 5275.5 (2717.0); 80- 90+y: 3591.1 (2133.8) MVPA Min/day N/R	Gerdhem et al.,	А	MTI AM 71256	Hip	7	8	5	N/R	Activity counts	#/min/day	Device detected	18 [11-23]
Hall et al., 2016 A ActiGraph GT3X or GT3X+ Waist 7 10 4 N/R Steps #/day Device detected 60.69y: 6311.0 (2668.4);70- 90+y: 3591.1 (2133.8)	2007			r					MVPA	Min/day	>1952 CPM	13 [6-23]
or G13X+ 90+y: 3591.1 (2133.8) MVPA Min/day N/B	Hall et al., 2016	А	ActiGraph GT3X	Waist	7	10	4	N/R	Steps	#/day	Device detected	60-69y: 6311.0 (2668.4);70- 79y: 5275.5 (2717.0); 80-
			or GI3X+						MVPA	Min/day	N/B	90+y: 3591.1 (2133.8)

Table	C3	(continued	!)
-------	----	------------	----

Device and wearing protocol Assessment of valid days Physical activity and sedentary behavior	Physical activity and sedentary behavior				
Author year A/ Name Worn # Defined as # valid Wear time mean Reported Units Cut off values/defined P on days minimum days (SD) (min/day) measure(s) ^a Cut off values/defined Worn (h/day) required required Cut off values/defined	nition Mean (SD)				
	60-69y: 33.7 (24.8); 70-79y: 24.7 (25.8); 80-90+y: 12.3 (15.4) 20.9				
SB % time/day N/R	60-69: 96.0 (2.9); 70-79: 97.1 (2.9); 80-90+: 98.6* (1.8) 97.5				
Harada et al., 2016 A ACOS GT40-020 N/R 14 10 8 N/R Steps #/day Device detected	6654.6 (2958.8)				
Hartley et al., 2018 A Gulf Coast Data Hip 7 10 N/R N/R Activity #/impact- $0.5 \le g < 1.0, 1.0 \le counts$ Concepts x16-1c Concepts x16-1c Counts (low band/day impact, medium impact, high impact) Counts (low band/day impact) Counts (low band/day impact)	$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Hasegawa et al., P Misfit Shine 2 Hip 7 N/R N/R N/R Steps #/day Device detected 2018	6500 (3200)				
Hernandes et al., 2013PYamax SW-200Waist7128N/RSteps#/dayDevice detected2013Digiwalker	Exercise: 8314 [5971-10060]; Non-exercise: 6250 [4346- 8207]				
Steps #/day Device detected	8105.9 (3851.2)				
Hernández et al., TPA Min/day Device detected	N/R				
2017 A Actigraph GT3X+ Hip 8 8 5 N/R MVPA (<i>MPA</i>) Min/day 1952-5724 CPM	39.1 (33.9)				
LPA Min/day 100-1951 CPM	227.2 (89.9)				
SB Min/day <100 CPM	578.6 (86.2)				
MVPA					
Hopkins, 2019AActigraph GT1MN/R7104N/R(Meeting vs. Dichotomous not meeting min/day guidelines) \geq or <150 min MV	/PA (>2020 CPM) N/R				
Device detected (St	ubgroups - Basal activity: Basal activity: 1711 (591);				
Iijima et al., 2017 P N/R Leg 14 N/R 10 N/R Steps #/day <2500 steps; Limits	ed activity: 2500-4999 Limited activity: 3718 (754); 000-7499 steps; Low active: 5808 (701); 750 steps; Diviselly active 0858 (2122)				
Prijskulj datveć 2. 200 stanc / Stanc #/dav Davice datested	7500 steps) Physically active: 9858 (2152) 6523 (3707)				
ACCtri day or MDA Min/day 30.59 MFT	34 3 (27 0)				
Actimarker 10 min/ LPA Min/day 1.1-2.9 MET	563.5 (125.4)				
Ikenaga et al., 2014 EW4800 \times 2 N/R 10 day of 4 N/R					
(concurrent) activity SB Min/day <1.1 MET >2 MET	842.1 (129.8)				
Jwakura et al., 2016 A Lifecorder Waist N/R N/R 5 (Mon- Steps #/day Device detected	4546 (2992)				
Fri) MVPA Min/day >3 MET 4 (Mon-	13.9 (14.0)				
Jantunen et al., 2017 A Sense Wear Pro 3 Arm 10 10 Fri) + 1 1436.8 (6.0) MET H/day Device detected 2017 (Sat-Sun)	1779.6 (298.5)				
Jeong et al., 2019 A Fitbit charge 2 Wrist 7 10 4 N/R Steps #/day Device detected	9907.6 (3641.8)				
VPA $Min/day \ge 6 MET$	0.390 (1.318)				
Johnson et al., 2016 A Actigraph GT1M Hip 7 10 5 843.37 (75.587) MVPA (MPA) Min/day 3-5.9 MET	31.490 (21.923)				
LPA Min/day 1.5-2.9 MET	228.560 (69.292)				
SB Mm/day <1.5 MET	581.670 (93.844)				
Kawagoshi et al., A MES and 7 12 2 4 (2) down	acceleration 118 (72)				
2013 A A-IVILS allo / 12 2 4 (2) days Standing Min/day Irunk and thigh se	79 (48)				
$\frac{1}{Min/day} \qquad \frac{1}{Min/day} \qquad \frac{1}{Min/day$	36 (35)				

26

	Dev	ice and wearing proto	col		Assessr	nent of valid	days	Physical ac	ctivity and sedenta	ry behavior	
Author year	A/ P	Name	Worn on	# days worn	Defined as minimum (h/day)	# valid days required	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)
								MVPA (Fast			
								walking) LPA (Slow walking)	Min/day	Walking <2 km/h	69 (30)
								SB (Sitting)	Min/day	Trunk sensor vertical, thigh sensor non- vertical	417 (116)
								Lying	Min/day	Thigh sensor non-vertical	107 (105)
Keevil et al., 2016	А	Actigraph GT1M	Hip	7	10	4	M: 882 (70.5); F: 864 (64.7)	MVPA SB	Min/day H/day	≥1952 CPM <100 CPM	M: 39 (24.8); F: 35 (21.6) M: 701 (76.5); F: 669 (71.7)
Kim, 2015	А	Actigraph GT3X+	Wrist	7	N/R	5	N/R	Activity	#/min/day	Device detected	1771.8 (520.6)
								Activity	#/min/day	Device detected	174.7 (74.8)
W 1 0015		1.0701		10	10	5 (incl. 1		MVPA	% time/day	≥1952 CPM	2.7 (1.6)
Kim et al., 2015	A	Actigraph GT3X	Нір	10	10	Sat-Sun)	924.6 (108.6)	LPA	% time/day	1951-100 CPM	12.6 (1.6)
								SB	%. time/day	<100 CPM	84.6 (4.9)
								Long SB bouts MVPA	Min/day	Duration >30 min SB bouts	53.9 (50.9)
Lai et al., 2020	А	Actigraph wGT3X-BT	Waist	7	10	4 (incl. 1 Sat-Sun)	15.4 (SD N/R) h/day	(Meeting vs. not meeting guidelines)	Dichotomous min/day	${\geq}30min/day$ MVPA (>2020 CPM)	24.6 (23.2)
Lee et al., 2015	A	Actigraph GT1M	Hip	7	10	4	14.8 (SD N/R) h/day	SB	H/day	<100 CPM	9.8 (1.5)
							, ,	MVPA	Min/day	≥1952 CPM	25.0 (20.9)
Lerma et al., 2018	Α	Actigraph GT3X	Hip	7	N/R	N/R	844.8 (75.8)	LPA	Min/day	100-1951 CPM	283.1 (73.3)
								SB	Min/day	<100 CPM	536 (75.7)
								SB	Min/day	<1.5 METs	524.9 (111.7)
Liao et al., 2018	Α	Active Style Pro	Hip	7	10	4 (incl. 1	900.9 (86.4)	Break rate	#/sedentary h	Non-SB bout b/t two SB bouts	7.6 (2.9)
		HJA-350IT	1			Sat-Sun)		Long SB bouts	#/day	$\# \ge 30 \min SB$ bouts	4.4 (1.9)
Lohne Seiler et al							66(14) dave	Long SB Douts	Min/day	Duration $\geq 30 \text{ min SB bouts}$	233.0 (118.5)
2016	Α	ActiGraph GT1M	Hip	7	10	1	14.0 (1.2) h/day	Steps	#/day	Device detected	N/R
Mador et al., 2011	Α	Actigraph GT1M	N/R	7	10	4	12.7 (2.1) h/day	VMU	#/min/day	Device detected	116.5 (62.7)
Master et al., 2018	A	Actigraph GT1M	Hip	7	10	4	N/R	Steps	#/day	Device detected	6166 (2924)
Matković et al., 2020	А	StepWatch Activity Monitor	Ankle	7	8	N/R	N/R	Steps	#/day	Device detected	8059 (4757)
McDermott et al., 2002	А	Caltrac	Waist	7	N/R	N/R	N/R	Accelerations (standardized)	#/day	Device detected normalized for age, sex height and weight	897.5 (533.4)
McGregor et al.								MVPA	Log-ratio	\geq 1535 CPM	N/R
2018	А	Actical	Hip	7	10	4	N/R	LPA	Log-ratio	100-1534 CPM	N/R
								SB	Log-ratio	<100 CPM	N/R
Major and Los 2020	n	Omeren III 221	Moint	7	N/D	N/D	N/D	Steps	#/day	Device detected	4042 (2622)
Meier and Lee, 2020	Р	Omoron HJ-321	waist	/	N/K	N/K	N/K	medium, low)	#/day	≥5000, 2500-4999, <2500	4943 (2632)
Monteiro et al.,	Δ	Actigraph GT1M	Hin	7	8	3 (Mon-	N/R	Activity	#/min/day	T1: ≤507.75 CPM, T2: 507.75-752.08	N/B
2019	л	ncugraph GT IM	шþ	/	0	Fri)	1V/ R	(terciles)	π/ mm/ uay	СРМ, ТЗ: ≥752.08 СРМ	1 v / R
Morie et al., 2010	А	Actigraph	Hip	7	N/R	5	6.6 (0.09) days	Activity counts	#/min/day x 10 ⁻⁵	Device detected	12.2 (7.0)
								MVPA	Min/day	\geq 3 MET	42 (34)
Nagai et al., 2018	Α	Actiband	Wrist	14	10	4	1015 (74)	LPA SB	Min/day Min/day	1.5-2.9 MET <1.5 MET	463 (150) 510 (170)

Table C3 (continued)

	Device and wearing protocol						days	Physical activity and sedentary behavior				
Author year	A/ P	Name	Worn on	# days worn	Defined as minimum (h/day)	# valid days required	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)	
Nawrocka et al., 2017	A	Actigraph GT3X	Waist	7	10	N/R	N/R	MVPA (Meeting vs. not meeting guidelines)	Dichotomous min/day	${\geq}150$ min MPA (2020-5998 CPM) or ${\geq}75$ min VPA (>599 CPM) or equivalent combination of MVPA	N/R	
Nawrocka et al., 2019	Α	Actigraph GT3X	Waist	7	10	N/R	N/R	MVPA (Meeting vs. not meeting guidelines)	Dichotomous min/day	${\geq}150$ min MPA (2020-5998 CPM) or ${\geq}75$ min VPA (>599 CPM) or equivalent combination of MVPA	N/R	
Nicolai et al., 2010	А	Physiolog BioAGM	Chest	7	N/R	N/R	N/R	Steps (Walking) TPA (Time on	Min/day	\geq 3 consecutive steps	1.45 (0.07)	
		Diorigini						feet)	Min/day	Upright standing <3 steps + walking	5.01 (0.18)	
Ofei-Doodoo et al., 2018	A	Kenz Lifecorder	Waist	14	N/R	N/R	N/R	MVPA	Min/day	Accelerometer intensity 4-6 (corresponds to 4-6 MET)	≥30:00 min MVPA: 49:42 {31:24-2:17:07}; 20:00- 29:59 min MVPA: 25:16 {20:00-29:59}; 10:00- 19:59 min MVPA: 14:51 {10:18-19:43}; 0:00-9:59 min MVPA: 3:33 {0:02-9:58}	
Orwoll et al., 2019	А	SenseWear Pro Armband	Arm	7	N/R	90% of time + 1 (Sat-Sun)	N/R	TPA (≥ <i>LPA)</i> MVPA	Min/day	≥1.51 MET	No falls: 160.8 (88.2); One fall: 156.4 (89.9); >Two falls: 141.9 (89.1) No falls: 90.0 (61.5); One fall:	
						(out out)		$(\geq MPA)$	Min/day	\geq 3 MET	88.0 (62.0); $\geq Two falls: 77.8$	
Osuka et al., 2015	A	Kenz Lifecorder	Hip	7	10	5	875.3 (92.4)	MVPA LPA Steps	Min/day Min/day #/day	≥3.6 MET 1.8-2.9 MET Device detected	17.6 (15.3) 57.1 (22.7) 7567.5 (3316.8)	
Park et al., 2018	A	Active style Pro HJA-350IT	Waist	14	N/R	>3 (Mon- Fri) + 1 (Sat-Sun)	N/R	TPA VPA MVPA MPA LPA	Min/day Min/day Min/day Min/day	≥0.9 MET ≥6.0 MET ≥3.0 MET 3-5.9 MET	807.3 (69.5) 0.4 (1.6) 65.9 (29.7) 65.4 (29.7)	
								SB	Min/day Min/day	1.5-2.9 MET	354.1 (71.7) 388 9 (81 3)	
								MVPA	Min/day	\geq 3.2 MET	103 (49)	
Perkin et al., 2018	Α	Actiheart	Chest	6	N/R	N/R	N/R	SB EE (PAL)	Min/day None	\leq 1.5 MET EE/basal metabolic rate	1058 (112) 1.59 (0.17)	
Pitta et al., 2005	А	DynaPort Activity	Waist and leg	5	12	2	N/R	Steps (Walking)	Min/day	Device detected	44 (26)	
		Monitor	sensor					(Standing)	Min/day	Device detected (not incl. walking)	191 (99)	
Puthoff et al., 2008	Α	AMP 331	Ankle	6	8	6	N/R	Steps	#/day	Device detected	6384.4 (2370.8)	
Rapp et al., 2012	Α	ActivPAL	Thigh	7	24	Fri) +1 Sun	N/R	Steps (Walking)	Min/day	Device detected	<i>M</i> : 104.8 (41.0); <i>F</i> : 103.0 (39.4)	
Rausch-Osthoff et al., 2014	A	SenseWearPro Armband	Arm	7	N/R	N/R	N/R	Steps EE EE (PAL) MET VDA	#/day Kcal/day None Kcal/h/kg Min/day	Device detected Device detected Total EE/sleep EE Device detected	4097 (2325) 2222 (467) 1.44 (0.16) 30.3 (4.7)	
Rava et al., 2018	A	Actigraph	Hip	7	10	4	N/R	MVPA MVPA MPA	Min/day Min/day Min/day	≥ 5725 CPM ≥1954 CPM 1952- 5724 CPM	56.2 (29.6) 54.7 (29.1)	

Table C3	(continued)
----------	-------------

	Dev	ice and wearing proto	col		Assess	nent of valid	days	Physical a	ctivity and sedenta	ry behavior	
Author year	A/ P	Name	Worn on	# days worn	Defined as minimum (h/day)	# valid days required	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)
								LPA SB	Min/day Min/day	100-1951 CPM <100 CPM	261.0 (69.7) 605.5 (106.5)
					10 (or >80% of			SB	H/day	Device detecting (sitting + lying posture)	9.7 (1.8)
Reid et al., 2018	А	ActivPAL 3	Thigh	7	waking hours)	N/R	N/R	BST	10/day		47.8 (12.4)
								Steps	#/day Min/day	Device detected	7327 (2507)
								SB	H/day	Device detecting (sitting $+$ locomotion) Device detecting (sitting $+$ lying)	19.0 (1.2)
Rojer et al., 2018	Α	DynaPort Move Monitor	Waist	7	18	4	6.9 [6.8-7.0] h/	PA bouts	#/day	N/R	1407 (426)
		WOIIIIOI					uay	PA bouts	s/bout/day	N/R	11.3 (2.2)
								SB bouts	#/day	N/R	132 [111-160]
D 1 (1							5 5 (1 (0) 1	SB bouts	Min/bout/day	N/R	8.9 (2.8)
Rosenberg et al., 2015	А	Actigraph GT3X+	Hip	6	10	1	5.7 (1.48) days; 13.6 (1.3) h/day	SB	H/day	<100 CPM	8.6 (1.0)
								MVPA	Min/day	Acceleration >125mg-force	42.2 (32.8)
								Accelerations	Mg-force	Device detected	22.1 (7.5)
Rowlands et al., 2018	А	GeneActiv	Wrist	7	16	3	N/R	Intensity gradient	N/R	Regression line from log-log plot of intensity (x) and minutes accumulated (y)	3.11 (0.26)
								PA bouts (MVPA bouts)	Min/day	Acceleration >100mg-force accumulated in >10 min bouts	9.3 (20.4)
								Steps	#/day	Device detected	3411.89 [4612.81]
							7 [1 00] dave: 15	MVPA	Min/day	\geq 2020 CPM	5.00 [9.13]
Safeek et al., 2018	А	Actigraph GT3X	Waist	7	10	4	(SD N/R) h/day	LPA	H/day	100-2019 CPM	3.69 [2.72]
							(0D 11/10) 11/ duy	SB	H/day	<100 CPM	10.82 [3.27]
								EE	Kcal/day	Device detected	254.86 [345.58]
Sánchez Sánchez								Activity counts	#/day	Device detected	409365.62 (180677.01)
et al. 2019	Α	ActiTrainer	Hip	7	8	4	84.39 (16.03) h	MVPA	H/day	\geq 3 MET	1.02 (0.78)
ct iii., 2019								LPA	H/day	15-2.99 MET	5.01 (1.5)
								SB	H/day	<1.5 MET	6.98 (1.62)
Santos et al., 2012	А	Actigraph GT1M	Hip	4	10	3 (incl. 1	819.6 (87.5)	MVPA	Min/day	≥2020 CPM	26.0 (24.1)
		0 1	-			Sat-Sun)		SB	Min/day	<100 CPM	579.9 (106.3
Sardinha et al., 2015	Α	ActiGraph GT1M	Hip	N/R	10	3 (incl. 1 Sat-Sun)	N/R	BST	#/day	Any interruption in SB defined as >100 CPM	78.9 (16.0)
							Non-sarcopenic: 91.8 (17.7) h/	MVPA	H/week	\geq 1952 CPM	Non-sarcopenic: 3.7 (3.0); Sarcopenic: 2.4 (2.5)
Scott et al., 2020	Α	Actigraph GT3X	Hip	7	10	4	week; Sarcopenic: 89.4	LPA	H/week	100-1951	Non-sarcopenic: 29.3 (9.5); Sarcopenic: 27.5 (10.3)
							(19.4) h/week	SB	H/week	<100 CPM	Non-sarcopenic: 58.7 (12.8); Sarcopenic:59.5 (15.3)
		Baseline: Omron HJ-003 & HJ-102	Leg	7	8	5	6.8 (0.2) days, 12.27 (0.17) h/ dav	Steps (baseline)	#/day x 10 ³	Device detected	Baseline: 9002.7 (3250.4): 6
Scott et al., 2011	Р	6-month follow- up: Yamax SW- 200						Steps (habitual)	#/day x 10 ³	Mean of 3 time points (baseline, baseline+6 months, follow-up)	month FU: 7688.6 (3148.2)
Scott et al., 2009	Р	Omron HJ-003 or HJ-102	Waist	7	8	5	Removal time: 0.44 (0.48) h/	Steps	#/day	Device detected	9622 (4004)
Semanik et al., 2015	A	Actigraph GT1M	Hip	7	10	4	day 14.9 (SD N/R) h /day	SB	H/day	<100 CPM	9.8 (1.5)
							ii/uay				

Table C3	(continued)
----------	-------------

	Devi	ice and wearing protoc	col		Assessn	Assessment of valid days Physical activity and sedentary behavior					
Author year	A/ P	Name	Worn on	# days worn	Defined as minimum (h/day)	# valid days required	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)
Silva et al., 2019	A	Actigraph GT1M	Back	5	10	2 (Mon- Fri) + 1 (Sat-Sun)		MVPA LPA SB	Min/day Min/day Min/day	≥2020 CPM 100-2019 CPM <100 CPM	33.46 (27.25) 291.16 (91.20) 458.10 (78.68)
Spartano et al., 2019	A	Actical 198-0200- 00	Hip	8	10	4	749 (71)	Steps MVPA SB	#/day Min/day % wear time	Device detected MVPA: >1486 CPM <200 CPM	6927 (3678) 19 (22) 84.3 (6.3)
Tang et al., 2015	A	Actigraph	Wrist	N/R	N/R	N/R	15.5 [9-25.3]	Activity counts Steps (low vs.	#/day #/day	Device detected for 10 h of day with highest activity Device detected (lowest $1/3$ vs. highest $2/$	966,131 [720529-1267931] 181 (117)
Trayers et al., 2014	A	Actigraph GT1M	N/R	7	10	5	N/R	high) Activity counts (low vs. high) MVPA (low vs.	#/min/day Min/day	 3) Device detected (lowest 1/3 vs. highest 2/3) >1952 CPM (lowest 1/3 vs. highest 2/3) 	4456 (2478) 18.5 (20.2)
Van Gestel et al.,		ConcoWoor Dro	A	7	N/D	N /D	N /D	high) Stone	# /dow	Device detected	E272 (2210)
2012	А	Sensewear PIO	AIIII	/	N/K	N/K	IN/ K	TPA (standing)	#/day	Device detected (standing posture)	2.1 (0.9)
Van Lummel et al., 2016	A	Dynaport	Lower back	7	N/R	N/R	6.8 (N/R) days; 23.2 (SD N/R) b/day	# PA bouts (locomotion periods)	#/day	N/R	297.3 (150.7)
							II/ uay	SB bout (sitting periods)	Min/bout/day	Device detected (sitting posture)	5.7 (3.0)
van Oeijen et al., 2020	Р	Lifestyles DigiWalker Step Counter	N/R	7	N/R	N/R	N/R	Steps	#/day	Device detected	Baseline: 5771.14 [4403.0]; 4y FU: 4493.93 [4203.46]
Van Sloten et al., 2011	Р	Piezo-electric New Lifestyle 2000	Waist	7	N/R	N/R	14.9 (1.1) h/day	Steps	#/day	Device detected	6429 [45170-8573]
Walker et al., 2008	A	Actiwatch	Waist and thigh	3	N/R	N/R	For evaluation: 15.7 (0.2)	TPA (time mobile)	% time/day	% of 30 s epochs where device level ${\geq}1$	50.0 (2.7)
Ward et al., 2014	Α	Actigraph single- axis	Hip	7	10	5	N/R	Activity counts	#/min/day	Device detected	F: 2473.03 (111.50; M: 319.23 (131.0) F: 79 56 (96 82): M: 95 13
								MVPA	Min/week	>3 MET	(91.90)
Waschki et al., 2012	A	SenseWear Armband	Arm	8	22	5	Maastricht: 142 h 17 min Liverpool: 141 h 1 min; London:	Steps EE (PAL)	#/day None	Device detected EE/sleeping metabolic rate (device detected)	4725 (3212) 1.45 (0.20)
							142 h 24 min	Steps	#/dav	Device detected	5882 (3684)
Watz et al., 2008	А	SenseWear Armband	Arm	5-6	22.5	5	N/R	EE (PAL)	None	EE/sleeping metabolic rate (device	1.50 (0.28)
Westhury et al								TPA	Min/day	\geq 40mg-force	M: 137.8 [81.7-217.2]); F: 186.0 [122.1-240.4]
2018	А	GENEActiv	Wrist	7	N/R	7	N/R	MVPA	Min/day	\geq 100mg-force	<i>M</i> : 14.3 [1.8-30.2]; <i>F</i> : 9.5
Wickerson et al.,	A	Actigraph GT3X	Hip	7	8	N/R	4.5 (1.6) h/day;	Accelerations Steps,	Mg-force #/day Mip/day	Device detected Device detected	M: 23.9 (7.6); F: 25.5 (6.8) 2736 (1612)
Winberg et al., 2015	Р	Yamax SW 200		3	N/R	N/R	N/R	Steps	#/day	Device detected	6270 (3120)

	Dev	ice and wearing proto	col		Assessr	nent of valid	days	Physical a	activity and seden	tary behavior	
Author year	A/ P	Name	Worn on	# days worn	Defined as minimum (h/day)	# valid days required	Wear time mean (SD) (min/day)	Reported measure(s) ^a	Units	Cut off values/definition	Mean (SD)
			Lower back								
Yamada et al., 2011	Р	Yamax Power Walker EX-510	Leg	14	N/R	N/R	N/R	Steps	#/day	Device detected	Non-frail: 4414.4 (2726.3); Frail: 1585.0 (1012.6)
Vasunaga et al		Active style Pro				4 (incl. 1	901 1 (87 5) 7 2	MVPA	Min/day	\geq 3 MET	50.2 (33.5)
2017	Α	HIA-350IT	Waist	7	10	Sat-Sun)	(SD N/R) dave	LPA	Min/day	>1.5 - <3 MET	328.7 (101.4)
2017		11071-00011				Sat-Suil)	(5D W/R) days	SB	Min/day	\leq 1.5 MET	522.7 (113.4)
								Steps	#/day	Device detected	HFG: 2416 (2055); LFG: 1275 (1313)
Yoshida et al., 2010	А	Active style Pro HJA	N/R	15	500 min∕ day	7	N/R	TPA	Min/day	Device detected	HFG: 36.8 (24.0); LFG: 24.4 (18.8)
					,			MPA	Min/day	Device level 3-6 (~3-6 MET)	N/R
								LPA	Min/day	Device level 1-2 (~<3 MET)	N/R
								Steps	Min/day		7204.1 (3500.3)
Yuki et al., 2019	Α	Suzken Lifecorder	N/R	7	10	N/R	N/R	LPA	Min/day		55.5 (22.8)
								MVPA	Min/day		20.4 (19.2)

Mean (standard deviation (SD)) of wear time and physical activity/sedentary behavior are presented unless otherwise reported as median [interquartile range], or mean {range}. Subgroups for stratified results are presented in italics. Underlined articles have a longitudinal design.

A = accelerometer, PA = physical activity, SB = sedentary behavior, N/R = not reported, TPA = total physical activity, MPA = moderate physical activity, VPA = vigorous physical activity, SB = sedentary behavior, EE = energy expenditure, PAL = physical activity units, BST = breaks in sedentary time, $\Delta = change$, MET = metabolic equivalent of tasks, VMU = vector magnitude units, min = minutes, h = hours, CPM = counts per minutes, #=number, mg-force = miligrams-force (force of earth gravity acting on one milligram), Mon = Monday, Fri = Friday, Sat = Saturday, Sun = Sunday, vs = versus (compared to), MIDEEA = Intelligent Device for Energy Expenditure and Activity, HFG = high functioning group, LFG = low functioning group.

^a Reported measures of PA and SB were classified as either steps, activity counts, TPA, MVPA, LPA, SB, PA bouts, SB bouts, long SB bouts, BST, SB break rate, accelerations, VMU, intensity gradient, EE; further details of reported measures are provided in parentheses and italic font when measures were originally described otherwise but were classified as one into one of the aforementioned categories.

Table C4

Ascertainment and measurement characteristics of measures of upper body and lower body muscle strength and muscle power.

Author year	Device/equipment	Definition and protocol	Measure	Reported measure	Units	Mean (SD) ^a
	Biodex System 3 Dynamometer	MVC isometric KES, 2-3 attempts, max/	LB MS	KES/weight	Kg/	105 (25)
Abe 2015		Weight used for analysis Max toe grasping strength, 3 attempts		0	nm	
	Toe-Grasp T.K.K. 3361 Dynamometer	for each foot, max of each foot averaged used	LB MS	Toe grasping/ weight	Kg/kg	13.4 (3.5)
11 . 1		MVC isometric strength of knee flexors	LB MS	KES	Nm	105 (25)
Abe et al., 2012	Bidoex System 3 Dynamometer	and extensors, 2-3 attempts, max used for analysis	LB MS	Knee flexion strength	Nm	45 (9)
Aggio et al., 2016	Jamar Hydraulic Hand Dynamometer	HGS, 3 attempts for each hand, max used	UB MS	HGS	Kg	Non-sarcopenia: 32.3 (9.9); Sarcopenia: 28.7 (10.1); Severe sarcopenia: 22.2 (6.1)
		Leg press 1RM, progressive reps increasing by 10 kg, force-velocity	LB MS LB MP	Leg press strength Leg press power	N W	N/R N/R
Alcazar et al., 2018	Leg press E	evaluation to determine max force (strength) and max power for analysis	LB MP	Leg press power/ weight	W/kg	N/R
Alzahrani et al., 2012	Handheld Dynamometer N/R	MVC KES, 2 attempts, max used for analysis	LB MS	KES	Ν	116 (52)
Andersson et al		MVC isometric KES strength, 3 attempts,				
2013	Steve Strong Dynamometer	recorded in N, max used and converted into kg	LB MS	KES	Kg	31.3 (11.2)
André et al., 2018	N/A	Calf raise (heel rise) senior test, # of calf raises (heel rises) in 30 s, high: \geq 38 and low: <38	LB MP	Calf raise (High vs. low)	#/30 s	37.8 (13.4)
André et al., 2016	N/A	Calf raise (heel rise) senior test, # of calf raises (heel rises) in 30 s	LB MP	Calf raise	#/30 s	31.79 (7.01)
	Smedlev Dynamometer ES-100	HGS, 2 attempts with dominant hand, max used for analysis	UB MS	HGS	Ν	262 (83)
Aoyagi et al., 2009	µTas Dynamometer MF-01	Isometric knee extension torque, 2 attempts, max used for analysis	LB MS	Knee extension torque	Nm/ kg	1.34 (0.37)
		1RM KES, progressive reps increasing by 10%, max used for analysis	LB MS	Leg press strength	Kg	325 (66)
Ashe et al., 2008	Keiser Air-pressured Digital Resistance Leg Press Machine	Bilateral leg extension, reps at 40%, 50%, 60%, 70%, 80%, and 90% of individual's 1RM, max power used for analysis	LB MP	Leg press power	W	656 (193)
	Jamar JLW Dynamometer	HGS, 3 attempts with left hand, mean used	UB MS	HGS	Kg	24.2 (10.9)
Ashe et al., 2007	Nicolas MMT 11560 handheld Dynamometer	KES, 3 attempts with left leg, mean normalized to weight used for analysis	LB MS	KES	Kg	18.2 (7.3)
Aubertin-Leheudre et al., 2017	Jamar Dynamometer	HGS, 2 attempts, max used, non- dynapenic: \geq 20 kg for F and \geq 32 kg for M, dynapenic: \leq 19.9 for F and \leq 31.9 kg for M	UB BS	HGS (dynapenic vs. non- dynapenic)	Kg	Non-obese non-dynapenic: 28.9 (9.1); Non-obsese dynapenic: 18.7 (6.5); Obese non-dynapenic: 29.7 (9.0); Obese dynapenic: 18.4 (5.8)
Polducci et al. 2017	Digimax Mechatronic GmbH (strain gauge tensiometer) and	MVC at shoulder press, 3 attempts, max used	UB MS	Shoulder press strength	Nm	254.8 (92.5)
Daluteer et al., 2017	Shoulder Press/Lat Pull OR Leg Press, Easy Line Technogym	MVC at leg press, 3 attempts, max used	LB MS	Leg press strength	Nm	161.1 (60.4)
Bann et al., 2015	Jamar	HGS, 2 attempts, dominant arm max used	UB MS	HGS	Kg	M: 31.7 (10.2); F: 19.9 (6.3)
	Lafyette Instrument Hand Dynamometer	HGS, 3 attempts with each hand, maxed used	UB MS	HGS	Kg	Sedentary: 28.4 (3.9); Moderately active: 27.3 (4.3); Actively: 28.0 (4.4)
Barbat-Artigas et al., 2012	Kim Com 5000 Dynamometer	Isometric KES, 3 attempts, max used	LB MS	KES	N	Sedentary: 438 (80); Moderately active: 400 (69); Active: 464 (116)
	N/A	# chair stands completed in 20 s	LB MP	20 s CST	#/20 s	Sedentary: 13 (3); Moderately actively: 11 (3); Actively: 13 (3)
Bartlett and Duggal, 2020	N/R	N/R	UB MS	HGS	Kg	Sedentary: 29.02 (8.34); Active: 30.64 (10.11)
Bassey et al., 1988	Bourdon Tube	MVC isometric plantar flexor strength of the triceps surae, 3 attempts, max used	LB MS	Calf strength	Ν	M: 1128 (206); F: 873 (177)
Bogucka et al., 2018	Hydraulic Dynamometer	for each hand calculated and mean of both hands used	UB MS	HGS	Kg	Dynapenic: 17.55 (2.6); Non- dynapenic: 25.9 (4.6)
Bollaert and Motl, 2019	N/A	Time to complete 5 chair stands	LB MP	5x CST (0-4)	Points	MS: 2.0 (1.3); HC: 3.5 (0.7)
Boutou et al., 2019	N/R	MVC KES (quadriceps) N/R	LB MS	KES	Kg	Baseline: 33.4 (32.4)
Carrasco Poyatos et al., 2016	Takei Dynamometer TKK 5001	HGS, 3 attempts with each hand, mean of max in each hand used	UB MS	HGS	Kg	21.22 (1.7)
Chastin et al., 2012	Nottingham Power Rig	N/R	LB MP	Leg extension power	N/R	N/R

K.A. Ramsey et al.

Table C4 (continued)

Author year	Device/equipment	Definition and protocol	Measure type	Reported measure (s)	Units	Mean (SD) ^a
Chmelo et al., 2013	Kin Com 125E Isokinetic	Concentric KES	LB MS	KES	Ν	229 (85)
Cooper et al 2015	Nottingham Electric	HGS, 3 attempts with each hand, max	UB MS LB MP	HGS	Kg	<i>M</i> : 46.4 (11.5); <i>F</i> : 27.0 (7.5)
600per et ill., 2010	N/A	Time to complete 10 chair stands Time to complete 5 chair stands,		10x CST	#/min	M: 26.2 (7.3); F: 24.9 (7.3)
Davis et al., 2014	N/A	>16.70s = 0 points, 13.70-16.69s = 1 point, 11.20-13.69s = 3 points, <11.10s = 4 points	LB MP	5x CST (0-4)	Points	2.7 (1.3)
de Melo et al., 2010	N/A	# chair stands completed in 30 s	LB MP	30 s CST	#/30 s	19.4 (5.4)
	N/A	# of full flexion and extension of the	UB MP	Arm Curl	#/30 s	15.2 (3.7)
de Melo et al., 2014	N/A	(arm curls) using dumbbells (F: 5 pounds, M:8 pounds) completed in 30 s # chair stands completed in 30 s	LB MP	30 s CST	#/30 s	10.4 (5.4)
Demeyer et al., 2019	N/R	Δ HGS, non-dominant hand, measured at baseline and after 2.6 (SD: 0.6) years	UB MS	Δ HGS	Ν	<u>Baseline:</u> 295 (87); <u>Follow</u> <u>up:</u> 272 (84); <u>Decline per</u> <u>year:</u> 7.84 (23)
Dista (success - 1, 0010	Standard weight stack	1RM KES, left leg, progressive reps	LB MS	KES	Kg	Active: 35.6 (2.5); Sedentary:
Distefano et al., 2018	N/A	complete 5 chair stands	LB MP	5x CST	s	31.9 (1.7) N/R
Dogra et al., 2017	Smedley Dynamometer	HGS, two attempts with each hand, sum	UB MS	HGS	Kg	64 (95% CI: 62, 66)
Dohrn et al., 2020	N/A	of max from each hand used Ability to complete 5 chair stands	LB MP	5x CST (able vs.	None	N/R
Dos Santos et al., 2019	Camry EH101 Digital Dynamometer	HGS, two attempts with dominant hand, max from each hand used, M : $>$ or $<$	UB MS	HGS (low vs.	Kg	N/R
2017	Dynamonieter	30 kg, <i>F</i> : > or < 20kg				Low: 13.7 (SE = 0.61:
Duncan et al., 2016	N/A	# of full flexion and extension of the elbow (arm curls) with dumbbells <i>F</i> : 5	UB MP	Arm curl	#/30 s	Medium: 15.8 (SE = 0.43); High: $18.4 (0.41)$
	N/A	30 s # chair stands completed in 30 s	LB MP	30 s CST	#/30 s	Low: 13.3 (SE = 0.81); <i>Medium</i> : 14.4 (SE = 0.52); High: 16.9 (SE = 0.51).
Edholm et al., 2019	Kistler 9281 Force Platform	Concentric phase of jump on to force platform, 3 attempts, max used	LB MS	Squat jump test	N/kg	8.4 (1.8)
T 1 0010	100 kg Pocket Balance	MVC isometric KES, dominant leg	LB MS	KES	Kg	M: 39.3 (8.1); F: 28.2 (9.1)
Foong et al., 2016	Dynamometer	(simultaneously)	LB MS	Leg strength	Kg	M: 129.0 (39.5); F: 56.4 (27.1)
Querran et al. 0016	Dynamometer N/R	N/R	UB MS	HGS	N/R	N/R
Gennuso et al., 2016	N/A	Time to complete 5 chair stands	LB MP	5x CST (0-4)	Points	M: 2.5 [1.0-3.5]; F: 2.5 [1.5- 3.0]
Condhorn et al. 2007	Bidoex Computerized	Isometric KES, three attempts, max used	LB MS	KES	NmS	246 (71)
Gerdhelli et al., 2007	Dynamometer 4.5.0.	attempts, max used	LB MS	strength	NmS	117 (37)
Hall et al., 2016	N/A	# chair stands completed in 30 s	LB MP	30 s CST	#/30 s	60-69:15.8 (4.5); 70-79: 14.1 (4.9); 80-90+: 10.9 (4.8)
Harada et al., 2016	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	7.7 (2.2)
	Jamar Dynamometer	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	21.8 (4.9)
Hartley et al., 2018	Mechanography Ground	One legged jump strength, 3 attempts, max used	LB MS	Jump strength	KiloN	1.3 (0.2)
	Reaction Force Platform	Two legged jump power, three 3, maxed	LB MP	Jump power	KiloW	1.4 (0.3)
	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	12.9 (4.2)
Hasegawa et al., 2018	N/A	# chair stands completed in 30 s	LB MP	30 s CST	#/30 s	15.4 (4.3)
Hernandes et al.,	Takei Dynamometer	HGS, 2 attempts with each hand, max used	UB MS	HGS	KgF	Exercise: 27 [23-33]; Non- exercise: 25 [22-34]
2013	N/A	# chair stands completed in 30 s	LB MP	30 s CST	#/30 s	Exercise: 13 [12-15]; Non- exercise: 12 [10-13]
		1RM leg press KES, 4-5 attempts, max	LB MS	KES	Kσ	195 8 (76 8)
Hernández et al., 2017	Bilateral Leg Press Technogym	used Quadriceps power at 50% and 70% of	LB MP	Quad power 50%	W	576.4 (250.4)
		1RM, 2 attempts, max used	LB MP	Quad power 70%	W	571.3 (245.9)
Hopkins 2019	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	N/R Basal activity: 10 E (2.42):
lijima et al., 2017	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	Limited activity: 10.5 (3.42); Limited activity: 9.06 (2.33); Low active: 8.55 (2.86); Physically active: 7.90 (1.74)
Ikenara et al. 2014	Smedley Dynamometer	HGS, 2 attempts with both hands, max	UB MS	HGS	Kg	35.4 (5.3)
incliaga ci di., 2014		HGS, 2 attempts, max used	LB MS	KES		2.35 (0.54)

Author year	Device/equipment	Definition and protocol	Measure	Reported measure	Units	Mean (SD) ^a
	···· 1. I		type	(s)		
	Dynamometer TKK5717 &				Nm/	
	TKK5710e				kg	
Iwakura et al., 2016	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	11.05 (3.19)
	N/A	# of full flexion and extension of the	UB MP	Arm Curl	#/30 s	16.0 (3.5)
Jantunen et al., 2017	N/A	elbow (arm curis) with dumbbells F: 5 pounds and M: 8 pounds completed in	LB MP	30 s CST	#/30 s	11 5 (2 3)
	14/11	30 s # chair stands completed in 30 s	LD WII	503 (51	<i>m</i> /303	11.5 (2.5)
		Isometric KES, 2 attempts with most OA				
		symptomatic knee, 2 attempts, mean	LB MS	KES	N/kg	2.8 (0.8)
1 0010	Lafayette Instrument Handheld	used divided by weight				
Jeong et al., 2019	Dynamometer	Isometric hip abductor strength, 2 attempts on side of most ΩA				
		symptomatic knee, mean used divided	LB MS	Hip strength	N/kg	0.7 (0.3)
		by weight				
	TTM Muscular Meter	Isometric hip extensor and quadricep				
Johnson et al., 2016	Dynamometer	strength, 2 attempts in both legs	LB MS	Leg strength	Kg	97.58 (51.13)
Kawagoshi et al	-	(simultaneously), max used				
2013	Hydromusculator GT-160	quadriceps femoris	LB MS	KES	N/R	N/R
		HGS, 2 attempts with each hand, max	UD MC	1100	17 -	NI (D
Keevil et al., 2016	Smedley Dynamometer	used	UB MS	HGS	Кg	N/R
	N/A	Time to complete 5 chair stands	UB MS	5x CST	#/min	N/R
	Smedley Dynamometer	HGS, 2 attempts with each hand, max	UB MS	HGS	Kg	23.4 (7.5)
Kim, 2015		Isometric KES, 2 attempts with				
	µTas Dynamometer F-1 ANIMA	dominant leg, max/weight used	LB MS	KES	N/kg	1.15 (0.33)
Kim et al., 2015	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	8.9 (2.1)
Lai et al., 2020	N/A	Time to complete 5 chair stands, <i>M</i> : > or	LB MP	5x CST (high vs.	S	N/R
Les et al. 2015	NT / A	< 6.95 s, F : > or < 6.88 s	ID MD	low)	# (main	N /D
Lee et al., 2015	N/A N/A	Time to complete 5 chair stands	LB MP IB MD	5X CST	#/min S	N/R 15.2 (4.8)
Lemia et al., 2010		HGS, 2 attempts with one hand, max		ULCO I		
Liao et al., 2018	Jamar Dynamometer	used	UB MS	HGS	Kg	27.4 (8.4)
Lohne-Seiler et al.,		HGS, 3 attempts with dominant hand.		HGS (adjusted for		
2016	Hydraulic Dynamometer	max used	UB MS	age, sex, test	Kg	33.5 (95% CI: 32.3, 34.8)
		Quadricens strength dynamic		center)		
		contractions against hydraulic	10.10	VIIIO	**	10.00 (10.00)
Mador et al., 2011	HF Star	resistance, 2 sets of 3 contractions at	LB MS	KES	Кg	48.03 (12.29)
		highest resistance, max used				
Mathemia et al. 2020	KERN MAP 80K1 Handheld	HGS, 3 attempts with each hand, max	UB MS	HGS	Kg	Right hand: 30.7 (10.1); Left
Matković et al., 2020	N/A	# chair stands completed in 30 s	LB MP	30 s CST	#/30 s	11 (3)
Master et al., 2018	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	10.5 (2.9)
McDermott et al.,	N/A	Time to complete 5 chair stands	IBMD	5v CST	s	N/B
2002	14/11	This to complete 5 chair stands	LD WII	57 (51	5	iv/it
McGregor et al.,	Hand Dynamometer	HGS, 2 attempts, max used	UB MS	HGS	Kg	N/R
2010	Jamar Plus + Digital	HGS, 3 attempts with each hand. max				00.0 (10.0)
	Dynamometer	used	UB MS	HGS	Kg	29.9 (10.3)
Meier and Lee 2020	N/R	1RM chest press, progressive reps	UB MS	Chest press	Lbs	75.2 (37.2)
	, **	increasing in weight, max used	02 110	strength	200	
	N/R	I KIVI leg press, progressive reps	LB MS	Leg press strength	Lbs	183.9 (78.0)
		# of full flexion and extension of the				
	N/A	elbow (arm curls) with dumbbells F: 5	UP MD	Arm curl	#/20 *	T1: 25.8 (9.75); T2: 30.50
	IV/A	pounds and M:8 pounds completed in	OD WIF	Amittum	$\pi/303$	(8.88); <i>T3</i> : 32.60 (8.36)
		30 s				
Monteiro et al 2019	Bidoex System 2 (custom)	five attempts may used	LB MS	KES	Nm	(15, 24), $T3$, $69, 93, (17, 51)$
monterio et un, 2019		Isokinetic knee flexion strength,				
	Bidoex System 2 (custom)	measured at 180°/sec, five attempts,	LB MS	Knee flexion	Nm	T1: 33.39 (11.38) T2: 36.54 (12.24); T2: 42.02 (0.22)
		max used		suengui		(12.24), 13. 42.02 (9.23)
	N/A	# chair stands completed in 30 s	LB MP	30 s CT	#/30 s	T1: 20.55 (5.73); T2: 21.75
		HGS. 3 attempts with each hand may				(7.33), 13: 23.10 (5.93)
	Jamar Dynamometer	used	UB MS	HGS	Kg	N/R
	Keiser A420	Chect and leg press 1DM determined 2	UB MS	Chest press	N	N/R
Morie et al., 2010	101301 AT20	trials, max used and power at varving %	00 1015	strength	11	1 V / IL
	Pneumatic	of 1RM for chest press and leg press	UB MP	Chest press power	W	N/R
	Machine	assessed, max power used for analysis	LD MS LB MP	Leg press strength	W	IN/R N/R
March 1, 1, 2010	Constitue De comme	N @ Ma 021 15		HGS (weak vs. not		
wagai et al., 2018	Sinealey Dynamometer GRIP-A	W/K, M : > or <26 kg and F : > or <18 kg	OR MS	weak)	кg	20.7 (7.0)
	N/A		UB MP	Arm curl	#/30 s	N/R

K.A. Ramsey et al.

Table C4 (continued)

Author year	Device/equipment	Definition and protocol	Measure type	Reported measure (s)	Units	Mean (SD) ^a
Nawrocka et al., 2017	N/A	# of full flexion and extension of the elbow (arm curls) with dumbbells <i>F</i> : 5 pounds and <i>M</i> :8 pounds completed in 30 s # chair stands completed in 30 s	LB MP	30 s CSTs	#/30 s	N/R
	Jamar Dynamometer	HGS, two attempts, max used	UB MS	HGS	Kg	Not meeting PA guidelines: 22.87 (5.05); Meeting PA guidelines: 24.99 (5.60)
Nawrocka et al., 2019	N/A	# of full flexion and extension of the elbow (arm curls) with dumbbells F: 5 pounds and M:8 pounds completed in 30 s	UB MP	Arm curl	#/30 s	Not meeting PA guidelines: 16.04 (4.03); Meeting PA guidelines: 17.87 (3.76)
	N/A	# chair stands completed in 30 s	LB MP	30 s CST	#/30 s	Not meeting PA guidelines: 14.36 (3.27); Meeting PA guidelines: 14.92 (3.59)
Nicolai et al., 2010	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	Unadjusted
	N/A	# of full flexion and extension of the	UB MP	Arm curl	S #/30 s	Unadjusted N/R
Ofei-Doodoo et al.,	N /A	elbow (arm curls) with dumbbells <i>F</i> : 5		00.007	,	1.,
2018	N/A	pounds and M:8 pounds completed in 30 s # chair stands completed in 30 s	LB MP	30 s CST	#/30 s	N/R
Orwoll et al., 2019	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	<i>No falls:</i> 11.2 (3.2); <i>One falls:</i> 11.6 (3.3); $\geq Two$ <i>falls:</i> 12.3 (4.4)
Osuka et al., 2015	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	N/R
	Dynamometer N/R	HGS, two attempts with each hand,	UB MS	HGS	%	52.0 (7.8)
Park et al., 2018	N/A	# chair stands completed in 30 s, 2	LB MS	30 s CST	#/30 s	20.7 (4.2)
		attempts, max used Leg press 1RM, force-velocity evaluation	LB MS	Leg press strength	N	N/R
Perkin et al., 2018	Keijzer A420	to determine max force (strength) and	LB MP	Leg press power	W	N/R
Ditte et al. 2005	Jamar Dynamometer	max power Isometric HGS, 3 attempts with each hand, sum of max on each hand used, %	UB MS	HGS	% pred	92 (24)
Pitta et al., 2005	Cybex Norm Jamar	Isometric knee extension torque, %	ID MC	Knee extension	%	E6 (10)
	Dynamometers	predictive (pred)	LD WIS	torque	pred	56 (10)
		1016	LB MS	Leg press strength Leg press power	N/kg	15.5 (4.0)
Puthoff et al., 2008	Keiser 420 Leg Press	40% of 1RM, and power at 90% of 1RM assessed, 3 attempts, max result for each	LB MP	peak Leg press power 40%	W/kg	7.1 (2.7)
		used	LB MP	Leg press power	W/kg	5.7 (2.4)
Decement -1, 2010	Jamar Dynamometer	HGS, two attempts in each hand, mean of each hand calculated and max used	UB MS	90% HGS	Kg	<i>M</i> : 38.8 (9.40); <i>F</i> : 23.7 (6.56)
Rapp et al., 2012	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	M: 11.1 (3.42); F: 11.6
Rausch-Osthoff	Strain Gauge connected to Interface Series SM S-Type Load	MVC isometric KES, left leg, 3 attempts mean used	LB MS	KES	Nm	14.5 (5.2)
Rava et al., 2018	Cell and Nexus-10 device N/A	Time to complete 5 chair stands	LB MP	5x CST	S	9.6 (2.0)
	Lord's Strap Assembly	1RM KES, 2 attempts with each leg, max	LB MS	KES	Kg	25.2 (11.2)
Reid et al., 2018	1RM Bilateral Leg Press	used N/R	LB MS	Leg press strength	Kg	128/7 (51.2)
	N/A	# chair stands completed in 30 s,	LB MP	30 s CT	#/30 s	12.3 (2.4)
Rojer et al., 2018	Jamar Dynamometer	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	31.5 (9.5)
Rosenberg et al., 2015	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	13.0 (3.4)
Rowlands et al.,	N/R	HGS, 3 attempts with each hand, max used	UB MS	HGS		28.5 (10.1)
2018	N/A	# chair stands completed in 30 s, 2 attempts, max used	LB MP	60 s CST		22.1 (7.8)
0-6-1	Jamar Dynamometer	HGS, 2 attempts with dominant hand, max used	UB MS	HGS	Kg	M: 38.00 [9.75]; F: 25.00 [2.50]
Safeek et al., 2018	N/A	# chair stands completed in 30 s, 2 attempts max used	LB MP	30 s CST	#/30 s	14.00 [6.00]
Sánchez-Sánchez	Jamar Dynamometer	HGS, 3 attempts with each hand, max	UB MS	HGS	Kg	22.26 (8.21)
et al., 2019	N/A	usea # of full flexion and extension of the	UB MP	Arm Curl	#/30 s	16.3 (5.3)
Santos et al., 2012	N/A	elbow (arm curls) with dumbbells <i>F</i> : 5 pounds and <i>M</i> : 8 pounds completed in	LB MP	30 s CST	#/30 s	13.7 (4.7)
0 11 1 1 0000	N/A	30 s # chair stands completed in 30 s # of full flexion and extension of the	UB MP	Arm Curl	#/30 s	16.9 (5.2)
Sardinha et al., 2015	N/A	elbow (arm curls) with dumbbells F: 5	LB MP	30 s CST	#/30 s	14.4 (4.5)

K.A. Ramsey et al.

Table C4 (continued)

Table C4 (continueu)						
Author year	Device/equipment	Definition and protocol	Measure type	Reported measure (s)	Units	Mean (SD) ^a
		pounds and M:8 pounds completed in 30 s # chair stands completed in 30 s				
Scott et al., 2020	Patterson Medical Jamar Dynamometer	HGS, 2 attempts, max used	UB MS	HGS	Kg	Non-sarcopenic: 34.7 (10.6); Sarcopenic: 16.5 (5.8)
Scott et al., 2011	TTM Muscular Meter Dynamometer	Isometric hip extensor and quadricep strength, 2 attempts in both legs (simultaneously), max used	LB MS	Leg strength	Kg	96.2 (49.4)
Scott et al., 2009	TTM Muscular Meter Dynamometer	Isometric hip extensor and quadricep strength, 2 attempts in both legs (simultaneously), max used	LB MS	Leg strength	Kg	Sedentary: 84.3 (47.5); Low active: 4.4 (47.3); Somewhat active: 88.3 (48.8); Active: 99.4 (48.5); Highly active: 102.7 (51.1)
Semanik et al., 2015	N/A	Time to complete 5 chair stands	LB MP	5x CST	#/min	30.6 (11.2)
	N/A	# of full flexion and extension of the elbow (arm curls) with dumbbells <i>F</i> : 5	UB MP	Arm Curl	#/30 s	20.07 (6.69)
Silva et al., 2019	N/A	pounds and <i>M</i> : 8 pounds completed in 30 s # chair stands completed in 30 s	LB MP	30 s CST	#/30 s	15.04 (5.06)
Spartano et al., 2019	Jamar Dynamometer	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	M: 39.1 (8.7); F: 23.3 (5.7)
	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	9.9 (2.6)
Tang et al., 2015	Jamar Dynamometer	Isometric HGS, 3 attempts with each hand, mean used	UB MS	HGS	Kg	16.3 [11.3-20.2]
Trayers et al., 2014	N/A	Time to complete 5 chair stands	LB MP	5x CST (0-4)	Points	N/R
Sullivan and Feinn,	Bremshey Hand Dynamometer	Dominant hand	UB MS	HGS	Kg	37.3 (10.2)
2012	N/A	# chair stands completed in 60 s	LB MP	60 s CST	#/60 s	20 (6)
Van Lummel et al., 2016	N/A	(ending seated)	LB MP	5x CST	S	14.9 (6.6)
van Oeijen et al., 2020	MicroFET Hand-held Dynamometer	"Make" test of the hip flexors, hip abductors, knee extensors and ankle dorsal flexors, N/R	LB MS	Lower extremity strength	Z- scores	Baseline: -1.00 (1.15); FU: 1.36 (1.06)
Van Sloten et al., 2011	Jamar Dynamometer	HGS, 3 attempts with each hand, max used, sex specific 20 th percentiles used as cut off points for presence of low HGS	LB MS	HGS	Kg	<i>M</i> : 43.4 (9.87); <i>F</i> : 26.1 (4.9)
Walker et al., 2008	Strain Gauge Transducer and MacLab Bridge Amplifier	MVC isometric quadriceps strength. 3 attempts, max used	LB MS	KES	Ν	315 (106)
Ward et al., 2014	N/A	# chair stands completed in 30 s	LB MP	30 s CST	#/30 s	F: 15.72 (4.13); M: 17.51 (5.89)
Waschki et al., 2012	Strain Gauge Dynamometer	MVC isometric quadriceps strength, mean used	LB MS	KES	Kg	32.0 (13.2)
Watz et al., 2008	Handgrip dynamometer (N/R)	N/R	LB MS	HGS	Kg	35.3 (9.6)
Westbury et al., 2018	Jamar hydraulic Dynamometer	HGS, 3 attempts with each hand, max used	UB MS	HGS	Kg	M: 34.8 (6.5); F: 20.7 (5.6)
Wickerson et al., 2013	Isokinetic Dynamometer	Isometric quadriceps torque	LB MS	Knee extension torque	Nm	120 (36)
	Biodex Multi- Joint System 3	MVC knee extension and knee flexion strength, both legs (less affected leg and	LB MS	KES	Nm	Less affected leg: 104 (43); More affected leg: 69 (43)
Winberg et al., 2015	PRO Dynamometer	more affected leg by polio), peak torques used	LB MS	Knee flexion strength	Nm	Less affected leg: 59 (25); More affected leg: 36 (24)
Yamada et al., 2011	N/A	Time to complete 5 chair stands	LB MP	5x CST	S	Non-frail: 8.9 (3.6); Frail: 17.6 (8.5)
Yasunaga et al., 2017	Smedley Dynamometer TKK5041	HGS, 1 attempt with dominant hand	UB MS	HGS	Kg	27.4 (8.3)
Weddeler 1, 0010	Constitue Descent in the	HGS, 2 attempts with each hand, mean calculated and max used Isometric KES, two attempts with each	UB MS	HGS	Kg	HFG: 17.9 (4.0); LFG: 15.1 (4.0)
rosnida et al., 2010	Smedley Dynamometer	leg, max of each leg added and multiplied by leg length converted into torque and divided by weight	LB MS	KES	Nm∕ kg	HFG: 2.10 (0.69); LFG: 2.61 (0.87)
<u>Yuki et al., 2019</u>	N/R	HGS, M : > or < 26 kg F : > or < 18 kg	UB MS	HGS (+/-weakness)	Kg	N/R

UB = upper body, LB = lower body, MS = muscle power, MP = muscle strength, HGS = hand grip strength, KES = knee extension strength, KET = knee extension torque, CST = chair stand test, s = seconds, x = times (repetitions), #=number, quad = quadriceps, kg = kilogram, N = newton, Nm = newton-meter, W = watt, KgF = kilogram-force, KiloW = kilowatt, KiloN = kilonewton, MVC = maximum voluntary contraction, 1RM = one repetition maximum, max = maximum, / = divided by or per, $\Delta = change$, %pred=% predictive, +/- =with or without, N/A = not applicable, N/R = not reported, M = male, F = female, HFG = high functioning group, LFG = low functioning group, OA = osteoarthritis. <u>Underlined</u> articles have a longitudinal design.

^a Mean (standard deviation (SD)) of muscle strength and muscle power are presented unless reported as median [interquartile range], or mean {range}. Subgroups for stratified results are presented in italics.

Table C5

Associations between physical activity and sedentary behavior with muscle strength and muscle power in older adults.

	Physical activity and behavior	1 sedentary	Muscle strength ar power	nd muscle	Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b
Author year	Reported measure (s)	Units	Reported measure(s)	Units			
	Steps	#/day	KES/weight	Kg/Nm	Age	Partial $R = 0.242 (p > 0.05)$	"Abe 2012"
	MVPA	Min/day	KES/weight	Kg/Nm	Age	Partial R = 0.233 (p > 0.05)	"Abe 2012"
	LPA (LPA-MPA)	Min/day	KES/weight	Kg/Nm	Age	Partial R = 0.217 (p > 0.05)	"Abe 2012"
Abe et al., 2015	Steps	#/day	Toe grasping/ weight	Kg/kg	Age	Partial $R = 0.283$ (0.01 > p < 0.05)	0.01 > p < 0.05
	MVPA	Min/day	Toe grasping/ weight	Kg/kg	Age	Partial R = 0.228 (p > 0.05)	p(calc) = 0.881
	LPA (LPA-MPA)	Min/day	Toe grasping/ weight	Kg/kg	Age	Partial $R = 0.290$ (0.01 > p < 0.05)	0.01 > p < 0.05
	Steps	#/day	KES	Nm	Unadjusted	$R = 0.351 \ (p = 0.015)$	p = 0.015
	VPA	Min/day	KES	Nm	Age, sex, height, weight	Partial $R = 0.184 (p > 0.05)$	
	MVPA (MPA)	Min/day	KES	Nm	Age, sex, height, weight	Partial R = 0.197 (p > 0.05)	p(calc) = 0.180
	LPA	Min/day	KES	Nm	Age, sex, height, weight	Partial R = 0.155 (p > 0.05)	p(calc) = 0.293
	EE	Kcal/day	KES	Nm	Unadjusted	R = 0.421(p = 0.004)	p=0.004
	Steps	#/day	Knee flexion strength	Nm	Age, sex, height, weight	Partial R = 0.369 (p = 0.014)	p = 0.014
Abe et al., 2012	VPA	Min/day	Knee flexion strength	Nm	Age, sex, height, weight	Partial R = 0.236 (p > 0.05)	
	MPA	Min/day	Knee flexion strength	Nm	Age, sex, height, weight	Partial R = 0.438 (p = 0.003)	p = 0.003
	LPA	Min/day	Knee flexion strength	Nm	Age, sex, height, weight	Partial R = 0.089 (p > 0.05)	p(calc) = 0.547
	EE	Kcal/day	Knee flexion	Nm	Age, sex, height, weight	Partial R = 0.409 (p = 0.006)	p = 0.006
	MVPA	Sqrt(min/	HGS	Kg	Age, waist	B = 0.58 (0.34, 0.82)	p < 0.001
	LPA	Min/day	HGS	Kg	Age, waist	B = 0.21 (-0.06, 0.48)	p = 0.125
Aggio et al., 2016	SB	30 min/day	HGS	Kg	Age, waist	B=-0.20 (-0.41, 0.01)	p = 0.062
	BST	#/h	HGS	Kg	Age, waist	B = 0.14 (-0.14, 0.42)	p = 0.329
	MVPA	% wear time	Leg press	N	Unadjusted	R = 0.41 (p < 0.05)	p(calc) = 0.021
Alcazar et al., 2018	SB	% wear time	Leg press	N	Unadjusted	R = N/R (p > 0.05)	p(N/R)>0.25
,,			strength		** 1: . 1		(1) 0.001
	MVPA	% wear time	Leg press power	W/Kg	Unadjusted	R = 0.59 (p < 0.01) R = N/R (p > 0.05)	p(calc) < 0.001
Alzahrani et al	SD Activity counts	% wear time #/day	Leg press power	W/Kg	Unadjusted	R = N/R (p > 0.05) P = 0.03 (p = 0.85)	p > 0.25 p = 0.85
2012	TPA	min/day	KES KES	N	Unadjusted	R = 0.03 (p = 0.03) R = 0.18 (n = 0.25)	p = 0.85 p = 0.25
Andersson et al.	1171	will/ day	KL5	1	Age, sex, gait	R = 0.10 (p = 0.23)	p=0.25
2013	EE (PAL)	None	KES Calf raise (high	Kg	speed + others	B = 0.004 (0.000, 0.008)	p = 0.242
André et al., 2018	MVPA MVPA (high vs	Min/day	vs. low)	#/30 s	Unadjusted	*Cohen's d = 0.97 (p = 0.04)	p = 0.04
André et al., 2016	low)	Min/day	Calf raise	#/30 s	Unadjusted	R = 0.639 (p = 0.001)	p = 0.001
	TPA	#/day Min/day	HGS	N	Age, sex	Partial $R = 0.12$ (p > 0.05) Partial $R = 0.12$ (p > 0.05)	p(calc) = 0.119 p(calc) = 0.119
Aoyagi et al., 2009	Steps	#/day	Knee extension torque	Nm/kg	Age, sex	Partial R = 0.20 (p < 0.05)	p(calc) = 0.009
	TPA	Min/day	Knee extension torque	Nm/kg	Age, sex	Partial $R{=}0.21$ (p ${<}0.05$)	p(calc) = 0.005
	Activity counts	#/day	Leg press strength	Kg	Unadjusted	$R = 0.284 \ (p = 0.025)$	p = 0.025
Ashe et al., 2008	MVPA	Min/day	Leg press strength	Kg	Unadjusted	R = 0.174 (p = 0.175)	p = 0.175
	Activity counts	#/day	Leg press power	W	Unadjusted	$R = 0.373 \ (p = 0.003)$	p = 0.003
	MVPA	Min/day	Leg press power	W	Unadjusted	$R = 0.260 \ (p = 0.041)$	p=0.041
	Steps	#/day	HGS	Kg	Unadjusted	R = 0.22 (p < 0.01)	p(calc) = 0.002
Ashe et al., 2007	Steps (high vs.	#/day	HGS	Kg	Unadjusted	*OR = 2.04 (0.86, 4.79)	
	10WJ Steps	#/day	VES	Kα	Unadjusted	P = 0.31 (p < 0.001)	n < 0.001
	Steps	#/day	HGS (dynapenic	Ka	Unadjusted	<i>Non-obese</i> : $T = N/R$ (+)	p < 0.001
	ысря	π / udy	dynapenic)	ng	onaujusteu	(p = 0.07)	p = 0.07
			UCS (dumentaria			Ovese: $I = N/R$ (+) (p = 0.056)	p=0.056
Aubertin-Leheudre	Activity counts	#/day	vs. non-	Kg	Unadjusted	<i>Non-obese</i> : $T = N/R$ (+) $p = 0.0008$)	p = 0.0008
et al., 2017			HGS (dynaponic			<i>Obese:</i> $T = N/R$ (+) (p = 0.021)	p = 0.021
	TPA	Min/day	vs. non- dynanenic)	Kg	Unadjusted	<i>Non-obese:</i> $T = N/R$ (+) (p = 0.005)	p = 0.005
			a, impenie)			<i>Obese:</i> $T = N/R$ (+) (p = 0.029)	p = 0.029

Author year	Physical activity and behavior	d sedentary	Muscle strength a power	nd muscle	Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b
Aumor year	Reported measure (s)	Units	Reported measure(s)	Units			
	MVPA	Min/day	Shoulder press strength	Nm	Unadjusted	Rho = 0.397 (p < 0.001)	p < 0.001
	LPA	H/day	Shoulder press strength	Nm	Unadjusted	Rho = $0.281 (p < 0.001)$	p < 0.001
Balducci et al., 2017	SB	H/day	Shoulder press strength	Nm	Unadjusted	Rho=-0.235(p < 0.001)	p < 0.001
	MVPA	Min/day	Leg press strength	Nm	Unadjusted	Rho = 0.412 (p < 0.001)	p < 0.001
	LPA	H/day	Leg press strength	Nm	Unadjusted	Rho = $0.341 (p < 0.05)$	p < 0.001
	SB	H/day	Leg press strength	Nm	Unadjusted	Rho=-0.299 (p < 0.001)	p < 0.001
	TPA	H/day	HGS	Kg	Age, sex, wear time	B = 0.06 (-0.03, 0.16)	p = 0.191
ann et al., 2015	Higher LPA	H/day	HGS	Kg	Age, sex, wear time	$B = 2.41 \ (0.16, \ 4.66)$	
	LPA (Lower LPA)	H/day	HGS	Kg	Age, sex, wear time	B = 0.06 (-0.42, 0.54)	p=0.809
	SB	H/day	HGS	Kg	Age, sex, wear time	B=-0.13 (-0.55, 0.28)	p = 0.527
	Steps	#/day	HGS	Kg	Unadjusted	R = N/R (p > 0.05)	p(N/R)>0.25
	TPA	Min/day	HGS	Kg	Unadjusted	R = N/R (p > 0.05)	p(N/R)>0.25
arbat-Artigas et al.,	Steps	#/day	KES	N	Unadjusted	R = N/R (p > 0.05)	p(N/R)>0.25
2012	TPA	Min/day	KES	N	Unadjusted	R = N/R (p > 0.05)	p(N/R)>0.25
	Steps	#/day	20 s CST	#/20 s	Unadjusted	R = N/R (p > 0.05)	p(N/R)>0.25
	TPA	Min/day	20 s CST	#/20 s	Unadjusted	$R = N/R \ (p > 0.05)$	p(N/R)>0.25
artlett and Duggal, 2020	Steps (active vs. sedentary)	#/day	HGS	Kg	Unadjusted	T = N/R (+) (p = 0.69)	p = 0.69
						<i>F</i> : Pearson's $R = N/R$ (p > 0.05)	p(N/R)>0.25
assey et al., 1988	Steps (step score)	#/day x 10^3	Calf strength	Ν	Unadjusted	<i>M</i> : Pearson's $R = 0.30$	p(calc) = 0.025
						(p < 0.05) Dynapenic: R=-0.12 (p = 0.74)	p = 0.74
ogucka et al., 2018	Steps	#/day	HGS	Kg	Unadjusted	<i>Non-dynapenic:</i> $R = 0.16$ (p = 0.34)	p = 0.34
	MVPA	% wear time	5x CST (0-4)	Points	MS, SB, long SB bouts	$B = 9.07 (SE = 5.14) \beta = 0.18$	p(calc) = 0.077
	LPA	% wear time	5x CST (0-4)	Points	MS, MVPA, long SB	R = 0.40 (p < 0.01)	p(calc)<0.001
	SD DA boute	% wear time	5x CST (0-4)	Points	bouts	B = -2.98 (SE = 1.46) p = -0.208	p(calc) = 0.041
allaert and Motl	PA bouts	min/bout/	5x CST (0-4)	Points	Unadjusted	R = 0.15 (p < 0.01)	p(calc) = 0.002
2019	SB bouts	day #day	5x CST (0-4)	Points	Unadjusted	R = 0.01 (p > 0.01) R = -0.01 (p > 0.01)	p(calc) = 0.104
	SB bouts	Min/bout/	5x CST (0-4)	Points	Unadjusted	R = -0.33 (p < 0.01)	p(calc) = 0.003
	Long SB bouts	day #/day	5x CST (0-4)	Points	Unadjusted	R=-0.32 (p < 0.01)	p(calc) = 0.004
	Long SB bouts	Min/bout/	5x CST (0-4)	Points	MS, MVPA, SB	B=-0.04 (SE = 0.02) β =-0.25	p(calc) = 0.045
	Actigraph measures:	uay					
	ΔSteps	#/day	KES	Kg	Age, 6MWD, $climate + others$	*B=-1.00E-4 (-0.004,0.005)	
	Δ MVPA	Ratio	KES	Kg	Age, 6MWD, climate + others	*B=-0.004 (-0.016, 0.009)	p = 0.535
	ΔVMU	#/day	KES	Kg	Age, 6MWD, climate + others	*B=-0.003 (-0.007, 0.001)	
outou et al., 2019	Dynaport measures:						
	ΔSteps	#/day	KES	Kg	Age, 6MWD, climate + others	*B=-2.10E-4 (-0.005, 0.005)	p = 0.932
	Δ Steps (<i>Walking</i>)	Min/day	KES	Kg	Age, 6MWD, climate + others	*B = 0.002 (-0.003, 0.067)	
	ΔMET	G	KES	Kg	Age, 6MWD, climate + others	*B=-0.001 (SE = 6.00E-4)	p = 0.036
	ΔVMU	#/day	KES	Kg	Age, 6MWD, climate + others	*B=-0.005 (SE = 0.002)	p = 0.03
arrasco Poyatos et al., 2016	MVPA	CPM	HGS	Kg	Unadjusted	R = 0.42 (p = 0.01)	p = 0.01
	SB	H/day	Leg extension power	N/R	Unadjusted	<i>M</i> : R = 0.739 (p = 0.003)	p = 0.003
hastin et al., 2012		#/sedentary	Leg extension			<i>F</i> : R = 0.151 (p = 0.678)	p = 0.678
	SB break rate	h	power	N/R	Unadjusted	<i>M</i> : R=-0.683 (p = 0.07)	p = 0.07
	Change	# /4	VEC	N	The direct of	F: R=-0.158 (p=0.663)	p = 0.663
	Steps	#/day	KES	N	Unadjusted	R = 0.13 (p = 0.15)	p=0.15
hmelo et al., 2013	MVPA	Min/day	KES	N	Unadjusted	R = 0.09 (p = 0.33)	p = 0.33
, ====	LPA	Min/day	KES	N	Unadjusted	R = -0.04 (p = 0.66)	p=0.66
	EE	Kcal/day	KES	N	Unadjusted	R = 0.23 (p = 0.01)	p = 0.01
ooper et al. 2015	MVPA	SDs	HGS	Kg	Sex	$\beta = 0.638$ (0.166, 1.110)	p(calc) = 0.008
	SB	SDs	HGS	Kg	Sex	$\beta = -0.588$ (-1.062, -0.115)	p(calc) = 0.015

Author year	Physical activity an behavior	d sedentary	Muscle strength a power	nd muscle	Adjustment	Effect size (95% CI) ^a	p-value used fo analyses ^b
Autior year	Reported measure (s)	Units	Reported measure(s)	Units			
	EE	SDs	HGS	Kg	Sex	$\beta = 0.632 \ (0.158, \ 1.105)$	p(calc) = 0.009
	MVPA	SDs	10x CST	#/min	Sex	$\beta = 0.670 \ (0.321, \ 1.018)$	p(calc)<0.001
	SB	SDs	10x CST	#/min	Sex	β =-0.550 (-0.898, -0.201)	p(calc) = 0.002
	EE	SDs	10x CST	#/min	Sex	$\beta = 0.943$ (0.594, 1.292)	p(calc)<0.001
	MVPA	Log(min/h)	5x CST (0-4)	Points	Age, sex, BMI, edu	$B = 0.851 \ (0.429, \ 1.272)$	p < 0.001
Davis et al., 2014	SB	Min/h	5x CST (0-4)	Points	Age, sex, BMI, edu, MVPA	B=-0.042 (-0.073, -0.011)	p = 0.009
	BST	#/h	5x CST (0-4)	Points	Age, sex, BMI, edu, MVPA, SB	B = 0.334 (0.178, 0.490)	p < 0.001
le Melo et al., 2010	Steps	#/day	30 s CST	#/30 s	Age, self-rate health, income	*RR = 1.04 (1.00, 1.07)	"De Melo 2014
	low)	#/day	Arm Curl	#/30 s	Age, sex, morbidities	*OR= 1.01 (0.77-1.32)	
le Melo et al., 2014	low)	#/day	Arm Curl	#/30 s	Age, sex, morbidities	*OR= 1.35 (1.00-1.82)	p = 0.04
	low)	#/day	30 s CST	#/30 s	Age, sex, morbidities	*OR = 1.00 (0.82-1.18)	p = 0.004
	low)	#/day	30 s CST	#/30 s	Age, sex, morbidities	*OR = 1.61 (1.17-2.21)	
	(persistently active vs. decline) ΔSteps	#/day	ΔHGS	Ν	Baseline HGS	EMM(N/R) (p-trend = 0.48)	
Demeyer et al., 2019	(persistently active vs. inactive)	#/day	ΔHGS	Ν	Baseline HGS	EMM(N/R) (p-trend = 0.39)	
	somewhat active, inactive, very inactive)	#/day	ΔHGS	Ν	Baseline HGS	EMM(N/R) (p-trend = 0.84)	p = 0.84
	MVPA (quartiles)	Min/day	ΔHGS	Ν	Baseline HGS	EMM (N/R) (p-trend = 0.32)	p = 0.32
	SB (quartiles)	Min/day	ΔHGS	Ν	Baseline HGS	EMM (N/R) (p-trend = 0.24)	p = 0.24
istefano et al.,	Steps	#/day	KES	Kg/kg	Age, sex	Partial R = 0.294 (p = 0.154)	p = 0.154
2018	Steps	#/day	5x CST	S	Age, sex	Partial R=-0.301 (p = 0.153)	p = 0.153
ogra et al., 2017	BST	#/day	HGS	Kg	Age, sex, BMI, edu, + others		p = 0.09
0	Long SB bouts	% time/day	HGS	Kg	Age, sex, BMI, edu, + others		p = 0.13
	SB	Min/day	5x CST (able vs. non-able)	None	Age, sex, BMI, edu, + others	$OR = 39.5 \ (p < 0.05)$	0.01
00hrn et al., 2020	SB break rate	H Min/all SB	non-able)	None	others	OR = 0.9 (p > 0.05)	p(N/R)>0.25
	SB bouts	bouts	non-able)	None	others	OR = 4.8 (p < 0.05)	0.01
)os Santos et al	Long SB bouts	Min	non-able)	None	others	OR = 11.8 (p > 0.05)	p(N/R)>0.25
2019	vs. insufficient)	Min/day	low)	Kg	Unadjusted	OR = 3.03 (1.38, 6.63)	p = 0.004
ouncan et al., 2016	medium, low)	#/day	Arm curl	#/30 s	Age	Partial $\eta^2 = 0.168 \ (p = 0.001)$	p = 0.001
	medium, low)	#/day	30 s CST	#/30 s	Age Fat mass, self-reported	Partial $\eta^2 = 0.095 \ (p = 0.001)$	p = 0.001
dholm et al., 2019	Activity counts	#/min/day	Squat jump test	N/kg	past PA Fat mass, self-reported	ANOVA (+) (p < 0.001)	p < 0.001
	MVPA Activity counts	Min/day #/10000	Squat jump test KES	N/kg Kg	past PA Age residuals, sex	ANOVA (+) ($p = 0.081$) $\beta = 0.17$ (0.12, 0.22)	p = 0.081 p < 0.001
	VPA	10 min/day	KES	Kg	Age residuals, sex	$\beta = 2.7 (1.0, 4.5)$	p < 0.001
	MVPA (MPA) LPA	10 min/day 10 min/day	KES	кg Kg	Age residuals, sex	$\beta = 0.6 (0.3, 0.8)$ $\beta = 0.1 (0.02, 0.20)$	p = 0.019 p = 0.415
oong et al., 2016	SB	10 min/day	KES	Kg	Age residuals, sex	β=-0.03 (-0.1, 0.04)	p < 0.001
	Activity counts	#/10000	Leg strength	Kg	Age residuals, sex	$\beta = 0.65$ (0.46, 0.83)	
	VPA	10 min/day	Leg strength	Kg	Age residuals, sex	$\beta = 7.5 (0.9, 14.1)$	p=0.002
	MVPA (MPA)	10 min/day	Leg strength	Kg	Age residuals, sex	$\beta = 1.6 \ (0.6, \ 2.7)$	p=0.023
	LPA SB	10 min/day 10 min/day	Leg strength Leg strength	Kg Kg	Age residuals, sex Age residuals, sex	$\beta = 0.4 \ (0.1, \ 0.8)$ $\beta = -0.1 \ (-0.4, \ 0.2)$	p=0.438
	SB	H/day	HGS	N/R	Age, sex, wear time, MVPA	$\beta = N/R \ (p > 0.05)$	p(N/R)>0.25
Gennuso et al., 2016	BST	#/day	HGS	N/R	Age, sex, wear time, MVPA	$\beta = N/R \ (p > 0.05)$	p(N/R)>0.25
	SB break rate	#/sedentary h	HGS	N/R	Age, sex, wear time, MVPA	$\beta = N/R \ (p > 0.05)$	p(N/R)>0.25
	SB bouts	Min/day	HGS	N/R	Age, sex, wear time, MVPA	$\beta = N/R \ (p > 0.05)$	p(N/R)>0.25

Authorse	Physical activity and sedentary behavior		Muscle strength a power	nd muscle	Adjustment Effect size (95% CI) ^a		p-value used for analyses ^b
Author year	Reported measure (s)	Units	Reported measure(s)	Units			
	Long SB bouts	H/day	HGS	N/R	Age, sex, wear time,	$\beta = N/R (p > 0.05)$	p(N/R)>0.25
	\geq 40 min SB bouts	H/day	HGS	N/R	MVPA Age, sex, wear time,	$\beta = N/R \ (p > 0.05)$	p(N/R)>0.25
	$\geq \! 60 \min SB$ bouts	H/day	HGS	N/R	MVPA Age, sex, wear time,	$\beta = N/R \ (p > 0.05)$	p(N/R)>0.25
	SB	H/day	5x CST (0-4)	Points	MVPA Age, sex, wear time,	β =-0.21 (SE = 0.11)	p(calc) = 0.056
	BST	#/day	5x CST (0-4)	Points	MVPA Age, wear time, MVPA	<i>M</i> : $\beta = 0.06$ (SE = 0.02)	0.01
	SB break rate	#/sedentary	5x CST (0-4)	Points	Age, wear time, MVPA	<i>H</i> : $\beta = 0.000$ (SE = 0.02) <i>M</i> : $\beta = 0.60$ (SE = 0.19) <i>F</i> : $\beta = 0.04$ (SE = 0.12)	p(calc) = 0.777 0.001 $p(calc) = 0.752$
	SB bouts	Min/day	5x CST (0-4)	Points	Age, sex, wear time, MVPA	β =-0.10 (SE = 0.03)	0.001 < p < 0.01
	Long SB bouts	H/day	5x CST (0-4)	Points	Age, sex, wear time, MVPA	β =-0.18 (SE = 0.08)	0.001
	\geq 40 min SB bouts	H/day	5x CST (0-4)	Points	Age, sex, wear time, MVPA	β =-0.23 (SE = 0.09)	
	$\geq \! 60 \min SB$ bouts	H/day	5x CST (0-4)	Points	Age, sex, wear time, MVPA	β =-0.29 (SE = 0.09)	
	Activity counts	#/min/day	KES	NmS	Unadjusted	R = 0.19 (p = 0.209) R = 0.21	p = 0.209
Conductor at al. 0007	MVPA	Min/day	KES Knee flexion	NmS	Unadjusted	(p = 0.160) R = 0.09	p = 0.160
Gerdnein et al., 2007	Activity counts	#/IIIII/day	strength Knee flexion	NIIS		(p = 0.364) R = 0.15	p=0.364
	MVPA	Min/day	strength	NmS	Unadjusted	(p = 0.307)	p=0.307
	Steps	#/day #/day	30 s CST 30 s CST	#/30 s #/30 s	Unadjusted	60-69y: R = 0.563 (p = 0.000) 70-79y: R = 0.353 (p = 0.001)	p(calc) < 0.001 p = 0.001
	Steps	#/day #/day	30 s CST	$\frac{\pi}{30 s}$	Unadjusted	80-90+y: R = 0.333 (p = 0.001) 80-90+y: B = 0.451 (p = 0.021)	p = 0.001 p = 0.021
	MVPA	Min/day	30 s CST	#/30 s	Unadjusted	60-69v; R = 0.367 (p = 0.000)	p(calc) < 0.001
Hall et al., 2016	MVPA	Min/day	30 s CST	#/30 s	Unadjusted	70-79y: $R = 0.192$ (p = 0.030)	p = 0.030
	MVPA	Min/day	30 s CST	#/30 s	Unadjusted	$80-90+\gamma$: R = 0.281 (p = 0.068)	p = 0.068
	SB	% time/day	30 s CST	#/30 s	Unadjusted	60-69y: R=-0.359 (p=0.000)	p(calc) = 0.001
	SB	% time/day	30 s CST	#/30 s	Unadjusted	70-79y: R=-0.197 (p = 0.026)	p = 0.026
	SB	% time/day	30 s CST	#/30 s	Unadjusted	80-90+y: R=-0.291 (p = 0.059)	p = 0.059
Harada et al., 2016	Steps	#/day	5x CST	S	Unadjusted	R=-0.25 (p < 0.001)	p < 0.001
	Activity counts (low)	#/impact/ day	HGS	Kg	Age	*Low $\beta = 1.09$ (0.97, 1.23)	p = 0.14
	Activity counts (med)	#/impact/ day	HGS	Kg	Age	*Medium β = 1.15 (0.97, 1.37)	
	Activity counts (high)	#/impact/ day	HGS	Kg	Age	*High $\beta = 1.14$ (0.95, 1.36)	
	Activity counts (low)	#/impact/ day	Jump strength	kN	Age	*Low $\beta = 1.05$ (0.90, 1.22)	p = 0.53
	Activity counts (medium)	#/impact/ day	Jump strength	kN	Age	*Medium $\beta = 1.18$ (0.95, 1.47)	
Hartley et al. 2018	Activity counts (high)	#/impact/ day	Jump strength	kN	Age	*High $\beta = 1.26$ (1.00, 1.57)	
Hartiey et al., 2010	Activity counts (low)	#/impact/ day	Jump power	kW	Age	*Low $\beta\!=\!0.97$ (0.83, 1.13)	p = 0.71
	Activity counts (medium)	#/impact/ day	Jump power	kW	Age	*Medium β = 1.14 (0.91, 1.42)	
	Activity counts (high)	#/impact/ day	Jump power	kW	Age	*High $\beta = 1.08$ (0.86, 1.36)	
	Activity counts (low)	#/impact/ day	5x CST	S	Age	*Low $\beta = 0.80$ (0.70, 0.91)	p(calc)<0.001
	Activity counts (medium)	#/impact/ day	5x CST	S	Age	*Medium $\beta = 0.69$ (0.57, 0.83)	
	Activity counts (high)	#/impact/ day	5x CST	S	Age	*High $\beta{=}0.83$ (0.68, 1.00)	
Hasegawa et al., 2018	Steps	#/day	30 s CST	#/30 s	Age, sex	$^{*}\beta = 0.20 \ (p = 0.17)$	$p {=} 0.17$
	Steps	#/day	HGS	KgF	Unadjusted	Non-exercise: $Rho = -0.10$ (p > 0.05)	p(calc) = 0.206
Hernandes et al., 2013	Stone	# /dou	20 • ССТ	# /20 ~	Uppdiveted	Exercise: Rho= -0.11 (p > 0.05) Non-exercise: Rho = 0.30	p(calc) = 0.312
	Steps	#/uay	3US CS1	#/ <i>3</i> US	onadjusted	(p < 0.05) Exercise: Rho = 0.28 (p < 0.05)	p(calc) = 0.001 p(calc) < 0.001
	TPA	Min/day	KES	Kg	Unadjusted	R = 0.30 (p = 0.07)	p = 0.07
	LPA	Min/day	KES	Kg	Unadjusted	R = 0.27 (p = 0.11)	p = 0.11
Hernández et al	SB	Min/day	KES	Kg	Unadjusted	R=-0.16 (p=0.35)	p = 0.35
2017	Steps	#/dav	Quad power	w	Unadiusted	B = 0.30 (p = 0.07)	p = 0.07
	ТРА	Min/dav	50% 1RM Quad power	w	BMI	*B = 0.30 (0.19, 0.42) B - 0.76	r 0.001
		, aay	50% 1RM			= 0.00 (0.12) p = 0.70	r

Author year	Physical activity and sedentary behavior		Muscle strength power	and muscle	Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b
	Reported measure (s)	Units	Reported measure(s)	Units			
	MVPA (MPA)	Min/day	Quad power	W	Unadjusted	R = 0.12 (p = 0.48)	p = 0.48
	LPA	Min/day	Quad power	W	BMI	*B = 0.25 (0.13, 0.36) β = 0.69	p < 0.001
	SB	Min/day	Quad power 50% 1RM	W	Unadjusted	R=-0.13 (p=0.44)	p = 0.44
	TPA	Min/day	Quad power 70% 1RM	W	Unadjusted	$R = 0.37 \ (p = 0.027)$	p = 0.027
	LPA	Min/day	Quad power 70% 1RM	W	BMI	*B = 0.23 (0.10, 0.35) β = 0.62	p = 0.001
	SB	Min/day	Quad power 70% 1RM	W	Unadjusted	R = 0.14 (p = 0.41)	p = 0.41
Hopkins 2019	MVPA (Meeting vs. not meeting guidelines)	Min/day	$\Delta 5x \text{ CST}$	S	Age, sex, race, BMI + others	B=-0.093 (p > 0.05)	p(N/R)>0.25
Iijima et al., 2017	Steps	1000/day	5x CST (quartiles: Q1=worst performance)	S	Age, sex, BMI, OA grade	Ordinal logistic regression OR = 1.22 (1.10, 1.36)	p < 0.001
	Steps	#/day	HGS	Kg	Age, BMI, % body fat	ANCOVA (p-trend = 0.160)	p = 0.160
	MVPA (MPA) LPA	Min/day Min/dav	HGS	кg Ке	Age, BNII, % DODY fat Age, BMI. % body fat	ANCOVA (p-trend = 0.195) ANCOVA (p-trend = 0.707)	p = 0.195 p = 0.707
No	SB	Min/day	HGS	Kg	Age, BMI, % body fat	ANCOVA (p-trend = 0.869)	p = 0.869
ikenaga et al., 2014	Steps	#/day	KES	Nm/kg	Age, BMI, % body fat	Partial R = 0.167 (p = 0.028)	p = 0.028
	MVPA (MPA)	Min/day	KES	Nm/kg	Age, BMI, % body fat	Partial R = $0.208 (p < 0.01)$	p(calc) = 0.005
	LPA	Min/day	KES	Nm/kg	Age, BMI, % body fat	Partial $R = N/R$ (p > 0.05)	p(N/R) > 0.25
	Steps	1000/day	5x CST	S	Unadjusted	R = -0.299 (n > 0.05)	p = 0.033 p(calc) = 0.176
Iwakura et al., 2016	MVPA	Min/day	5x CST	S	Unadjusted	R = -0.384 (p > 0.05)	p(calc) = 0.078
Instrumen et al. 2017	MET	H/day	Arm curl	#/30 s	Age, sex	$\beta = 0.02$ (0.02, 0.04)	p = 0.021
Janunen et al., 2017	MET	H/day	30 s CST	#/30 s	Age, sex	$\beta = 0.06$ (0.05, 0.07)	p < 0.001
Jeong et al., 2019	Steps	#/day	KES	N/kg	Unadjusted	R = 0.09 (p = 0.53)	p = 0.53
-	Steps VDA	#/day Min/day	Hip strength	N/Kg Ka	Adjustment N/R Unadjusted	$\beta = 0.40, R^2 = 0.16 (p < 0.01)$ R = 0.184 (p < 0.05)	p(caic) = 0.003
	MVPA (MPA)	Min/day Min/day	Leg strength	Kg	Unadjusted	R = 0.276 (p < 0.03) R = 0.276 (p < 0.01)	p(calc)<0.001
Johnson et al., 2016	LPA	Min/day	Leg strength	Kg	Unadjusted	$R = 0.120 \ (p > 0.05)$	p(calc) = 0.101
	SB	Min/day	Leg strength	Kg	Unadjusted	R=-0.024 (p > 0.05)	p(calc) = 0.743
	Steps (Walking)	Min/day	KES	N/R	Unadjusted	$R = 0.46 (0.01$	p(calc) = 0.200
	Standing (only)	Min/day	KES	N/R	Unadjusted	R = 0.26 (p > 0.05)	
Kawagoshi et al	walking)	Min/day	KES	N/R	Unadjusted	$R{=}0.60$ (0.01 ${<}p{<}0.05)$	p(calc) = 0.001
2013	LPA (Slow	N. (1	VEC	NO	** 1* . 1	D 0 00 (0 0 05)	(1) 0100
	Walking)	Min/day	KES	N/R	Unadjusted	R = 0.33 (p > 0.05)	p(calc) = 0.100
	SB (<i>Sitting</i>) Lying	Min/day Min/day	KES KES	N/R N/R	Unadjusted Unadjusted	R=-0.24 (p > 0.05) R=-0.17 (p > 0.05)	p(calc) = 0.237
						<i>F</i> : Q2vs.Q1 B = 1.18 (0.56, 1.79), Q3vs.Q1 B = 0.92 (0.28, 1.55), Q4vs.Q1 B = 2.02 (1.36,	p < 0.001
	MVPA (quartiles: Q1=least MVPA)	Min/day	HGS	Kg	Age, wear time	2.68) (p-trend<0.001) M: Q2vs.Q1 B = 0.88 (-0.09, 1.85), Q3vs.Q1 B = 1.83 (0.82, 2.83), Q4vs.Q1 B = 1.26 (0.22,	p < 0.001
						2.30), (p-trend<0.001) F: Q2vs.Q1 B = $0.00 (-0.62, 0.62)$, Q3vs.Q1 B = $0.69 (0.05, 1.34)$, Q4vs.Q1 B = $0.83 (0.11, 0.11)$	p < 0.001
	SB (quartiles: Q1=most SB)	H/day	HGS	Kg	Age, wear time	1.56) (p-trend<0.001) 1.28, 0.68), Q3vs.Q1 B = 1.00	- 0.02
Keevil et al., 2016						(-0.03, 2.02), Q4vs.Q1 B=-0.01 (-1.14, 1.12) (p-trend = 0.03) <i>F</i> : Q2vs.Q1 B = 1.54 (0.54, 2.55) Q3vs.Q1 B = 2.97 (1.93)	p=0.03
	MVPA (quartiles: 01=least MVPA)	Min/day	CST	#/min	Age, wear time	2.55), $QV3.QT B = 2.57$ (1.55, 4.00), $Q4vs.Q1 B = 3.61$ (2.55, 4.67) (p-trend<0.001) <i>M</i> : $Q2vs.Q1 B = 1.69$ (0.53,	p < 0.001
						2.84), Q3vs.Q1 B = 2.16 (0.98, 3.35), Q4vs.Q1 B = 2.43 (1.22, 3.64) (p-trend<0.001) <i>F</i> : Q2vs.Q1 B = 1.10 (0.09,	p < 0.001
	SB (quartiles: Q1=most SB)	H/day	CST	#/min	Age, wear time	2.10), Q3vs.Q1 B = 1.53 (0.48, 2.57), Q4vs.Q1 B = 2.21 (1.03, 3.38) (p-trend = 0.003)	p = 0.003
						<i>M</i> : Q2vs.Q1 B = 1.36 (0.21, 2.51), Q3vs.Q1 B = 0.97 (-0.23,	p = 0.21

Author year	Physical activity and behavior	d sedentary	Muscle strength and muscle power		Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b	
Autior year	Reported measure (s)	Units	Reported measure(s)	Units				
						2.18), Q4vs.Q1 B = 1.25 (-0.06,		
	Activity counts	#/min/day	HGS	Κα	Age sev	2.57) (p-trend = 0.21) Partial Rho = 0.081 ($p = 0.251$)	n = 0.251	
Kim, 2015	Activity counts	#/min/day	KES	N/kg	Age, sex	Partial Rho = $0.025 (p = 0.463)$	p = 0.231 p = 0.463	
	Activity counts	#/min/day	5x CST	S	Age, BMI, morbidities others	B=-0.272 (-0.456, -0.087)	p(calc) = 0.004	
Wine at al. 2015	MVPA	% time/day	5x CST	S	Unadjusted	R=-0.400 (p < 0.001)	p < 0.001	
Kim et al., 2015	LPA	% time/day	5x CST	S	Unadjusted	R=-0.203 (0.01 < p < 0.05)	p(calc) = 0.042	
	SB Long SB bout	% time/day % time/day	5x CST 5x CST	S S	Unadjusted Unadjusted	R = 0.292 (0.001 $R = -0.049 (p > 0.05)$	p(calc) = 0.003 p(calc) = 0.627	
	MVPA (Meeting	, o time, aug	5x CST (high vs	5	Age sex BMI		p(cale) 0102,	
Lai et al., 2020	vs. not meeting guidelines)	Min/day	low)		edu + others	OR = 2.14 (0.79, 5.79)	p = 0.14	
	00 (11					Q2 vs Q1 B = 1.83 (SE = 0.90), Q3 vs Q1 B = 1.46 (SE = 0.96),		
Lee et al., 2015	SB (quartiles: Q1=most SB)	%/day	5x CST	#/min	Age, sex, morbidities + others	Q4 vs. $Q1 = B = 3.43$ (SE = 0.98), (mean of Q2-Q4 vs Q1 = -0.0016)	p = 0.0016	
	MVPA	60 min/day	5x CST	% s	Age, sex	$e^{\beta} = -4.433 (-7.21, -1.650)$	p(calc) = 0.001	
Lerma et al., 2018	LPA	60 min/day	5x CST	% s	Age, sex	$e^{\beta} = -0.622$ (-1.349, 0.104)	p(calc) = 0.093	
	SB	60 min/day	5x CST	% s	Age, sex	$e^{\beta} = 0.092$ (-0.602, 0.786)	p(calc) = 0.807	
	SB	Min/day	HGS	Kg	Age, sex, MVPA + others	β =-0.083 (-0.199, 0.034)	p = 0.165	
Liao et al., 2018	SB break rate	#/sedentary h	HGS	Kg	Age, sex, MVPA, SB + others	$\beta = 0.004$ (-0.115, 0.124)	p = 0.944	
	Long SB bouts	#/day	HGS	Kg	Age, sex, MVPA, SB + others	$\beta = 0.053$ (-0.132, 0.237)	p = 0.575	
	Long SB bouts	Min/day	HGS	Kg	Age, sex, MVPA, SB + others	β=-0.060 (-0.159, 0.039)	p = 0.237	
Lohne-Seiler et al.,	Steps	1000/day	HGS	Kg	Age, sex, wear time, test	B=-1.33 (SE = 0.24) (-0.61,	p = 0.6	
2016 Mador et al., 2011	VMU	#/min/day	KES	Kg	Unadjusted	$^{(0.34)}$ *R = 0.50 (p = 0.013)	p = 0.013	
Master et al., 2018	Steps	#/day	5x CST	S	Age, sex, morbidities + others	B=-130 (-178, -83)	p(calc)<0.001	
Mathemia et al. 2020	Steps (<5000/ day)	#/day	HGS	Kg	Unadjusted	*AUC = 0.596 (0.491, 0.702)	p = 0.082	
Matkovic et al., 2020	Steps (<5000/ day)	#/day	30 s CST	#/30 s	Unadjusted	*AUC = 0.676 (0.576, 0.776)	p = 0.001	
McDermott et al.,	Accelerations	#/day	5x CST	S	Unadjusted	+ <i>PAD</i> : *B (NR) (+) (p-trend <0.0001)	p < 0.001	
2002	Accelerations	#/day	5x CST	S	Unadjusted	- <i>PAD</i> : *B = N/R (+) (p-trend <0.0001)	p < 0.001	
	MVPA	Log-ratio	HGS	Kg	Age, sex, morbidity + others	γ =-0.599 (p = 0.213)	p = 0.213	
McGregor et al., 2018	LPA	Log-ratio	HGS	Kg	Age, sex, morbidity + others	$\gamma = 2.979 \ (p = 0.028)$	p = 0.028	
	SB	Log-ratio	HGS	Kg	Age, sex, morbidity + others	$\gamma = 0.003 \ (p = 0.677)$	p = 0.677	
	Steps	1000/day	HGS	Kg	Age, sex, BMI, edu + others	$B = 0.01$ (SE = 0.16), $R^2 = 0.58$	p = 0.53	
Meier and Lee, 2020	Steps (high, medium, low)	#/day	Chest press strength	Lbs	Unadjusted	ANOVA (+) (p = 0.15) (+)	p = 0.15	
	Steps (high, medium, low)	#/day	Leg press strength	Lbs	Unadjusted	ANOVA (+) (p = 0.17)	p = 0.17	
	Activity counts (terciles)	#/min/day	Arm curl	#/30 s	Unadjusted	ANOVA (+) (p = 0.058)	p = 0.058	
Monteiro et al. 2019	Activity counts (terciles)	#/min/day	KES	Nm	Unadjusted	ANOVA (+) (p = 0.060)	p = 0.060	
Monteno et al., 2019	Activity counts (terciles)	#/min/day	Knee flexion strength	Nm	Unadjusted	ANOVA (+) (p = 0.051)	p = 0.051	
	Activity counts (terciles)	#/min/day	30 s CST	#/30 s	Unadjusted	ANOVA (+) (p = 0.073)	p = 0.073	
	Activity counts	10 ⁻⁵ /min/ dav	HGS	Kg	Unadjusted	$T = N/R \ (p \ge 0.36)$	$p \ge 0.36$	
	Activity counts (low vs. high)	10 ⁻⁵ /min/ day	Chest press strength	Ν	Unadjusted	T = N/R (p = 0.710)	p = 0.710	
Morie et al., 2010	Activity counts	10 ⁻⁵ /min/	Chest press	W	Unadjusted	T = N/R (p = 0.945)	p = 0.945	
	(low vs. high) Activity counts (low vs. high)	day 10 ⁻⁵ /min/ day	power Leg press strength	N	Age, BMI, medications	$\beta = 200$, partial $R^2 = 0.09$ (p < 0.01)	p(calc) = 0.006	
	Activity counts	10 ⁻⁵ /min/ day	Leg press power	w	Unadjusted	T = N/R (p = 0.359)	p = 0.359	
	MVPA	Min/dav	HGS (weak vs.	Kg	Unadjusted	Rpb=-0.12 (p < 0.05)	p(calc)<0.001	
Nagai et al., 2018	LPA	Min/dav	not weak)	Kø	Unadiusted	Rpb=-0.16 (p < 0.05)	p(calc) < 0.001	
		/ uuy		41	Judgasted	<u>r</u> o 0.10 (p < 0.00)	continued on next page)	

Author year	Physical activity and behavior	d sedentary	Muscle strength an power	nd muscle	Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b
	Reported measure (s)	Units	Reported measure(s)	Units			
			HGS (weak vs.				
	SB	Min/day	not weak) HGS (weak vs. not weak)	Kg	Unadjusted	Rpb = 0.14 (p < 0.05)	p(calc)<0.001
	MVPA (Meeting vs. not meeting	Min/day	Arm curl	#/30 s	Unadjusted	Mann-Whitney U (+) $(p = 0.587)$	p = 0.587
Nawrocka et al., 2017	guidelines) MVPA (Meeting	Min/day	30 s CST	#/30 s	Unadiusted	Mann-Whitney U (+)	n = 0.044
	guidelines) MVPA (Meeting	inin, ady	000 001	<i>"</i> , cc c	onagastea	(p=0.044)	p olori
	vs. not meeting guidelines) MVPA (Meeting	Min/day	HGS	Kg	Unadjusted	Fischer's Exact (+) (p = 0.010)	p = 0.010
Nawrocka et al., 2019	vs. not meeting guidelines)	Min/day	Arm curl	#/30 s	Unadjusted	Mann-Whitney U (+) (p = 0.004)	p = 0.004
	vs. not meeting guidelines)	Min/day	30 s CST	#/30 s	Unadjusted	Mann-Whitney U (+) (p = 0.162)	p = 0.162
Nicoloi et el 2010	Steps (Walking)	Min/day	5x CST	S	Unadjusted	Rho=-0.398 (p = 0.008)	p = 0.008
micolal et al., 2010	TPA (Time on feet)	Min/day	5x CST	S	Unadjusted	Rho=-0.460 (p = 0.002)	p = 0.002
Ofei-Doodoo et al.,	MVPA	Min/day	Arm curl	#/30 s	Unadjusted	$R = 0.174 \ (p = 0.083)$	p = 0.083
2018	MVPA	Min/day	30 s CST	#/30 s	Unadjusted	$R = 0.388 \ (p = 0.000)$	p(calc)<0.0001
Orwoll et al 2010	MVPA (MPA)	Min/day	5x CST	S	Unadjusted	R=-0.2 (p < 0.001)	p < 0.001
01w011 ct al., 2017	LPA	Min/day	5x CST	S	Unadjusted	R=-0.2 (p < 0.001)	p < 0.001
	MVPA	Min/day	5x CST (low vs.	s	Unadjusted	*Mann-Whitney U (+)	n < 0.001
Osuka et al., 2015	101 0 1 7 1	Milli/ duy	high)	0	onadjusted	(p < 0.001)	p < 0.001
	LPA	Min/day	5x CST	S	Age, sex, BMI + others	β =-0.07 (p = 0.047)	p = 0.047
	Steps	#/day	HGS/weight	%	Unadjusted	R = 0.07 (p > 0.05)	p(calc) = 0.757
	TPA	Min/day	HGS/weight	%	Unadjusted	R = 0.10 (p > 0.05)	p(calc) = 0.658
	VPA	Min/day	HGS/weight	%	Unadjusted	R = 0.21 (p > 0.05)	(1) 0 700
	MVPA	Min/day	HGS/weight	%	Unadjusted	R = -0.06 (p > 0.05)	p(calc) = 0.790
	MPA LDA	Min/day	HGS/weight	%0 0/	Unadjusted	R = -0.07 (p > 0.05)	m (asla) 0.272
	LPA CP	Min/day	HGS/weight	%0 0/-	Unadjusted	R = 0.20 (p > 0.05) P = 0.08 (p > 0.05)	p(calc) = 0.372
Park et al., 2018	SD	wiii/day	nGS/weight	%0 ₩ (20 a	Unadjusted	R = -0.08 (p > 0.05)	p(calc) = 0.723
	тра	#/uay Min/dov	20 a CST	#/30 S	Unadjusted	R = 0.36 (p > 0.05) R = 0.25 (p > 0.05)	p(calc) = 0.100
	VDA	Min/day	30 s CST	#/30 s #/30 s	Unadjusted	R = 0.25 (p > 0.05) R = 0.05 (p > 0.05)	p(calc) = 0.202 p(calc) = 0.190
	MVPA	Min/day	30 s CST	$\frac{\pi}{30s}$	Unadjusted	R = 0.03 (p > 0.03) R = 0.29 (p > 0.05)	p(caic) = 0.190
	MPA	Min/day	30 s CST	#/30 s	Unadjusted	B = 0.29 (p > 0.05)	p(calc) = 0.860
	LPA	Min/day	30 s CST	#/30 s	Unadjusted	B = 0.04 (p > 0.05)	p(calc) = 0.791
	SB	Min/day	30 s CST	#/30 s	Unadjusted	B = 0.06 (p > 0.05)	p(cuic) 01/91
	MVPA	Min/day	Leg press strength	N	Unadjusted	$R^2 = N/R (p > 0.05)$	p(N/R)>0.25
	SB	Min/day	Leg press strength	Ν	Unadjusted	$R^2 = N/R (p > 0.05)$	p(N/R)>0.25
Perkin et al., 2018	EE (PAL)	None	Leg press strength	N	Unadjusted	$R^2 = -0.03 (p > 0.05)$	p(calc) = 0.230
	SB	Min/day	Leg press power	VV 107	Unadjusted	R = N/R (p > 0.05) $R^2 - N/R$ (p > 0.05)	p(N/R) > 0.25
	EE (PAL)	None	Leg press power	w	Unadjusted	$R^2 = -0.03 (n > 0.05)$	p(n/n) > 0.23 p(calc) = 0.230
	Steps (Walking)	Min/dav	HGS	%pred	Unadjusted	$R = 0.44 (0.001$	0.001
	TPA (Standing)	Min/day	HGS	%pred	Unadjusted	$R = 0.28 \ (0.01$	0.01
Pitta et al., 2005	Steps (Walking)	Min/day	KES	%pred	Unadjusted	$R = 0.45 (0.001$	0.001
	TPA (Standing)	Min/day	KES	%pred	Unadjusted	R = 0.20 (p > 0.5)	p(calc) = 0.164
	Steps	#/day	Leg press strength	N/kg	Unadjusted	*B = 184.15 (SE = 107.86) $\beta = 0.31$	p(calc) = 0.087
Puthoff et al., 2008	Steps	#/day	Leg press power (peak)	W/kg	Unadjusted	*B = 340.99 (SE = 152.08) $\beta = 0.40$	p(calc) = 0.024
	Steps	#/day	(40%)	W/kg	Unadjusted	$^{*}B = 237.41$ (SE = 160.68) $\beta = 0.29$ $^{*}B = 251.73$ (SE = 175.81)	p(calc) = 0.140
	Steps	#/day	(90%)	W/kg	Unadjusted	$\beta = 0.36$	p(calc) = 0.045
	Steps (Walking)	Min/day	HGS	Kg	Unadjusted	* <i>M</i> 65-74 <i>y</i> : B=-0.2 (-0.7, 0.3) * <i>M</i> 75-90 <i>y</i> : B=-0.05 (-0.5, 0.4)	p(calc) = 0.441 p(calc) = 0.839
Rapp et al., 2012						* <i>F</i> 65-74 <i>y</i> : B = 0.3 (-0.4, 0.9) * <i>F</i> 75-90 <i>y</i> : B = 1.5 (0.7, 2.3)	p(calc) = 0.372 p(calc)<0.001
	Steps (Walking)	Min/day	5x CST	S	Unadjusted	* <i>M</i> : β =-2.4 (-3.3, -1.6) * <i>F</i> : β =-3.2 (-4.0, -2.4)	p(calc)<0.001 p(calc)<0.001
	Steps	#/day	KES	Nm	Unadjusted	*β=-0.085 (-0.567, 0.387)	p = 0.699
Rausch-Osthoff	EE	Kcal/day	KES	Nm	Unadjusted	* $\beta = 0.274$ (-0.171, 0.749)	p = 0.206
et al., 2014	EE (PAL)	None	KES	Nm	Unadjusted	$*\beta = 0.092$ (-0.345, 0.516)	
n . 1	MET	Kcal/day/kg	KES	Nm	Unadjusted	$^{*}\beta = 0.100$ (-0.371, 0.582)	p = 0.650
кava et al., 2018	VPA	Min/day	5x CST	S	Age, BMI	$\kappa = -0.06 \text{ (p} > 0.00625)$	

	Physical activity and sedentary behavior		Muscle strength and muscle power		Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b
Author year	Reported measure (s)	Units	Reported measure(s)	Units			
	MVPA	Min/day	5x CST	S	Age, BMI	R=-0.27 (p > 0.00625)	p(calc) = 0.015
	MPA	Min/day	5x CST	s	Age. BMI	B=-0.26 (p > 0.00625)	F(CHIC) COLO
	LPA	Min/day	5x CST	s	Age BMI	B_{-10} 12 ($p > 0.00625$)	p(calc) = 0.286
	SB	Min/day	5x CST	s	Age BMI	R = 0.05 (p > 0.00025)	p(calc) = 0.200
	SB	#/dov	VES	Va	Age sev	$PP = 1.02 (0.03 \ 1.12)$	p(calc) = 0.680
	3D DCT	#/uay	KE5 VEC	Kg	Age, sex	RR = 1.02 (0.93, 1.12)	p(calc) = 0.089
	D51	10/day	KE5	ĸg	Age, sex	RR = 0.94 (0.82, 1.07)	p(calc) = 0.368
Reid et al., 2018	SB	#/day	strength	Kg	Age, sex	B = 1.61 (-2.33, 5.56)	p(calc) = 0.432
	BST	10/day	Leg press strength	Kg	Age, sex	B=-6.32 (-11.95, -0.69)	p(calc) = 0.028
	SB	#/day	30 s CST	#/30 s	Age, sex	B=-0.28 (-0.51, -0.04)	p(calc) = 0.019
	BST	10/day	30 s CST	#/30 s	Age, sex	B = 0.10 (-0.24, 0.45)	p(calc) = 0.259
	Steps	1000/day	HGS (Z-score)	SD	Age, sex	B = 0.052(SE = 0.038)	p=0.173
	TPA	Min/day	HGS (Z-score)	SD	Age, sex	B = 0.002 (SE = 0.001)	p=0.279
	SB	H/day	HGS (Z-score)	SD	Age, sex	B=-0.091 (SE = 0.081)	p = 0.267
Rojer et al., 2018	PA bouts	100/day	HGS (Z-score)	SD	Age, sex	B = 0.027 (SE = 0.022)	p = 0.231
	PA bouts	S/bout/day	HGS (Z-score)	SD	Age, sex	B=-0.023 (SE = 0.043)	p = 0.594
	SB bouts	100/dav	HGS (Z-score)	SD	Age, sex	B = 0.219 (SE = 0.243)	p = 0.370
	SB bouts	H/bout/day	HGS (Z-score)	SD	Age. sex	B=-0.041 (SE = 0.035)	p = 0.254
Rosenherg et al	02 0000	11, bout, uuj	1100 (1 00010)	02	Age sex	2 01011(02 01000)	p 0.201
2015	SB	H/day	5x CST	S	MVPA + others	B = 1.02 (SE = 0.21)	p < 0.001
	MVPA	Min/day	HGS	Kg	fat + others	B = 0.02 (-0.02, 0.06)	p(calc) = 0.332
	Accelerations	Mg-force	HGS	Kg	Age, sex, body fat + others	B = 0.09 (-0.04, 0.23)	p(calc) = 0.193
	Intensity gradient	N/R	HGS	Kg	Age, sex, body $fat + others$	B = 4.44 (0.60, 8.27)	p(calc)<0.001
Rowlands et al., 2018	PA bouts	Min/day	HGS	Kg	Age, sex, body $fat + others$	B=-0.01 (-0.07, 0.05)	p(calc) = 0.757
	MVPA	Min/day	60 s CST	#/60 s	Age, sex, body fat + others	B = 0.06 (0.02, 0.09)	p(calc)<0.001
	Accelerations	Mg-force	60 s CST	#/60 s	Age, sex, body fat + others	B = 0.25 (0.11, 0.40)	p(calc) = 0.007
	Intensity gradient	N/R	60 s CST	#/60 s	Age, sex, body fat + others	B = 8.83 (5.83, 11.83)	p(calc)<0.001
	PA bouts	Min/day	60 s CST	#/60 s	Age, sex, body fat + others	B = 0.07 (-0.02, 0.16)	p(calc) = 0.127
	Steps	#/day	HGS	Kg	Unadjusted	R=-0.02 (p > 0.05)	p(calc) = 0.931
	MVPA	Min/day	HGS	Kg	Unadjusted	R=-0.20 (p > 0.05)	p(calc) = 0.385
	LPA	H/day	HGS	Kg	Unadjusted	R = 0.15 (p > 0.05)	p(calc) = 0.516
	SB	H/day	HGS	Kg	Unadjusted	R = 0.15 (p > 0.05)	p(calc) = 0.516
0-0-1-+-1-0010	EE	Kcal/day	HGS	Kg	Unadjusted	R = 0.12 (p > 0.05)	p(calc) = 0.604
Safeek et al., 2018	Steps	#/day	30 s CST	#/30 s	Unadjusted	R = 0.30 (p > 0.05)	p(calc) = 0.186
	MVPA	Min/dav	30 s CST	#/30 s	Unadiusted	R = 0.16 (p > 0.05)	p(calc) = 0.488
	LPA	H/day	30 s CST	#/30 s	Unadjusted	R = 0.24 (p > 0.05)	p(calc) = 0.295
	SB	H/day	30 s CST	#/30 s	Unadjusted	B = -0.25 (p > 0.05)	p(calc) = 0.274
	FF	Kcal/day	30 s CST	#/30 s	Unadjusted	B = 0.16 (p > 0.05)	p(calc) = 0.488
		Real/ day	503 651	// / 50 3	Age residuals	R = 0.10 (p > 0.00)	p(calc) = 0.400
	Activity counts	SDs (#/day)	HGS	Kg	sex + others	B = 0.857 (0.312, 1.402)	0.001
Sánchez-Sánchez	MVPA	H/day	HGS	Kg	Age residuals, sex + others	B = 0.933 (0.246, 1.620)	0.001
et al., 2019	LPA	H/day	HGS	Kg	Age residuals, $sex + others$	B = 0.428 (0.051, 0.805)	p(calc) = 0.026
	SB	H/day	HGS	Kg	Age residuals, $sex + others$	B=-0.467 (-0.807, -0.128)	p(calc) = 0.007
	MVPA	Min/day	Arm curl	#/30 s	Age, sex, register time	B = 0.016 (-0.007, 0.039)	p(calc) = 0.173
Santos et al. 2012	SB	Min/day	Arm curl	#/30 s	Age, sex, register time	B=-0.010 (-0.016, -0.004)	p(calc)<0.001
5antos et al., 2012	MVPA	Min/day	30 s CST	#/30 s	Age, sex, register time	B = 0.035 (0.014, 0.055)	p(calc)<0.001
	SB	Min/day	30 s CST	#/30 s	Age, sex, register time	B=-0.013 (-0.018, -0.008)	p(calc)<0.001
	BST		A	// /00 -	Age, sex, BMI,	0.0100(0.000.0.000)	- (1-) 0.010 -
Sardinha et al., 2015	BST	#/day #/day	Arm curl 30 s CST	#/30 s #/30 s	SB + others Age, sex, BMI, SB + others	$\beta = 0.180 \ (0.039, \ 0.322)$ $\beta = 0.181 \ (0.045, \ 0.318)$	p(calc) = 0.013 p (calc) = 0.797
	MVPA	H/day	HGS (low vs. high)	Kg	Sex, BMI, LPA, SB + others	OR = 0.80 (0.71, 0.91)	p(calc)<0.001
Scott et al., 2020	LPA	H/day	HGS (low vs. high)	Kg	Sex, BMI, MVPA, SB + others	OR = 0.99 (0.96, 1.02)	p(calc) = 0.526
	6 P	** / 1	HGS (low vs.		Sex, BMI, MVPA,		(1) -
	SB	H/day	high)	Kg	LPA + others Age, weight.	$OR = 1.00 \ (0.98, 1.02)$	p(calc) = 1
Scott et al., 2011	Steps (baseline)	#/day x 10 ³	Δ Leg strength	Kg	CVD + others	<i>M</i> : B=-0.28 (-1.27, 0.72) <i>F</i> : B = 1.06 (0.31, 1.31)	p(calc) = 0.593
	Steps (habitual)	$\#/\text{day x } 10^3$	$\Delta Leg strength$	Kg		<i>M</i> : B=-0.21 (-1.24, 0.82)	p(calc)<0.001
							(continuea on next page)

	Physical activity and behavior	d sedentary	Muscle strength and muscle power		Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b
Author year	Reported measure (s)	Units	Reported measure(s)	Units			
					Age, weight, CVD + others		
	Chaine -	// / 4	T	Π.	A	F: B = 1.37(0.57, 2.17)	0.056
Scott et al., 2009	Steps	#/day #/day	Leg strength	Kg	Age	M: B = 0.86 (-0.02, 1.74) E: P = 071 (0.12, 1.20)	p = 0.056
	steps	#/uay	Leg strength	кg	Age sex baseline	F. B = 071 (0.13, 1.29)	p = 0.010
Semanik et al., 2015	SB	H/day	$\Delta 5x \text{ CST}$	#/min	CST + others	B=-0.58 (-0.92, -0.24)	p < 0.001
	MVPA	Min/day	Arm curl	#/30 s	Unadjusted	Rho = 0.243 (p = 0.027)	p = 0.027
	LPA	Min/day	Arm curl	#/30 s	Unadjusted	Rho=-0.069 (p = 0.538)	p = 0.538
Silva et al., 2019	SB	Min/day	Arm curl	#/30 s	Unadjusted	Rho = 0.124 (p = 0.264)	p=0.264
	MVPA	Min/day	30 s CST	#/30 s	Unadjusted	Rho = 0.163 (p = 0.142)	p = 0.142
	LPA SB	Min/day	30 s CS1	#/30 s #/30 s	Unadjusted	Rno = -0.083 (p = 0.458)	p = 0.458 p = 0.131
	30	wiii/ day	503 (51	$\pi/303$	Age, sex, wear	(10 - 0.10) (p - 0.131)	p = 0.131
	Steps	1000/day	HGS	Kg	time + others	<i>M</i> : B=-0.16 (SE = 0.09) E: B = 0.00 (SE = 0.06)	p = 0.077
		Log(min/			Age sex wear	F; $B = 0.09$ (SE = 0.06)	p=0.125
	MVPA	day)	HGS	Kg	time + others	M: B = 0.058 (SE = 0.34)	p = 0.090
					Ago con woor	F: B = 0.64 (SE = 0.19)	p=0.0008
Spartano et al., 2019	SB	% wear time	HGS	Kg	time + others	<i>M</i> : B = 0.09 (SE = 0.05)	p = 0.088
						<i>F</i> : B=-0.05 (SE = 0.04)	p = 0.133
	Steps	1000/day	5x CST	Log(s)	Age, sex, wear time + others	B=-0.010 (SE = 0.002)	p < 0.0001
	MVPA	Log(min/ day)	5x CST	Log(s)	Age, sex, wear time + others	B=-0.057 (SE = 0.006)	p < 0.0001
	SB	% wear time	5x CST	Log(s)	Age, sex, wear time + others	B = 0.006 (SE = 0.001)	p < 0.0001
Tang et al., 2015	Activity counts	#/day	HGS	Kg	SPPB score, 6 min walk test	*B = 23022 (-41988, -4055)	p = 0.02
	Steps (low vs. high)	#/day	5x CST (0-4)	Points	Age, sex	*OR = 7.2 (3.8, 13.6)	p < 0.001
Trayers et al., 2014	Activity counts (low vs. high)	#/day	5x CST (0-4)	Points	Age, sex	*OR = 5.8 (3.2, 10.8)	p < 0.001
	MVPA (low vs. high)	Min/day	5x CST (0-4)	Points	Age, sex	*OR = 7.8 (4.0, 15.0)	p < 0.001
Van Gestel et al.	Steps	#/day	HGS	Kg	Unadjusted	R = 0.21 (-0.03, -0.42)	p = 0.19
2012	Steps	#/day	60 s CST	#/60 s	BMI, partial pressure O ² , FEV ₁	*B = 155.38 (SE = 73.15) $\beta = 0.28$	p = 0.041
	TPA (standing)	Min/day	5x CST (fast vs. slow)	S	Unadjusted	*Mann-Whitney U (+) (p = 0.230)	p = 0.230
Van Lummel et al., 2016	PA bouts	#/day	5x CST (fast vs. slow)	S	Unadjusted	*Mann-Whitney U (+) $(p = 0.218)$	p = 0.218
	SB bouts	Min/bout/ day	5x CST (fast vs. slow)	S	Unadjusted	*Mann-Whitney U (-) (p = 0.042)	p = 0.042
van Oeijen et al.,	ΔSteps	#/day	Δ Lower extremity	Z-score	Unadjusted	B = 676.279 (SE = 186.151)	p < 0.000
<u>2020</u> Van Sloten et al	-	-	muscle strength HGS (low vs.		Age, sex, BMI		
2011	Steps	#/day	high)	Kg	neuropathy, PAD	*B=-1782 (-3348, -217)	p(calc) = 0.025
Walker et al., 2008	TPA	% time/day	KES	Ν	Unadjusted	R = 0.4 (0.06, 0.55)	p = 0.023
Ward et al., 2014	Activity counts	#/min/day	30 s CST	#/30 s	Age, sex, morbidities, body fat	$\beta{=}0.002$ (-0.006, 0.009)	p(calc) = 0.614
	MVPA	Min/week	30 s CST	#/30 s	Age, sex, morbidities	Partial R = 0.147 (p > 0.05)	p(calc) = 0.067
Waschki et al., 2012	Steps EE (PAL)	#/day None	KES KES	Kg Kg	Age, sex, BMI, study site Age, sex, BMI, study site	$\beta = 0.298 \ (p = 0.022)$ $\beta = 0.350 \ (p = 0.007)$	p = 0.022 p = 0.007
Water of 1, 0000	Steps	#/day	HGS	Kg	Edu, smoking, alcohol + others	N/R (p > 0.05)	p(N/R)>0.25
Watz et al., 2008	EE (PAL)	None	HGS	Kg	Edu, smoking, alcohol + others	N/R (p > 0.05)	p(N/R)>0.25
	TPA	Min/day	HGS	Kg	Age, sex, height $+$ others	$\beta = 0.16$ (-0.03, 0.34)	p = 0.09
Westbury et al., 2018	MVPA	Min/day	HGS	Kg	Age, sex, height $+$ others	$\beta = 0.11$ (-0.09, 0.31)	p = 0.27
2010	Accelerations	Mg-force	HGS	Kg	Age, sex, height $+$ others	$\beta = 0.12$ (-0.07, 0.30)	p = 0.23
Wickerson et al	Steps	#/day	Knee extension	Nm	Unadjusted	$R = 0.51 \ (p < 0.01)$	p(calc) = 0.011
2013	MVPA	Min/day	Knee extension torque	Nm	Unadjusted	R = 0.36 (p = 0.08)	p = 0.08

Anthenesse	Physical activity and sedentary behavior		Muscle strength and muscle power		Adjustment	Effect size (95% CI) ^a	p-value used for analyses ^b
Author year	Reported measure (s)	Units	Reported measure(s)	Units			
	Steps	#/day	KES	Nm	Age, sex, BMI	*B = 19 (p < 0.01), $R^2 = 0.18$	p(calc)<0.001
Winberg et al., 2015	Steps	#/day	Knee flexion strength	Nm	Age, sex, BMI	*B = 39 (p < 0.01), ${\rm R}^2{=}0.19$	p(calc)<0.001
Yamada et al., 2011	Steps	#/day	5x CST	S	Age, sex, gait speed + others	β =-0.147 (p < 0.01)	p(calc)<0.001
	MVPA	10 min/day	HGS	Kg	Age, sex, morbidities + others	B = 0.092 (-0.135, 0.318)	p(calc) = 0.434
Yasunaga et al., 2017	LPA	10 min/day	HGS	Kg	Age, sex, morbidities + others	B = 0.058 (-0.024, 0.141)	p(calc) = 0.169
	SB	10 min/day	HGS	Kg	Age, sex, morbidities + others	B=-0.056 (-0.130, 0.017)	p(calc) = 0.136
	Steps	#/day	HGS	Kg	Unadjusted	<i>HFG</i> : Rho = $0.137 (p > .05)$	p(calc) = 0.301
						<i>LFG</i> : Rho = 0.142 (p > .05)	p(calc) = 0.187
	TPA	Min/day	HGS	Kg	Unadjusted	<i>HFG</i> : Rho=-0.091 (p > .05)	p(calc) = 0.493
						<i>LFG</i> : Rho = 0.102 (p > .05)	p(calc) = 0.344
	MVPA (MPA)	Min/day	HGS	Kg	Unadjusted	<i>HFG</i> : Rho = 0.206 (p > .05)	p(calc) = 0.118
						<i>LFG</i> : Rho = 0.146 (p > .05)	p(calc) = 0.175
	LPA	Min/day	HGS	Kg	Unadjusted	<i>HFG</i> : Rho=-0.176 (p > .05)	p(calc) = 0.182
Voshida et al. 2010						<i>LFG</i> : Rho = 0.076 (p > .05)	p(calc) = 0.482
105111011 Ct ul., 2010	Steps	#/day	KES	Nm	Unadjusted	<i>HFG</i> : Rho = $0.277 (p < .05)$	p(calc) = 0.034
						<i>LFG</i> : Rho=-0.018(p > .05)	p(calc) = 0.868
	TPA	Min/day	KES	Nm	Unadjusted	<i>HFG</i> : Rho=-0.159 (p > .05)	p(calc) = 0.229
						<i>LFG</i> : Rho=-0.034 (p > .05)	p(calc) = 0.753
	MVPA (MPA)	Min/day	KES	Nm	Unadjusted	<i>HFG</i> : Rho = 0.475 (p < .01)	p(calc)<0.001
						<i>LFG</i> : Rho = 0.055 (p > .05)	p(calc) = 0.677
	LPA	Min/day	KES	Nm	Unadjusted	<i>HFG</i> : Rho = 0.028 (p > .05)	p(calc) = 0.833
						<i>LFG</i> : Rho=-0.045 (p > .05)	p(calc) = 0.611
	Steps	#/day	HGS (weakness vs. no weakness)	Kg	Age, sex	*OR = N/R (p > 0.05)	p(N/R)>0.25
Yuki et al., 2019	LPA	Min/day	HGS weakness vs. no weakness)	Kg	Age, sex	OR = N/R (p > 0.05)	p(N/R)>0.25
	MVPA	Min/day	HGS weakness	Kg	Age, sex	*OR = N/R (p > 0.05)	p(N/R)>0.25

TPA = total physical activity, MPA = moderate physical activity, VPA = vigorous physical activity, MVPA = moderate to vigorous physical activity, LPA = light physical activity, SB = sedentary behavior, EE = energy expenditure, PAL = physical activity units, BST = breaks in sedentary time, Δ =change, MET = metabolic equivalent of tasks, VMU = vector magnitude units, min = minutes, h = hours, CPM = counts per minutes, #=number, mg-force = miligrams-force (force of earth gravity acting on one milligram), SD = standard deviation, log = log transformed, e = natural log, Partial R = partial correlation, R = Pearson's correlation, Rho = Spearman's correlation, Rp=point biserial correlation, B = unstandardized regression coefficient (unstandardized beta), β =standardized regression coefficient (standardized beta), RR = relative risk, OR = odds ratio, Partial η^2 = partial eta squared, ANOVA = analysis of variance, EMM = estimated marginal means, T = t-test (t-statistic), Q = quartile, p-trend = p for trend, HGS = hand grip strength, KES = knee extension strength, KET = knee extension torque, CST = chair stand test, s = seconds, x = times (repetitions), #=number, quad = quadriceps, kg = kilogram, N = newton, Nm = newton-meter, W = watt, KgF = kilogram-force, KiloW = kilowatt, KiloN = kilonewton, MVC = maximum voluntary contraction, 1RM = one repetition maximum, Lbs = pounds, max = maximum, / = divided by or per, Δ =change, %pred=% predictive, +/- = with or without, N/A = not applicable, N/R = not reported, M = male, F = female, HFG = high functioning group, LFG = low functioning group, BMI = body mass index, OA = osteoarthritis, O²=oxygen, FEV = forced expirator volume in one second in percent of predicted, + others = adjusted for other potential confounders.

^a If effect sizes were not reported, when possible, the direction of effect was determined as either positive (+) when higher PA and lower SB was associated with better muscle strength/power or as negative (-) when associated with worse muscle strength/power. *Stars before effect size coefficient represent the use of muscle strength or muscle power as an independent variable and PA or SB as the dependent variable, all other associations presented describe PA and SB as independent variable and muscle strength and power as the dependent variable.

^b p-values of associations included in analyses (effect direction heat map and albatross plots) are presented as reported in article, calculated as p(calc) using formulas described in methods, or estimated conservatively as p (N/R) when p-value was not reported and could not be calculated (estimation described in methods). Associations with a blank space for p-value were not included as exposure-outcome associations were only represented once per article. If two articles reported the same exposure-outcome (PA/SB – muscle strength/power) association in the same population, adjusted data was used based on hierarchy of adjustment models or when adjustment models were the same, the data from the article with a larger sample sized was used and indicated by "author year". <u>Underlined</u> articles have a longitudinal design.

Appendix D

Fig. D1. Effect direction heat maps of the associations between intensity-based accelerometer measures of physical activity with upper body (A, B) and lower body (C, D, E) measures of muscle strength and muscle power.

46

Fig. D2. Effect direction heat maps of the associations between physical activity and sedentary behavior frequency and accumulation with upper (A, B) and lower body (C, D) measures of muscle strength and muscle power.

 10^{-5} 10^-6

0.0001

Higher HGS

0.01

p-value

Null

0.001

Fig. D3. Albatross plots depicting the magnitude of the association (contours lines represent standardized regression coefficients (β)) of higher physical activity measures (A, B, C, D, E) or lower sedentary behavior (F) with hand grip strength (upper body muscle strength).

D. Moderate-to-vigorous physical activity

5,000

1,000 500

100

10

 10^{-6} 10^{-5} 0.0001 0.001 0.01

Lower HGS

Number of participants

Fig. D4. Albatross plots depicting the magnitude of the association (contours lines represent standardized regression coefficients (β)) of higher moderate-to-vigorous physical activity (A) with arm curl (upper body muscle power).

Fig. D5. Albatross plots depicting the magnitude of the association (contours lines represent standardized regression coefficients (β)) of higher physical activity measures (A, B, C, D, E) or lower sedentary behavior (F) with lower body muscle strength.

D. Light physical activity

Fig. D7. Albatross plots depicting the magnitude of the association (contours lines represent standardized regression coefficients (β)) of higher moderate-to-vigorous physical activity (A) with lower body muscle power.

Fig. D8. Funnel plots of standard errors by standardized regression coefficients (β) for the associations of physical activity measures with hand grip strength (A, B, C) and chair stand test (D, E), respectively.

Ageing Research Reviews 67 (2021) 101266

References

- Abe, T., Mitsukawa, N., Thiebaud, R.S., Loenneke, J.P., Loftin, M., Ogawa, M., 2012. Lower body site-specific sarcopenia and accelerometer-determined moderate and vigorous physical activity: the HIREGASAKI study. Aging Clin. Exp. Res. 24, 657–662. https://doi.org/10.3275/8758.
- Abe, T., Thiebaud, R.S., Loenneke, J.P., Mitsukawa, N., 2015. Association between toe grasping strength and accelerometer-determined physical activity in middle-aged and older women. J. Phys. Ther. Sci. 27, 1893–1897. https://doi.org/10.1589/ jpts.27.1893.
- Adelnia, F., Urbanek, J., Osawa, Y., Shardell, M., Brennan, N.A., Fishbein, K.W., Spencer, R.G., Simonsick, E.M., Schrack, J.A., Ferrucci, L., 2019. Moderate-to-Vigorous physical activity is associated with higher muscle oxidative capacity in older adults. J. Am. Geriatr. Soc. https://doi.org/10.1111/jgs.15991.
- Aggio, D.A., Sartini, C., Papacosta, O., Lennon, L.T., Ash, S., Whincup, P.H., Wannamethee, S.G., Jefferis, B.J., 2016. Cross-sectional associations of objectively measured physical activity and sedentary time with sarcopenia and sarcopenic obesity in older men. Prev. Med. (Baltim). 91, 264–272. https://doi.org/10.1016/j. ypmed.2016.08.040.
- Alcazar, J., Rodriguez-Lopez, C., Ara, I., Alfaro-Acha, A., Rodríguez-Gómez, I., Navarro-Cruz, R., Losa-Reyna, J., García-García, F.J., Alegre, L.M., 2018. Force-velocity profiling in older adults: an adequate tool for the management of functional trajectories with aging. Exp. Gerontol. 108, 1–6. https://doi.org/10.1016/j. exger.2018.03.015.
- Altman, D.G., Bland, J.M., 2011. Statistics notes: how to obtain the P value from a confidence interval. BMJ. https://doi.org/10.1136/bmj.d2304.Alzahrani, M.A., Dean, C.M., Ada, L., Dorsch, S., Canning, C.G., 2012. Mood and balance
- Alzahrani, M.A., Dean, C.M., Ada, L., Dorsch, S., Canning, C.G., 2012. Mood and balance are associated with free-living physical activity of people after stroke residing in the community. Stroke Res. Treat. 2012, 1–8. https://doi.org/10.1155/2012/470648.
- Amagasa, S., Fukushima, N., Kikuchi, H., Takamiya, T., Oka, K., Inoue, S., 2017. Light and sporadic physical activity overlooked by current guidelines makes older women more active than older men. Int. J. Behav. Nutr. Phys. Act. 14, 59. https://doi.org/ 10.1186/s12966-017-0519-6.
- Andersson, M., Slinde, F., Grönberg, A., Svantesson, U., Janson, C., Emtner, M., 2013. Physical activity level and its clinical correlates in chronic obstructive pulmonary disease: a cross-sectional study. Respir. Res. 14, 128. https://doi.org/10.1186/1465-9921-14-128.
- André, H., Carnide, F., Borja, E., Ramalho, F., Santos-Rocha, R., Veloso, A., 2016. Calfraise senior: a new test for assessment of plantar flexor muscle strength in older adults: protocol, validity, and reliability. Clin. Interv. Aging 11, 1661–1674. https:// doi.org/10.2147/CIA.S115304.
- André, H.-I., Carnide, F., Moço, A., Valamatos, M.-J., Ramalho, F., Santos-Rocha, R., Veloso, A., 2018. Can the calf-raise senior test predict functional fitness in elderly people? A validation study using electromyography, kinematics and strength tests. Phys. Ther. Sport 32, 252–259. https://doi.org/10.1016/j.ptsp.2018.05.012.
- Aoyagi, Y., Park, H., Watanabe, E., Park, S., Shephard, R.J., 2009. Habitual physical activity and physical fitness in older japanese adults: the nakanojo study. Gerontology 55, 523–531. https://doi.org/10.1159/000236326.
- Arnardottir, N.Y., Koster, A., Van Domelen, D.R., Brychta, R.J., Caserotti, P., Eiriksdottir, G., Sverrisdottir, J.E., Launer, L.J., Gudnason, V., Johannsson, E., Harris, T.B., Chen, K.Y., Sveinsson, T., 2013. Objective measurements of daily physical activity patterns and sedentary behaviour in older adults: age, Gene/ Environment Susceptibility-Reykjavik Study. Age Ageing 42, 222–229. https://doi. org/10.1093/ageing/afs160.
- Arnardottir, N.Y., Oskarsdottir, N.D., Brychta, R.J., Koster, A., van Domelen, D.R., Caserotti, P., Eiriksdottir, G., Sverrisdottir, J.E., Johannsson, E., Launer, L.J., Gudnason, V., Harris, T.B., Chen, K.Y., Sveinsson, T., 2017. Comparison of summer and winter objectively measured physical activity and sedentary behavior in older adults: age, Gene/Environment susceptibility reykjavik study. Int. J. Environ. Res. Public Health 14, 1268. https://doi.org/10.3390/ijerph14101268.
- Ashe, M.C., Eng, J.J., Mller, W.C., SOON, J.A., 2007. Disparity between physical capacity and participation in seniors with chronic disease. Med. Sci. Sport. Exerc. 39, 1139–1146. https://doi.org/10.1249/mss.0b013e31804d2417.
- Ashe, M.C., Liu-Ambrose, T.Y.L., Cooper, D.M.L., Khan, K.M., McKay, H.A., 2008. Muscle power is related to tibial bone strength in older women. Osteoporos. Int. 19, 1725–1732. https://doi.org/10.1007/s00198-008-0655-6.
- Aubertin-Leheudre, M., Anton, S., Beavers, D.P., Manini, T.M., Fielding, R., Newman, A., Church, T., Kritchevsky, S.B., Conroy, D., McDermott, M.M., Botoseneanu, A., Hauser, M.E., Pahor, M., Gill, T., Fragoso, C., Fielding, R., Hauser, M.E., Pahor, M., Guralnik, J.M., Leeuwenburgh, C., Caudle, C., Crump, L., Holmes, L., Lee, J., Lu, Cju, Miller, M.E., Espeland, M.A., Ambrosius, W.T., Applegate, W., Beavers, D.P., Byington, R.P., Cook, D., Furberg, C.D., Harvin, L.N., Henkin, L., Hepler, M.J., Hsu, F.C., Lovato, L., Roberson, W., Rushing, J., Rushing, S., Stowe, C.L., Walkup, M. P., Hire, D., Rejeski, W.J., Katula, J.A., Brubaker, P.H., Mihalko, S.L., Jennings, J.M., Hadley, E.C., Romashkan, S., Patel, K.V., Bonds, D., McDermott, M.M., Spring, B., Hauser, J., Kerwin, D., Domanchuk, K., Graff, R., Rego, A., Church, T.S., Blair, S.N., Myers, V.H., Monce, R., Britt, N.E., Harris, M.N., McGucken, A.P., Rodarte, R., Millet, H.K., Tudor-Locke, C., Butitta, B.P., Donatto, S.G., Cocreham, S.H., King, A.C., Castro, C.M., Haskell, W.L., Stafford, R.S., Pruitt, L.A., Berra, K., Yank, V., Fielding, R.A., Nelson, M.E., Folta, S.C., Phillips, E.M., Liu, C.K., McDavitt, E.C., Reid, K.F., Kirn, D.R., Pasha, E.P., Kim, W.S., Beard, V.E., Tsiroyannis, E.X., Hau, C., Manini, T.M., Pahor, M., Anton, S.D., Nayfield, S., Buford, T.W., Marsiske, M., Sandesara, B.D., Knaggs, J.D., Lorow, M.S., Marena, W.C., Korytov, I., Morris, H.L., Fitch, M., Singletary, F.F., Causer, J., Radcliff, K.A., Newman, A.B., Studenski, S.A., Goodpaster, B.H., Glynn, N.W., Lopez, O., Nadkarni, N.K., Williams, K., Newman, M. A., Grove, G., Bonk, J.T., Rush, J., Kost, P., Ives, D.G., Kritchevsky, S.B., Marsh, A.P.,

Brinkley, T.E., Demons, J.S., Sink, K.M., Kennedy, K., Shertzer-Skinner, R.,
Wrights, A., Fries, R., Barr, D., Gill, T.M., Axtell, R.S., Kashaf, S.S., de Rekeneire, N.,
McGloin, J.M., Wu, K.C., Shepard, D.M., Fennelly, B., Iannone, L.P., Mautner, R.,
Barnett, T.S., Halpin, S.N., Brennan, M.J., Bugaj, J.A., Zenoni, M.A., Mignosa, B.M.,
Williamson, J., Sink, K.M., Hendrie, H.C., Rapp, S.R., Verghese, J., Woolard, N.,
Espeland, M., Jennings, J., Wilson, V.K., Pepine, C.J., Ariet, M., Handberg, E.,
Deluca, D., Hill, J., Szady, A., Chupp, G.L., Flynn, G.M., Gill, T.M., Hankinson, J.L.,
Vaz Fragoso, C.A., Groessl, E.J., Kaplan, R.M., 2017. Dynapenia and metabolic
health in obese and nonobese adults aged 70 years and older: the LIFE study. J. Am.
Med. Dir. Assoc. 18, 312–319. https://doi.org/10.1016/j.jamda.2016.10.001.

- Balducci, S., D'Errico, V., Haxhi, J., Sacchetti, M., Orlando, G., Cardelli, P., Di Biase, N., Bollanti, L., Conti, F., Zanuso, S., Nicolucci, A., Pugliese, G., 2017. Level and correlates of physical activity and sedentary behavior in patients with type 2 diabetes: a cross-sectional analysis of the Italian Diabetes and Exercise Study_2. PLoS One 12, e0173337. https://doi.org/10.1371/journal.pone.0173337.
- Bann, D., Hire, D., Manini, T., Cooper, R., Botoseneanu, A., McDermott, M.M., Pahor, M., Glynn, N.W., Fielding, R., King, A.C., Church, T., Ambrosius, W.T., Gill, T., 2015. Light intensity physical activity and sedentary behavior in relation to body mass index and grip strength in older adults: cross-sectional findings from the lifestyle interventions and independence for elders (LIFE) study. PLoS One 10, e0116058. https://doi.org/10.1371/journal.pone.0116058.
- Barbat-Artigas, S., Plouffe, S., Dupontgand, S., Aubertin-Leheudre, M., 2012. Is functional capacity related to the daily amount of steps in postmenopausal women? Menopause 19, 541–548. https://doi.org/10.1097/gme.0b013e318238ef09.
- Bartlett, D.B., Duggal, N.A., 2020. Moderate physical activity associated with a higher naïve/memory T-cell ratio in healthy old individuals: potential role of IL15. Age Ageing 49, 368–373. https://doi.org/10.1093/ageing/afaa035.
- Bassey, E.J., Bendall, M.J., Pearson, M., 1988. Muscle strength in the triceps surae and objectively measured customary walking activity in men and women over 65 years of age. Clin. Sci. 74, 85–89. https://doi.org/10.1042/cs0740085.
- Beaudart, C., Rolland, Y., Cruz-Jentoft, A.J., Bauer, J.M., Sieber, C., Cooper, C., Al-Daghri, N., Araujo de Carvalho, I., Bautmans, I., Bernabei, R., Bruyère, O., Cesari, M., Cherubini, A., Dawson-Hughes, B., Kanis, J.A., Kaufman, J.M., Landi, F., Maggi, S., McCloskey, E., Petermans, J., Rodriguez Mañas, L., Reginster, J.Y., Roller-Wirnsberger, R., Schaap, L.A., Uebelhart, D., Rizzoli, R., Fielding, R.A., 2019. Assessment of muscle function and physical performance in daily clinical practice: a position paper endorsed by the european society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO). Calcif. Tissue Int. 105, 1–14. https://doi.org/10.1007/s00223-019-00545-w.
- Beenakker, K.G.M., Ling, C.H., Meskers, C.G.M., de Craen, A.J.M., Stijnen, T., Westendorp, R.G.J., Maier, A.B., 2010. Patterns of muscle strength loss with age in the general population and patients with a chronic inflammatory state. Ageing Res. Rev. https://doi.org/10.1016/j.arr.2010.05.005.
- Bogucka, A., Kopiczko, A., Głębocka, A., 2018. The effects of selected lifestyle components on the risk of developing dynapenia in women – a pilot study. Anthropol. Rev. 81, 289–297. https://doi.org/10.2478/anre-2018-0023.
- Bollaert, R.E., Motl, R.W., 2019. Physical and cognitive functions, physical activity, and sedentary behavior in older adults with multiple sclerosis. J. Geriatr. Phys. Ther. 42, 304–312. https://doi.org/10.1519/JPT.00000000000163.
- Borges, V.S., Lima-Costa, M.F.F., Andrade, F.Bde, 2020. A nationwide study on prevalence and factors associated with dynapenia in older adults: ELSI-Brazil. Cad. Saude Publica 36. https://doi.org/10.1590/0102-311x00107319.
- Boutou, A.K., Raste, Y., Demeyer, H., Troosters, T., Polkey, M.I., Vogiatzis, I., Louvaris, Z., Rabinovich, R.A., van der Molen, T., Garcia-Aymerich, J., Hopkinson, N.S., 2019. Progression of physical inactivity in COPD patients: the effect of time and climate conditions – a multicenter prospective cohort study. Int. J. Chron. Obstruct. Pulmon. Dis. 14, 1979–1992. https://doi.org/10.2147/COPD. S208826.
- Bravata, D.M., Smith-Spangler, C., Sundaram, V., Gienger, A.L., Lin, N., Lewis, R., Stave, C.D., Olkin, I., Sirard, J.R., 2007. Using pedometers to increase physical activity and improve health. JAMA 298, 2296. https://doi.org/10.1001/ jama.298.19.2296.
- Campbell, M., McKenzie, J.E., Sowden, A., Katikireddi, S.V., Brennan, S.E., Ellis, S., Hartmann-Boyce, J., Ryan, R., Shepperd, S., Thomas, J., Welch, V., Thomson, H., 2020. Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. BMJ 368, 1–6. https://doi.org/10.1136/bmj.l6890.
- Carrasco Poyatos, M., Navarro Sánchez, M.D., Martínez González-Moro, I., Reche Orenes, D., 2016. Daily physical activity impact in old women bone density and grip strength. Nutr. Hosp. 33, 1305–1311. https://doi.org/10.20960/nh.775.Caspersen, C.J., Powell, K.E., Christenson, G.M., 1985. Physical activity, exercise and
- Caspersen, C.J., Powell, K.E., Christenson, G.M., 1985. Physical activity, exercise and physical fitness definitions for health-related research. Public Health Rep.
- Chastin, S.F.M., Ferriolli, E., Stephens, N.A., Fearon, K.C.H., Greig, C., 2012. Relationship between sedentary behaviour, physical activity, muscle quality and body composition in healthy older adults. Age Ageing 41, 111–114. https://doi.org/ 10.1093/ageing/afr075.
- Chmelo, E., Nicklas, B., Davis, C., Miller, G.D., Legault, C., Messier, S., 2013. Physical activity and physical function in older adults with knee osteoarthritis, 8AD J Phys Act. Heal. 10, 777–783.
- Chodzko-Zajko, W.J., Proctor, D.N., Fiatarone Singh, M.A., Minson, C.T., Nigg, C.R., Salem, G.J., Skinner, J.S., 2009. Exercise and physical activity for older adults. Med. Sci. Sports Exerc. 41, 1510–1530. https://doi.org/10.1249/ MSS.0b013e3181a0c95c.
- Clemson, L., Singh, M.F., Bundy, A., Cumming, R.G., Weissel, E., Munro, J., Manollaras, K., Black, D., 2010. LiFE Pilot Study: a randomised trial of balance and strength training embedded in daily life activity to reduce falls in older adults. Aust. Occup. Ther. J. 57, 42–50. https://doi.org/10.1111/j.1440-1630.2009.00848.x.

Ageing Research Reviews 67 (2021) 101266

Clemson, L., Fiatarone Singh, M.A., Bundy, A., Cumming, R.G., Manollaras, K., O'Loughlin, P., Black, D., 2012. Integration of balance and strength training into daily life activity to reduce rate of falls in older people (the LiFE study): randomised parallel trial. BMJ 345, 1–15. https://doi.org/10.1136/bmj.e4547.

- Cochrane Handbook for Systematic Reviews of Interventions, 2019. Cochrane Handbook for Systematic Reviews of Interventions. https://doi.org/10.1002/9781119536604.
- Cohen, J., Cohen, P., West, S.G., Aiken, L.S., 2003. Applied multiple regression/ correlation analysis for the behavioral sciences, 3rd ed. Applied Multiple regression/ correlation Analysis for the Behavioral Sciences, 3rd ed. Lawrence Erlbaum Associates Publishers, Mahwah, NJ, US.
- Colbert, L.H., Matthews, C.E., Havighurst, T.C., Kim, K., Schoeller, D.A., 2011. Comparative validity of physical activity measures in older adults. Med. Sci. Sports Exerc. 43, 867–876. https://doi.org/10.1249/MSS.0b013e3181fc7162.
- Cooper, A.J.M., Simmons, R.K., Kuh, D., Brage, S., Cooper, R., Hardy, R., Pierce, M., Richards, M., Abington, J., Wong, A., Adams, J.E., Machin, M., Stephens, A.M., Bonar, K., Bryant, S., Cole, D., Nip, W., Ambrosini, G., Pellerin, D., Chaturvedi, N., Hughes, A., Ghosh, A., March, K., Macfarlane, P., Inglis, L., Friberg, P., Osika, W., Ekelund, U., Mayle, S., Westgate, K., Deanfield, J., Donald, A., Kok, S., Masi, S., Phalora, R., Woodside, J., Bruce, I., Harwood, N., Oughton, E., Chapman, A., Khattar, R.S., Nair, S.B., Franklyn, J., Palmer, S., Boardman, K., Crabtree, N., Clements, R., Suvari, M., Steeds, R., Craig, K., Howard, E., Morley, T., Scanlon, M., Petit, R., Evans, W., Fraser, A., Edwards, J., Reece, E., Newby, D., Marshall, F., Hannan, J., Miller, C., White, A., MacAllister, R., Harris, J., Singzon, R., Ell, P., Townsend, C., Demetrescu, C., Chowienczyk, P., Darroch, P., McNeill, K., Spector, T., Clements, G., Jiang, B., Lessof, C., Cheshire, H., 2015. Physical activity, sedentary time and physical capability in early old age: british birth cohort study. PLoS One 10, 1–14. https://doi.org/10.1371/journal.pone.0126465.
- Cunningham, C., O' Sullivan, R., Caserotti, P., Tully, M.A., 2020. Consequences of physical inactivity in older adults: a systematic review of reviews and meta-analyses. Scand. J. Med. Sci. Sports 1–12. https://doi.org/10.1111/sms.13616.
- Davis, M.G., Fox, K.R., Stathi, A., Trayers, T., Thompson, J.L., Cooper, A.R., 2014. Objectively measured sedentary time and its association with physical function in older adults. J. Aging Phys. Act. 22, 474–481. https://doi.org/10.1123/JAPA.2013-0042.
- de Melo, L.L., Menec, V., Porter, M.M., Ready, A.E., 2010. Personal factors, perceived environment, and objectively measured walking in old age. J. Aging Phys. Act. 18, 280–292. https://doi.org/10.1123/japa.18.3.280.
- de Melo, L.L., Menec, V.H., Ready, A.E., 2014. Relationship of functional fitness with daily steps in community-dwelling older adults. J. Geriatr. Phys. Ther. 37, 116–120. https://doi.org/10.1519/JPT.0b013e3182abe75f.
- Demeyer, H., Donaire-Gonzalez, D., Gimeno-Santos, E., Ramon, M.A., De Battle, J., Benet, M., Serra, I., Guerra, S., Farrero, E., Rodriguez, E., Ferrer, J., Sauleda, J., Monso, E., Gea, J., Rodriguez-Roisin, R., Agusti, A., Antó, J.M., Garcia-Aymerich, J., 2019. Physical activity is associated with attenuated disease progression in chronic obstructive pulmonary disease. Med. Sci. Sport. Exerc. 51, 833–840. https://doi.org/ 10.1249/MSS.000000000001859.
- Distefano, G., Standley, R.A., Zhang, X., Carnero, E.A., Yi, F., Cornnell, H.H., Coen, P.M., 2018. Physical activity unveils the relationship between mitochondrial energetics, muscle quality, and physical function in older adults. J. Cachexia Sarcopenia Muscle 9, 279–294. https://doi.org/10.1002/jcsm.12272.
- Dogra, S., Clarke, J.M., Copeland, J.L., 2017. Prolonged sedentary time and physical fitness among Canadian men and women aged 60 to 69. Heal. reports 28, 3–9.
- Dohrn, I.-M., Gardiner, P.A., Winkler, E., Welmer, A.-K., 2020. Device-measured sedentary behavior and physical activity in older adults differ by demographic and health-related factors. Eur. Rev. Aging Phys. Act. 17, 8. https://doi.org/10.1186/ s11556-020-00241-x.
- Dos Santos, V.R., Diniz, T.A., Batista, V.C., Freitas, I.F., Gobbo, L.A., 2019. Practice of physical activity and dysmobility syndrome in community-dwelling older adults. J. Exerc. Rehabil. 15, 294–301. https://doi.org/10.12965/jer.1938034.017.
- J. Exerc. Rehabil. 15, 294–301. https://doi.org/10.12965/jer.1938034.017. Duncan, M.J., Minatto, G., Wright, S.L., 2016. Dose-response between pedometer assessed physical activity, functional fitness, and fatness in healthy adults aged 50-
- 80 years. Am. J. Hum. Biol. 28, 890–894. https://doi.org/10.1002/ajhb.22884. Dyrstad, S.M., Hansen, B.H., Holme, I.M., Anderssen, S.A., 2014. Comparison of selfreported versus accelerometer-measured physical activity. Med. Sci. Sports Exerc. 46, 99–106. https://doi.org/10.1249/MSS.0b013e3182a0595f.
- Edholm, P., Nilsson, A., Kadi, F., 2019. Physical function in older adults: impacts of past and present physical activity behaviors. Scand. J. Med. Sci. Sports 29, 415–421. https://doi.org/10.1111/sms.13350.
- Egger, M., Smith, G.D., Schneider, M., Minder, C., 1997. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. https://doi.org/10.1136/bmj.316.7129.469.
- Fernández-Castilla, B., Aloe, A.M., Declercq, L., Jamshidi, L., Onghena, P., Natasha Beretvas, S., Van den Noortgate, W., 2019. Concealed correlations meta-analysis: a new method for synthesizing standardized regression coefficients. Behav. Res. Methods 51, 316–331. https://doi.org/10.3758/s13428-018-1123-7.
- Ferreira, M.L., Sherrington, C., Smith, K., Carswell, P., Bell, R., Bell, M., Nascimento, D. P., Máximo Pereira, L.S., Vardon, P., 2012. Physical activity improves strength, balance and endurance in adults aged 40-65 years: a systematic review. J. Physiother. 58, 145–156. https://doi.org/10.1016/S1836-9553(12)70105-4.
- Foldvari, M., Clark, M., Laviolette, L.C., Bernstein, M.A., Kaliton, D., Castaneda, C., Pu, C. T., Hausdorff, J.M., Fielding, R.A., Singh, M.A.F., 2000. Association of muscle power with functional status in community-dwelling elderly women. Journals Gerontol. Ser. A Biol. Sci. Med. Sci. 55, M192–M199. https://doi.org/10.1093/gerona/55.4. M192.
- Foong, Y.C., Chherawala, N., Aitken, D., Scott, D., Winzenberg, T., Jones, G., 2016. Accelerometer-determined physical activity, muscle mass, and leg strength in

community-dwelling older adults. J. Cachexia Sarcopenia Muscle 7, 275–283. https://doi.org/10.1002/jcsm.12065.

- Fornias, L., Rodrigues, M., Rey-López, J., Keihan, V., Carmo, O., 2014. Sedentary behavior and health outcomes: an overview of systematic reviews. PLoS One 9, 105620. https://doi.org/10.1371/journal.pone.0105620.
- Füzéki, E., Engeroff, T., Banzer, W., 2017. Health benefits of light-intensity physical activity: a systematic review of accelerometer data of the national health and nutrition examination survey (NHANES). Sport. Med. 47, 1769–1793. https://doi. org/10.1007/s40279-017-0724-0.
- Gennuso, K.P., Thraen-Borowski, K.M., Gangnon, R.E., Colbert, L.H., 2016. Patterns of sedentary behavior and physical function in older adults. Aging Clin. Exp. Res. 28, 943–950. https://doi.org/10.1007/s40520-015-0386-4.
- Gerdhem, P., Dencker, M., Ringsberg, K., Åkesson, K., 2007. Accelerometer-measured daily physical activity among octogenerians: results and associations to other indices of physical performance and bone density. Eur. J. Appl. Physiol. 102, 173–180. https://doi.org/10.1007/s00421-007-0571-z.
- Guizelini, P.C., de Aguiar, R.A., Denadai, B.S., Caputo, F., Greco, C.C., 2018. Effect of resistance training on muscle strength and rate of force development in healthy older adults: a systematic review and meta-analysis. Exp. Gerontol. 102, 51–58. https:// doi.org/10.1016/j.exger.2017.11.020.

Haider, S., Grabovac, I., Dorner, T.E., 2019. Effects of physical activity interventions in frail and prefrail community-dwelling people on frailty status, muscle strength, physical performance and muscle mass—a narrative review. Wien. Klin. Wochenschr. 131, 244–254. https://doi.org/10.1007/s00508-019-1484-7.

Hall, K.S., Cohen, H.J., Pieper, C.F., Fillenbaum, G.G., Kraus, W.E., Huffman, K.M., Cornish, M.A., Shiloh, A., Flynn, C., Sloane, R., Newby, L.K., Morey, M.C., 2016. Physical performance across the adult life span: correlates with age and physical activity. Journals Gerontol. Ser. A Biol. Sci. Med. Sci. 72 https://doi.org/10.1093/ gerona/glw120 glw120.

Harada, Kazuhiro, Lee, Sangyoon, Lee, Sungchul, Bae, S., Harada, Kenji, Suzuki, T., Shimada, H., 2016. Objectively-measured outdoor time and physical and psychological function among older adults. Geriatr. Gerontol. Int. 17, 1455–1462. https://doi.org/10.1111/ggi.12895.

- Harrison, S., Jones, H.E., Martin, R.M., Lewis, S.J., Higgins, J.P.T., 2017. The albatross plot: a novel graphical tool for presenting results of diversely reported studies in a systematic review. Res. Synth. Methods 8, 281–289. https://doi.org/10.1002/ irsm.1239.
- Hartley, A., Gregson, C.L., Hannam, K., Deere, K.C., Clark, E.M., Tobias, J.H., 2018. Sarcopenia is negatively related to high gravitational impacts achieved from day-today physical activity. Journals Gerontol. Ser. A 73, 652–659. https://doi.org/ 10.1093/gerona/glx223.
- Harvey, J.A., Chastin, S.F.M., Skelton, D.A., 2015. How sedentary are older people? A systematic review of the amount of sedentary behavior. J. Aging Phys. Act. 23, 471–487. https://doi.org/10.1123/japa.2014-0164.
- Hasegawa, J., Suzuki, H., Yamauchi, T., 2018. Impact of season on the association between muscle strength/volume and physical activity among communitydwelling elderly people living in snowy-cold regions. J. Physiol. Anthropol. 37, 1–6. https:// doi.org/10.1186/s40101-018-0186-6.
- Hernandes, N.A., Probst, V.S., Silva Jr., R.A.Da, Januário, R.S.B., Pitta, F., Teixeira, D.C., 2013. Physical activity in daily life in physically independent elderly participating in community-based exercise program. Brazilian J. Phys. Ther. 17, 57–63. https://doi. org/10.1590/s1413-35552012005000055.
- Hernández, M., Zambom-Ferraresi, F., Cebollero, P., Hueto, J., Cascante, J.A., Antón, M. M., 2017. The relationships between muscle power and physical activity in older men with chronic obstructive pulmonary disease. J. Aging Phys. Act. 25, 360–366. https://doi.org/10.1123/japa.2016-0144.

Hopkins, C., 2019. Physical activity and future physical function: data from the osteoarthritis initiative. J. Aging Phys. Act. 27, 367–370. https://doi.org/10.1123/ japa.2018-0136.

- Hughes, V.A., Frontera, W.R., Wood, M., Evans, W.J., Dallal, G.E., Roubenoff, R., Fiatarone Singh, M.A., 2001. Longitudinal muscle strength changes in older adults: influence of muscle mass, physical activity, and health. Journals Gerontol. - Ser. A Biol. Sci. Med. Sci. 56, 209–217. https://doi.org/10.1093/gerona/56.5.B209.
- Hupin, D., Roche, F., Gremeaux, V., Chatard, J.C., Oriol, M., Gaspoz, J.M., Barthélémy, J. C., Edouard, P., 2015. Even a low-dose of moderate-to-vigorous physical activity reduces mortality by 22% in adults aged ≥60 years: a systematic review and metaanalysis. Br. J. Sports Med. https://doi.org/10.1136/bjsports-2014-094306.

Iijima, H., Fukutani, N., Isho, T., Yamamoto, Y., Hiraoka, M., Miyanobu, K., Jinnouchi, M., Kaneda, E., Aoyama, T., Kuroki, H., Matsuda, S., 2017. Relationship between pedometer-based physical activity and physical function in patients with osteoarthritis of the knee: a cross-sectional study. Arch. Phys. Med. Rehabil. 98, 1382–1388. https://doi.org/10.1016/j.apmr.2016.12.021 e4.

- Ikenaga, M., Yamada, Y., Takeda, N., Kimura, M., Higaki, Y., Tanaka, H., Kiyonaga, A., Nakagawa Study Group, 2014. Dynapenia, gait speed and daily physical activity measured using triaxial accelerometer in older Japanese men. J. Phys. Fit. Sport. Med. 3, 147–154. https://doi.org/10.7600/jpfsm.3.147.
- Iwakura, M., Okura, K., Shibata, K., Kawagoshi, A., Sugawara, K., Takahashi, H., Shioya, T., 2016. Relationship between balance and physical activity measured by an activity monitor in elderly COPD patients. Int. J. Chron. Obstruct. Pulmon. Dis. Volume 11, 1505–1514. https://doi.org/10.2147/COPD.S107936.
- Jantunen, H., Wasenius, N., Salonen, M.K., Perälä, M.M., Osmond, C., Kautiainen, H., Simonen, M., Pohjolainen, P., Kajantie, E., Rantanen, T., Von Bonsdorff, M.B., Eriksson, J.G., 2017. Objectively measured physical activity and physical performance in old age. Age Ageing 46, 232–237. https://doi.org/10.1093/ageing/ afw194.

Jeong, J.N., Kim, S.H., Park, K.N., 2019. Relationship between objectively measured lifestyle factors and health factors in patients with knee osteoarthritis: the STROBE Study. Bull. Sch. Med. Md 98, e16060. https://doi.org/10.1097/ MD.0000000000016060.

- Johnson, L.G., Butson, M.L., Polman, R.C., Raj, I.S., Borkoles, E., Scott, D., Aitken, D., Jones, G., 2016. Light physical activity is positively associated with cognitive performance in older community dwelling adults. J. Sci. Med. Sport 19, 877–882. https://doi.org/10.1016/j.jsams.2016.02.002.
- Katzmarzyk, P.T., Craig, C.L., 2002. Musculoskeletal fitness and risk of mortality. Med. Sci. Sports Exerc. 34, 740–744. https://doi.org/10.1097/00005768-200205000-00002.
- Kawagoshi, A., Kiyokawa, N., Sugawara, K., Takahashi, H., Sakata, S., Miura, S., Sawamura, S., Satake, M., Shioya, T., 2013. Quantitative assessment of walking time and postural change in patients with COPD using a new triaxial accelerometer system. Int. J. COPD 8, 397–404. https://doi.org/10.2147/COPD.S49491.
- Keevil, V.L., Cooper, A.J.M., Wijndaele, K., Luben, R., Wareham, N.J., Brage, S., Khaw, K.-T., 2016. Objective sedentary time, moderate-to-Vigorous physical activity, and physical capability in a british cohort. Med. Sci. Sport. Exerc. 48, 421–429. https://doi.org/10.1249/MSS.000000000000785.
- Kim, M., 2015. Isotemporal substitution analysis of accelerometer-derived sedentary behavior, physical activity time, and physical function in older women: a preliminary study. Exerc. Sci. 24, 373–381. https://doi.org/10.15857/ ksep.2015.24.4.373.
- Kim, M., Yoshida, H., Sasai, H., Kojima, N., Kim, H., 2015. Association between objectively measured sleep quality and physical function among communitydwelling oldest old Japanese: a cross-sectional study. Geriatr. Gerontol. Int. 15, 1040–1048. https://doi.org/10.1111/ggi.12396.
- Lai, T.-F., Lin, C.-Y., Chou, C.-C., Huang, W.-C., Hsueh, M.-C., Park, J.-H., Liao, Y., 2020. Independent and joint associations of physical activity and dietary behavior with older adults' lower limb strength. Nutrients 12, 443. https://doi.org/10.3390/ nu12020443.
- Lee, I.-M., Shiroma, E.J., 2014. Using accelerometers to measure physical activity in large-scale epidemiological studies: issues and challenges. Br. J. Sports Med. 48, 197–201. https://doi.org/10.1136/bjsports-2013-093154.
- Lee, J., Chang, R.W., Ehrlich-Jones, L., Kwoh, C.K., Nevitt, M., Semanik, P.A., Sharma, L., Sohn, M.W., Song, J., Dunlop, D.D., 2015. Sedentary behavior and physical function: objective evidence from the osteoarthritis initiative. Arthritis Care Res. (Hoboken) 67, 366–373. https://doi.org/10.1002/acr.22432.
- Lerma, N.L., Cho, C.C., Swartz, A.M., Miller, N.E., Keenan, K.G., Strath, S.J., 2018. Isotemporal substitution of sedentary behavior and physical activity on function. Med. Sci. Sport. Exerc. 50, 792–800. https://doi.org/10.1249/ MSS.000000000001491.
- Liao, Y., Hsu, H.H., Shibata, A., Ishii, K., Koohsari, M.J., Oka, K., 2018. Associations of total amount and patterns of objectively measured sedentary behavior with performance-based physical function. Prev. Med. Reports 12, 128–134. https://doi. org/10.1016/j.pmedr.2018.09.007.
- Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gotzsche, P.C., Ioannidis, J.P.A., Clarke, M., Devereaux, P.J., Kleijnen, J., Moher, D., 2009. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339. https://doi.org/10.1136/bmj. b2700 b2700-b2700.
- Ling, C.H.Y., Taekema, D., De Craen, A.J.M., Gussekloo, J., Westendorp, R.G.J., Maier, A. B., 2010. Handgrip strength and mortality in the oldest old population: the Leiden 85-plus study. Cmaj 182, 429–435. https://doi.org/10.1503/cmaj.091278.
- Liu, C., Shiroy, D.M., Jones, L.Y., Clark, D.O., 2014. Systematic review of functional training on muscle strength, physical functioning, and activities of daily living in older adults. Eur. Rev. Aging Phys. Act. 11, 95–106. https://doi.org/10.1007/ s11556-014-0144-1.
- Lohne-Seiler, H., Hansen, B.H., Kolle, E., Anderssen, S.A., 2014. Accelerometerdetermined physical activity and self-reported health in a population of older adults (65–85 years): a cross-sectional study. BMC Public Health 14, 284. https://doi.org/ 10.1186/1471-2458-14-284.
- Lohne-Seiler, H., Kolle, E., Anderssen, S.A., Hansen, B.H., 2016. Musculoskeletal fitness and balance in older individuals (65–85 years) and its association with steps per day: a cross sectional study. BMC Geriatr. 16, 6. https://doi.org/10.1186/s12877-016-0188-3.
- Luppa, M., Luck, T., Weyerer, S., Konig, H.-H., Brahler, E., Riedel-Heller, S.G., 2010. Prediction of institutionalization in the elderly. A systematic review. Age Ageing 39, 31–38. https://doi.org/10.1093/ageing/afp202.
- Mador, M.J., Patel, A.N., Nadler, J., 2011. Effects of pulmonary rehabilitation on activity levels in patients with chronic obstructive pulmonary disease. J. Cardiopulm. Rehabil. Prev. 31, 52–59. https://doi.org/10.1097/HCR.0b013e3181ebf2ef.
- Mañas, A., del Pozo-Cruz, B., García-García, F.J., Guadalupe-Grau, A., Ara, I., 2017. Role of objectively measured sedentary behaviour in physical performance, frailty and mortality among older adults: a short systematic review. Eur. J. Sport Sci. 17, 940–953. https://doi.org/10.1080/17461391.2017.1327983.
- Manini, T.M., Clark, B.C., 2012. Dynapenia and aging: an update. Journals Gerontol. -Ser. A Biol. Sci. Med. Sci. 67 A, 28–40. https://doi.org/10.1093/gerona/glr010.
 Manns, P.J., Dunstan, D.W., Owen, N., Healy, G.N., 2012. Addressing the nonexercise
- Manns, P.J., Dunstan, D.W., Owen, N., Healy, G.N., 2012. Addressing the nonexercise part of the activity continuum: a more realistic and achievable approach to activity programming for adults with mobility disability? Phys. Ther. 92, 614–625. https:// doi.org/10.2522/ptj.20110284.
- Master, H., Thoma, L.M., Christiansen, M.B., Polakowski, E., Schmitt, L.A., White, D.K., 2018. Minimum Performance on Clinical Tests of Physical Function to Predict Walking 6,000 Steps/Day in Knee Osteoarthritis: An Observational Study. Arthritis Care Res. (Hoboken). 70, 1005–1011. https://doi.org/10.1002/acr.23448.

- Matkovic, Z., Tudoric, N., Cvetko, D., Esquinas, C., Rahelic, D., Zarak, M., Miravitlles, M., 2020. Easy to perform physical performance tests to identify COPD patients with low physical activity in clinical practice. Int. J. Chron. Obstruct. Pulmon. Dis. Volume 15, 921–929. https://doi.org/10.2147/COPD.S246571.
- McDermott, M.M.G., Greenland, P., Ferrucci, L., Criqui, M.H., Liu, K., Sharma, L., Chan, C., Celic, L., Priyanath, A., Guralnik, J.M., 2002. Lower extremity performance is associated with daily life physical activity in individuals with and without peripheral arterial disease. J. Am. Geriatr. Soc. 50, 247–255. https://doi.org/ 10.1046/j.1532-5415.2002.50055.x.
- McEwan, D., Rhodes, R.E., Beauchamp, M.R., 2020. What happens when the party is over?: sustaining physical activity behaviors after intervention cessation. Behav. Med. 0, 1–9. https://doi.org/10.1080/08964289.2020.1750335.
- McGregor, D.E., Carson, V., Palarea-Albaladejo, J., Dall, P.M., Tremblay, M.S., Chastin, S. F.M., 2018. Compositional analysis of the associations between 24-h movement behaviours and health indicators among adults and older adults from the Canadian health measure survey. Int. J. Environ. Res. Public Health 15. https://doi.org/ 10.3390/ijerph15081779.
- Meier, N.F., Lee, D., 2020. Physical activity and sarcopenia in older adults. Aging Clin. Exp. Res. 32, 1675–1687. https://doi.org/10.1007/s40520-019-01371-8.
- Menai, M., Van Hees, V.T., Elbaz, A., Kivimaki, M., Singh-Manoux, A., Sabia, S., 2017. Accelerometer assessed moderate-To-vigorous physical activity and successful ageing: results from the Whitehall II study. Sci. Rep. 8, 1–9. https://doi.org/ 10.1038/srep45772.
- Meskers, C.G.M., Reijnierse, E.M., Numans, S.T., Kruizinga, R.C., Pierik, V.D., van Ancum, J.M., Slee-Valentijn, M., Scheerman, K., Verlaan, S., Maier, A.B., 2019. Association of handgrip strength and muscle mass with dependency in (Instrumental) activities of daily living in hospitalized older adults -The EMPOWER study. J. Nutr. Health Aging 23, 232–238. https://doi.org/10.1007/s12603-019-1170-5.
- Mitchell, W.K., Williams, J., Atherton, P., Larvin, M., Lund, J., Narici, M., 2012. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front. Physiol. 3, 1–18. https://doi.org/ 10.3389/fphys.2012.00260.
- Mlinac, M.E., Feng, M.C., 2016. Assessment of activities of daily living, self-care, and independence. Arch. Clin. Neuropsychol. 31, 506–516. https://doi.org/10.1093/ arclin/acw049.
- Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., 2009. Academia and clinic annals of internal medicine preferred reporting items for systematic reviews and metaanalyses : ann. Intern. Med. 151, 264–269.
- Monteiro, A.M., Silva, P., Forte, P., Carvalho, J., 2019. The effects of daily physical activity on functional fitness, isokinetic strength and body composition in elderly community-dwelling women. J. Hum. Sport Exerc. 14. https://doi.org/10.14198/ jhse.2019.142.11.
- Morie, M., Reid, K.F., Miciek, R., Lajevardi, N., Choong, K., Krasnoff, J.B., Storer, T.W., Fielding, R.A., Bhasin, S., LeBrasseur, N.K., 2010. Habitual physical activity levels are associated with performance in measures of physical function and mobility in older men. J. Am. Geriatr. Soc. 58, 1727–1733. https://doi.org/10.1111/j.1532-5415.2010.03012.x.
- Nagai, K., Tamaki, K., Kusunoki, H., Wada, Y., Tsuji, S., Ito, M., Sano, K., Amano, M., Shimomura, S., Shinmura, K., 2018. Isotemporal substitution of sedentary time with physical activity and its associations with frailty status. Clin. Interv. Aging 13, 1831–1836. https://doi.org/10.2147/CIA.S175666.
- Nawrocka, A., Mynarski, W., Cholewa, J., 2017. Adherence to physical activity guidelines and functional fitness of elderly women, using objective measurement. Ann. Agric. Environ. Med. 24, 632–635. https://doi.org/10.5604/ 12321966 1231388
- Nawrocka, A., Polechoński, J., Garbaciak, W., Mynarski, W., 2019. Functional fitness and quality of life among women over 60 years of age depending on their level of objectively measured physical activity. Int. J. Environ. Res. Public Health 16, 972. https://doi.org/10.3390/ijerph16060972.
- Nicolai, S., Benzinger, P., Skelton, D.A., Aminian, K., Becker, C., Lindemann, U., 2010. Day-to-day variability of physical activity of older adults living in the community. J. Aging Phys. Act. 18, 75–86. https://doi.org/10.1123/japa.18.1.75.
- Nieminen, P., Lehtiniemi, H., Vähäkangas, K., Huusko, A., Rautio, A., 2013. Standardised regression coefficient as an effect size index in summarising findings in epidemiological studies. Epidemiol. Biostat. Public Heal. 10 (1–115) https://doi.org/ 10.2427/8854.
- Ortlieb, S., Gorzelniak, L., Nowak, D., Strobl, R., Grill, E., Thor, Barbara, Peters, A., Kuhn, K.A., Karrasch, S., Horsch, A., Schulz, H., 2014. Associations between multiple accelerometry-assessed physical activity parameters and selected health outcomes in elderly people–results from the KORA-age study. PLoS One 9, e111206.
- Orwoll, E.S., Fino, N.F., Gill, T.M., Cauley, J.A., Strotmeyer, E.S., Ensrud, K.E., Kado, D. M., Barrett-Connor, E., Bauer, D.C., Cawthon, P.M., Lapidus, J., 2019. The relationships between physical performance, activity levels, and falls in older men. Velationships between physical performance activity levels, and falls in older men.
- Journals Gerontol. Ser. A 74, 1475–1483. https://doi.org/10.1093/gerona/gly248. Osthoff, A.K.R., Taeymans, J., Kool, J., Marcar, V., Van Gestel, A.J.R., 2013. Association between peripheral muscle strength and daily physical activity in patients with COPD: a systematic literature review and meta-analysis. J. Cardiopulm. Rehabil. Prev. 33, 351–359. https://doi.org/10.1097/HCR.000000000002022
- Osuka, Y., Yabushita, N., Kim, M., Seino, S., Nemoto, M., Jung, S., Okubo, Y., Figueroa, R., Tanaka, K., 2015. Association between habitual light-intensity physical activity and lower-extremity performance: a cross-sectional study of communitydwelling older Japanese adults. Geriatr. Gerontol. Int. 15, 268–275. https://doi.org/ 10.1111/ggi.12268.

Ouzzani, M., Hammady, H., Fedorowicz, Z., Elmagarmid, A., 2016. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. https://doi.org/10.1186/s13643-016-0384-4.

- Park, H., Park, W., Lee, M., Ko, N., Kim, E., Ishikawa-takata, K., Park, J., 2018. The association of locomotive and non-locomotive physical activity measured by an accelerometer with functional fitness in healthy elderly men: a pilot study. J. Exerc. Nutr. Biochem. 22, 41–48. https://doi.org/10.20463/jenb.2018.0007.
- Perkin, O.J., McGuigan, P.M., Thompson, D., Stokes, K.A., 2018. Habitual physical activity levels do not predict leg strength and power in healthy, active older adults. PLoS One 13, 1–12. https://doi.org/10.1371/journal.pone.0200089.
- Pitta, F., Troosters, T., Spruit, M.A., Probst, V.S., Decramer, M., Gosselink, R., 2005. Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 171, 972–977. https://doi.org/10.1164/ rccm.200407-8550C.
- Puthoff, M.L., Janz, K.F., Nielsen, D.H., 2008. The relationship between lower extremity strength and power to everyday walking behaviors in older adults with functional limitations. J. Geriatr. Phys. Ther. 31, 24–31. https://doi.org/10.1519/00139143-200831010-00005.
- Rantanen, T., 2003. Muscle strength, disability and mortality. Scand. J. Med. Sci. Sport. 13, 3–8. https://doi.org/10.1034/j.1600-0838.2003.00298.x.
- Rapp, K., Klenk, J., Benzinger, P., Franke, S., Denkinger, M.D., Peter, R., ActiFE Ulm Study Group, 2012. Physical performance and daily walking duration: associations in 1271 women and men aged 65-90 years. Aging Clin. Exp. Res. 24, 455–460. https://doi.org/10.3275/8264.
- Rausch-Osthoff, A.-K., Kohler, M., Sievi, N.A., Clarenbach, C.F., van Gestel, A.J., 2014. Association between peripheral muscle strength, exercise performance, and physical activity in daily life in patients with Chronic Obstructive Pulmonary Disease. Multidiscip. Respir. Med. 9, 37. https://doi.org/10.1186/2049-6958-9-37.
- Rava, A., Pihlak, A., Kums, T., Purge, P., Pääsuke, M., Jürimäe, J., 2018. Associations of distinct levels of physical activity with mobility in independent healthy older women. Exp. Gerontol. 110, 209–215. https://doi.org/10.1016/j. exser.2018.06.005.
- Reid, K.F., Fielding, R., 2012. Skeletal muscle power. Exerc. Sport Sci. Rev. 40, 4–12. https://doi.org/10.1097/JES.0b013e31823b5f13.
- Reid, K.F., Pasha, E., Doros, G., Clark, D.J., Patten, C., Phillips, E.M., Frontera, W.R., Fielding, R.A., 2014. Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties. Eur. J. Appl. Physiol. https://doi.org/10.1007/s00421-013-2728-2.
- Reid, N., Healy, G.N., Gianoudis, J., Formica, M., Gardiner, P.A., Eakin, E.E., Nowson, C. A., Daly, R.M., 2018. Association of sitting time and breaks in sitting with muscle mass, strength, function, and inflammation in community-dwelling older adults. Osteoporos. Int. 29, 1341–1350. https://doi.org/10.1007/s00198-018-4428-6.
- Reijnierse, E.M., de Jong, N., Trappenburg, M.C., Blauw, G.J., Butler-Browne, G., Gapeyeva, H., Hogrel, J.-Y., McPhee, J.S., Narici, M.V., Sipilä, S., Stenroth, L., van Lummel, R.C., Pijnappels, M., Meskers, C.G.M., Maier, A.B., 2017. Assessment of maximal handgrip strength: how many attempts are needed? J. Cachexia Sarcopenia Muscle 8, 466–474. https://doi.org/10.1002/jcsm.12181.
- Muscle 8, 466–474. https://doi.org/10.1002/jcsm.12181.
 Rojer, A.G.M., Reijnierse, E.M., Trappenburg, M.C., van Lummel, R.C., Niessen, M., van Schooten, K.S., Pijnappels, M., Meskers, C.G.M., Maier, A.B., 2018. Instrumented Assessment of Physical Activity Is Associated With Muscle Function but Not With Muscle Mass in a General Population. J. Aging Health 30, 1462–1481. https://doi.org/10.1177/0898264317721554.
- Rojer, A.G.M., Ramsey, K.A., Trappenburg, M.C., van Rijssen, N.M., Otten, R.H.J., Heymans, M.W., Pijnappels, M., Meskers, C.G.M., Maier, A.B., 2020. Instrumented measures of sedentary behaviour and physical activity are associated with mortality in community-dwelling older adults: a systematic review, meta-analysis and metaregression analysis. Ageing Res. Rev. 61, 101061 https://doi.org/10.1016/j. arr.2020.101061.
- Rosenberg, D.E., Bellettiere, J., Gardiner, P.A., Villarreal, V.N., Crist, K., Kerr, J., 2015. Independent associations between sedentary behaviors and mental, cognitive, physical, and functional health among older adults in retirement communities. Journals Gerontol. - Ser. A Biol. Sci. Med. Sci. 71, 78–83. https://doi.org/10.1093/ gerona/glv103.
- Rowlands, A.V., Edwardson, C.L., Davies, M.J., Khunti, K., Harrington, D.M., Yates, T., 2018. Beyond cut points: accelerometer metrics that capture the physical activity profile. Med. Sci. Sports Exerc. https://doi.org/10.1249/MSS.00000000001561.
- Safeek, R.H., Hall, K.S., Lobelo, F., del Rio, C., Khoury, A.L., Wong, T., Morey, M.C., McKellar, M.S., 2018. Low levels of physical activity among older persons living with HIV/AIDS are associated with poor physical function. AIDS Res. Hum. Retroviruses 34, 929–935. https://doi.org/10.1089/aid.2017.0309.
- Sánchez-Sánchez, J.L., Mañas, A., García-García, F.J., Ara, I., Carnicero, J.A., Walter, S., Rodríguez-Mañas, L., 2019. Sedentary behaviour, physical activity, and sarcopenia among older adults in the TSHA: isotemporal substitution model. J. Cachexia Sarcopenia Muscle 10, 188–198. https://doi.org/10.1002/jcsm.12369.
- Sansano-Nadal, Giné-Garriga, Brach, Wert, Jerez-Roig, Guerra-Balic, Oviedo, Fortuño, Gómara-Toldrà, Soto-Bagaria, Pérez, Inzitari, Solà, Martin-Borràs, Roqué, 2019. Exercise-based interventions to enhance long-term sustainability of physical activity in older adults: a systematic review and meta-analysis of randomized clinical trials. Int. J. Environ. Res. Public Health 16, 2527. https://doi.org/10.3390/ ijerph16142527.
- Santos, D.A., Silva, A.M., Baptista, F., Santos, R., Vale, S., Mota, J., Sardinha, L.B., 2012. Sedentary behavior and physical activity are independently related to functional fitness in older adults. Exp. Gerontol. 47, 908–912. https://doi.org/10.1016/j. exger.2012.07.011.

- Sardinha, L.B., Santos, D.A., Silva, A.M., Baptista, F., Owen, N., 2015. Breaking-up sedentary time is associated with physical function in older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 70, 119–124. https://doi.org/10.1093/gerona/glu193.
- Schwenk, M., Bergquist, R., Boulton, E., Van Ancum, J.M., Nerz, C., Weber, M., Barz, C., Jonkman, N.H., Taraldsen, K., Helbostad, J.L., Vereijken, B., Pijnappels, M., Maier, A.B., Zhang, W., Becker, C., Todd, C., Clemson, L., Hawley-Hague, H., 2019. The adapted lifestyle-integrated functional exercise program for preventing functional decline in young seniors: development and initial evaluation. Gerontology 65, 362–374. https://doi.org/10.1159/000499962.
- Scott, D., Blizzard, L., Fell, J., Jones, G., 2009. Ambulatory activity, body composition, and lower-limb muscle strength in older adults. Med. Sci. Sports Exerc. 41, 383–389. https://doi.org/10.1249/MSS.0b013e3181882c85.
- Scott, D., Blizzard, L., Fell, J., Jones, G., 2011. Prospective associations between ambulatory activity, body composition and muscle function in older adults. Scand. J. Med. Sci. Sport. 21, 168–175. https://doi.org/10.1111/j.1600-0838.2010.01229.x.
- Scott, D., Johansson, J., Gandham, A., Ebeling, P.R., Nordstrom, P., Nordstrom, A., 2020. Associations of accelerometer-determined physical activity and sedentary behavior with sarcopenia and incident falls over 12 months in community-dwelling Swedish older adults. J. Sport. Med. Allied Health Sci. Off. J. Ohio Athl. Train. Assoc. 1–9. https://doi.org/10.1016/j.jshs.2020.01.006, 00.
- Semanik, P.A., Lee, J., Song, J., Chang, R.W., Sohn, M.-W., Ehrlich-Jones, L.S., Ainsworth, B.E., Nevitt, M.M., Kwoh, C.K., Dunlop, D.D., 2015. Accelerometermonitored sedentary behavior and observed physical function loss. Am. J. Public Health 105, 560–566. https://doi.org/10.2105/AJPH.2014.302270.
- Silva, F.M., Petrica, J., Serrano, J., Paulo, R., Ramalho, A., Lucas, D., Ferreira, J.P., Duarte-Mendes, P., 2019. The sedentary time and physical activity levels on physical fitness in the elderly: a comparative cross sectional study. Int. J. Environ. Res. Public Health 16, 3697. https://doi.org/10.3390/ijerph16193697.
- Spartano, N.L., Lyass, A., Larson, M.G., Tran, T., Andersson, C., Blease, S.J., Esliger, D.W., Vasan, R.S., Murabito, J.M., 2019. Objective physical activity and physical performance in middle-aged and older adults. Exp. Gerontol. 119, 203–211. https:// doi.org/10.1016/j.exger.2019.02.003.
- Straight, C.R., Lindheimer, J.B., Brady, A.O., Dishman, R.K., Evans, E.M., 2016. Effects of resistance training on lower-extremity muscle power in middle-aged and older adults: a systematic review and meta-analysis of randomized controlled trials. Sport. Med. 46, 353–364. https://doi.org/10.1007/s40279-015-0418-4.
- Sullivan, G.M., Feinn, R., 2012. Using effect size—or why the P value is not enough. J. Grad. Med. Educ. 4, 279–282. https://doi.org/10.4300/JGME-D-12-00156.1.
- Taekema, D.G., Gussekloo, J., Maier, A.B., Westendorp, R.G.J., de Craen, A.J.M., 2010. Handgrip strength as a predictor of functional, psychological and social health. A prospective population-based study among the oldest old. Age Ageing 39, 331–337. https://doi.org/10.1093/ageing/afq022.
- Tak, E., Kuiper, R., Chorus, A., Hopman-Rock, M., 2013. Prevention of onset and progression of basic ADL disability by physical activity in community dwelling older adults: a meta-analysis. Ageing Res. Rev. https://doi.org/10.1016/j. arr.2012.10.001.
- Tang, Y., Green, P., Maurer, M., Lazarte, R., Kuzniecky, J.R., Hung, M.Y., Garcia, M., Kodali, S., Harris, T., 2015. Relationship between accelerometer-measured activity and self-reported or performance-based function in older adults with severe aortic stenosis. Curr. Geriatr. Reports. https://doi.org/10.1007/s13670-015-0152-7.
- Taraldsen, K., Stefanie Mikolaizak, A., Maier, A.B., Boulton, E., Aminian, K., Van Ancum, J., Bandinelli, S., Becker, C., Bergquist, R., Chiari, L., Clemson, L., French, D. P., Gannon, B., Hawley-Hague, H., Jonkman, N.H., Mellone, S., Paraschiv-Ionescu, A., Pijnappels, M., Schwenk, M., Todd, C., Yang, F.B., Zacchi, A., Helbostad, J.L., Vereijken, B., 2019. Protocol for the PreventIT feasibility randomised controlled trial of a lifestyle-integrated exercise intervention in young older adults. BMJ Open 9. https://doi.org/10.1136/bmjopen-2018-023526.
 Taylor, D., 2014. Physical activity is medicine for older adults. Postgrad. Med. J. 90,
- 26–32. https://doi.org/10.1136/postgradmedj-2012-131366.
- Thomson, H.J., Thomas, S., 2013. The effect direction plot: visual display of nonstandardised effects across multiple outcome domains. Res. Synth. Methods 4, 95–101. https://doi.org/10.1002/jrsm.1060.
- Trayers, T., Lawlor, D.A., Fox, K.R., Coulson, J., Davis, M., Stathi, A., Peters, T., 2014. Associations of objectively measured physical activity with lower limb function in older men and women: findings from the older people and active living (OPAL) study. J. Aging Phys. Act. 22, 34–43. https://doi.org/10.1123/JAPA.2012-0087.
- Tremblay, M., 2012. Letter to the editor: Standardized use of the terms "sedentary" and "sedentary behaviours.". Appl. Physiol. Nutr. Metab. https://doi.org/10.1139/ H2012-024.
- Tremblay, M.S., Aubert, S., Barnes, J.D., Saunders, T.J., Carson, V., Latimer-Cheung, A. E., Chastin, S.F.M., Altenburg, T.M., Chinapaw, M.J.M., Aminian, S., Arundell, L., Hinkley, T., Hnatiuk, J., Atkin, A.J., Belanger, K., Chaput, J.P., Gunnell, K., Larouche, R., Manyanga, T., Gibbs, B.B., Bassett-Gunter, R., Biddle, S., Biswas, A., Chau, J., Colley, R., Coppinger, T., Craven, C., Cristi-Montero, C., de Assis Teles Santos, D., del Pozo Cruz, B., del Pozo-Cruz, J., Dempsey, P., do Carmo Santos Gonçalves, R.F., Ekelund, U., Ellingson, L., Ezeugwu, V., Fitzsimons, C., Florez-Pregonero, A., Friel, C.P., Fröberg, A., Giangregorio, L., Godin, L., Halloway, S., Husu, P., Kadir, M., Karagounis, L.G., Koster, A., Lakerveld, J., Lamb, M., LeBlanc, A. G., Lee, E.Y., Lee, P., Lopes, L., Manns, T., Ginis, K.M., McVeigh, J., Meneguci, J., Moreira, C., Murtagh, E., Patterson, F., da Silva, D.R.P., Pesola, A.J., Peterson, N., Pettitt, C., Pilutti, L., Pereira, S.P., Poitras, V., Prince, S., Rathod, A., Rivière, F., Rosenkranz, S., Routhier, F., Santos, R., Smith, B., Theou, O., Tomasone, J., Tucker, P., Meyer, R.U., van der Ploeg, H., Villalobos, T., Viren, T., Wallmann-Sperlich, B., Wijndaele, K., Wondergem, R., 2017. Sedentary Behavior Research Network (SBRN) - terminology consensus project process and outcome. Int. J. Behav. Nutr. Phys. Act. https://doi.org/10.1186/s12966-017-0525-8.

K.A. Ramsey et al.

Vagetti, G.C., Barbosa Filho, V.C., Moreira, N.B., de Oliveira, V., Mazzardo, O., de Campos, W., 2014. Association between physical activity and quality of life in the elderly: a systematic review, 2000-2012. Rev. Bras. Psiquiatr. https://doi.org/ 10.1590/1516-4446-2012-0895.

- Van Cauwenberg, J., Van Holle, V., De Bourdeaudhuij, I., Owen, N., Deforche, B., 2014. Older adults' reporting of specific sedentary behaviors: validity and reliability. BMC Public Health. https://doi.org/10.1186/1471-2458-14-734.
- van der Ploeg, H.P., Hillsdon, M., 2017. Is sedentary behaviour just physical inactivity by another name? Int. J. Behav. Nutr. Phys. Act. 14, 1–8. https://doi.org/10.1186/ s12966-017-0601-0.
- Van Gestel, A.J.R., Clarenbach, C.F., Stöwhas, A.C., Rossi, V.A., Sievi, N.A., Camen, G., Russi, E.W., Kohler, M., 2012. Predicting daily physical activity in patients with chronic obstructive pulmonary disease. PLoS One 7, e48081. https://doi.org/ 10.1371/journal.pone.0048081.
- Van Lummel, R.C., Walgaard, S., Maier, A.B., Ainsworth, E., Beek, P.J., van Dieën, J.H., 2016. The instrumented sit-to-Stand test (iSTS) has greater clinical relevance than the manually recorded sit-to-Stand test in older adults. PLoS One 11, e0157968. https://doi.org/10.1371/journal.pone.0157968.
- van Oeijen, K., Teunissen, L.L., van Leeuwen, C., van Opstal, M., José van der Putten, M., Notermans, N.C., van Meeteren, N.L.U., Schröder, C.D., 2020. Performance and selfreported functioning of people with chronic idiopathic axonal polyneuropathy: a 4-Year follow-up study. Arch. Phys. Med. Rehabil. 101, 1946–1952. https://doi.org/ 10.1016/j.aomr.2020.06.017.
- Van Sloten, T.T., Savelberg, H.H.C.M., Duimel-Peeters, I.G.P., Meijer, K., Henry, R.M.A., Stehouwer, C.D.A., Schaper, N.C., 2011. Peripheral neuropathy, decreased muscle strength and obesity are strongly associated with walking in persons with type 2 diabetes without manifest mobility limitations. Diabetes Res. Clin. Pract. 91, 32–39. https://doi.org/10.1016/j.diabres.2010.09.030.
- Walker, P.P., Burnett, A., Flavahan, P.W., Calverley, P.M.A., 2008. Lower limb activity and its determinants in COPD. Thorax 63, 683–689. https://doi.org/10.1136/ thx.2007.087130.
- Wang, D.X.M., Yao, J., Zirek, Y., Reijnierse, E.M., Maier, A.B., 2020. Muscle mass, strength, and physical performance predicting activities of daily living: a metaanalysis. J. Cachexia Sarcopenia Muscle 11, 3–25. https://doi.org/10.1002/ jcsm.12502.
- Ward, C.L., Valentine, R.J., Evans, E.M., 2014. Greater effect of adiposity than physical activity or lean mass on physical function in community-dwelling older adults. J. Aging Phys. Act. 22, 284–293. https://doi.org/10.1123/japa.2012-0098.
- Waschki, B., Spruit, M.A., Watz, H., Albert, P.S., Shrikrishna, D., Groenen, M., Smith, C., Man, W.D.C., Tal-Singer, R., Edwards, L.D., Calverley, P.M.A., Magnussen, H., Polkey, M.I., Wouters, E.F.M., 2012. Physical activity monitoring in COPD: compliance and associations with clinical characteristics in a multicenter study. Respir. Med. 106, 522–530. https://doi.org/10.1016/j.rmed.2011.10.022.

- Watz, H., Waschki, B., Boehme, C., Claussen, M., Meyer, T., Magnussen, H., 2008. Extrapulmonary effects of chronic obstructive pulmonary disease on physical activity. Am. J. Respir. Crit. Care Med. 177, 743–751. https://doi.org/10.1164/ rccm.200707-10110C.
- Wells, G., Shea, B., O'Connell, D., Peterson, J., 2000. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses [WWW Document]. Ottawa. Ottawa Hosp. Res. Inst.
- Wells, G.A., et al., 2012. The Newcastle-Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses. Evid. based public Heal. https://doi.org/ 10.2307/632432.
- Westbury, L.D., Dodds, R.M., Syddall, H.E., Baczynska, A.M., Shaw, S.C., Dennison, E.M., Roberts, H.C., Sayer, A.A., Cooper, C., Patel, H.P., 2018. Associations between objectively measured physical activity, body composition and Sarcopenia: findings from the hertfordshire sarcopenia study (HSS). Calcif. Tissue Int. 103, 237–245. https://doi.org/10.1007/s00223-018-0413-5.

Wickerson, L., Mathur, S., Helm, D., Singer, L., Brooks, D., 2013. Physical activity profile of lung transplant candidates with interstitial lung disease, 3AD J. Cardiopulm. Rehabil. Prev. 33, 106–112.

Winberg, C., Flansbjer, U.-B., Rimmer, J.H., Lexell, J., 2015. Relationship between physical activity, knee muscle strength, and gait performance in persons with late effects of polio. PM R 7, 236–244.

- Yamada, M., Årai, H., Nagai, K., Uemura, K., Mori, S., Aoyama, T., 2011. Differential determinants of physical daily activities in frail and nonfrail community-dwelling older adults. J. Clin. Gerontol. Geriatr. 2, 42–46. https://doi.org/10.1016/j. iceg.2011.02.004.
- Yasunaga, A., Shibata, A., Ishii, K., Koohsari, M.J., Inoue, S., Sugiyama, T., Owen, N., Oka, K., 2017. Associations of sedentary behavior and physical activity with older adults' physical function: an isotemporal substitution approach. BMC Geriatr. 17, 280. https://doi.org/10.1186/s12877-017-0675-1.
- Yeung, S.S.Y., Reijnierse, E.M., Trappenburg, M.C., Hogrel, J.Y., McPhee, J.S., Piasecki, M., Sipila, S., Salpakoski, A., Butler-Browne, G., Pääsuke, M., Gapeyeva, H., Narici, M.V., Meskers, C.G.M., Maier, A.B., 2018. Handgrip strength cannot Be assumed a proxy for overall muscle strength. J. Am. Med. Dir. Assoc. https://doi. org/10.1016/j.jamda.2018.04.019.
- Yoshida, D., Nakagaichi, M., Saito, K., Wakui, S., Yoshitake, Y., 2010. The relationship between physical fitness and ambulatory activity in very elderly women with normal functioning and functional limitations. J. Physiol. Anthropol. 29, 211–218. https:// doi.org/10.2114/jpa2.29.211.
- Yuki, A., Otsuka, R., Tange, C., Nishita, Y., Tomida, M., Ando, F., Shimokata, H., Arai, H., 2019. Daily physical activity predicts frailty development among communitydwelling older japanese adults. J. Am. Med. Dir. Assoc. 20, 1032–1036. https://doi. org/10.1016/j.jamda.2019.01.001.