# The association of objectively measured physical activity and sedentary behavior with skeletal muscle strength and muscle power in older adults: A systematic review and meta-analysis 

Keenan A. Ramsey ${ }^{\text {a }}$, Anna G.M. Rojer ${ }^{\text {a }}$, Luke D’Andrea ${ }^{\text {b }}$, René H.J. Otten ${ }^{\text {c }}$, Martijn W. Heymans ${ }^{\text {d }}$, Marijke C. Trappenburg ${ }^{\text {e,f }}$, Sjors Verlaan ${ }^{\mathrm{g}}$, Anna C. Whittaker ${ }^{\text {h, }}$, Carel G.M. Meskers ${ }^{\mathrm{a}, \mathrm{g}}$, Andrea B. Maier ${ }^{\mathrm{a}, \mathrm{b}, \mathrm{j}, \text { * }}$<br>${ }^{\text {a }}$ Department of Human Movement Sciences, @AgeAmsterdam, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands<br>${ }^{\mathrm{b}}$ Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia<br>${ }^{\text {c }}$ Medical Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands<br>${ }^{\text {d }}$ Department of Epidemiology and Biostatistics, Amsterdam University Medical Center, VU University Medical Center, Amsterdam, the Netherlands<br>${ }^{\text {e }}$ Department of Internal Medicine, Section of Gerontology and Geriatrics, Amsterdam University Medical Center, VU University Medical Center, Amsterdam, the Netherlands<br>${ }^{\mathrm{f}}$ Department of Internal Medicine, Amstelland Hospital, Amstelveen, the Netherlands<br>${ }^{g}$ Department of Rehabilitation Medicine, Amsterdam University Medical Center, VU University Medical Center, Amsterdam Movement Sciences, Amsterdam, the Netherlands<br>${ }^{\text {h }}$ School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, England, United Kingdom<br>${ }^{\mathrm{i}}$ Faculty of Health Sciences and Sport, University of Stirling, Scotland, United Kingdom<br>${ }^{j}$ Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore

## A R T I C L E I N F O

## Keywords:

Physical activity
Sedentary behavior
Accelerometry
Muscle strength
Muscle contraction
Aged


#### Abstract

Background: Engaging in physical activity (PA) and avoiding sedentary behavior (SB) are important for healthy ageing with benefits including the mitigation of disability and mortality. Whether benefits extend to key determinants of disability and mortality, namely muscle strength and muscle power, is unclear. Aims: This systematic review aimed to describe the association of objective measures of PA and SB with measures of skeletal muscle strength and muscle power in community-dwelling older adults. Methods: Six databases were searched from their inception to June $21^{\text {st }}, 2020$ for articles reporting associations between objectively measured PA and SB and upper body or lower body muscle strength or muscle power in community dwelling adults aged 60 years and older. An overview of associations was visualized by effect direction heat maps, standardized effect sizes were estimated with albatross plots and summarized in box plots. Articles reporting adjusted standardized regression coefficients ( $\beta$ ) were included in meta-analyses. Results: A total of 112 articles were included representing 43,796 individuals (range: 21 to 3726 per article) with a mean or median age from 61.0 to 88.0 years (mean 56.4 \% female). Higher PA measures and lower SB were associated with better upper body muscle strength (hand grip strength), upper body muscle power (arm curl), lower body muscle strength, and lower body muscle power (chair stand test). Median standardized effect sizes were consistently larger for measures of PA and SB with lower compared to upper body muscle strength and muscle power. The meta-analyses of adjusted $\beta$ coefficients confirmed the associations between total PA (TPA), moderate-to-vigorous PA (MVPA) and light PA (LPA) with hand grip strength ( $\beta=0.041, \beta=0.057$, and $\beta=0.070$, respectively, all $p \leq 0.001$ ), and TPA and MVPA with chair stand test ( $\beta=0.199$ and $\beta=0.211$, respectively, all $\mathrm{p} \leq 0.001$ ). Conclusions: Higher PA and lower SB are associated with greater skeletal muscle strength and muscle power, particularly with the chair stand test.


[^0]
## 1. Introduction

Low physical activity (PA) and high sedentary behavior (SB) present a global health challenge and they are particularly important in older adult populations as PA declines and SB increases with increasing age (Arnardottir et al., 2013; Ortlieb et al., 2014; Reid and Fielding, 2012). PA is defined as any bodily movement produced by skeletal muscle that requires energy expenditure (Caspersen et al., 1985), while SB is defined as periods of waking activity that produce little or no energy expenditure (Tremblay, 2012; Tremblay et al., 2017). Both PA and SB can be most accurately captured by objective devices such as accelerometers or pedometers, which can capture the incidental, unstructured, and light-intensity movement characterizing the majority of PA in older adults that can otherwise be subject to significant bias when self-reported (Amagasa et al., 2017; Lee and Shiroma, 2014; Lohne-Seiler et al., 2014). PA and SB are closely related but distinct behaviors (van der Ploeg and Hillsdon, 2017) that are each independent determinants of adverse outcomes such as morbidity, disability, poor quality of life, and mortality (Cunningham et al., 2020; Fornias et al., 2014; Rojer et al., 2020; Tak et al., 2013; Vagetti et al., 2014). The degree to which objectively measured habitual PA and SB are associated with other determinants of these adverse outcomes, namely skeletal muscle strength and muscle power (Katzmarzyk and Craig, 2002; Rantanen, 2003), has remained to be unexplored by a systematic review.

Skeletal muscle strength (the amount of force a muscle can produce with a single maximal effort) and muscle power (the ability to exert maximal force in a short time) (Beaudart et al., 2019) decline with chronological age (Beenakker et al., 2010; Chodzko-Zajko et al., 2009; Reid et al., 2014) and are not only functionally important (Wang et al., 2020) but are also key determinants of adverse outcomes such as morbidity, disability, poor quality of life, and mortality (Ling et al., 2010; Meskers et al., 2019; Taekema et al., 2010). Muscle strength and muscle power may therefore play a role in the relationship between PA/SB and adverse outcomes. Establishing and quantifying the association between PA and SB with muscle strength and muscle power is thus a priority for informing potential lifestyle guidelines, interventions and, ultimately, mitigating poor health outcomes.

The aim of this systematic review was to describe and quantify the associations of objectively measured PA and SB with muscle strength and muscle power in community-dwelling older adults.

## 2. Methods

### 2.1. Information sources and search

The protocol for this review was registered in the PROSPERO International prospective register of systematic review (registration number: CRD42018103910). PubMed, EMBASE, the Cochrane Library (via Wiley), CINAHL, PsycINFO, and SPORTDiscus (via EBSCO) were systematically searched according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement (Moher et al., 2009) by two independent assessors (AR and RO) to identify articles published from inception to June $21^{\text {st }}, 2020$ investigating PA and SB in older adults. The full search strategy is presented in Appendix A and included the keywords: 'active or inactive lifestyle'; 'motor activity'; 'people over 60 years of age'. Articles investigating PA and SB in relation to muscle strength and muscle power were organized and managed using EndNote (Version X8.2 Clarivate Analytics, Philadelphia, USA) and Rayyan (Ouzzani et al., 2016).

### 2.2. Eligibility criteria

Articles were considered eligible using the following criteria: 1) English language original article in full text, 2) observational or experimental design, 3) mean or median age of the study population $\geq 60$ years old, 4) study population consisting of community-dwelling
individuals (exclusively institutionalized populations were excluded), 5) objective $\mathrm{PA} / \mathrm{SB}$ measured with an instrument (accelerometer or pedometer), 6) skeletal muscle strength or muscle power reported, 7) the association of objective PA/SB measures and muscle strength/muscle power was reported, 8) associations were reported in control group or using baseline data of intervention studies.

### 2.3. Article selection

The title and abstract of articles were assessed by two independent reviewers (KR and EvdR), for potential eligibility. The subsequent full text screening was performed in duplicate by two independent reviewers (KR and LD or AR). Disagreement was resolved by an additional reviewer (AM). The references of all included articles as well as relevant systematic reviews (Cunningham et al., 2020; Mañas et al., 2017; Osthoff et al., 2013) were screened for additional articles.

### 2.4. Data extraction

Data were extracted in duplicate independently by two reviewers (KR and LD or AR): first author; year of publication; number of participants; study population characteristics; country(s); study design; follow-up period (if applicable); mean age; sex; accelerometer or pedometer device for objective assessment of $\mathrm{PA} / \mathrm{SB}$; wearing location of device; minimum wearing duration to constitute a valid day; number of valid days assessed; number of valid days required for inclusion in analysis; mean device wear time; measures used to assess PA/SB and their definitions; mean (standard deviation (SD)) or median [interquartile range (IQR)] capacity recorded as upper body or lower body and muscle strength or muscle power; measures used to assess muscle strength/muscle power and their definitions; mean (SD) or median [IQR] muscle strength/muscle power; analysis used to study association (s); adjustment model(s); effect size(s) and significance.

### 2.5. Study quality \& risk of bias

Study quality and risk of bias of the included articles were independently assessed by two reviewers (KR and LD or AR) using the ninepoint Newcastle-Ottawa Scale (NOS) adapted for cross-sectional studies and longitudinal studies as presented in Appendix B (Wells et al., 2000, 2012). Articles were assessed by the following domains: 1. selection (representativeness of cohort and ascertainment of exposure), 2. comparability (adjustments and statistical tests), 3. outcome (assessment of outcome measure). Additional outcome criteria assessed for longitudinal studies were duration of follow up period and adequacy of participant retention after follow-up period. High quality versus low quality of articles was defined as $\geq$ or $<4 / 7$ stars for cross-sectional studies and $\geq$ or $<5 / 9$ stars for longitudinal studies, respectively.

### 2.6. Statistical analysis and data visualization

Associations between measures of PA/SB and upper body muscle strength, upper body muscle power, lower body muscle strength and lower body muscle power were reported in tables and synthesized in the following ways in accordance with Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) (Liberati et al., 2009) and Synthesis Without Meta-Analysis (SWiM) guidelines (Campbell et al., 2020): 1. an overview of all associations was qualitatively visualized in effect direction heat maps (Thomson and Thomas, 2013), 2. albatross plots provided visualization and quantification of estimated effect sizes (Harrison et al., 2017), and 3. meta-analyses were performed to obtain a pooled estimate of exclusively adjusted associations. Main PA/SB measures and units were continuous steps (\#/day), activity counts (\#/day), and PA (total PA (TPA), moderate-to-vigorous PA (MVPA), and light PA (LPA)) and SB duration in (all units of time/day). Intensity-based accelerometer measures and PA and SB frequency and accumulation
(bouts) were included in tables within Appendix C. If PA/SB measures were reported in different units or as categorical variables, these were used instead. When more than one statistical test was used, the following hierarchy was applied for reporting each association for all methods of synthesis: 1 . adjusted linear regressions, 2. adjusted logistic regressions (for articles reporting ordinal determinants, p-trend was used and if not, p-values comparing relatively best versus worst categories of PA were used), 3. partial correlations, 4. unadjusted regression/Pearson's correlations 5. Spearman's or Biserial correlations 6. ANOVA or ANCOVA 7. Mann U-Whitney, t-test, or chi-squared. Isotemporal substitution models were not included. Data were reported based on the following order of adjustment models: 1 . age and sex, 2 . age and sex + additional factors, 3 . age or sex + additional factors, 4. neither age nor sex, only other factors 5. unadjusted. The direction of effect was defined as positive when higher PA and lower SB were associated with better muscle strength or muscle power and negative when associations indicated worse muscle strength or muscle power. Positive and negative effect directions were represented by an upwards or downwards triangle in effect direction heat maps and points on the right side (positive effect) or left side (negative effect) of albatross plots. If p-values were not reported, they were calculated using the following methods: for linear regression analyses, the upper and lower limits of the $95 \%$ confidence interval (CI) and regression coefficient were used to calculate the standard error (SE) [(upper limit of CI - lower limit of CI)/3.92], which was used to calculate the absolute value of the z-statistic (regression coefficient/SE), and finally the calculated p-value (p(calc)) $=\exp (-0.717(z)-(0.416$ $\left.\left(z^{2}\right)\right)$ (Altman and Bland, 2011). For Pearson's, partial, Spearman's and point-biserial correlations, the sample size ( $n$ ) and coefficients (Rs)


Fig. 1. Flowchart of the article selection process.
(including, Pearson's R, partial R, Spearman's Rho, and point-biserial R (Rpb)) were used to calculate the $t$-statistic using the following formula: $t$-statistic $=R \sqrt{ }[(n-2) /(1-R)]$. The absolute value of the $t$-statistic and degrees freedom ( $n-2$ ) were compared to the 2 -tailed Student's t-distribution using Microsoft Excel to obtain the p-value. If $\mathrm{R}^{2}$ was reported, the square root was calculated and treated as a correlation to calculate the p -value. P -values that were reported as $\mathrm{p}>0.05$ or $\mathrm{p}<0.05$ and could not be calculated using the above methods were conservatively estimated as $\mathrm{p} \geq 0.25$ (when reported as non-significant) or $0.01 \leq \mathrm{p}<0.05$ (when reported as significant) to be included in the effect direction heat maps and were not included in albatross plots. The following color scheme was used in the effect direction heat maps: $\mathrm{p}<0.001$ (darkest blue filled triangle), $0.001 \leq \mathrm{p}<0.01$ (blue filled triangle), $0.01 \leq \mathrm{p}<0.05$ (light blue filled triangle), $0.05 \leq \mathrm{p}<0.1$ (light grey empty triangle), $0.1 \leq p<0.25$ (grey empty triangle), and $p \geq 0.25$ (dark grey empty triangle). Albatross plots were created using Stata Statistical Software: Release 16.0 (StataCorp LLC, College Station, Texas, United States) to assess the approximate magnitude of associations as a function of sample size against two-sided p-values stratified by the observed direction of the effect. Contour lines were superimposed on the plot to evaluate the hypothetical effect sizes, designated as standardized regression coefficients $(\beta s)$ and were derived from the following equation: $N=\left(1-\beta^{2} / \beta^{2}\right) Z_{p}$ (where $Z_{p}$ is the $z$ value for the associated 2 -sided p-value) (Harrison et al., 2017). Albatross plots were made for each association between PA/SB measures and outcomes if reported in at least five studies. Albatross plots were visually interpreted for scatter of $\beta$ coefficients relative to three displayed contour lines and $\beta$ coefficients were summarized in box plots that were made using Plotly (Plotly Technologies Inc., Montreal, Québec, Canada). Articles were included in the meta-analyses if the associations between PA or SB measures and hand grip strength or chair stand test were expressed as adjusted (order of adjustment models as given above) standardized regression coefficients ( $\beta$ ) and their $95 \% \mathrm{CI}$ or SE or when these could be calculated. PA/SB measures for meta-analyses were grouped into total PA (TPA), moderate-to-vigorous PA (MVPA) duration, and light PA (LPA) duration. TPA included TPA duration, inverse SB duration, steps per day and number of breaks in sedentary behavior (BST). $\beta$ coefficients were inversed for outcomes where a lower score indicated better performance. Adjusted unstandardized regression coefficients (B) were converted to $\beta$ coefficients using the following formulas:
$\beta=\frac{S D_{x}}{S D_{y}} B$ and $\operatorname{SE}(\beta)=\frac{S D_{x}}{S D_{y}} \operatorname{SE}(B)$
Where $\mathrm{SD}_{\mathrm{x}}$ and $\mathrm{SD}_{\mathrm{y}}$ are the standard deviations of $\mathrm{PA}(\mathrm{x})$ and hand grip strength or chair stand test (y), respectively (Nieminen et al., 2013). If SDs were not reported, they were calculated from the SE (or $95 \% \mathrm{CI}$ ) using the following formula: $\mathrm{SD}=\sqrt{ } \mathrm{n}$ (SE) (Cochrane Handb. Syst. Rev. Interv., 2019). If SE (B) was not reported, it was calculated from the 95 $\%$ CI of B using the previously mentioned formula. Correlation data from articles that did not perform a linear regression analysis, but reported all intercorrelations between PA/SB, hand grip strength or chair stand test, and age and/or sex Pearson's $r$ (i.e. correlation matrices) and their calculated SE were used to calculate the age and/or sex adjusted $\beta$ (SE $\beta$ ) using the following formulas:

SE of correlations : $\mathrm{SE}(\mathbf{r})=\sqrt{\frac{1-\boldsymbol{r}^{2}}{n-2}}$
One covariate model : $\boldsymbol{\beta}_{x_{1}, x_{2}}=\frac{r_{y x_{1}}-r_{y x_{2}} r_{x_{1} x_{2}}}{1-\boldsymbol{r}_{x_{1} x_{2}}^{2}}$ and $\operatorname{SE}\left(\boldsymbol{\beta}_{x_{1}, x_{2}}\right)$

$$
=\frac{\boldsymbol{S E}\left(\boldsymbol{r}_{y x_{1}}\right)-\boldsymbol{S} \boldsymbol{E}\left(\boldsymbol{r}_{y x_{2}}\right) \boldsymbol{S E}\left(\boldsymbol{r}_{x_{1} x_{2}}\right)}{1-\boldsymbol{S E}\left(\boldsymbol{r}_{x_{1} x_{2}}^{2}\right)}
$$



Fig. 2. Effect direction heat maps of the associations between physical activity and sedentary behavior with upper (A, B, C, D) and lower body (E, F, G) muscle strength and muscle power.

|  | Legend <br> Effect direction and $p$-value <br> +/-=positive/negative effect direction (higher PA/lower SB associated with better (+) or worse (-) muscle strength /power), N/R=not reported PA/SB <br> Counts = activity counts, TPA= total physical activity, MVPA= moderate-to-vigorous physical activity, LPA= light physical activity, $\mathrm{SB}=$ sedentary behavior Muscle strength/power $\mathrm{UB}=$ upper body, $\mathrm{LB}=$ lower body, MS = muscle strength, $\mathrm{MP}=$ muscle power Articles d = population selected for disease, Underline $=$ longitudinal design, (sub-groups): $F=$ female, $M=$ male, $+/-=$ with or without disease, $O b=o b e s i t y, ~ y e a r s, ~$ $P G=$ exercise , $N P G=$ non-exercise, $L F G=$ low functioning group, $H F G=$ high functioning group [Muscle strength/power specific measures] KES = knee extension strength, |
| :---: | :---: |



Fig. 2. (continued).

Two covariate model : $\boldsymbol{\beta}_{x_{1} \cdot x_{2} x_{3}}=\frac{\left(1-\boldsymbol{r}_{x_{2} x_{3}}^{2}\right) \boldsymbol{r}_{y x_{1}}+\left(\boldsymbol{r}_{x_{1 \times 3} x_{3}} \boldsymbol{r}_{x_{2} x_{3}} \boldsymbol{r}_{x_{1} x_{2}}\right) \boldsymbol{r}_{y_{x_{2}}}+\left(\boldsymbol{r}_{x_{1} x_{2}} \boldsymbol{r}_{x_{2} x_{3}-} \boldsymbol{r}_{x_{1} x_{3}}\right) \boldsymbol{r}_{\boldsymbol{y}_{x_{3}}}}{1-\boldsymbol{r}_{x_{1} x_{2}}^{2}-\boldsymbol{r}_{x_{1} x_{3}}^{2}-\boldsymbol{r}_{x_{2} x_{3}}^{2}+2 \boldsymbol{r}_{x_{1} x_{2}} \boldsymbol{r}_{x_{1} x_{3}} \boldsymbol{r}_{x_{2} x_{3}}}$


Where r is Pearson's correlation coefficient, n is the sample size, $\mathrm{x}_{1}$ is the $\mathrm{PA} / \mathrm{SB}$ variable (independent variable), $\mathrm{x}_{2}$ is age or sex in the onecovariate model and $x_{2}$ and $x_{3}$ are age and sex in the two-covariate model (independent variables being held constant for adjustment), and $y$ is hand grip strength or chair stand test (dependent variable)
(Cohen et al., 2003; Fernández-Castilla et al., 2019). All formulas and required data were entered manually and calculations were performed using Microsoft Excel (Version 16.16.22). A random-effects model was used due to heterogeneity between studies and results were visualized by forest plots. Heterogeneity was assessed using I ${ }^{2}$ statistics; an $I^{2}$ value


Fig. 3. Effect sizes of physical activity and sedentary behavior with muscle strength and muscle power derived from albatross plots, expressed as standardized regression coefficients ( $\beta$ ).
above 25 \% was considered as low, above $50 \%$ as moderate and above $75 \%$ as high heterogeneity. Funnel plots, depicting $\beta$ coefficient against SE, were used for visual evaluation and Egger's regression test for statistical detection of publication bias ( $\mathrm{p}<0.05$ indicating publication bias) (Egger et al., 1997). Meta-analyses were performed in Comprehensive Meta-Analysis (CMA) software (Biostat, Englewood, New Jersey, United States).

## 3. Results

### 3.1. Search results and study characteristics

A total of 18,086 articles were identified and 9,660 were left after removal of duplicates. Full texts were assessed of 1,017 articles and 112 articles were included (Fig. 1); all extracted data are provided in tables in Appendix C (Tables C1-C5), which are synthesized in Figs. 2-4 and in figures in Appendix D (Figs. D1-D8). Included articles represent a total of 43,796 individuals (range across articles: 21 to 3,726 ) with an average of $56.4 \%$ female and the study populations' mean or median age ranged from 61.0-88.0 years. Sixty-two articles reported exclusively on community dwelling older adults or community-based samples from the general population. Other articles included community dwelling populations selected for specific disease (or health conditions) and included chronic obstructive pulmonary disorder $(n=14)$, osteoarthritis $(n=6)$, diabetes $(n=3)$, limited mobility ( $n=3$ ), any chronic disease ( $n=1$ ), HIV ( $\mathrm{n}=1$ ), interstitial lung disease $(\mathrm{n}=1)$, peripheral artery disease ( $\mathrm{n}=1$ ), global cognitive impairment $(\mathrm{n}=1)$, aortic stenosis $(\mathrm{n}=1)$, stroke ( $n=1$ ), chronic idiopathic axonal polyneuropathy ( $n=1$ ), and polio ( $n=1$ ). All articles reported cross-sectional associations except for four reporting longitudinal associations (Demeyer et al., 2019; Scott et al., 2011; Semanik et al., 2015; Yuki et al., 2019) (Table C1).

According to the NOS scale, 81 out of 112 articles were high quality (Table C2).

### 3.2. Measures of physical activity and sedentary behavior

PA and SB were measured by use of an accelerometer in 92 of articles, while in 20 articles a pedometer was used. PA was expressed as number of steps (or walking duration), number of activity counts, TPA duration (or standing + walking duration, time on feet, and nonsedentary time), MVPA duration (or vigorous PA and moderate PA duration, individually), and SB was expressed as SB duration (or lying, sitting, basal activity, and inactive time). Intensity-based accelerometer measures were number of vector magnitude units (VMU), total volume (metabolic equivalent tasks/hour), energy-expenditure (EE) (or physical activity level (PAL) (EE/sleeping metabolic rate)), and intensity gradient (intensity vs. time). Measures of PA and SB frequency and accumulation (bouts) were reported as number and duration of PA bouts, number of breaks in SB (BST), number of breaks per sedentary hour (SB break rate), number and duration of SB bouts, and number and duration of long SB bouts (Table C3).

### 3.3. Associations of $P A$ and $S B$ with muscle strength and muscle power

Table C4 describes muscle strength and muscle power measurement; Table C5 provides all associations, which are visualized by effect direction heat maps in Fig. 2, Figs. D1 and D2; Fig. 3 summarizes $\beta$ s (median [IQR]) obtained from the albatross plots in Figure D3-D7; and meta-analyses of adjusted $\beta$ s are presented in Fig. 4 with corresponding funnel plots in Figure D8.

 hand grip strength $(A, B, C)$ and chair stand test (D, E), respectively.
${ }^{\text {a }}$ Bann 2015 reported approximate gender distribution and sample sizes were subsequently estimated for males and females from the total population, respectively.
${ }^{\mathrm{b}}$ Rowlands 2018 reported determinant and outcome driven sample size as a range and the median was subsequently used as the estimate for sample size.

### 3.3.1. Upper body muscle strength

Hand grip strength was reported in 41 articles. Higher TPA (median [IQR], $\beta=0.100$ [0.090-0.116]), MVPA ( $\beta=0.081$ [0.059-0.125]), activity counts ( $\beta=0.082$ [0.077-0.110]), LPA ( $\beta=0.066$ [0.024-0.109]), steps ( $\beta=0.070[-0.013-0.156]$ ), and lower SB $(\beta=0.066[0.044-$ 0.092]) were associated with higher hand grip strength (Fig. 3 and Fig. D3). However, the association of steps and hand grip strength was inconsistent in direction of effect and significance (Fig. 2). Positive associations were confirmed in the pooled meta-analysis of adjusted $\beta$ s for the associations of TPA and hand grip strength including 10 articles representing 6,995 individuals ( $\beta=0.041,95 \%$ CI: $0.017-0.065$, $\mathrm{p}=0.001, \mathrm{I}^{2}=52.2$ ); MVPA and hand grip strength including four articles representing 2,983 individuals ( $\beta=0.070,95 \% \mathrm{CI}: 0.036-0.104$, $\mathrm{p}=0.000, \mathrm{I}^{2}=0.0$ ); and LPA and hand grip strength including four articles representing 3,215 individuals ( $\beta=0.057,95 \% \mathrm{CI}: 0.024-0.090$, $\mathrm{p}=0.001, \mathrm{I}^{2}=0.0$ ) (Fig. 4). Intensity-based accelerometer measures of PA were inconsistently associated with hand grip strength (Fig. D1) and measures of PA and SB frequency and accumulation (bouts) were not associated with hand grip strength (Fig. D2). All PA/SB measures were associated with greater shoulder press strength; steps and activity counts were not associated with chest press strength (Fig. 2).

### 3.3.2. Upper body muscle power

The number of arm curls completed within 30 s was reported in nine articles. Associations between higher steps and lower SB with arm curl were positive and significant, while associations of MVPA with arm curl were positive ( $\beta=0.077$ [0.069-0.170]) but only significant in one out of four associations (Figs. 2 and 3). Activity counts were not associated with chest press power (Fig. 2).

### 3.3.3. Lower body muscle strength

Knee extension strength was reported in 24 articles, leg press strength in seven, leg strength in six, knee flexion strength in four, knee extension torque in three, hip strength in one, toe grasping strength in one, and calf strength in one. Higher steps ( $\beta=0.244$ [0.118-0.316]), MVPA ( $\beta=0.206$ [0.175-0.386]), TPA ( $\beta=0.193$ [0.160-0.250]), activity counts ( $\beta=0.207$ [0.046-0.263]), and LPA ( $\beta=0.105$ [0.040$0.234]$ ) were associated with better lower body strength (Fig. 3 and Fig. D5). While the positive direction of effect of lower SB with better lower body muscle strength was consistent for all associations ( $\beta=0.140$ [0.033-0.205]), results were only statistically significant in one of nine associations (Fig. 2, Fig. 3, and Fig. D5). Intensity-based accelerometer measures, EE and VMU, were positively associated with lower body muscle strength, while MET was not (Fig. D1)

### 3.3.4. Lower body muscle power

Chair stand tests were reported in 51 articles. Higher PA and lower SB were consistently associated with better chair stand test performance (Fig. 2 and Fig. D1), with the exception of measures of PA and SB frequency and accumulation (Fig. D2). The largest effect size was identified for steps ( $\beta=0.277[0.254,0.348]$ ) with chair stand test and followed respectively by activity counts ( $\beta=0.225$ [0.167-0.291]), MVPA ( $\beta=0.239$ [0.145-0.326]), LPA ( $\beta=0.173$ [0.0078-0.228]), and SB ( $\beta=0.169$ [0.072-0.275]) (Fig. 3 and Fig. D6). Pooled adjusted $\beta$ s of TPA and MVPA with chair stand test included ten articles representing 3,495individuals and five articles representing 2486 individuals, respectively and both TPA ( $\beta=0.199,95 \%$ CI: $0.132-0.266, p=0.000$, $\mathrm{I}^{2}=61.21$ ) and MVPA ( $\beta=0.211,95 \%$ CI: $0.103-0.319, \mathrm{p}=0.000$, $\mathrm{I}^{2}=80.00$ ) were significantly associated with better chair stand test performance (Fig. 3). Leg press power at varying percentages of an individual's 1RM and/or peak power was reported in five articles, and leg extensor power (Nottingham Power Rig), jumping power, the calf raise test (\# of calf raises $/ 30$ s), and the squat jump test were each reported in one article. Associations between PA and SB with these lower body muscle power measures were not consistently significant (Fig. 2, Fig. D1, Fig. D2). The median magnitude of effect for MVPA and lower body
muscle power ( $\beta=0.220$ [0.125-0.269]) was consistent with that of chair stand test (Fig. 3 and Fig. D7).

### 3.3.5. Longitudinal associations

Seven articles reported longitudinal associations. Neither baseline nor change in PA was associated with changes with hand grip strength in two articles: non-significant associations were found between steps, MVPA, and SB, and change in steps with change in hand grip strength after 2.6 years in a COPD population (Demeyer et al., 2019) and non-significant associations were found between steps, LPA, and MVPA with development of low hand grip strength after 4.2 years in a community dwelling population (Yuki et al., 2019). Bidirectional positive associations of PA and lower body muscle strength were identified in three articles: a highly significant association was found between steps and change in leg strength over 2.6 years in females ( $\mathrm{B}=1.06,95 \% \mathrm{CI}$ : $0.31,1.31$ ) but not males ( $\mathrm{B}=-0.28,95 \% \mathrm{CI}:-1.27,0.72$ ) in a general population (Scott et al., 2011); a highly significant association was found between change in lower extremity strength after 4 years and the course of change in steps over four different time points spanning a total follow-up of 4 years ( $B=-1782,95 \% \mathrm{CI}:-3348,-217$ ) in a population with chronic idiopathic axonal polyneuropathy (van Oeijen et al., 2020); KES was associated with change after 1 year in MET and VMU ( $B=-0.001$ ( $\mathrm{SE}=6.00 \mathrm{E}-4$ ) and $\mathrm{B}=-0.005$ ( $\mathrm{SE}=0.002$ ), respectively), but not with steps or MVPA in a COPD population (Boutou et al., 2019). Two articles, including participants from the Osteoarthritis Initiative, showed a highly significant association between SB and change in chair stand test after 2 years ( $B=-0.58,95 \% C I:-0.92,-0.24$ ) (Semanik et al., 2015) in 1 , 659 participants but not for meeting guidelines for MVPA and change in chair stand test after 4 years 687 participants (Hopkins, 2019).

### 3.3.6. Influence of population

Stratification of the associations of PA/SB and muscle strength and muscle power by population showed similar distributions of effect directions, p-values, and $\beta$ coefficients (Figs. 2-4 and Figure D1-D7).

### 3.3.7. Publication bias in meta-analyses

Funnel plots were visually evaluated and did not show asymmetry, indicating no evidence for the presence of publication bias in metaanalyses, except for a positive skew in the meta-analysis of TPA and hand grip strength. Egger's regression tests confirmed that no evidence for publication bias (all $\mathrm{p}>0.05$ ) was present, except of the TPA and hand grip strength meta-analysis ( $\mathrm{p}=0.000$ ) (Fig. D8).

## 4. Discussion

This systematic review highlights the association between higher PA and lower SB with greater skeletal muscle strength and muscle power. Specifically, strongest associations were with lower body muscle strength and muscle power, and evidence was most consistent for the performance of the chair stand test. The associations were independent of the population studied. Meta-analyses of adjusted associations confirmed these results for hand grip strength and chair stand test. Longitudinal findings indicated bidirectional associations between PA and SB with lower body muscle strength and SB with chair stand test, but, contrastingly, a lack thereof with hand grip strength. These findings were in line with cross-sectional results, which identified larger effect sizes and more frequently significant associations for lower body muscle strength and muscle power than hand grip strength.

Higher PA and lower SB, using various objective measures, were associated with greater muscle strength and muscle power. MVPA was the most often reported measure and often positively associated with muscle strength and muscle power, which was an anticipated finding as MVPA is a strong determinant and predictor of health outcomes (Adelnia et al., 2019; Hupin et al., 2015; Menai et al., 2017). The positive association of activity counts with muscle strength and muscle power is in accordance with our findings for MVPA, as higher activity counts
reflect higher intensity. Additional positive associations identified for LPA and negative associations for SB with muscle strength and muscle power are important in light of the substantial amount of time older adults spend in these two behaviors (Amagasa et al., 2017; Arnardottir et al., 2017; Harvey et al., 2015). However, the relatively strongest effect sizes for all outcomes were with steps and TPA, suggesting that all levels of physical activity can contribute to the positive associations with muscle strength and muscle power.

Evidence for the association of higher PA and lower SB with greater hand grip strength was present for all measures, except for PA and SB bout measures, and was most consistent for MVPA and activity counts. Hand grip strength is the most often used measure of muscle strength in clinical practice because of its practical advantages and clinical relevance (Beaudart et al., 2019; Reijnierse et al., 2017) and was also the most often reported measure in this review. Clear positive associations of MVPA and activity counts with hand grip strength can likely be explained by the incorporation for upper body muscle strength in high intensity PA. However, previous studies have cautioned the use of hand grip strength as a proxy for overall muscle strength and highlighted the need for lower body muscle strength measures (e.g. knee extension strength) as part of geriatric assessments (Yeung et al., 2018), which is in accordance with the present findings.

PA and SB were most associated with lower body muscle strength and muscle power measures, particularly, the performance of the chair stand test, which is a highly relevant finding given lower body muscle power, compared to muscle strength, is more important for activities of daily living (Foldvari et al., 2000; Wang et al., 2020) and thus the ability to remain living independently (Luppa et al., 2010; Mlinac and Feng, 2016). Muscle power is most affected by ageing with an annual decline of approximately $3 \%$ compared to muscle strength and muscle mass with annual decline of approximately $2 \%$ and $1 \%$, respectively (Reid et al., 2014). Furthermore, lower body muscle strength and muscle power decline faster during ageing compared to upper body measures (Hughes et al., 2001). This supports our longitudinal findings that, bidirectionally, PA and SB are associated with lower body muscle strength. However, we identified inconsistent longitudinal results for chair stand test: in 1,659 participants from the Osteoarthritis Initiative, there was a highly significant association between SB and change in chair stand test over 2 years which persisted after additional adjustment for MVPA (Semanik et al., 2015); on the other hand, in 687 participants from the same cohort, meeting MVPA guidelines was not associated with better chair stand test at 4 years follow-up (Hopkins, 2019). While there were substantial differences in loss to follow up in these two articles (13 $\%$ vs. $64 \%$, respectively), results may reiterate the distinction between PA and SB and indicate that, independent of MVPA, sedentary behavior is a stronger determinant of future muscle power than MVPA. This is an important finding given the increasing evidence of the distinct and deleterious effects of SB on future health status. This highlights the importance to design interventions to prevent or slow the decline in lower body muscle strength and power over time with consideration of differences between PA and SB.

Increasing habitual PA has well-established benefits to health (Bravata et al., 2007; Füzéki et al., 2017; Haider et al., 2019). However, inconclusive results on the ability of exercise interventions (structured PA) to improve muscle strength or muscle power have been reported (Clemson et al., 2012; Haider et al., 2019; Liu et al., 2014). Interventions to increase habitual PA in older adults typically include aerobic, balance and strength components. When these multicomponent interventions include resistance exercises, greater increases in muscle strength and muscle power are found (Ferreira et al., 2012; Liu et al., 2014). This is in line with the evidence that progressive resistance exercise training is very effective at increasing muscle strength and muscle power in older adults (Chodzko-Zajko et al., 2009; Guizelini et al., 2018; Straight et al., 2016). However, integrating exercise into lifestyle post-intervention remains a challenge and, subsequently, improvements in PA are often not sustained (McEwan et al., 2020; Sansano-Nadal et al., 2019).

Behavioral change interventions that are complimentary to PA and SB behaviors in daily life, including strength activities such as squatting, lunging and wall sitting, may be more suitable than structured exercise interventions for long-term and sustainable increases in PA and maintenance of muscle strength and muscle power. These behavioral change interventions have been proven feasible in middle aged individuals (Schwenk et al., 2019; Taraldsen et al., 2019) and effective in improving PA, muscle strength, and reducing the number of falls in older individuals (Clemson et al., 2012, 2010).

### 4.1. Strengths and limitations

To the best of our knowledge, this is the first systematic review summarizing the associations between objective measures of PA and SB with skeletal muscle strength and muscle power in older adults. The primary strength of this review is the broad array of PA, SB, muscle strength and muscle power measures included which led to a high number of articles included. The use of exclusively objective measures of PA and SB represents a strength of this review as questionnaires may not capture unstructured PA or LPA (i.e. shuffling) (Amagasa et al., 2017; Manns et al., 2012) and older adults are susceptible to over-report PA and under-report SB (Colbert et al., 2011; Dyrstad et al., 2014; Van Cauwenberg et al., 2014). However, it is important to acknowledge that objective measures of PA and SB are limited in their capacity to measure the mode or type of PA or SB including resistance loading during activities, which presents a limitation. Furthermore, the inclusion of diverse and disease populations strengthens the generalizability of our results, but a limitation was our inclusion of only English-language articles. We identified considerable heterogeneity in study design, measures of $\mathrm{PA} / \mathrm{SB}$ and muscle strength and muscle power and their definitions and statistical analyses used to present the associations. This posed methodological challenges to comparing and synthesizing our results. Nonetheless, we were able to show standardized effect estimates in albatross plots for all associations. This also enhanced the synthesis by avoiding reliance on p -values which are heavily driven by sample size regardless of the magnitude of true underlying effects (Sullivan and Feinn, 2012). Furthermore, we performed a meta-analysis for included articles reporting adjusted standardized regression data that confirmed our overall results.

### 4.2. Implications

There is both a clinical and public health urgency to identify the degree to which PA and SB can affect health (Taylor, 2014). Given the consequences of low muscle strength and muscle power including increased risk of falls, disability, and mortality and the subsequent public health burden of their high prevalence worldwide (Borges et al., 2020; Manini and Clark, 2012; Mitchell et al., 2012), the current study has significant implications for policy making. This systematic review quantifies the relative impact of higher duration, intensity, and frequency of PA and lower SB on muscle strength and muscle power, and thus provides a foundation to inform interventions; absolute quantification is a priority for future lifestyle guidelines and the management of modifiable risk factors.

## 5. Conclusion

Higher PA and lower SB are associated with greater skeletal muscle strength and muscle power in older adults, particularly with the chair stand test. Future research should investigate habitual resistance exercise components, while increasing PA and decreasing SB, and seek to identify specific thresholds as actionable targets to maintain and improve skeletal muscle strength and muscle power.

## Funding

This work was supported by the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement [675003].
http://www.birmingham.ac.uk/panini

## Declaration of Competing Interest

The authors report no declarations of interest.

## Acknowledgements

We would like to thank Eva van de Rijt, Elvira Amaral Gomes, Waner Zhou, and Alec Tolley for their contributions to this project. We would also like to thank all members of the PANINI consortium: Anna C. Whittaker, School of Sport, Exercise \& Rehabilitation Sciences, University of Birmingham, UK; Evans A. Asamane, School of Sport, Exercise \& Rehabilitation Sciences, University of Birmingham, UK; Justin Aunger, School of Sport, Exercise \& Rehabilitation Sciences, University of Birmingham, UK; Kally Bhartti, School of Sport, Exercise \& Rehabilitation Science, University of Birmingham, UK; Maria Giulia Bacalini, Institute of Neurological Sciences (IRCCS), Bologna, Italy; Dmitriy Bondarev, Gerontology Research Center \& Faculty of Sport and Health Sciences, University of Jyväskylä, Finland; Bart Bongers, Department of Epidemiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; Andrea Cabbia, Department of Biomedical Engineering, Eindhoven University of Technology, Netherlands; Massimo Delledonne, Personal Genomics, University of Verona, Italy; Paul Doody, School of Sport, Exercise \& Rehabilitation Sciences, University of Birmingham, UK; Taija Finni, Neuromuscular Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Finland; Claudio Franceschi, Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Paolo Garagnani, Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Noémie Gensous, Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Carolyn Greig, School of Sport, Exercise \& Rehabilitation Sciences \& MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham,

UK; Peter Hilbers, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands; Barbara Iadarola, Personal Genomics, University of Verona, Italy; Victor Kallen, The Netherlands Organisation for Applied Scientific Research, The Netherlands; Katja Kokko, Gerontology Research Center \& Faculty of Sport and Health Sciences, University of Jyväskylä, Finland; Anna Elisa Laria, Personal Genomics, University of Verona, Italy; Janet Lord, Institute of Inflammation and Ageing, Medical School \& MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, UK; Andrea B. Maier, Department of Human Movement Sciences, Amsterdam Movement Sciences, VU University Amsterdam, The Netherlands \& Department of Medicine and Aged Care, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia; Carel G.M. Meskers, Department of Rehabilitation Medicine, VU University Medical Center \& Amsterdam Movement Sciences, Amsterdam, The Netherlands; Paola Pazienza, Personal Genomics, University of Verona, Italy; Esmee M. Reijnierse, Department of Medicine and Aged Care, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia; Belina Rodrigues, School of Medicine, University of Minho, Portugal; Nadine Correia Santos, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, and ICVS/ 3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Nuno Sousa, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; Sarianna Sipila, Gerontology Research Center \& Faculty of Sport and Health Sciences, University of Jyväskylä, Finland; Keenan A. Ramsey, Department of Human Movement Sciences, Amsterdam Movement Sciences, VU University Amsterdam, Muhammad Rizwan Tahir; The Netherlands Organisation for Applied Scientific Research, The Netherlands; Marijke C Trappenburg, Department of Internal Medicine, VU University Medical Center \& Amstelland Hospital, The Netherlands; Janice L. Thompson, School of Sport, Exercise \& Rehabilitation Sciences, University of Birmingham, UK; Nico van Meeteren, Health~Holland, The Hague, \& Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands; Natal van Riel, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands; Suey Yeung, Department of Human Movement Sciences, Amsterdam Movement Sciences, VU University Amsterdam, The Netherlands.

Appendix A. Full search strategy (June 21, 2020)
PubMed

| \# | Query | Results |
| :---: | :---: | :---: |
| \#14 | \#10 AND \#13 | 5.729 |
| \#13 | \#11 OR \#12 | 2.085.084 |
| \#12 | "Motor Activity"[Mesh:NoExp] OR "Exercise"[Mesh] OR "Sports"[Mesh] OR "Physical Exertion"[Mesh] OR "Early Ambulation"[Mesh] OR "Exercise Therapy"[Mesh] OR "Exercise Movement Techniques"[Mesh] OR "Locomotion"[Mesh] OR "Motor Activit""[tiab] OR "Physical Activit*"[tiab] OR "Locomotor Activit*"[tiab] OR "Exercis*"[tiab] OR "Physical Exercis*"[tiab] OR "Isometric Exercis*"[tiab] OR "Aerobic Exercis*"[tiab] OR "training"[tiab] OR "stretching"[tiab] OR "Physical Condition*"[tiab] OR "Physical fitness"[tiab] OR "Physical endurance"[tiab] OR "movement therap*"[tiab] OR "fitness training"[tiab] OR "Plyometric"[tiab] OR "Stretch-Shortening"[tiab] OR "Weight-Lifting"[tiab] OR "Weight-Bearing"[tiab] OR "running"[tiab] OR "jogging"[tiab] OR "walk*"[tiab] OR "bicycle"[tiab] OR "cycle"[tiab] OR "bicycling"[tiab] OR "cycling"[tiab] OR "rowing"[tiab] OR "swim*"[tiab] OR "ambulation"[tiab] OR "mobil*"[tiab] OR "pilates"[tiab] OR "yoga"[tiab] | 2.061.636 |
| \#11 | "Sedentary Behavior"[Mesh] OR "sedent*"[tiab] OR "sitting"[tiab] OR "physical inactivit*"[tiab] | 61.174 |
| \#10 | \#3 OR \#5 OR \#9 | 10.790 |
| \#9 | \#1 AND \#8 | 4.320 |
| \#8 | \#6 AND \#7 | 19.226 |
| \#7 | "Monitoring, Physiologic"[Mesh:NoExp] OR "Monitoring, Ambulatory"[Mesh:NoExp] OR "monitoring"[tiab] | 528.186 |
| \#6 | "Heart Rate"[Mesh:NoExp] OR "cardiac rate*"[tiab] OR "heart rate*"[tiab] OR "pulse rate*"[tiab] OR "cardiac frequency"[tiab] OR "heart frequency"[tiab] | 246.877 |
| \#5 | \#1 AND \#4 | 868 |
| \#4 | "pedomet*"[tiab] | 2.755 |
| \#3 | \#1 AND \#2 | 5.977 |
| \#2 | "Accelerometry"[Mesh] OR "Acceleromet*"[tiab] OR "actigra*"[tiab] | 23.701 |
| \#1 |  | 3.334.172 |
| (continued on next page) |  |  |

(continued)

| \# | Query | Results |
| :---: | :---: | :---: |
|  | ("Aged"[Mesh] OR "Aged, 80 and over"[Mesh] OR "Frail Elderly"[Mesh] OR "Geriatrics"[Mesh] OR "Geriatric Psychiatry"[Mesh] OR "Geriatric Nursing"[Mesh] OR "Geriatric Dentistry"[Mesh] OR "Dental Care for Aged"[Mesh] OR "Health Services for the Aged"[Mesh]) OR ("elder*"[tw] OR "eldest"[tw] OR "frail""[tw] OR "geriatri*" $[t w]$ OR "old age"" $[t w]$ OR "oldest old*" $[t w]$ OR "senior*" $[t w]$ OR "senium" $[t w]$ OR "very old""[tw] OR "septuagenarian*"[tw] OR "octagenarian*" $[t w]$ OR "octogenarian*" $[t w]$ OR "nonagenarian*" $[t w]$ OR "centarian*" $[t w]$ OR "centenarian*"[tw] OR "supercentenarian*" $[t w]$ OR "older people" $[t w]$ OR "older subject""[tw] OR "older patient""[tw] OR "older age*" $[t w]$ OR "older adult"" $[t w]$ OR "older man" $[t w]$ OR "older men" $[t w]$ OR "older male" $[t w]$ OR "older woman" $[t w]$ OR "older women" $[t w]$ OR "older female" $[t w]$ OR "older population*"[tw] OR "older person*"[tw]) |  |

## Embase.com

| \# | Query | Results |
| :---: | :---: | :---: |
| \#15 | \#10 AND \#14 | 6.801 |
| \#14 | \#11 OR \#12 OR \#13 | 2.695.910 |
| \#13 | ((motor NEXT/1 activit*):ab,ti,kw) OR ((physical NEXT/1 activit*):ab,ti,kw) OR locomot*:ab,ti,kw OR exercis*:ab,ti,kw OR training:ab,ti,kw OR stretching:ab, ti,kw OR ((physical NEXT/1 condition*):ab,ti,kw) OR 'physical fitness':ab,ti,kw OR 'physical endurance':ab,ti,kw OR ((movement NEXT/1 therap*):ab,ti,kw) OR plyometric:ab,ti,kw OR 'stretch shortening':ab,ti,kw OR 'weight lifting':ab,ti,kw OR 'weight bearing':ab,ti,kw OR running:ab,ti,kw OR jogging:ab,ti,kw OR walk*:ab,ti,kw OR bicycle:ab,ti,kw OR cycle:ab,ti,kw OR bicycling:ab,ti,kw OR cycling:ab,ti,kw OR rowing:ab,ti,kw OR swim*:ab,ti,kw OR ambulation:ab,ti,kw OR mobil*: ab,ti,kw OR pilates:ab,ti,kw OR yoga:ab,ti,kw | 2.314.193 |
| \#12 | 'motor activity'/de OR 'exercise'/exp OR 'sport'/exp OR 'mobilization'/exp OR 'kinesiotherapy'/exp OR 'physical activity'/exp OR 'fitness'/exp OR 'locomotion'/exp | 951.571 |
| \#11 | 'sedentary lifestyle'/exp OR 'sitting'/exp OR 'physical inactivity'/exp OR sedent*:ab,ti,kw OR sitting:ab,ti,kw OR ((physical NEXT/1 inactivit*):ab,ti,kw) | 91.488 |
| \#10 | \#3 OR \#5 OR \#9 | 12.541 |
| \#9 | \#1 AND \#8 | 4.407 |
| \#8 | \#6 AND \#7 | 25.596 |
| \#7 | 'physiologic monitoring'/exp OR 'ambulatory monitoring'/exp OR monitoring:ab,ti,kw | 709.204 |
| \#6 | 'heart rate'/de OR 'heart rate variability'/de OR 'resting heart rate'/de OR 'cardiac rate':ab,ti,kw OR 'heart rate':ab,ti,kw OR 'pulse rate':ab, ti,kw OR 'cardiac frequency':ab,ti,kw OR 'heart frequency':ab,ti,kw | 318.213 |
| \#5 | \#1 AND \#4 | 1.097 |
| \#4 | 'pedometer'/exp OR 'pedometry'/exp OR pedomet*:ab,ti,kw | 4.154 |
| \#3 | \#1 AND \#2 | 7.844 |
| \#2 | 'accelerometry'/exp OR 'accelerometer'/exp OR 'actimetry'/exp OR 'actigraph'/exp OR acceleromet*:ab,ti OR actigra*:ab,ti | 36.929 |
| \#1 | 'aged'/exp OR 'geriatrics'/exp OR 'elderly care'/exp OR elder*:de,ab,ti OR eldest:de,ab,ti OR frail*:de,ab,ti OR geriatri*:de,ab,ti OR ((old NEXT/1 age*):de,ab, ti) OR ((oldest NEXT/1 old*):de,ab,ti) OR senior*:de,ab,ti OR senium:de,ab,ti OR ((very NEXT/1 old*):de,ab,ti) OR septuagenarian*:de,ab,ti OR octagenarian*: de,ab,ti OR octogenarian*:de,ab,ti OR nonagenarian*:de,ab,ti OR centarian*:de, ab,ti OR centenarian*:de,ab,ti OR supercentenarian*:de,ab,ti OR 'older people':de,ab,ti OR ((older NEXT/1 subject*):de,ab,ti) OR ((older NEXT/1 patient*):de,ab,ti) OR ((older NEXT/1 age*):de,ab,ti) OR ((older NEXT/1 adult*):de, ab,ti) OR 'older man': de, ab, ti OR 'older men': de, ab, ti OR 'older male':de, ab, ti OR 'older woman': de, ab, ti OR 'older women':de, ab, ti OR 'older female': de, ab, ti OR ((older NEXT/1 population*):de,ab,ti) OR ((older NEXT/1 person*):de,ab,ti) | 3.432.221 |

The Cochrane Library (via Wiley)

| \# | Query | Results |
| :---: | :---: | :---: |
| \#14 | \#10 and \#13 | 920 |
| \#13 | \#11 or \#12 | 238.188 |
| \#12 | ((motor NEXT activit*) or (physical NEXT activit*) or locomot* or exercis* or training or stretching or (physical NEXT condition*) or (physical NEXT fitness) or (physical NEXT endurance) or (movement NEXT therap*) or plyometric or (stretch NEXT shortening) or (weight NEXT lifting) or (weight NEXT bearing) or running or jogging or walk* or bicycle or cycle or bicycling or cycling or rowing or swim* or ambulation or mobil* or pilates or yoga):ti,ab,kw | 233.754 |
| \#11 | (Sedent* or sitting or (physical NEXT inactivit*)):ti,ab,kw | 14.465 |
| \#10 | \#3 or \#5 or \#9 | 1.334 |
| \#9 | \#1 and \#8 | 406 |
| \#8 | \#6 and \#7 | 6.983 |
| \#7 | monitoring:ti,ab,kw | 59.019 |
| \#6 | ((cardiac NEXT rate):ab, ti,kw or (heart NEXT rate):ab,ti,kw or (pulse NEXT rate):ab,ti,kw or (cardiac NEXT frequency):ab,ti,kw or (heart NEXT frequency)):ti,ab, kw | 59.143 |
| \#5 | \#1 and \#4 | 247 |
| \#4 | pedomet*:ti,ab,kw | 1.712 |
| \#3 | \#1 and \#2 | 780 |
| \#2 | (acceleromet* or actigra*):ti,ab,kw | 5.965 |
| \#1 | (elder* or eldest or frail* or geriatri* or (old NEXT age*) or (oldest NEXT old*) or senior* or senium or (very NEXT old*) or septuagenarian* or octagenarian* or octogenarian* or nonagenarian* or centarian* or centenarian* or supercentenarian* or (older NEXT people) or (older NEXT subject*) or (older NEXT patient*) or (older NEXT age*) or (older NEXT adult*) or (older NEXT man) or (older NEXT men) or (older NEXT male) or (older NEXT woman) or (older NEXT women) or (older NEXT female) or (older NEXT population*) or (older NEXT person*)):ti,ab,kw | 76.361 |

CINAHL (via EBSCO)

| \# | Query | Results |
| :---: | :---: | :---: |
| S14 | S10 AND S13 | 2,995 |
| S13 | S11 OR S12 | 592,088 |
| S12 | ((MH "Motor Activity") OR (MH "Exercise+") OR (MH "Sports+") OR (MH "Early Ambulation") OR (MH "Therapeutic Exercise+") OR (MH "Locomotion+")) OR TI ( ("motor activit*" OR "physical activit*" OR locomot* OR exercis* OR training OR stretching OR "physical condition*" OR "physical fitness" OR "physical endurance" OR "movement therap*" OR plyometric OR "stretch shortening" OR "weight lifting" OR "weight bearing" OR running OR jogging OR walk* OR bicycle OR cycle OR bicycling OR cycling OR rowing OR swim* OR ambulation OR mobil* OR pilates OR yoga)) OR AB (("motor activit*" OR "physical activit*" OR locomot* OR exercis* OR training OR stretching OR "physical condition*" OR "physical fitness" OR "physical endurance" OR "movement therap*" OR plyometric OR "stretch shortening" OR "weight lifting" OR "weight bearing" OR running OR jogging OR walk* OR bicycle OR cycle OR bicycling OR cycling OR rowing OR swim* OR ambulation OR mobil* OR pilates OR yoga)) | 582,203 |
| S11 | ((MH "Life Style, Sedentary") OR (MH "Sitting")) OR TI ((sedent* OR sitting OR "physical inactivit*")) OR AB ((sedent* OR sitting OR "physical inactivit*")) | 26,571 |
| S10 | S3 OR S5 OR S9 | 4,531 |
| S9 | S1 AND S8 | 1,003 |
| S8 | S6 AND S7 | 4,480 |
| S7 | (MH "Monitoring, Physiologic") OR TI monitoring OR AB monitoring | 111,399 |
| S6 | (MH "Heart Rate") OR TI (("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency" or "heart frequency")) OR AB (("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency" or "heart frequency")) | 47,141 |
| S5 | S1 AND S4 | 643 |
| S4 | (MH "Pedometers") OR TI pedomet* OR AB pedomet* | 2,279 |
| S3 | S1 AND S2 | 3,047 |
| S2 | ((MH "Accelerometry+") OR (MH "Accelerometers") OR (MH "Actigraphy")) OR TI ((acceleromet* or actigra*)) OR AB ((acceleromet* or actigra*)) | 11,526 |
| S1 | MH "Aged+" OR MH "Aged, 80 and Over" OR MH "Frail Elderly" OR MH "Geriatrics" OR MH "Geriatric Psychiatry" OR MH "Gerontologic Nursing+" OR MH "Gerontologic Care" OR MH "Health Services for the Aged" OR TI (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR senium OR "very old*" OR septuagenarian* OR octagenarian* OR octogenarian* OR nonagenarian* OR centarian* OR centenarian* OR supercentenarian* OR "older people" OR "older subject*" OR "older patient"" OR "older age*" OR "older adult"" OR "older man" OR "older men" OR "older male" OR "older woman" OR "older women" OR "older female" OR "older population"" OR "older person*") OR AB (elder* OR eldest OR frail* OR geriatri* OR "old age"" OR "oldest old*" OR senior* OR senium OR "very old*" OR septuagenarian* OR octagenarian* OR octogenarian* OR nonagenarian* OR centarian* OR centenarian* OR supercentenarian* OR "older people" OR "older subject*" OR "older patient*" OR "older age*" OR "older adult"" OR "older man" OR "older men" OR "older male" OR "older woman" OR "older women" OR "older female" OR "older population*" OR "older person*") | 919,735 |

## APA PsychINFO (via EBSCO)

| \# | Query | Results |
| :---: | :---: | :---: |
| S17 | S13 AND S16 | 1,097 |
| S16 | S14 OR S15 | 527,097 |
| S15 | (DE "Physical Activity" OR (DE "Exercise" OR DE "Aerobic Exercise" OR DE "Weightlifting" OR DE "Yoga") OR DE "Physical Fitness" OR (DE "Sports" OR DE "Baseball" OR DE "Basketball" OR DE "Football" OR DE "Judo" OR DE "Martial Arts" OR DE "Soccer" OR DE "Swimming" OR DE "Tennis" OR DE "Weightlifting") OR DE "Locomotion" AND \#DE "Training" OR DE "Athletic Training" OR DE "Locomotion") OR TI (("motor activit*" OR "physical activit*" OR locomot* OR exercis* OR training OR stretching OR "physical condition*" OR "physical fitness" OR "physical endurance" OR "movement therap"" OR plyometric OR "stretch shortening" OR "weight lifting" OR "weight bearing" OR running OR jogging OR walk* OR bicycle OR cycle OR bicycling OR cycling OR rowing OR swim* OR ambulation OR mobil* OR pilates OR yoga)) OR AB (("motor activit*" OR "physical activit*" OR locomot* OR exercis* OR training OR stretching OR "physical condition*" OR "physical fitness" OR "physical endurance" OR "movement therap*" OR plyometric OR "stretch shortening" OR "weight lifting" OR "weight bearing" OR running OR jogging OR walk* OR bicycle OR cycle OR bicycling OR cycling OR rowing OR swim* OR ambulation OR mobil* OR pilates OR yoga)) | 522,065 |
| S14 | TI (sedent* OR sitting OR "physical inactivit*") OR AB (sedent* OR sitting OR "physical inactivit*") | 13,285 |
| S13 | S6 OR S8 OR S12 | 1,802 |
| S12 | S4 AND S11 | 131 |
| S11 | S9 AND S10 | 1,175 |
| S10 | DE "Monitoring" OR TI monitoring OR AB monitoring | 58,460 |
| S9 | DE "Heart Rate" OR TI ("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency" or "heart frequency") OR AB ("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency" or "heart frequency") | 28,295 |
| S8 | S4 AND S7 | 246 |
| S7 | TI pedomet* OR AB pedomet* | 860 |
| S6 | S4 AND S5 | 1,478 |
| S5 | (DE "Actigraphy") OR TI (acceleromet* OR actigra*) OR AB (acceleromet* OR actigra*) | 6,322 |
| S4 | S1 OR S2 OR S3 | 401,336 |
| S3 | TI (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR senium OR "very old*" OR septuagenarian* OR octagenarian* OR octogenarian* OR nonagenarian* OR centarian* OR centenarian* OR supercentenarian* OR "older people" OR "older subject*" OR "older patient"" OR "older age*" OR "older adult"" OR "older man" OR "older men" OR "older male" OR "older woman" OR "older women" OR "older female" OR "older population"" OR "older person*") OR AB (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR senium OR "very old*" OR septuagenarian* OR octagenarian* OR octogenarian* OR nonagenarian* OR centarian* OR centenarian* OR supercentenarian* OR "older people" OR "older subject" OR "older patient"" OR "older age*" OR "older adult"" OR "older man" OR "older men" OR "older male" OR "older woman" OR "older women" OR "older female" OR "older population*" OR "older person*") | 174,582 |
| S2 | DE "Geriatrics" | 12,654 |
| S1 | Limiters - Age Groups: Aged (65 yrs \& older) | 325,601 |

SPORTDiscus (via EBSCO)

| \# | Query | Results |
| :---: | :---: | :---: |
| S16 | S12 AND S15 | 544 |
| S15 | S13 OR S14 | 513,139 |
| S14 | DE "PHYSICAL activity" OR (DE "EXERCISE" OR DE "ABDOMINAL exercises" OR DE "AEROBIC exercises" OR DE "ANAEROBIC exercises" OR DE "AQUATIC exercises" OR DE "ARM exercises" OR DE "BACK exercises" OR DE "BREATHING exercises" OR DE "BREEMA" OR DE "BUTTOCKS exercises" OR DE "CALISTHENICS" OR DE "CHAIR exercises" OR DE "CHEST exercises" OR DE "CIRCUIT training" OR DE "COMPOUND exercises" OR DE "DO-in" OR DE "EXERCISE - Immunological aspects" OR DE "EXERCISE adherence" OR DE "EXERCISE for children" OR DE "EXERCISE for girls" OR DE "EXERCISE for men" OR DE "EXERCISE for middle-aged persons" OR DE "EXERCISE for older people" OR DE "EXERCISE for people with disabilities" OR DE "EXERCISE for women" OR DE "EXERCISE for youth" OR DE "EXERCISE therapy" OR DE "EXERCISE video games" OR DE "FACIAL exercises" OR DE "FALUN gong exercises" OR DE "FOOT exercises" OR DE "GYMNASTICS" OR DE "HAND exercises" OR DE "HATHA yoga" OR DE "HIP exercises" OR DE "ISOKINETIC exercise" OR DE "ISOLATION exercises" OR DE "ISOMETRIC exercise" OR DE "ISOTONIC exercise" OR DE "KNEE exercises" OR DE "LEG exercises" OR DE "LIANGONG" OR DE "METABOLIC equivalent" OR DE "MULAN quan" OR DE "MUSCLE strength" OR DE "PILATES method" OR DE "PLYOMETRICS" OR DE "QI gong" OR DE "REDUCING exercises" OR DE "RUNNING" OR DE "RUNNING Social aspects" OR DE "SCHOOLS - Exercises \& recreations" OR DE "SEXUAL exercises" OR DE "SHOULDER exercises" OR DE "STRENGTH training" OR DE "STRESS management exercises" OR DE "TAI chi" OR DE "TREADMILL exercise" OR DE "WHEELCHAIR workouts" OR DE "YOGA") OR (DE "PHYSICAL fitness" OR DE "PHYSICAL fitness for older people") OR (DE "SPORTS" OR DE "AERODYNAMICS in sports" OR DE "AERONAUTICAL sports" OR DE "AGE \& sports" OR DE "AMATEUR sports" OR DE "ANIMAL sports" OR DE "ANTISEMITISM in sports" OR DE "AQUATIC sports" OR DE "BALL games" OR DE "BALLISTICS in sports" OR DE "BASEBALL" OR DE "BIOMECHANICS in sports" OR DE "COLLEGE sports" OR DE "COMMUNICATION in sports" OR DE "CONTACT sports" OR DE "CROSS-training Sports" OR DE "DISC golf" OR DE "DISCRIMINATION in sports" OR DE "DOG sports" OR DE "DOPING in sports" OR DE "ENDURANCE sports" OR DE "EXTREME sports" OR DE "FANTASY sports" OR DE "FASCISM \& sports" OR DE "FEMINISM \& sports" OR DE "GAELIC games" OR DE "GAY Games" OR DE "GOODWILL Games" OR DE "GYMNASTICS" OR DE "HOCKEY" OR DE "HOMOPHOBIA in sports" OR DE "HYDRODYNAMICS in sports" OR DE "INDIVIDUAL sports" OR DE "KINEMATICS in sports" OR DE "KNIFE throwing" OR DE "LGBT people \& sports" OR DE "LOG-chopping Sports" OR DE "MASCULINITY in sports" OR DE "MASS media \& sports" OR DE "MILITARY sports" OR DE "MINORITIES in sports" OR DE "MOTION pictures in sports" OR DE "MOTORSPORTS" OR DE "NATIONAL socialism \& sports" OR DE "NATIONALISM \& sports" OR DE "NONVERBAL communication in sports" OR DE "OLYMPIC Games" OR DE "PARKOUR" OR DE "PHOTOGRAPHY of sports" OR DE "PHYSICS in sports" OR DE "PRESIDENTS - Sports" OR DE "PROFESSIONAL sports" OR DE "PROFESSIONALISM in sports" OR DE "RACING" OR DE "RACISM in sports" OR DE "RACKET games" OR DE "RADAR in sports" OR DE "RECREATIONAL sports" OR DE "REGIONALISM \& sports" OR DE "ROBOTICS in sports" OR DE "RODEOS" OR DE "ROLLER skating" OR DE "SCHOOL sports" OR DE "SENIOR Olympics" OR DE "SEXUAL harassment in sports" OR DE "SHOOTING Sports" OR DE "SHUTOUTS Sports" OR DE "SOCIALISM \& sports" OR DE "SOFTBALL" OR DE "SPORT for all" OR DE "SPORTS \& state" OR DE "SPORTS \& technology" OR DE "SPORTS \& theater" OR DE "SPORTS \& tourism" OR DE "SPORTS - Collectibles" OR DE "SPORTS - Corrupt practices" OR DE "SPORTS - Economic aspects" OR DE "SPORTS - Finance" OR DE "SPORTS - Folklore" OR DE "SPORTS - Songs \& music" OR DE "SPORTS competitions" OR DE "SPORTS for children" OR DE "SPORTS for girls" OR DE "SPORTS for older people" OR DE "SPORTS for people with disabilities" OR DE "SPORTS for women" OR DE "SPORTS for youth" OR DE "SPORTS forecasting" OR DE "SPORTS in antiquity" OR DE "SPORTS penalties" OR DE "SPORTS rivalries" OR DE "SPORTS teams" OR DE "SPORTS tourism" OR DE "STEREOTYPES Social psychology in sports" OR DE "TARGETS Sports" OR DE "TEAM sports" OR DE "TEAMWORK Sports" OR DE "TELEVISION \& sports" OR DE "TRACEURS" OR DE "VIDEO tapes in sports" OR DE "VIOLENCE in sports" OR DE "WINTER sports") OR (DE "LOCOMOTION" OR DE "CYCLING" OR DE "HUMAN locomotion") | 503,410 |
| S13 | DE "SEDENTARY lifestyles" OR DE "SEDENTARY behavior" OR DE "SEDENTARY people" OR DE "SEDENTARY women" OR TI (sedent* OR sitting OR "physical inactivit*") OR AB (sedent* OR sitting OR "physical inactivit*") | 18,283 |
| S12 | S3 OR S5 OR S11 | 902 |
| S11 | S1 AND S10 | 101 |
| S10 | S8 OR S9 | 3,691 |
| S9 | DE "HEART rate monitoring" | 2,229 |
| S8 | S6 AND S7 | 1,724 |
| S7 | DE "Patient Monitoring" OR TI monitoring OR AB monitoring | 15,144 |
| S6 | DE "PULSE (Heart beat)" OR DE "HEART beat" OR TI ("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency" or "heart frequency") OR AB ("cardiac rate" or "heart rate" or "pulse rate" or "cardiac frequency" or "heart frequency") | 30,490 |
| S5 | S1 AND S4 | 214 |
| S4 | DE "PEDOMETERS" OR TI pedomet* OR AB pedomet* | 1,882 |
| S3 | S1 AND S2 | 652 |
| S2 | (DE "ACCELEROMETERS" OR DE "SPEEDOMETERS") OR (TI ((acceleromet* OR actigra*)) OR AB ((acceleromet* OR actigra*))) | 6,650 |
| S1 | ((DE "OLDER people" OR DE "EXERCISE for older people" OR DE "OLDER people - Recreation" OR DE "PHYSICAL education for older people" OR DE "PHYSICAL fitness for older people" OR DE "SPORTS for older people") OR DE "GERIATRICS") OR (TI (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR senium OR "very old*" OR septuagenarian* OR octagenarian* OR octogenarian* OR nonagenarian* OR centarian* OR centenarian* OR supercentenarian* OR "older people" OR "older subject*" OR "older patient"" OR "older age"" OR "older adult"" OR "older man" OR "older men" OR "older male" OR "older woman" OR "older women" OR "older female" OR "older population*" OR "older person*") OR AB (elder* OR eldest OR frail* OR geriatri* OR "old age*" OR "oldest old*" OR senior* OR senium OR "very old*" OR septuagenarian* OR octagenarian* OR octogenarian* OR nonagenarian* OR centarian* OR centenarian* OR supercentenarian* OR "older people" OR "older subject*" OR "older patient*" OR "older age*" OR "older adult*" OR "older man" OR "older men" OR "older male" OR "older woman" OR "older women" OR "older female" OR "older population*" OR "older person*")) | 57,686 |

## Appendix B. Newcastle-Ottawa Scale (NOS): adapted for cross-sectional and longitudinal studies

The NOS was adapted for cross-sectional and longitudinal studies, respectively, using the identical methods as the with the addition of two outcome criteria regarding follow-up for longitudinal studies. For cross-sectional studies (maximum score of 7 stars) a score greater than or equal to 4 is classified as high and less than 4 as low. For longitudinal studies (maximum score of 9 stars) a score greater than or equal to 5 is classified as high and a score less than 5 is classified as low quality.

Selection (max. 3 stars)
Representativeness of the sample: community-dwelling older adults
a Truly representative of sample population. Age, gender distribution, country, and kind of population is reported *
b Not representative based on factors mentioned above
c No description

Ascertainment of exposure: physical activity (PA)/sedentary behavior (SB)
a Ascertainment of all physical activity measures reported is clearly and described by name of device, location, and clear cut-off points are reported when appropriate *
b Methodological criteria of PA/SB data were clearly described and all of the following information: total wear time and assessment of valid days (mandatory hours/day and number of valid days) *
c No description

Comparability (max. 3 stars)
Comparability of cohorts on the basis of the design or analysis
a The study controls for the most important factors, age and sex, for at least one association *
b The study adjusted for other or additional factor, e.g. level of education, comorbidities, accelerometer wear time, physical activity for at least one association *
c No controlling for any factors
d No description
1 Statistical test: method of quantifying relationship of PA/SB and muscle strength/ power
a The statistical test used to analyze the data is clearly described and appropriate and the measurement of the association is presented clearly including effect size with confidence intervals, p -value (unless $\mathrm{p}<0.001$ ), or standard error for at least one association *
b The statistical test is not appropriate or incomplete
c No description

Outcome (max. 1 star for cross-sectional studies, 3 stars for longitudinal studies)
Assessment of outcome measure: muscle strength/muscle power
a Clear description of an established method for assessing muscle strength/muscle power with measurement device reported (if applicable) for all measures *
b No description
$\qquad$
Was follow-up long enough for outcome to occur?
a Yes $\geq 3$ months *
b No $<3$ months
c Not reported

Adequacy of follow-up of cohorts
a Complete follow up with all subjects accounted for or small number lost ( $<20 \%$ ) *
b Large number lost ( $\geq 20$ \%)
c Not reported

Note Quality was assessed for all articles as described regardless if hypothesized exposure-outcome were reversed (meaning if exposure was muscle strength/muscle power and outcome was PA/SB

## Appendix C

Table C1
Characteristics of articles assessing the association of physical activity and sedentary behavior with muscle strength and muscle power in older adults.

| Author, year | Cohort | Country | Population selection ${ }^{\text {a }}$ | Sample size ( N ) | Age in years mean (SD) | F \% | PA/SB measures | Muscle strength/ muscle power measures |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Abe et al., 2015 | N/A | JP | - | 57 | 66.3 (6.8) | 100 | Steps, MVPA, <br> LPA-to-MPA | KES, toe grasping strength |
| Abe et al., 2012 | N/A | JP | Healthy | 48 | 65.7 (6.4) | 100 | Steps, VPA, MPA, LPA, EE | KES, knee flexion strength |
| Aggio et al., 2016 | BRHS | GB | - | 1286 (Non- <br> sarcopenia: 1033; <br> Sarcopenia: 183; <br> Severe sarcopenia: 70) | Non-sarcopenia: 7.6 <br> (4.1); Sarcopenia: 79.7 (4.7); Severe sarcopenia: 83.1 (5.2) | 0.0 | MVPA, LPA, SB, BST | HGS |
| Alcazar et al., 2018 | N/A | ES | - | 31 | 75.8 (4.7) | 54.8 | MVPA, SB | Leg press strength, leg press power |
| Alzahrani et al., 2012 | N/A | N/R | After stroke | 42 | 70 (10) | 31.0 | Activity counts, TPA, MVPA | KES |
| Andersson et al., 2013 | N/A | SE | COPD | 72 | 65 (7) | 61.1 | EE (PAL) | KES |
| André et al., 2018 | N/A | PT | Healthy | 29 | 73.2 (6.6) | 50.0 | MVPA | Calf raise |
| André et al., 2016 | N/A | PT | Healthy | 28 | 73.9 (7.7) | 56.1 | MVPA | Calf raise |
| Aoyagi et al., 2009 | Nakanojo | JP | - | 170 | 72.7 (4.6) | 55.3 | Steps, TPA | HGS, knee extension torque |
| Ashe et al., 2008 | N/A | N/R | - | 73 | 68.8 (3) | 100 | Activity counts, MVPA | KES, leg press power |
| Ashe et al., 2007 | N/A | N/R | Chronic disease | 200 | 74.4 (5.7) | 65.0 | Steps | HGS, KES |
| Aubertin-Leheudre et al., 2017 | LIFE | US | Mobility limited and sedentary | 1453 (Non-obese nondynapenic: 402; Nonobese dynapenic: 381; Obese non-dynapenic: 414; Obese dynapenic: 256) | 78.8 (5.3) | 66.0 | Steps, activity counts, TPA | HGS |
| Balducci et al., 2017 | N/A | IT | Diabetes | 300 | 61.6 (9.9) | 38.7 | MVPA, LPA, SB | Shoulder press strength, leg press strength |
| Bann et al., 2015 | LIFE | US | Mobility limited and sedentary | 1130 (M: N/R; F: N/ <br> R) | $\begin{aligned} & \text { M: } 79.3 \text { (5.3); F: } \\ & 78.5 \text { (5.3) } \end{aligned}$ | N/R ~67 | TPA, LPA, SB | HGS |
| Barbat-Artigas et al., 2012 | N/A | CN | Postmenopausal | 57 (Sedentary: 19; <br> Moderate active: 20; <br> Active: 18) | 61 (5) | 100 | Steps, TPA | HGS, KES, 20 s CST |
| Bartlett and Duggal, 2020 | N/A | N/R | Healthy | 50 | Sedentary: 63.4 <br> (4.4); Active: 67.0 (6.0) | Sedentary: 52; <br> Active: 56 | Steps | HGS |
| Bassey et al., 1988 | N/A | GB | - | 125 | M: 71 (4); F: 72 (4) | 53.6 | Steps | Calf strength |
| Bogucka et al., 2018 | N/A | PL | Postmenopausal | 46 (Dynapenic: 10; <br> Non-dynapenic: 36) | 71.4 (5.6) | 100 | Steps | HGS |
| Bollaert and Motl, 2019 | N/A | US | MS and HC | 80 (MS: 40; HC: 40) | $\begin{aligned} & M S: ~ 65.3 \text { (4.3); HC: } \\ & 66.5 \text { (6.7) } \end{aligned}$ | 62.5 | MVPA, LPA, SB, <br> PA bouts, SB <br> bouts, long SB <br> bouts | 5x CST |
| Boutou et al., 2019 | PROactive | $\begin{aligned} & \text { GB, NL, } \\ & \text { GR, BE } \end{aligned}$ | COPD | 157 | 67.2 (7.8) | 24.2 | $\Delta$ Steps, $\triangle$ MVPA, $\Delta$ MET, $\triangle$ VMU | KES |
| Carrasco Poyatos et al., 2016 | N/A | ES | - | 42 (MPA group: 19; <br> VPA group: 15) | 70.1 (4.5) | 100 | VPA, MVPA, MPA | HGS |
| Chastin et al., 2012 | N/A | GB | Healthy | 30 | $\begin{aligned} & \text { F: } 79.3 \text { (3.4); M: } \\ & 79.0 \text { (3.6) } \end{aligned}$ | 46.7 | SB, SB break rate | Leg extension power |
| Chmelo et al., 2013 | IDEA | US | OA, high BMI, and sedentary | 160 | 66 (6) | 69.0 | Steps, MVPA LPA, EE | KES |
| Cooper et al., 2015 | MRC NSHD | GB | - | 1727 | 63.3 \{60.3-64.9\} | 51.5 | MVPA, SB, EE | HGS, 10x CST |
| Davis et al., 2014 | OPAL | GB | - | 217 | 78.1 (5.8) | 50.2 | MVPA, SB, BST | 5x CST |
| de Melo et al., 2010 ${ }^{\text {d }}$ | N/A | CN | - | 60 | 77 (7.3) | 75.0 | Steps | 30 s CST |
| de Melo et al., 2014 ${ }^{\text {d }}$ | N/A | CN | - | 60 | 77 (7.3) | 75.0 | Steps | Arm curl, 30 s CST |
| Demeyer et al., 2019 | PAC-COPD | ES | COPD | 114 | 70 (8) | N/R | $\Delta$ Steps, steps, MVPA | $\Delta H G S$ |
| Distefano et al., 2018 | N/A | US | - | $\begin{aligned} & 29 \text { (Active: } 10 \\ & \text { Sedentary:19) } \end{aligned}$ | Active: 67.5 (2.7); <br> Sedentary: 70.7 (4.7) | Active: 20.0; <br> Sedentary: $42.1$ | Steps | KES, 5 x CST |

Table C1 (continued)

| Author, year | Cohort | Country | Population selection ${ }^{\text {a }}$ | Sample size (N) | Age in years mean (SD) | F \% | PA/SB measures | Muscle strength/ muscle power measures |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dogra et al., 2017 | N/A | CN | - | 1157 | 64 (95\% CI: 64-64) | 46.6 | BST, long SB bouts | HGS |
| Dohrn et al., 2020 | SNAC-K | SE | - | 656 | 73.3 (9.0) | 64.0 | Steps | 5x CST |
| Dos Santos et al., 2019 | N/A | BR | - | 375 | 70 (7) | 69.6 | MVPA | HGS |
| Duncan et al., 2016 | N/A | GB | - | 201 | 66.1 (7.7) | 59.7 | Steps | $\begin{aligned} & \text { Arm curl, } 30 \mathrm{~s} \\ & \text { CST } \end{aligned}$ |
| Edholm et al., 2019 | N/A | SE | - | 60 | 67.5 (15) | 100 | Activity counts, MVPA | Squat jump test |
| Foong et al., 2016 | TASOAC | AU | - | 636 | 66 (7) | 50.8 | Activity counts, VPA, MPA, LPA, SB | KES, leg strength |
| Gennuso et al., 2016 | N/A | US | - | 44 (M: 16; F: 28) | M: 71 [69-74]; F: 70 [67-78] | 63.6 | SB, BST, SB break rate, SB bouts, long SB bouts | 5x CST |
| $\begin{aligned} & \text { Gerdhem et al., } \\ & 2007 \end{aligned}$ | OPRA | SE | $\geq 80$ years | 57 | 80.1 (0.1) | 100 | Activity counts, MVPA | KES, Knee flexion strength |
| Hall et al., 2016 | MURDOCK | US | - | $\begin{aligned} & 775 \text { (60-69y: 196, } 70- \\ & 79 y: 198,80-90+y: \\ & 92) \end{aligned}$ | $\begin{aligned} & 62.1 \text { (SD N/R) ( } 60- \\ & \text { 69y: } 64.8,70-79 y: \\ & 73.6,80-90+y: \\ & \text { 83.6) } \end{aligned}$ | $\begin{aligned} & 53.2(60-69 y: \\ & 50.5,70-79 y: \\ & 49.5,80- \\ & 90+y: 64.1) \end{aligned}$ | Steps, MVPA, SB | 30 s CST |
| Harada et al., 2016 | NCGG | JP | Global cognitive impairment | 192 | 76.2 (4.1) | 44.7 | Steps | 5x CST |
| Hartley et al., 2018 | COSHIBA | GB | - | 242 | 76.4 (2.6) | 100 | Activity counts | Jump strength, 5x CST, jump power |
| Hasegawa et al., 2018 | N/A | JP | - | 50 | 77.8 (5.3) | 74.0 | Steps | 30 s CST |
| Hernandes et al., 2013 | N/A | BR | + /- exercise lifestyle | 238 (Exercise: 134; <br> Non-exercise: 104) | Exercise: 68 [6471]; Non-exercise: 68 [64-71] | Exercise: 39.1; <br> Non-exercise: <br> 69.3 | Steps | HGS, 30 s CST |
| Hernández et al., 2017 | N/A | ES | COPD <br> (moderatesevere) | 44 | 70.3 (6.7) | 0.0 | TPA, MPA, LPA, SB | Quadriceps power at 50\% and $70 \% 1 \mathrm{RM}$, respectively |
| Hopkins, 2019 | OAI | US | OA | 687 | Inactive: 65.7 <br> (0.44); Active: 61.3 (0.48) | Inactive: 69.8; <br> Active 44.3 | MVPA | $\Delta 5 \mathrm{x}$ CST |
| Iijima et al., 2017 | N/A | JP | OA | 207 (Basal activity: <br> 58; Limited activity: <br> 79; Low Active: 45; <br> Physically active: 25) | Basal activity: 76.4 (8.89); Limited activity: 73.4 (6.83); Low Active: 70.0 (6.48); Physically active: 70.4 (6.00) | 71.5 | Steps | 5x CST |
| Ikenaga et al., 2014 | N/A | JP | - | 178 | 73.7 (2.6) | 0.0 | Steps, MPA, LPA, SB | HGS, KES |
| Iwakura et al., 2016 | N/A | N/R | COPD | 22 | 71.6 (6.9) | 0.0 | Steps | 5x CST |
| Jantunen et al., 2017 | Helsinki Birth | FI | - | 695 | 70.7 (2.7) | 54.5 | MET | Arm curl, 30 s CST |
| Jeong et al., 2019 | N/A | KR | - | 52 | 60.3 (5.6) | 90.4 | Steps | Hip strength, KES |
| Johnson et al., 2016 | TASOAC | AU | - | 188 | 64.0 (7.3) | 53.7 | VPA, MPA, LPA, SB | Leg strength |
| $\begin{aligned} & \text { Kawagoshi et al., } \\ & 2013 \end{aligned}$ | N/A | JP | COPD | 26 | 77 (6) | 0.0 | Steps, TPA, LPA, SB | KES |
| Keevil et al., 2016 | EPIC- <br> Norfolk | GB | - | $\begin{aligned} & 3726 \text { (M: 1674; F: } \\ & 2052) \end{aligned}$ | $\begin{aligned} & \text { M: } 69.8 \text { (7.6); F: } \\ & 68.0(7.5) \end{aligned}$ | 55.1 | MVPA, SB | HGS, CST |
| Kim, 2015 | N/A | JP | - | 207 | 83.5 (2.6) | 55.5 | Activity counts | HGS, KES |
| Kim et al., 2015 | N/A | JP | - | 101 | 81.4 (2.8) | 100 | Activity counts, MVPA, LPA, SB, long SB bouts | 5x CST |
| Lai et al., 2020 | N/A | TW | Independent walking without assistive device | 122 | 69.9 (5.0) | 71.3 | MVPA | 5x CST |
| Lee et al., 2015 | OAI | US | Knee OA | 1168 | 66 (N/R) | 55.0 | SB | 5x CST |
| Lerma et al., 2018 |  | US | - | 91 | 70.7 (10.2) | 60.0 | MVPA, LPA, SB | 5x CST |
| Liao et al., 2018 | N/A | JP | - | 281 | 74.5 (5.2) | 38.1 | SB, SB break rate, long SB bouts | HGS |
| Lohne-Seiler et al., $2016$ | 2 N/R cohorts | NO | - | 161 (M: 76; F: 85) | $\begin{aligned} & \text { M: } 72.3 \text { (4.8); F: } \\ & 73.2(5.4) \end{aligned}$ | 52.8 | Steps | HGS |
| Mador et al., 2011 | N/A | US | COPD | 28 | 71.9 (7.7) | N/R | VMU | KES |
| Master et al., 2018 | OAI | US | Knee OA | 1925 | 65.1 (9.1) | 55.0 | Steps | 5x CST |

Table C1 (continued)

| Author, year | Cohort | Country | Population selection ${ }^{\text {a }}$ | Sample size (N) | Age in years mean (SD) | F \% | PA/SB measures | Muscle strength/ muscle power measures |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Matkovic et al., $2020$ | N/A | HR | COPD | 111 | 67.7 (7.8) | 31.5 | Steps | HGS, 30 s CST |
| McDermott et al., $2002$ | N/A | US | +/- PAD | 346 | 71.2 (8.3) | 41.6 | Accelerations | 5x CST |
| McGregor et al., 2018 | CHMS | CN | - | 1454 | 69.3 (0.3) | 52.4 | MVPA, LPA, SB | HGS |
| Meier and Lee, 2020 | PAAS | US | - | 304 | 72.8 (5.8) | 58.2 | Steps | HGS, chest press strength, leg press strength |
| Monteiro et al., 2019 | N/A | PT | Caucasian | 60 | 67.7 (5.3) | 100 | Activity counts | Arm curl, KES, knee flexion strength, 30 s CST |
| Morie et al., 2010 | N/A | US | Mobility limited \& low testosterone | 82 | 74.1 (5.3) | 0.0 | Activity counts | Chest press strength, chest press power, leg press strength, leg press power |
| Nagai et al., 2018 | N/A | JP | - | 886 | 73.6 (7.0) | 70.0 | MVPA, LPA, SB | HGS |
| Nawrocka et al., 2017 | N/A | PL | - | 61 (Not meeting PA guidelines: 39; Meeting PA guidelines: 22) | 66.2 (4.4) | 100 | MVPA | Arm curl |
| Nawrocka et al., 2019 | N/A | PL | - | 213 (Not meeting PA guidelines: 108; Meeting PA guidelines: 105) | N/R | 100 | MVPA | $\begin{aligned} & \text { HGS, Arm curl, } \\ & 30 \text { s CST } \end{aligned}$ |
| Nicolai et al., 2010 | N/A | GB | - | 44 | 80.8 (4.1) | N/R | Steps (walking), TPA (standing) | 5x CST |
| Ofei-Doodoo et al., 2018 | N/A | US | Sedentary | 101 | 75.0 (7.2) | 100 | MVPA | $\begin{aligned} & \text { Arm curl, } 30 \text { s } \\ & \text { CST } \end{aligned}$ |
| Orwoll et al., 2019 | MrOS | US | - | 2741 (No falls: 1777; <br> One fall: 327; $\geq$ Two falls: 63) | 78.8 (5) | 0.0 | MVPA, LPA | 5x CST |
| Osuka et al., 2015 | N/A | JP | - | 802 | 72.5 (5.9) | 76.7 | MVPA, LPA | 5x CST |
| Park et al., 2018 | N/A | KR | - | 22 | 71.5 (3.3) | 0.0 | Steps | HGS, 30 s CST |
| Perkin et al., 2018 | N/A | GB | Healthy | 50 | 69 (4) | 46 | MVPA, SB, EE | Leg press strength, leg press power |
| Pitta et al., 2005 | N/A | BE | COPD | 50 | 77.3 (7.0) | 28 | Steps (walking), <br> TPA (standing) | HGS, knee extension torque |
| Puthoff et al., 2008 | N/A | N/R | Mild-moderate functional limitations | 30 | 77.3 (7.0) | 83.3 | Steps | Leg press strength, leg press power |
| Rapp et al., 2012 | ActiFE Ulm | DE | - | 1271 | $\begin{aligned} & \text { M: } 76.0 \text { (6.46); F: } \\ & 75.1 \text { (6.58) } \end{aligned}$ | 43.6 | Steps (walking) | HGS, 5x CST |
| Rausch-Osthoff <br> et al., 2014 | N/A | CH | COPD | 27 | 62.3 (5.7) | 40.7 | Steps, EE, EE (PAL), MET | KES |
| Rava et al., 2018 | N/A | EE | - | 81 | 73.1 (5.3) | 100 | VPA, MVPA, MPA, LPA, SB | 5x CST |
| Reid et al., 2018 | N/A | AU | - | 123 | 70.9 (4.2) | 63 | SB, BST | KES, leg press strength, 30 s CST |
| Rojer et al., 2018 | Grey Power | NL | - | 80 | 74.4 [72.4-78.0] | 60.0 | Steps, TPA, SB, PA bouts, SB bouts | HGS |
| Rosenberg et al., 2015 | N/A | US | Retirement communities | 307 | 83.6 (6.4) | 72.3 | SB | 5x CST |
| Rowlands et al., 2018 | CODEC | GB | Type II diabetes | 295 | 63.2 (9.7) | 39.7 | MVPA, accelerations, intensity gradient, PA bouts | HGS, 60 s CST |
| Safeek et al., 2018 | N/A | US | HIV | 21 | 66.1 (6.3) | 33.3 | Steps, MVPA, <br> LPA, SB, EE | HGS, 30 s CST |
| Sánchez-Sánchez et al., 2019 | TSHA | ES | - | 512 | 78.1 (5.7) | 54.3 | Activity counts, MVPA, LPA, SB | HGS |
| Santos et al., 2012 | N/A | PT | - | 312 | 74.3 (6.6) | 62.5 | MVPA, SB | $\begin{aligned} & \text { Arm curl, } 30 \text { s } \\ & \text { CST } \end{aligned}$ |
| Sardinha et al., 2015 | N/A | PT | - | 215 | 73.3 (5.9) | 59.5 | BST | $\begin{aligned} & \text { Arm curl, } 30 \text { s } \\ & \text { CST } \end{aligned}$ |
| Scott et al., 2020 | Healthy <br> Ageing Initiative | SE | - | 3334 (Non-sarcopenic: <br> 3273; Sarcopenic: 61) | Non-sarcopenic: <br> 70.01 (0.10); <br> Sarcopenic: 70.02 <br> (0.13) | Nonsarcopenic: 50.5; | MVPA, LPA, SB | HGS |

Table C1 (continued)

| Author, year | Cohort | Country | Population selection ${ }^{\text {a }}$ | Sample size (N) | Age in years mean (SD) | F \% | PA/SB measures | Muscle strength/ muscle power measures |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Sarcopenic: $57.4$ |  |  |
| Scott et al., 2011 | TASOAC | AU | - | 697 | 61.9 (7.2) | 49.5 | Steps | Leg strength |
| Scott et al., 2009 | TASOAC | AU | - | 982 | 62 (7) | 51 | Steps | Leg strength |
| Semanik et al., 2015 | OAI | US | OA | 1659 | 64.8 (9.0) | 54.7 | SB | 5x CST |
| Silva et al., 2019 | N/A | PT | Physically independent | 83 | 72.14 (5.61) | 67.5 | MVPA, LPA, SB | $\begin{aligned} & \text { Arm curl, } 30 \text { s } \\ & \text { CST } \end{aligned}$ |
| Spartano et al., 2019 | FOS | US | - | 1352 | 68.6 (7.5) | 54.0 | Steps, MVPA, SB | HGS, 5x CST |
| Tang et al., 2015 | N/A | US | Severe Aortic Stenosis | 51 | 88 [85-90] | 63 | Activity counts | HGS |
| Trayers et al., 2014 | OPAL | GB | - | 240 | 78 (6) | 48 | Steps, counts, MVPA | 5x CST |
| $\begin{aligned} & \text { Van Gestel et al., } \\ & 2012 \end{aligned}$ | N/A | SE | COPD | 70 | 62.4 (7.4) | 30.0 | Steps | HGS, 60 s CST |
| $\begin{aligned} & \text { Van Lummel et al., } \\ & 2016 \end{aligned}$ | N/A | NL | - | 57 | 84.0 (11.0) | 82.5 | TPA, PA bouts, SB bouts | 5x CST |
| $\begin{aligned} & \text { van Oeijen et al., } \\ & 2020 \end{aligned}$ | N/A | NL | CIAP | 92 | 65 (13.75) | 27.2 | Steps | Lower extremity strength |
| $\begin{aligned} & \text { Van Sloten et al., } \\ & 2011 \end{aligned}$ | N/A | NL | Diabetes | 100 | 64.5 (9.4) | 31.0 | Steps | HGS |
| Walker et al., 2008 | N/A | N/R | COPD | 23 | 66 (9) | 47.8 | TPA | KES |
| Ward et al., 2014 | N/A | N/R | - | 156 | 68.9 (6.7) | 45.5 | Activity counts, MVPA | 30 s CST |
| Waschki et al., 2012 | N/A | GB \& NL | COPD | 104 | 64.6 (7.2) | 39.2 | Steps, EE (PAL) | KES |
| Watz et al., 2008 | N/A | DE | COPD | 170 | 64.0 (6.6) | 24.7 | Steps, EE (PAL) | HGS |
| Westbury et al., 2018 | HSS | GB | - | 131 (M: 32; F: 99) | $\begin{aligned} & \text { M: } 78.6 \text { (2.7); F: } \\ & 78.9 \text { (2.3) } \end{aligned}$ | 75.6 | TPA, MVPA, accelerations | HGS |
| Wickerson et al., 2013 | N/A | CN | Interstitial lung disease | 24 | 62 [53-65] | 41.7 | Steps, MVPA | Knee extension torque |
| Winberg et al., 2015 | N/A | SE | Polio history | 77 | 67 (6) | 45.5 | Steps | KES, knee flexion strength |
| Yamada et al., 2011 | N/A | JP | - | 629 (Non-frail: 515; <br> Frail: 114) | Non-frail: 77.0 <br> (7.2); Frail: 76.1 <br> (7.5) | 67.5 | Steps | 5x CST |
| Yasunaga et al., 2017 | N/A | JP | - | 287 | 74.4 (5.2) | 37.3 | MVPA, LPA, SB | HGS |
| Yoshida et al., 2010 | N/A | JP | Day care center attendees | 147 | 82.8 (4.3) | 100 | Steps, TPA, MPA, LPA | HGS, KES |
| Yuki et al., 2019 | NILS-LSA | JP | - | 401 | 71.1 (4.3) | 44.4 | Steps, LPA, MVPA | HGS |

 of females within the study population. Subgroups are presented in italics with their sample size (N) and any other reported information in parentheses.














 $x=$ times (repetitions), $1 R M=$ one repetition maximum.
${ }^{\text {a }}$ Population selection refers to any specific for criteria for selection other than sex (e.g. disease or demographic characteristic), studies with no selection were selected from a community-based sample or the general population left blank with a dash.

Table C2
Assessment of methodological quality of included articles based on the adapted Newcastle-Ottawa Scale (NOS).

| Author year | Selection |  |  | Comparability |  |  | Outcome |  |  | Score | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Q1 | Q2 ${ }_{\text {a,b }}$ |  | Q3 ${ }_{\text {a,b }}$ |  | Q4 | Q5 | Q6 ${ }^{\text {L }}$ | Q7 ${ }^{\text {L }}$ |  |  |
| Abe et al., 2015 | * | * | - | * | * | - | * |  |  | 5/7 | high |
| Abe et al., 2012 | * | * | - | * | - | - | * |  |  | 4/7 | high |
| Aggio et al., 2016 | * | * | * | * | * | * | * |  |  | 7/7 | high |
| Alcazar et al., 2018 | * | * | - | - | - | - | * |  |  | 3/7 | low |
| Alzahrani et al., 2012 | - | * | - | - | - | * | * |  |  | 3/7 | low |
| Andersson et al., 2013 | * | - | - | * | * | * | * |  |  | 5/7 | high |
| André et al., 2018 | * | * | - | - | - | * | * |  |  | 4/7 | high |
| André et al., 2016 | * | * | - | - | - | * | * |  |  | 4/7 | high |
| Aoyagi et al., 2009 | * | * | - | * | - | - | * |  |  | 4/7 | high |
| Ashe et al., 2008 | - | * | * | - | - | * | * |  |  | 4/7 | high |
| Ashe et al., 2007 | - | - | - | - | - | - | * |  |  | 1/7 | low |
| Aubertin-Leheudre et al., 2017 | * | - | - | - | - | * | - |  |  | 2/7 | low |
| Balducci et al., 2017 | - | * | - | - | - | - | - |  |  | 1/7 | low |
| Bann et al., 2015 | * | * | - | * | * | * | * |  |  | 6/7 | high |
| Barbat-Artigas et al., 2012 | * | * | - | - | - | - | * |  |  | 3/7 | low |
| Bartlett and Duggal, 2020 | - | - | - | - | - | * | - |  |  | 1/7 | low |
| Bassey et al., 1988 | * | - | - | - | - | - | * |  |  | 2/7 | low |
| Bogucka et al., 2018 | * | - | - | - | - | * | * |  |  | 3/7 | low |
| Bollaert and Motl, 2019 | * | - | - | - | * | * | - |  |  | 3/7 | low |
| Boutou et al., 2019 | * | * | - | - | * | * | - | * | - | 5/9 | high |
| Carrasco Poyatos et al., 2016 | - | - | * | - | - | * | * |  |  | 3/7 | low |
| Chastin et al., 2012 | * | * | - | - | - | * | - |  |  | 3/7 | low |
| Chmelo et al., 2013 | * | * | - | - | - | * | - |  |  | 3/7 | low |
| Cooper et al., 2015 | * | * | * | * | * | * | * |  |  | 7/7 | high |
| Davis et al., 2014 | * | * | * | * | * | * | * |  |  | 7/7 | high |
| de Melo et al., 2010 | * | - | - | - | * | * | * |  |  | 4/7 | high |
| de Melo et al., 2014 | * | - | - | * | * | * | * |  |  | 5/7 | high |
| Demeyer et al., 2019 | * | * | * | - | - | - | - | * | - | 4/9 | low |
| Distefano et al., 2018 | * | * | - | * | - | * | * |  |  | 5/7 | high |
| Dogra et al., 2017 | * | * | - | * | * | * | * |  |  | 6/7 | high |
| Dohrn et al., 2020 | * | * | * | * | * | * | * |  |  | 7/7 | high |
| Dos Santos et al., 2019 | * | * | - | - | - | * | * |  |  | 4/7 | high |
| Duncan et al., 2016 | * | * | - | - | - | * | * |  |  | 4/7 | high |
| Edholm et al., 2019 | * | * | * | - | * | * | * |  |  | 6/7 | high |
| Foong et al., 2016 | * | * | - | - | - | * | * |  |  | 4/7 | high |
| Gennuso et al., 2016 | * | * | * | * | * | - | - |  |  | 5/7 | high |
| Gerdhem et al., 2007 | * | * | * | - | - | * | * |  |  | 5/7 | high |
| Hall et al., 2016 | * | - | * | - | - | * | * |  |  | 4/7 | high |
| Harada et al., 2016 | * | * | - | - | - | * | * |  |  | 4/7 | high |
| Hartley et al., 2018 | * | * | - | * | - | * | * |  |  | 5/7 | high |
| Hasegawa et al., 2018 | * | * | - | * | - | * | * |  |  | 5/7 | high |
| Hernandes et al., 2013 | * | * | - | - | - | - | * |  |  | 3/7 | low |
| Hernández et al., 2017 | * | * | - | - | * | * | * |  |  | 5/7 | high |
| Hopkins 2019 | * | - | - | * | * | - | * | * | - | 5/9 | high |
| Iijima et al., 2017 | * | - | - | * | * | * | * |  |  | 5/7 | high |
| Ikenaga et al., 2014 | * | - | - | - | * | * | - |  |  | 3/7 | low |
| Iwakura et al., 2016 | * | * | - | - | - | - | * |  |  | 3/7 | low |
| Jantunen et al., 2017 | * | * | * | * | * | * | * |  |  | 7/7 | high |
| Jeong et al., 2019 | * | * | - | - | - | - | * |  |  | 3/7 | low |
| Johnson et al., 2016 | * | * | * | - | - | - | * |  |  | 4/7 | high |
| Kawagoshi et al., 2013 | * | * | * | - | - | - | * |  |  | 4/7 | high |
| Keevil et al., 2016 | * | * | * | * | * | * | * |  |  | 7/7 | high |
| Kim 2015 | * | * | - | * | - | * | * |  |  | 5/7 | high |
| Kim et al., 2015 | * | * | * | * | * | * | * |  |  | 7/7 | high |
| Lai et al., 2020 | * | * | * | * | * | * | * |  |  | 7/7 | high |
| Lee et al., 2015 | * | * | * | * | * | * | * |  |  | 7/7 | high |
| Lerma et al., 2018 | * | * | - | * | * | * | * |  |  | 6/7 | high |
| Liao et al., 2018 | * | * | * | * | * | * | * |  |  | 7/7 | high |
| Lohne-Seiler et al., 2016 | * | * | * | * | * | * | * |  |  | 7/7 | high |
| Mador et al., 2011 | * | - | * | - | - | * | * |  |  | 4/7 | high |
| Master et al., 2018 | * | * | - | * | * | * | * |  |  | 6/7 | high |
| Matkovic et al., 2020 | * | - | - | - | - | * | * |  |  | 3/7 | low |
| McDermott et al., 2002 | * | * | - | - | - | * | * |  |  | 4/7 | high |
| McGregor et al., 2018 | * | * | - | * | * | * | - |  |  | 5/7 | high |
| Meier and Lee, 2020 | * | - | - | * | * | * | * |  |  | 5/7 | high |
| Monteiro et al., 2019 | * | * | - | - | - | * |  |  |  | 4/7 | high |
| Morie et al., 2010 | * | * | - | - | - | - | * |  |  | 3/7 | low |
| Nagai et al., 2018 | * | * | * | - | - | - | * |  |  | 4/7 | high |
| Nawrocka et al., 2017 | * | * | - | - | - | * | * |  |  | 4/7 | high |
| Nawrocka et al., 2019 | - | * | - | - | - | * | * |  |  | 3/7 | low |
| Nicolai et al., 2010 | - | * | - | - | - | - | * |  |  | 2/7 | low |
| Ofei-Doodoo et al., 2018 | * | - | - | - | - | * | * |  |  | 3/7 | low |
| Orwoll et al., 2019 | * | * | - | - | - | * | * |  |  | 4/7 | high |
|  |  |  |  |  |  |  |  |  |  | (continu | ext page) |

Table C2 (continued)

| Author year | Selection |  |  | Comparability |  |  | Outcome |  |  | Score | Quality |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Q1 | Q2a,b |  | Q3 ${ }_{\text {a,b }}$ |  | Q4 | Q5 | Q6 ${ }^{\text {L }}$ | Q7 ${ }^{\text {L }}$ |  |  |
| Osuka et al., 2015 | * | * | * | * | * | * | * |  |  | 7/7 | high |
| Park et al., 2018 | * | * | - | - | - | - | - |  |  | $2 / 7$ | low |
| Perkin et al., 2018 | * | * | - | - | - | - | * |  |  | 3/7 | low |
| Pitta et al., 2005 | * | * | - | - | - | * | * |  |  | 4/7 | high |
| Puthoff et al., 2008 | - | * | * | - | - | - | - |  |  | 2/7 | low |
| Rapp et al., 2012 | * | * | * | * | - | * | * |  |  | 6/7 | high |
| Rausch-Osthoff et al., 2014 | * | * | - | - | - | * | * |  |  | 4/7 | high |
| Rava et al., 2018 | * | * | - | * | * | - | * |  |  | 5/7 | high |
| Reid et al., 2018 | * | - | - | * | * | * | * |  |  | 5/7 | high |
| Rojer et al., 2018 | * | * | * | * | * | * | * |  |  | 7/7 | high |
| Rosenberg et al., 2015 | * | * | * | * | * | * | * |  |  | 7/7 | high |
| Rowlands et al., 2018 | * | * | * | * | * | * | - |  |  | 6/7 | high |
| Safeek et al., 2018 | * | * | * | - | - | - | * |  |  | 4/7 | high |
| Sánchez-Sánchez et al., 2019 | * | * | * | * | * | * | * |  |  | 7/7 | high |
| Santos et al., 2012 | * | * | * | * | * | * | * |  |  | 7/7 | high |
| Sardinha et al., 2015 | * | * | * | * | * | - | * |  |  | 6/7 | high |
| Scott et al., 2020 | * | * | * | - | * | * | * |  |  | 6/7 | high |
| Scott et al., 2011 | * | * | * | - | * | * | * | * | * | 8/9 | high |
| Scott et al., 2009 | * | * | * | - | - | * | * |  |  | 5/7 | high |
| Semanik et al., 2015 | * | * | * | * | * | * | * | * | * | 9/9 | high |
| Silva et al., 2019 | * | * | * | - | - | * | * |  |  | 5/7 | high |
| Spartano et al., 2019 | * | * | * | * | * | * | * |  |  | 7/7 | high |
| Tang et al., 2015 | * | * | - | - | * | * | * |  |  | 5/7 | high |
| Trayers et al., 2014 | * | - | - | * | * | * | * |  |  | 5/7 | high |
| Sullivan and Feinn, 2012 | * | * | - | - | * | * | * |  |  | 5/7 | high |
| Van Lummel et al., 2016 | * | * | - | - | - | * | * |  |  | 4/7 | high |
| van Oeijen et al., 2020 | * | - | - | - | - | * | - | * | - | 3/9 | low |
| Van Sloten et al., 2011 | * | * | - | - | - | * | - |  |  | 3/7 | low |
| Walker et al., 2008 | - | * | - | - | - | * | * |  |  | 3/7 | low |
| Ward et al., 2014 | * | * | - | * | * | * | * |  |  | 6/7 | high |
| Waschki et al., 2012 | * | * | * | * | * | * | * |  |  | 7/7 | high |
| Watz et al., 2008 | * | * | - | - | * | - | - |  |  | 3/7 | low |
| Westbury et al., 2018 | * | * | - | * | * | * | * |  |  | 6/7 | high |
| Wickerson et al., 2013 | * | * | - | - | - | * | * |  |  | 4/7 | high |
| Winberg et al., 2015 | * | * | - | * | * | - | * |  |  | 5/7 | high |
| Yamada et al., 2011 | * | * | - | * | * | - | * |  |  | 5/7 | high |
| Yasunaga et al., 2017 | * | * | * | * | * | * | * |  |  | 7/7 | high |
| Yoshida et al., 2010 | * | - | - | - | - | - | * |  |  | 2/7 | low |
| Yuki et al., 2019 | * | * | - | * | * | - | - | * | * | 6/9 | high |

$\mathrm{Q}=$ questions, $\mathrm{L}=$ questions applicable to longitudinal studies only, quality was assessed using a cut-off for high quality of $\geq 4 / 7$ for cross-sectional studies and $\geq 5 / 9$ for longitudinal studies, and otherwise articles were classified low quality.
*represents point awarded, - (dash) represents no point awarded, blank represents N/A, underlined articles are longitudinal design.
Q1:*Age, gender distribution, country, and kind of population is reported $\mathrm{Q} 2_{\mathrm{a}}$ :*Ascertainment of all physical activity measures reported is clearly and described by name of device, location, and clear cut-off points are reported when appropriate, Q2 $2_{\mathrm{b}}: *$ Methodological criteria of PA/SB data were clearly described and all of the following information: total wear time and assessment of valid days (mandatory hours/day and number of valid days) (2 possible * for Q2) Q3a:*The study controls for the most important factors, age and sex, for at least one association, $\mathrm{Q} 3_{\mathrm{b}}: *$ The study adjusted for other or additional factor, e.g. level of education, comorbidities, accelerometer wear time, physical activity for at least one association (2 possible * for Q3) Q4:*The statistical test used to analyze the data is clearly described and appropriate and the measurement of the association is presented clearly including effect size with confidence intervals, $p$-value (unless $p<0.001$ ), or standard error for at least one association Q5:*Clear description of an established method for assessing muscle strength/muscle power with measurement device reported (if applicable) for all measures Q6 ${ }^{\mathrm{L}}: *$ Follow-up $\geq 3$ months (applicable for longitudinal studies only) Q7 ${ }^{\mathrm{L}}$ :*Complete follow up with all subjects accounted for or small number lost ( $<20 \%$ ) months (applicable for longitudinal studies only).

# Table C3 

Ascertainment and measurement characteristics of objectively measured physical activity and sedentary behavior.





| Author year | Device and wearing protocol |  |  |  | Assessment of valid days |  |  | Physical activity and sedentary behavior |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\mathrm{A} /}$ | Name | Worn <br> on | \# <br> days <br> worn | Defined as minimum (h/day) | \# valid <br> days <br> required | Wear time mean (SD) (min/day) | Reported measure(s) ${ }^{\text {a }}$ | Units | Cut off values/definition | Mean (SD) |
|  |  |  |  |  |  |  |  | SB | \% time/day | N/R | $\begin{aligned} & \text { 60-69y: } 33.7 \text { (24.8); 70-79y: } \\ & 24.7 \text { (25.8); 80-90+y: 12.3 } \\ & \text { (15.4) 20.9 } \\ & \text { 60-69: 96.0 (2.9); 70-79: 97.1 } \\ & \text { (2.9); 80-90+: 98.6* (1.8) } \\ & 97.5 \end{aligned}$ |
| Harada et al., 2016 | A | ACOS GT40-020 | N/R | 14 | 10 | 8 | N/R | Steps | \#/day | Device detected | 6654.6 (2958.8) |
| Hartley et al., 2018 | A | Gulf Coast Data Concepts x16-1c | Hip | 7 | 10 | N/R | N/R | Activity counts (low impact, medium impact, high impact) | \#/impactband/day | $0.5 \leq \mathrm{g}<1.0,1.0 \leq \mathrm{g}<1.5, \geq 1.5 \mathrm{~g}$ | $\begin{aligned} & 11457.8 \text { [5779.1-18827.9], } \\ & 452.6[183.7-950.9], 51.8 \\ & {[23.0-124.2]} \end{aligned}$ |
| Hasegawa et al., 2018 | P | Misfit Shine 2 | Hip | 7 | N/R | N/R | N/R | Steps | \#/day | Device detected | 6500 (3200) |
| $\begin{aligned} & \text { Hernandes et al., } \\ & 2013 \end{aligned}$ | P | Yamax SW-200 Digiwalker | Waist | 7 | 12 | 8 | N/R | Steps | \#/day | Device detected | Exercise: 8314 [5971-10060]; <br> Non-exercise: 6250 [4346- <br> 8207] |
|  |  |  |  |  |  |  |  | Steps | \#/day | Device detected | 8105.9 (3851.2) |
| Hernández et al., | A | Actigraph GT3X+ |  |  |  |  | N/R | ${ }_{\text {TPA }}^{\text {MVPA (MPA) }}$ | Min/day <br> Min/day | Device detected 1952-5724 CPM | $\begin{aligned} & \mathrm{N} / \mathrm{R} \\ & 39.1(33.9) \end{aligned}$ |
|  |  |  | Hip | 8 | 8 | 5 |  | LPA | Min/day | 100-1951 CPM | 227.2 (89.9) |
|  |  |  |  |  |  |  |  | $\begin{aligned} & \text { SB } \\ & \text { MVPA } \end{aligned}$ | Min/day | <100 CPM | 578.6 (86.2) |
| Hopkins, 2019 | A | Actigraph GT1M | N/R | 7 | 10 | 4 | N/R | (Meeting vs. not meeting guidelines) | Dichotomous $\min$ /day | $\geq$ or <150 min MVPA ( $>2020$ CPM) | N/R |
| Ijijma et al., 2017 | P | N/R | Leg | 14 | N/R | 10 | N/R | Steps | \#/day | Device detected (Subgroups - Basal activity: $<2500$ steps; Limited activity: 2500-4999 steps; Low active: 5000-7499 steps; Physically active: $\geq 7500$ steps) | Basal activity: 1711 (591); Limited activity: 3718 (754); Low active: 5808 (701); Physically active: 9858 (2132) |
|  |  |  |  |  | 300 steps/ |  |  | Steps | \#/day | Device detected | 6523 (3797) |
|  |  | Actimarker EW4800 $\times 2$ (concurrent) |  |  | day or |  |  | MPA | Min/day | 3.0-5.9 MET | 34.3 (27.0) |
| Ikenaga et al., 2014 |  |  | N/R | 10 | $10 \mathrm{~min} /$ day of activity >2 MET | 4 | N/R | LPA | Min/day | 1.1-2.9 MET | 563.5 (125.4) |
|  |  |  |  |  |  |  |  | SB | Min/day | <1.1 MET | 842.1 (129.8) |
| Iwakura et al., 2016 | A | Lifecorder | Waist | N/R | N/R | $\begin{aligned} & 5 \text { (Mon- } \\ & \text { Fri) } \end{aligned}$ |  | Steps | \#/day | Device detected | 4546 (2992) |
|  |  |  |  |  |  |  |  | MVPA | Min/day | >3 MET | 13.9 (14.0) |
| $\begin{aligned} & \text { Jantunen et al., } \\ & 2017 \end{aligned}$ | A | Sense Wear Pro 3 | Arm | 10 | 10 | 4 (Mon- <br> Fri) +1 <br> (Sat-Sun) | 1436.8 (6.0) | MET | H/day | Device detected | 1779.6 (298.5) |
| Jeong et al., 2019 | A | Fitbit charge 2 | Wrist | 7 | 10 | 4 | N/R | Steps | \#/day | Device detected | 9907.6 (3641.8) |
|  |  |  |  |  |  |  |  | VPA | Min/day | $\geq 6 \mathrm{MET}$ | 0.390 (1.318) |
| Johnson et al., 2016 | A | Actigraph GT1M | Hip | 7 | 10 | 5 | 843.37 (75.587) | ${ }_{\text {MVA }}^{\text {MVA ( }}$ (MPA) | Min/day Min/day | 3-5.9 MET | 31.490 (21.923) 228.560 (69.292) |
|  |  |  |  |  |  |  |  |  | Min/day Min/day | $\begin{aligned} & 1.5-2.9 \text { MET } \\ & <1.5 \mathrm{MET} \end{aligned}$ | $228.560(69.292)$ $581.670(93.844)$ |
| $\begin{aligned} & \text { Kawagoshi et al., } \\ & 2013 \end{aligned}$ | A | A-MES | Thigh and chest | 7 | 12 | 2 | 4 (2) days | Steps (Walking) | Min/day | Standing + vertical acceleration | 118 (72) |
|  |  |  |  |  |  |  |  | (Walking) | Min/day | Trunk and thigh sensor vertical (not incl. walking) | 79 (48) |
|  |  |  |  |  |  |  |  |  | Min/day | Walking $\geq 2 \mathrm{~km} / \mathrm{h}$ | 36 (35) |
|  |  |  |  |  |  |  |  |  |  |  | (continued on next page) |



| Author year | Device and wearing protocol |  |  |  | Assessment of valid days |  |  | Physical activity and sedentary behavior |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \mathrm{A} / \\ & \mathrm{P} \end{aligned}$ | Name | Worn <br> on | \# <br> days <br> worn | Defined as minimum (h/day) | \# valid <br> days required | Wear time mean (SD) (min/day) | Reported measure(s) ${ }^{a}$ | Units | Cut off values/definition | Mean (SD) |
| $\begin{aligned} & \text { Nawrocka et al., } \\ & 2017 \end{aligned}$ | A | Actigraph GT3X | Waist | 7 | 10 | N/R | N/R | MVPA (Meeting vs. not meeting guidelines) | Dichotomous min/day | $\geq 150$ min MPA (2020-5998 CPM) or $\geq 75$ min VPA ( $>599 \mathrm{CPM}$ ) or equivalent combination of MVPA | N/R |
| $\begin{aligned} & \text { Nawrocka et al., } \\ & 2019 \end{aligned}$ | A | Actigraph GT3X | Waist | 7 | 10 | N/R | N/R | MVPA (Meeting vs. not meeting guidelines) | Dichotomous min/day | $\geq 150$ min MPA (2020-5998 CPM) or $\geq 75 \mathrm{~min}$ VPA ( $>599 \mathrm{CPM}$ ) or equivalent combination of MVPA | N/R |
| Nicolai et al., 2010 | A | Physiolog BioAGM | Chest | 7 | N/R | N/R | N/R | Steps (Walking) TPA (Time on feet) | Min/day Min/day | $\geq 3$ consecutive steps Upright standing $<3$ steps + walking | 1.45 (0.07) 5.01 (0.18) |
| $\begin{aligned} & \text { Ofei-Doodoo et al., } \\ & 2018 \end{aligned}$ | A | Kenz Lifecorder | Waist | 14 | N/R | N/R | N/R | MVPA | Min/day | Accelerometer intensity 4-6 (corresponds to 4-6 MET) | $\geq 30: 00$ min MVPA: 49:42 <br> \{31:24-2:17:07\}; 20:00- <br> 29:59 min MVPA: 25:16 <br> \{20:00-29:59\}; 10:00- <br> 19:59 min MVPA: 14:51 <br> \{10:18-19:43\}; 0:00-9:59 min <br> MVPA: 3:33 \{0:02-9:58\} |
| Orwoll et al., 2019 | A | SenseWear Pro <br> Armband | Arm | 7 | N/R | $\begin{aligned} & 90 \% \text { of } \\ & \text { time }+1 \\ & \text { (Sat-Sun) } \end{aligned}$ | N/R | TPA $(\geq L P A)$ MVPA $(\geq$ MPA $)$ | Min/day Min/day | $\geq 1.51 \mathrm{MET}$ $\geq 3 \mathrm{MET}$ | No falls: 160.8 (88.2); One fall: 156.4 (89.9); >Two falls: 141.9 (89.1) <br> No falls: 90.0 (61.5); One fall: 88.0 (62.0); $\geq$ Two falls: 77.8 (60.6) |
| Osuka et al., 2015 | A | Kenz Lifecorder | Hip | 7 | 10 | 5 | 875.3 (92.4) | MVPA | Min/day | $\geq 3.6 \mathrm{MET}$ | 17.6 (15.3) 57.1 (227) |
|  |  |  |  |  |  |  |  | $\begin{aligned} & \text { LPA } \\ & \text { Steps } \end{aligned}$ | $\begin{aligned} & \text { Min/day } \\ & \text { \#/day } \end{aligned}$ | 1.8-2.9 MET <br> Device detected | $\begin{aligned} & 57.1 \text { (22.7) } \\ & 7567.5 \text { (3316.8) } \end{aligned}$ |
|  |  |  |  |  |  |  |  | TPA | Min/day | $\geq 0.9 \mathrm{MET}$ | 807.3 (69.5) |
| Park et al., 2018 | A | Active style Pro HJA-350IT | Waist | 14 | N/R | $\begin{aligned} & >3 \text { (Mon- } \\ & \text { Fri) }+1 \\ & \text { (Sat-Sun) } \end{aligned}$ | N/R | VPA MVPA MPA | Min/day Min/day | $\geq 6.0 \mathrm{MET}$ $\geq 3.0 \mathrm{MET}$ | $\begin{aligned} & 0.4(1.6) \\ & 65.9(29.7) \end{aligned}$ |
|  |  |  |  |  |  |  |  | LPA | Min/day | 3-5.9 MET | 65.4 (29.7) |
|  |  |  |  |  |  |  |  |  | Min/day | 1.5-2.9 MET | 354.1 (71.7) |
|  |  |  |  |  |  |  |  | SB | Min/day | 0.9-1.5 MET | 388.9 (81.3) |
| Perkin et al., 2018 |  | Actiheart | Chest | 6 | N/R | N/R | N/R | MVPA | Min/day | $\geq 3.2 \mathrm{MET}$ | 103 (49) |
|  | A |  |  |  |  |  |  | SB | Min/day | $\leq 1.5 \mathrm{MET}$ | 1058 (112) |
|  |  |  |  |  |  |  |  | ${ }_{\text {Ste ( }}^{\text {(PAL) }}$ | None | EE/basal metabolic rate | 1.59 (0.17) |
| Pitta et al., 2005 | A | DynaPort ActivityMonitor | Waist and leg sensor | 5 | 12 | 2 | N/R | Steps (Walking) | Min/day | Device detected | 44 (26) |
|  |  |  |  |  |  |  |  | $\begin{aligned} & \text { TPA } \\ & \text { (Standing) } \end{aligned}$ | Min/day | Device detected (not incl. walking) | 191 (99) |
| Puthoff et al., 2008 | A | AMP 331 | Ankle | 6 | 8 | 6 | N/R | Steps | \#/day | Device detected | 6384.4 (2370.8) |
| Rapp et al., 2012 | A | ActivPAL | Thigh | 7 | 24 | $\begin{aligned} & >3 \text { (Mon- } \\ & \text { Fri) }+1 \\ & \text { Sun } \end{aligned}$ | N/R | Steps (Walking) | Min/day | Device detected | M: 104.8 (41.0); F: 103.0 (39.4) |
| Rausch-Osthoff et al., 2014 | A | SenseWearPro <br> Armband | Arm | 7 | N/R | N/R | N/R | Steps | \#/day | Device detected | 4097 (2325) |
|  |  |  |  |  |  |  |  | EE | Kcal/day | Device detected | 2222 (467) |
|  |  |  |  |  |  |  |  | EE (PAL) <br> MET | None Kcal/h/kg | Total EE/sleep EE | 1.44 (0.16) |
|  |  |  |  |  |  |  |  | VPA | Min/day | $\geq 5725 \mathrm{CPM}$ | 1.5 (6.1) |
| Rava et al., 2018 | A | Actigraph | Hip | 7 | 10 | 4 | N/R | MVPA | Min/day | $\geq 1954$ CPM | 56.2 (29.6) |
|  |  |  |  |  |  |  |  | MPA | Min/day | 1952-5724 CPM | 54.7 (29.1) |



| Author year | Device and wearing protocol |  |  |  | Assessment of valid days |  |  | Physical activity and sedentary behavior |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \overline{\mathrm{A} /} \\ & \mathrm{P} \end{aligned}$ | Name | Worn on | $\begin{aligned} & \text { \# } \\ & \text { days } \\ & \text { worn } \end{aligned}$ | Defined as minimum (h/day) | \# valid days required | Wear time mean (SD) (min/day) | Reported measure(s) ${ }^{\text {a }}$ | Units | Cut off values/definition | Mean (SD) |
| Silva et al., 2019 | A | Actigraph GT1M | Back | 5 | 10 | 2 (Mon- |  | MVPA | Min/day | $\geq 2020$ CPM | 33.46 (27.25) |
|  |  |  |  |  |  | Fri) +1 |  | LPA | Min/day | 100-2019 CPM | 291.16 (91.20) |
|  |  |  |  |  |  | (Sat-Sun) |  | SB | Min/day | <100 CPM | 458.10 (78.68) |
| Spartano et al., 2019 | A | Actical 198-0200- <br> 00 | Hip | 8 | 10 | 4 | 749 (71) | Steps | \#/day | Device detected MVPA: | 6927 (3678) |
|  |  |  |  |  |  |  |  | ${ }_{\text {SB }} \mathrm{MVA}$ | Min/day \% wear time | $>1486$ CPM | 19 (22) 84.3 (6.3) |
|  | A |  |  |  |  |  |  |  | \% wear time | Device detected for 10 h of day with | 84.3 (6.3) |
| Tang et al., 2015 |  | Actigraph | Wrist | N/R | N/R | N/R | 15.5 [9-25.3] | Activity counts | \#/day | Device detected for 10 h of day with highest activity | 966,131 [720529-1267931] |
|  |  |  |  |  |  |  |  | Steps (low vs. <br> high) | \#/day | Device detected (lowest $1 / 3$ vs. highest 2 / 3) | 181 (117) |
| Trayers et al., 2014 | A | Actigraph GT1M | N/R | 7 | 10 | 5 | N/R | Activity <br> counts (low <br> vs. high) <br> MVPA (low vs. <br> high) | \#/min/day | Device detected (lowest $1 / 3$ vs. highest 2 / 3) | 4456 (2478) |
|  |  |  |  |  |  |  |  |  | Min/day | >1952 CPM (lowest $1 / 3$ vs. highest $2 / 3$ ) | 18.5 (20.2) |
| Van Gestel et al., 2012 | A | SenseWear Pro | Arm | 7 | N/R | N/R | N/R | Steps | \#/day | Device detected | 5273 (3319) |
|  | A | Dynaport | $\begin{aligned} & \text { Lower } \\ & \text { back } \end{aligned}$ |  |  |  | $\begin{aligned} & 6.8 \text { (N/R) days; } \\ & 23.2 \text { (SD N/R) } \\ & \text { h/day } \end{aligned}$ | TPA (standing) | H/day | Device detected (standing posture) | 2.1 (0.9) |
| Van Lummel et al., |  |  |  | 7 | N/R | N/R |  | \# PA bouts <br> (locomotion <br> periods) | \#/day | N/R | 297.3 (150.7) |
|  |  |  |  |  |  |  |  | SB bout (sitting periods) | Min/bout/day | Device detected (sitting posture) | 5.7 (3.0) |
| van Oeijen et al., 2020 | P | Lifestyles <br> DigiWalker Step <br> Counter | N/R | 7 | N/R | N/R | N/R | Steps | \#/day | Device detected | Baseline: 5771.14 [4403.0]; <br> 4y FU: 4493.93 [4203.46] |
| $\begin{aligned} & \text { Van Sloten et al., } \\ & 2011 \end{aligned}$ | P | Piezo-electric <br> New Lifestyle <br> 2000 | Waist | 7 | N/R | N/R | 14.9 (1.1) h/day | Steps | \#/day | Device detected | 6429 [45170-8573] |
| Walker et al., 2008 | A | Actiwatch | Waist <br> and <br> thigh | 3 | N/R | N/R | For evaluation: 15.7 (0.2) | TPA (time mobile) | \% time/day | $\%$ of 30 s epochs where device level $\geq 1$ | 50.0 (2.7) |
| Ward et al., 2014 | A | Actigraph singleaxis | Hip | 7 | 10 | 5 | N/R | Activity counts | \#/min/day | Device detected | F: 2473.03 (111.50; M: 319.23 (131.0) |
|  |  |  |  |  |  |  |  | MVPA | Min/week | >3 MET | F: 79.56 (96.82); M: 95.13 (91.90) |
|  |  |  |  |  |  |  | Maastricht: <br> 142 h 17 min | Steps | \#/day | Device detected |  |
| Waschki et al., 2012 | A | SenseWear Armband | Arm | 8 | 22 | 5 | 142 h 17 min <br> Liverpool: 141 h <br> 1 min ; London: <br> 142 h 24 min | EE (PAL) | None | $\mathrm{EE} /$ sleeping metabolic rate (device detected) | 4725 (3212) 1.45 (0.20) |
| Watz et al., 2008 | A | SenseWear Armband | Arm | 5-6 | 22.5 | 5 | N/R | Steps | \#/day | Device detected | 5882 (3684) |
|  |  |  |  |  |  |  |  | EE (PAL) | None | $\mathrm{EE} /$ sleeping metabolic rate (device detected) | 1.50 (0.28) |
| Westbury et al., 2018 | A | GENEActiv | Wrist | 7 | N/R | 7 | N/R | TPA | Min/day | $\geq 40 \mathrm{mg}$-force | M: 137.8 [81.7-217.2]); F: 186.0 [122.1-240.4] |
|  |  |  |  |  |  |  |  | MVPA | Min/day | $\geq 100 \mathrm{mg}$-force | M: 14.3 [1.8-30.2]; F: 9.5 [2.1-18.6] |
|  |  |  |  |  |  |  |  | Accelerations | Mg-force | Device detected | M: 23.9 (7.6); F: 25.5 (6.8) |
| Wickerson et al., | A | Actigraph GT3X | Hip | 7 | 8 | N/R | 4.5 (1.6) h/day; | Steps, | \#/day | Device detected | 2736 (1612) |
| 2013 | A | Actigraph GI3X | Hip | 7 |  |  | 6.6 (1.0) days | MVPA (MPA) | Min/day | 3-6 MET | 3.6 [1.5-7.7.7] |
| Winberg et al., 2015 | P | Yamax SW 200 |  | 3 | N/R | N/R | N/R | Steps | \#/day | Device detected | 6270 (3120) |

Table C3 (continued)

| Author year | Device and wearing protocol |  |  |  | Assessment of valid days |  |  | Physical activity and sedentary behavior |  |  | Mean (SD) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \mathrm{A} / \\ & \mathrm{P} \end{aligned}$ | Name | Worn on | \# <br> days <br> worn | Defined as minimum (h/day) | \# valid days required | Wear time mean (SD) (min/day) | Reported measure(s) ${ }^{\text {a }}$ | Units | Cut off values/definition |  |
|  |  |  | Lower back |  |  |  |  |  |  |  |  |
| Yamada et al., 2011 | P | Yamax Power Walker EX-510 | Leg | 14 | N/R | N/R | N/R | Steps | \#/day | Device detected | Non-frail: 4414.4 (2726.3); <br> Frail: 1585.0 (1012.6) |
| Yasunaga et al., 2017 | A | Active style Pro HJA-350IT | Waist | 7 | 10 | 4 (incl. 1 Sat-Sun) | $\begin{aligned} & 901.1 \text { (87.5); } 7.2 \\ & \text { (SD N/R) days } \end{aligned}$ | MVPA | Min/day | $\geq 3 \mathrm{MET}$ | 50.2 (33.5) |
|  |  |  |  |  |  |  |  | ${ }_{\text {LPA }}$ | Min/day | $>1.5-<3 \mathrm{MET}$ | 328.7 (101.4) |
|  |  |  |  |  |  |  |  | SB | Min/day | $\leq 1.5 \mathrm{MET}$ | 522.7 (113.4) |
| Yoshida et al., 2010 | A | Active style Pro HJA | N/R | 15 | $\begin{aligned} & 500 \mathrm{~min} / \\ & \text { day } \end{aligned}$ | 7 | N/R | Steps | \#/day | Device detected | HFG: 2416 (2055); LFG: 1275 <br> (1313) |
|  |  |  |  |  |  |  |  | TPA | Min/day | Device detected | HFG: 36.8 (24.0); LFG: 24.4 (18.8) |
|  |  |  |  |  |  |  |  | MPA | Min/day | Device level 3-6 ( $\sim 3-6 \mathrm{MET}$ ) | N/R |
| Yuki et al., 2019 | A | Suzken Lifecorder | N/R | 7 |  | N/R | N/R | LPA | Min/day | Device level 1-2 ( $\sim<3 \mathrm{MET}$ ) | N/R |
|  |  |  |  |  | 10 |  |  | Steps | Min/day |  | 7204.1 (3500.3) |
|  |  |  |  |  |  |  |  | LPA | Min/day |  | 55.5 (22.8) |
|  |  |  |  |  |  |  |  | MVPA | Min/day |  | 20.4 (19.2) |

 presented in italics. Underlined articles have a longitudinal design.




 reported measures are provided in parentheses and italic font when measures were originally described otherwise but were classified as one into one of the aforementioned categories.

Table C4
Ascertainment and measurement characteristics of measures of upper body and lower body muscle strength and muscle power.

| Author year | Device/equipment | Definition and protocol | Measure type | Reported measure (s) | Units | Mean (SD) ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Abe 2015 | Biodex System 3 Dynamometer | MVC isometric KES, 2-3 attempts, max/ weight used for analysis | LB MS | KES/weight | $\begin{aligned} & \mathrm{Kg} / \\ & \mathrm{nm} \end{aligned}$ | 105 (25) |
|  | Toe-Grasp T.K.K. 3361 Dynamometer | Max toe grasping strength, 3 attempts for each foot, max of each foot averaged used | LB MS | Toe grasping/ weight | Kg/kg | 13.4 (3.5) |
| Abe et al., 2012 | Bidoex System 3 Dynamometer | MVC isometric strength of knee flexors and extensors, 2-3 attempts, max used for analysis | LB MS | KES | Nm | 105 (25) |
|  |  |  | LB MS | Knee flexion strength | Nm | 45 (9) |
| Aggio et al., 2016 | Jamar Hydraulic Hand Dynamometer | HGS, 3 attempts for each hand, max used | UB MS | HGS | Kg | Non-sarcopenia: 32.3 (9.9); <br> Sarcopenia: 28.7 (10.1); <br> Severe sarcopenia: 22.2 (6.1) |
| Alcazar et al., 2018 | Leg press E | Leg press 1RM, progressive reps | LB MS | Leg press strength | N | N/R |
|  |  |  | LB MP |  | W | N/R |
|  |  | evaluation to determine max force (strength) and max power for analysis | LB MP | Leg press power/ weight | W/kg | N/R |
| Alzahrani et al., 2012 | Handheld Dynamometer N/R | MVC KES, 2 attempts, max used for analysis | LB MS | KES | N | 116 (52) |
| Andersson et al., 2013 | Steve Strong Dynamometer | MVC isometric KES strength, 3 attempts, recorded in N , max used and converted into kg | LB MS | KES | Kg | 31.3 (11.2) |
| André et al., 2018 | N/A | Calf raise (heel rise) senior test, \# of calf raises (heel rises) in 30 s, high: $\geq 38$ and low: <38 | LB MP | $\begin{aligned} & \text { Calf raise (High } \\ & \text { vs. low) } \end{aligned}$ | \#/30 s | 37.8 (13.4) |
| André et al., 2016 | N/A | Calf raise (heel rise) senior test, \# of calf raises (heel rises) in 30 s | LB MP | Calf raise | \#/30 s | 31.79 (7.01) |
| Aoyagi et al., 2009 | Smedley Dynamometer ES-100 $\mu$ Tas Dynamometer MF-01 | HGS, 2 attempts with dominant hand, max used for analysis | UB MS | HGS | N | 262 (83) |
|  |  | Isometric knee extension torque, 2 attempts, max used for analysis | LB MS | Knee extension torque | $\begin{aligned} & \mathrm{Nm} / \\ & \mathrm{kg} \end{aligned}$ | 1.34 (0.37) |
|  |  | 1RM KES, progressive reps increasing by $10 \%$, max used for analysis | LB MS | Leg press strength | Kg | 325 (66) |
| Ashe et al., 2008 | Keiser Air-pressured Digital Resistance Leg Press Machine | Bilateral leg extension, reps at $40 \%$, $50 \%, 60 \%, 70 \%, 80 \%$, and $90 \%$ of individual's 1RM, max power used for analysis | LB MP | Leg press power | W | 656 (193) |
| Ashe et al., 2007 | Jamar JLW Dynamometer <br> Nicolas MMT 11560 handheld Dynamometer | HGS, 3 attempts with left hand, mean used | UB MS | HGS | Kg | 24.2 (10.9) |
|  |  | KES, 3 attempts with left leg, mean normalized to weight used for analysis | LB MS | KES | Kg | 18.2 (7.3) |
| Aubertin-Leheudre et al., 2017 | Jamar Dynamometer | HGS, 2 attempts, max used, nondynapenic: $\geq 20 \mathrm{~kg}$ for F and $\geq 32 \mathrm{~kg}$ for M, dynapenic: $\leq 19.9$ for F and $\leq 31.9 \mathrm{~kg}$ for M | UB BS | HGS (dynapenic <br> vs. nondynapenic) | Kg | Non-obese non-dynapenic: 28.9 (9.1); Non-obsese dynapenic: 18.7 (6.5); Obese non-dynapenic: 29.7 (9.0); Obese dynapenic: 18.4 (5.8) |
| Balducci et al., 2017 | Digimax Mechatronic GmbH (strain gauge tensiometer) and Shoulder Press/Lat Pull OR Leg Press, Easy Line Technogym | MVC at shoulder press, 3 attempts, max used | UB MS | Shoulder press strength | Nm | 254.8 (92.5) |
|  |  | MVC at leg press, 3 attempts, max used | LB MS | Leg press strength | Nm | 161.1 (60.4) |
| Bann et al., 2015 | Jamar | HGS, 2 attempts, dominant arm max used | UB MS | HGS | Kg | M: 31.7 (10.2); F: 19.9 (6.3) |
|  | Lafyette Instrument Hand Dynamometer | HGS, 3 attempts with each hand, maxed used | UB MS | HGS | Kg | Sedentary: 28.4 (3.9); <br> Moderately active: 27.3 (4.3); <br> Actively: 28.0 (4.4) |
| $\begin{aligned} & \text { Barbat-Artigas et al., } \\ & 2012 \end{aligned}$ | Kim Com 5000 Dynamometer | Isometric KES, 3 attempts, max used | LB MS | KES | N | Sedentary: 438 (80); <br> Moderately active: 400 (69); <br> Active: 464 (116) |
|  | N/A | \# chair stands completed in 20 s | LB MP | 20 s CST | \#/20 s | Sedentary: 13 (3); Moderately actively: 11 (3); Actively: 13 (3) |
| Bartlett and Duggal, 2020 | N/R | N/R | UB MS | HGS | Kg | Sedentary: 29.02 (8.34); Active: 30.64 (10.11) |
| Bassey et al., 1988 | Bourdon Tube | MVC isometric plantar flexor strength of the triceps surae, 3 attempts, max used | LB MS | Calf strength | N | M: 1128 (206); F: 873 (177) |
| Bogucka et al., 2018 | Hydraulic Dynamometer | HGS, two attempts for each arm, mean for each hand calculated and mean of both hands used | UB MS | HGS | Kg | Dynapenic: 17.55 (2.6); Nondynapenic: 25.9 (4.6) |
| Bollaert and Motl, 2019 | N/A | Time to complete 5 chair stands | LB MP | 5x CST (0-4) | Points | MS: 2.0 (1.3); HC: 3.5 (0.7) |
| Boutou et al., 2019 | N/R | MVC KES (quadriceps) N/R | LB MS | KES | Kg | Baseline: 33.4 (32.4) |
| Carrasco Poyatos et al., 2016 | Takei Dynamometer TKK 5001 | HGS, 3 attempts with each hand, mean of max in each hand used | UB MS | HGS | Kg | 21.22 (1.7) |
| Chastin et al., 2012 | Nottingham Power Rig | N/R | LB MP | Leg extension power | N/R | N/R |
|  |  |  |  |  |  | (continued on next page) |

Table C4 (continued)

| Author year | Device/equipment | Definition and protocol | Measure type | Reported measure (s) | Units | Mean (SD) ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Chmelo et al., 2013 | Kin Com 125E Isokinetic Dynamometer | Concentric KES | LB MS | KES | N | 229 (85) |
| Cooper et al., 2015 | Nottingham Electric Dynamometer N/A | HGS, 3 attempts with each hand, max used | UB MS LB <br> MP | HGS | Kg | M: 46.4 (11.5); F: 27.0 (7.5) |
|  |  | Time to complete 10 chair stands Time to complete 5 chair stands, |  | 10x CST | \#/min | M: 26.2 (7.3); F: 24.9 (7.3) |
| Davis et al., 2014 | N/A | $\begin{aligned} & >16.70 \mathrm{~s}=0 \text { points, } 13.70-16.69 \mathrm{~s}=1 \\ & \text { point, } 11.20-13.69 \mathrm{~s}=3 \text { points, } \\ & <11.19 \mathrm{~s}=4 \text { points } \end{aligned}$ | LB MP | 5 x CST (0-4) | Points | 2.7 (1.3) |
| de Melo et al., 2010 | N/A | \# chair stands completed in 30 s | LB MP | 30 s CST | \#/30 s | 19.4 (5.4) |
|  | N/A | \# of full flexion and extension of the elbow without moving the shoulder | UB MP | Arm Curl | \#/30 s | 15.2 (3.7) |
| de Melo et al., 2014 | N/A | (arm curls) using dumbbells (F: 5 pounds, M:8 pounds) completed in 30 s \# chair stands completed in 30 s | LB MP | 30 s CST | \#/30 s | 10.4 (5.4) |
| Demeyer et al., 2019 | N/R | $\Delta$ HGS, non-dominant hand, measured at baseline and after 2.6 (SD: 0.6) years | UB MS | $\Delta$ HGS | N | Baseline: 295 (87); Follow up: 272 (84); Decline per year: 7.84 (23) |
| Distefano et al., 2018 | Standard weight stack | 1RM KES, left leg, progressive reps increasing by $10 \%$, max used. Time to complete 5 chair stands | LB MS | KES | Kg | Active: 35.6 (2.5); Sedentary: $31.9 \text { (1.7) }$ |
|  | N/A |  | LB MP | 5x CST | S | N/R |
| Dogra et al., 2017 | Smedley Dynamometer | HGS, two attempts with each hand, sum of max from each hand used | UB MS | HGS | Kg | 64 (95\% CI: 62, 66) |
| Dohrn et al., 2020 | N/A | Ability to complete 5 chair stands | LB MP | $5 \mathrm{x} \operatorname{CST}$ (able vs. non-able) | None | N/R |
| Dos Santos et al., 2019 | Camry EH101 Digital Dynamometer | HGS, two attempts with dominant hand, max from each hand used, $M$ : > or < 30 kg, F: $>$ or $<20 \mathrm{~kg}$ | UB MS | HGS (low vs. high) | Kg | N/R |
| Duncan et al., 2016 | N/A | \# of full flexion and extension of the elbow (arm curls) with dumbbells $F$ : 5 pounds and $M: 8$ pounds completed in | UB MP | Arm curl | \#/30 s | Low: 13.7 (SE = 0.61; <br> Medium: 15.8 ( $\mathrm{SE}=0.43$ ); <br> High: 18.4 (0.41) <br> Low: 13.3 ( $\mathrm{SE}=0.81$ ); <br> Medium: 14.4 ( $\mathrm{SE}=0.52$ ); <br> High: 16.9 ( $\mathrm{SE}=0.51$ ). |
|  |  |  |  |  |  |  |
|  | N/A | $30 \mathrm{~s} \#$ chair stands completed in 30 s | LB MP | 30 s CST | \#/30 s |  |
| Edholm et al., 2019 | Kistler 9281 Force Platform | Concentric phase of jump on to force platform, 3 attempts, max used | LB MS | Squat jump test | N/kg | 8.4 (1.8) |
| Foong et al., 2016 | 100 kg Pocket Balance Dynamometer | MVC isometric KES, dominant leg MVC leg strength lifting a bar, both legs (simultaneously) | LB MSLB MS | KESLeg strength | KgKg | M: 39.3 (8.1); F: 28.2 (9.1) <br> M: 129.0 (39.5); F: 56.4 (27.1) |
|  |  |  |  |  |  |  |
| Gennuso et al., 2016 | Dynamometer $\mathrm{N} / \mathrm{R}$ | N/R | UB MS | HGS | N/R | N/R |
|  | N/A | Time to complete 5 chair stands | LB MP | 5x CST (0-4) | Points | $\begin{aligned} & \text { M: } 2.5 \text { [1.0-3.5]; F: } 2.5 \text { [1.5- } \\ & 3.0] \end{aligned}$ |
| Gerdhem et al., 2007 | Bidoex Computerized <br> Dynamometer 4.5.0. | Isometric KES, three attempts, max used Isometric knee flexion strength, three attempts, max used | LB MSLB MS | KES <br> Knee flexion strength | NmS | 246 (71)117 (37) |
|  |  |  |  |  | NmS |  |
| Hall et al., 2016 | N/A | \# chair stands completed in 30 s | LB MP | 30 s CST | \#/30 s | $\begin{aligned} & 60-69: 15.8 \text { (4.5); 70-79: } \\ & 14.1 \text { (4.9); } 80-90+: 10.9 \\ & (4.8) \end{aligned}$ |
| Harada et al., 2016 | N/A | Time to complete 5 chair stands HGS, 3 attempts with each hand, max used | LB MP | 5x CST | S | 7.7 (2.2) |
|  | Jamar Dynamometer |  | UB MS | HGS | Kg | 21.8 (4.9) |
| Hartley et al., 2018 | Mechanography Ground | One legged jump strength, 3 attempts, max used | LB MS | Jump strength | KiloN | 1.3 (0.2) |
|  | Reaction Force Platform | Two legged jump power, three 3, maxed used | LB MP | Jump power | KiloW | 1.4 (0.3) |
| Hasegawa et al., 2018 | N/A | Time to complete 5 chair stands | LB MP | 5x CST | S | 12.9 (4.2) |
|  | N/A | \# chair stands completed in 30 s | LB MP | 30 s CST | \#/30 s | 15.4 (4.3) |
| Hernandes et al.,2013 | Takei Dynamometer | HGS, 2 attempts with each hand, max used | UB MS | HGS | KgF | Exercise: 27 [23-33]; Nonexercise: 25 [22-34] <br> Exercise: 13 [12-15]; Nonexercise: 12 [10-13] |
|  | N/A | \# chair stands completed in 30 s <br> 1RM leg press KES, 4-5 attempts, max used | LB MP | 30 s CST | \#/30 s |  |
| Hernández et al., 2017 |  |  | LB MS | KES | Kg | 195.8 (76.8) |
|  | Bilateral Leg Press Technogym | Quadriceps power at $50 \%$ and $70 \%$ of individual's <br> 1RM, 2 attempts, max used | LB MP | Quad power 50\% | W | 576.4 (250.4) |
|  |  |  | LB MP | Quad power 70\% | W | 571.3 (245.9) |
| Hopkins 2019 | N/A | Time to complete 5 chair stands | LB MP | 5x CST | S | N/R <br> Basal activity: 10.5 (3.42); <br> Limited activity: 9.06 (2.33); <br> Low active: 8.55 (2.86); <br> Physically active: 7.90 (1.74) |
| Iijima et al., 2017 | N/A | Time to complete 5 chair stands | LB MP | 5x CST | S |  |
| Ikenaga et al., 2014 | Smedley Dynamometer TKK5401 GRIP-D | HGS, 2 attempts with both hands, max used <br> HGS, 2 attempts, max used | $\begin{aligned} & \text { UB MS } \\ & \text { LB MS } \end{aligned}$ | HGS | Kg | 35.4 (5.3) |
|  |  |  |  | KES |  | 2.35 (0.54) |

Table C4 (continued)

| Author year | Device/equipment | Definition and protocol | Measure type | Reported measure (s) | Units | Mean (SD) ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dynamometer TKK5717 \& TKK5710e |  |  |  | $\begin{aligned} & \mathrm{Nm} / \\ & \mathrm{kg} \end{aligned}$ |  |
| Iwakura et al., 2016 | N/A | Time to complete 5 chair stands \# of full flexion and extension of the elbow (arm curls) with dumbbells $F$ : 5 | LB MP | 5 xCST | S | 11.05 (3.19) |
|  | N/A |  | UB MP | Arm Curl | \#/30 s | 16.0 (3.5) |
| Jantunen et al., 2017 | N/A | pounds and M: 8 pounds completed in 30 s \# chair stands completed in 30 s | LB MP | 30 s CST | \#/30 s | 11.5 (2.3) |
|  |  | Isometric KES, 2 attempts with most OA symptomatic knee, 2 attempts, mean used divided by weight | LB MS | KES | N/kg | 2.8 (0.8) |
| Jeong et al., 2019 | Lafayette Instrument Handheld Dynamometer | Isometric hip abductor strength, 2 attempts on side of most OA symptomatic knee, mean used divided by weight | LB MS | Hip strength | N/kg | 0.7 (0.3) |
| Johnson et al., 2016 | TTM Muscular Meter Dynamometer | Isometric hip extensor and quadricep strength, 2 attempts in both legs (simultaneously), max used | LB MS | Leg strength | Kg | 97.58 (51.13) |
| Kawagoshi et al., 2013 | Hydromusculator GT-160 | Isometric extension and contraction of quadriceps femoris | LB MS | KES | N/R | N/R |
| Keevil et al., 2016 | Smedley Dynamometer | HGS, 2 attempts with each hand, max used | UB MS | HGS | Kg | N/R |
|  | N/A | Time to complete 5 chair stands | UB MS | 5x CST ${ }^{\text { }}$ | \#/min | N/R |
| Kim, 2015 | Smedley Dynamometer | HGS, 2 attempts with each hand, max used | UB MS | HGS | Kg | 23.4 (7.5) |
|  | $\mu$ Tas Dynamometer F-1 ANIMA | Isometric KES, 2 attempts with dominant leg, max/weight used | LB MS | KES | N/kg | 1.15 (0.33) |
| Kim et al., 2015 | N/A | Time to complete 5 chair stands | LB MP | 5 x CST | S | 8.9 (2.1) |
| Lai et al., 2020 | N/A | Time to complete 5 chair stands, $M$ : > or $<6.95 \mathrm{~s}, \mathrm{~F}$ : $>$ or $<6.88 \mathrm{~s}$ | LB MP | 5x CST (high vs. low) | S | N/R |
| Lee et al., 2015 | N/A | Time to complete 5 chair stands | LB MP | 5 xCST | \#/min | N/R |
| Lerma et al., 2018 | N/A | Time to complete 5 chair stands | LB MP | 5x CST | S | 15.2 (4.8) |
| Liao et al., 2018 | Jamar Dynamometer | HGS, 2 attempts with one hand, max used | UB MS | HGS | Kg | 27.4 (8.4) |
| Lohne-Seiler et al., 2016 | Hydraulic Dynamometer | HGS, 3 attempts with dominant hand, max used | UB MS | HGS (adjusted for age, sex, test center) | Kg | 33.5 (95\% CI: 32.3, 34.8) |
| Mador et al., 2011 | HF Star | Quadriceps strength dynamic contractions against hydraulic resistance, 2 sets of 3 contractions at highest resistance, max used | LB MS | KES | Kg | 48.03 (12.29) |
| Matkovic et al., 2020 | KERN MAP 80K1 Handheld Dynamomete | HGS, 3 attempts with each hand, max used | UB MS | HGS | Kg | Right hand: 30.7 (10.1); Left hand: 29.1 (9.2) |
|  | N/A | \# chair stands completed in 30 s | LB MP | 30 s CST | \#/30 s | 11 (3) |
| Master et al., 2018 | N/A | Time to complete 5 chair stands | LB MP | 5 x CST | S | 10.5 (2.9) |
| $\begin{aligned} & \text { McDermott et al., } \\ & 2002 \end{aligned}$ | N/A | Time to complete 5 chair stands | LB MP | 5x CST | S | N/R |
| McGregor et al., 2018 | Hand Dynamometer | HGS, 2 attempts, max used | UB MS | HGS | Kg | N/R |
|  | Jamar Plus + Digital Dynamometer | HGS, 3 attempts with each hand, max used | UB MS | HGS | Kg | 29.9 (10.3) |
| Meier and Lee, 2020 | N/R | 1RM chest press, progressive reps increasing in weight, max used | UB MS | Chest press strength | Lbs | 75.2 (37.2) |
|  | N/R | 1RM leg press, progressive reps increasing in weight, max used \# of full flexion and extension of the | LB MS | Leg press strength | Lbs | 183.9 (78.0) |
|  | N/A | elbow (arm curls) with dumbbells $F$ : 5 pounds and $M: 8$ pounds completed in 30 s | UB MP | Arm curl | \#/30 s | $\begin{aligned} & \text { T1: 25.8 (9.75); T2: } 30.50 \\ & \text { (8.88); T3: } 32.60 \text { (8.36) } \end{aligned}$ |
| Monteiro et al., 2019 | Bidoex System 2 (custom) | Isokinetic KES, measured at $180^{\circ} / \mathrm{sec}$, five attempts, max used | LB MS | KES | Nm | $\begin{aligned} & \text { T1: } 57.65 \text { (15.36); T2: } 65.10 \\ & \text { (15.24); T3: } 69.93 \text { (17.51) } \end{aligned}$ |
|  | Bidoex System 2 (custom) | Isokinetic knee flexion strength, measured at $180^{\circ} / \mathrm{sec}$, five attempts, max used | LB MS | Knee flexion strength | Nm | $\begin{aligned} & \text { T1: } 33.39 \text { (11.38) T2: } 36.54 \\ & \text { (12.24); T3: } 42.02 \text { (9.23) } \end{aligned}$ |
|  | N/A | \# chair stands completed in 30 s | LB MP | 30 s CT | \#/30 s | $\begin{aligned} & \text { T1: } 20.55 \text { (5.73); T2: } 21.75 \\ & \text { (7.33); T3: } 25.10 \text { (5.93) } \end{aligned}$ |
|  | Jamar Dynamometer | HGS, 3 attempts with each hand, max used | UB MS | HGS | Kg | N/R |
| Morie et al., 2010 | Keiser A420 | Chest and leg press 1RM determined, 2 trials, max used and power at varying \% of 1 RM for chest press and leg press assessed, max power used for analysis | UB MS | Chest press strength | N | N/R |
|  | Pneumatic |  | UB MP | Chest press power | W | N/R |
|  | Resistance |  | LB MS | Leg press strength | N | N/R |
|  | Machine |  | LB MP | Leg press power | W | N/R |
| Nagai et al., 2018 | Smedley Dynamometer GRIP-A | N/R, M: $>$ or $<26 \mathrm{~kg}$ and $\mathrm{F}:>$ or $<18 \mathrm{~kg}$ | UB MS | HGS (weak vs. not weak) | Kg | 26.7 (7.6) |
|  | N/A |  | UB MP | Arm curl | \#/30 s | N/R |

Table C4 (continued)

| Author year | Device/equipment | Definition and protocol | Measure type | Reported measure (s) | Units | Mean (SD) ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nawrocka et al., 2017 | N/A | \# of full flexion and extension of the elbow (arm curls) with dumbbells $F$ : 5 pounds and $M: 8$ pounds completed in 30 s \# chair stands completed in 30 s | LB MP | 30 s CSTs | \#/30 s | N/R |
| $\begin{aligned} & \text { Nawrocka et al., } \\ & 2019 \end{aligned}$ | Jamar Dynamometer | HGS, two attempts, max used | UB MS | HGS | Kg | Not meeting PA guidelines: 22.87 (5.05); Meeting PA guidelines: 24.99 (5.60) |
|  | N/A | \# of full flexion and extension of the elbow (arm curls) with dumbbells F: 5 pounds and $M: 8$ pounds completed in 30 s | UB MP | Arm curl | \#/30 s | Not meeting PA guidelines: 16.04 (4.03); Meeting PA guidelines: 17.87 (3.76) |
|  | N/A | \# chair stands completed in 30 s | LB MP | 30 s CST | \#/30 s | Not meeting PA guidelines: 14.36 (3.27); Meeting PA guidelines: 14.92 (3.59) |
| Nicolai et al., 2010 | N/A | Time to complete 5 chair stands | LB MP | 5x CST | S | Unadjusted Unadjusted |
| Ofei-Doodoo et al., 2018 | N/A | \# of full flexion and extension of the elbow (arm curls) with dumbbells $F$ : 5 pounds and $M: 8$ pounds completed in 30 s \# chair stands completed in 30 s | UB MP | Arm curl | \#/30 s | N/R |
|  | $\mathrm{N} / \mathrm{A}$ |  | LB MP | 30 s CST | \#/30 s | N/R |
| Orwoll et al., 2019 | N/A | Time to complete 5 chair stands | LB MP | 5x CST | S | No falls: 11.2 (3.2); One falls: 11.6 (3.3); $\geq$ Two falls: 12.3 (4.4) |
| Osuka et al., 2015 | N/A | Time to complete 5 chair stands | LB MP | 5x CST | S | N/R |
| Park et al., 2018 | Dynamometer N/R | HGS, two attempts with each hand, max/weight x 100 used | UB MS | HGS | \% | 52.0 (7.8) |
|  | N/A | \# chair stands completed in $30 \mathrm{~s}, 2$ attempts, max used | LB MS | 30 s CST | \#/30 s | 20.7 (4.2) |
| Perkin et al., 2018 | Keijzer A420 | Leg press 1RM, force-velocity evaluation to determine max force (strength) and max power | LB MS | Leg press strength | N | N/R |
|  |  |  | LB MP | Leg press power | W | N/R |
| Pitta et al., 2005 | Jamar Dynamometer | Isometric HGS, 3 attempts with each hand, sum of max on each hand used, \% predictive | UB MS | HGS | \% pred | 92 (24) |
|  | Cybex Norm Jamar Dynamometers | Isometric knee extension torque, \% predictive (pred) | LB MS | Knee extension torque | \% pred | 56 (10) |
|  | Keiser 420 Leg Press | Leg press 1RM, peak power, power at $40 \%$ of 1 RM , and power at $90 \%$ of 1 RM assessed, 3 attempts, max result for each used | LB MS | Leg press strength | N/kg | 15.5 (4.0) |
| Puthoff et al., 2008 |  |  | LB MP | Leg press power peak | W/kg | 7.6 (2.7) |
|  |  |  | LB MP | Leg press power 40\% | W/kg | 7.1 (2.7) |
|  |  |  | LB MP | Leg press power 90\% | W/kg | 5.7 (2.4) |
| Rapp et al., 2012 | Jamar Dynamometer | HGS, two attempts in each hand, mean of each hand calculated and max used | UB MS | HGS | Kg | $\begin{aligned} & \text { M: } 38.8 \text { (9.40); F: } 23.7 \\ & (6.56) \end{aligned}$ |
|  | N/A | Time to complete 5 chair stands | LB MP | 5x CST | S | $\begin{aligned} & \text { M: } 11.1 \text { (3.42); F: } 11.6 \\ & \text { (3.73) } \end{aligned}$ |
| Rausch-Osthoff et al., 2014 | Strain Gauge connected to Interface Series SM S-Type Load Cell and Nexus-10 device | MVC isometric KES, left leg, 3 attempts mean used | LB MS | KES | Nm | 14.5 (5.2) |
| Rava et al., 2018 | N/A | Time to complete 5 chair stands | LB MP | 5x CST | S | 9.6 (2.0) |
| Reid et al., 2018 | Lord's Strap Assembly | 1RM KES, 2 attempts with each leg, max used | LB MS | KES | Kg | 25.2 (11.2) |
|  | 1RM Bilateral Leg Press | N/R | LB MS | Leg press strength | Kg | 128/7 (51.2) |
|  | N/A | \# chair stands completed in 30 s , | LB MP | 30 s CT | \#/30 s | 12.3 (2.4) |
| Rojer et al., 2018 | Jamar Dynamometer | HGS, 3 attempts with each hand, max used | UB MS | HGS | Kg | 31.5 (9.5) |
| Rosenberg et al., 2015 | N/A | Time to complete 5 chair stands | LB MP | 5x CST | S | 13.0 (3.4) |
| Rowlands et al., 2018 | N/R | HGS, 3 attempts with each hand, max used | UB MS | HGS |  | 28.5 (10.1) |
|  | N/A | \# chair stands completed in 30 s, 2 attempts, max used | LB MP | 60 s CST |  | 22.1 (7.8) |
| Safeek et al., 2018 | Jamar Dynamometer | HGS, 2 attempts with dominant hand, max used | UB MS | HGS | Kg | M: 38.00 [9.75]; F: 25.00 [2.50] |
|  | N/A | \# chair stands completed in $30 \mathrm{~s}, 2$ attempts, max used | LB MP | 30 s CST | \#/30 s | 14.00 [6.00] |
| Sánchez-Sánchez et al., 2019 | Jamar Dynamometer | HGS, 3 attempts with each hand, max used | UB MS | HGS | Kg | 22.26 (8.21) |
|  | N/A | \# of full flexion and extension of the elbow (arm curls) with dumbbells $F$ : 5 | UB MP | Arm Curl | \#/30 s | 16.3 (5.3) |
| Santos et al., 2012 | N/A | pounds and M: 8 pounds completed in 30 s \# chair stands completed in 30 s | LB MP | 30 s CST | \#/30 s | 13.7 (4.7) |
| Sardinha et al., 2015 | N/A | \# of full flexion and extension of the | UB MP | Arm Curl | \#/30 s | 16.9 (5.2) |
|  | N/A | elbow (arm curls) with dumbbells F: 5 | LB MP | 30 s CST | \#/30 s | 14.4 (4.5) |

Table C4 (continued)

| Author year | Device/equipment | Definition and protocol | Measure type | Reported measure (s) | Units | Mean (SD) ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | pounds and $\mathrm{M}: 8$ pounds completed in 30 s \# chair stands completed in 30 s |  |  |  |  |
| Scott et al., 2020 | Patterson Medical Jamar Dynamometer | HGS, 2 attempts, max used | UB MS | HGS | Kg | Non-sarcopenic: 34.7 (10.6); Sarcopenic: 16.5 (5.8) |
| Scott et al., 2011 | TTM Muscular Meter Dynamometer | Isometric hip extensor and quadricep strength, 2 attempts in both legs (simultaneously), max used | LB MS | Leg strength | Kg | 96.2 (49.4) |
| Scott et al., 2009 | TTM Muscular Meter Dynamometer | Isometric hip extensor and quadricep strength, 2 attempts in both legs (simultaneously), max used | LB MS | Leg strength | Kg | Sedentary: 84.3 (47.5); Low active: 4.4 (47.3); Somewhat active: 88.3 (48.8); Active: 99.4 (48.5); Highly active: 102.7 (51.1) |
| Semanik et al., 2015 | N/A | Time to complete 5 chair stands | LB MP | 5x CST | \#/min | 30.6 (11.2) |
|  | N/A | \# of full flexion and extension of the elbow (arm curls) with dumbbells $F$ : 5 | UB MP | Arm Curl | \#/30 s | 20.07 (6.69) |
| Silva et al., 2019 | N/A | pounds and M: 8 pounds completed in 30 s \# chair stands completed in 30 s | LB MP | 30 s CST | \#/30 s | 15.04 (5.06) |
| Spartano et al., 2019 | Jamar Dynamometer | HGS, 3 attempts with each hand, max used | UB MS | HGS | Kg | M: 39.1 (8.7); F: 23.3 (5.7) |
|  | N/A | Time to complete 5 chair stands | LB MP | 5x CST | S | 9.9 (2.6) |
| Tang et al., 2015 | Jamar Dynamometer | Isometric HGS, 3 attempts with each hand, mean used | UB MS | HGS | Kg | 16.3 [11.3-20.2] |
| Trayers et al., 2014 | N/A | Time to complete 5 chair stands | LB MP | 5x CST (0-4) | Points | N/R |
| Sullivan and Feinn, | Bremshey Hand Dynamometer | Dominant hand | UB MS | HGS | Kg | 37.3 (10.2) |
| 2012 | N/A | \# chair stands completed in 60 s | LB MP | 60 s CST | \#/60 s | 20 (6) |
| ```Van Lummel et al., 2016``` | N/A | Time to complete 4.5 chair stands (ending seated) | LB MP | 5x CST | S | 14.9 (6.6) |
| $\begin{aligned} & \text { van Oeijen et al., } \\ & 2020 \end{aligned}$ | MicroFET Hand-held Dynamometer | "Make" test of the hip flexors, hip abductors, knee extensors and ankle dorsal flexors, $\mathrm{N} / \mathrm{R}$ | LB MS | Lower extremity strength | Z- <br> scores | $\begin{aligned} & \text { Baseline: -1.00 (1.15); FU: } \\ & 1.36 \text { (1.06) } \end{aligned}$ |
| Van Sloten et al., 2011 | Jamar Dynamometer | HGS, 3 attempts with each hand, max used, sex specific $20^{\text {th }}$ percentiles used as cut off points for presence of low HGS | LB MS | HGS | Kg | M: 43.4 (9.87); F: 26.1 (4.9) |
| Walker et al., 2008 | Strain Gauge Transducer and MacLab Bridge Amplifier | MVC isometric quadriceps strength. 3 attempts, max used | LB MS | KES | N | 315 (106) |
| Ward et al., 2014 | N/A | \# chair stands completed in 30 s | LB MP | 30 s CST | \#/30 s | $\begin{aligned} & \text { F: } 15.72 \text { (4.13); M: } 17.51 \\ & \text { (5.89) } \end{aligned}$ |
| Waschki et al., 2012 | Strain Gauge Dynamometer | MVC isometric quadriceps strength, mean used | LB MS | KES | Kg | 32.0 (13.2) |
| Watz et al., 2008 | Handgrip dynamometer (N/R) | N/R | LB MS | HGS | Kg | 35.3 (9.6) |
| Westbury et al., 2018 | Jamar hydraulic Dynamometer | HGS, 3 attempts with each hand, max used | UB MS | HGS | Kg | M: 34.8 (6.5); F: 20.7 (5.6) |
| Wickerson et al., 2013 | Isokinetic Dynamometer | Isometric quadriceps torque | LB MS | Knee extension torque | Nm | 120 (36) |
| Winberg et al., 2015 | Biodex Multi- Joint System 3 PRO Dynamometer | MVC knee extension and knee flexion strength, both legs (less affected leg and more affected leg by polio), peak torques used | LB MS LB MS | KES <br> Knee flexion <br> strength | Nm Nm | Less affected leg: 104 (43); <br> More affected leg: 69 (43) <br> Less affected leg: 59 (25); <br> More affected leg: 36 (24) |
| Yamada et al., 2011 | N/A | Time to complete 5 chair stands | LB MP | 5x CST | S | Non-frail: 8.9 (3.6); Frail: $17.6 \text { (8.5) }$ |
| Yasunaga et al., 2017 | Smedley Dynamometer TKK5041 | HGS, 1 attempt with dominant hand | UB MS | HGS | Kg | 27.4 (8.3) |
|  |  | HGS, 2 attempts with each hand, mean calculated and max used | UB MS | HGS | Kg | HFG: 17.9 (4.0); LFG: 15.1 <br> (4.0) |
| Yoshida et al., 2010 | Smedley Dynamometer | Isometric KES, two attempts with each leg, max of each leg added and multiplied by leg length converted into torque and divided by weight | LB MS | KES | $\begin{aligned} & \mathrm{Nm} / \\ & \mathrm{kg} \end{aligned}$ | $\begin{aligned} & \text { HFG: } 2.10 \text { ( } 0.69 \text { ); LFG: } 2.61 \\ & (0.87) \end{aligned}$ |
| Yuki et al., 2019 | N/R | HGS, M: $>$ or $<26 \mathrm{~kg} \mathrm{~F}:>$ or $<18 \mathrm{~kg}$ | UB MS | HGS <br> (+/-weakness) | Kg | N/R |

$\mathrm{UB}=$ upper body, $\mathrm{LB}=$ lower body, $\mathrm{MS}=$ muscle power, $\mathrm{MP}=$ muscle strength, HGS = hand grip strength, KES = knee extension strength, KET $=$ knee extension torque, $\mathrm{CST}=$ chair stand test, $\mathrm{s}=$ seconds, $\mathrm{x}=$ times (repetitions), \#=number, quad = quadriceps, kg $=$ kilogram, $\mathrm{N}=$ newton, Nm = newton-meter, $\mathrm{W}=$ watt, $\mathrm{KgF}=$ kilogram-force, $\mathrm{KiloW}=$ kilowatt, KiloN $=$ kilonewton, $\mathrm{MVC}=$ maximum voluntary contraction, $1 \mathrm{RM}=$ one repetition maximum, max $=$ maximum, $/=$ divided by or per, $\Delta=$ change, $\%$ pred $=\%$ predictive, $+/-=$ with or without, $\mathrm{N} / \mathrm{A}=$ not applicable, $\mathrm{N} / \mathrm{R}=$ not reported, $\mathrm{M}=\mathrm{male}, \mathrm{F}=$ female, $\mathrm{HFG}=$ high functioning group, $\mathrm{LFG}=$ low functioning group, $\mathrm{OA}=$ osteoarthritis. Underlined articles have a longitudinal design.
${ }^{\text {a }}$ Mean (standard deviation (SD)) of muscle strength and muscle power are presented unless reported as median [interquartile range], or mean \{range\}. Subgroups for stratified results are presented in italics.

Table C5
Associations between physical activity and sedentary behavior with muscle strength and muscle power in older adults.

| Author year | Physical activity and sedentary behavior |  | Muscle strength and muscle power |  | Adjustment | Effect size (95\% CI) ${ }^{\text {a }}$ | p -value used for analyses ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Reported measure (s) | Units | Reported measure(s) | Units |  |  |  |
| Abe et al., 2015 | Steps | \#/day | KES/weight | $\mathrm{Kg} / \mathrm{Nm}$ | Age | Partial $\mathrm{R}=0.242(\mathrm{p}>0.05)$ | "Abe 2012" |
|  | MVPA | Min/day | KES/weight | $\mathrm{Kg} / \mathrm{Nm}$ | Age | Partial $\mathrm{R}=0.233(\mathrm{p}>0.05)$ | "Abe 2012" |
|  | LPA (LPA-MPA) | Min/day | KES/weight | $\mathrm{Kg} / \mathrm{Nm}$ | Age | Partial $\mathrm{R}=0.217(\mathrm{p}>0.05)$ | "Abe 2012" |
|  | Steps | \#/day | Toe grasping/ weight | Kg/kg | Age | $\begin{aligned} & \text { Partial } R=0.283 \\ & (0.01>p<0.05) \end{aligned}$ | $0.01>\mathrm{p}<0.05$ |
|  | MVPA | Min/day | Toe grasping/ weight | Kg/kg | Age | Partial $\mathrm{R}=0.228(\mathrm{p}>0.05)$ | $\mathrm{p}($ calc $)=0.881$ |
|  | LPA (LPA-MPA) | Min/day | Toe grasping/ weight | Kg/kg | Age | $\begin{aligned} & \text { Partial } R=0.290 \\ & (0.01>p<0.05) \end{aligned}$ | $0.01>\mathrm{p}<0.05$ |
|  | Steps | \#/day | KES | Nm | Unadjusted | $\mathrm{R}=0.351(\mathrm{p}=0.015)$ | $\mathrm{p}=0.015$ |
|  | VPA | Min/day | KES | Nm | Age, sex, height, weight | Partial R $=0.184(\mathrm{p}>0.05)$ |  |
|  | MVPA (MPA) | Min/day | KES | Nm | Age, sex, height, weight | Partial R $=0.197(p>0.05)$ | $\mathrm{p}(\mathrm{calc})=0.180$ |
|  | LPA | Min/day | KES | Nm | Age, sex, height, weight | Partial R $=0.155(\mathrm{p}>0.05)$ | $\mathrm{p}(\mathrm{calc})=0.293$ |
|  | EE | Kcal/day | KES | Nm | Unadjusted | $\mathrm{R}=0.421(\mathrm{p}=0.004)$ | $\mathrm{p}=0.004$ |
|  | Steps | \#/day | Knee flexion strength | Nm | Age, sex, height, weight | Partial $\mathrm{R}=0.369(\mathrm{p}=0.014)$ | $\mathrm{p}=0.014$ |
| Abe et al., 2012 | VPA | Min/day | Knee flexion strength | Nm | Age, sex, height, weight | Partial $\mathrm{R}=0.236(\mathrm{p}>0.05)$ |  |
|  | MPA | Min/day | Knee flexion strength | Nm | Age, sex, height, weight | Partial $\mathrm{R}=0.438(\mathrm{p}=0.003)$ | $\mathrm{p}=0.003$ |
|  | LPA | Min/day | Knee flexion strength | Nm | Age, sex, height, weight | Partial R $=0.089(\mathrm{p}>0.05)$ | $\mathrm{p}(\mathrm{calc})=0.547$ |
|  | EE | Kcal/day | Knee flexion strength | Nm | Age, sex, height, weight | Partial $\mathrm{R}=0.409(\mathrm{p}=0.006)$ | $\mathrm{p}=0.006$ |
|  | MVPA | $\begin{aligned} & \text { Sqrt(min/ } \\ & \text { day) } \end{aligned}$ | HGS | Kg | Age, waist circumference | $\mathrm{B}=0.58(0.34,0.82)$ | p $<0.001$ |
|  | LPA | Min/day | HGS | Kg | Age, waist circumference | $\mathrm{B}=0.21(-0.06,0.48)$ | $\mathrm{p}=0.125$ |
| Aggio et al., 2016 | SB | $30 \mathrm{~min} /$ day | HGS | Kg | Age, waist circumference | $\mathrm{B}=-0.20(-0.41,0.01)$ | $\mathrm{p}=0.062$ |
|  | BST | \#/h | HGS | Kg | Age, waist circumference | $\mathrm{B}=0.14(-0.14,0.42)$ | $\mathrm{p}=0.329$ |
|  | MVPA | \% wear time | Leg press strength | N | Unadjusted | $\mathrm{R}=0.41(\mathrm{p}<0.05)$ | $\mathrm{p}($ calc $)=0.021$ |
| Alcazar et al., 2018 | SB | \% wear time | Leg press strength | N | Unadjusted | $\mathrm{R}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$ | $\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$ |
|  | MVPA | \% wear time | Leg press power | W/kg | Unadjusted | $\mathrm{R}=0.59(\mathrm{p}<0.01)$ | p (calc) $<0.001$ |
|  | SB | \% wear time | Leg press power | W/kg | Unadjusted | $\mathrm{R}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$ | $\mathrm{p}>0.25$ |
| Alzahrani et al., 2012 | Activity counts | \#/day | KES | N | Unadjusted | $\mathrm{R}=0.03(\mathrm{p}=0.85)$ | $\mathrm{p}=0.85$ |
|  | TPA | Min/day | KES | N | Unadjusted | $\mathrm{R}=0.18(\mathrm{p}=0.25)$ | $\mathrm{p}=0.25$ |
| $\begin{aligned} & \text { Andersson et al., } \\ & 2013 \end{aligned}$ | EE (PAL) | None | KES | Kg | Age, sex, gait speed + others | $\mathrm{B}=0.004(0.000,0.008)$ | $\mathrm{p}=0.242$ |
| André et al., 2018 | MVPA | Min/day | Calf raise (high vs. low) | \#/30 s | Unadjusted | *Cohen's d=0.97 ( $\mathrm{p}=0.04$ ) | $\mathrm{p}=0.04$ |
| André et al., 2016 | MVPA (high vs. low) | Min/day | Calf raise | \#/30 s | Unadjusted | $\mathrm{R}=0.639(\mathrm{p}=0.001)$ | $\mathrm{p}=0.001$ |
|  | Steps | \#/day | HGS | N | Age, sex | Partial $\mathrm{R}=0.12(\mathrm{p}>0.05)$ | $\mathrm{p}($ calc $)=0.119$ |
|  | TPA | Min/day | HGS | N | Age, sex | Partial $\mathrm{R}=0.12(\mathrm{p}>0.05)$ | p (calc) $=0.119$ |
| Aoyagi et al., 2009 | Steps | \#/day | Knee extension torque | Nm/kg | Age, sex | Partial $\mathrm{R}=0.20$ ( $\mathrm{p}<0.05$ ) | $\mathrm{p}($ calc $)=0.009$ |
|  | TPA | Min/day | Knee extension torque | Nm/kg | Age, sex | Partial $\mathrm{R}=0.21$ ( $\mathrm{p}<0.05$ ) | $\mathrm{p}(\mathrm{calc})=0.005$ |
|  | Activity counts | \#/day | Leg press strength | Kg | Unadjusted | $\mathrm{R}=0.284(\mathrm{p}=0.025)$ | $\mathrm{p}=0.025$ |
| Ashe et al., 2008 | MVPA | Min/day | Leg press strength | Kg | Unadjusted | $\mathrm{R}=0.174(\mathrm{p}=0.175)$ | $\mathrm{p}=0.175$ |
|  | Activity counts | \#/day | Leg press power | W | Unadjusted | $\mathrm{R}=0.373(\mathrm{p}=0.003)$ | $\mathrm{p}=0.003$ |
|  | MVPA | Min/day | Leg press power | W | Unadjusted | $\mathrm{R}=0.260(\mathrm{p}=0.041)$ | $\mathrm{p}=0.041$ |
|  | Steps | \#/day | HGS | Kg | Unadjusted | $\mathrm{R}=0.22(\mathrm{p}<0.01)$ | $\mathrm{p}(\mathrm{calc})=0.002$ |
| Ashe et al., 2007 | Steps (high vs. low) | \#/day | HGS | Kg | Unadjusted | *OR = 2.04 (0.86, 4.79) |  |
|  | Steps | \#/day | KES | Kg | Unadjusted | $\mathrm{R}=0.31(\mathrm{p}<0.001)$ | p $<0.001$ |
|  | Steps | \#/day | HGS (dynapenic vs. nondynapenic) | Kg | Unadjusted | Non-obese: $\mathrm{T}=\mathrm{N} / \mathrm{R}(+)$ ( $\mathrm{p}=0.07$ ) | $\mathrm{p}=0.07$ |
|  |  |  |  |  |  | Obese: $\mathrm{T}=\mathrm{N} / \mathrm{R}(+)(\mathrm{p}=0.056)$ | $\mathrm{p}=0.056$ |
| Aubertin-Leheudre et al., 2017 | Activity counts | \#/day | HGS (dynapenic <br> vs. nondynapenic) | Kg | Unadjusted | Non-obese: $\mathrm{T}=\mathrm{N} / \mathrm{R}(+)$ $\mathrm{p}=0.0008$ ) | $\mathrm{p}=0.0008$ |
|  |  |  |  |  |  | Obese: $\mathrm{T}=\mathrm{N} / \mathrm{R}(+)(\mathrm{p}=0.021)$ | $\mathrm{p}=0.021$ |
|  | TPA | Min/day | HGS (dynapenic <br> vs. nondynapenic) | Kg | Unadjusted | Non-obese: T = N/R (+) $(\mathrm{p}=0.005)$ | $\mathrm{p}=0.005$ |
|  |  |  |  |  |  | Obese: $\mathrm{T}=\mathrm{N} / \mathrm{R}(+)(\mathrm{p}=0.029)$ | $\mathrm{p}=0.029$ |

Table C5 (continued)

| Author year | Physical activity and sedentary behavior |  | Muscle strength and muscle power |  | Adjustment | Effect size (95\% CI) ${ }^{\text {a }}$ | p-value used for analyses ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Reported measure <br> (s) | Units | Reported measure(s) | Units |  |  |  |
| Balducci et al., 2017 | MVPA | Min/day | Shoulder press strength | Nm | Unadjusted | Rho $=0.397(\mathrm{p}<0.001)$ | p $<0.001$ |
|  | LPA | H/day | Shoulder press strength | Nm | Unadjusted | Rho $=0.281(\mathrm{p}<0.001)$ | p $<0.001$ |
|  | SB | H/day | Shoulder press strength | Nm | Unadjusted | Rho $=-0.235$ ( $\mathrm{p}<0.001$ ) | p $<0.001$ |
|  | MVPA | Min/day | Leg press strength | Nm | Unadjusted | Rho $=0.412(\mathrm{p}<0.001)$ | p $<0.001$ |
|  | LPA | H/day | Leg press strength | Nm | Unadjusted | Rho $=0.341$ ( $\mathrm{p}<0.05$ ) | p $<0.001$ |
|  | SB | H/day | Leg press strength | Nm | Unadjusted | Rho $=-0.299$ ( $\mathrm{p}<0.001$ ) | p $<0.001$ |
| Bann et al., 2015 | TPA | H/day | HGS | Kg | Age, sex, wear time | $\mathrm{B}=0.06$ (-0.03, 0.16) | $\mathrm{p}=0.191$ |
|  | Higher LPA | H/day | HGS | Kg | Age, sex, wear time | $B=2.41$ (0.16, 4.66) |  |
|  | LPA (Lower LPA) | H/day | HGS | Kg | Age, sex, wear time | $\mathrm{B}=0.06$ (-0.42, 0.54) | $\mathrm{p}=0.809$ |
|  | SB | H/day | HGS | Kg | Age, sex, wear time | $\mathrm{B}=-0.13$ (-0.55, 0.28) | $\mathrm{p}=0.527$ |
|  | Steps | \#/day | HGS | Kg | Unadjusted | $\mathrm{R}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$ | $\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$ |
| Barbat-Artigas et al., 2012 | TPA | Min/day | HGS | Kg | Unadjusted | $\mathrm{R}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$ | $\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$ |
|  | Steps | \#/day | KES | N | Unadjusted | $\mathrm{R}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$ | $\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$ |
|  | TPA | Min/day | KES | N | Unadjusted | $\mathrm{R}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$ | $\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$ |
|  | Steps | \#/day | 20 s CST | \#/20 s | Unadjusted | $\mathrm{R}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$ | $\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$ |
|  | TPA | Min/day | 20 s CST | \#/20 s | Unadjusted | $\mathrm{R}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$ | $\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$ |
| Bartlett and Duggal,$2020$ | Steps (active vs. sedentary) | \#/day | HGS | Kg | Unadjusted | $\mathrm{T}=\mathrm{N} / \mathrm{R}(+)(\mathrm{p}=0.69)$ | $\mathrm{p}=0.69$ |
|  |  |  |  |  |  | $F$ : Pearson's $\mathrm{R}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$ | $\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$ |
| Bassey et al., 1988 | Steps (step score) | \#/day x 10^3 | Calf strength | N | Unadjusted | $\begin{aligned} & \text { M: Pearson's } R=0.30 \\ & (\mathrm{p}<0.05) \end{aligned}$ | $\mathrm{p}($ calc $)=0.025$ |
| Bogucka et al., 2018 |  |  |  |  |  | Dynapenic: $\mathrm{R}=-0.12(\mathrm{p}=0.74)$ | $\mathrm{p}=0.74$ |
|  | Steps | \#/day | HGS | Kg | Unadjusted | Non-dynapenic: $\mathrm{R}=0.16$ $(\mathrm{p}=0.34)$ | $\mathrm{p}=0.34$ |
|  | MVPA | \% wear time | $5 \mathrm{x} \operatorname{CST}(0-4)$ | Points | MS, SB, long SB bouts | $\mathrm{B}=9.07(\mathrm{SE}=5.14) \beta=0.18$ | $\mathrm{p}($ calc $)=0.077$ |
|  | LPA | \% wear time | $5 \mathrm{x} \operatorname{CST}(0-4)$ | Points | Unadjusted | $\mathrm{R}=0.40$ ( $\mathrm{p}<0.01$ ) | p (calc)<0.001 |
|  | SB | \% wear time | $5 \mathrm{x} \operatorname{CST}(0-4)$ | Points | MS, MVPA, long SB bouts | $\mathrm{B}=-2.98(\mathrm{SE}=1.46) \beta=-0.20 \mathrm{~s}$ | $\mathrm{p}($ calc $)=0.041$ |
|  | PA bouts | \#/day <br> Min/bout/ <br> day <br> \#day | $5 x \operatorname{CST}(0-4)$ | Points | Unadjusted | $\mathrm{R}=0.34$ (p<0.01) | $\mathrm{p}($ calc $)=0.002$ |
| Bollaert and Motl,$2019$ | PA bouts |  | $5 \mathrm{xCST}(0-4)$ | Points | Unadjusted | $\mathrm{R}=0.15$ (p>0.01) | $\mathrm{p}($ calc $)=0.184$ |
|  | SB bouts |  | $5 \mathrm{x} \operatorname{CST}(0-4)$ | Points | Unadjusted | $\mathrm{R}=-0.01(\mathrm{p}>0.01)$ | $\mathrm{p}($ calc $)=0.930$ |
|  | SB bouts | Min/bout/ day | $5 \mathrm{x} \operatorname{CST}(0-4)$ | Points | Unadjusted | $\mathrm{R}=-0.33$ (p<0.01) | $\mathrm{p}($ calc $)=0.003$ |
|  | Long SB bouts | \#/day | $5 \mathrm{x} \operatorname{CST}(0-4)$ | Points | Unadjusted | $\mathrm{R}=-0.32(\mathrm{p}<0.01)$ | $\mathrm{p}(\mathrm{calc})=0.004$ |
|  | Long SB bouts | Min/bout/ <br> day | $5 \mathrm{xCST}(0-4)$ | Points | MS, MVPA, SB | $B=-0.04(S E=0.02) \beta=-0.25$ | $\mathrm{p}($ calc $)=0.045$ |
|  | Actigraph measures: |  |  |  |  |  |  |
|  | $\Delta$ Steps | \#/day | KES | Kg | Age, 6MWD, climate + others | * $\mathrm{B}=-1.00 \mathrm{E}-4(-0.004,0.005)$ |  |
|  | $\triangle$ MVPA | Ratio | KES | Kg | Age, 6MWD, climate + others | * $\mathrm{B}=-0.004(-0.016,0.009)$ | $\mathrm{p}=0.535$ |
|  | $\Delta \mathrm{VMU}$ | \#/day | KES | Kg | Age, 6MWD, climate + others | * $\mathrm{B}=-0.003(-0.007,0.001)$ |  |
| Boutou et al., 2019 | Dynaport measures: |  |  |  |  |  |  |
|  | $\Delta$ Steps | \#/day | KES | Kg | Age, 6MWD, climate + others | *B=-2.10E-4 (-0.005, 0.005) | $\mathrm{p}=0.932$ |
|  | $\Delta$ Steps (Walking) | Min/day | KES | Kg | Age, 6MWD, climate + others | * $\mathrm{B}=0.002(-0.003,0.067)$ |  |
|  | $\triangle \mathrm{MET}$ | G | KES | Kg | Age, 6MWD, climate + others | *B=-0.001 (SE = 6.00E-4) | $\mathrm{p}=0.036$ |
|  | $\Delta \mathrm{VMU}$ | \#/day | KES | Kg | Age, 6MWD, climate + others | *B $=-0.005(\mathrm{SE}=0.002)$ | $\mathrm{p}=0.03$ |
| Carrasco Poyatos et al., 2016 | MVPA | CPM | HGS | Kg | Unadjusted | $\mathrm{R}=0.42(\mathrm{p}=0.01)$ | $\mathrm{p}=0.01$ |
|  | SB | H/day | Leg extension power | N/R | Unadjusted | M: $\mathrm{R}=0.739(\mathrm{p}=0.003)$ | $\mathrm{p}=0.003$ |
| Chastin et al., 2012 |  | \#/sedentary <br> h | Leg extension power |  |  | $F: \mathrm{R}=0.151(\mathrm{p}=0.678)$ | $\mathrm{p}=0.678$ |
|  | SB break rate |  |  | N/R | Unadjusted | $M: \mathrm{R}=-0.683(\mathrm{p}=0.07)$ | $\mathrm{p}=0.07$ |
|  |  |  |  |  |  | $F: \mathrm{R}=-0.158(\mathrm{p}=0.663)$ | $\mathrm{p}=0.663$ |
|  | Steps | \#/day | KES | N | Unadjusted | $\mathrm{R}=0.13(\mathrm{p}=0.15)$ | $\mathrm{p}=0.15$ |
| Chmelo et al., 2013 | MVPA | Min/day | KES | N | Unadjusted | $\mathrm{R}=0.09(\mathrm{p}=0.33)$ | $\mathrm{p}=0.33$ |
|  | LPA | Min/day | KES | N | Unadjusted | $\mathrm{R}=-0.04(\mathrm{p}=0.66)$ | $\mathrm{p}=0.66$ |
|  | EE | Kcal/day | KES | N | Unadjusted | $\mathrm{R}=0.23$ ( $\mathrm{p}=0.01$ ) | $\mathrm{p}=0.01$ |
| Cooper et al., 2015 | MVPA | SDs | HGS | Kg | Sex | $\beta=0.638(0.166,1.110)$ | $\mathrm{p}(\text { calc })=0.008$ |
|  | SB | SDs | HGS | Kg | Sex | $\beta=-0.588$ (-1.062, -0.115) | $\mathrm{p}($ calc $)=0.015$ |
|  |  |  | 37 |  |  |  | tinued on next page) |

Table C5 (continued)


Table C5 (continued)

| Author year | Physical activity and sedentary behavior |  | Muscle strength and muscle power |  | Adjustment | Effect size (95\% CI) ${ }^{\text {a }}$ | p-value used for analyses ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Reported measure (s) | Units | Reported measure(s) | Units |  |  |  |
| Gerdhem et al., 2007 | Long SB bouts | H/day | HGS | N/R | Age, sex, wear time, MVPA | $\beta=N / R(p>0.05)$ | $\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$ |
|  | $\geq 40$ min SB bouts | H/day | HGS | N/R | Age, sex, wear time, MVPA | $\beta=N / R(p>0.05)$ | $\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$ |
|  | $\geq 60$ min SB bouts | H/day | HGS | N/R | Age, sex, wear time, MVPA | $\beta=N / R(p>0.05)$ | $\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$ |
|  | SB | H/day | $5 \mathrm{x} \operatorname{CST}(0-4)$ | Points | Age, sex, wear time, MVPA | $\beta=-0.21(\mathrm{SE}=0.11)$ | $\mathrm{p}($ calc $)=0.056$ |
|  | BST | \#/day | $5 \mathrm{x} \operatorname{CST}(0-4)$ | Points | Age, wear time, MVPA | $\begin{aligned} & M: \beta=0.06(\mathrm{SE}=0.02) \\ & F: \beta=0.006(\mathrm{SE}=0.02) \end{aligned}$ | $\begin{aligned} & 0.01<\mathrm{p} \leq 0.05 \\ & \mathrm{p}(\text { calc })=0.777 \end{aligned}$ |
|  | SB break rate | \#/sedentary <br> h | 5x CST (0-4) | Points | Age, wear time, MVPA | $\begin{aligned} & M: \beta=0.60(\mathrm{SE}=0.19) \\ & F: \beta=0.04(\mathrm{SE}=0.12) \end{aligned}$ | $\begin{aligned} & 0.001<\mathrm{p} \leq 0.01 \\ & \mathrm{p}(\text { calc })=0.752 \end{aligned}$ |
|  | SB bouts | Min/day | $5 \mathrm{x} \operatorname{CST}(0-4)$ | Points | Age, sex, wear time, MVPA | $\beta=-0.10$ (SE = 0.03) | $0.001<$ p $<0.01$ |
|  | Long SB bouts | H/day | 5x CST (0-4) | Points | Age, sex, wear time, MVPA | $\beta=-0.18$ ( $\mathrm{SE}=0.08$ ) | $0.001<$ p $<0.01$ |
|  | $\geq 40$ min SB bouts | H/day | $5 \mathrm{x} \operatorname{CST}(0-4)$ | Points | Age, sex, wear time, MVPA | $\beta=-0.23$ (SE = 0.09) |  |
|  | $\geq 60$ min SB bouts | H/day | $5 \mathrm{x} \operatorname{CST}(0-4)$ | Points | Age, sex, wear time, MVPA | $\beta=-0.29$ ( $\mathrm{SE}=0.09$ ) |  |
|  | Activity counts | \#/min/day | KES | NmS | Unadjusted | $\mathrm{R}=0.19(\mathrm{p}=0.209) \mathrm{R}=0.21$ | $\mathrm{p}=0.209$ |
|  | MVPA | Min/day | KES | NmS | Unadjusted | ( $\mathrm{p}=0.160$ ) $\mathrm{R}=0.09$ | $\mathrm{p}=0.160$ |
|  | Activity counts | \#/min/day | Knee flexion strength | NmS | Unadjusted | ( $\mathrm{p}=0.564$ ) $\mathrm{R}=0.15$ | $\mathrm{p}=0.564$ |
|  | MVPA | Min/day | Knee flexion strength | NmS | Unadjusted | ( $\mathrm{p}=0.307$ ) | $\mathrm{p}=0.307$ |
|  | Steps | \#/day | 30 s CST | \#/30 s | Unadjusted | 60-69y: $\mathrm{R}=0.563(\mathrm{p}=0.000)$ | p (calc)<0.001 |
|  | Steps | \#/day | 30 s CST | \#/30 s | Unadjusted | 70-79y: $\mathrm{R}=0.353$ ( $\mathrm{p}=0.001$ ) | $\mathrm{p}=0.001$ |
|  | Steps | \#/day | 30 s CST | \#/30 s | Unadjusted | $80-90+y: \mathrm{R}=0.451(\mathrm{p}=0.021)$ | $\mathrm{p}=0.021$ |
|  | MVPA | Min/day | 30 s CST | \#/30 s | Unadjusted | 60-69y: $\mathrm{R}=0.367(\mathrm{p}=0.000)$ | p (calc)<0.001 |
| Hall et al., 2016 | MVPA | Min/day | 30 s CST | \#/30 s | Unadjusted | 70-79y: $\mathrm{R}=0.192(\mathrm{p}=0.030)$ | $\mathrm{p}=0.030$ |
|  | MVPA | Min/day | 30 s CST | \#/30 s | Unadjusted | $80-90+y$ : $\mathrm{R}=0.281(\mathrm{p}=0.068)$ | $\mathrm{p}=0.068$ |
|  | SB | \% time/day | 30 s CST | \#/30 s | Unadjusted | 60-69y: $\mathrm{R}=-0.359(\mathrm{p}=0.000)$ | $\mathrm{p}($ calc $)=0.001$ |
|  | SB | \% time/day | 30 s CST | \#/30 s | Unadjusted | 70-79y: $\mathrm{R}=-0.197(\mathrm{p}=0.026)$ | $\mathrm{p}=0.026$ |
|  | SB | \% time/day | 30 s CST | \#/30 s | Unadjusted | 80-90+y: $\mathrm{R}=-0.291(\mathrm{p}=0.059)$ | $\mathrm{p}=0.059$ |
| Harada et al., 2016 | Steps | \#/day | 5 x CST | S | Unadjusted | $\mathrm{R}=-0.25$ ( $\mathrm{p}<0.001$ ) | p<0.001 |
|  | Activity counts (low) | $\begin{aligned} & \text { \#/impact/ } \\ & \text { day } \end{aligned}$ | HGS | Kg | Age | *Low $\beta=1.09$ (0.97, 1.23) | $\mathrm{p}=0.14$ |
|  | Activity counts (med) | \#/impact/ <br> day | HGS | Kg | Age | *Medium $\beta=1.15$ (0.97, 1.37) |  |
|  | Activity counts (high) | $\begin{aligned} & \text { \#/impact/ } \\ & \text { day } \end{aligned}$ | HGS | Kg | Age | *High $\beta=1.14$ (0.95, 1.36) |  |
|  | Activity counts (low) | \#/impact/ <br> day | Jump strength | kN | Age | *Low $\beta=1.05$ (0.90, 1.22) | $\mathrm{p}=0.53$ |
|  | Activity counts (medium) | $\begin{aligned} & \text { \#/impact/ } \\ & \text { day } \end{aligned}$ | Jump strength | kN | Age | *Medium $\beta=1.18$ (0.95, 1.47) |  |
|  | Activity counts (high) | \#/impact/ <br> day | Jump strength | kN | Age | *High $\beta=1.26$ (1.00, 1.57) |  |
| Hartley et al., 2018 | Activity counts (low) | \#/impact/ day | Jump power | kW | Age | *Low $\beta=0.97$ (0.83, 1.13) | $\mathrm{p}=0.71$ |
|  | Activity counts (medium) | \#/impact/ <br> day | Jump power | kW | Age | *Medium $\beta=1.14$ (0.91, 1.42) |  |
|  | Activity counts (high) | \#/impact/ day | Jump power | kW | Age | *High $\beta=1.08$ (0.86, 1.36) |  |
|  | Activity counts (low) | \#/impact/ <br> day | 5x CST | S | Age | *Low $\beta=0.80$ (0.70, 0.91) | p(calc)<0.001 |
|  | Activity counts (medium) | $\begin{aligned} & \text { \#/impact/ } \\ & \text { day } \end{aligned}$ | 5x CST | S | Age | *Medium $\beta=0.69$ (0.57, 0.83) |  |
|  | Activity counts (high) | \#/impact/ day | 5x CST | S | Age | *High $\beta=0.83$ (0.68, 1.00) |  |
| Hasegawa et al., 2018 | Steps | \#/day | 30 s CST | \#/30 s | Age, sex | * $\beta=0.20$ ( $\mathrm{p}=0.17$ ) | $\mathrm{p}=0.17$ |
|  | Steps | \#/day | HGS | KgF | Unadjusted | $\begin{aligned} & \text { Non-exercise: } \text { Rho=-0.10 } \\ & (\mathrm{p}>0.05) \end{aligned}$ | $\mathrm{p}($ calc $)=0.206$ |
| $\begin{aligned} & \text { Hernandes et al., } \\ & 2013 \end{aligned}$ | Steps | \#/day | 30 s CST | \#/30 s | Unadjusted | Exercise: Rho $=-0.11$ ( $\mathrm{p}>0.05$ ) <br> Non-exercise: $\mathrm{Rho}=0.30$ $(\mathrm{p}<0.05)$ | $\begin{aligned} & \mathrm{p}(\text { calc })=0.312 \\ & \mathrm{p}(\text { calc })=0.001 \end{aligned}$ |
|  | TPA | Min/day | KES | Kg | Unadjusted | Exercise: $\mathrm{Rho}=0.28(\mathrm{p}<0.05)$ $R=0.30(p=0.07)$ | $\begin{aligned} & \mathrm{p}(\text { calc })<0.001 \\ & \mathrm{p}=0.07 \end{aligned}$ |
|  | LPA | Min/day | KES | Kg | Unadjusted | $\mathrm{R}=0.27(\mathrm{p}=0.11)$ | $\mathrm{p}=0.11$ |
| $\begin{aligned} & \text { Hernández et al., } \\ & 2017 \end{aligned}$ | SB | Min/day | KES | Kg | Unadjusted | $\mathrm{R}=-0.16$ ( $\mathrm{p}=0.35)$ | $\mathrm{p}=0.35$ |
|  | Steps | \#/day | Quad power <br> 50\% 1RM | W | Unadjusted | $\mathrm{R}=0.30$ ( $\mathrm{p}=0.07$ ) | $\mathrm{p}=0.07$ |
|  | TPA | Min/day | Quad power 50\% 1RM | W | BMI | *B $=0.30(0.19,0.42) \beta=0.76$ | p $<0.001$ |
|  |  |  |  | 39 |  |  | tinued on next page) |

Table C5 (continued)


Table C5 (continued)

| Author year | Physical activity and sedentary behavior |  | Muscle strength and muscle power |  | Adjustment | Effect size (95\% CI) ${ }^{\text {a }}$ | p -value used for analyses ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Reported measure (s) | Units | Reported measure(s) | Units |  |  |  |
| Kim, 2015 |  |  |  |  |  | 2.18), Q4vs.Q1 B $=1.25(-0.06$, <br> 2.57) (p-trend $=0.21$ ) |  |
|  | Activity counts | \#/min/day | HGS | Kg | Age, sex | Partial Rho $=0.081(\mathrm{p}=0.251)$ | $\mathrm{p}=0.251$ |
|  | Activity counts | \#/min/day | KES | N/kg | Age, sex | Partial Rho $=0.025(\mathrm{p}=0.463)$ | $\mathrm{p}=0.463$ |
|  | Activity counts | \#/min/day | 5x CST | S | Age, BMI, morbidities + others | $\mathrm{B}=-0.272(-0.456,-0.087)$ | $\mathrm{p}($ calc $)=0.004$ |
| Kim et al., 2015 | MVPA | \% time/day | 5x CST | S | Unadjusted | $\mathrm{R}=-0.400$ ( $\mathrm{p}<0.001$ ) | $\begin{aligned} & \mathrm{p}<0.001 \\ & \mathrm{p}(\text { calc })=0.042 \\ & \mathrm{p}(\text { calc })=0.003 \\ & \mathrm{p}(\text { calc })=0.627 \end{aligned}$ |
|  | LPA | \% time/day | 5x CST | S | Unadjusted | $\mathrm{R}=-0.203(0.01<\mathrm{p}<0.05)$ |  |
|  | SB | \% time/day | 5x CST | S | Unadjusted | $\mathrm{R}=0.292(0.001<\mathrm{p}<0.01)$ |  |
|  | Long SB bout | \% time/day | 5 x CST | S | Unadjusted | $\mathrm{R}=-0.049(\mathrm{p}>0.05)$ |  |
| Lai et al., 2020 | MVPA (Meeting vs. not meeting guidelines) | Min/day | 5x CST (high vs. low) |  | Age, sex, BMI, edu + others | $\mathrm{OR}=2.14$ (0.79, 5.79) | $\mathrm{p}=0.14$ |
| Lee et al., 2015 | SB (quartiles: $\mathrm{Q} 1=\text { most SB) }$ | \%/day | 5x CST | \#/min | Age, sex, morbidities + others | Q2 vs Q1 $\mathrm{B}=1.85(\mathrm{SE}=0.90)$, <br> Q3 vs Q1 $\mathrm{B}=1.46(\mathrm{SE}=0.96)$, <br> Q4 vs. $\mathrm{Q} 1=\mathrm{B}=3.43$ <br> ( $\mathrm{SE}=0.98$ ), (mean of Q2-Q4 vs <br> Q1 $\mathrm{p}=0.0016$ ) | $\mathrm{p}=0.0016$ |
| Lerma et al., 2018 | MVPA | 60 min /day | 5x CST | \% s | Age, sex | $\mathrm{e}^{\beta}=-4.433(-7.21,-1.650)$ | p (calc) $=0.001$ |
|  | LPA | 60 min /day | 5 x CST | \% s | Age, sex | $\mathrm{e}^{\beta}=-0.622(-1.349,0.104)$ | $\mathrm{p}($ calc $)=0.093$ |
|  | SB | 60 min /day | 5x CST | \% s | Age, sex | $e^{\beta}=0.092(-0.602,0.786)$ | $\mathrm{p}($ calc $)=0.807$ |
| Liao et al., 2018 | SB | Min/day | HGS | Kg | Age, sex, <br> MVPA + others | $\beta=-0.083(-0.199,0.034)$ | $\mathrm{p}=0.165$ |
|  | SB break rate | \#/sedentary <br> h | HGS | Kg | Age, sex, MVPA, SB + others | $\beta=0.004(-0.115,0.124)$ | $\mathrm{p}=0.944$ |
|  | Long SB bouts | \#/day | HGS | Kg | Age, sex, MVPA, SB + others | $\beta=0.053(-0.132,0.237)$ | $\mathrm{p}=0.575$ |
|  | Long SB bouts | Min/day | HGS | Kg | Age, sex, MVPA, SB + others | $\beta=-0.060$ ( $-0.159,0.039$ ) | $\mathrm{p}=0.237$ |
| Lohne-Seiler et al., $2016$ | Steps | 1000/day | HGS | Kg | Age, sex, wear time, test center | $\begin{aligned} & \mathrm{B}=-1.33(\mathrm{SE}=0.24)(-0.61, \\ & 0.34) \end{aligned}$ | $\mathrm{p}=0.6$ |
| Mador et al., 2011 | VMU | \#/min/day | KES | Kg | Unadjusted | *R $=0.50(\mathrm{p}=0.013)$ | $\mathrm{p}=0.013$ |
| Master et al., 2018 | Steps | \#/day | 5x CST | S | Age, sex, morbidities + others | $\mathrm{B}=-130(-178,-83)$ | p (calc) $<0.001$ |
| Matkovic et al., 2020 | ```Steps (<5000/ day) Steps (<5000) day)``` | \#/day | HGS | Kg | Unadjusted | *AUC $=0.596$ (0.491, 0.702) | $\mathrm{p}=0.082$ |
|  |  | \#/day | 30 s CST | \#/30 s | Unadjusted | *AUC $=0.676$ (0.576, 0.776) | $\mathrm{p}=0.001$ |
| $\begin{aligned} & \text { McDermott et al., } \\ & 2002 \end{aligned}$ | Accelerations | \#/day | 5x CST | S | Unadjusted | $\begin{aligned} & +P A D: ~ * B(N R)(+) \text { (p-trend } \\ & <0.0001) \end{aligned}$ | p $<0.001$ |
|  | Accelerations | \#/day | 5x CST | S | Unadjusted | $\begin{aligned} & -P A D: ~ * B=\mathrm{N} / \mathrm{R}(+) \text { (p-trend } \\ & <0.0001) \end{aligned}$ | p $<0.001$ |
|  | MVPA | Log-ratio | HGS | Kg | Age, sex, morbidity + others | $\gamma=-0.599(\mathrm{p}=0.213)$ | $\mathrm{p}=0.213$ |
| $\begin{aligned} & \text { McGregor et al., } \\ & 2018 \end{aligned}$ | LPA | Log-ratio | HGS | Kg | Age, sex, morbidity + others | $\gamma=2.979(\mathrm{p}=0.028)$ | $\mathrm{p}=0.028$ |
|  | SB | Log-ratio | HGS | Kg | Age, sex, morbidity + others | $\gamma=0.003(\mathrm{p}=0.677)$ | $\mathrm{p}=0.677$ |
|  | Steps | 1000/day | HGS | Kg | Age, sex, BMI, edu + others | $\mathrm{B}=0.01(\mathrm{SE}=0.16), \mathrm{R}^{2}=0.58$ | $\mathrm{p}=0.53$ |
| Meier and Lee, 2020Monteiro et al., 2019 | Steps (high, medium, low) | \#/day | Chest press strength | Lbs | Unadjusted | ANOVA ( + ) ( $\mathrm{p}=0.15$ ) ( + ) | $\mathrm{p}=0.15$ |
|  | Steps (high, medium, low) | \#/day | Leg press strength | Lbs | Unadjusted | ANOVA (+) ( $\mathrm{p}=0.17$ ) | $\mathrm{p}=0.17$ |
|  | Activity counts (terciles) | \#/min/day | Arm curl | \#/30 s | Unadjusted | ANOVA ( + ) ( $\mathrm{p}=0.058$ ) | $\mathrm{p}=0.058$ |
|  | Activity counts (terciles) | \#/min/day | KES | Nm | Unadjusted | ANOVA ( + ) ( $\mathrm{p}=0.060$ ) | $\mathrm{p}=0.060$ |
| Monteiro et al., 2019 | Activity counts (terciles) | \#/min/day | Knee flexion strength | Nm | Unadjusted | ANOVA (+) ( $\mathrm{p}=0.051$ ) | $\mathrm{p}=0.051$ |
|  | Activity counts (terciles) | \#/min/day | 30 s CST | \#/30 s | Unadjusted | ANOVA ( + ) ( $\mathrm{p}=0.073$ ) | $\mathrm{p}=0.073$ |
|  | Activity counts (low vs. high) | $\begin{aligned} & 10^{-5} / \mathrm{min} / \\ & \text { day } \end{aligned}$ | HGS | Kg | Unadjusted | $\mathrm{T}=\mathrm{N} / \mathrm{R}(\mathrm{p} \geq 0.36)$ | $\mathrm{p} \geq 0.36$ |
|  | Activity counts (low vs. high) | $\begin{aligned} & 10^{-5} / \mathrm{min} / \\ & \text { day } \end{aligned}$ | Chest press strength | N | Unadjusted | $\mathrm{T}=\mathrm{N} / \mathrm{R}(\mathrm{p}=0.710)$ | $\mathrm{p}=0.710$ |
| Morie et al., 2010 | Activity counts (low vs. high) Activity counts (low vs. high) Activity counts (low vs. high) | $\begin{aligned} & 10^{-5} / \mathrm{min} / \\ & \text { day } \\ & 10^{-5} / \mathrm{min} / \\ & \text { day } \\ & 10^{-5} / \mathrm{min} / \\ & \text { day } \end{aligned}$ | Chest press power | W | Unadjusted | $\mathrm{T}=\mathrm{N} / \mathrm{R}(\mathrm{p}=0.945)$ | $\mathrm{p}=0.945$ |
|  |  |  | Leg press strength | N | Age, BMI, medications | $\begin{aligned} & \beta=200, \text { partial } R^{2}=0.09 \\ & (\mathrm{p}<0.01) \end{aligned}$ | $\mathrm{p}($ calc $)=0.006$ |
|  |  |  | Leg press power | W | Unadjusted | $\mathrm{T}=\mathrm{N} / \mathrm{R}(\mathrm{p}=0.359)$ | $\mathrm{p}=0.359$ |
| Nagai et al., 2018 | MVPA <br> LPA | Min/day | HGS (weak vs. not weak) | Kg | Unadjusted | $\mathrm{Rpb}=-0.12$ ( $\mathrm{p}<0.05$ ) | p (calc) $<0.001$ |
|  |  | Min/day |  | Kg | Unadjusted | $\mathrm{Rpb}=-0.16$ ( $\mathrm{p}<0.05$ ) | p (calc) $<0.001$ |
|  |  |  |  | 41 |  |  | tinued on next page |

Table C5 (continued)

| Author year | Physical activity and sedentary behavior |  | Muscle strength and muscle power |  | Adjustment | Effect size (95\% CI) ${ }^{\text {a }}$ | p-value used for analyses ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Reported measure (s) | Units | Reported measure(s) | Units |  |  |  |
| Nawrocka et al., 2017 | SB <br> MVPA (Meeting vs. not meeting guidelines) MVPA (Meeting vs. not meeting guidelines) MVPA (Meeting vs. not meeting guidelines) | Min/day | HGS (weak vs. not weak) HGS (weak vs. not weak) | Kg | Unadjusted | $\mathrm{Rpb}=0.14$ (p<0.05) | p (calc)<0.001 |
|  |  | Min/day | Arm curl | \#/30 s | Unadjusted | $\begin{aligned} & \text { Mann-Whitney U (+) } \\ & (p=0.587) \end{aligned}$ | $\mathrm{p}=0.587$ |
|  |  | Min/day | 30 s CST | \#/30 s | Unadjusted | $\begin{aligned} & \text { Mann-Whitney U (+) } \\ & (p=0.044) \end{aligned}$ | $\mathrm{p}=0.044$ |
|  |  | Min/day | HGS | Kg | Unadjusted | Fischer's Exact ( + ) ( $\mathrm{p}=0.010$ ) | $\mathrm{p}=0.010$ |
| $\begin{aligned} & \text { Nawrocka et al., } \\ & 2019 \end{aligned}$ | MVPA (Meeting vs. not meeting guidelines) | Min/day | Arm curl | \#/30 s | Unadjusted | $\begin{aligned} & \text { Mann-Whitney U (+) } \\ & (p=0.004) \end{aligned}$ | $\mathrm{p}=0.004$ |
|  | MVPA (Meeting vs. not meeting guidelines) | Min/day | 30 s CST | \#/30 s | Unadjusted | $\begin{aligned} & \text { Mann-Whitney U (+) } \\ & (\mathrm{p}=0.162) \end{aligned}$ | $\mathrm{p}=0.162$ |
| Nicolai et al., 2010 | Steps (Walking) | Min/day | 5 x CST | S | Unadjusted | Rho $=-0.398(\mathrm{p}=0.008)$ | $\mathrm{p}=0.008$ |
|  | TPA (Time on feet) | Min/day | 5 xCST | S | Unadjusted | Rho $=-0.460(p=0.002)$ | $\mathrm{p}=0.002$ |
| Ofei-Doodoo et al., | MVPA | Min/day | Arm curl | \#/30 s | Unadjusted | $\mathrm{R}=0.174(\mathrm{p}=0.083)$ | $\mathrm{p}=0.083$ |
| 2018 | MVPA | Min/day | 30 s CST | \#/30 s | Unadjusted | $\mathrm{R}=0.388(\mathrm{p}=0.000)$ | p(calc) $<0.0001$ |
| Orwoll et al., 2019 | MVPA (MPA) \} | Min/day | 5x CST | S | Unadjusted | $\mathrm{R}=-0.2(\mathrm{p}<0.001)$ | p $<0.001$ |
|  | LPA | Min/day | 5 xCST | S | Unadjusted | $\mathrm{R}=-0.2(\mathrm{p}<0.001)$ | p<0.001 |
| Osuka et al., 2015 | MVPA | Min/day | 5 x CST (low vs. high) | S | Unadjusted | $\begin{aligned} & \text { *Mann-Whitney U (+) } \\ & (\mathrm{p}<0.001) \end{aligned}$ | p $<0.001$ |
|  | LPA | Min/day | 5x CST | S | Age, sex, BMI + others | $\beta=-0.07(p=0.047)$ | $\mathrm{p}=0.047$ |
|  | Steps | \#/day | HGS/weight | \% | Unadjusted | $\mathrm{R}=0.07(\mathrm{p}>0.05)$ | $\mathrm{p}($ calc $)=0.757$ |
|  | TPA | Min/day | HGS/weight | \% | Unadjusted | $\mathrm{R}=0.10(\mathrm{p}>0.05)$ | $\mathrm{p}($ calc $)=0.658$ |
|  | VPA | Min/day | HGS/weight | \% | Unadjusted | $\mathrm{R}=0.21(\mathrm{p}>0.05)$ |  |
|  | MVPA | Min/day | HGS/weight | \% | Unadjusted | $\mathrm{R}=-0.06$ ( $\mathrm{p}>0.05$ ) | $\mathrm{p}($ calc $)=0.790$ |
|  | MPA | Min/day | HGS/weight | \% | Unadjusted | $\mathrm{R}=-0.07(\mathrm{p}>0.05)$ |  |
|  | LPA | Min/day | HGS/weight | \% | Unadjusted | $\mathrm{R}=0.20$ ( $\mathrm{p}>0.05$ ) | $\mathrm{p}(\mathrm{calc})=0.372$ |
| Park et al., 2018 | SB | Min/day | HGS/weight | \% | Unadjusted | $\mathrm{R}=-0.08(\mathrm{p}>0.05)$ | $\mathrm{p}(\mathrm{calc})=0.723$ |
|  | Steps | \#/day | 30 s CST | \#/30 s | Unadjusted | $\mathrm{R}=0.36$ ( $\mathrm{P}>0.05$ ) | $\mathrm{p}(\mathrm{calc})=0.100$ |
|  | TPA | Min/day | 30 s CST | \#/30 s | Unadjusted | $\mathrm{R}=0.25(\mathrm{p}>0.05)$ | $\mathrm{p}($ calc $)=0.262$ |
|  | VPA | Min/day | 30 s CST | \#/30 s | Unadjusted | $\mathrm{R}=0.05$ ( $\mathrm{P}>0.05$ ) | $\mathrm{p}($ calc $)=0.190$ |
|  | MVPA | Min/day | 30 s CST | \#/30 s | Unadjusted | $\mathrm{R}=0.29(\mathrm{p}>0.05)$ |  |
|  | MPA | Min/day | 30 s CST | \#/30 s | Unadjusted | $\mathrm{R}=0.29(\mathrm{p}>0.05)$ | $\mathrm{p}($ calc $)=0.860$ |
|  | LPA | Min/day | 30 s CST | \#/30 s | Unadjusted | $\mathrm{R}=0.04(\mathrm{p}>0.05)$ | $\mathrm{p}(\mathrm{calc})=0.791$ |
|  | SB | Min/day | 30 s CST | \#/30 s | Unadjusted | $\mathrm{R}=0.06$ ( $\mathrm{P}>0.05$ ) |  |
|  | MVPA | Min/day | Leg press strength | N | Unadjusted | $\mathrm{R}^{2}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$ | $\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$ |
|  | SB | Min/day | Leg press strength | N | Unadjusted | $\mathrm{R}^{2}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05$ | $\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$ |
| Perkin et al., 2018 | EE (PAL) | None | Leg press strength | N | Unadjusted | $\mathrm{R}^{2}=-0.03(\mathrm{p}>0.05)$ | $\mathrm{p}($ calc $)=0.230$ |
|  | MVPA | Min/day | Leg press power | W | Unadjusted | $\mathrm{R}^{2}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$ | $\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$ |
|  | SB | Min/day | Leg press power | W | Unadjusted | $\mathrm{R}^{2}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$ | $\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$ |
|  | EE (PAL) | None | Leg press power | W | Unadjusted | $\mathrm{R}^{2}=-0.03(\mathrm{p}>0.05)$ | $\mathrm{p}($ calc $)=0.230$ |
|  | Steps (Walking) | Min/day | HGS | \%pred | Unadjusted | $\mathrm{R}=0.44(0.001<\mathrm{p}<0.01)$ | $0.001<$ p $<0.01$ |
| Pitta et al., 2005 | TPA (Standing) | Min/day | HGS | \%pred | Unadjusted | $\mathrm{R}=0.28(0.01<\mathrm{p} \leq 0.5)$ | $0.01<\mathrm{p} \leq 0.5$ |
|  | Steps (Walking) | Min/day | KES | \%pred | Unadjusted | $\mathrm{R}=0.45$ (0.001 $<\mathrm{p}<0.01$ ) | $0.001<\mathrm{p} \leq 0.1$ |
|  | TPA (Standing) | Min/day | KES | \%pred | Unadjusted | $\mathrm{R}=0.20$ (p>0.5) | $\mathrm{p}($ calc $)=0.164$ |
|  | Steps | \#/day | Leg press strength | N/kg | Unadjusted | $\begin{aligned} & * B=184.15(S E=107.86) \\ & \beta=0.31 \end{aligned}$ | $\mathrm{p}($ calc $)=0.087$ |
| Puthoff et al., 2008 | Steps | \#/day | Leg press power (peak) | W/kg | Unadjusted | $\begin{aligned} & * B=340.99(\mathrm{SE}=152.08) \\ & \beta=0.40 \end{aligned}$ | $\mathrm{p}($ calc $)=0.024$ |
|  | Steps | \#/day | Leg press power (40\%) | W/kg | Unadjusted | $\begin{aligned} & * B=237.41(\mathrm{SE}=160.68) \\ & \beta=0.29 \end{aligned}$ | $p($ calc $)=0.140$ |
|  | Steps | \#/day | Leg press power (90\%) | W/kg | Unadjusted | $\begin{aligned} & * B=351.73(S E=175.81) \\ & \beta=0.36 \end{aligned}$ | $\mathrm{p}($ calc $)=0.045$ |
| Rapp et al., 2012 | Steps (Walking) | Min/day | HGS | Kg | Unadjusted | *M 65-74y: $\mathrm{B}=-0.2(-0.7,0.3)$ | $\mathrm{p}($ calc $)=0.441$ |
|  |  |  |  |  |  | *M 75-90y: $\mathrm{B}=-0.05(-0.5,0.4)$ | $\mathrm{p}($ calc $)=0.839$ |
|  |  |  |  |  |  | *F 65-74y: $\mathrm{B}=0.3(-0.4,0.9)$ | $\mathrm{p}(\mathrm{calc})=0.372$ |
|  |  |  |  |  |  | *F 75-90y: $\mathrm{B}=1.5$ (0.7, 2.3) | p (calc)<0.001 |
|  | Steps (Walking) | Min/day | 5x CST | S | Unadjusted | *M: $\beta=-2.4$ (-3.3, -1.6) | p (calc)<0.001 |
|  |  |  |  |  |  | *F: $\beta=-3.2(-4.0,-2.4)$ | p (calc)<0.001 |
|  | Steps | \#/day | KES | Nm | Unadjusted | * $\beta=-0.085(-0.567,0.387)$ | $\mathrm{p}=0.699$ |
| Rausch-Osthoff et al., 2014 | EE | Kcal/day | KES | Nm | Unadjusted | $* \beta=0.274(-0.171,0.749)$ | $\mathrm{p}=0.206$ |
|  | EE (PAL) | None | KES | Nm | Unadjusted | $* \beta=0.092(-0.345,0.516)$ |  |
|  | MET | Kcal/day/kg | KES | Nm | Unadjusted | $* \beta=0.100(-0.371,0.582)$ | $\mathrm{p}=0.650$ |
| Rava et al., 2018 | VPA | Min/day | 5x CST | S | Age, BMI | $\mathrm{R}=-0.06$ ( $\mathrm{p}>0.00625$ ) |  |

Table C5 (continued)

| Author year | Physical activity and sedentary behavior |  | Muscle strength and muscle power |  | Adjustment | Effect size (95\% CI) ${ }^{\text {a }}$ | p -value used for analyses ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Reported measure (s) | Units | Reported measure(s) | Units |  |  |  |
| Reid et al., 2018 | MVPA | Min/day | 5x CST | S | Age, BMI | $\mathrm{R}=-0.27(\mathrm{p}>0.00625)$ | $\mathrm{p}($ calc $)=0.015$ |
|  | MPA | Min/day | 5 xCST | S | Age, BMI | $\mathrm{R}=-0.26$ ( $\mathrm{p}>0.00625$ ) |  |
|  | LPA | Min/day | 5x CST | S | Age, BMI | $\mathrm{R}=-0.12(\mathrm{p}>0.00625)$ | $\mathrm{p}(\mathrm{calc})=0.286$ |
|  | SB | Min/day | 5 x CST | S | Age, BMI | $\mathrm{R}=0.05(\mathrm{p}>0.00625)$ | $\mathrm{p}(\mathrm{calc})=0.658$ |
|  | SB | \#/day | KES | Kg | Age, sex | $\mathrm{RR}=1.02(0.93,1.12)$ | $\mathrm{p}($ calc $)=0.689$ |
|  | BST | 10/day | KES | Kg | Age, sex | $\mathrm{RR}=0.94(0.82,1.07)$ | $\mathrm{p}(\mathrm{calc})=0.368$ |
|  | SB | \#/day | Leg press strength | Kg | Age, sex | $\mathrm{B}=1.61(-2.33,5.56)$ | $\mathrm{p}($ calc $)=0.432$ |
|  | BST | 10/day | Leg press strength | Kg | Age, sex | $\mathrm{B}=-6.32(-11.95,-0.69)$ | $\mathrm{p}($ calc $)=0.028$ |
|  | SB | \#/day | 30 s CST | \#/30 s | Age, sex | $\mathrm{B}=-0.28(-0.51,-0.04)$ | $\mathrm{p}($ calc $)=0.019$ |
|  | BST | 10/day | 30 s CST | \#/30 s | Age, sex | $\mathrm{B}=0.10(-0.24,0.45)$ | $\mathrm{p}($ calc $)=0.259$ |
|  | Steps | 1000/day | HGS (Z-score) | SD | Age, sex | $\mathrm{B}=0.052(\mathrm{SE}=0.038)$ | $\mathrm{p}=0.173$ |
| Rojer et al., 2018 | TPA | Min/day | HGS (Z-score) | SD | Age, sex | $\mathrm{B}=0.002(\mathrm{SE}=0.001)$ | $\mathrm{p}=0.279$ |
|  | SB | H/day | HGS (Z-score) | SD | Age, sex | $\mathrm{B}=-0.091(\mathrm{SE}=0.081)$ | $\mathrm{p}=0.267$ |
|  | PA bouts | 100/day | HGS (Z-score) | SD | Age, sex | $\mathrm{B}=0.027(\mathrm{SE}=0.022)$ | $\mathrm{p}=0.231$ |
|  | PA bouts | S/bout/day | HGS (Z-score) | SD | Age, sex | $\mathrm{B}=-0.023(\mathrm{SE}=0.043)$ | $\mathrm{p}=0.594$ |
|  | SB bouts | 100/day | HGS (Z-score) | SD | Age, sex | $\mathrm{B}=0.219(\mathrm{SE}=0.243)$ | $\mathrm{p}=0.370$ |
|  | SB bouts | H/bout/day | HGS (Z-score) | SD | Age, sex | $\mathrm{B}=-0.041(\mathrm{SE}=0.035)$ | $\mathrm{p}=0.254$ |
| Rosenberg et al., 2015 | SB | H/day | 5x CST | S | Age, sex, MVPA + others | $\mathrm{B}=1.02(\mathrm{SE}=0.21)$ | p $<0.001$ |
|  | MVPA | Min/day | HGS | Kg | Age, sex, body <br> fat + others | $\mathrm{B}=0.02(-0.02,0.06)$ | $\mathrm{p}(\mathrm{calc})=0.332$ |
|  | Accelerations | Mg-force | HGS | Kg | Age, sex, body fat + others | $\mathrm{B}=0.09(-0.04,0.23)$ | $p($ calc $)=0.193$ |
|  | Intensity gradient | N/R | HGS | Kg | Age, sex, body <br> fat + others | $\mathrm{B}=4.44(0.60,8.27)$ | p (calc) $<0.001$ |
| Rowlands et al., 2018 | PA bouts | Min/day | HGS | Kg | Age, sex, body <br> fat + others | $\mathrm{B}=-0.01(-0.07,0.05)$ | $\mathrm{p}(\mathrm{calc})=0.757$ |
|  | MVPA | Min/day | 60 s CST | \#/60 s | Age, sex, body <br> fat + others | $\mathrm{B}=0.06(0.02,0.09)$ | p (calc)<0.001 |
|  | Accelerations | Mg-force | 60 s CST | \#/60 s | Age, sex, body fat + others | $\mathrm{B}=0.25(0.11,0.40)$ | $p($ calc $)=0.007$ |
|  | Intensity gradient | N/R | 60 s CST | \#/60 s | Age, sex, body <br> fat + others | $\mathrm{B}=8.83$ (5.83, 11.83) | p(calc)<0.001 |
|  | PA bouts | Min/day | 60 s CST | \#/60 s | Age, sex, body fat + others | $\mathrm{B}=0.07(-0.02,0.16)$ | $\mathrm{p}($ calc $)=0.127$ |
| Safeek et al., 2018 | Steps | \#/day | HGS | Kg | Unadjusted | $\mathrm{R}=-0.02(\mathrm{p}>0.05)$ | $\mathrm{p}($ calc $)=0.931$ |
|  | MVPA | Min/day | HGS | Kg | Unadjusted | $R=-0.20$ ( $\gg 0.05$ ) | $\mathrm{p}(\mathrm{calc})=0.385$ |
|  | LPA | H/day | HGS | Kg | Unadjusted | $\mathrm{R}=0.15$ ( $\mathrm{p}>0.05$ ) | $\mathrm{p}(\mathrm{calc})=0.516$ |
|  | SB | H/day | HGS | Kg | Unadjusted | $\mathrm{R}=0.15$ ( $\mathrm{P}>0.05$ ) | $\mathrm{p}(\mathrm{calc})=0.516$ |
|  | EE | Kcal/day | HGS | Kg | Unadjusted | $\mathrm{R}=0.12(\mathrm{p}>0.05)$ | $\mathrm{p}($ calc $)=0.604$ |
|  | Steps | \#/day | 30 s CST | \#/30 s | Unadjusted | $\mathrm{R}=0.30$ ( $\gg 0.05$ ) | $\mathrm{p}($ calc $)=0.186$ |
|  | MVPA | Min/day | 30 s CST | \#/30 s | Unadjusted | $\mathrm{R}=0.16$ ( $\mathrm{p}>0.05$ ) | $\mathrm{p}(\mathrm{calc})=0.488$ |
|  | LPA | H/day | 30 s CST | \#/30 s | Unadjusted | $\mathrm{R}=0.24(\mathrm{p}>0.05)$ | $\mathrm{p}($ calc $)=0.295$ |
|  | SB | H/day | 30 scST | \#/30 s | Unadjusted | $\mathrm{R}=-0.25$ (p>0.05) | $\mathrm{p}(\mathrm{calc})=0.274$ |
|  | EE | Kcal/day | 30 s CST | \#/30 s | Unadjusted | $\mathrm{R}=0.16$ ( $\mathrm{p}>0.05$ ) | $\mathrm{p}(\mathrm{calc})=0.488$ |
| Sánchez-Sánchez et al., 2019 | Activity counts | SDs (\#/day) | HGS | Kg | Age residuals, sex + others | $\mathrm{B}=0.857(0.312,1.402)$ | $0.001<$ p $<0.01$ |
|  | MVPA | H/day | HGS | Kg | Age residuals, sex + others | $\mathrm{B}=0.933$ (0.246, 1.620) | $0.001<$ p $<0.01$ |
|  | LPA | H/day | HGS | Kg | Age residuals, sex + others | $\mathrm{B}=0.428(0.051,0.805)$ | $\mathrm{p}($ calc $)=0.026$ |
|  | SB | H/day | HGS | Kg | Age residuals, sex + others | $\mathrm{B}=-0.467(-0.807,-0.128)$ | $\mathrm{p}(\mathrm{calc})=0.007$ |
| Santos et al., 2012 | MVPA | Min/day | Arm curl | \#/30 s | Age, sex, register time | $\mathrm{B}=0.016(-0.007,0.039)$ | $\mathrm{p}(\mathrm{calc})=0.173$ |
|  | SB | Min/day | Arm curl | \#/30 s | Age, sex, register time | $\mathrm{B}=-0.010(-0.016,-0.004)$ | p (calc)<0.001 |
|  | MVPA | Min/day | 30 s CST | \#/30 s | Age, sex, register time | $\mathrm{B}=0.035(0.014,0.055)$ | p (calc)<0.001 |
|  | SB | Min/day | 30 s CST | \#/30 s | Age, sex, register time | $B=-0.013(-0.018,-0.008)$ | p (calc)<0.001 |
| Sardinha et al., 2015 | BST |  | Arm curl 30 s | \#/30 s | Age, sex, BMI, | $\beta=0.180$ (0.039, 0.322) | $\mathrm{p}($ calc $)=0.013 \mathrm{p}$ |
|  | BST | \#/day \#/day | CST | \#/30 s | SB + others Age, sex, BMI, SB + others | $\beta=0.181$ (0.045, 0.318) | $(\text { calc })=0.797$ |
| Scott et al., 2020 | MVPA | H/day | HGS (low vs. high) | Kg | Sex, BMI, LPA, <br> SB + others | $\mathrm{OR}=0.80$ (0.71, 0.91) | p (calc)<0.001 |
|  | LPA | H/day | HGS (low vs. high) | Kg | Sex, BMI, MVPA, SB + others | $\mathrm{OR}=0.99(0.96,1.02)$ | $\mathrm{p}($ calc $)=0.526$ |
|  | SB | H/day | HGS (low vs. high) | Kg | Sex, BMI, MVPA, LPA + others | $\mathrm{OR}=1.00$ (0.98,1.02) | $\mathrm{p}($ calc $)=1$ |
| $\underline{\text { Scott et al., } 2011}$ | Steps (baseline) | \#/day x $10^{3}$ | $\Delta$ Leg strength | Kg | Age, weight, CVD + others | M: $\mathrm{B}=-0.28(-1.27,0.72)$ | $\mathrm{p}(\mathrm{calc})=0.593$ |
|  |  |  |  |  |  | $F: \mathrm{B}=1.06$ (0.31, 1.31) |  |
|  | Steps (habitual) | \#/day x $10^{3}$ | $\Delta$ Leg strength | Kg |  | $\mathrm{M}: \mathrm{B}=-0.21(-1.24,0.82)$ | p (calc)<0.001 |
|  |  |  |  |  |  |  | tinued on next page) |

Table C5 (continued)

| Author year | Physical activity and sedentary behavior |  | Muscle strength and muscle power |  | Adjustment | Effect size (95\% CI) ${ }^{\text {a }}$ | p -value used for analyses ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Reported measure (s) | Units | Reported measure(s) | Units |  |  |  |
| Scott et al., 2009 |  |  |  |  | Age, weight, CVD + others |  |  |
|  |  |  |  |  |  | $F: \mathrm{B}=1.37(0.57,2.17)$ |  |
|  | Steps | \#/day | Leg strength | Kg | Age | M: $\mathrm{B}=0.86$ (-0.02, 1.74) | $\mathrm{p}=0.056$ |
|  | Steps | \#/day | Leg strength | Kg | Age | $F: B=071(0.13,1.29)$ | $\mathrm{p}=0.016$ |
| Semanik et al., 2015 | SB | H/day | $\Delta 5 \mathrm{x}$ CST | \#/min | Age, sex, baseline CST + others | $\mathrm{B}=-0.58(-0.92,-0.24)$ | p $<0.001$ |
|  | MVPA | Min/day | Arm curl | \#/30 s | Unadjusted | Rho $=0.243$ ( $\mathrm{p}=0.027$ ) | $\mathrm{p}=0.027$ |
|  | LPA | Min/day | Arm curl | \#/30 s | Unadjusted | Rho $=-0.069$ ( $\mathrm{p}=0.538$ ) | $\mathrm{p}=0.538$ |
| Silva et al., 2019 | SB | Min/day | Arm curl | \#/30 s | Unadjusted | Rho $=0.124(\mathrm{p}=0.264)$ | $\mathrm{p}=0.264$ |
|  | MVPA | Min/day | 30 s CST | \#/30 s | Unadjusted | Rho $=0.163$ ( $\mathrm{p}=0.142$ ) | $\mathrm{p}=0.142$ |
|  | LPA | Min/day | 30 s CST | \#/30 s | Unadjusted | Rho $=-0.083$ ( $\mathrm{p}=0.458$ ) | $\mathrm{p}=0.458$ |
|  | SB | Min/day | 30 s CST | \#/30 s | Unadjusted | Rho $=0.167(\mathrm{p}=0.131)$ | $\mathrm{p}=0.131$ |
|  | Steps | 1000/day | HGS | Kg | Age, sex, wear time + others | $M: \mathrm{B}=-0.16(\mathrm{SE}=0.09)$ | $\mathrm{p}=0.077$ |
|  |  |  |  |  |  | $\mathrm{F} ; \mathrm{B}=0.09(\mathrm{SE}=0.06)$ | $\mathrm{p}=0.125$ |
|  | MVPA | $\begin{aligned} & \log (\min / \\ & \text { day) } \end{aligned}$ | HGS | Kg | Age, sex, wear time + others | M: $\mathrm{B}=0.058(\mathrm{SE}=0.34)$ | $\mathrm{p}=0.090$ |
|  |  |  |  |  |  | $F: \mathrm{B}=0.64(\mathrm{SE}=0.19)$ | $\mathrm{p}=0.0008$ |
| Spartano et al., 2019 | SB | \% wear time | HGS | Kg | Age, sex, wear time + others | $M: \mathrm{B}=0.09(\mathrm{SE}=0.05)$ | $\mathrm{p}=0.088$ |
|  |  |  |  |  |  | $F: \mathrm{B}=-0.05$ ( $\mathrm{SE}=0.04$ ) | $\mathrm{p}=0.133$ |
|  | Steps | 1000/day | 5x CST | Log(s) | Age, sex, wear time + others | $\mathrm{B}=-0.010(\mathrm{SE}=0.002)$ | p $<0.0001$ |
|  | MVPA | $\begin{aligned} & \log (\min / \\ & \text { day) } \end{aligned}$ | 5x CST | Log(s) | Age, sex, wear time + others | $B=-0.057(S E=0.006)$ | p $<0.0001$ |
|  | SB | \% wear time | 5 x CST | Log(s) | Age, sex, wear time + others | $\mathrm{B}=0.006(\mathrm{SE}=0.001)$ | p $<0.0001$ |
| Tang et al., 2015 | Activity counts | \#/day | HGS | Kg | SPPB score, 6 min walk test | *B = 23022 (-41988, -4055) | $\mathrm{p}=0.02$ |
|  | Steps (low vs. high) | \#/day | $5 \mathrm{x} \operatorname{CST}(0-4)$ | Points | Age, sex | * $\mathrm{OR}=7.2(3.8,13.6)$ | p $<0.001$ |
| Trayers et al., 2014 | Activity counts (low vs. high) | \#/day | $5 \mathrm{x} \operatorname{CST}(0-4)$ | Points | Age, sex | * $\mathrm{OR}=5.8$ (3.2, 10.8) | p $<0.001$ |
|  | MVPA (low vs. high) | Min/day | 5 x CST (0-4) | Points | Age, sex | *OR = 7.8 (4.0, 15.0) | p<0.001 |
| Van Gestel et al., 2012 | Steps | \#/day | HGS | Kg | Unadjusted | $\mathrm{R}=0.21(-0.03,-0.42)$ | $\mathrm{p}=0.19$ |
|  | Steps | \#/day | 60 s CST | \#/60 s | BMI, partial pressure $\mathrm{O}^{2}, \mathrm{FEV}_{1}$ | $\begin{aligned} & * B=155.38(S E=73.15) \\ & \beta=0.28 \end{aligned}$ | $\mathrm{p}=0.041$ |
|  | TPA (standing) | Min/day | $\begin{aligned} & 5 \mathrm{x} \text { CST (fast vs. } \\ & \text { slow) } \end{aligned}$ | S | Unadjusted | $\begin{aligned} & \text { *Mann-Whitney U (+) } \\ & (\mathrm{p}=0.230) \end{aligned}$ | $\mathrm{p}=0.230$ |
| Van Lummel et al., 2016 | PA bouts | \#/day | $5 \mathrm{x} \operatorname{CST}$ (fast vs. slow) | S | Unadjusted | $\begin{aligned} & \text { *Mann-Whitney U (+) } \\ & (p=0.218) \end{aligned}$ | $\mathrm{p}=0.218$ |
|  | SB bouts | Min/bout/ day | $5 \mathrm{x} \operatorname{CST}$ (fast vs. slow) | S | Unadjusted | $\begin{aligned} & \text { *Mann-Whitney U (-) } \\ & (\mathrm{p}=0.042) \end{aligned}$ | $\mathrm{p}=0.042$ |
| $\frac{\text { van Oeijen et al., }}{\underline{2020}}$ | $\Delta$ Steps | \#/day | $\Delta$ Lower extremity muscle strength | Z-score | Unadjusted | $\mathrm{B}=676.279(\mathrm{SE}=186.151)$ | p $<0.000$ |
| Van Sloten et al., 2011 | Steps | \#/day | HGS (low vs. high) | Kg | Age, sex, BMI, neuropathy, PAD | *B=-1782 (-3348, -217) | $\mathrm{p}(\mathrm{calc})=0.025$ |
| Walker et al., 2008 | TPA | \% time/day | KES | N | Unadjusted | $\mathrm{R}=0.4(0.06,0.55)$ | $\mathrm{p}=0.023$ |
| Ward et al., 2014 | Activity counts | \#/min/day | 30 s CST | \#/30 s | Age, sex, morbidities, body fat | $\beta=0.002(-0.006,0.009)$ | $\mathrm{p}(\mathrm{calc})=0.614$ |
|  | MVPA | Min/week | 30 s CST | \#/30 s | Age, sex, morbidities | Partial R = 0.147 ( $\mathrm{p}>0.05$ ) | $\mathrm{p}(\mathrm{calc})=0.067$ |
| Waschki et al., 2012 | Steps | \#/day | KES | Kg | Age, sex, BMI, study site | $\beta=0.298(p=0.022)$ | $\mathrm{p}=0.022$ |
|  | EE (PAL) | None | KES | Kg | Age, sex, BMI, study site | $\beta=0.350(p=0.007)$ | $\mathrm{p}=0.007$ |
| Watz et al., 2008 | Steps | \#/day | HGS | Kg | Edu, smoking, alcohol + others | $\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$ | $\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$ |
|  | EE (PAL) | None | HGS | Kg | Edu, smoking, alcohol + others | $\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$ | $\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$ |
|  | TPA | Min/day | HGS | Kg | Age, sex, height + others | $\beta=0.16(-0.03,0.34)$ | $\mathrm{p}=0.09$ |
| Westbury et al., 2018 | MVPA | Min/day | HGS | Kg | Age, sex, height + others | $\beta=0.11(-0.09,0.31)$ | $\mathrm{p}=0.27$ |
|  | Accelerations | Mg-force | HGS | Kg | Age, sex, height + others | $\beta=0.12(-0.07,0.30)$ | $\mathrm{p}=0.23$ |
| Wickerson et al., 2013 | Steps | \#/day | Knee extension torque | Nm | Unadjusted | $\mathrm{R}=0.51(\mathrm{p}<0.01)$ | $\mathrm{p}($ calc $)=0.011$ |
|  | MVPA | Min/day | Knee extension torque | Nm | Unadjusted | $\mathrm{R}=0.36(\mathrm{p}=0.08)$ | $\mathrm{p}=0.08$ |

Table C5 (continued)

| Author year | Physical activity and sedentary behavior |  | Muscle strength and muscle power |  | Adjustment | Effect size (95\% CI) ${ }^{\text {a }}$ | p-value used for analyses ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Reported measure (s) | Units | Reported measure(s) | Units |  |  |  |
| Winberg et al., 2015 | Steps | \#/day | KES | Nm | Age, sex, BMI | * $\mathrm{B}=19(\mathrm{p}<0.01), \mathrm{R}^{2}=0.18$ | p (calc) $<0.001$ |
|  | Steps | \#/day | Knee flexion strength | Nm | Age, sex, BMI | * $\mathrm{B}=39(\mathrm{p}<0.01), \mathrm{R}^{2}=0.19$ | p (calc) $<0.001$ |
| Yamada et al., 2011 | Steps | \#/day | 5x CST | S | Age, sex, gait speed + others | $\beta=-0.147(p<0.01)$ | p (calc) $<0.001$ |
|  | MVPA | $10 \mathrm{~min} /$ day | HGS | Kg | Age, sex, morbidities + others | $B=0.092(-0.135,0.318)$ | $\mathrm{p}(\mathrm{calc})=0.434$ |
| Yasunaga et al., 2017 | LPA | $10 \mathrm{~min} /$ day | HGS | Kg | Age, sex, morbidities + others | $B=0.058(-0.024,0.141)$ | $\mathrm{p}($ calc $)=0.169$ |
|  | SB | $10 \mathrm{~min} /$ day | HGS | Kg | Age, sex, morbidities + others | $\mathrm{B}=-0.056(-0.130,0.017)$ | $\mathrm{p}(\mathrm{calc})=0.136$ |
|  | Steps | \#/day | HGS | Kg | Unadjusted | HFG: Rho $=0.137(\mathrm{p}>.05)$ | $\mathrm{p}($ calc $)=0.301$ |
|  |  |  |  |  |  | $L F G:$ Rho $=0.142(\mathrm{p}>.05)$ | $\mathrm{p}($ calc $)=0.187$ |
|  | TPA | Min/day | HGS | Kg | Unadjusted | HFG: Rho $=-0.091(\mathrm{p}>.05)$ | $\mathrm{p}($ calc $)=0.493$ |
|  |  |  |  |  |  | LFG: Rho $=0.102(\mathrm{p}>.05)$ | $\mathrm{p}($ calc $)=0.344$ |
|  | MVPA (MPA) | Min/day | HGS | Kg | Unadjusted | HFG: Rho $=0.206(\mathrm{p}>.05)$ | $\mathrm{p}($ calc $)=0.118$ |
|  |  |  |  |  |  | $L F G:$ Rho $=0.146(\mathrm{p}>.05)$ | $\mathrm{p}($ calc $)=0.175$ |
|  | LPA | Min/day | HGS | Kg | Unadjusted | HFG: Rho $=-0.176(\mathrm{p}>.05)$ | $\mathrm{p}($ calc $)=0.182$ |
| Yoshida et al., 2010 |  |  |  |  |  | $L F G:$ Rho $=0.076(\mathrm{p}>.05)$ | $\mathrm{p}($ calc $)=0.482$ |
|  | Steps | \#/day | KES | Nm | Unadjusted | HFG: Rho $=0.277(\mathrm{p}<.05)$ | $\mathrm{p}($ calc $)=0.034$ |
|  |  |  |  |  |  | LFG: Rho $=-0.018(\mathrm{p}>.05)$ | $\mathrm{p}($ calc $)=0.868$ |
|  | TPA | Min/day | KES | Nm | Unadjusted | HFG: Rho $=-0.159(\mathrm{p}>.05)$ | $\mathrm{p}($ calc $)=0.229$ |
|  |  |  |  |  |  | LFG: Rho $=-0.034(\mathrm{p}>.05)$ | $\mathrm{p}($ calc $)=0.753$ |
|  | MVPA (MPA) | Min/day | KES | Nm | Unadjusted | HFG: Rho $=0.475(\mathrm{p}<.01)$ | p (calc) $<0.001$ |
|  |  |  |  |  |  | $L F G:$ Rho $=0.055(\mathrm{p}>.05)$ | $\mathrm{p}($ calc $)=0.677$ |
|  | LPA | Min/day | KES | Nm | Unadjusted | HFG: Rho $=0.028(\mathrm{p}>.05)$ | $\mathrm{p}($ calc $)=0.833$ |
|  |  |  |  |  |  | $L F G:$ Rho $=-0.045(\mathrm{p}>.05)$ | $\mathrm{p}(\mathrm{calc})=0.611$ |
|  | Steps | \#/day | HGS (weakness vs. no weakness) | Kg | Age, sex | $* \mathrm{OR}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$ | $\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$ |
| Yuki et al., 2019 | LPA | Min/day | HGS weakness vs. no weakness) | Kg | Age, sex | * $\mathrm{OR}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$ | $\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$ |
|  | MVPA | Min/day | HGS weakness vs. no weakness) | Kg | Age, sex | $* \mathrm{OR}=\mathrm{N} / \mathrm{R}(\mathrm{p}>0.05)$ | $\mathrm{p}(\mathrm{N} / \mathrm{R})>0.25$ |

TPA = total physical activity, MPA = moderate physical activity, VPA = vigorous physical activity, MVPA = moderate to vigorous physical activity, LPA = light physical activity, $\mathrm{SB}=$ sedentary behavior, $\mathrm{EE}=$ energy expenditure, $\mathrm{PAL}=$ physical activity units, $\mathrm{BST}=$ breaks in sedentary time, $\Delta=$ change, $\mathrm{MET}=$ metabolic equivalent of tasks, VMU = vector magnitude units, $\min =$ minutes, $h=$ hours, $C P M=$ counts per minutes, \#=number, mg-force = miligrams-force (force of earth gravity acting on one milligram), $\mathrm{SD}=$ standard deviation, $\log =\log$ transformed, $\mathrm{e}=$ natural log, Partial $\mathrm{R}=$ partial correlation, $\mathrm{R}=\mathrm{Pearson}$ 's correlation, Rho $=$ Spearman's correlation, $R_{p b}=$ point biserial correlation, $B=$ unstandardized regression coefficient (unstandardized beta), $\beta=$ standardized regression coefficient (standardized beta), $R R=$ relative risk, $O R=$ odds ratio, Partial $\eta^{2}=$ partial eta squared, ANOVA $=$ analysis of variance, $E M M=$ estimated marginal means, $T=t$-test ( $t$ statistic), $\mathrm{Q}=$ quartile, p -trend $=\mathrm{p}$ for trend, $\mathrm{HGS}=$ hand grip strength, $\mathrm{KES}=$ knee extension strength, $\mathrm{KET}=$ knee extension torque, CST = chair stand test, $\mathrm{s}=$ seconds, $\mathrm{x}=$ times (repetitions), $\#=$ number, quad = quadriceps, $\mathrm{kg}=$ kilogram, $\mathrm{N}=$ newton, $\mathrm{Nm}=$ newton-meter, $\mathrm{W}=\mathrm{watt}, \mathrm{KgF}=\mathrm{kilogram}-$ force, KiloW = kilowatt, KiloN = kilonewton, MVC = maximum voluntary contraction, 1RM = one repetition maximum, Lbs = pounds, max = maximum, / = divided by or per, $\Delta=$ change, $\%$ pred $=\%$ predictive, $+/-=$ with or without, $\mathrm{N} / \mathrm{A}=$ not applicable, $\mathrm{N} / \mathrm{R}=$ not reported, $\mathrm{M}=\mathrm{male}, \mathrm{F}=$ female, HFG = high functioning group, $\mathrm{LFG}=$ low functioning group, $\mathrm{BMI}=$ body mass index, $\mathrm{OA}=$ osteoarthritis, $\mathrm{O}^{2}=$ oxygen, $\mathrm{FEV}=$ forced expirator volume in one second in percent of predicted, + others $=$ adjusted for other potential confounders.
${ }^{\text {a }}$ If effect sizes were not reported, when possible, the direction of effect was determined as either positive ( + ) when higher PA and lower SB was associated with better muscle strength/power or as negative (-) when associated with worse muscle strength/power. *Stars before effect size coefficient represent the use of muscle strength or muscle power as an independent variable and PA or SB as the dependent variable, all other associations presented describe PA and SB as independent variable and muscle strength and power as the dependent variable.
${ }^{\mathrm{b}} \mathrm{p}$-values of associations included in analyses (effect direction heat map and albatross plots) are presented as reported in article, calculated as p(calc) using formulas described in methods, or estimated conservatively as $p(N / R)$ when $p$-value was not reported and could not be calculated (estimation described in methods). Associations with a blank space for p-value were not included as exposure-outcome associations were only represented once per article. If two articles reported the same exposure-outcome (PA/SB - muscle strength/power) association in the same population, adjusted data was used based on hierarchy of adjustment models or when adjustment models were the same, the data from the article with a larger sample sized was used and indicated by "author year". Underlined articles have a longitudinal design.

## Appendix D

## A. UB MS - hand grip strength


B. UB MP - arm curl


## C. LB MS - other


D. LB MP - chair stand test

| Legend |
| :--- | :--- | :--- |
| Effect direction and p-value | | PA/SB |
| :--- |
| Acc=accelerations, VMU=vector magnitude |
| units, MET=metabolic equivlents of tasks, |



## E. LB MP - other



Fig. D1. Effect direction heat maps of the associations between intensity-based accelerometer measures of physical activity with upper body (A, B) and lower body (C, D, E) measures of muscle strength and muscle power.

C. LB MS - chair stand test


## B. UB MP - arm curl

D. LB MP - chair stand test


| Legend |
| :--- | :--- |
| Effect direction and p -value |

Fig. D2. Effect direction heat maps of the associations between physical activity and sedentary behavior frequency and accumulation with upper (A, B) and lower body (C, D) measures of muscle strength and muscle power.


Lower HGS
Null
Higher HGS
C. Total physical activity

E. Light physical activity


Lower HGS

Null

Higher HGS
B. Activity counts


Lower HGS
Null
Higher HGS
D. Moderate-to-vigorous physical activity


Higher HGS

## F. Sedentary behavior



Higher HGS

| $\begin{array}{cl}------ & \beta= \pm 0.10 \\ \circ & \text { disease population }\end{array}$ | $\begin{aligned}-ー ー & \beta= \pm 0.20 \\ \text { - } \quad & \text { general population }\end{aligned}$ | $\beta= \pm 0.30$ |
| :---: | :---: | :---: |

Fig. D3. Albatross plots depicting the magnitude of the association (contours lines represent standardized regression coefficients ( $\beta$ )) of higher physical activity measures (A, B, C, D, E) or lower sedentary behavior (F) with hand grip strength (upper body muscle strength).


Fig. D4. Albatross plots depicting the magnitude of the association (contours lines represent standardized regression coefficients ( $\beta$ )) of higher moderate-to-vigorous physical activity (A) with arm curl (upper body muscle power).

A. Steps
C. Total physical activity


## E. Light physical activity



Lower LB MS
Higher LB MS
B. Activity counts


Lower LB MS
Null
Higher LB MS
D. Moderate-to-vigorous physical activity


## F. Sedentary behavior



Lower LB MS
Null
Higher LB MS

| ------ | $\beta= \pm 0.10$ | - | - | $\beta= \pm 0.20$ |
| :---: | :--- | :--- | :--- | :--- |
| $\circ$ | disease population | $\bullet$ | general population |  |

Fig. D5. Albatross plots depicting the magnitude of the association (contours lines represent standardized regression coefficients ( $\beta$ )) of higher physical activity measures (A, B, C, D, E) or lower sedentary behavior (F) with lower body muscle strength.

C. Moderate-to-vigorous physical activity


## E. Sedentary behavior



Fig. D6. Albatross plots depicting the magnitude of the association (contours lines represent standardized regression coefficients ( $\beta$ )) of higher physical activity measures (A, B, C, D) or lower sedentary behavior (E) with chair stand test (lower body muscle power).



Fig. D7. Albatross plots depicting the magnitude of the association (contours lines represent standardized regression coefficients ( $\beta$ )) of higher moderate-tovigorous physical activity (A) with lower body muscle power.
A. Total physical activity and hand grip strength (Egger's test: $p=0.000$ )

B. Moderate-to-vigorous physical activity and hand grip strength (Egger's test: $\mathrm{p}=0.489$ )

C. Light physical activity and hand grip strength (Egger's test: $\mathrm{p}=0.162$ )

D. Total physical activity and chair stand test (Egger's test: $\mathrm{p}=0.010$ )

E. Moderate-to-vigorous physical activity and chair stand test (Egger's test: $p=0.064$ )


Fig. D8. Funnel plots of standard errors by standardized regression coefficients ( $\beta$ ) for the associations of physical activity measures with hand grip strength (A, B, C) and chair stand test (D, E), respectively.

## References

Abe, T., Mitsukawa, N., Thiebaud, R.S., Loenneke, J.P., Loftin, M., Ogawa, M., 2012. Lower body site-specific sarcopenia and accelerometer-determined moderate and vigorous physical activity: the HIREGASAKI study. Aging Clin. Exp. Res. 24, 657-662. https://doi.org/10.3275/8758.
Abe, T., Thiebaud, R.S., Loenneke, J.P., Mitsukawa, N., 2015. Association between toe grasping strength and accelerometer-determined physical activity in middle-aged and older women. J. Phys. Ther. Sci. 27, 1893-1897. https://doi.org/10.1589/ jpts.27.1893.
Adelnia, F., Urbanek, J., Osawa, Y., Shardell, M., Brennan, N.A., Fishbein, K.W., Spencer, R.G., Simonsick, E.M., Schrack, J.A., Ferrucci, L., 2019. Moderate-to Vigorous physical activity is associated with higher muscle oxidative capacity in older adults. J. Am. Geriatr. Soc. https://doi.org/10.1111/jgs.15991.
Aggio, D.A., Sartini, C., Papacosta, O., Lennon, L.T., Ash, S., Whincup, P.H., Wannamethee, S.G., Jefferis, B.J., 2016. Cross-sectional associations of objectively measured physical activity and sedentary time with sarcopenia and sarcopenic obesity in older men. Prev. Med. (Baltim). 91, 264-272. https://doi.org/10.1016/j. ypmed.2016.08.040.
Alcazar, J., Rodriguez-Lopez, C., Ara, I., Alfaro-Acha, A., Rodríguez-Gómez, I., NavarroCruz, R., Losa-Reyna, J., García-García, F.J., Alegre, L.M., 2018. Force-velocity profiling in older adults: an adequate tool for the management of functional trajectories with aging. Exp. Gerontol. 108, 1-6. https://doi.org/10.1016/j. exger.2018.03.015.
Altman, D.G., Bland, J.M., 2011. Statistics notes: how to obtain the P value from a confidence interval. BMJ. https://doi.org/10.1136/bmj.d2304.
Alzahrani, M.A., Dean, C.M., Ada, L., Dorsch, S., Canning, C.G., 2012. Mood and balance are associated with free-living physical activity of people after stroke residing in the community. Stroke Res. Treat. 2012, 1-8. https://doi.org/10.1155/2012/470648.
Amagasa, S., Fukushima, N., Kikuchi, H., Takamiya, T., Oka, K., Inoue, S., 2017. Light and sporadic physical activity overlooked by current guidelines makes older women more active than older men. Int. J. Behav. Nutr. Phys. Act. 14, 59. https://doi.org/ 10.1186/s12966-017-0519-6.

Andersson, M., Slinde, F., Grönberg, A., Svantesson, U., Janson, C., Emtner, M., 2013. Physical activity level and its clinical correlates in chronic obstructive pulmonary disease: a cross-sectional study. Respir. Res. 14, 128. https://doi.org/10.1186/1465 9921-14-128.
André, H., Carnide, F., Borja, E., Ramalho, F., Santos-Rocha, R., Veloso, A., 2016. Calfraise senior: a new test for assessment of plantar flexor muscle strength in older adults: protocol, validity, and reliability. Clin. Interv. Aging 11, 1661-1674. https:// doi.org/10.2147/CIA.S115304.
André, H.-I., Carnide, F., Moço, A., Valamatos, M.-J., Ramalho, F., Santos-Rocha, R., Veloso, A., 2018. Can the calf-raise senior test predict functional fitness in elderly people? A validation study using electromyography, kinematics and strength tests. Phys. Ther. Sport 32, 252-259. https://doi.org/10.1016/j.ptsp.2018.05.012.
Aoyagi, Y., Park, H., Watanabe, E., Park, S., Shephard, R.J., 2009. Habitual physical activity and physical fitness in older japanese adults: the nakanojo study. Gerontology 55, 523-531. https://doi.org/10.1159/000236326.
Arnardottir, N.Y., Koster, A., Van Domelen, D.R., Brychta, R.J., Caserotti, P., Eiriksdottir, G., Sverrisdottir, J.E., Launer, L.J., Gudnason, V., Johannsson, E. Harris, T.B., Chen, K.Y., Sveinsson, T., 2013. Objective measurements of daily physical activity patterns and sedentary behaviour in older adults: age, Gene/ Environment Susceptibility-Reykjavik Study. Age Ageing 42, 222-229. https://doi. org/10.1093/ageing/afs160.
Arnardottir, N.Y., Oskarsdottir, N.D., Brychta, R.J., Koster, A., van Domelen, D.R., Caserotti, P., Eiriksdottir, G., Sverrisdottir, J.E., Johannsson, E., Launer, L.J., Gudnason, V., Harris, T.B., Chen, K.Y., Sveinsson, T., 2017. Comparison of summer and winter objectively measured physical activity and sedentary behavior in older adults: age, Gene/Environment susceptibility reykjavik study. Int. J. Environ. Res. Public Health 14, 1268. https://doi.org/10.3390/ijerph14101268.
Ashe, M.C., Eng, J.J., Mller, W.C., SOON, J.A., 2007. Disparity between physical capacity and participation in seniors with chronic disease. Med. Sci. Sport. Exerc. 39, 1139-1146. https://doi.org/10.1249/mss.0b013e31804d2417.
Ashe, M.C., Liu-Ambrose, T.Y.L., Cooper, D.M.L., Khan, K.M., McKay, H.A., 2008. Muscle power is related to tibial bone strength in older women. Osteoporos. Int. 19, 1725-1732. https://doi.org/10.1007/s00198-008-0655-6.
Aubertin-Leheudre, M., Anton, S., Beavers, D.P., Manini, T.M., Fielding, R., Newman, A., Church, T., Kritchevsky, S.B., Conroy, D., McDermott, M.M., Botoseneanu, A., Hauser, M.E., Pahor, M., Gill, T., Fragoso, C., Fielding, R., Hauser, M.E., Pahor, M., Guralnik, J.M., Leeuwenburgh, C., Caudle, C., Crump, L., Holmes, L., Lee, J., Lu, Cju, Miller, M.E., Espeland, M.A., Ambrosius, W.T., Applegate, W., Beavers, D.P., Byington, R.P., Cook, D., Furberg, C.D., Harvin, L.N., Henkin, L., Hepler, M.J., Hsu, F.C., Lovato, L., Roberson, W., Rushing, J., Rushing, S., Stowe, C.L., Walkup, M. P., Hire, D., Rejeski, W.J., Katula, J.A., Brubaker, P.H., Mihalko, S.L., Jennings, J.M., Hadley, E.C., Romashkan, S., Patel, K.V., Bonds, D., McDermott, M.M., Spring, B., Hauser, J., Kerwin, D., Domanchuk, K., Graff, R., Rego, A., Church, T.S., Blair, S.N., Myers, V.H., Monce, R., Britt, N.E., Harris, M.N., McGucken, A.P., Rodarte, R. Millet, H.K., Tudor-Locke, C., Butitta, B.P., Donatto, S.G., Cocreham, S.H., King, A.C., Castro, C.M., Haskell, W.L., Stafford, R.S., Pruitt, L.A., Berra, K., Yank, V., Fielding, R.A., Nelson, M.E., Folta, S.C., Phillips, E.M., Liu, C.K., McDavitt, E.C., Reid, K.F., Kirn, D.R., Pasha, E.P., Kim, W.S., Beard, V.E., Tsiroyannis, E.X., Hau, C., Manini, T.M., Pahor, M., Anton, S.D., Nayfield, S., Buford, T.W., Marsiske, M., Sandesara, B.D., Knaggs, J.D., Lorow, M.S., Marena, W.C., Korytov, I., Morris, H.L., Fitch, M., Singletary, F.F., Causer, J., Radcliff, K.A., Newman, A.B., Studenski, S.A., Goodpaster, B.H., Glynn, N.W., Lopez, O., Nadkarni, N.K., Williams, K., Newman, M. A., Grove, G., Bonk, J.T., Rush, J., Kost, P., Ives, D.G., Kritchevsky, S.B., Marsh, A.P.

Brinkley, T.E., Demons, J.S., Sink, K.M., Kennedy, K., Shertzer-Skinner, R., Wrights, A., Fries, R., Barr, D., Gill, T.M., Axtell, R.S., Kashaf, S.S., de Rekeneire, N., McGloin, J.M., Wu, K.C., Shepard, D.M., Fennelly, B., Iannone, L.P., Mautner, R., Barnett, T.S., Halpin, S.N., Brennan, M.J., Bugaj, J.A., Zenoni, M.A., Mignosa, B.M., Williamson, J., Sink, K.M., Hendrie, H.C., Rapp, S.R., Verghese, J., Woolard, N. Espeland, M., Jennings, J., Wilson, V.K., Pepine, C.J., Ariet, M., Handberg, E., Deluca, D., Hill, J., Szady, A., Chupp, G.L., Flynn, G.M., Gill, T.M., Hankinson, J.L., Vaz Fragoso, C.A., Groessl, E.J., Kaplan, R.M., 2017. Dynapenia and metabolic health in obese and nonobese adults aged 70 years and older: the LIFE study. J. Am. Med. Dir. Assoc. 18, 312-319. https://doi.org/10.1016/j.jamda.2016.10.001.
Balducci, S., D’Errico, V., Haxhi, J., Sacchetti, M., Orlando, G., Cardelli, P., Di Biase, N., Bollanti, L., Conti, F., Zanuso, S., Nicolucci, A., Pugliese, G., 2017. Level and correlates of physical activity and sedentary behavior in patients with type 2 diabetes: a cross-sectional analysis of the Italian Diabetes and Exercise Study_2. PLoS One 12, e0173337. https://doi.org/10.1371/journal.pone.0173337.
Bann, D., Hire, D., Manini, T., Cooper, R., Botoseneanu, A., McDermott, M.M., Pahor, M., Glynn, N.W., Fielding, R., King, A.C., Church, T., Ambrosius, W.T., Gill, T., 2015. Light intensity physical activity and sedentary behavior in relation to body mass index and grip strength in older adults: cross-sectional findings from the lifestyle interventions and independence for elders (LIFE) study. PLoS One 10, e0116058. https://doi.org/10.1371/journal.pone.0116058.
Barbat-Artigas, S., Plouffe, S., Dupontgand, S., Aubertin-Leheudre, M., 2012. Is functional capacity related to the daily amount of steps in postmenopausal women? Menopause 19, 541-548. https://doi.org/10.1097/gme.0b013e318238ef09.
Bartlett, D.B., Duggal, N.A., 2020. Moderate physical activity associated with a higher naïve/memory T-cell ratio in healthy old individuals: potential role of IL15. Age Ageing 49, 368-373. https://doi.org/10.1093/ageing/afaa035.
Bassey, E.J., Bendall, M.J., Pearson, M., 1988. Muscle strength in the triceps surae and objectively measured customary walking activity in men and women over 65 years of age. Clin. Sci. 74, 85-89. https://doi.org/10.1042/cs0740085.
Beaudart, C., Rolland, Y., Cruz-Jentoft, A.J., Bauer, J.M., Sieber, C., Cooper, C., AlDaghri, N., Araujo de Carvalho, I., Bautmans, I., Bernabei, R., Bruyère, O., Cesari, M., Cherubini, A., Dawson-Hughes, B., Kanis, J.A., Kaufman, J.M., Landi, F., Maggi, S., McCloskey, E., Petermans, J., Rodriguez Mañas, L., Reginster, J.Y., RollerWirnsberger, R., Schaap, L.A., Uebelhart, D., Rizzoli, R., Fielding, R.A., 2019. Assessment of muscle function and physical performance in daily clinical practice: a position paper endorsed by the european society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO). Calcif. Tissue Int. 105, 1-14. https://doi.org/10.1007/s00223-019-00545-w.
Beenakker, K.G.M., Ling, C.H., Meskers, C.G.M., de Craen, A.J.M., Stijnen, T., Westendorp, R.G.J., Maier, A.B., 2010. Patterns of muscle strength loss with age in the general population and patients with a chronic inflammatory state. Ageing Res. Rev. https://doi.org/10.1016/j.arr.2010.05.005.
Bogucka, A., Kopiczko, A., Głębocka, A., 2018. The effects of selected lifestyle components on the risk of developing dynapenia in women - a pilot study Anthropol. Rev. 81, 289-297. https://doi.org/10.2478/anre-2018-0023.
Bollaert, R.E., Motl, R.W., 2019. Physical and cognitive functions, physical activity, and sedentary behavior in older adults with multiple sclerosis. J. Geriatr. Phys. Ther. 42, 304-312. https://doi.org/10.1519/JPT.0000000000000163.
Borges, V.S., Lima-Costa, M.F.F., Andrade, F.Bde, 2020. A nationwide study on prevalence and factors associated with dynapenia in older adults: ELSI-Brazil. Cad. Saude Publica 36. https://doi.org/10.1590/0102-311x00107319.
Boutou, A.K., Raste, Y., Demeyer, H., Troosters, T., Polkey, M.I., Vogiatzis, I., Louvaris, Z., Rabinovich, R.A., van der Molen, T., Garcia-Aymerich, J., Hopkinson, N.S., 2019. Progression of physical inactivity in COPD patients: the effect of time and climate conditions - a multicenter prospective cohort study. Int. J. Chron. Obstruct. Pulmon. Dis. 14, 1979-1992. https://doi.org/10.2147/COPD. S208826.
Bravata, D.M., Smith-Spangler, C., Sundaram, V., Gienger, A.L., Lin, N., Lewis, R., Stave, C.D., Olkin, I., Sirard, J.R., 2007. Using pedometers to increase physical activity and improve health. JAMA 298, 2296. https://doi.org/10.1001/ jama.298.19.2296.
Campbell, M., McKenzie, J.E., Sowden, A., Katikireddi, S.V., Brennan, S.E., Ellis, S., Hartmann-Boyce, J., Ryan, R., Shepperd, S., Thomas, J., Welch, V., Thomson, H., 2020. Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. BMJ 368, 1-6. https://doi.org/10.1136/bmj. 16890.
Carrasco Poyatos, M., Navarro Sánchez, M.D., Martínez González-Moro, I., Reche Orenes, D., 2016. Daily physical activity impact in old women bone density and grip strength. Nutr. Hosp. 33, 1305-1311. https://doi.org/10.20960/nh.775.
Caspersen, C.J., Powell, K.E., Christenson, G.M., 1985. Physical activity, exercise and physical fitness definitions for health-related research. Public Health Rep.
Chastin, S.F.M., Ferriolli, E., Stephens, N.A., Fearon, K.C.H., Greig, C., 2012. Relationship between sedentary behaviour, physical activity, muscle quality and body composition in healthy older adults. Age Ageing 41, 111-114. https://doi.org/ 10.1093/ageing/afr075.

Chmelo, E., Nicklas, B., Davis, C., Miller, G.D., Legault, C., Messier, S., 2013. Physical activity and physical function in older adults with knee osteoarthritis, 8AD J Phys Act. Heal. 10, 777-783.
Chodzko-Zajko, W.J., Proctor, D.N., Fiatarone Singh, M.A., Minson, C.T., Nigg, C.R. Salem, G.J., Skinner, J.S., 2009. Exercise and physical activity for older adults. Med. Sci. Sports Exerc. 41, 1510-1530. https://doi.org/10.1249/ MSS.0b013e3181a0c95c.
Clemson, L., Singh, M.F., Bundy, A., Cumming, R.G., Weissel, E., Munro, J., Manollaras, K., Black, D., 2010. LiFE Pilot Study: a randomised trial of balance and strength training embedded in daily life activity to reduce falls in older adults. Aust. Occup. Ther. J. 57, 42-50. https://doi.org/10.1111/j.1440-1630.2009.00848.x.

Clemson, L., Fiatarone Singh, M.A., Bundy, A., Cumming, R.G., Manollaras, K., O'Loughlin, P., Black, D., 2012. Integration of balance and strength training into daily life activity to reduce rate of falls in older people (the LiFE study): randomised parallel trial. BMJ 345, 1-15. https://doi.org/10.1136/bmj.e4547.
Cochrane Handbook for Systematic Reviews of Interventions, 2019. Cochrane Handbook for Systematic Reviews of Interventions. https://doi.org/10.1002/9781119536604.
Cohen, J., Cohen, P., West, S.G., Aiken, L.S., 2003. Applied multiple regression/ correlation analysis for the behavioral sciences, 3rd ed. Applied Multiple regression/ correlation Analysis for the Behavioral Sciences, 3rd ed. Lawrence Erlbaum Associates Publishers, Mahwah, NJ, US.
Colbert, L.H., Matthews, C.E., Havighurst, T.C., Kim, K., Schoeller, D.A., 2011. Comparative validity of physical activity measures in older adults. Med. Sci. Sports Exerc. 43, 867-876. https://doi.org/10.1249/MSS.0b013e3181fc7162.
Cooper, A.J.M., Simmons, R.K., Kuh, D., Brage, S., Cooper, R., Hardy, R., Pierce, M., Richards, M., Abington, J., Wong, A., Adams, J.E., Machin, M., Stephens, A.M., Bonar, K., Bryant, S., Cole, D., Nip, W., Ambrosini, G., Pellerin, D., Chaturvedi, N., Hughes, A., Ghosh, A., March, K., Macfarlane, P., Inglis, L., Friberg, P., Osika, W., Ekelund, U., Mayle, S., Westgate, K., Deanfield, J., Donald, A., Kok, S., Masi, S., Phalora, R., Woodside, J., Bruce, I., Harwood, N., Oughton, E., Chapman, A., Khattar, R.S., Nair, S.B., Franklyn, J., Palmer, S., Boardman, K., Crabtree, N., Clements, R., Suvari, M., Steeds, R., Craig, K., Howard, E., Morley, T., Scanlon, M., Petit, R., Evans, W., Fraser, A., Edwards, J., Reece, E., Newby, D., Marshall, F., Hannan, J., Miller, C., White, A., MacAllister, R., Harris, J., Singzon, R., Ell, P., Townsend, C., Demetrescu, C., Chowienczyk, P., Darroch, P., McNeill, K., Spector, T., Clements, G., Jiang, B., Lessof, C., Cheshire, H., 2015. Physical activity, sedentary time and physical capability in early old age: british birth cohort study. PLoS One 10, 1-14. https://doi.org/10.1371/journal.pone.0126465.
Cunningham, C., O' Sullivan, R., Caserotti, P., Tully, M.A., 2020. Consequences of physical inactivity in older adults: a systematic review of reviews and meta-analyses. Scand. J. Med. Sci. Sports 1-12. https://doi.org/10.1111/sms.13616.
Davis, M.G., Fox, K.R., Stathi, A., Trayers, T., Thompson, J.L., Cooper, A.R., 2014. Objectively measured sedentary time and its association with physical function in older adults. J. Aging Phys. Act. 22, 474-481. https://doi.org/10.1123/JAPA.20130042.
de Melo, L.L., Menec, V., Porter, M.M., Ready, A.E., 2010. Personal factors, perceived environment, and objectively measured walking in old age. J. Aging Phys. Act. 18, 280-292. https://doi.org/10.1123/japa.18.3.280.
de Melo, L.L., Menec, V.H., Ready, A.E., 2014. Relationship of functional fitness with daily steps in community-dwelling older adults. J. Geriatr. Phys. Ther. 37, 116-120. https://doi.org/10.1519/JPT.0b013e3182abe75f.
Demeyer, H., Donaire-Gonzalez, D., Gimeno-Santos, E., Ramon, M.A., De Battle, J., Benet, M., Serra, I., Guerra, S., Farrero, E., Rodriguez, E., Ferrer, J., Sauleda, J., Monso, E., Gea, J., Rodriguez-Roisin, R., Agusti, A., Antó, J.M., Garcia-Aymerich, J., 2019. Physical activity is associated with attenuated disease progression in chronic obstructive pulmonary disease. Med. Sci. Sport. Exerc. 51, 833-840. https://doi.org/ 10.1249/MSS. 0000000000001859.

Distefano, G., Standley, R.A., Zhang, X., Carnero, E.A., Yi, F., Cornnell, H.H., Coen, P.M., 2018. Physical activity unveils the relationship between mitochondrial energetics, muscle quality, and physical function in older adults. J. Cachexia Sarcopenia Muscle 9, 279-294. https://doi.org/10.1002/jcsm. 12272.
Dogra, S., Clarke, J.M., Copeland, J.L., 2017. Prolonged sedentary time and physical fitness among Canadian men and women aged 60 to 69. Heal. reports 28, 3-9.
Dohrn, I.-M., Gardiner, P.A., Winkler, E., Welmer, A.-K., 2020. Device-measured sedentary behavior and physical activity in older adults differ by demographic and health-related factors. Eur. Rev. Aging Phys. Act. 17, 8. https://doi.org/10.1186/ s11556-020-00241-x.
Dos Santos, V.R., Diniz, T.A., Batista, V.C., Freitas, I.F., Gobbo, L.A., 2019. Practice of physical activity and dysmobility syndrome in community-dwelling older adults. J. Exerc. Rehabil. 15, 294-301. https://doi.org/10.12965/jer.1938034.017.

Duncan, M.J., Minatto, G., Wright, S.L., 2016. Dose-response between pedometer assessed physical activity, functional fitness, and fatness in healthy adults aged 5080 years. Am. J. Hum. Biol. 28, 890-894. https://doi.org/10.1002/ajhb. 22884.
Dyrstad, S.M., Hansen, B.H., Holme, I.M., Anderssen, S.A., 2014. Comparison of selfreported versus accelerometer-measured physical activity. Med. Sci. Sports Exerc. 46, 99-106. https://doi.org/10.1249/MSS.0b013e3182a0595f.
Edholm, P., Nilsson, A., Kadi, F., 2019. Physical function in older adults: impacts of past and present physical activity behaviors. Scand. J. Med. Sci. Sports 29, 415-421. https://doi.org/10.1111/sms.13350.
Egger, M., Smith, G.D., Schneider, M., Minder, C., 1997. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. https://doi.org/10.1136/bmj.316.7129.469.
Fernández-Castilla, B., Aloe, A.M., Declercq, L., Jamshidi, L., Onghena, P., Natasha Beretvas, S., Van den Noortgate, W., 2019. Concealed correlations meta-analysis: a new method for synthesizing standardized regression coefficients. Behav. Res. Methods 51, 316-331. https://doi.org/10.3758/s13428-018-1123-7.
Ferreira, M.L., Sherrington, C., Smith, K., Carswell, P., Bell, R., Bell, M., Nascimento, D. P., Máximo Pereira, L.S., Vardon, P., 2012. Physical activity improves strength, balance and endurance in adults aged 40-65 years: a systematic review. J. Physiother. 58, 145-156. https://doi.org/10.1016/S1836-9553(12)70105-4.

Foldvari, M., Clark, M., Laviolette, L.C., Bernstein, M.A., Kaliton, D., Castaneda, C., Pu, C. T., Hausdorff, J.M., Fielding, R.A., Singh, M.A.F., 2000. Association of muscle power with functional status in community-dwelling elderly women. Journals Gerontol. Ser. A Biol. Sci. Med. Sci. 55, M192-M199. https://doi.org/10.1093/gerona/55.4. M192.
Foong, Y.C., Chherawala, N., Aitken, D., Scott, D., Winzenberg, T., Jones, G., 2016. Accelerometer-determined physical activity, muscle mass, and leg strength in
community-dwelling older adults. J. Cachexia Sarcopenia Muscle 7, 275-283. https://doi.org/10.1002/jcsm. 12065.
Fornias, L., Rodrigues, M., Rey-López, J., Keihan, V., Carmo, O., 2014. Sedentary behavior and health outcomes: an overview of systematic reviews. PLoS One 9, 105620. https://doi.org/10.1371/journal.pone.0105620.

Füzéki, E., Engeroff, T., Banzer, W., 2017. Health benefits of light-intensity physical activity: a systematic review of accelerometer data of the national health and nutrition examination survey (NHANES). Sport. Med. 47, 1769-1793. https://doi. org/10.1007/s40279-017-0724-0.
Gennuso, K.P., Thraen-Borowski, K.M., Gangnon, R.E., Colbert, L.H., 2016. Patterns of sedentary behavior and physical function in older adults. Aging Clin. Exp. Res. 28, 943-950. https://doi.org/10.1007/s40520-015-0386-4.
Gerdhem, P., Dencker, M., Ringsberg, K., Åkesson, K., 2007. Accelerometer-measured daily physical activity among octogenerians: results and associations to other indices of physical performance and bone density. Eur. J. Appl. Physiol. 102, 173-180. https://doi.org/10.1007/s00421-007-0571-z.
Guizelini, P.C., de Aguiar, R.A., Denadai, B.S., Caputo, F., Greco, C.C., 2018. Effect of resistance training on muscle strength and rate of force development in healthy older adults: a systematic review and meta-analysis. Exp. Gerontol. 102, 51-58. https:// doi.org/10.1016/j.exger.2017.11.020.
Haider, S., Grabovac, I., Dorner, T.E., 2019. Effects of physical activity interventions in frail and prefrail community-dwelling people on frailty status, muscle strength, physical performance and muscle mass-a narrative review. Wien. Klin. Wochenschr. 131, 244-254. https://doi.org/10.1007/s00508-019-1484-7.
Hall, K.S., Cohen, H.J., Pieper, C.F., Fillenbaum, G.G., Kraus, W.E., Huffman, K.M., Cornish, M.A., Shiloh, A., Flynn, C., Sloane, R., Newby, L.K., Morey, M.C., 2016. Physical performance across the adult life span: correlates with age and physical activity. Journals Gerontol. Ser. A Biol. Sci. Med. Sci. 72 https://doi.org/10.1093/ gerona/glw120 glw120.
Harada, Kazuhiro, Lee, Sangyoon, Lee, Sungchul, Bae, S., Harada, Kenji, Suzuki, T., Shimada, H., 2016. Objectively-measured outdoor time and physical and psychological function among older adults. Geriatr. Gerontol. Int. 17, 1455-1462. https://doi.org/10.1111/ggi.12895.
Harrison, S., Jones, H.E., Martin, R.M., Lewis, S.J., Higgins, J.P.T., 2017. The albatross plot: a novel graphical tool for presenting results of diversely reported studies in a systematic review. Res. Synth. Methods 8, 281-289. https://doi.org/10.1002/ jrsm. 1239.
Hartley, A., Gregson, C.L., Hannam, K., Deere, K.C., Clark, E.M., Tobias, J.H., 2018. Sarcopenia is negatively related to high gravitational impacts achieved from day-today physical activity. Journals Gerontol. Ser. A 73, 652-659. https://doi.org/ 10.1093/gerona/glx223.

Harvey, J.A., Chastin, S.F.M., Skelton, D.A., 2015. How sedentary are older people? A systematic review of the amount of sedentary behavior. J. Aging Phys. Act. 23, 471-487. https://doi.org/10.1123/japa.2014-0164.
Hasegawa, J., Suzuki, H., Yamauchi, T., 2018. Impact of season on the association between muscle strength/volume and physical activity among communitydwelling elderly people living in snowy-cold regions. J. Physiol. Anthropol. 37, 1-6. https:// doi.org/10.1186/s40101-018-0186-6.
Hernandes, N.A., Probst, V.S., Silva Jr., R.A.Da, Januário, R.S.B., Pitta, F., Teixeira, D.C., 2013. Physical activity in daily life in physically independent elderly participating in community-based exercise program. Brazilian J. Phys. Ther. 17, 57-63. https://doi. org/10.1590/s1413-35552012005000055.
Hernández, M., Zambom-Ferraresi, F., Cebollero, P., Hueto, J., Cascante, J.A., Antón, M. M., 2017. The relationships between muscle power and physical activity in older men with chronic obstructive pulmonary disease. J. Aging Phys. Act. 25, 360-366. https://doi.org/10.1123/japa.2016-0144.
Hopkins, C., 2019. Physical activity and future physical function: data from the osteoarthritis initiative. J. Aging Phys. Act. 27, 367-370. https://doi.org/10.1123/ japa.2018-0136.
Hughes, V.A., Frontera, W.R., Wood, M., Evans, W.J., Dallal, G.E., Roubenoff, R., Fiatarone Singh, M.A., 2001. Longitudinal muscle strength changes in older adults: influence of muscle mass, physical activity, and health. Journals Gerontol. - Ser. A Biol. Sci. Med. Sci. 56, 209-217. https://doi.org/10.1093/gerona/56.5.B209.
Hupin, D., Roche, F., Gremeaux, V., Chatard, J.C., Oriol, M., Gaspoz, J.M., Barthélémy, J. C., Edouard, P., 2015. Even a low-dose of moderate-to-vigorous physical activity reduces mortality by $22 \%$ in adults aged $\geq 60$ years: a systematic review and metaanalysis. Br. J. Sports Med. https://doi.org/10.1136/bjsports-2014-094306.
Iijima, H., Fukutani, N., Isho, T., Yamamoto, Y., Hiraoka, M., Miyanobu, K., Jinnouchi, M., Kaneda, E., Aoyama, T., Kuroki, H., Matsuda, S., 2017. Relationship between pedometer-based physical activity and physical function in patients with osteoarthritis of the knee: a cross-sectional study. Arch. Phys. Med. Rehabil. 98, 1382-1388. https://doi.org/10.1016/j.apmr.2016.12.021 e4.
Ikenaga, M., Yamada, Y., Takeda, N., Kimura, M., Higaki, Y., Tanaka, H., Kiyonaga, A., Nakagawa Study Group, 2014. Dynapenia, gait speed and daily physical activity measured using triaxial accelerometer in older Japanese men. J. Phys. Fit. Sport. Med. 3, 147-154. https://doi.org/10.7600/jpfsm.3.147.
Iwakura, M., Okura, K., Shibata, K., Kawagoshi, A., Sugawara, K., Takahashi, H., Shioya, T., 2016. Relationship between balance and physical activity measured by an activity monitor in elderly COPD patients. Int. J. Chron. Obstruct. Pulmon. Dis. Volume 11, 1505-1514. https://doi.org/10.2147/COPD.S107936.
Jantunen, H., Wasenius, N., Salonen, M.K., Perälä, M.M., Osmond, C., Kautiainen, H., Simonen, M., Pohjolainen, P., Kajantie, E., Rantanen, T., Von Bonsdorff, M.B., Eriksson, J.G., 2017. Objectively measured physical activity and physical performance in old age. Age Ageing 46, 232-237. https://doi.org/10.1093/ageing/ afw194.

Jeong, J.N., Kim, S.H., Park, K.N., 2019. Relationship between objectively measured lifestyle factors and health factors in patients with knee osteoarthritis: the STROBE Study. Bull. Sch. Med. Md 98, e16060. https://doi.org/10.1097/ MD.0000000000016060.

Johnson, L.G., Butson, M.L., Polman, R.C., Raj, I.S., Borkoles, E., Scott, D., Aitken, D., Jones, G., 2016. Light physical activity is positively associated with cognitive performance in older community dwelling adults. J. Sci. Med. Sport 19, 877-882. https://doi.org/10.1016/j.jsams.2016.02.002.
Katzmarzyk, P.T., Craig, C.L., 2002. Musculoskeletal fitness and risk of mortality. Med. Sci. Sports Exerc. 34, 740-744. https://doi.org/10.1097/00005768-20020500000002.

Kawagoshi, A., Kiyokawa, N., Sugawara, K., Takahashi, H., Sakata, S., Miura, S., Sawamura, S., Satake, M., Shioya, T., 2013. Quantitative assessment of walking time and postural change in patients with COPD using a new triaxial accelerometer system. Int. J. COPD 8, 397-404. https://doi.org/10.2147/COPD.S49491.
Keevil, V.L., Cooper, A.J.M., Wijndaele, K., Luben, R., Wareham, N.J., Brage, S., Khaw, K.-T., 2016. Objective sedentary time, moderate-to-Vigorous physical activity, and physical capability in a british cohort. Med. Sci. Sport. Exerc. 48, 421-429. https://doi.org/10.1249/MSS.0000000000000785.
Kim, M., 2015. Isotemporal substitution analysis of accelerometer-derived sedentary behavior, physical activity time, and physical function in older women: a preliminary study. Exerc. Sci. 24, 373-381. https://doi.org/10.15857/ ksep.2015.24.4.373.
Kim, M., Yoshida, H., Sasai, H., Kojima, N., Kim, H., 2015. Association between objectively measured sleep quality and physical function among communitydwelling oldest old Japanese: a cross-sectional study. Geriatr. Gerontol. Int. 15, 1040-1048. https://doi.org/10.1111/ggi. 12396.
Lai, T.-F., Lin, C.-Y., Chou, C.-C., Huang, W.-C., Hsueh, M.-C., Park, J.-H., Liao, Y., 2020. Independent and joint associations of physical activity and dietary behavior with older adults' lower limb strength. Nutrients 12, 443. https://doi.org/10.3390/ nu12020443.
Lee, I.-M., Shiroma, E.J., 2014. Using accelerometers to measure physical activity in large-scale epidemiological studies: issues and challenges. Br. J. Sports Med. 48, 197-201. https://doi.org/10.1136/bjsports-2013-093154.
Lee, J., Chang, R.W., Ehrlich-Jones, L., Kwoh, C.K., Nevitt, M., Semanik, P.A., Sharma, L., Sohn, M.W., Song, J., Dunlop, D.D., 2015. Sedentary behavior and physical function: objective evidence from the osteoarthritis initiative. Arthritis Care Res. (Hoboken) 67, 366-373. https://doi.org/10.1002/acr. 22432.
Lerma, N.L., Cho, C.C., Swartz, A.M., Miller, N.E., Keenan, K.G., Strath, S.J., 2018. Isotemporal substitution of sedentary behavior and physical activity on function. Med. Sci. Sport. Exerc. 50, 792-800. https://doi.org/10.1249/ MSS.0000000000001491.
Liao, Y., Hsu, H.H., Shibata, A., Ishii, K., Koohsari, M.J., Oka, K., 2018. Associations of total amount and patterns of objectively measured sedentary behavior with performance-based physical function. Prev. Med. Reports 12, 128-134. https://doi. org/10.1016/j.pmedr.2018.09.007.
Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gotzsche, P.C., Ioannidis, J.P.A., Clarke, M., Devereaux, P.J., Kleijnen, J., Moher, D., 2009. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339. https://doi.org/10.1136/bmj. b2700 b2700-b2700.
Ling, C.H.Y., Taekema, D., De Craen, A.J.M., Gussekloo, J., Westendorp, R.G.J., Maier, A. B., 2010. Handgrip strength and mortality in the oldest old population: the Leiden 85-plus study. Cmaj 182, 429-435. https://doi.org/10.1503/cmaj. 091278.
Liu, C., Shiroy, D.M., Jones, L.Y., Clark, D.O., 2014. Systematic review of functional training on muscle strength, physical functioning, and activities of daily living in older adults. Eur. Rev. Aging Phys. Act. 11, 95-106. https://doi.org/10.1007/ s11556-014-0144-1.
Lohne-Seiler, H., Hansen, B.H., Kolle, E., Anderssen, S.A., 2014. Accelerometerdetermined physical activity and self-reported health in a population of older adults (65-85 years): a cross-sectional study. BMC Public Health 14, 284. https://doi.org/ 10.1186/1471-2458-14-284.

Lohne-Seiler, H., Kolle, E., Anderssen, S.A., Hansen, B.H., 2016. Musculoskeletal fitness and balance in older individuals (65-85 years) and its association with steps per day: a cross sectional study. BMC Geriatr. 16, 6. https://doi.org/10.1186/s12877-016-0188-3.
Luppa, M., Luck, T., Weyerer, S., Konig, H.-H., Brahler, E., Riedel-Heller, S.G., 2010. Prediction of institutionalization in the elderly. A systematic review. Age Ageing 39, 31-38. https://doi.org/10.1093/ageing/afp202.
Mador, M.J., Patel, A.N., Nadler, J., 2011. Effects of pulmonary rehabilitation on activity levels in patients with chronic obstructive pulmonary disease. J. Cardiopulm. Rehabil. Prev. 31, 52-59. https://doi.org/10.1097/HCR.0b013e3181ebf2ef.
Mañas, A., del Pozo-Cruz, B., García-García, F.J., Guadalupe-Grau, A., Ara, I., 2017. Role of objectively measured sedentary behaviour in physical performance, frailty and mortality among older adults: a short systematic review. Eur. J. Sport Sci. 17, 940-953. https://doi.org/10.1080/17461391.2017.1327983.
Manini, T.M., Clark, B.C., 2012. Dynapenia and aging: an update. Journals Gerontol. Ser. A Biol. Sci. Med. Sci. 67 A, 28-40. https://doi.org/10.1093/gerona/glr010.
Manns, P.J., Dunstan, D.W., Owen, N., Healy, G.N., 2012. Addressing the nonexercise part of the activity continuum: a more realistic and achievable approach to activity programming for adults with mobility disability? Phys. Ther. 92, 614-625. https:// doi.org/10.2522/ptj. 20110284.
Master, H., Thoma, L.M., Christiansen, M.B., Polakowski, E., Schmitt, L.A., White, D.K., 2018. Minimum Performance on Clinical Tests of Physical Function to Predict Walking 6,000 Steps/Day in Knee Osteoarthritis: An Observational Study. Arthritis Care Res. (Hoboken). 70, 1005-1011. https://doi.org/10.1002/acr. 23448.

Matkovic, Z., Tudoric, N., Cvetko, D., Esquinas, C., Rahelic, D., Zarak, M., Miravitlles, M., 2020. Easy to perform physical performance tests to identify COPD patients with low physical activity in clinical practice. Int. J. Chron. Obstruct. Pulmon. Dis. Volume 15, 921-929. https://doi.org/10.2147/COPD.S246571.
McDermott, M.M.G., Greenland, P., Ferrucci, L., Criqui, M.H., Liu, K., Sharma, L., Chan, C., Celic, L., Priyanath, A., Guralnik, J.M., 2002. Lower extremity performance is associated with daily life physical activity in individuals with and without peripheral arterial disease. J. Am. Geriatr. Soc. 50, 247-255. https://doi.org/ 10.1046/j.1532-5415.2002.50055.x.

McEwan, D., Rhodes, R.E., Beauchamp, M.R., 2020. What happens when the party is over?: sustaining physical activity behaviors after intervention cessation. Behav. Med. 0, 1-9. https://doi.org/10.1080/08964289.2020.1750335.
McGregor, D.E., Carson, V., Palarea-Albaladejo, J., Dall, P.M., Tremblay, M.S., Chastin, S. F.M., 2018. Compositional analysis of the associations between 24-h movement behaviours and health indicators among adults and older adults from the Canadian health measure survey. Int. J. Environ. Res. Public Health 15. https://doi.org/ 10.3390/ijerph15081779.

Meier, N.F., Lee, D., 2020. Physical activity and sarcopenia in older adults. Aging Clin. Exp. Res. 32, 1675-1687. https://doi.org/10.1007/s40520-019-01371-8.
Menai, M., Van Hees, V.T., Elbaz, A., Kivimaki, M., Singh-Manoux, A., Sabia, S., 2017. Accelerometer assessed moderate-To-vigorous physical activity and successful ageing: results from the Whitehall II study. Sci. Rep. 8, 1-9. https://doi.org/ 10.1038/srep45772.

Meskers, C.G.M., Reijnierse, E.M., Numans, S.T., Kruizinga, R.C., Pierik, V.D., van Ancum, J.M., Slee-Valentijn, M., Scheerman, K., Verlaan, S., Maier, A.B., 2019. Association of handgrip strength and muscle mass with dependency in (Instrumental) activities of daily living in hospitalized older adults -The EMPOWER study. J. Nutr. Health Aging 23, 232-238. https://doi.org/10.1007/s12603-019-1170-5.
Mitchell, W.K., Williams, J., Atherton, P., Larvin, M., Lund, J., Narici, M., 2012. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front. Physiol. 3, 1-18. https://doi.org/ 10.3389/fphys.2012.00260.

Mlinac, M.E., Feng, M.C., 2016. Assessment of activities of daily living, self-care, and independence. Arch. Clin. Neuropsychol. 31, 506-516. https://doi.org/10.1093/ arclin/acw049.
Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., 2009. Academia and clinic annals of internal medicine preferred reporting items for systematic reviews and metaanalyses : ann. Intern. Med. 151, 264-269.
Monteiro, A.M., Silva, P., Forte, P., Carvalho, J., 2019. The effects of daily physical activity on functional fitness, isokinetic strength and body composition in elderly community-dwelling women. J. Hum. Sport Exerc. 14. https://doi.org/10.14198/ jhse.2019.142.11.
Morie, M., Reid, K.F., Miciek, R., Lajevardi, N., Choong, K., Krasnoff, J.B., Storer, T.W., Fielding, R.A., Bhasin, S., LeBrasseur, N.K., 2010. Habitual physical activity levels are associated with performance in measures of physical function and mobility in older men. J. Am. Geriatr. Soc. 58, 1727-1733. https://doi.org/10.1111/j.15325415.2010.03012.x.

Nagai, K., Tamaki, K., Kusunoki, H., Wada, Y., Tsuji, S., Ito, M., Sano, K., Amano, M., Shimomura, S., Shinmura, K., 2018. Isotemporal substitution of sedentary time with physical activity and its associations with frailty status. Clin. Interv. Aging 13, 1831-1836. https://doi.org/10.2147/CIA.S175666.
Nawrocka, A., Mynarski, W., Cholewa, J., 2017. Adherence to physical activity guidelines and functional fitness of elderly women, using objective measurement. Ann. Agric. Environ. Med. 24, 632-635. https://doi.org/10.5604/ 12321966.1231388.

Nawrocka, A., Polechoński, J., Garbaciak, W., Mynarski, W., 2019. Functional fitness and quality of life among women over 60 years of age depending on their level of objectively measured physical activity. Int. J. Environ. Res. Public Health 16, 972. https://doi.org/10.3390/ijerph16060972.
Nicolai, S., Benzinger, P., Skelton, D.A., Aminian, K., Becker, C., Lindemann, U., 2010. Day-to-day variability of physical activity of older adults living in the community. J. Aging Phys. Act. 18, 75-86. https://doi.org/10.1123/japa.18.1.75.

Nieminen, P., Lehtiniemi, H., Vähäkangas, K., Huusko, A., Rautio, A., 2013. Standardised regression coefficient as an effect size index in summarising findings in epidemiological studies. Epidemiol. Biostat. Public Heal. 10 (1-115) https://doi.org/ 10.2427/8854.

Ortlieb, S., Gorzelniak, L., Nowak, D., Strobl, R., Grill, E., Thor, Barbara, Peters, A., Kuhn, K.A., Karrasch, S., Horsch, A., Schulz, H., 2014. Associations between multiple accelerometry-assessed physical activity parameters and selected health outcomes in elderly people-results from the KORA-age study. PLoS One 9, e111206.
Orwoll, E.S., Fino, N.F., Gill, T.M., Cauley, J.A., Strotmeyer, E.S., Ensrud, K.E., Kado, D. M., Barrett-Connor, E., Bauer, D.C., Cawthon, P.M., Lapidus, J., 2019. The relationships between physical performance, activity levels, and falls in older men. Journals Gerontol. Ser. A 74, 1475-1483. https://doi.org/10.1093/gerona/gly248.
Osthoff, A.K.R., Taeymans, J., Kool, J., Marcar, V., Van Gestel, A.J.R., 2013. Association between peripheral muscle strength and daily physical activity in patients with COPD: a systematic literature review and meta-analysis. J. Cardiopulm. Rehabil. Prev. 33, 351-359. https://doi.org/10.1097/HCR.0000000000000022.
Osuka, Y., Yabushita, N., Kim, M., Seino, S., Nemoto, M., Jung, S., Okubo, Y., Figueroa, R., Tanaka, K., 2015. Association between habitual light-intensity physical activity and lower-extremity performance: a cross-sectional study of communitydwelling older Japanese adults. Geriatr. Gerontol. Int. 15, 268-275. https://doi.org/ 10.1111/ggi. 12268.

Ouzzani, M., Hammady, H., Fedorowicz, Z., Elmagarmid, A., 2016. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. https://doi.org/10.1186/s13643-016-0384-4.
Park, H., Park, W., Lee, M., Ko, N., Kim, E., Ishikawa-takata, K., Park, J., 2018. The association of locomotive and non-locomotive physical activity measured by an accelerometer with functional fitness in healthy elderly men: a pilot study. J. Exerc. Nutr. Biochem. 22, 41-48. https://doi.org/10.20463/jenb.2018.0007.
Perkin, O.J., McGuigan, P.M., Thompson, D., Stokes, K.A., 2018. Habitual physical activity levels do not predict leg strength and power in healthy, active older adults. PLoS One 13, 1-12. https://doi.org/10.1371/journal.pone. 0200089.
Pitta, F., Troosters, T., Spruit, M.A., Probst, V.S., Decramer, M., Gosselink, R., 2005. Characteristics of physical activities in daily life in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 171, 972-977. https://doi.org/10.1164/ rccm. 200407-855OC.
Puthoff, M.L., Janz, K.F., Nielsen, D.H., 2008. The relationship between lower extremity strength and power to everyday walking behaviors in older adults with functional limitations. J. Geriatr. Phys. Ther. 31, 24-31. https://doi.org/10.1519/00139143-200831010-00005.
Rantanen, T., 2003. Muscle strength, disability and mortality. Scand. J. Med. Sci. Sport. 13, 3-8. https://doi.org/10.1034/j.1600-0838.2003.00298.x.
Rapp, K., Klenk, J., Benzinger, P., Franke, S., Denkinger, M.D., Peter, R., ActiFE Ulm Study Group, 2012. Physical performance and daily walking duration: associations in 1271 women and men aged 65-90 years. Aging Clin. Exp. Res. 24, 455-460. https://doi.org/10.3275/8264.
Rausch-Osthoff, A.-K., Kohler, M., Sievi, N.A., Clarenbach, C.F., van Gestel, A.J., 2014. Association between peripheral muscle strength, exercise performance, and physical activity in daily life in patients with Chronic Obstructive Pulmonary Disease. Multidiscip. Respir. Med. 9, 37. https://doi.org/10.1186/2049-6958-9-37.
Rava, A., Pihlak, A., Kums, T., Purge, P., Pääsuke, M., Jürimäe, J., 2018. Associations of distinct levels of physical activity with mobility in independent healthy older women. Exp. Gerontol. 110, 209-215. https://doi.org/10.1016/j. exger.2018.06.005.
Reid, K.F., Fielding, R., 2012. Skeletal muscle power. Exerc. Sport Sci. Rev. 40, 4-12. https://doi.org/10.1097/JES.0b013e31823b5f13.
Reid, K.F., Pasha, E., Doros, G., Clark, D.J., Patten, C., Phillips, E.M., Frontera, W.R., Fielding, R.A., 2014. Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties. Eur. J. Appl. Physiol. https://doi.org/10.1007/s00421-013-2728-2.
Reid, N., Healy, G.N., Gianoudis, J., Formica, M., Gardiner, P.A., Eakin, E.E., Nowson, C. A., Daly, R.M., 2018. Association of sitting time and breaks in sitting with muscle mass, strength, function, and inflammation in community-dwelling older adults. Osteoporos. Int. 29, 1341-1350. https://doi.org/10.1007/s00198-018-4428-6.
Reijnierse, E.M., de Jong, N., Trappenburg, M.C., Blauw, G.J., Butler-Browne, G., Gapeyeva, H., Hogrel, J.-Y., McPhee, J.S., Narici, M.V., Sipilä, S., Stenroth, L., van Lummel, R.C., Pijnappels, M., Meskers, C.G.M., Maier, A.B., 2017. Assessment of maximal handgrip strength: how many attempts are needed? J. Cachexia Sarcopenia Muscle 8, 466-474. https://doi.org/10.1002/jcsm. 12181.
Rojer, A.G.M., Reijnierse, E.M., Trappenburg, M.C., van Lummel, R.C., Niessen, M., van Schooten, K.S., Pijnappels, M., Meskers, C.G.M., Maier, A.B., 2018. Instrumented Assessment of Physical Activity Is Associated With Muscle Function but Not With Muscle Mass in a General Population. J. Aging Health 30, 1462-1481. https://doi. org/10.1177/0898264317721554.
Rojer, A.G.M., Ramsey, K.A., Trappenburg, M.C., van Rijssen, N.M., Otten, R.H.J., Heymans, M.W., Pijnappels, M., Meskers, C.G.M., Maier, A.B., 2020. Instrumented measures of sedentary behaviour and physical activity are associated with mortality in community-dwelling older adults: a systematic review, meta-analysis and metaregression analysis. Ageing Res. Rev. 61, 101061 https://doi.org/10.1016/j. arr.2020.101061.
Rosenberg, D.E., Bellettiere, J., Gardiner, P.A., Villarreal, V.N., Crist, K., Kerr, J., 2015. Independent associations between sedentary behaviors and mental, cognitive, physical, and functional health among older adults in retirement communities. Journals Gerontol. - Ser. A Biol. Sci. Med. Sci. 71, 78-83. https://doi.org/10.1093/ gerona/glv103.
Rowlands, A.V., Edwardson, C.L., Davies, M.J., Khunti, K., Harrington, D.M., Yates, T., 2018. Beyond cut points: accelerometer metrics that capture the physical activity profile. Med. Sci. Sports Exerc. https://doi.org/10.1249/MSS.0000000000001561.
Safeek, R.H., Hall, K.S., Lobelo, F., del Rio, C., Khoury, A.L., Wong, T., Morey, M.C., McKellar, M.S., 2018. Low levels of physical activity among older persons living with HIV/AIDS are associated with poor physical function. AIDS Res. Hum. Retroviruses 34, 929-935. https://doi.org/10.1089/aid.2017.0309.
Sánchez-Sánchez, J.L., Mañas, A., García-García, F.J., Ara, I., Carnicero, J.A., Walter, S., Rodríguez-Mañas, L., 2019. Sedentary behaviour, physical activity, and sarcopenia among older adults in the TSHA: isotemporal substitution model. J. Cachexia Sarcopenia Muscle 10, 188-198. https://doi.org/10.1002/jcsm. 12369.
Sansano-Nadal, Giné-Garriga, Brach, Wert, Jerez-Roig, Guerra-Balic, Oviedo, Fortuño, Gómara-Toldrà, Soto-Bagaria, Pérez, Inzitari, Solà, Martin-Borràs, Roqué, 2019. Exercise-based interventions to enhance long-term sustainability of physical activity in older adults: a systematic review and meta-analysis of randomized clinical trials. Int. J. Environ. Res. Public Health 16, 2527. https://doi.org/10.3390/ ijerph16142527.
Santos, D.A., Silva, A.M., Baptista, F., Santos, R., Vale, S., Mota, J., Sardinha, L.B., 2012. Sedentary behavior and physical activity are independently related to functional fitness in older adults. Exp. Gerontol. 47, 908-912. https://doi.org/10.1016/j. exger.2012.07.011.

Sardinha, L.B., Santos, D.A., Silva, A.M., Baptista, F., Owen, N., 2015. Breaking-up sedentary time is associated with physical function in older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 70, 119-124. https://doi.org/10.1093/gerona/glu193.
Schwenk, M., Bergquist, R., Boulton, E., Van Ancum, J.M., Nerz, C., Weber, M., Barz, C., Jonkman, N.H., Taraldsen, K., Helbostad, J.L., Vereijken, B., Pijnappels, M., Maier, A.B., Zhang, W., Becker, C., Todd, C., Clemson, L., Hawley-Hague, H., 2019. The adapted lifestyle-integrated functional exercise program for preventing functional decline in young seniors: development and initial evaluation. Gerontology 65, 362-374. https://doi.org/10.1159/000499962.
Scott, D., Blizzard, L., Fell, J., Jones, G., 2009. Ambulatory activity, body composition, and lower-limb muscle strength in older adults. Med. Sci. Sports Exerc. 41, 383-389. https://doi.org/10.1249/MSS.0b013e3181882c85.
Scott, D., Blizzard, L., Fell, J., Jones, G., 2011. Prospective associations between ambulatory activity, body composition and muscle function in older adults. Scand. J. Med. Sci. Sport. 21, 168-175. https://doi.org/10.1111/j.1600-0838.2010.01229.x.
Scott, D., Johansson, J., Gandham, A., Ebeling, P.R., Nordstrom, P., Nordstrom, A., 2020. Associations of accelerometer-determined physical activity and sedentary behavior with sarcopenia and incident falls over 12 months in community-dwelling Swedish older adults. J. Sport. Med. Allied Health Sci. Off. J. Ohio Athl. Train. Assoc. 1-9. https://doi.org/10.1016/j.jshs.2020.01.006, 00.
Semanik, P.A., Lee, J., Song, J., Chang, R.W., Sohn, M.-W., Ehrlich-Jones, L.S., Ainsworth, B.E., Nevitt, M.M., Kwoh, C.K., Dunlop, D.D., 2015. Accelerometermonitored sedentary behavior and observed physical function loss. Am. J. Public Health 105, 560-566. https://doi.org/10.2105/AJPH.2014.302270.
Silva, F.M., Petrica, J., Serrano, J., Paulo, R., Ramalho, A., Lucas, D., Ferreira, J.P., Duarte-Mendes, P., 2019. The sedentary time and physical activity levels on physical fitness in the elderly: a comparative cross sectional study. Int. J. Environ. Res. Public Health 16, 3697. https://doi.org/10.3390/ijerph16193697.
Spartano, N.L., Lyass, A., Larson, M.G., Tran, T., Andersson, C., Blease, S.J., Esliger, D.W., Vasan, R.S., Murabito, J.M., 2019. Objective physical activity and physical performance in middle-aged and older adults. Exp. Gerontol. 119, 203-211. https:// doi.org/10.1016/j.exger.2019.02.003.
Straight, C.R., Lindheimer, J.B., Brady, A.O., Dishman, R.K., Evans, E.M., 2016. Effects of resistance training on lower-extremity muscle power in middle-aged and older adults: a systematic review and meta-analysis of randomized controlled trials. Sport. Med. 46, 353-364. https://doi.org/10.1007/s40279-015-0418-4.
Sullivan, G.M., Feinn, R., 2012. Using effect size-or why the P value is not enough. J. Grad. Med. Educ. 4, 279-282. https://doi.org/10.4300/JGME-D-12-00156.1.

Taekema, D.G., Gussekloo, J., Maier, A.B., Westendorp, R.G.J., de Craen, A.J.M., 2010. Handgrip strength as a predictor of functional, psychological and social health. A prospective population-based study among the oldest old. Age Ageing 39, 331-337. https://doi.org/10.1093/ageing/afq022.
Tak, E., Kuiper, R., Chorus, A., Hopman-Rock, M., 2013. Prevention of onset and progression of basic ADL disability by physical activity in community dwelling older adults: a meta-analysis. Ageing Res. Rev. https://doi.org/10.1016/j. arr.2012.10.001.
Tang, Y., Green, P., Maurer, M., Lazarte, R., Kuzniecky, J.R., Hung, M.Y., Garcia, M., Kodali, S., Harris, T., 2015. Relationship between accelerometer-measured activity and self-reported or performance-based function in older adults with severe aortic stenosis. Curr. Geriatr. Reports. https://doi.org/10.1007/s13670-015-0152-7.
Taraldsen, K., Stefanie Mikolaizak, A., Maier, A.B., Boulton, E., Aminian, K., Van Ancum, J., Bandinelli, S., Becker, C., Bergquist, R., Chiari, L., Clemson, L., French, D. P., Gannon, B., Hawley-Hague, H., Jonkman, N.H., Mellone, S., ParaschivIonescu, A., Pijnappels, M., Schwenk, M., Todd, C., Yang, F.B., Zacchi, A., Helbostad, J.L., Vereijken, B., 2019. Protocol for the PreventIT feasibility randomised controlled trial of a lifestyle-integrated exercise intervention in young older adults. BMJ Open 9. https://doi.org/10.1136/bmjopen-2018-023526.
Taylor, D., 2014. Physical activity is medicine for older adults. Postgrad. Med. J. 90, 26-32. https://doi.org/10.1136/postgradmedj-2012-131366.
Thomson, H.J., Thomas, S., 2013. The effect direction plot: visual display of nonstandardised effects across multiple outcome domains. Res. Synth. Methods 4, 95-101. https://doi.org/10.1002/jrsm. 1060.
Trayers, T., Lawlor, D.A., Fox, K.R., Coulson, J., Davis, M., Stathi, A., Peters, T., 2014. Associations of objectively measured physical activity with lower limb function in older men and women: findings from the older people and active living (OPAL) study. J. Aging Phys. Act. 22, 34-43. https://doi.org/10.1123/JAPA.2012-0087.
Tremblay, M., 2012. Letter to the editor: Standardized use of the terms "sedentary" and "sedentary behaviours.". Appl. Physiol. Nutr. Metab. https://doi.org/10.1139/ H2012-024.
Tremblay, M.S., Aubert, S., Barnes, J.D., Saunders, T.J., Carson, V., Latimer-Cheung, A. E., Chastin, S.F.M., Altenburg, T.M., Chinapaw, M.J.M., Aminian, S., Arundell, L., Hinkley, T., Hnatiuk, J., Atkin, A.J., Belanger, K., Chaput, J.P., Gunnell, K., Larouche, R., Manyanga, T., Gibbs, B.B., Bassett-Gunter, R., Biddle, S., Biswas, A., Chau, J., Colley, R., Coppinger, T., Craven, C., Cristi-Montero, C., de Assis Teles Santos, D., del Pozo Cruz, B., del Pozo-Cruz, J., Dempsey, P., do Carmo Santos Gonçalves, R.F., Ekelund, U., Ellingson, L., Ezeugwu, V., Fitzsimons, C., FlorezPregonero, A., Friel, C.P., Fröberg, A., Giangregorio, L., Godin, L., Halloway, S., Husu, P., Kadir, M., Karagounis, L.G., Koster, A., Lakerveld, J., Lamb, M., LeBlanc, A. G., Lee, E.Y., Lee, P., Lopes, L., Manns, T., Ginis, K.M., McVeigh, J., Meneguci, J., Moreira, C., Murtagh, E., Patterson, F., da Silva, D.R.P., Pesola, A.J., Peterson, N., Pettitt, C., Pilutti, L., Pereira, S.P., Poitras, V., Prince, S., Rathod, A., Rivière, F., Rosenkranz, S., Routhier, F., Santos, R., Smith, B., Theou, O., Tomasone, J., Tucker, P., Meyer, R.U., van der Ploeg, H., Villalobos, T., Viren, T., WallmannSperlich, B., Wijndaele, K., Wondergem, R., 2017. Sedentary Behavior Research Network (SBRN) - terminology consensus project process and outcome. Int. J. Behav. Nutr. Phys. Act. https://doi.org/10.1186/s12966-017-0525-8.

Vagetti, G.C., Barbosa Filho, V.C., Moreira, N.B., de Oliveira, V., Mazzardo, O., de Campos, W., 2014. Association between physical activity and quality of life in the elderly: a systematic review, 2000-2012. Rev. Bras. Psiquiatr. https://doi.org/ 10.1590/1516-4446-2012-0895.

Van Cauwenberg, J., Van Holle, V., De Bourdeaudhuij, I., Owen, N., Deforche, B., 2014. Older adults' reporting of specific sedentary behaviors: validity and reliability. BMC Public Health. https://doi.org/10.1186/1471-2458-14-734.
van der Ploeg, H.P., Hillsdon, M., 2017. Is sedentary behaviour just physical inactivity by another name? Int. J. Behav. Nutr. Phys. Act. 14, 1-8. https://doi.org/10.1186/ s12966-017-0601-0.
Van Gestel, A.J.R., Clarenbach, C.F., Stöwhas, A.C., Rossi, V.A., Sievi, N.A., Camen, G., Russi, E.W., Kohler, M., 2012. Predicting daily physical activity in patients with chronic obstructive pulmonary disease. PLoS One 7, e48081. https://doi.org/ 10.1371/journal.pone. 0048081.

Van Lummel, R.C., Walgaard, S., Maier, A.B., Ainsworth, E., Beek, P.J., van Dieën, J.H., 2016. The instrumented sit-to-Stand test (iSTS) has greater clinical relevance than the manually recorded sit-to-Stand test in older adults. PLoS One 11, e0157968. https://doi.org/10.1371/journal.pone. 0157968.
van Oeijen, K., Teunissen, L.L., van Leeuwen, C., van Opstal, M., José van der Putten, M., Notermans, N.C., van Meeteren, N.L.U., Schröder, C.D., 2020. Performance and selfreported functioning of people with chronic idiopathic axonal polyneuropathy: a 4Year follow-up study. Arch. Phys. Med. Rehabil. 101, 1946-1952. https://doi.org/ 10.1016/j.apmr.2020.06.017.

Van Sloten, T.T., Savelberg, H.H.C.M., Duimel-Peeters, I.G.P., Meijer, K., Henry, R.M.A., Stehouwer, C.D.A., Schaper, N.C., 2011. Peripheral neuropathy, decreased muscle strength and obesity are strongly associated with walking in persons with type 2 diabetes without manifest mobility limitations. Diabetes Res. Clin. Pract. 91, 32-39. https://doi.org/10.1016/j.diabres.2010.09.030.
Walker, P.P., Burnett, A., Flavahan, P.W., Calverley, P.M.A., 2008. Lower limb activity and its determinants in COPD. Thorax 63, 683-689. https://doi.org/10.1136/ thx.2007.087130.
Wang, D.X.M., Yao, J., Zirek, Y., Reijnierse, E.M., Maier, A.B., 2020. Muscle mass, strength, and physical performance predicting activities of daily living: a metaanalysis. J. Cachexia Sarcopenia Muscle 11, 3-25. https://doi.org/10.1002/ jcsm. 12502.
Ward, C.L., Valentine, R.J., Evans, E.M., 2014. Greater effect of adiposity than physical activity or lean mass on physical function in community-dwelling older adults. J. Aging Phys. Act. 22, 284-293. https://doi.org/10.1123/japa.2012-0098.

Waschki, B., Spruit, M.A., Watz, H., Albert, P.S., Shrikrishna, D., Groenen, M., Smith, C., Man, W.D.C., Tal-Singer, R., Edwards, L.D., Calverley, P.M.A., Magnussen, H., Polkey, M.I., Wouters, E.F.M., 2012. Physical activity monitoring in COPD: compliance and associations with clinical characteristics in a multicenter study. Respir. Med. 106, 522-530. https://doi.org/10.1016/j.rmed.2011.10.022.

Watz, H., Waschki, B., Boehme, C., Claussen, M., Meyer, T., Magnussen, H., 2008. Extrapulmonary effects of chronic obstructive pulmonary disease on physical activity. Am. J. Respir. Crit. Care Med. 177, 743-751. https://doi.org/10.1164/ rccm.200707-10110C.
Wells, G., Shea, B., O'Connell, D., Peterson, J., 2000. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses [WWW Document]. Ottawa, Ottawa Hosp. Res. Inst.
Wells, G.A., et al., 2012. The Newcastle-Ottawa Scale (NOS) for assessing the quality if nonrandomized studies in meta-analyses. Evid. based public Heal. https://doi.org/ 10.2307/632432.

Westbury, L.D., Dodds, R.M., Syddall, H.E., Baczynska, A.M., Shaw, S.C., Dennison, E.M., Roberts, H.C., Sayer, A.A., Cooper, C., Patel, H.P., 2018. Associations between objectively measured physical activity, body composition and Sarcopenia: findings from the hertfordshire sarcopenia study (HSS). Calcif. Tissue Int. 103, 237-245. https://doi.org/10.1007/s00223-018-0413-5.
Wickerson, L., Mathur, S., Helm, D., Singer, L., Brooks, D., 2013. Physical activity profile of lung transplant candidates with interstitial lung disease, 3AD J. Cardiopulm. Rehabil. Prev. 33, 106-112.
Winberg, C., Flansbjer, U.-B., Rimmer, J.H., Lexell, J., 2015. Relationship between physical activity, knee muscle strength, and gait performance in persons with late effects of polio. PM R 7, 236-244.
Yamada, M., Arai, H., Nagai, K., Uemura, K., Mori, S., Aoyama, T., 2011. Differential determinants of physical daily activities in frail and nonfrail community-dwelling older adults. J. Clin. Gerontol. Geriatr. 2, 42-46. https://doi.org/10.1016/j. jcgg.2011.02.004.
Yasunaga, A., Shibata, A., Ishii, K., Koohsari, M.J., Inoue, S., Sugiyama, T., Owen, N., Oka, K., 2017. Associations of sedentary behavior and physical activity with older adults' physical function: an isotemporal substitution approach. BMC Geriatr. 17, 280. https://doi.org/10.1186/s12877-017-0675-1.

Yeung, S.S.Y., Reijnierse, E.M., Trappenburg, M.C., Hogrel, J.Y., McPhee, J.S., Piasecki, M., Sipila, S., Salpakoski, A., Butler-Browne, G., Pääsuke, M., Gapeyeva, H., Narici, M.V., Meskers, C.G.M., Maier, A.B., 2018. Handgrip strength cannot Be assumed a proxy for overall muscle strength. J. Am. Med. Dir. Assoc. https://doi. org/10.1016/j.jamda.2018.04.019.
Yoshida, D., Nakagaichi, M., Saito, K., Wakui, S., Yoshitake, Y., 2010. The relationship between physical fitness and ambulatory activity in very elderly women with normal functioning and functional limitations. J. Physiol. Anthropol. 29, 211-218. https:// doi.org/10.2114/jpa2.29.211.
Yuki, A., Otsuka, R., Tange, C., Nishita, Y., Tomida, M., Ando, F., Shimokata, H., Arai, H., 2019. Daily physical activity predicts frailty development among communitydwelling older japanese adults. J. Am. Med. Dir. Assoc. 20, 1032-1036. https://doi. org/10.1016/j.jamda.2019.01.001.


[^0]:    * Corresponding author at: Department of Medicine and Aged Care, @Age, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, van der Boechorststraat 7, 1081 BT, Amsterdam, the Netherlands. Tel.: +31205982000.

    E-mail address: a.b.maier@vu.nl (A.B. Maier).
    https://doi.org/10.1016/j.arr.2021.101266
    Received 24 September 2020; Received in revised form 4 January 2021; Accepted 2 February 2021
    Available online 16 February 2021
    1568-1637/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

