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Abstract
1.	 Plant pathogens are introduced to new geographical regions ever more frequently 

as global connectivity increases. Predicting the threat they pose to plant health 
can be difficult without in-depth knowledge of behaviour, distribution and spread. 
Here, we evaluate the potential for using biological traits and phylogeny to predict 
global threats from emerging pathogens.

2.	 We use a species-level trait database and phylogeny for 179 Phytophthora species: 
oomycete pathogens impacting natural, agricultural, horticultural and forestry settings. 
We compile host and distribution reports for Phytophthora species across 178 coun-
tries and evaluate the power of traits, phylogeny and time since description (reflecting 
species-level knowledge) to explain and predict their international transport, maximum 
latitude and host breadth using Bayesian phylogenetic generalised linear mixed models.

3.	 In the best-performing models, traits, phylogeny and time since description to-
gether explained up to 90%, 97% and 87% of variance in number of countries 
reached, latitudinal limits and host range, respectively. Traits and phylogeny to-
gether explained up to 26%, 41% and 34% of variance in the number of countries 
reached, maximum latitude and host plant families affected, respectively, but time 
since description had the strongest effect.

4.	 Root-attacking species were reported in more countries, and on more host plant 
families than foliar-attacking species. Host generalist pathogens had thicker-walled 
resting structures (stress-tolerant oospores) and faster growth rates at their optima. 
Cold-tolerant species are reported in more countries and at higher latitudes, though 
more accurate interspecific empirical data are needed to confirm this finding.

5.	 Policy implications. We evaluate the potential of an evolutionary trait-based 
framework to support horizon-scanning approaches for identifying pathogens 
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1  | INTRODUC TION

Unintentional introductions of non-native plant pathogens are a 
major cause of emerging diseases of plants and threaten agricultural, 
horticultural, forestry and natural ecosystems (Bebber et al., 2014). 
The top 100 of the World's Worst Invasive Alien Species includes 
the causal agents of Dutch elm disease Ophiostoma novo-ulmi, 
chestnut blight Cryphonectria parasitica and an oomycete pathogen 
Phytophthora cinnamomi known to cause disease in at least 900 tree 
species (Lowe et al., 2000). In the United States, invasive plant patho-
gens cost an estimated $21 billion in crop losses and $2.1 billion in 
lost forest products each year (Pimentel et  al.,  2005). Developing 
tools for the early identification of future threats from pathogens 
with greater potential for global transport, establishment at higher 
latitudes and broad host ranges can help to inform plant health hori-
zon-scanning activities and improve preparedness.

Horizon scanning is increasingly recognised as central to invasive 
species management (Shine et al., 2010) particularly as emphasis has 
shifted towards preventative, rather than reactive management. At 
the global scale, ranked lists of invasive species including the IUCN 
‘100 of the World's Worst Invasive Alien Species’ (Lowe et al., 2000) 
and the DAISIE (Delivering Alien Species Inventories for Europe) 
‘100 of the Worst’ were developed to raise awareness and support 
biosecurity policy. European Union Regulation (No 1143/2014) on 
the prevention and management of the introduction and spread of 
invasive alien species (IAS) led to a curated list of 66 species of Union 
Concern (Roy et al., 2015, 2019). The methodology was adapted from 
previous approaches used to rank IAS threats to Great Britain (Roy 
et al., 2014, 2017) and has since been used for regional prioritisation 
of invasive species (Gallardo et  al.,  2016). A challenge for horizon 
scanning is the scarcity of data for evaluating future threats and the 
process usually involves a rigorous process of expert elicitation and 
consensus building to reduce bias and uncertainty (Roy et al., 2019). 
Opportunities to integrate empirical, quantitative approaches into 
horizon-scanning exercises have yet to be fully explored.

Phylogenetic relatedness has proved a useful predictor of host 
susceptibility to pathogens. The probability of two plant hosts 

sharing a particular pest tends to decline with their phylogenetic 
distance (Gilbert et al., 2012), and it has been used to generate spa-
tially explicit risk maps for host–pest associations (Robles-Fernández 
& Lira-Noriega, 2017). However, reversing the logic, if more closely 
related pathogens share traits to overcome host defences or have 
similar nutritional requirements, then they may be more likely to at-
tack the same plant families. Explicitly incorporating trait informa-
tion may improve these approaches further.

Species' traits are a proxy for growth, survival and reproductive 
performance (Laughlin & Messier,  2015) and underpin distribution, 
community structure, ecosystem function and evolutionary dynamics 
(McGill et al., 2006). Traits can also be important predictors of inva-
sion (Moravcová et al., 2015) by influencing the outcome of biotic and 
abiotic interactions and species' relative fitness during transport, es-
tablishment and spread. Trait-based invasion frameworks have been 
applied most often to plants, where growth rate, leaf morphology, 
plant size (Van Kleunen et al., 2010) and climatic tolerance (Gallagher 
et al., 2015) are often greater among invasive species compared to their 
non-native, but non-invasive, counterparts. Trait-based analyses may 
have particular value in the context of horizon-scanning approaches to 
biosecurity, which aim to identify invasive species considered medium 
or high priority threats in the near future. For example, the European 
Food Standards Agency use life-history traits in preliminary screen-
ing to prioritise species for full pest risk assessments (PRA; EFSA PLH 
Panel (EFSA Panel on Plant Health), et al., 2018).

For plant pathogens, there is a scarcity of trait data and da-
tabases (Aguilar-Trigueros et  al.,  2014), and many species are 
unknown to science at the point of emergence due to the vast 
under-description of microbial distributions and diversity world-
wide (Roy et  al.,  2017). For microbial taxa, the first conceptual 
trait-based frameworks for understanding how distributions are 
filtered along abiotic gradients were developed only recently 
(Aguilar-Trigueros et  al.,  2015; Crowther et  al.,  2014). The func-
tional value of measured traits is not well understood, although 
empirical trait-based studies of invasive pathogens are now be-
ginning to accumulate. Spore morphology, optimum temperature 
for growth, the ability to disperse long distances, reproducing 

with greater potential for global-scale impacts. Potential future threats from 
Phytophthora include Phytophthora x heterohybrida, P. lactucae, P. glovera, P. x in-
crassata, P. amnicola and P. aquimorbida, which are recently described, possi-
bly under-reported species, with similar traits and/or phylogenetic proximity to 
other high-impact species. Priority traits to measure for emerging species may 
be thermal minima, oospore wall index and growth rate at optimum temperature. 
Trait-based horizon-scanning approaches would benefit from the development of 
international and cross-sectoral collaborations to deliver centralised databases in-
corporating pathogen distributions, traits and phylogeny.
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both sexually and asexually (McDonald & Linde,  2002; Philibert 
et al., 2011), attacking both forest and ornamental hosts (Santini 
et al., 2013) and cold tolerance (Redondo et al., 2018b) have been 
identified as potentially important predictors of invasiveness 
(McDonald & Linde, 2002).

We explore the relationship between traits and impact in the 
genus Phytophthora (‘plant-destroyer’). Phytophthora species are 
oomycete plant pathogens with very severe economic impacts in 
the agricultural, horticultural and commercial forestry sectors, as 
well as major ecological impacts in the wider environment (Erwin 
& Ribeiro,  1996). Examples of recently invasive species include 
Phytophthora ramorum, the causal agent of Sudden Oak Death in 
the United States (Grünwald et al., 2008), ramorum blight in Europe 
(Werres & De Merlier,  2003) and sudden larch death in the UK 
(Webber et al., 2010). Phytophthora cinnamomi is the causal agent of 
large-scale dieback in multiple woody hosts and in many regions, such 
as protected Kwongan vegetation in Southwest Australia (Burgess 
et al., 2017), and Phytophthora x alni has driven alder decline across 
Europe (Aguayo et al., 2014). The global diversity of Phytophthora is 
still unknown and may be two- to three-fold higher than the nearly 
200 known species (Scott et  al.,  2019). Among these undescribed 
Phytophthora species, future risks to plant health are unknown and 
potentially high. For example, P. ramorum is a notifiable pest in the 
EU, yet only appeared on quarantine pest lists following, rather than 
prior to emergence.

The UK Plant Health Risk Register identifies pest and pathogen 
attributes by which their risks should be ranked, including the num-
ber of hosts attacked, whether there are major impacts in the known 
range, host vulnerability and host mortality (Baker et al., 2014). Each 
of these attributes require existing knowledge about the behaviour, 
distribution and spread of the pest, which is unavailable at the point 
of emergence. By focussing on readily quantifiable biological traits 
available at the point of description (or even earlier) and phyloge-
netic relatedness to known high impact species, it may be possible to 
identify future potential threats much earlier in the invasion process.

We evaluate whether the traits of Phytophthora species could 
provide an early-warning system for predicting whether newly de-
scribed pathogen species are a future biosecurity threat. We aim 
to identify traits for future measurement that can support hori-
zon-scanning approaches (e.g. prioritising species for inclusion on 
national risk registers) and to highlight knowledge gaps and research 
priorities to improve trait-based approaches.

2  | MATERIAL S AND METHODS

We developed a trait database of the morphological and physiologi-
cal traits commonly used in taxonomic descriptions of Phytophthora 
(A. Perez-Sierra & T. Burgess, unpubl. data) to quantify the role 
of traits, phylogeny and accumulation of knowledge (years since 
described) in driving interspecific variation in global impacts of 
Phytophthora species. All analyses were performed in R version 3.3.3 
(R Core Team, 2017).

2.1 | Global impact metrics

The number of countries reporting each species was compiled 
from publicly available databases (see Appendix S1) as a metric of 
the extent to which Phytophthora species have been introduced 
to new regions through anthropogenic pathways. Most inter-
country spread is via human-mediated transport, so the number 
of countries reached should reflect species-level differences in 
entrainment and successful transport within these pathways. 
Country-level reports are a useful proxy for new Phytophthora de-
tections because most plant health surveillance is reported at the 
level of National Plant Protection Organisation. We attempted to 
estimate global spatial extent as an impact metric, but spatially ref-
erenced records in our global Phytophthora database, as for many 
pathogen taxa, were too sparse to obtain a finer-scale metric of 
within-country spread. There was a significant positive correlation 
between country-level occurrence and occupancy at 100 km cell 
resolution (r  =  0.67, p  <  0.001), but country-level reporting ap-
pears to be much more comprehensive across Phytophthora spe-
cies. Even coarse resolution occupancy data (100 km) was limited 
to 95 species whereas country-level data were available for 156 
Phytophthora species.

We also extracted the maximum known latitude of Phytophthora 
species globally, as an absolute value. Where geo-referenced data 
were available within a country, the absolute value of the highest 
latitude record was used. Following the approach used by Chaloner 
et  al.  (2020), where only country-level data were available for a 
species, the centroid of the country with the highest absolute lat-
itude was used as a proxy for the latitudinal limits of the species 
distribution. This metric was intended to reflect the distribution 
Phytophthora species in different climatic regions and interspecific 
variability in spread to higher latitudes. Latitudinal limits may also 
be less influenced by recording bias than number of countries, as re-
cording intensity is probably greater towards latitudinal range edges 
(e.g. in northern temperate regions).

Host range was intended to capture the taxonomic breadth of 
Phytophthora species impacts on plants. As not all plant hosts are 
reported at species level, host range was measured as the number 
of plant families known to be infected by each Phytophthora species. 
Host associations for each Phytophthora species were collated from 
the Fungus-Host Database of the U.S. National Fungus Collections 
(Farr & Rossman, 2018).

2.2 | Trait data

We collated trait data for 179 Phytophthora species, of which 166 
are formally described and 13 are provisionally named. Values for 
eight primary ecological trait values were extracted from species 
descriptions in the literature. The selected traits are hypothesised 
to have reproductive, survival, growth and/or dispersal functions. 
For example, oospores are dormant sexual propagules that persist in 
soil, asymptomatic plants and plant debris (reproduction, survival). 
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Oospore wall index (the thickness of oospore walls relative to oo-
spore volume) and minimum and optimum temperatures for growth 
are traits that influence tolerance to abiotic stressors, including tem-
perature extremes and desiccation (survival). Asexual propagules 
called chlamydospores and hyphal swellings also function as alter-
native survival structures (survival, reproduction). Growth rate at 
optimum temperature measures vegetative growth in vitro (growth). 
Readily detached caducous sporangia become air-borne and may 
germinate directly or differentiate to release further infective prop-
agules termed zoospores, and proliferating sporangia produce suc-
cessive rounds of propagules (dispersal). In Table  1, we describe 
these traits, their measurement and the hypothesised mechanisms 
by which they may confer greater success at one or more stages dur-
ing the invasion process: arrival (via anthropogenic transport), estab-
lishment or spread.

In addition, we collated information on the ability to cause 
root and/or foliar disease for each Phytophthora species, based 
on disease notes in the U.S. National Fungus Collections (Farr & 
Rossman, 2018). These disease traits may capture variation in the 
detectability of different types of disease symptoms, but may also 
be ecologically important for invasion if they influence modes of 
dispersal (e.g. soil-borne, air-borne, water-borne) and transmission 
among hosts (Table  1) or if species able to cause both root and 
foliar disease have more diverse mechanisms to overcome host 
defences.

2.3 | Statistical analysis

We used phylogenetic generalised linear mixed models fitted in 
r package ‘brms’ (Bürkner, 2017; Appendix S2) to estimate the re-
lationships between trait predictors and the two global impact 
metrics (the number of countries reached and host plant families 
impacted). Continuous traits were rescaled by dividing by two 
standard deviations (SD) of the mean value. This places binary 
and continuous predictors on approximately equal scales so pa-
rameter estimates are comparable in terms of relative effect sizes 
on the response (Gelman, 2008). We included time since descrip-
tion as a covariate to try to account for species-level differences 
in recording effort and time to spread. We accounted for phy-
logenetic non-independence among the species-level observa-
tions, using a species-specific random intercept with a mean of 0 
and covariance defined by the phylogenetic relationships among 
Phytophthora species. We inferred species' phylogenetic relation-
ships from an ITS6 phylogeny (T. Burgess, unpubl. data) including 
all 179 species in our trait database. A version of the analyses 
was also performed using a multi-gene phylogeny (seven nuclear 
and four mitochondrial loci) for Phytophthora (Martin et al., 2014: 
TreeBASE S14595). This phylogeny includes fewer of the spe-
cies in our trait database, but should provide more robust esti-
mates of the phylogenetic relationships among these species (see 
Appendix  S3). An observation-level random intercept term was 
included to account for over-dispersion in the counts of hosts and 

countries, relative to Poisson and binomial distributions, respec-
tively (Harrison, 2014).

We fitted 2,560 candidate models comprising each possible 
subset of the ten trait predictors (210  =  2,048), plus 512 mod-
els including an interaction term between foliar and root dis-
ease predictors (root disease  ×  foliar disease) when both traits 
were present in the model to test whether species able to attack 
multiple plant parts reached more countries or had more hosts. 
Multi-model comparison helps to reveal redundancy among cor-
related traits by indicating whether the effect of a trait on impact 
is robust to presence or absence of other predictors in the model, 
and was an attempt to understand the importance of predictors 
while avoiding the drawbacks of model averaging described by 
Cade (2015). Since our goal is to test how well the models can 
predict the number of countries reached, latitudinal limits and 
host families for newly described and emerging pathogens, we 
chose to rank these models based on out-of-sample predictive 
success using an information criterion derived from 10-fold 
cross-validation. The subset of top models for each impact metric 
was defined as all models within two information criterion (ΔIC) 
units of the best-performing model. The direction, strength and 
significance of the trait effects were mapped for each model 
in the top subset to infer consistent and robust trait–impact  
relationships.

Within-sample explanatory performance was quantified using 
the variance partitioning methods for generalised linear mixed ef-
fects models described in Nakagawa et al. (2017). We partition the 
variance explained for each global impact metric into marginal R2 
(the proportion of variance explained by the fixed effects of time 
since description and species' traits) and conditional R2 (variance ex-
plained by fixed effects and phylogenetic relatedness). Phylogenetic 
signal in impact metrics is quantified as raw intra-class correlation 
(ICC: the proportion of unexplained variance that is phylogenetically 
structured in the absence of fixed effects of traits and time since 
description) and adjusted intra-class correlation (ICCadj: phylogenet-
ically structured error after accounting for fixed effects). We report 
the lower and upper 95% credible intervals for all parameters, R2 and 
ICC estimates.

2.4 | Horizon scanning

We compared the observed and predicted values from the models 
for each species to identify species expected to have high impacts 
that have not yet occurred, based on their similar trait combina-
tions and phylogenetic relatedness to well-known high impact 
Phytophthora species, accounting for the level of accumulated 
knowledge (time since description). We ranked species based on 
the residuals from the best-performing models for each impact 
metric to identify potential future biosecurity threats among re-
cently described species (since 2010). Positive and negative residu-
als indicate species impacts are higher and lower, respectively, than 
the model predicts.
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3  | RESULTS

3.1 | Impact metrics

Data on the number of countries reached, maximum latitude and 
number of host plant families were collated for 155, 144 and 167 
Phytophthora species, respectively. The number of countries report-
ing each species ranged from 1 to 132 with a median of 3 countries 
per species. In all, 178 countries reported at least one Phytophthora 
species. Maximum absolute latitude ranged from 9.1° to 80.5° with a 
mean of 47.2°. The number of known host plant families ranged from 
0 to 90 with a median of 2 per species.

3.2 | Model performance

In the highest-ranked models, years since described, traits and phy-
logeny (Figure 1: conditional R2) together explained 90% (LCI = 83, 
UCI = 94), 97% (72, 99) and 87% (79, 94) of interspecific variance in 
the number of countries (Figure 1a), maximum latitude (Figure 1b) 
and number of host families (Figure 1c) reported, respectively. Traits 
and phylogenetic relatedness (Figure  1: conditional R2

traits+ phylogeny
) 

explained between 19% (8, 35) and 26% (12,4 5) of variance in the 
number of countries reached, between 37% (16, 62) and 41% (20, 
65) of variance in maximum latitude and between 31% (14, 56) and 
0.34% (18, 61) of variance in known host plant families. Traits alone 
(Figure  1: marginal R2

traits
) explained between 17% (6, 30)and 21% 

(11, 35) of variance in the number of countries reached, between 
35% (14, 60) and 39% (18, 64) of variance in maximum latitude and 
between 24% (12, 38) and 26% (14, 39) of variance in number of 
host plant families. Phylogenetic intra-class correlation (Figure  1) 
was strongest in the number of countries reached (53% [1, 87]) and 
slightly weaker in maximum latitude (38% [0, 50]) and known host 
families (45% [0, 89]). With the inclusion of species traits, phyloge-
netic signal (adjusted intra-class correlation) decreased to between 
10% (0, 57) and 24% (0, 74) in number of countries reached, to be-
tween 16% (0, 96) and 37% (2, 63) in maximum latitude and to be-
tween 22% (0, 78) and 33% (0, 83) in known host families.

3.3 | Number of countries reached

Twenty-five of the 2,560 trait-based models of the number of coun-
tries reached by Phytophthora species were within 2 ΔIC units of the 
best model (Figure  1a). The odds of a country reporting a species 
increased 7.82 times (β = 2.06 [1.69, 2.43]) for every 69.75 years (2 
SDs) since description. Minimum temperature for growth was present 
and significant in all 25 best-ranked models. A 5.8℃ (2 SDs) increase 
in species minimum temperature for growth decreased the odds of 
a country reporting a species by a factor of 0.51 (β = −0.68 [−1.11, 
−0.25]. The ability to cause root disease was present and significant 
in all 25 best-performing models of geographical extent and increased 
the odds of a country reporting a species by a factor of 1.87 (β = 0.62 

[0.20, 1.06]). Foliar disease was present in 13 of the 25 best-perform-
ing models, and was significant in seven of these models, increasing 
the odds of a country reporting a species by a factor of up to 1.70 
(β = 0.53 [0.10, 0.96]). Caducous sporangia was present, but non-sig-
nificant, in 18 of the 25 best-performing models and only when foliar 
disease was absent.

3.4 | Maximum latitude

Six models of maximum latitude reached were within 2 ΔIC units 
of the best-performing model (Figure 1b). The maximum latitude re-
ported increased by 14.2° (9.08, 19.34) for every 69.75 years (2 SDs) 
since described. Minimum temperature for growth was present and 
significant in all 25 best-ranked models. A 5.8℃ (2  SDs) increase 
in species minimum temperature for growth decreased maximum 
latitude reached by 9.0° (−13.73, −4.25). Oospore production was 
also present and significant in all six best-performing models. Mean 
latitudinal limits were 10.7° (17.78, −3.6) lower for species producing 
oospores.

3.5 | Host plant families

Four models of host range were within 2 ΔIC units of the best-per-
forming trait-based model (Figure 1c). In the best-performing model, 
the mean number of host families reported for a species increased 
6.05 times (β = 1.80 [1.40, 2.19]) for every 69.75 years (2 SDs) since 
described. Root and foliar disease symptoms were both present in 
all four of the best-performing models, but were non-significant in 
three of these models. The ability to cause root disease and foliar 
disease increased the mean number of host plant families by 1.56 
times (β = 0.45 [−0.27, 1.21]) and 1.13 times (β = 0.12 [−0.71, 1.02]), 
respectively. A positive, but non-significant, interaction between 
root and foliar disease symptoms was apparent, but only when the 
main effects of each disease symptom were weaker (Figure 1c).

Oospore wall index and growth rate at optimum temperature 
were present in all four best-performing models of number of known 
host plant families, and significant in 3 and 4 of those models, re-
spectively. In the best-performing model, the mean number of plant 
host families increased 1.56 times (β = 0.44 [0.06, 0.83]) for every 
0.24 (2 SD) increase in oospore wall index and increased 1.60 times 
(β = 0.47 [0.01, 0.92]) with every 6.48 mm/day increase in growth 
rate.

3.6 | Horizon scanning

Based on the best-performing evolutionary trait-based models, 
there are recently emerging Phytophthora species (described after 
2010) reported in fewer countries (Figure 2a: P. x heterohybrida, P. 
lactucae and P. pisi), with lower observed latitudinal limits (Figure 2b: 
Phytophthora glovera, P. x heterohybrida, P. x incrassata, P. constricta, P. 



724  |    Journal of Applied Ecology BARWELL et al.

F I G U R E  1   The best-performing evolutionary trait-based models of (a) number of countries reached (n = 117 Phytophthora species), 
(b) latitudinal limits (n = 123) and (c) number of host plant families attacked (n = 111). The best models were selected based on difference 
in information criterion, ΔIC, less than 2 from the highest-ranked model. Significant effects (*) are defined as 95% credible intervals for a 
parameter estimate which do not overlap zero. Grey shading indicates trait predictors absent from the model. Red and blue colours indicate 
positive and negative parameter estimates, respectively, and depth of colour reflects relative effect size
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elongata, P. x andina. P. flexuosa and P. intricata) or with fewer known 
host families (Figure  2c: P. aquimorbida, P. amnicola, P. x heterohy-
brida, P. x incrassata and P. fluvialis) than would be predicted, given 
their phylogenetic and trait similarity to well-known high impact 
species (for ranked lists, see Appendix S4). There were also species 
which have been known to science for longer among those with ap-
parently under-observed global impacts (e.g. P. pini, P. fragariae and 
P. humicola).

4  | DISCUSSION

Our analyses of Phytophthora impacts demonstrate a framework using 
readily obtainable trait and phylogenetic data to produce ranked lists 
of future threats to plant health from emerging pathogens. We iden-
tify Phytophthora species closely related to or with similar traits to al-
ready high impact species, highlight potentially informative traits, and 
discuss knowledge gaps and research priorities to refine evolutionary 
trait-based tools to support horizon-scanning activities.

The primary methodology in horizon-scanning approaches has 
been expert elicitation (Roy et al., 2015), but with limited informa-
tion available on the behaviour, distribution and spread of recently 
described species, it can be difficult to resolve the relative threats 
posed by emerging pathogens. Integrating evolutionary trait-based 
approaches into the consultation process has the potential to 

support the short listing of priority species and to generate more 
quantitative outputs from horizon-scanning exercises.

4.1 | Informative pathogen traits for 
horizon scanning

We compared the consistency of trait and phylogenetic effects on 
pathogen impacts between models using a single-gene (ITS) and a 
multi-gene phylogeny (Appendix S3). We only discuss results using 
the single-gene phylogeny, as the importance of traits in analyses 
with a multi-gene phylogeny was qualitatively the same, although 
the significance of primary ecological traits was less consistent, pos-
sibly due to reduced sample size and breadth of trait values in the 48 
species in the multi-gene phylogeny (Figure S2).

Disease symptoms were strong predictors of all three global 
impact metrics. Pathogens causing root disease symptoms may be 
more likely to be soil-borne, potentially facilitating their global trans-
port with ornamental plants (Migliorini et al., 2015). Foliar infection 
may facilitate rapid local spread by allowing propagules to become 
air-borne or carried by rain splash. The rapid nationwide dissemina-
tion of a clone of P. infestans distributed on tomato plants via a major 
plant trader provides a good example of such spread (Fry et al., 2013) 
However, sporulation on leaves is also likely to increase detection 
and removal of diseased plants in transit. Incorporating trade flows 

F I G U R E  2   Horizon scanning for 
recently described Phytophthora species 
(filled circles text) with potential for 
future global impacts, using observed and 
predicted values for the best-performing 
evolutionary trait-based models of  
(a) number of countries reached,  
(b) latitudinal limits and (c) number of 
host plant families attacked. Labelled are 
the top eight Phytophthora species with 
observed impacts much lower (negative 
residuals; red circles) and higher (positive 
residuals; blue circles) than predicted by 
traits and phylogenetic position, adjusted 
for time since description. Recently 
described species are in bold. Asterisks 
denote recently resolved species, 
historically part of a species complex
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into trait-based early warning systems could help to clarify whether 
disease traits have a functional role in invasions. However, informa-
tion about naturally occurring disease symptoms accumulates more 
slowly than data on primary ecological traits, limiting the use of such 
traits in early-warning systems. Furthermore, disease symptoms may 
be conflated with pathogen detectability. Recent molecular surveys 
in water courses indicate Phytophthora species with a predominantly 
saprotrophic or opportunistic life history are more widespread than 
previously known (Hüberli et al., 2013). Their severe under-reporting 
is presumably due to the rarity of disease symptoms.

Primary ecological traits predicting global impacts were min-
imum temperature for growth (number of countries reached, lat-
itudinal limits), the absence of oospores (latitudinal limits), greater 
oospore wall indexes and faster growth rates (number of host fam-
ilies). Most Phytophthora growth assays start at refrigerator tem-
perature (approx. 5°C), and focus on resolving optimal temperatures 
for growth. Despite the uncertainty associated with Phytophthora 
minimum temperature requirements, our results identified a signal 
of cold tolerance in predicting species' number of countries reached 
and latitudinal limits. Establishment of Phytophthora species outside 
of nurseries in Sweden was also positively associated with low tem-
perature tolerance (Redondo et al., 2018b). Cooler, upland regions in 
Asia have been identified as part of the probable native range of a 
number of Phytophthora species that have invaded northern temper-
ate forests (Brasier et al., 2010; Cleary et al., 2016; Jung et al., 2020). 
Our results highlight that more reliable measurements of minimum 
temperatures for growth should be a priority when characterising 
the thermal requirements of novel species but may also reflect 
that recording intensity tends be greater among temperate hosts 
and countries, compared to in tropical regions (Scott et  al.,  2019). 
Understanding the importance of this trait will depend on collabo-
rative progress towards more comprehensive distribution databases 
that can be used to test whether trait-mediated filtering of species 
establishment is consistent across climatic regions.

The absence of oospores was associated with species reach-
ing greater latitudinal limits. Many clade six species, thought to be 
native to waterways at higher latitudes, share this trait, indicating 
oospore absence may be a good predictor of native, rather than in-
vaded range and an alternative strategy to cold-tolerance. The result 
is also consistent with water-borne Phytophthora species being less 
sensitive to climatic gradients in temperature and precipitation, than 
species with soil-borne life histories, due to greater buffering from 
extreme temperatures and desiccation for water-borne propagules 
(Redondo et al., 2018a).

Greater oospore wall indexes were associated with broader host 
ranges and may confer greater desiccation resistance and long-term 
survival of dormant propagules (Jung et al., 2013). Among fungal par-
asites, there is often a positive relationship between environmental 
persistence and virulence (Rafaluk-Mohr, 2019). Remaining viable for 
longer in soils and asymptomatic hosts (Crone et  al.,  2013) should 
increase both encounter rates and successful transmission between 
novel hosts, both of which are necessary for host jumps. Faster 
growth rates were also associated with more host plant families and 

can confer a competitive advantage when colonising hosts (Alizon 
et al., 2009). Faster growth rates could also facilitate rapid adaptation 
and transmission to novel hosts through faster generation times (De 
Fine Licht, 2018).

Conditioning traits and time since description on phylogenetic 
position explained additional variance in global impact metrics, sug-
gesting that using traits and phylogeny, jointly, may improve hori-
zon scanning for future threats, because trait differences can lead 
to very different outcomes for closely related Phytophthora species. 
For example, P. ramorum and three lineages of P. lateralis (both clade 
8c) may have co-evolved in the same geographical origin, one with a 
broad host range (P. ramorum) and aerial spread, the other (P. lateralis) 
with narrow host range and predominantly root infecting (Vettraino 
et  al.,  2017). This suggests closely related species are capable of 
evolving very different hosts, traits and strategies. Even within spe-
cies, lineages can evolve different traits to complete their life cycles 
(Brasier et al., 2012), indicating intraspecific trait and phylogenetic 
information could add further value to these approaches.

After adjusting for traits and years since described, residual 
phylogenetic intra-class correlation in global impact metrics was rel-
atively weak. Closely related species originate in the same geograph-
ical region and, therefore face the same geographical, biotic and 
environmental barriers, and have similar access to human transport 
pathways that may result in similar outcomes in invasion patterns. 
However, phylogenetic signal in range size may be weaker when 
some species have yet to fill their potential range (Dyer et al., 2016) 
or are under-observed in their invaded range. The extent of this 
global disequilibrium and/or spatial recording bias in Phytophthora 
species distributions means the role of phylogenetic position may be 
underestimated in our models and could be a better predictor of fu-
ture, rather than current, range size (see Appendix S3). Substantially 
reduced phylogenetic signal when including years since described 
and traits could also indicate taxonomic biases in Phytophthora re-
cording and/or phylogenetically conserved traits. The latter is un-
likely as both cold tolerance and oospore wall index are among the 
least phylogenetically conserved traits, but appear frequently in 
best-performing models.

4.2 | Refining evolutionary trait-based approaches

Our models identify and rank recently described Phytophthora spe-
cies with observed distributions (countries and latitudes reached) 
and host ranges substantially lower than predicted by their traits, 
phylogeny and time since description (Figure  2). These species 
may be those with the greatest potential for future global impacts. 
However, taxonomic biases in recording may also explain why some 
species are under- or over-observed relative to model predictions. 
For example, P. elongata was previously part of the P. citricola spe-
cies complex and will be under-reported prior to the novel molecular 
tools that enabled this complex to be resolved. Over-observed spe-
cies include examples where isolates in some large culture collec-
tions have been reassigned to new taxa using molecular methods 
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(P. plurivora and P. multivora; Burgess et al., 2009) and species that 
have, historically, been reported as a single species because of dif-
ficulties distinguishing hybrids (P. x alni). Modelling these species 
as complexes could improve model fit, but would discard valuable 
information about trait differences among poorly resolved species.

The eight species with global impacts much higher than predicted 
also include those previously targeted for increased surveillance ef-
fort. P. rubi, P. ramorum, P. x alni and P. quercina have all appeared 
on the European and Mediterranean Plant Protection Organisation 
(EPPO) alert list and may be disproportionately well-reported com-
pared to other species. P. cinnamomi is also probably one of the most 
well-studied and highly surveyed Phytophthora species globally.

Addressing these taxonomic and spatial recording biases to pro-
vide more robust impact metrics will require greater knowledge of 
the native ranges of Phytophthora species to capture the full extent 
of Phytophthora distributions and host associations and the extent 
of niche overlap between native and invaded ranges. This will en-
able trait-based approaches for pathogens to be incorporated into 
more spatially explicit frameworks for invasion risk assessment (al-
ready available for data-rich taxa) including niche and spread models 
(Chapman et  al.,  2019; Engler et  al.,  2012). Novel meta-barcoding 
methods and closer monitoring of invasions and finer-grain distri-
bution data, coupled with statistical methods to account for biases 
in recording effort could help to overcome differences in national 
spending on plant health surveillance (Scott et  al.,  2019). These 
data deficits highlight the need for collaborative centralised data-
bases that compile data not only from different countries but also 
across the ornamental, agricultural and forestry sectors, alongside 
the wider environment and interceptions at ports-of-entry to get the 
most accurate picture of the behaviour of pathogens in terms of ar-
rival, spread and host range. Such databases could also incorporate 
the potential ecological and economic impacts of plant pathogens 
into trait-based early-warning systems by promoting the sharing of 
data on pathogenicity tests (Wan & Liew, 2020) and the economic 
importance of individual hosts in different sectors (e.g. Dehnen-
Schmutz et al., 2007).

Predictions from evolutionary trait-based models could be im-
proved by broadening the traits measured for pathogens. Traits related 
to moisture requirements are not typically reported for Phytophthora 
species and could be especially relevant for predicting invasiveness 
(Crowther et al., 2014). Most growth assays focus solely on the growth 
rate of mycelium, but quantitative measures of sporangial, oospore 
and chlamydospore production at different temperatures could be a 
proxy for propagule pressure and the potential for spread in differ-
ent climatic regions. While relatively few Phytophthora genomes have 
been sequenced, a number of genomic traits may also underpin evo-
lutionary potential. Genome size and the number of families of partic-
ular classes of plant cell wall degrading enzymes (Kubicek et al., 2014) 
and pathogen effectors (Raffaele et al., 2010) have been implicated in 
pathogenicity of fungal and oomycete pathogens.

Linking traits to function is essential for the success of trait-based 
predictions (Laughlin & Messier,  2015), but identifying trade-offs 
and co-selection among pathogen traits could be more informative 

about adaptive value than considering traits independently. A clas-
sic example in plants is the trade-off between competitive ability 
and colonisation ability among plant species (Díaz et  al.,  2016). In 
the context of pathogen invasions, complimentary trait combina-
tions could have synergistic effects if adaptive at different stages 
of invasion: transport, arrival, establishment, spread, impact and bi-
osecurity interventions (Blackburn et al., 2011, 2014). For example, 
cold tolerance was an important predictor of number of countries 
reached and latitudinal limits, but not of host families. This could in-
dicate that range expansion at higher latitudes is not sufficient to en-
able jumps to new host families and that additional mechanisms are 
needed to become both a widespread and host-generalist pathogen. 
For example, P. lateralis is rather widespread but is still considered 
host-specific (Hansen, 2015).

5  | CONCLUSIONS

Our analyses evaluate an evolutionary trait-based framework in 
which Phytophthora traits and phylogenetic relatedness explain up to 
26%, 41% and 34% of variance in countries reached, latitudinal limits 
and plant host families attacked, respectively. Such trait-based ap-
proaches could be used to support horizon-scanning approaches for 
plant health biosecurity (Kamoun et al., 2015; Roy et al., 2017). We 
identify some recently described Phytophthora species with similar 
trait values and/or phylogenetic proximity to pathogens that have 
already been introduced to many countries (P. x heterohybrida, P. lac-
tucae and P. pisi), have higher latitudinal limits (Phytophthora glovera, 
P. x heterohybrida, P. x incrassata, P. constricta, P. elongata, P. x andina. 
P. flexuosa and P. intricata) or have attacked hosts in many plant fami-
lies (P. aquimorbida, P. amnicola, P. x heterohybrida, P. x incrassata and 
P. fluvialis. Priority traits to measure for newly arising species may 
be thermal tolerance, oospore wall index and growth rate at opti-
mum temperature. However, our analyses also highlight significant 
knowledge gaps limiting the success of trait-based approaches to 
horizon scanning: which pathogen traits have functional value in in-
vasions; the extent of intraspecific variability in trait values; whether 
and how resource-allocation trade-offs and other evolutionary pro-
cesses influence invasion success, and the poorly documented na-
tive and non-native distributions of pathogens. This highlights the 
potential value of international and cross-sectoral collaborations to 
provide centralised databases on pathogen distributions, environ-
mental drivers, traits, phylogeny and invasion histories to support 
horizon scanning within plant health.
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