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 2 

Abstract 25 

 26 

1. Understanding the impacts of extreme drought on forest productivity requires a 27 

comprehensive assessment of tree and forest resilience. However, current approaches 28 

to quantifying resilience limit our understanding of forest response dynamics, recovery 29 

trajectories and drought legacies by constraining the temporal scale and resolution of 30 

assessment.  31 

 32 

2. We compared individual tree growth histories with growth forecasted using dynamic 33 

regression at an annual resolution, allowing drought impact and individual tree and 34 

stand level recovery dynamics to be assessed relative to a scenario where no drought 35 

occurred. The novel application of this approach allowed us to quantify the cumulative 36 

impact of drought legacy on radial growth at multiple stem heights at different stand 37 

densities. 38 

 39 

3. We show that the choice of pre- and post-drought periods over which resilience is 40 

assessed can lead to systematic bias in both estimates and interpretations of resilience 41 

indices. In contrast, measuring growth resilience annually revealed clear non-linearities 42 

in tree and stand recovery trajectories. Furthermore, we demonstrate that the influence 43 

of pre-drought attributes such as tree size, growth rates and stand densities on growth 44 

resilience were only detectable at certain stages of recovery. Importantly, we show that 45 

the legacy of drought on tree growth can become positive for some individuals, 46 

extending up to nine years after the event such that post-recovery growth can result in 47 
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the reclamation of some lost tree and stand basal area.  48 

 49 

4. Synthesis. We demonstrate the importance of increasing the temporal scale and 50 

resolution of forest resilience assessment in order to understand both patterns and 51 

drivers of drought recovery. We highlight the shortcomings of collapsing growth 52 

response into a single average value and show how drought legacy can persist into a 53 

post-recovery phase, even positively impacting the growth of some trees. If 54 

unaccounted for, this post-recovery growth phase can lead to an underestimation of 55 

resilience and an overestimation of above ground losses in productivity, highlighting the 56 

importance of considering longer-term drought legacies and compensatory growth on 57 

basal area. 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 
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1. Introduction  72 

 73 

Drought-linked losses in forest productivity are now being documented globally (Allen et al., 74 

2015, 2010; Xu et al., 2019). The impact of extreme drought events and other facets of 75 

global change on forest systems has direct implications for forest dynamics and ecosystem 76 

continuity (Anderegg et al., 2013; Martínez-Vilalta and Lloret, 2016; McDowell et al., 2020) 77 

and influences atmospheric feedbacks through reductions in forest carbon stocks and future 78 

sequestration potential (Bennett et al., 2015). With extreme drought events expected to 79 

increase in both frequency and severity (Szejner et al., 2020), concerns surrounding forest 80 

vulnerability to such events (Allen et al., 2015) has seen the application of resilience 81 

concepts in forest science become increasingly popular (Nikinmaa et al., 2020). 82 

 83 

Our understanding of both ecosystem resilience to extreme drought and losses of net 84 

primary productivity (NPP) as a result of these extreme events is intimately linked to both 85 

the temporal and spatial scales of assessment. Assessing the resilience of individual trees 86 

annually enables the comparison of recovery trajectories between trees, their differential 87 

contribution to the stand level response and an estimation of the time taken for each tree 88 

(and thus the stand collectively) to reach a reference state. Collectively, a fine temporal and 89 

spatial scale of assessment could provide much needed insight into the recovery dynamics 90 

of the wider forest system. 91 

 92 

Understanding when and how a forest recovers following extreme drought has implications 93 

for forest management, modelling forest carbon dynamics and our understanding of the 94 
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structural and functional processes that confer resilience. Forest managers will increasingly 95 

depend on knowledge as to which species mixtures (Thurm et al., 2016; Vitali et al., 2018, 96 

2017), stand structures or silvicultural prescriptions (Chmura et al., 2011; Drever et al., 97 

2006; Sohn et al., 2016) are best suited to building resilience and adaptive capacity to deal 98 

with the projected increases in frequency and intensity of extreme drought events (Dai, 99 

2013).  100 

 101 

Altering tree density or size class distributions is a key mechanism by which the structure of 102 

existing forests can be modified to adapt to changing conditions (Jump et al., 2017; Sohn et 103 

al., 2016), with the expectation that a lower stand density can increase the water availability 104 

for remaining trees and reduce drought stress (Manrique-Alba et al., 2020). Deciding on an 105 

optimal stand density, silvicultural prescription or selecting which trees to retain is however 106 

complex. A growing body of work is highlighting how the effectiveness of forest 107 

management in mitigating the negative effects of drought is contingent on the interplay 108 

between the timing and intensity of interventions, stand age, elevation, soil conditions, tree 109 

size and species (Gazol et al., 2017; Kerhoulas et al., 2013; Martínez-Vilalta et al., 2012; Seidl 110 

et al., 2017; Sohn et al., 2016). As a result, understanding the behaviour of individual trees, 111 

their collective contribution to the stand and factors that pre-dispose poor drought 112 

performance will be crucial to effectively manage and manipulate stand structure to 113 

increase future resilience.  114 

 115 

Many assessments of forest resilience to drought focus on measuring the ability of a forest 116 

to return to a previous average growth rate and assume the climate driving growth is 117 

unchanged (Gazol et al., 2017; Lloret et al., 2011). This view implicitly assumes that the pre-118 
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disturbance state is the desirable state to which a system should return and fails to account 119 

for how climatically favourable to growth pre- or post-drought years were. As a result, pre-120 

drought growth may not be the most suitable benchmark against which resilience or 121 

recovery is assessed, since we may erroneously infer that recovery has or has not occurred 122 

and systematically under- or overestimate the true loss of radial growth. 123 

 124 

To better quantify the total impact of a particular drought event it is preferable to estimate 125 

the cumulative loss of growth over time relative to a scenario where that drought was 126 

absent. While rarely quantified in studies of forest resilience (cf. Thurm et al., 2016), the loss 127 

of basal area (BA) as a direct result of drought is of clear relevance to both forest managers 128 

and in modelling carbon dynamics, since it is a direct measure of the cumulative impact of 129 

lost radial growth and above ground productivity.  130 

 131 

The spatial scale at which resilience is assessed can also influence both our understanding of 132 

drought resilience and measures of drought legacy. Hoffmann et al., (2018) showed an 133 

increase in resilience with stem height for Picea abies, but a decrease or no change with 134 

stem height for four other gymnosperms from different genera (Thuja, Tsuga, Cryptomeria 135 

and Metasequoia). Similarly, the magnitude and direction of these changes in resilience 136 

with stem height varied between species (Hoffmann et al., 2018). These findings question 137 

how representative tree cores collected at breast height (and the indices derived from 138 

them) are of whole-tree drought response. Similarly, individual trees can show considerable 139 

variability in drought response, with larger trees tending to be more negatively impacted by 140 

drought in terms of both growth and mortality (Bennett et al., 2015; Stovall et al., 2019) 141 

while faster growing trees sometimes suffer a greater immediate growth impact than their 142 
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slower growing conspecific neighbours (Martínez-Vilalta et al., 2012). These studies indicate 143 

that patterns in growth resilience, drought impact and divergent patters of recovery at the 144 

tree level hold key information needed to explain contrasting patterns in drought resilience 145 

observed at the stand scale. Similarly, these studies suggest that the pre-drought attributes 146 

of individual trees and the stand collectively can be good predictors of drought performance 147 

and recovery such that important detail is lost when the temporal resolution of assessment 148 

is too coarse or the timescale too short. 149 

 150 

Using Pinus sylvestris tree-ring chronologies, we compare methods and test for biases in a 151 

common approach to calculating forest resilience to an extreme drought event. Then, using 152 

dynamic regression to capture individual tree climate-growth relationships and growth 153 

histories, we forecasted annual growth rates at three different stem heights and two stand 154 

densities for nine years after this same extreme drought event to simulate a scenario where 155 

no drought had occurred. We modified the resilience index proposed by Lloret et al., (2011) 156 

to calculate growth resilience annually as well as quantifying growth and size deficits over 157 

these nine years to test the following hypotheses: 158 

 159 

1) Given the differences in resilience with stem height documented in other coniferous 160 

species (Hoffmann et al., 2018), we hypothesise that resilience will change with stem 161 

height in Pinus sylvestris.  162 

 163 

2) Patterns in growth resilience over time at the stand level will be due to the 164 

disproportionate influence of some trees on stand recovery. 165 
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3) Faster growing, larger and more densely spaced trees will show lower growth 166 

resilience relative to slower growing, smaller and lower density trees under extreme 167 

drought throughout the post-drought period. 168 

2. Materials and Methods 169 

 170 

2.1. Site description and management history 171 

This research was conducted in a monospecific spacing experiment of Pinus sylvestris 172 

established in 1935 on a relatively sheltered site in the north-east of Scotland (57° 36′ 23″ N, 173 

4° 16′ 50″ W). The site sits at an elevation of 170m a.s.l with an average slope of 5 degrees. 174 

A surface water gley is the dominant soil type throughout and mean annual rainfall over the 175 

study period (1961 – 2002) is 851mm, with November being the wettest month on average. 176 

 177 

Two spacing treatments were used in the present study representing high (ρH) and low (ρL) 178 

density stands. At the time of sampling (2002-2003), these plots were stocked at 1047 live 179 

trees per hectare (ρH) and 647 live trees per hectare (ρL). Some pruning was carried out in 180 

the 1950’s and 1960’s but no thinning or other management has been carried out during 181 

the life of the stand. 182 

 183 

2.2. Dendrochronological data 184 

34 trees from each of the two treatments (ρH and ρL) were felled in 2002-2003 and cross-185 

sectional discs were taken along the length of each tree approximately every metre. These 186 

discs were digitised and all disc images within ± 30cm from 0.3, 1.3m and 3.3m high were 187 

selected from both ρH and ρL for use in the present study. This approach ensured that 188 
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measurements were consistently taken from a similar stem height, whilst allowing for some 189 

variation in the precise location of each disc (e.g. due to the location of branch whorls). As a 190 

result of these criteria, not all trees are represented at all three stem heights. 191 

 192 

Annual ring widths were measured using two separate radii from each scanned disc image 193 

using WinDENDRO image analysis software (Regents Instruments, Quebec). Both radii were 194 

averaged to give a mean annual radial increment for each disc and each chronology was 195 

subsequently crossdated following the leave-one-out principle on overlapping segments 196 

using the dplR package (Bunn et al., 2019) to ensure each ring was accurately dated. Raw 197 

ring width (RW) data were then converted into individual tree annual basal area increments 198 

(BAI) (Fig. S1) following  Eq. 1, 199 

 200 

Eq. 1 201 

 202 

𝐵𝐴𝐼 =  𝜋(𝑅𝑡
2 − 𝑅𝑡−1

2 ) 203 

 204 

 where R is the radius of the tree in year t. BAI was used instead of raw ring widths as it 205 

better represents annual tree growth than linear measures such as ring width (Biondi and 206 

Queaan, 2008) and was required for calculations of both growth and size deficit. Basal area 207 

(BA) was then calculated annually for each tree as the cumulative sum of BAI records up to 208 

and including each year as a measure of annual tree size. Crossdating and the conversion of 209 

raw ring width data into BAI for each disc was conducted using dplR package (Bunn et al., 210 

2019) using R version 3.6.1 (R Core Team, 2019). 211 

 212 
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 213 

2.3. Extreme drought year identification  214 

We calculated both the Standardized Precipitation Evapotranspiration Index (SPEI) (Vicente-215 

Serrano et al., 2010) for August using a six-month integration window (SPEIAug6) and the 216 

Climatic Water Deficit (CWD) over the study period (1961 – 2002) to identify any extreme 217 

drought events in the climate record. CWD was calculated monthly using a Thornthwaite-218 

type water-balance model following (Lutz et al., 2010) as the difference between Potential 219 

Evapotranspiration (PET) and Actual Evapotranspiration (AET) using code developed by 220 

(Redmond, 2019). Interpolated climate data at 1km resolution, obtained from the Climate 221 

Hydrology and Ecology Research Support System (CHESS) meteorology dataset for Great 222 

Britain (Robinson et al., 2017) for the study period (1961 – 2002) was used for both SPEI and 223 

CWD. Both drought indices were used since the reliance on SPEI as the only drought index 224 

has been shown to occasionally misclassify drought conditions (Zang et al., 2019). More 225 

negative SPEI values indicate progressively more severe drought conditions, with extreme 226 

droughts commonly considered to be at an SPEI threshold of < –2 (Hoffmann et al., 2018; 227 

Vanhellemont et al., 2018), which was also the threshold adopted here. To identify extreme 228 

drought years using CWD values, we summed monthly CWD values over 12 months (Jan – 229 

Dec) every year. Only 1984 was classified by SPEI as an extreme drought year while the CWD 230 

analysis confirmed this year showed the largest CWD across years in the study period. 1984 231 

also corresponds to a period of growth depression in the tree-ring record at all disc heights 232 

in both treatments (Fig. S1). As such the 1984 drought year was selected for further analysis 233 

in the present study. 234 

 235 
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2.4. Climate variables  236 

To include climate variables that correlate strongly with radial growth in P. sylvestris (Jyske 237 

et al., 2014; Misi et al., 2019) as both predictors in dynamic regression models and when 238 

forecasting BAI values in a no-drought scenario, we calculated total precipitation and 239 

growing degree days above 5°C (𝑔𝑑𝑑) annually from 1961- 1993 using 1km resolution 240 

interpolated climate data (Met Office et al., 2019). Annual precipitation (𝑃𝑟𝑒𝑐𝑖𝑝𝑠𝑢𝑚) was 241 

calculated by summing daily precipitation across the whole year while 𝑔𝑑𝑑 was calculated 242 

for each year using temperature data from Jan – Sept (273 days) in the pollen package in R 243 

(Nowosad, 2019) following Eq. 2, 244 

 245 

Eq. 2 246 

𝑔𝑑𝑑 =  ∑(𝑇𝑖 − 5),    𝑖𝑓   𝑇𝑖 > 5

273

𝑖=𝑗

 247 

where annual 𝑔𝑑𝑑 is the sum of the positive differences between daily mean air 248 

temperature (𝑇𝑖) with a threshold value of +5°C from Jan – Sept (273 days). We chose gdd as 249 

it has previously been used to effectively study the onset and duration of tracheid 250 

production in P. sylvestris (Jyske et al., 2014), with 5°C frequently used as a gdd threshold in 251 

this species (Jyske et al., 2014; Seo et al., 2008). We included late winter temperatures (Jan-252 

Feb) in the calculation of 𝑔𝑑𝑑 as it has been found to be positively correlated with ring 253 

width in previous studies of P. sylvestris in Scotland (Grace and Norton, 1990), though its 254 

inclusion had a minimal effect on final 𝑔𝑑𝑑 values. Equally, we chose to include all of 255 

September in calculating 𝑔𝑑𝑑 to accommodate for the extended growing season and 256 

duration of tracheid development at our more southerly study site than documented in P. 257 

sylvestris at more northern latitudes (Jyske et al., 2014). 258 
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 259 

2.5. Dynamic regression analysis and BAI forecasting 260 

Focusing on the 1984 extreme drought year, we fitted dynamic regression models to each 261 

chronology at each stem height in both density treatments from 1961 – 1983 (the year 262 

before the 1984 drought) following Eq. 3, 263 

 264 

Eq. 3 265 

 266 

𝐵𝐴𝐼𝑡 =  𝛽0 +  𝛽1𝑃𝑟𝑒𝑐𝑖𝑝𝑠𝑢𝑚1,𝑡
+ 𝛽2𝑔𝑑𝑑2,𝑡 +  𝛽3𝑆𝑃𝐸𝐼𝐴𝑢𝑔63,𝑡

+ 𝜂𝑡 267 

 268 

where 𝐵𝐴𝐼𝑡 is the annual BAI at time t,  𝛽0 is the overall intercept, 𝑃𝑟𝑒𝑐𝑖𝑝𝑠𝑢𝑚, 𝑔𝑑𝑑 and 269 

𝑆𝑃𝐸𝐼𝐴𝑢𝑔6 are climate predictors at time t, and the errors from the regression, 𝜂𝑡 are 270 

modelled as an autoregressive integrated moving average (ARIMA) p, d, q process (where p, 271 

d and q represent the auto-regressive order, the degree of differencing and the moving 272 

average order, respectively). The multiple regression part of the model captures each 273 

chronology’s relationship between growth and climate prior to the 1984 drought event. The 274 

ARIMA part of the model accounts for each chronology's unique short-term time series 275 

dynamics, with each forecasted value incorporating lagged values of the dependant variable 276 

(or its forecasted values) as well as lagged model errors (to the order of p and q 277 

respectively). As such, dynamic regression combines exogenous predictors with the history 278 

of the time series in a single model (Hyndman and Athanasopoulos, 2018).  279 

 280 

For each chronology at each stem height in both density treatments a large number of 281 

possible p, d, q values were calculated to identify the best fitting ARIMA model for the 282 
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regression errors. The number of differences (d) to achieve stationarity of the data was 283 

calculated using a KPSS test (Hyndman and Athanasopoulos, 2018), while optimal p and q 284 

values were chosen by minimising the AICc values. To ensure the maximum number of 285 

possible ARIMA models were fitted and the minimum AICc value was found, both 286 

approximation parameters and the use of stepwise procedures were relaxed. For each 287 

chronology’s best fitting dynamic regression model, we checked that the residuals were 288 

normally distributed and that the ARIMA errors were free of autocorrelation by plotting an 289 

autocorrelation function (ACF), resulting in the successful fitting of individual dynamic 290 

regression models to 120 chronologies. 291 

 292 

For 1984 (the drought year), values for all three climate variables (𝑃𝑒𝑟𝑐𝑖𝑝𝑠𝑢𝑚, 𝑔𝑑𝑑 and 293 

𝑆𝑃𝐸𝐼𝐴𝑢𝑔6) were replaced by their average values for the period between 1961-1983, thus 294 

replacing the observed extreme climate values in 1984 with average climate values. The 295 

mean 1984 values for these three climate variables and the observed annual values for 296 

these same variables from 1985-1993 were then used in conjunction with each chronology’s 297 

individually fitted dynamic regression model to forecast annual BAI values (BAIfor) and 95% 298 

confidence intervals for each year between 1984 - 1993 in a scenario where no drought had 299 

occurred (Figs. S2–7). Forecasted BAI values for each tree were then plotted and visually 300 

sense checked. We chose to forecast BAI for nine years following the 1984 drought to avoid 301 

the influence of any conditions immediately preceding 1995, the next (though less severe) 302 

drought identified in the climate record.   303 

 304 

Each chronology’s BA in 1983 was calculated by summing all observed annual BAI values up 305 

to and including 1983. Forecasted annual BAI values were then added to the same 306 
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chronology’s BA in 1983 to calculate the forecasted annual basal area (BAfor) of each 307 

chronology at all three stem heights in both treatments. As such BAIfor and BAfor represent 308 

individual tree annual growth and size, respectively in a scenario where the extreme 309 

drought of 1984 had never occurred but was instead a climatically average year. All dynamic 310 

regression modelling and forecasting was carried out using the forecast package in R 311 

(Hyndman et al., 2020). 312 

 313 

2.6. Pre- and post-drought average growth resilience 314 

Resilience (Rs) assessment, as proposed by Lloret et al., (2011), compares a pre-drought 315 

growth average with a post drought growth average following Eq. 4,  316 

 317 

Eq. 4 318 

 319 

where PreDr and PostDr are the average pre- and post-drought growth rates (respectively), 320 

calculated using the same number of pre- or post- drought years. We refer to the size of this 321 

period over which growth is averaged as an integration period throughout the remainder of 322 

this text. The same number of pre-drought and post-drought years were always used to 323 

calculate the respective averages for an integration period. To assess the influence of the 324 

size of the chosen integration period on our interpretation of resilience, we calculated 325 

resilience for all three stem heights in both density treatments for 2, 3, 4, 5 and 6 year 326 

integration periods following Eq. 4 using the PointRes package (van der Maaten-Theunissen 327 

 

Resilience (𝑅𝑠) =
𝑃𝑜𝑠𝑡𝐷𝑟

𝑃𝑟𝑒𝐷𝑟
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et al., 2015) to reflect a range of integration periods commonly chosen in studies of forest 328 

resilience. 329 

 330 

To investigate differences in Rs between integration periods, we used lme4 (Bates et al., 331 

2015) to fit a linear mixed effects model following Eq. 5,  332 

 333 

Eq.5 334 

𝑅𝑠𝑖𝑗 =  𝑋𝑖𝑗𝛽 + 𝑏0𝑖 + 𝑏1𝑖𝑋𝑖𝑗 + 𝜀𝑖𝑗   335 

 336 

Where 𝑅𝑠𝑖𝑗 is the resilience for the jth measure of the ith tree, 𝑋 is an n x p matrix of fixed 337 

effect variables, including integration period, stem height and stand density, 𝛽 is a p x 1 338 

column vector of regression estimates, b0i represents the random effect of tree, where 𝑏0𝑖  339 

~ N(0,σ2
0) and the random slope is 𝑏1𝑖  ~ N(0,σ2

1). We used log transformed Rs values as this 340 

improved model fit. The most parsimonious model was selected using pbkrtest (Halekoh 341 

and Højsgaard, 2014), dropping stand density as a non-significant fixed effect (p > 0.05). The 342 

final model fit integration period and stem height as fixed effects and tree ID and 343 

integration period as random effects. Significance values were obtained from model output 344 

using the lmerTest package (Kuznetsova et al., 2017). 345 

 346 

2.7. Growth resilience 347 

We combined the growth rates forecasted using dynamic regression with the observed 348 

growth rates at an annual scale to calculate resilience. In doing so we quantified resilience 349 

of both individual trees and average stand response for growth resilience (Gr) (the ability to 350 

return to forecasted growth rates) using Eq. 6. For Gr, we modified the resilience calculation 351 
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introduced by Lloret et al., (2011) by replacing the pre-drought growth average with the 352 

forecasted growth rate (BAIfor) in a given year, 353 

 354 

Eq. 6 355 

 356 

where BAIobs is the observed basal area increment in a given year, BAIfor is the forecasted 357 

basal area increment for that same year. We calculated Gr for 1984 and then annually for 358 

the following 9 years (1985 – 1993) for each chronology individually and on average at all 359 

three stem heights in both treatments. 360 

 361 

We subsequently fit mixed-effect models using nlme (Pinheiro et al., 2020) to investigate 362 

the change in Gr over time and assess the importance of stand density (ρH and ρL), stem 363 

height (0.3m, 1.3m or 3.3m) and individual tree pre-drought growth rate (BAI1983) and size 364 

(BA1983) for the year preceding the extreme drought of 1984. We used nlme over lme4 for 365 

this analysis as it allowed us to fit a correlation structure. Both pre-drought growth rate and 366 

size were standardised to have a mean of zero and a SD of one to ensure estimated 367 

coefficients were on the same scale, while Gr was log transformed to improve both the 368 

normality of the residuals and satisfy model assumptions. To account for the non-linearity in 369 

Gr over time, we first identified the optimal number of degrees of freedom to fit natural 370 

cubic splines to year using AIC values. The optimal autocorrelation structures were also 371 

determined using AIC values and log likelihood ratio tests. The correlation structure for Gr 372 

was modelled using a corARMA correlation structure set to p=1, q=1 and four degrees of 373 

 

Growth resilience (𝐺𝑟) =
𝐵𝐴𝐼𝑜𝑏𝑠

𝐵𝐴𝐼𝑓𝑜𝑟
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freedom were specified for the natural splines fit to year. Initially, BAI1983, BA1983, stem 374 

height and stand density were fit as fixed effects along with their interaction with year/time.  375 

As all interactions were significant (p < 0.05), the final model was fit following Eq. 7, 376 

 377 

Eq. 7 378 

𝐺𝑟𝑖𝑗 =  𝑋𝑖𝑗𝛽 + 𝑏0𝑖 +  𝜀𝑖𝑗 379 

 380 

Where 𝐺𝑟𝑖𝑗is the growth resilience for the jth measure of the ith tree, 𝑋 is an n x p matrix of 381 

fixed effect variables, including year fit using natural cubic splines with four degrees of 382 

freedom, stem height, stand density, BAI1983 and BA1983, with retained significant 383 

interactions (p < 0.05) between all fixed effects and year,  𝛽 is a p x 1 column vector of 384 

regression estimates, 𝑏0𝑖  represents the random effect of tree, where b0i ~ N (0,σ2
0) and ε 385 

represents error term, where εi ~ N (0, σ2). No residual autocorrelation was detected using 386 

ACF plots. Adjusted marginal means and unadjusted 95% confidence intervals were 387 

obtained using the R package emmeans (Lenth, 2016) and comparisons for retained 388 

interactions made using the ’contrast’ function to assess effects at the annual scale. As pre-389 

drought growth and size are continuous variables, the effect of BAI1983 and BA1983 was 390 

compared in emmeans annually using quantiles.   391 

 392 

2.8. Annual size and growth deficit 393 

To fully capture both growth and size recovery trajectories, we calculated the annual (BAI) 394 

and cumulative (BA) loss of radial increment for individual trees and summed across all 395 

trees at each stem height in both treatments by subtracting forecasted from observed 396 

values every year between 1984-1993. The year in which an individual tree achieved the 397 



 

 18 

forecasted annual growth rate (BAI), or size (BA) was considered to represent the year in 398 

which a given tree fully recovered to a growth rate or size expected in a scenario where no 399 

drought had occurred i.e. complete recovery. We also forecasted annual ring width index 400 

values for all trees at 0.3m in both ρH and ρL using the same ring width data detrended using 401 

a cubic smoothing spline with a 30-year cut off. We then used these forecasted values to 402 

calculate tree and stand level annual size and growth deficits in the same way as for the BAI 403 

data to ensure our results derived from BAI values were robust.  404 

3. Results 405 

 406 

3.1. Growth Resilience 407 

Mixed-model results comparing Rs calculated over different integration periods indicates a 408 

significant linear increase in Rs with the size of the integration period (p = < 0.001) (Fig. 1, 409 

Table 1). Stem height showed a significant (p = 0.023) but weak negative relationship with 410 

Rs, indicating Rs decreases with increasing stem height (Table 1).   411 

 412 

Table 1 – Mixed-effects model output for resilience values calculated using different 413 

numbers of pre- and post-drought years (integration periods = 2, 3, 4, 5 and 6 years) at 414 

three different stem heights (0.3m, 1.3m and 3.3m) for trees in both high (ρH) and low (ρL) 415 

density stands considered collectively. 416 

 417 

Fixed effect Estimate Std. Error df t value p-value 

(Intercept) -0.279 0.018 73.586 -15.800 <0.001 
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Integration period 0.044 0.003 61.962 14.833 <0.001 

Stem height -0.007 0.003 514.627 -2.287 0.023 

 418 

 419 

Figure 1 - Resilience values calculated using different numbers of pre- and post-drought 420 

years (integration periods = 2, 3, 4, 5 and 6 years) for three stem heights (a) = 0.3m with n = 421 

56, (b) = 1.3m with n = 33 and (c) = 3.3m with n = 35, pooled across both high (ρH) and low 422 

(ρL) density treatments. The same number of pre- and post-drought years were used to 423 

calculate pre- and post-drought growth averages for each integration period. Each coloured 424 

dot represents a tree while black dots and lines represent the mean resilience value ±1 SD 425 

respectively for each integration period. Individual points are displayed as ‘jittered’ (small 426 

amount out random variation added to the x axis values) to better discern individual data 427 

points. 428 
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 429 

The analysis of growth resilience calculated annually using forecasted values shows a 430 

contrasting and more complex pattern in resilience over time than that observed using pre- 431 

and post-drought growth averages, with a clear non-linear pattern in Gr emerging for all 432 

stem heights in both high density (ρH) and low density (ρL) treatments (Fig. 2). Mixed-model 433 

results that account for both this non-linearity and autocorrelation in annual values of Gr 434 

show significant interactions between year and stem height, stand density, BAI1983 and 435 

BA1983 (Table 2).  436 

 437 

A comparison of the estimated marginal means for Gr at each year for stand density and for 438 

different quantiles of BAI1983 and BA1983 found that differences were only detectable at 439 

certain periods during drought recovery (Fig. S8). Differences in Gr between trees based on 440 

pre-drought growth rate (BAI1983) were only detected between 1985 and 1987 (the three 441 

years following drought), during which trees with higher BAI1983 showed significantly higher 442 

Gr (Fig. S8a). Similarly, higher density stands (ρH) showed greater Gr than lower density 443 

stands (ρL), but only between 1985-1986 (Fig. S8c), corresponding to the two-year period of 444 

continued growth decline post-drought (Fig. 2–4). In contrast, smaller trees (lower BA1983) 445 

showed consistently higher Gr, from 1986 – 1993 (Fig. S8b).  446 

 447 

At the individual tree level, patterns in Gr trajectories show considerable differences in the 448 

time taken to recover, with some trees at all stem heights in both density treatments never 449 

achieving forecasted levels (Fig. 3). Across all stem heights in both density treatments, full 450 

recovery occurred anywhere between one- and six-years post drought (Fig. 3), however the 451 
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majority of those trees that recovered to forecasted growth rates did so between three- and 452 

six-years post drought.  453 

 454 

Table 2 – Type 3 ANOVA summary of the mixed-effects model output for growth resilience 455 

(Gr) calculated annually for all stem heights and both density treatments (n = 120) and 456 

reported on the log transformed scale. Chisq = Wald Chi-square, df = degrees of freedom, 457 

BA1983 = basal area in 1983, BAI1983 = basal area increment in 1983 and interaction terms are 458 

denoted by ×. Significant values are highlighted in bold (p < 0.05). 459 

Fixed effect Chisq df p-value 

(Intercept) 22.24 1 <0.001 

Year 160.63 4 <0.001 

Stem height 3.00 2 0.224 

Plot 3.28 1 0.070 

BA1983 0.24 1 0.627 

BAI1983 2.78 1 0.095 

Year × Stem height 17.64 8 0.024 

Year × Stand density 22.56 4 <0.000 

Year × BA1983 12.62 4 0.013 

Year × BAI1983 18.84 4 <0.001 
 460 

 461 

 462 

 463 

 464 
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 465 

Figure 2 – Box-plots showing median growth resilience (Gr)  466 

for (a) high density (ρH) and (b) low density (ρL) treatments for all three stem heights 467 

considered in this study (0.3m, 1.3m and 3.3m) calculated annually for the drought year 468 

(1984) and the subsequent 9 years (1985-1993). The dashed horizontal black line indicates 469 

whether growth recovered (above) or not (below), relative to forecasted values. Hinges 470 

show first and third quantiles while whiskers show largest and smallest values (excluding 471 

outliers) while outliers are indicated by points beyond the whiskers.  472 

 473 

 474 
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 475 

Figure 3 – Individual tree annual growth resilience (Gr) values for (a, b) 0.3m, (c, d) 1.3m and 476 

(e, f) 3.3m stem heights in both high (ρH) and low (ρL) stand density treatments. Values >1 477 

(above the red dashed line) indicate growth recovery has occurred (observed growth rates 478 

achieved forecasted values) while values < 1 (below the red dashed line) indicate a tree is 479 

still in growth recovery. Each line respresents a different tree and points at the terminus of 480 

the same line correspond to the year in which that same tree reached forecasted growth 481 

rates. Gr values for years following growth recovery are not displayed. 482 

 483 
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3.2. Size and growth deficit  484 

In terms of absolute loss of annual growth, all three stem heights in both density treatments 485 

showed a progressive growth decline in the two years following the 1984 drought, with the 486 

lowest annual growth record for all three stem heights in both treatments being 1986 with 487 

the exception of 1.3m in ρL which was marginally lower in 1985 (Fig. 4, Table S1).  488 

 489 

In 1987, summed annual growth rates for all trees in each treatment and at all three stem 490 

heights showed a large reversal of the progressive growth decline of the previous three 491 

years (the pattern of continued growth decline reversed and growth recovery began) (Fig. 492 

4). Despite a reversal of the continued decline in growth performance, annual stand growth 493 

at each stem height and in both treatments continued to underperform relative to 494 

forecasted growth. As a result, the cumulative loss of basal area continue to decline into 495 

1987 for 1.3m in both ρH and ρL, and into 1988 for all remaining stem heights in both 496 

treatments (Fig. 4, Table S1). 497 

 498 

By 1989 observed annual stand growth rates in both ρH and ρL were better than forecasted 499 

at all stem heights (Fig. 4, Table S1). This return to forecasted growth indicates that 500 

complete stand level growth recovery had effectively occurred by 1989, five years after 501 

drought. In subsequent years, stand growth rates at all stem heights and in both treatments 502 

continued exceeding forecasted growth rates which in turn resulted in a reversal and 503 

progressive reclamation of lost BA in the years following 1989 (Fig. 4). 504 

 505 

While growth recovery at all stem heights in both density treatments occurred at the stand 506 

level, full size recovery (that is, observed tree size achieving forecasted tree size in a no 507 
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drought scenario) never occurred for any stem height in either treatment, despite the 508 

growth rate of many trees exceeding forecasted values. For 3.3m and 1.3m heights in both 509 

density treatments, observed annual growth for all trees collectively (summed) dropped 510 

back to values that were almost indistinguishable from forecasted values in 1992 and 1993, 511 

which in turn resulted in size recovery plateauing at below forecasted levels (Fig. 4). In 512 

contrast, summed annual growth always remained above forecasted values at 0.3m in both 513 

density treatments from 1989 onwards. Of particular note is a clear apex in annual growth 514 

rate in 1990 for summed annual growth across all trees both collectively (Fig. 4) and on 515 

average (Fig. 2) relative to forecasted growth rates.  516 

 517 

The observed patterns of summed annual growth and partial size recovery is the result of a 518 

stratification of individual growth performances in the years following drought and the 519 

disproportionate contribution to summed growth of overperforming individuals (Fig. 4). 520 

Conversely, some trees never fully recovered to forecasted growth rates (Fig. 3) or 521 

sufficiently overcompensated their growth to recover lost BA (Fig. 4). On average, all three 522 

stem heights in both ρL and ρH no longer showed a negative growth resilience by 1989 (Fig. 523 

2), indicating that by 1989, median tree size was no longer different from a scenario where 524 

the 1984 drought had never occurred.  525 

 526 

The general pattern of a progressively severe growth depression (and thus decreasing 527 

resilience) in the years following the 1984 drought (Figs 2–3), followed by an 528 

overcompensation of growth (Fig. 4), is also clear from the mean BAI values for each stem 529 

height in both treatments (Fig. S1). The observed patterns and timing of both growth and 530 

size recovery trajectories were also observed using ring width data detrended using cubic 531 
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smoothing spline with a 30-year cut off for all trees at 0.3m in both density treatments (Fig. 532 

S9). 533 

 534 

 535 

 536 
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Figure 4 – Growth deficit derived from the difference between observed and forecasted 537 

growth (BAI). Chronology level annual growth deficit summed over time, representing 538 

individual tree cumulative growth deficit at a given stem height (grey lines), stand annual 539 

deficit calculated by summing annual growth deficit for all chronologies at a given stem 540 

height in a given year (solid green line) and the cumulative stand growth deficit calculated 541 

annually by summing the annual stand deficit over time  (dashed yellow line) in the high 542 

density (ρH) and low density (ρL) stands at 0.3m (a, b), 1.3m (c, d) and 3.3m (e, f) stem 543 

heights. Annual values were calculated for the drought year in 1984 (vertical dotted red line) 544 

and the subsequent 9 years (1985-1993) while n= the sample size for each stem height in 545 

the respective density treatment. 546 

 547 

4. Discussion  548 

 549 

Using dynamic regression models to forecast both tree growth rates and sizes in a scenario 550 

where extreme drought was absent enabled us to estimate patterns of forest response to 551 

drought. Our approach ensured annual climate is explicitly accounted for in both the pre-552 

drought and forecasted periods, capturing each chronology’s historical relationship 553 

between climate and growth prior to the drought event, as well as the autocorrelated 554 

nature inherent in radial tree growth from year to year. In doing so, we identified that post-555 

drought annual growth rates can recover or even exceed those that might have been 556 

expected if no drought had occurred. This pattern of compensatory growth in a post-557 

recovery phase resulted in the reclamation of some of the lost BA at all stem heights in both 558 

high and low density stands. Equally, we showed how patterns in growth resilience at the 559 
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stand level are the product of the temporal stratification of drought recovery at the level of 560 

individual trees, meaning assessments based purely on the average or stand level response 561 

(Huang et al., 2018) miss important variation and non-linearities in growth and size recovery 562 

dynamics. These non-linearities are only detectable when the temporal scale and resolution 563 

of assessment is over longer (up to nine years in this study) and finer (annually) timescales 564 

than commonly practiced (Bose et al., 2020; Gazol et al., 2017). By demonstrating how the 565 

importance of some stand attributes (e.g. stand density and pre-drought growth rates ans 566 

sizes) on growth recovery dynamics varies depending on the point during the recovery 567 

period, we provide evidence that assessing forest resilience annually over an extended post-568 

drought period can provide a more comprehensive understanding of forest response to 569 

drought whilst highlighting limitations in approaches that use pre- and post-drought growth 570 

averages. 571 

 572 

4.1. The temporal frame of resilience assessment 573 

The linear increase in resilience (Rs) with the size of the integration period used to calculate 574 

average growth can be explained by observing the pattern of growth recovery. In this study, 575 

two years post-drought (1986) is the point of lowest absolute annual growth, after which a 576 

period of progressive growth recovery begins. As resilience (Rs) is often calculated as the 577 

ratio of pre-drought and post-drought growth averages (Gazol et al., 2018), continually 578 

increasing the size of this post-drought integration period will inevitably be reflected by a 579 

corresponding increase in resilience. As we demonstrate, the choice of integration period 580 

risks systematically biasing the calculation of resilience since increasingly large integration 581 

periods result in increasingly high values of resilience at all stem heights, influencing both 582 

our interpretation and understanding drought response. Similarly, this property makes the 583 
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comparability of resilience values difficult across study systems where the same integration 584 

period has not been used to calculate pre- and post-drought growth averages e.g. Merlin et 585 

al., (2015) and Serra-Maluquer et al., (2018). This change in resilience with the choice of 586 

pre- and post-drought period is in keeping with other recent work that highlights the 587 

limitations of considering only a single post-drought integration window (Schwarz et al., 588 

2020). Instead, we advocate assessing resilience at an annual resolution (Anderegg et al., 589 

2015; Huang et al., 2018; Kannenberg et al., 2019a; Martínez-Vilalta et al., 2012) to retain 590 

important information regarding the temporal dynamics of forest drought response.  591 

 592 

While mixed-model results indicate that Gr changes over time at all stem heights (Table 2), 593 

contrary to our hypothesis, there was no differences in Gr between stem heights at any 594 

point during drought recovery (Fig. 2 and Fig. S8 (d)). However, mechanisms allowing the 595 

targeted allocation of carbon below ground or above ground could indicate a decoupling of 596 

tree-ring signals from gross primary productivity (Kannenberg et al., 2019b), which in turn 597 

should lead us to question how representative resilience indices based solely on radial 598 

growth are of whole tree resilience.  599 

 600 

The observed non-linearities in Gr and drought legacy may be linked to post-drought 601 

alterations in carbon allocation strategy. Such alterations could occur at the expense of 602 

radial growth via the upregulation of photosynthesis (Kannenberg et al., 2019b), the 603 

reparation and expansion of the canopy (Kannenberg et al., 2019b) or roots and fungal 604 

hyphae (Børja et al., 2017). Such shifts in carbon allocation under drought have been 605 

documented in P. sylvestris (Fernández-De-Uña et al., 2017) and could lead to the continued 606 

decline in radial growth immediately after drought observed in this study. Subsequent radial 607 
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growth recovery may only then begin once the repair and expansion of roots and 608 

mycorrhizal networks and repair of foliage have been made, shifting allocation patterns 609 

back to compensate for losses in radial growth.  Similarly, drought induced damage to xylem 610 

and hydraulic architecture (Adams et al., 2017) may conceivably lead to reductions in radial 611 

growth at the expense of metabolically costly repair. While the ecophysiological processes 612 

that drive these observed patterns were not the focus of this study, mechanisms that allow 613 

the preferential allocation of carbon (Hagedorn et al., 2016) could indicate a more plastic 614 

and adaptive plant response to drought than current indices based on radial growth imply 615 

and question current estimates of drought induced losses in biomass. 616 

 617 

4.2. Overgrowth, size recovery and post-recovery dynamics 618 

Stand-level growth recovery occurred around 4-5 years after drought, varying slightly with 619 

stem height and density treatment (Fig. 4). However, individual trees were highly variable in 620 

the time taken to recover (Fig. 3). Stand level recovery time is slightly longer than global 621 

averages of 1-4 years (Anderegg et al., 2015) but two years longer than reported in a similar 622 

study of P. sylvestris (Martínez-Vilalta et al., 2012). We continued to track annual growth 623 

performance relative to forecast growth rates up to nine years post-drought and identified a 624 

widespread pattern of ‘overgrowth’ i.e. growth that occurred in excess of that forecasted. 625 

While the year in which annual stand growth turned from a deficit to a surplus (indicating 626 

complete growth recovery) was relatively synchronous across stem heights and stand 627 

densities, the magnitude of stand overgrowth differed. This pattern of radial overgrowth for 628 

some trees in a post-recovery phase meant that all stem heights in both density treatments 629 

recovered a considerable portion of the BA lost in the years immediately following drought 630 

(relative to the forecasted no-drought scenario). 631 
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 632 

Patterns in Gr and overgrowth at the stand level were clearly the result of the 633 

disproportionate influence of individual trees in both density treatments at all stem heights, 634 

supporting our second hypothesis. The staggered return of individuals to forecasted growth 635 

rates (Fig. 3) was reflected in the increasing stratification of individual tree performance 636 

over time (Fig. 4). While most trees recovered to forecasted growth rates, some trees 637 

appeared to benefit from drought (being larger than forecasted in a no-drought scenario), 638 

particularly in the latter stages of the observed nine-year period, while others remained 639 

smaller than forecasted (Fig. 4), the net effect of which resulted in the observed reclamation 640 

of some lost BA. 641 

 642 

To our knowledge this is the first study to document such patterns of overgrowth and size 643 

recovery following extreme drought in mature trees by extending the temporal window and 644 

increasing the temporal resolution of assessment. While attempts to quantify the 645 

cumulative impact of drought on radial growth during the recovery period are uncommon 646 

(c.f. Thurm et al., 2016), we demonstrate the importance of considering post-recovery 647 

growth dynamics when measuring the totality of drought impact. As noted by Gessler et al., 648 

(2020), the existence of compensatory growth i.e. increased function post-drought relative 649 

to pre-drought, is widely acknowledged in other ecological systems but has received little 650 

attention in stress-ecological studies. Indeed, compensatory growth has been documented 651 

in fish (Álvarez, 2011; Won and Borski, 2013), moths (Kecko et al., 2017), grasses (Østrem et 652 

al., 2010) and recently in seedlings of P. sylvestris (Seidel et al., 2019). By constraining the 653 

period of resilience assessment to either a pre-defined post-drought period or to the point 654 

at which growth returns to a historic norm implicitly assumes this point is where drought 655 
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legacy ends. However, our findings show that this assumption is not necessarily justified, 656 

with the legacy of drought extending far beyond a return to reference growth levels and 657 

even becoming positive for some trees. 658 

  659 

By failing to document patterns in the recovery of lost BA, management decisions to 660 

increase overall forest resilience such as targeted tree removal or the selection of species 661 

for climate adaptation may be made prematurely on incomplete information. To illustrate 662 

this point using data from the present study, an assessment of the studied trees at a stem 663 

height of 0.3m in the lower density stand (ρL) (n = 27) three years after drought would 664 

indicate a cumulative loss of BA of 367 cm2 (Table S1). However, the same assessment after 665 

nine years would indicate a much smaller loss in BA of only 56 cm2 relative to forecasted 666 

values (Table S1). Thus, the severity of drought impact and choice of management designed 667 

to increase forest resilience depends on the post-drought period being considered. With a 668 

global push towards forest expansion to help deal with the challenges of a changing climate 669 

yet an increasing awareness of the associated risks and trade-offs (Anderegg et al., 2020; 670 

Doelman et al., 2020), decisions that are informed by the interplay between forest 671 

structure, drought resilience and the temporal dynamics of forest recovery will become 672 

increasingly important to ensure the continuity of forests ecosystems. 673 

 674 

We caution that the patterns of overgrowth documented here are from a single 675 

experimental site and dependant on the accuracy of forecasted growth values. As such, the 676 

existence of patterns of overgrowth elsewhere needs to be established before wider 677 

conclusions can be drawn as to the importance or pervasiveness of such a mechanism. 678 

However, where extreme droughts are occurring with increasing frequency, intensity or 679 
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duration, the presence of overgrowth in a post-recovery phase could itself become 680 

maladaptive by leaving trees more susceptible to future drought impacts, the concept of 681 

structural overshoot (Jump et al., 2017). As a result, we argue that understanding the 682 

longer-term temporal dynamics of both growth and size recovery are crucial but largely 683 

overlooked components in studies on forest resilience, with clear implications for estimates 684 

of both historic and future drought induced losses of above ground biomass. 685 

 686 

4.3. Temporal dependency of structural drivers 687 

By explicitly modelling the observed non-linearity in Gr, we were able to explore the 688 

temporal dynamics of drought impact and investigate whether stand attributes such as pre-689 

drought size, growth rate or stand density were (dis)advantageous for Gr throughout 690 

recovery. Contrary to our third hypothesis, we found that there was no simple relationship 691 

between faster growing, larger or more densely spaced trees and Gr. When considered 692 

annually, the interaction between growth rates in the pre-drought year (BAI1983) and time 693 

highlighted that trees growing faster prior to drought had significantly higher Gr, but only 694 

between 1985 and 1987 and not during the drought year itself (1984) or in the post-695 

recovery phase. These results differ to those reported by Martínez-Vilalta et al., (2012) who 696 

noted faster pre-drought growth negatively impacted drought recovery in P. sylvestris for 697 

three years immediately following drought. However, in contrast to this present study, 698 

Martínez-Vilalta et al., (2012) did not include climate variables as predictors when 699 

estimating growth in this post-drought period, or consider post-drought timescales longer 700 

than three years.  701 

 702 



 

 34 

Stand density and pre-drought tree size also showed clear temporal dependacies in their 703 

relationship with Gr, corresponding to particular phases of the post-drought period. Again, 704 

contrary to our expectations, the higher density stand showed significantly higher Gr than 705 

the lower density stand but only for two years, during the period of continued growth 706 

decline (1985 -1986). In contrast and as expected, larger trees did show consistently lower 707 

Gr, but only from 1986 onwards (once the continued growth decline reversed and recovery 708 

began) and not during the drought year itself. This latter result is in keeping with other work 709 

that found larger trees suffer more under drought (Bennett et al., 2015). The opposing 710 

positive and negative influence of pre-drought growth and stand density vs pre-drought size 711 

respectively, highlights the importance of not reducing stand structure down to a single 712 

metric (Forrester, 2019).  713 

 714 

The positive or negative impact of pre-drought stand attributes on individual recovery 715 

trajectories may result in changes in the competitive or functional dominance of individual 716 

trees. The decoupling of size and growth means that some trees contribute 717 

disproportionately to stand growth relative to their size (West, 2018). As such, directional 718 

shifts in stand level growth rates will depend on how drought differentially impacts those 719 

trees that contribute more or less to stand growth. While not the focus of this study, 720 

persistent drought-induced shifts in functional dominance both within and between species 721 

have been documented previously (Cavin et al., 2013) and the persistance with which pre-722 

drought growth impacted meausres of Gr documented here could indicate a shift or 723 

amplification in the competitive status of individuals. Our analysis highlights that not all 724 

trees contributed equally to stand level recovery. The divergence of recovery responses 725 

seems to show that those trees that recovered early became dominant in terms of growth 726 
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and stayed dominant, while those that failed to recover settled into a new, lower-than-727 

average growth regime.  728 

 729 

As lower drought resilience is emerging as a good indicator of future mortality risk (DeSoto 730 

et al., 2020), lower historic resilience may be adapted in the future as a management tool to 731 

selectively remove susceptible trees and improve overall forest resilience. However, our 732 

results demonstrate that the importance of stand attributes that might be used to inform 733 

targeted tree removal to increase forest resilience (such as pre-drought tree growth rates, 734 

tree sizes or target stand densities) is temporally dependant. For example, in this study 735 

higher density stands were only found to be more resilient than lower density stands for 736 

two years (1986-1993), indicating that stand density was only important for increasing Gr 737 

for a small period of the overall recovery landscape. Consequently, we caution that if 738 

resilience concepts are to be successfully deployed to guide forest management, the 739 

selection of an appropriate temporal scale and resolution of resilience assessment will be 740 

key. 741 

5. Conclusion  742 

 743 

Growing concern as to the vulnerability of forests globally means a comprehensive 744 

understanding of forest response to drought is becoming increasingly important. Here we 745 

show that the temporal scale and resolution of approaches to assessing resilience are 746 

critical if we are to understand drought impact on stand growth and recovery dynamics. The 747 

application of dynamic regression to ecological questions using dendrochronological data 748 

demonstrated here is a promising approach to achieving such an increased understanding.  749 
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 750 

Notably, we identified the capacity of both tree and stand growth rates to return to, or even 751 

exceed those forecasted in a scenario where no drought occurred, a pattern that resulted in 752 

the partial reclamation of lost basal area. This process of overgrowth appears to be the 753 

product of the disproportionate influence of individual trees on stand level recovery. Higher 754 

pre-drought growth rates and stand density but lower pre-drought tree size is of clear 755 

importance for explaining patterns in growth resilience in our study, however the 756 

importance of these structural variables is temporally dependent, indicating more nuanced 757 

patterns of drought recovery than previous studies have suggested. 758 

 759 

Future work should aim to investigate the roles of mortality and shifts in the competitive 760 

dominance of individual trees and their neighbourhoods to further understand the drivers 761 

of these temporally dependant patterns in stand behaviour. Similarly, investigating the 762 

pervasiveness of overgrowth, compensatory growth and the structural overshoot 763 

phenomenon in a post-recovery phase will be an important step in quantifying drought 764 

impact, with implications for both forest management targeted at increasing resilience, 765 

carbon budgeting and our understanding of drought legacy (Kannenberg et al., 2020). 766 
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