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Summary 17 

The majority of flowering plants relies on animal pollinators for sexual reproduction and 18 

many animal pollinators rely on floral resources. However, interests of plants and pollinators 19 

are often not the same, resulting in an asymmetric relationship that ranges from mutualistic to 20 

parasitic interactions. Our understanding of the processes that underlie this asymmetry 21 

remains fragmentary. In this review, we bring together evidence from evolutionary biology, 22 

plant chemistry, biomechanics, sensory ecology and behaviour to illustrate that the degree of 23 

symmetry often depends on the perspective taken. We also highlight variation in (a)symmetry 24 

within and between plant and pollinator species as well as between (geographic) locations. 25 

Through taking different perspectives from the plant and pollinator side we provide new 26 

ground for studies on the maintenance and evolution of animal pollination and on the 27 

(a)symmetry in plant-pollinator interactions.28 
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 2 

Introduction 31 

The fascinating interaction between plants and pollinators is sometimes referred to as a 32 

mutual partnership [e.g. 1], but the interaction is driven by the different and often conflicting 33 

interests of plants and pollinators. Plants need reliable pollen dispersal and receipt at minimal 34 

costs, whereas pollinators seek floral rewards that can be harvested as fast and efficient as 35 

possible. The resulting interaction is sometimes referred to as (balanced) mutual exploitation 36 

[sensu 2].  37 

Plants and pollinators have evolved traits that influence the balance of this mutual 38 

exploitation to their advantage [3–5] (Figure 1). Plants essentially face two connected 39 

challenges: (1) How to optimise the (amount of) reward offered to actual pollinators? (2) 40 

How to prevent access to floral resources by flower visitors that collect rewards but do not 41 

pollinate? To paraphrase Danforth and colleagues [3]: pollinators are like overly demanding 42 

lovers: they are great to have around, but if left without boundaries, they will take over your 43 

life and ruin it. Many plant adaptations restrict access to floral rewards in a variety of ways, 44 

ranging from morphological to mechanical or chemical boundaries. Conversely, pollinators 45 

evolved strategies to increase exploitation of floral resources to their advantage, such as 46 

morphological, behavioural and/or physiological adaptations.  47 

The suite of (co-evolved) adaptations mediates a tension between plants and 48 

pollinators, which results in different types of interactions. The (relative) benefit for plants 49 

versus pollinators ranges from solely beneficial for flower visitors (e.g. reward robbing) via 50 

more balanced interactions to solely beneficial for plants (e.g. pollination by deception; 51 

Figure 1). Understanding the different aspects of the tension between plants and pollinators 52 

calls for a cross-disciplinary view, because the traits involved span across different scientific 53 

domains.  54 

In this review, we discuss classic and recent work on the chemical, mechanical and 55 

sensory aspects of plant-pollinator interactions, and how work from various disciplines can 56 

help understanding the transition from mutualism to antagonism. We also argue that the 57 

degree of symmetry in the interaction between plants and pollinators is more variable than 58 

often appreciated, and depends on the perspective taken, species and/or geographic location.  59 

 60 

Plant reward chemistry and pollinator dietary preferences 61 

Many pollinators, in particular bees, depend on pollen, nectar and/or floral oils as major or 62 

sole food sources. Except for pollen, which primary function is to fertilise ovules, the only 63 

function of other types of rewards is to reward pollinators. Their chemical/nutritional 64 
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composition (mainly protein, lipids, sugars and micro-nutrients) could therefore be adjusted 65 

to the needs of a specific pollinator group and be under selective pressure by pollinators 66 

(Figure 2). However, with few exceptions (e.g. specialized oligolectic bees restricted to few 67 

plant species/genera), the nutritional composition of floral rewards often does not meet the 68 

specific dietary preferences of potential pollinators. For instance, bumblebees (Bombus 69 

terrestris and B. impatiens) were found to preferentially collect pollen with a protein to lipid 70 

(P:L) ratio of between 5:1 and 10:1 [6], but that ratio is found in only a minority of species, 71 

viz. 33 out of 86 (38%) plant species [7]. Similarly, the majority of the 82 plant species 72 

chemically analysed by Vaudo and colleagues [8] fell within P:L ratios lower than 3:1. By 73 

the same token, honeybee (Apis mellifera) workers prefer nectar with a protein to 74 

carbohydrate (P:C) ratio of 1:250 [9], which was found in only three out of 304 nectar 75 

samples (<1%) from overall 34 plant species (C Venjakob, AM Klein and SD Leonhardt, 76 

unpublished data). Recent evidence suggests that preferences for specific nutrient contents 77 

and ratios are linked to reproductive fitness (for B. terrestris see e.g. [10] and [11]). If 78 

(foraging) preferences generally mirror nutritional requirements and are linked to pollinator 79 

fitness still needs to be elucidated. 80 

In addition to nutrients, pollen and nectar often contain significant amounts of 81 

species-specific plant secondary metabolites (PSMs, [12]), including alkaloids, fatty acid 82 

derivatives, different glycosides, flavonoids and terpenoids). Many of these compounds are 83 

toxic if consumed at high doses [e.g. toxins in Aconitum nectar; 11] (Figure 2). PSMs 84 

decrease reward palatability [14,15] and often require specific physiological adaptations, 85 

such as specific enzymes (e.g. of the cytochrome family), for detoxification [e.g. 16]. The 86 

amount and composition of PSMs can differ between floral rewards, i.e. pollen and nectar, of 87 

the same plant [12]. These qualitative and quantitative differences can increase attractiveness 88 

of one resource while simultaneously decreasing attractiveness of the other. For example, in 89 

two Dipsacus species the PSM dipsacus saponin occurs in pollen but not nectar, which 90 

renders pollen unattractive to some bumblebee species, resulting in less grooming and thus 91 

increased pollen deposition on stigmas [17]. Moreover, PSMs can be toxic or repellent to 92 

some flower visitors (or herbivores) and attractive or beneficial to others [reviewed by 18]. 93 

PSMs in floral rewards can therefore be a filter mechanism and restrict the spectrum of 94 

flower visitors to actual pollinators, which generally increases pollination success and 95 

pollinator benefits [18,19]. The question why not all plants use PSMs to restrict visitor 96 

spectra to preferred pollinators remains to be answered.  97 
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Various physiological strategies help pollinators to deal with nutritionally imbalanced 98 

pollen and nectar diets and to mitigate negative effects of PSMs (Figure 3). For example, 99 

eusocial honeybees (Apis mellifera) and some species of stingless bees (Apidae: Meliponini) 100 

feed their offspring with glandular secretions rather than with pure pollen and nectar 101 

[reviewed by 20,21]. Such secretions match nutritional requirements and protect bee larvae 102 

from PSMs [22]. Some primitively eusocial bumblebees as well as some solitary bees also 103 

add nutritive salivary secretions to nectar and/or pollen prior to feeding larvae (as e.g. shown 104 

for B. terrestris, [23], and Anthophora, [24]). Other (solitary) species are able to digest toxic 105 

compounds with the help of specialised digestive systems or specific gut microbiota [25], 106 

which allows them to tolerate toxic PSMs. Interestingly, the evolution of tolerance for 107 

specific PSMs appears to independent of dietary specialization (i.e. oligolecty vs. polylecty) 108 

and shows no phylogenetic pattern [18].  109 

Pollinators can also learn to avoid harmful reward compounds and adjust their 110 

foraging behaviour through complementary foraging (Figure 3). Diversified reward 111 

collection (i.e. allocating and mixing floral resources from different plant species) benefits 112 

pollinators through increasing overall resource quantity/quality, diluting toxic compounds or 113 

decrease costs associated with handling time (e.g. through mixing resources from 114 

morphologically similar flowers) [26–29]. Such mixed foraging likely requires cognitive 115 

flexibility and the ability to rapidly assess reward quality (e.g. through prioritized perception, 116 

[10]) in order to both readily switch to new floral sources and quickly learn to handle flowers 117 

and access rewards (Figure 3). Whether cognitive and behavioural flexibility is associated 118 

with an increased tendency of resource mixing has, however, not yet been investigated.  119 

Pollinators can also adjust their way of feeding to nectar sugar concentrations in 120 

various ways, as shown by fluid dynamic models combined with pollinator experiments. For 121 

example, bees, which consume nectar via dipping their tongue, typically feed on nectar with 122 

50-60% sugar concentration, whereas butterflies and birds, which feed via suction, typically 123 

feed on nectar with 35% sugar concentration, likely because nectar viscosity quickly 124 

decreases uptake via suction [30]. Intriguingly, honeybees can switch between suction and 125 

lapping, depending on the sugar content and viscosity, which increases their foraging 126 

efficiency [31]. Eusocial pollinators like honeybees and bumblebees store collected nectar in 127 

nests, which requires foragers to regurgitate nectar from crops. Recent work suggests that 128 

offloading complicates maximum energy transfer rates [32], because the offloading process 129 

also has implications for efficiency and energy-transfer-rate. 130 

 131 
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Morphological gate keeping of floral rewards, and how to access them 132 

Natural selection favours plant traits that (1) increase the pollen transfer efficiency of 133 

pollinators, and (2) exclude antagonists such as herbivores and floral robbers (Figure 2). 134 

However, total pollen export to multiple recipient stigmas does not increase linearly with the 135 

amount of pollen placed on the bee’s body, but rather follows a pattern of diminishing return 136 

[33]. Thus, gradual placing of pollen on the right pollinator and body part is often key to 137 

outcrossing success [33,34] and decreases the influence of stochastic effects (e.g. death of 138 

pollinators before pollen transfer). 139 

Plants evolved a range of specialised biomechanical adaptations to regulate access to 140 

rewards and optimise pollen transfer (Figure 2), including keel flowers [35], lever-141 

mechanism flowers [36,37], trigger flowers [38,39], explosive pollen release [40,41], 142 

heteranthery [42], and buzz-pollinated flowers [43]. For example, keel flowers present in 143 

many Fabaceae and Polygalaceae require floral visitors to exert a significant amount of force 144 

to access nectar and pollen rewards [37,44]. As the bee pushes its body to access nectar, the 145 

keel is pushed downwards, exposing pollen that is deposited on the bee’s body. Keel 146 

morphology acts effectively as a pollinator filter, because it excludes floral visitors that do 147 

not have the physical attributes (e.g., butterflies) or strength (small bees, flies) to push open 148 

these flowers [44]. The keel morphology may also contribute to regulating pollen dispensing 149 

[45] and pollen placement on the visitor’s body [46]. These three roles (pollinator filtering, 150 

pollen dispensing, and improved pollen placement) are not mutually exclusive and probably 151 

jointly explain the evolution of the keel and other specialised floral morphologies.  152 

The anther-lever mechanisms, such as are present in most of Salvia (Lamiaceae) 153 

species, provide another example of how flower biomechanics filter pollinators by requiring a 154 

specific amount of strength to access rewards (Figure 2). The stamens form a physical barrier 155 

to the nectar, and the floral visitor (e.g. bees, moths or hummingbirds) needs to push through, 156 

bringing the anthers into contact with the dorsal side of the floral visitor [47]. Medium and 157 

large-sized bees can exert forces of 20-100 mN when visiting Salvia, which is enough to 158 

trigger the lever mechanism [36,44]. Biomechanical adaptations aimed at excluding some 159 

visitors thus seem most effective against insects other than bees, such as flies, butterflies and 160 

moths.  161 

Buzz pollination further illustrates how floral visitors have driven the evolution of the 162 

biomechanical properties of flowers. Buzz-pollinated flowers often display anthers that open 163 

through small gaps or pores (poricidal anthers) instead or laterally dehiscing as most flowers 164 

do. During buzz pollination, bees produce vibrations to remove pollen from flowers, which 165 
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are also usually nectarless [48]. Poricidal anthers thus act as filters excluding or discouraging 166 

visits by some animals (e.g., flies, butterflies, non-buzzing bees) (Figure 2). In addition, 167 

poricidal anthers may also improve pollination efficiency by acting as pollen dispensers in 168 

which pollen release by individual buzzing bees is physically restricted [49]. Gradual pollen 169 

dispensing allows distributing pollen loads across more floral visitors, which can increase 170 

reproductive success when visitation rates are high and pollen delivery uncertain [33,50].  171 

In turn, pollinators have evolved different behavioural characteristics that enable them to 172 

most efficiently exploit floral resources (Figure 3). For example, more than 50% of bee 173 

species, including bumblebees, carpenter bees and euglossine bees, are able to use their 174 

(flight) muscles to produce vibrations on flowers, i.e. buzz flowers, and so collect pollen 175 

from buzz-pollinated flowers [51]. The evolution of buzz pollination involves the co-option 176 

of a pre-existing behaviour by bees (buzzing) [52] to increase the rate of pollen removal from 177 

flowers, and the co-evolution of increasingly restrictive floral morphologies, such as poricidal 178 

anthers, that restrict and regulate pollen removal [53]. The vibrations produced vary widely in 179 

frequency, amplitude and duration, properties which determine the amount of pollen released 180 

from buzz-pollinated flowers [43,53,54]. They presumably are a function of the bees’ 181 

morphological, physiological and neurological characteristics, but little is known about what 182 

exact characteristics determine the vibrations bees produce and how this varies between 183 

species [55].  184 

Pollinator body size also plays an important role in several other interaction contexts. 185 

For example, bees with larger bodies can save energy owing to a higher surface to volume 186 

ratio, and so fly longer distances [56]. Large bees can thus cover large foraging areas, which 187 

may support floral resource mixing through collecting rewards from a greater diversity of 188 

flowers. Larger bodies or mandibles may further facilitate robbing in bees, allowing species 189 

to circumvent morphological features of plants (i.e. elongated tubes, poricidal anthers, keel 190 

flowers, anther-lever) aimed at restricting access to specific pollinators. Conversely, small 191 

bees may bypass physical barriers and so rob nectar while failing to trigger the lever 192 

mechanism thus removing the reward without pollination (Figure 3). Notably, robbing is a 193 

facultative behaviour, as most robbers also forage regularly on flowers [57] thereby providing 194 

the actual pollination service. It hence seems unlikely that pollinators evolved specific traits 195 

to facilitate robbing, but rather use pre-existing ones, such as large/strong maxillae or small 196 

elongated bodies.  197 

 198 

Sensory interplay between plants and pollinators 199 
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Flowers create signals via colour, odour and/or shape, and pollinators perceive these signals 200 

via visual, olfactory and/or tactile mechanisms, which involve various biophysical processes. 201 

To be detected by pollinators, flowers have to stand out from the environment; for example, 202 

by producing colours that contrast with the background [58] and/or via emitting attractive 203 

scents [59]. Further, to promote repeated visitation, flowers should be memorably rewarding, 204 

which can be achieved by generating a stimulus that the pollinator will associate with a 205 

reward.  206 

To attract pollinators – ideally while simultaneously being cryptic to antagonists – 207 

plants often combine different types of signals. Sensory signals can thus be used to 208 

selectively inform pollinators that perceive specific signals, while excluding antagonists 209 

(Figure 2). For example, most pollinating insects have very poor visual sensitivity in the red 210 

part of the light, which creates a “private niche” in colour space for birds, which do see red 211 

colours [60]. However, colour can only work as pollinator-selective signal when pollinators 212 

and non-pollinators have different visual systems. In the case of bees, of which there are both 213 

pollinators and robbers, colour vision is highly similar among species [61,62], thus 214 

preventing colour as sole filter. In these cases, scent, shape or patterning can aid deterring or 215 

at least reducing conspicuousness to antagonists. The morphologically similar flowers of two 216 

related Gomphocarpus species (Apocynaceae), for example, attract pollinators (bees versus 217 

specid wasps) mostly by emitting different scents [63]. Floral scent also seems to be the 218 

principal mechanism that determines pollinator specificity in orchids pollinated by euglossine 219 

male bees, who collect the chemical compounds and mix them to produce perfumes that 220 

attract females [64]. Moreover, a meta-analysis that compared the attractiveness of floral 221 

scents to pollinators and antagonists suggested that scents can serve the dual function of both 222 

attracting pollinators and deterring antagonists [65].  223 

Some plant species alter floral signals, for example after pollination to deter 224 

pollinators (and florivores) from already pollinated flowers (Figure 2). Flowers that lose 225 

colour are less attractive to pollinators, but still enhance long-distance attraction of the 226 

inflorescence as a whole [66], because the unpigmented, pale flowers generate a bright signal 227 

that will be visible from long-distances [58]. Flower visibility can also be reduced 228 

temporarily by closing inflorescences after pollination, which reduces conspicuousness to 229 

antagonists [67], due to changes in inflorescence display size/shape and a less colourful lower 230 

side of the florets [68,69]. Scent emission is more plastic than colour, and (diel) patterns in 231 

scent emission frequently match anthesis and nectar availability, particularly for nocturnal 232 

pollinated flowers [70,71]. In Silene latifolia, scent emission decreases more rapidly in 233 
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pollinated than unpollinated flowers [72], likely resulting in decreased visitation by 234 

pollinators and anatagonists. 235 

At the extreme, floral signals can also be used to deceive pollinators (Figure 2). 236 

Deception of pollinators, where flowers mimic food, mating or oviposition sites, has evolved 237 

in at least 7500 species (6%) across 32 animal-pollinated angiosperm families [73]. 238 

Intriguingly, deception of pollinators occurs almost exclusively in insect-pollinated plants, 239 

but whether this is due to insects being more easily cheated upon or because the vast majority 240 

of animal pollinators are insects is unknown. Deception often occurs because flowers 241 

generate signals that capitalise on innate behavioural responses of pollinators [74], which can 242 

have evolved outside the context of plant-pollinator interactions [75]. Innate colour 243 

preferences, for example, occur in many groups of flower-visiting insects, including flies, 244 

butterflies and bees [58,76,77], and have been thought to be important as a deceptive cue in, 245 

for example, orchids [78]. Combinations of fine-tuned visual, chemical and tactile signals can 246 

yield floral phenotypes that are deceptive to the point that pollinators choose the deceptive 247 

flower over the genuine object the flower mimics. For example, sexually deceptive Ophrys 248 

flowers are preferred by male wasps over a female conspecific [79]. In addition to colour and 249 

scent, some plant species evolved flower thermogenesis (heat production), e.g. they mimic a 250 

suitable egg-laying substrate, such as dung or carrion, and so co-opt innate cues used by 251 

insects to find oviposition sites [75]. However, visiting a warm, albeit rewardless, flower 252 

need not always be bad, because heat in itself can be a reward to insect pollinators, 253 

particularly when ambient temperatures are low [80]. 254 

In response to deception, pollinators can learn to avoid deceptive flowers after one or 255 

a few visits [81], which impedes future outcrossing (Figure 3). Indeed, aversive learning of 256 

inflorescence hue [82], colour patterns [83] and odour [84] occurs across insects that 257 

pollinate sexually deceptive flowers, and this is expected to lead to negative frequency-258 

dependent selection of flower morphs. The situation becomes trickier when only some 259 

flowers on a plant are deceptive, because these few flowers may result in the entire individual 260 

suffering from reduced pollination. For example, pollinating bumblebees rapidly learn to 261 

detect and avoid rewardless (female) Begonia odorata flowers, which comes at the expense 262 

of visiting real (male) flowers that are highly similar in terms of visual signals [85]. Overall, 263 

bumblebees nevertheless benefit from their learning ability, because the time saved by 264 

avoiding rewardless flowers outweighs the effect of missing out on genuine flowers [85]. 265 

There are situations, however, where avoiding deceptive flowers becomes detrimental for the 266 

pollinators’ own fitness. For example, male wasps learn to avoid areas with sexually 267 
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deceptive Chiloglottis trapeziformis flowers [86]. As a consequence, they also avoid female 268 

wasps occurring in the same areas as the plants, which reduces mating events [86].  269 

In the absence of extreme cases such as (sexual) deception, pollinators can also learn 270 

to use particular floral cues as indicators for reward quantity and/or quality (Figure 3). For 271 

example, bumblebees learn to associate floral scent compounds with the amount of reward in 272 

Brassica rapa and Penstemon digitalis [87,88]. In this case, distinct chemical cues are good 273 

candidates to honestly signal reward quantity [89]; however, flowers typically provide a 274 

plethora of (chemical) signals. To make sense of this signal complexity, pollinators may 275 

either simultaneously process multimodal information [90] or prioritise perception of those 276 

cues that are linked to compounds that are most influential (e.g. affect reproductive fitness), 277 

such as specific nutrients or toxic compounds, while ignoring others [10]. Taken together, the 278 

sensory interplay between plants and pollinators represents an impressive array of partly 279 

highly species-specific fine-tuning that involves a variety of biochemical and neuronal 280 

adaptations.  281 

 282 

Variation in time and space, and phenotypic mosaics  283 

Spatial or temporal variation in plant or pollinator phenotype, abundance or community can 284 

create mosaic-like patterns in the degree of mutualism [91]. In addition to interspecific 285 

variation, phenotypic variation can occur between populations, individuals and even within 286 

an individual, as is the case for plants bearing multiple flowers at a given moment. A neat 287 

example of geographic variation in the degree of plant-pollinator mutualism is that of 288 

Lithophragma parviflorum and its pollinator, Greya pollitella moths [4,92]. Greya pollitella 289 

are effective pollinators, though their larvae consume a small number of developing seeds. 290 

When Greya moths are the sole pollinators, their pollination service outweighs the 291 

antagonistic effects caused by the larvae. However, in populations with many bombyliid flies, 292 

which are equally efficient pollinators but do not parasitise developing seed, the interaction 293 

with Greya moths becomes antagonistic [4].  294 

Floral reward quantity and quality, as well as pollination service are often dynamic in 295 

both time and space. For plants, such variation in reward quality and availability occurs at 296 

various levels [88,93,94]. Predictable within-plant variation in reward availability can modify 297 

the degree of geitonogamy and thereby increase plant reproductive success. In vertical 298 

inflorescences, for example, a decreasing amount of nectar from lower to upper flowers, can 299 

encourage pollinators to leave a plant and go to another individual when facing a decreasing 300 

amount of reward per flower [95]. At the community level, variation in reward availability 301 
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may result in increased pollen dispersal, because pollinators tend to fly longer distances after 302 

encountering rewardless flowers [96].  303 

Regional and temporal differences in pollinator community can in turn impose 304 

varying selective pressures on floral traits. Geographic covariation of floral and pollinator 305 

traits has been reported for numerous traits, such as flower morphology and nectar properties 306 

versus bird beak morphology [97], optical properties and colour vision [98,99] and scent and 307 

pollinator community [100]. All else being equal, spatially heterogenous selection on any 308 

trait results in a non-homogeneous trait landscape. For example, in the spring ephemeral 309 

Claytonia virginica, populations of plants that are pollinated by pollen-collecting bees 310 

produced more pollen per flower and showed more staggered pollen release than populations 311 

pollinated by nectar-foraging bee-flies [101]. Such examples highlight local adaptation of 312 

individual plants to the present pollinator fauna, resulting in variable degrees of (a)symmetry 313 

even within the same plant species.  314 

Studies on variation in floral rewards mostly focused on nectar properties, and how 315 

observed variation relates to diel patterns, pollinator activity, abiotic effects and/or flower age 316 

[95]. We lack knowledge on rewards other than nectar, how they vary in quantity (e.g. 317 

amount of heat as a reward) and quality (e.g. pollen chemical profile), and to what degree 318 

their value to pollinators is context-dependent. 319 

 320 

Conclusions  321 

The interaction between plants and pollinators is characterised by a tension arising from 322 

conflicting interests of both parties. Evolutionary adaptations in plants and pollinators can 323 

lead either to a balance between partners resulting in a symmetric relationship, or to an 324 

imbalanced, asymmetric relationship. How symmetric or asymmetric interactions between 325 

plants and pollinators really are is hard to determine, as information on pollination efficacy 326 

and/or actual nutritional requirements and tolerance of pollinators is lacking.  327 

Relative benefits of plants and pollinators may or may not be balanced in the long 328 

term, but the frequently observed asymmetries suggest an evolutionary arms race. 329 

Understanding the sequence of evolutionary events will be useful to understand that putative 330 

arms race. For example, the colours and scents of flowers probably evolved long after the 331 

pollinator sensory systems that perceive them, and not vice versa [102,103], but how does 332 

this apply to other traits, such as reward quality versus pollinator dietary requirements, or 333 

restricted floral morphologies and the way pollinators circumvent these? In specialised 334 

interactions where plants and pollinators strongly depend on each other, pollinator and plant 335 
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adaptations probably evolved synchronously [e.g. bees’ ability to sonicate and poricidal 336 

anthers; 100]. Other taxa that were not originally part of the interaction may have evolved 337 

similar traits at a later stage, however. Capitalising on (repeated) switches between 338 

pollination systems [34,104,105], pollinator behaviour (e.g. buzz pollination; [52]) or floral 339 

phenotypes, is a powerful way to explore the evolutionary trajectory of adaptations and how 340 

they may have led to the extant interaction.  341 

The degree of asymmetry often varies in time and space, which complicates matters 342 

further. Determining the factors that underlie inter- and intraspecific variation in the type, 343 

quantity, quality and accessibility of rewards across time and space, and how pollinators 344 

respond to such variation is central to understanding the degree of (a)symmetry in different 345 

plant-pollinator interactions. This is particular true for rewards that are dynamic and context-346 

dependent (e.g. heat or mating opportunities).  347 
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 644 

Figure 1. Varying symmetry and relative benefits for flower visitors and plants. The 645 

horizontal bar depicts the relative benefit for pollinator (left) and plant (right). The figure 646 

shows exemplary cases. The position on the continuum strongly depends on the context, and 647 

is determined by the pollinator’s relative efficacy (pollen transferred versus reward removed), 648 

and the amount of reward obtained over energy invested.   649 
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 650 

Figure 2. Exemplary plant adaptations to increase advantage from interaction with 651 

pollinators. Characteristics of the reward chemistry can render the reward quantity or quality 652 

suboptimal, and thereby deter certain flower visitors or incentivise a return visit. Signals 653 

acting on pollinator senses can increase or decrease floral attraction to pollinators and other 654 

flower visitors. Flower morphology and biomechanics determine the handling time and 655 

accessibility of rewards.   656 
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 657 

Figure 3. Exemplary pollinator adaptations and behavioural responses to increase 658 

exploitations of flowers. Pollinator senses and foraging behaviour determine how easily a 659 

pollinator can (learn to) detect or avoid flowers and associate signals with a reward. 660 

Morphological adaptations, such as body size, determine whether a pollinator can reach and 661 

enter the flower and access rewards. Physiological adaptations allow pollinators to efficiently 662 

exploit the rewards and to cope with reward toxicity. 663 


