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Abstract 

There is an urgent need to intensify food production globally and reduce our 

reliance on synthetic agronomical inputs. Crop establishment is the most vulnerable 

stage in the crop cycle, therefore, sustainable strategies with the potential to 

alleviate unfavourable seedbed conditions are crucial to ensure yield potential is not 

restricted early in the season. Industrial seed priming is an effective strategy, but it 

is both energy-intensive and expensive. ‘On-farm’ seed priming offers a low-cost 

alternative; however, it is commonly underutilised in the developing world, and it has 

never before been evaluated in a European agricultural context. Therefore, this 

thesis sought to determine the potential contribution of ‘on-farm’ seed priming to 

increase food production in the developing world. In addition, the aim was to assess 

the effectiveness of ‘on-farm’ seed priming together with chitosan (an organic plant 

elicitor) to sustainably intensify barley (Hordeum Vulgare L.) production in 

conventional European agrosystems. Quantitative analysis showed that ‘on-farm’ 

seed priming had a significant positive effect on crop yields (on average, a 21 % 

increase over farmers’ practice) in the developing world, and was most effective in 

dry climates, and nutrient deficient or salinity-stressed environments. In European 

conventional barley systems, ‘on-farm’ seed priming and chitosan-based seed 

treatments enhanced spring barley yields through improving emergence and 

seedling vigour, and led to a greater number and size of tillers being retained for 

grain filling. By contrast, winter barley did not benefit from seed priming treatments. 

Although seed treatments can promote emergence, it is likely that they alter the 

adaptative mechanism for overwinter acclimation and result in a fitness cost.  It was 

found that a greater canopy size can provide a certain degree of tolerance to pre 

stem elongation powdery mildew (Blumeria graminis) infection and that rapid stem 

elongation limited secondary spreads of powdery mildew and, hence, provide a 

certain level of disease escape.  Overall, this thesis provides the evidence for 

governmental institutions and policymakers in developing countries to promote ‘on 

farm’ seed priming as a recommended practice. In a European agricultural context, 

seed treatments can be included as one more management practice in spring-sown 

crops to ensure that yield potential is not restricted early in the season. Seed 

treatments may deliver disease tolerance and escape traits, but these benefits will 

be conditional upon conferring successful establishment and vigour first. 
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Chapter 1: General introduction 
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1.1 Food security and the need for sustainable agriculture 

The continuous increase in the human population has resulted in greater food 

demands (Godfray et al. 2010). According to the Food and Agriculture Organisation 

of the United Nations (FAO), food production needs to be increased by 60 to 110 % 

by 2050 in order to meet the global demand for food (Rockström et al. 2017). The 

achievement of this goal has become one of the greatest challenges of this century, 

which is both a fundamental need for humanity and a major threat to the 

environment. Most current food demands have been addressed through the 

intensification of agricultural systems, i.e. producing more food per unit of cropland 

via investment and increased inputs (e.g. fertilisers, pesticides and high-yielding 

crop varieties), or through extensification, i.e. the conversion of natural land to  

agriculture; both of which can cause severe ecological harm (Rockström et al. 

2017). The abuse and misuse of agronomical inputs such as fertilisers and 

pesticides compromise long-term soil fertility and water resources (Spiertz 2009; 

Popp et al. 2013); whilst extensification has been carried out at the expense of 

forests and other natural ecosystems, which can accelerate soil degradation and 

contribute to climate change (Schmidhuber and Tubiello 2007; Pimentel and 

Burgess 2013). Therefore, the improved use of both agronomical inputs and 

ecological resources is central for attaining greater food production and ecological 

sustainability, and, consequently, effectively contributing to present and future food 

security (Godfray and Garnett 2014; Pretty et al. 2018). As part of this process of 

agricultural transformation, the identification of strategies and technologies, which 

are synergistically productive and compatible with the environment, will be crucial 

for tackling worldwide hunger. 

Food security is met when “all people, at all times, have physical and economic 

access to sufficient, safe, and nutritious food to meet their dietary needs and food 

preferences for an active and healthy life” (FAO et al. 2019). It has been recently 

estimated that approximately 820 million people do not meet this criteria (FAO et al. 

2019). Most of the undernourished people live in developing countries, with about 

280 million in South Asia and 240 million in sub-Saharan Africa, which represents 

15 and 23 % of their total respective population (FAO et al. 2019). Addressing this 

need for food will require global actions, although no single strategy will be 
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sufficiently effective (Godfray and Garnett 2014). Strategies for delivering food 

security include, a change of diet, freer trade of food or the expansion of 

aquaculture; however, the sustainable intensification of agricultural production will 

be key for increasing staple food production (Godfray et al. 2010; Godfray and 

Garnett 2014; Rockström et al. 2017). During any transformation of agricultural 

production systems, it is imperative that intensification does not dominate over 

sustainability in order to preserve future production (Rockström et al. 2017).  

Mineral fertilisers have been crucial for increasing agriculture production during 

the past half century but, at the same time, have brought a large dependency for 

attaining high yields together with multiple environmental problems such as the 

exploitation of non-renewable sources (e.g. phosphate rock) and accentuation of 

land degradation (Cordell et al. 2009). Whilst nitrogen (N) fertilisers can ensure 

relatively high crop yields, a high proportion of these fertilisers are either volatilised 

or leached as ammonia, nitrogen oxides or nitrates, which pollute air and 

groundwaters (Spiertz 2009; Basosi et al. 2014). There are extreme regional 

disparities in fertiliser use across the globe, for example, in sub-Saharan agriculture, 

fertiliser use is low, because the degraded soils do not often respond well to fertiliser 

application or they are simply not accessible to farmers (Chianu et al. 2012; 

Vanlauwe et al. 2014). In contrast, fertilisers are excessively applied in high-input 

Chinese agricultural systems (using 30 % of global fertiliser consumption) to 

maximise production per unit of cropland, which is already compromising long-term 

fertility and, subsequently, arable land availability (Gu et al. 2017; Ouyang et al. 

2018). 

Similar to fertilisers, the use of synthetic pesticides since the early 1960s has 

significantly contributed to decreased crop losses due to pests and diseases 

(estimated to prevent up to 70 % of yield lost to pests) which, by extension, has also 

contributed to making food more affordable (Oerke and Dehne 2004; Popp et al. 

2013). However, the side effects from the use and misuse of these chemicals are 

significant and diverse for both environment and human health. Spray drifts and off-

target pesticide losses accumulate in soils and in aquatic environments poisoning 

water and affecting biodiversity (from microbial communities to small mammals) 

(Carvalho 2017). Prolonged exposure to pesticides and unsafe application 

techniques can cause chronic health issues such as cancer, asthma, diabetes, and 
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other diseases in humans (Kim et al. 2017; Carvalho 2017). However, the 

withdrawal of fertilisers and/or pesticides would increase the pressure on converting 

more natural land into agricultural soil. Land is a finite resource and further 

expansion of agricultural land would be at the expense of forests and other natural 

ecosystems entailing loss of carbon sequestration capacity and more soil erosion 

from the new croplands (Schmidhuber and Tubiello 2007; Pimentel and Burgess 

2013). The majority of pasture and croplands worldwide suffer from moderate to 

severe soil erosion, and their productivity will decline if no conservative practices 

are carried out to mitigate the effects of erosion (Pimentel and Burgess 2013). The 

greatest soil losses occur in arid and semi-arid regions, which is exacerbated by 

climate change effects so that erosion will especially compromise the capacity of 

developing countries to grow their own food supplies (Schmidhuber and Tubiello 

2007; Gomiero 2016). However, climate change may also increase the availability 

of croplands at higher latitudes accentuating differences between developing and 

industrialised countries (Schmidhuber and Tubiello 2007). 

Increasing food production, while not leaving a footprint in the environment, 

represents a challenging task (Rockström et al. 2017), and there is clearly an urgent 

need for solutions that are both productively effective and environmentally 

sustainable. These efforts are encompassed under the umbrella term Sustainable 

Intensification (SI) of agriculture, which can be defined as a set of measures by 

which agricultural productivity is enhanced without negatively impacting the 

environment, and preferably also creating social and environmental benefits (Dicks 

et al. 2019). To achieve this goal, the integration of a wide array of efforts at the 

farm, landscape and regional level are needed to improve the options available for 

SI (Weltin et al. 2018; Dicks et al. 2019). Numerous SI practices can reduce the 

environmental impact of increased productivity whilst improving social wellbeing, 

and can also be profitable which makes them potentially attractive to farmers (Pretty 

et al. 2018). However, challenges and opportunities for SI are agrosystem and 

location specific, and trade-offs between sustainability and intensification are 

inevitable (Scherer et al. 2018).  

The high-input agriculture practised in many industrialised countries already has 

a high degree of intensification in crop production systems. Yields above 70 % of 

the attainable yield are often obtained, e.g., wheat production in Northwest Europe 
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and rice production in Japan (Oerke and Dehne 2004). In these contexts, major SI 

benefits are to be gained by improving the environmental sustainability component 

on a long-term basis, while maintaining intensification as many of these countries 

are food self-sufficient (Pradhan et al. 2015; Pretty et al. 2018). Practices towards 

increasing resource use efficiency, i.e. reducing external inputs and expenses within 

the existing system configuration (e.g. integrated pest management schemes and 

fertilizer rationalisation), but also the adoption of systems that integrate biodiversity 

and longer-term benefits (e.g. multiple cropping or organic agriculture) are currently 

being implemented as well as being active fields of research (Reganold and 

Wachter 2016; Lechenet et al. 2017; Pretty et al. 2018). Thus, much of the 

contribution to the SI goal carried out by many industrialised countries tends to be 

towards “de-intensification” (Struik and Kuyper 2017). European Union regulations 

are directed towards progressively reducing the list of pesticides available and 

promoting low pesticide-input pest management, which will require the development 

of more SI practices with the potential to replace chemicals with non-synthetic based 

approaches that also ensure food production stability (Hillocks 2012).  

In developing countries, the intensification component is a prime necessity due 

to the food production deficit per capita and, hence, strategies may differ from those 

for high-input agriculture (Tittonell and Giller 2013; Pradhan et al. 2015). In small-

holder farming systems, like those of rural Africa and some parts of Southern Asia, 

agriculture still remains relatively low-input and attainable yields are largely 

improvable (Tittonell and Giller 2013; Pretty et al. 2018). In these contexts, external 

inputs can be justified by their large responses, i.e. economical and agronomical 

profit (Chianu et al. 2012; Struik and Kuyper 2017). However, farmers face major 

challenges that restrict intensification such as limited access to agricultural inputs 

(good quality seeds, fertilisers and pesticides) and a high demand for labour (due to 

low mechanisation), which compromise their capacity to raise capital to invest in 

improvements (e.g. soil amendments to build more productive soils) (Chianu et al. 

2012; Tittonell and Giller 2013). Environmental sustainability is, in some ways, 

imposed by the reduced availability of resources rather than the main goal and 

returns can gradually decrease due to this lack of investments constituting a ‘poverty 

trap’ (Tittonell and Giller 2013). Therefore, pathways towards SI of small-holder 

farmers must have minimal or no financial cost, resilience to the adverse and 
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changing conditions and short-term productivity benefits in order to be adopted 

(Vanlauwe et al. 2014). Thus, these farming systems urge practices with potential 

to replace the lack of inputs and make better use efficiency of practices already 

available. Inexpensive practices with reduced risks of failure that can be easily 

accessed by farmers, such as water harvesting and the incorporation of organic 

residues in to soil, combined with appropriate management (e.g. timely sowing, 

weeding and harvesting) may provide entry points towards food production 

intensification (Aune and Bationo 2008; Branca et al. 2013). Further intensification 

can then be escalated when some capital is accumulated to invest. For example, 

adding organic amendments to soil (compost or animal, and green manures) and 

increasing legume densities in to crop rotations can re-establish soil health in the 

medium to long term (Aune and Bationo 2008; Branca et al. 2013).  

Agricultural intensification of small-holder farming systems is important for 

addressing the related challenges of increasing food security and self-sufficiency in 

developing countries. In industrialised countries, the priority is to increase ecological 

sustainability, so that there are no environmental repercussions (either locally or 

globally) that further constrain future food production. Hence, food security is a 

global challenge that requires appropriate technologies and practices that can 

synergistically bring both intensification and environmental sustainability to current 

agrosystems. 

1.2 Model crops: Barley (Hordeum vulgare L.) 

1.2.1 Barley as a worldwide crop 

Barley is the fourth most produced cereal in the world after maize, rice and wheat 

(FAOSTAT, 2018). Its production takes up 48 million hectares distributed across 

more than 100 countries and yields over 141 million tonnes (FAOSTAT, 2018). 

Barley is considered to be a highly resilient crop compared to most other small 

grains, and can adapt to extreme temperatures, poor soils, salinity and drought 

(Newton et al. 2011; Gürel et al. 2016), hence, it is one of the most widely distributed 

crops in the world. It is cultivated in the temperate maritime climate of the UK & 

Ireland, semi-arid regions of Ethiopia and the arid conditions of the Middle East, as 

well as at the high altitude of Tibet or high latitude of Iceland (Newton et al. 2011; 

Kishore et al. 2016).  
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About 70 % of barley production is used for animal feed and 21 % for the malting, 

brewing and distilling industries (FAOSTAT, 2018). Although the use of barley for 

human consumption only represents about 6 % of the total production, this is 

important for providing food security for some of the most marginalised people 

(FAOSTAT, 2018). Apart from some marginal use that remains in northern Europe, 

barley grain for human consumption is confined to people in the least developed 

areas of the world where it is used as staple food, whilst the remaining straw after 

harvest is used to feed livestock (Forster et al. 2004; Kishore et al. 2016). The 

adaptability of barley to environmentally stressed conditions makes it the preferred 

choice among farmers of developing countries as it ensures more yield stability than 

other grain cereals (Forster et al. 2004; Newton et al. 2011). 

1.2.2 Barley physiology: growth stages and leaf number terminology 

The developmental stages of barley plants, from germination to maturity, are 

commonly described using Decimal Code system keys known as the Zadoks 

decimal scale (Figure 1.1) (Tottman et al. 1979). Following germination, seedling 

emergence concludes when the coleoptile emerges from the soil surface (GS10). 

The first four leaves emerge relatively quickly, each one unfurling from the sheath 

of the previous one, in the order that they were pre-formed in the seed embryo (leaf 

primordia) (Slafer et al. 2009; Kennedy 2015). The formation of the top four leaves 

will start with stem elongation (GS31) and end when the flag leaf blade is visible 

(GS39) (Figure 1.2); crop protection strategies are mainly focused on preserving 

these four leaves (Blake et al. 2016).  

After the development of the first three leaves, a number of tillers (side-

shoots/branches) begin to emerge from the axils of the basal leaves of the main 

stem (GS21), and secondary tillers may emerge from the axils of the basal leaves 

of the primary tiller stems (Kennedy 2015). At some point just after floral initiation, 

the number of tillers typically reaches its maximum, and then decreases rapidly 

before ear emergence. 
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Figure 1.1. Major barley phenological events. Numbers in brackets correspond to 

growth stages (GS) according the Zadoks decimal scale. Image sourced from Royo 

and Villegas (2011) and diagram adapted from Sreenivasulu and Schnurbusch 

(2012). 

 

Figure 1.2. Leaf designations. Image sourced from AHDB Cereals & Oilseeds 

(2015). 

The concurrence of tillering with stem elongation represents a point of major 

sink-based competition for assimilates, with the development of the youngest tillers 

sometimes aborting in response to the resources available (García del Moral et al. 
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1984). The canopy size (green area) of each plant is determined by the number and 

expansion of the individual leaves associated with the main shoot and all the tillers.  

The appearance of the spikelet primordia (‘double ridge’) is the first visible sign 

of the initiation of the reproductive phase (Sreenivasulu and Schnurbusch 2012). 

Spikelet production and differentiation typically continues until awns are visible in 

the developing ear (GS49) marking the transition to the late reproductive phase. 

During the late reproductive phase, florets develop and differentiate culminating in 

grain set. However, many florets will abort before grain set due to competition for 

assimilates associated with sink strength, e.g., during stem extension (Sreenivasulu 

and Schnurbusch 2012; Kennedy 2015). 

Anthesis, also known as flowering, is followed by a period of cell division and 

rapid water accumulation in the grain endosperm (grain set) (Nicolas et al. 1985). 

Subsequently, water accumulation stabilises and gives way to a profuse increase in 

dry matter corresponding to the deposition of starch (grain filling) (Slafer et al. 2009; 

Kennedy 2015). Leaf and ear post-anthesis photosynthesis, and remobilisation of 

stem reserves supply the demands of assimilates of the growing grains (Serrago et 

al. 2013). After grain filling, dry matter content increases at a lower rate and water 

content decreases sharply (grain ripening) (Slafer et al. 2009). This loss of water 

prepares the seed to enter into a quiescent state which marks the end of grain 

growth (Bewley et al. 2013). 

From a yield viewpoint, the barley cycle can be simplified into two major 

characteristic phases. The first one incorporates emergence to anthesis and sets 

the structures for resource capture (canopy) and grain formation (potential grain-

bearing tillers). The second phase, goes from anthesis to ripening and centres on 

the production of photoassimilates and mobilisation of reserves to the grain (Nicolas 

et al. 1985; Newton et al. 2011). Accordingly, it is understood that the former phase 

determines the number of grains per m2 whereas the second phase determines the 

grain weight; both of these parameters together form the grain yield. 

1.2.3 Barley pathogens 

Biotic stresses are mostly represented by pests, weeds, fungal and viral 

infections  that can cause severe yield losses in barley (Oerke and Dehne 2004). 
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Among these threats, fungal pathogens constitute the biggest share, whose control 

heavily depends on non-sustainable fungicide mixtures (Oerke and Dehne 2004; 

Walters et al. 2012). Some of the most economically important barley pathogens 

and their characteristic symptoms are summarised in Table 1.1 and Figure 1.3.  

1.3 The seed  

1.3.1 Seed germination  

Seed germination can be defined as the processes that begins with the uptake 

of water by the dry seed and ends when either the coleorhiza (in monocots plants) 

or the radicle (in dicotyledons) protrudes from the seed coat (Bewley et al. 2013). 

To initiate this process, imbibition must first take place under adequate conditions 

of humidity, temperature, oxygen and light. During the process of germination, the 

seed transitions from a predominantly anaerobic metabolism to an aerobic 

metabolism that finalises with the emergence of the radicle tissue, marking the 

competition of the germination sensu stricto and the initiation of the seedling growth 

(Bewley et al. 2013). The dynamic of water uptake by the seed typically describes 

a triphasic pattern under optimal conditions. Dry seeds typically have a moisture 

content between 5-15 %, a very negative water potential (between -50 and -350 

MPa), and almost no metabolic activity (Bewley et al. 2013). 

During the first few hours, water moves from the substrate (e.g., soil) towards 

the interior of the seed driven by the difference in water potential (phase I). This is 

an intense and rapid process that occurs even in dormant or non-viable seed 

(Bewley et al. 2013). In the next phase (phase II) water absorption occurs very 

slowly. The production of osmotically active substances in the cells (e.g., sugars, 

amino acids, and potassium ions) allows the continual accumulation of water in the 

endosperm. In the last period of phase II, activation of proton pumps allows further 

moisture gain and cellular expansion. This phase ends with the appearance of the 

radicle (phase III) (Bove et al. 2002).  
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Table 1.1. Common fungal diseases of barley. 

Disease name Scientific name Trophic relationship Epidemiological conditions Yield lossesa Reference 

Scald or 

rhynchosporium 

Rhynchosporium 

commune 

Hemibiotroph Wet and cool conditions Up to 45 % and grain 

quality reductions 

Avrova and 

Knogge (2012) 

Powdery 

mildew 

Blumeria graminis f.sp. 

hordei 

Obligate biotroph Warm and high humidity Up to 20 % Dreiseitl (2014) 

Ramularia leaf 

spot 

Ramularia collo-cygni Endophyte to necrotrophic Wet weather, prolonged 

leaf wetness 

Up to 30 % and grain 

quality reductions 

Walters et al. 

(2008) 

Net blotch Pyrenophora teres f. teres 

and P. teres f. maculate 

Necrotroph (f. teres) and 

hemibiotroph (f. maculate) 

Cool, wet and humid 

weather 

Up to 40 %  Liu et al. (2011) 

Yellow rust Puccinia striiformis Obligate biotrophic Cool and wet Up to 30 % Brown et al. 

(2001) 

aEstimated yield losses in susceptible cultivars based on published information. 

 

Figure 1.3. Characteristic disease lesions of a) rhynchosporium, b) powdery mildew, c) ramularia leaf spot, d) net blotch and e) 

yellow rust. Pictures c) and d) sourced from Bayer UK (https://cropscience.bayer.co.uk/threats/diseases/cereal-diseases/).

https://cropscience.bayer.co.uk/threats/diseases/cereal-diseases/
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In phase III, rapid water absorption is reactivated, which is helped by the splitting 

of the integument that surrounds the seed. Morphologically, this is a phase of active 

growth of the radicle and also gives rise to the appearance of the cotyledon(s), which 

ultimately concludes the emergence of the new seedling. Storage reserves are 

actively mobilised from the endosperm to the cotyledon(s) to ensure the 

establishment of the new seedling. If imbibition is interrupted during phase II, the 

seed can be dried back to its original moisture without damage; however, phase III 

is irreversible. The duration of each phase varies widely depending on the species 

and seed characteristics (e.g., size, content of hydratable substrates, permeability 

of the seed coat), as well as external conditions such as temperature, moisture 

content or the composition of the soil. 

1.3.2 Seed priming 

At sowing, seeds encounter a number of physical constraints in the seedbed, 

such as soil crusting and insufficient water content; and biotic stresses, such as 

prolonged exposure to soil-borne pathogens that endanger crop establishment 

(Finch-Savage and Bassel 2016; Lamichhane et al. 2018). In this environment, rapid 

germination and uniform emergence are crucial for the successful establishment of 

the vulnerable seed (Ashraf and Foolad 2005). Seed priming is a pre-sowing 

treatment consisting of hydrating seeds to trigger the initiation of germinative 

metabolism (phases I and part of phase II) but preventing the completion of 

germination (phase III) (Figure 1.4) (Paparella et al. 2015). This allows preservation 

of desiccation tolerance so that seeds can be stored until sowing. When primed 

seeds are sown, the imbibition and lag phases pass more rapidly, increasing the 

likelihood of successful establishment. Among other strategies, seed priming can 

be an effective agronomic practice to enhance establishment under numerous 

stresses such as salinity, drought or suboptimal temperatures (Paparella et al. 2015; 

Ibrahim 2016; Wojtyla et al. 2016). 
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Figure 1.4. Schematic representation of the three different physiological phases of 

metabolism that occur during seed germination. Sourced from Bewley et al. (2013). 

Many different methods for priming seeds have been developed (Table 1.2), 

which are classified depending on the media used and the way radicle protrusion is 

prevented. Irrespective of the priming method employed, the most commonly 

reported benefits from this practice are hastened and synchronous emergence 

(especially when sown under suboptimal temperatures), and often provide other 

benefits such as improved vigour or increased competitiveness against weeds and 

pathogens (Ashraf and Foolad 2005; Paparella et al. 2015; Lutts et al. 2016). 

Priming methods can be further improved by adding additional agents to the priming 

medium such as macro/micronutrients (‘nutripriming’), beneficial microorganisms 

(‘biopriming’), hormones (‘hormopriming’) or disinfectants (‘chemopriming’) (Ashraf 

and Foolad 2005; Paparella et al. 2015).
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Table 1.2. A summary of seed priming methods based on published information. 

Seed Priming type Method  Prevention of radicle 

emergence 

Medium Control 

temp. 

Aeration Dryinga Costb Waste generated 

/ health hazardsc 

Reference 

Hydropriming Seed immersion 

in free water 

Insufficient soaking 

time  

Water Yes/no Yes/no 

 

RD 

 

++/+ None / none Ashraf and 

Foolad (2005) 

‘On-farm’ seed priming 

(Hydropriming) 

As above As above Water  

 

No No SD - As above  Harris (2006) 

Osmopriming Seed immersion 

in osmotically 

negative solutions 

Limited imbibition  PEG, 

mannitol 

 

Yes 

 

Yes 

 

RD 

 

+++++ 

 

Disposal of 

osmotic solutions 

/ none 

Ashraf and 

Foolad (2005) 

Halopriming 

(Osmopriming) 

As above As above Inorganic 

salts 

Yes Yes RD ++++ As above Parera and 

Cantliffe (1994) 

Solid matrix priming Seed incubation 

in wet substrate 

Limited water 

available  

Vermiculite, 

calcinated 

kaolin 

Yes Yes/no RD +++ Disposal of 

matric material / 

fine dust 

Parera and 

Cantliffe (1994) 

Drum-priming Seed incubation 

in rotating drums 

Insufficient moisture 

available 

Water 

vapour 

Yes Yes/no RD +++ None / none 

 

Rowse (1996) 

Drum-priming  

(with water) 

As above Insufficient water 

available 

Water  Yes Yes/no RD ++ As above Ashraf and 

Foolad (2005) 

aDrying after treatment: SD, surface dried, RD, re-dried to original moisture. 
bPriming medium, aeration equipment and energy for controlling temperature, removing priming medium from seeds and seed drying system costs: scale 
from very costly to marginal cost (+++++, ++++, +++, ++, +, -). 
cWaste generated or health hazards derived from performing the priming activity. 
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With the exception of hydropriming, the methods shown in Table 1.2 are 

commercially performed by seed companies with highly specialised equipment and 

customised protocols for each species and cultivar. However, due to the high costs 

associated with these technologies, seed priming is mostly restricted to expensive 

horticultural and flower seeds and not routinely performed for cereal grains despite 

their known benefits (Farooq et al. 2008; Paparella et al. 2015). Although 

hydropriming methods can deliver similar or even better benefits than the other 

methods of seed priming (e.g., Caseiro et al. (2004); Farooq et al. (2008); Sharma 

et al. (2014)), they are not routinely carried out in commercial settings. The intense 

hydration of this method may cause osmotic shock and lead to uneven priming 

effects and is thus, not up to the high standards of the seed industry.  

1.4 ‘On-farm’ seed priming in the developing world 

‘On-farm’ seed priming differs from other priming strategies as it simply consists 

of soaking seeds in water for a number of hours (usually overnight), and so only 

water and a receptacle are needed (Harris 2006). Seeds are subsequently surface 

dried (to allow limited storage) and sown soon after. The seed remains partially 

hydrated so that it can attenuate the effects of a drying seedbed and, subsequently, 

reduce the risk of crop failure. The affordability and simplicity of this method can 

bring the benefits of seed priming technology to farmers, and has been named “on-

farm” seed priming to differentiate it from the energy-intensive commercial seed 

priming methods (Harris et al. 1999).  

‘On-farm’ seed priming qualifies as one more effort within a set of measures with 

barely no financial cost, such as the smart-use of farmyard manure or water 

harvesting systems, and could contribute as a first step for intensifying agriculture 

and, subsequently, food security in rain-fed systems of developing countries (Aune 

and Bationo 2008). Much social-scientific work has been carried out over the past 

20 years to develop and promote the adoption of ‘on-farm’ seed priming among 

smallholder farmers of marginal areas of south Asia and southern Africa (Harris et 

al. 1999, 2001b, a; Musa et al. 2001; Virk et al. 2006), which can be split into two 

distinct fields of research. The first one is primarily focussed on fundamental 

research for the determination of the ‘safe limits’, the soaking duration to ensure the 

radicle does not emerge before sowing, and therefore takes into account potential 
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unforeseeable delays in sowing (Harris 2006). These ‘safe limits’ have been 

obtained through in-vitro (germination and seedling testing) and research-managed 

field trials for the most common tropical and sub-tropical crop species (Harris 2006). 

The second field of research has focussed on implementation and dissemination of 

‘on-farm’ seed priming in subsistence agriculture of the most marginal areas of the 

world (Harris et al. 1999, 2001b, a; Musa et al. 2001; Virk et al. 2006). This work 

has included ‘know-how’ workshops and participatory farmer-led trials for 

implementation and, surveys and focus group discussions for gathering farmers’ 

impressions and promoting dissemination among them (Harris et al. 1999, 2001b). 

The results from this participatory work have generally shown a positive response 

from farmers as ‘on-farm’ seed priming was perceived as an effective intervention 

to prevent crop failure (Harris et al. 2001a). The most commonly reported benefits 

were earlier emergence and higher yields, but also other indirect benefits such as 

improved competition with weeds, due to more complete establishment; or more 

straw production, which can be used for animal feed (Harris et al. 2001a, b). 

Despite a number of positive reports, ‘on-farm’ seed priming adoption and 

dissemination have been discontinued (Harris et al. 1999; Sime and Aune 2018). A 

lack of support from policymakers and institutions (e.g., extension systems) and 

ending participatory programs before the technique is thoroughly taken up by social 

networks have been identified as the major impediment to greater uptake (Sime and 

Aune 2018). At a practical level, the lack of adequate information about ‘on-farm’ 

seed priming has also discouraged its use (Sime and Aune 2018). Among farmers 

who have used the technique, there are reports of using soaking times below the 

‘safe limits’, or being unaware of the ‘safe limits’ and, therefore, local farmers have 

had varying degrees of success with this technology (Harris et al. 1999, 2001a; 

Rashid et al. 2006; Virk et al. 2006). Some farmers have soaked seed before sowing 

(not necessarily aware of the concept of seed priming), but only under adverse 

circumstances, e.g. especially dry years, or when re-sowing in an effort to try and 

‘catch up’ with the rest of the crop (Harris et al. 1999, 2001a). Therefore, in the 

places where it could be most useful, ‘on-farm’ seed priming is currently being 

underexploited by resource-poor farmers. 

Given the increasingly unpredictable weather in temperate climates and 

escalating demand for sustainable intensification measures, it is conceivable that 
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‘on-farm’ seed priming may also be of use in conventional or organic agriculture of 

the developed world. Currently, ‘on-farm’ seed priming has not been adopted in 

Europe, where growers mainly use non-primed seeds, or seed priming technologies 

that are both energy-intensive and expensive for high value seeds. Therefore, there 

is a need to determine whether ‘on-farm’ seed priming can fill the gap for lower value 

seeds such as grains and intensify cereal production in a European context. 

Importantly, there is evidence that crops grown from ‘on-farm’ seed primed seeds 

can exhibit a certain degree of disease resistance (Musa et al. 2001; Rashid et al. 

2004a; Harris et al. 2005). Thus, given the dependence of European agriculture on 

pesticides to control crop disease, the benefit of ‘on-farm’ seed priming for 

conferring tolerance or resistance could be incorporated into a more sustainable 

integrated disease management strategy. 

1.5 Research rationale, aims and objectives 

There is an urgent need to intensify food production systems globally in order to 

tackle world hunger. Central to this need is the requirement to reduce our reliance 

on synthetic agronomical inputs, and this can only be achieved through integrating 

inexpensive SI strategies into current agricultural systems. Seed germination and 

emergence are the most vulnerable stages in the crop cycle so that sustainable 

strategies with potential to alleviate unfavourable seedbed conditions are crucial to 

ensure that yield potential is not restricted early in the season. Industrial seed 

priming is an effective strategy, but its high economic and resource cost is a major 

drawback. ‘On-farm’ seed priming offers a low-cost alternative; however, it is 

commonly underused in the developing world, and it has never before been 

evaluated in conventional European agriculture where there may exist opportunities 

for its exploitation. 

 Therefore, the overarching aim of this thesis is to determine the potential 

contribution of ‘on-farm’ seed priming to increase food production in the developing 

world, and to assess the effectiveness of ‘on-farm’ seed priming to sustainably 

intensify barley production in conventional agricultural systems of the UK and 

Europe. 

This aim will be addressed through the following objectives: 
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1. Quantify the potential of ‘on-farm’ seed priming to increase crop production 

relative to current farmers’ practices in the developing world. These findings 

will provide governmental institutions and policymakers in developing 

countries with the evidence needed to promote widescale adoption (Chapter 

2). 

 

2. Develop methods for optimisation of ‘on-farm’ seed priming of barley. These 

findings will allow rapid and economic optimisation and, thus, a fuller 

exploitation of ‘on-farm’ seed priming (Chapter 3).  

 

3. Determine whether ‘on-farm’ seed priming can intensify spring barley 

production in conventional systems. These findings will allow an assessment 

of the potential for exploitation of ‘on-farm’ seed priming in conventional 

agricultural systems of Europe (Chapter 4). 

 

4. Assess whether ‘on-farm’ seed priming can enhance host defences of winter 

barley in a European conventional agricultural system. These findings will 

provide data for the incorporation of ‘on-farm’ seed priming into a more 

sustainable integrated disease management strategy (Chapter 5). 
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Chapter 2: Quantifying the potential of ‘on-farm’ seed 

priming to increase crop performance in developing 

countries 
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Quilliam RS (2018) Quantifying the potential of ‘on-farm’ seed priming 

for increased crop performance in developing countries. A meta-
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2.1. Abstract 

Low-input agriculture in marginal areas of developing countries faces 

considerable challenges during crop development. A key stage in crop growth is 

seed germination, which is often constrained by abiotic factors such as low water 

potential, high temperatures and soil crusting, which can result in poor 

establishment. This is exacerbated by low soil fertility, salinity, drought, pests and 

diseases, which ultimately leads to reduced yields. Over the last 20 years, the 

potential of ‘on-farm’ seed priming, a traditional, low-cost technique, consisting of 

soaking seeds in water prior to sowing, has been applied to different crops and 

conditions with varying degrees of success. To understand the significance of this 

potentially transformative agronomic strategy, we have conducted a global meta-

analysis of on-farm seed priming by quantifying (i) the rate of emergence, (ii) final 

emergence and (iii) total yield from 44 published papers on 17 crops across 10 

countries. Our results show that on-farm seed priming has a significantly positive 

effect on crop performance: seeds emerge 22 % faster, with an increased final 

emergence of 11 %, with total yields 21 % higher than conventionally sown seeds. 

Furthermore, sub-group analyses demonstrated that on-farm seed priming is more 

advantageous under stressful abiotic conditions with case studies categorized as 

being either ‘nutrient deficient’, ‘salinity-stressed’ or ‘dry climates’ gaining the 

highest yield improvements (22 – 28 %). On-farm seed priming can be particularly 

beneficial to resource-poor farmers working in low-input agricultural systems where 

yield potential is limited by intrinsically stressed agronomic environments. Here, we 

demonstrate for the first time that on-farm seed priming is perfectly adapted to local 

situations in developing countries. Our results provide the evidence that on-farm 

seed priming could be effectively adopted by resource-poor farmers as a strategy 

to increase food security in some of the most marginal agricultural areas. 

2.2. Introduction 

Low-input agriculture in marginal and semi-arid areas of developing countries 

encounters many challenges that limit yield potential and thus restricts food security 

(Tittonell and Giller 2013; Aune et al. 2017). This is further intensified by predicted 

climate change scenarios such as increasingly unpredictable rainfalls and extreme 
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temperatures (Knox et al. 2012). For example, in semi-arid agricultural systems, 

important physical constraints in the seedbed, such as low water potential and soil 

crusting, have frequently been identified as the most significant issues for successful 

crop establishment (Townend et al. 1996; Tisdall 1996; Nabi et al. 2001; Passioura 

and Angus 2010). Tillage, fertilizers and amendments of the seedbed, together with 

timely irrigation, may ameliorate some of these constraints, although are often 

unaffordable or not accessible to smallholder farmers (Chianu et al. 2012; Tittonell 

and Giller 2013; Tonitto and Ricker-Gilbert 2016). Therefore, inexpensive and 

sustainable strategies with the potential to alleviate unfavourable conditions and 

reduce input (e.g., cover crops, water harvesting or organic fertilizer) are becoming 

more relevant for ensuring food security in semi-arid agro-ecosystems (Branca et 

al. 2013).  

Over the past three decades, there has been a renewed interest in a traditional 

agronomic technique known as ‘on-farm’ seed priming, in part because of its 

simplicity and low-cost (Murungu et al. 2004a; Rashid et al. 2006). ‘On-farm’ seed 

priming is a form of hydro-priming, which consists of soaking seeds in water for a 

number of hours, usually overnight, surface drying them (to allow limited storage) 

and sowing soon after (Figure 2.1) (Harris 1996). Prior soaking of seeds in water 

decreases the time needed for seed imbibition in the soil after sowing; thus, ‘on-

farm’ seed priming shortens the exposure of the seed to adverse soil conditions 

such as limited soil moisture (Harris et al. 2001a). ‘On-farm’ seed priming technology 

has been tested in a wide variety of crops and environmental conditions, and has 

been extensively developed through participatory trials with local farmers (Harris et 

al. 1999; 2001a; Rashid et al. 2006). Reports from participatory workshops and 

research-managed trials have largely agreed that crops grown from on-farm primed 

seeds emerge faster, obtain higher plant density and vigour, reach flowering and 

harvest more rapidly, and ultimately, result in higher yields compared with non-

primed crops (Harris 1996; Harris et al. 1999; 2001a; 2001b; Murungu et al. 2003, 

2004b; Farooq et al. 2008). However, the extent of these benefits varies widely even 

under similar contexts; for example, yield improvement of chickpea ranged from 25 

to 67 % and 4 to 35 % in two different villages in India  (Harris et al. 1999). There 

have also been cases where soaking seeds has turned out to be counterproductive, 
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e.g., for cotton (Murungu et al. 2004b), barley (Rashid et al. 2006), pearl millet (Aune 

and Ousman 2011) and sesame (Ousman and Aune 2011).  

 

Figure 2.1. ‘On-farm’ seed priming steps carried out with maize seeds in Kenya: a) 

Pouring seeds into buckets, b) soaking seeds, and c) and surface drying after 

priming. d) Effect on emergence of wheat in Pakistan: non-primed (left) vs. primed 

(right). (Photos courtesy of H. Wainwright and A. Rashid). 

The most important aspect of ‘on-farm’ seed priming is the duration of the 

soaking, which must be calculated for each crop species, and even for each variety 

or cultivar of crop (Harris 2006). Exceeding a ‘safe limit’ of soaking will trigger 

premature germination, which could lead to damage of the radicle during sowing, or 

if seeds are left in the priming water for too long, or not surface dried properly, they 

will begin to rot (Harris 2006). Although farmers have some knowledge of the 

advantages of soaking seeds prior to sowing (Harris et al. 1999, 2001a), it is often 

only carried out on seeds for re-sowing in order to ‘catch up’ with the rest of crop 

and is rarely used as a routine practice. In general, farmers who have used on-farm 

seed priming are unaware of safe limits and therefore have had varying degrees of 

success or failure with this method (Harris et al. 1999, 2001a).  
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To date, only narrative reviews about on-farm seed priming have been published 

(Ashraf and Foolad 2005; Harris 2006); therefore, a more systematic approach, 

such as meta-analysis, is needed to quantitatively review this simple technology in 

terms of increased crop establishment and production. Meta-analysis is a powerful 

synthesis tool that is being increasingly adopted in agro-ecological disciplines (e.g. 

Tonitto and Ricker-Gilbert 2016), and using this approach will allow a large number 

of independent on-farm seed priming case studies to be objectively analysed across 

different crop types and environments. A better understanding of the potential of on-

farm seed priming, and in which environments it could be most usefully promoted, 

could provide governmental institutions and policymakers in developing countries 

with the evidence to promote its adoption as recommended practice. Therefore, the 

overarching aim of this chapter was to quantify the effect of ‘on-farm’ seed priming 

compared to conventional sowing and identify the context where it can best be 

applied. Specifically, our objectives were to quantify the effect of ‘on-farm’ seed 

priming on crop performance (speed of germination, final emergence and yield) and 

evaluate the impact of climate, crop type and common yield-limiting factors on the 

final outcome of crops grown from on-farm primed seed. 

2.3. Material and methods 

2.3.1. Sources of data 

A literature search was carried out in ‘Web of Science Core Collection’ on 15 

November 2017 using the key-words: ‘on farm seed priming’, ‘on station seed 

priming’, ‘pre-sowing seed soak*’ or ‘hydro*priming’, which resulted in a total of 293 

articles. Titles and abstracts were screened and unrelated papers, or studies 

focussed on tree seeds were discarded. The full text of the remaining papers was 

examined and had to meet the following criteria: (1) The study had to contain a dry 

seed sample (control) and primed seed samples (treatment) consisting of seeds 

submerged in water with no additional oxygenation, and (2) seeds had to be surface 

dried or partially dried after priming (maximum air-drying duration of less than 24 h). 

Artificial drying methods such as ovens or air-conditioned cabinets and seeds re-

dried to their original moisture, regardless of the methods used, were not included. 

Other priming strategies, e.g. seeds placed between filter paper and saturated jute 

mat, were also excluded due to the confounding effects of matric potential. We 
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excluded 141 articles that did not match these requirements. In addition, studies 

performing other types of seed treatments (19), not containing or missing data (15), 

lacking or giving ambiguous description of priming (8) and reviews (5) were 

excluded, and a further 23 papers without full-text, and five more because the same 

data had been used in several publications, were also excluded. Six additional 

papers were identified in the reference list of one of the selected papers, which gave 

a total of 44 valid papers available for meta-analysis (Table 2.1). 

For each publication, three variables were recorded for both control and primed 

treatments: (i) final emergence, (ii) time to 50 % emergence and (iii) yield (i.e. the 

most common unit of yield for each crop, e.g. grain for cereals, pods for legumes) 

giving three datasets. The mean and the number of paired observations (n) 

contributing to that mean value were recorded, e.g. the experimental design of 

(Harris et al. 2005) consisted of two cultivars of chickpea with three replications 

during two seasons, i.e. n = 12. When available, standard deviation (SD), standard 

error (SE) or standard error of the difference in mean (SED) were also collected as 

a measure of the variance. Mean and variation values from published graphs were 

extracted taking a snapshot of the figure and scaling the axes with WebPlotDigitizer 

Version 3.10 (Rohatgi 2010) to obtain numerical values. In addition to the statistical 

data, any characteristics that may have influenced the outcome of the priming 

treatment and thus could potentially explain heterogeneity in effect size (moderator 

variables) were also recorded. 
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Table 2.1. Data sources reviewed in the meta-analysis. E50: time to 50 % emergence. FE: final emergence. 

Author Journal Country Crop Response 
variables 

Study 
type 

Yield-limiting 
factora 

Climate 
zonea 

Abdalla et al. (2015) Agronomy-Basel 5 (4):476–490 Sudan Sorghum, 
groundnut, 
sesame, and 
cowpea 

FE and yield Field Nutrient-
stressed 

Semi-arid 

Abro et al. (2009) Pak J Bot 41 (5):2209–2216 Pakistan Wheat E50 and yield Field Salinity Arid 

Ahmad et al. (2013) Int J Agric Biol 15 (4):791–794 Pakistan Rice E50, FE, and 

yield 

Field Non-stressed Arid 

Ali et al. (2013) Turk J Agric For 37 (5):534–544 Pakistan Wheat FE and yield Field Non-stressed Arid 
Ali et al. (2008) Aust J Crop Sci 2 (3):150–157 Pakistan Wheat and 

maize 
Yield Field Non-stressed 

and nutrient-
stressed 

Semi-arid 

Anwar et al. (2013) Pak J Bot 45 (1):157–162 Pakistan Rice FE Lab and 
field 

    

Ashraf et al. (2003) Agronomie 23 (3):227–234 Pakistan Pearl millet E50 and FE Lab     

Aune and Ousman (2011) Exp Agr 47 (3):419–430 Sudan Sorghum and 
pearl millet 

FE and yield Field Nutrient-
stressed 

Arid 

Aune et al. (2012) Outlook Agr 41:103–108 Mali Sorghum and 
pearl millet 

Yield Field Nutrient-
stressed 

Semi-arid 

Basra et al. (2011) Int J Agric Biol 13 (6):1006–1010 Pakistan Maize E50 and FE Pots     

Basu et al. (2014) Indian J Agr Sci 74 (6):311–315 Bangladesh Maize FE Field     
Chivasa et al. (2000) Tanzanian J. Agric. Sci: 3, 103–

112 
Zimbabwe Maize and 

sorghum 
E50 Pots     

Eyob (2009) J Med Plants Res 3 (9):652–659 Etiopia Korarima FE Pots     
Farooq et al. (2008) J Agron Crop Sci 194 (1):55–60 Pakistan Wheat E50 and yield Field Non-stressed Arid 

Farooq et al. (2017) Plant Physiol Bioch 111:274–283 Pakistan Chickpea FE Pots     
Fattahi et al. (2011) Hortic Environ Biote 52 (6):559–

566 
Iran Dracocephalu

m kotschyi 
Boiss 

E50 and FE Pots     

Finch-Savage et al. 
(2004) 

Field Crop Res 90 (2–3):361–374 UKb Maize E50 and FE Lab and 
pots 

    

Ghassemi-Golezani et al. 
(2008) 

Research Journal of Seed 
Science 1 (1):34–40 

Iran Chickpea FE and yield Field Non-stressed Semi-arid 
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Table 2.1. Continued. 

Author Journal Country Crop Response 
variables 

Study 
type 

Yield-limiting 
factora 

Climate 
zonea 

Harris (1996) Soil and Tillage Research 40 (1–
2):73–88 

Botswana Sorghum E50 and FE Lab and 
field 

  

Harris et al. (2005) Aust J Agr Res 56 (11):1211–
1218 

India Chickpea Yield Pots     

Harris et al. (1999) Exp Agr 35 (1):15–29 India Chickpea Yield Field Nutrient-
stressed 

Semi-arid 

Harris et al. (2001a) Agr Syst 69 (1–2):151–164 India Maize Yield Field Nutrient-
stressed 

Semi-arid 

Harris et al. (2001b) Exp Agr 37 (3):403–415 India, 
Nepal and 
Pakistan 

Wheat E50 and yield Lab and 
field 

Non-stressed, 
nutrient-
stressed, and 
salinity 

Temperate, 
tropical, and 
arid 

Harris et al. (2007) Field Crop Res 102 (2):119–127 Pakistan Maize Yield Field Nutrient-
stressed 

Semi-arid 

Harris et al. (2008) Plant Soil 306 (1–2):3–10 Pakistan Wheat and 
chickpea 

Yield Field Nutrient-
stressed 

Semi-arid 

Iqbal and Ashraf (2005) J Integr Plant Biol 47 (11):1315–
1325 

Pakistan Wheat Yield Field Non-stressed 
and salinity 

Arid 

Iqbal and Ashraf (2010) J Agron Crop Sci 196 (6):440–454 Pakistan Wheat FE and yield Lab and 
field 

Non-stressed 
and salinity 

Arid 

Islam et al. (2015) Acta Physiol Plant 37 (8) Pakistan Wheat E50, FE, and 

yield 

Pots Non-stressed 
and salinity 

Arid 

Khanal et al. (2004) Proc Micronutr South and South 
East Asia, Kathmandu, Nepal, pp 
121-132 

Nepal Chickpea FE and yield Field Nutrient-
stressed 

Temperate 

Kumar et al. (2002) Int Sorg Mill Newsl 43(1),:90–92 India Finger millet Yield Field Non-stressed Temperate 
Mani et al. (2013) J Agrometeorol 15 (2):138–141 India Wheat Yield Field Non-stressed Semi-arid 
Marwat et al. (2007) Pak J Bot 39 (5):1583–1591 Pakistan Maize Yield Field Nutrient-

stressed 
Semi-arid 

Murungu et al. (2004b) Exp Agr 40 (1):23–36 Zimbabwe Maize and 
cotton 

E50, FE, and 

yield 

Field Non-stressed Semi-arid 
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Table 2.1. Continued. 

Author Journal Country Crop Response 
variables 

Study 
type 

Yield-limiting 
factora 

Climate 
zonea 

Murungu et al. (2004a) Field Crop Res 89 (1):49–57 Zimbabwe Maize E50 and FE Field     

Murungu and Madanzi 
(2010) 

Afr J Agr Res 5 (17):8 Zimbabwe Wheat E50 and FE Field     

Musa et al. (2001) Exp Agr 37 (4):509–521 Bangladesh Chickpea FE and yield Field Non-stressed Tropical 
Neamatollahi et al. (2009) Not Bot Horti Agrobo 37 (2):190–

194 
Iran Fennel FE Lab     

Ousman and Aune (2011) Exp Agr 47 (3):431–443 Sudan Groundnut, 
sesame, 
cowpea 

FE and yield Field Nutrient-
stressed 

Arid 

Rashid et al. (2004a) Crop Prot 23 (11):1119–1124 Pakistan Mungbean FE and yield Field Nutrient-
stressed 

Semi-arid 

Rashid et al. (2004b) Exp Agr 40 (2):233–244 Pakistan Mungbean E50, FE, and 

yield 

Field Nutrient-
stressed 

Semi-arid 

Rashid et al. (2006) Eur J Agron 24 (3):276–281 Pakistan Barley Yield Field Non-stressed, 
nutrient-
stressed, and 
salinity 

Semi-arid 

Rehman et al. (2011a) Int J Agric Biol 13 (5):786–790 Pakistan Rice E50 and yield Field Non-stressed Arid 

Rehman et al. (2011b) Turk J Agric For 35 (4):357–365 Pakistan Rice E50, FE, and 

yield 

Field Non-stressed Arid 

Virk et al. (2006) Exp Agr 42 (4):411–425 India Horsegram E50, FE, and 

yield 

Lab and 
field 

Nutrient-
stressed 

Temperate 

aData corresponding to response variable ‘yield’.  
bSimulating semi-arid climate conditions in cabinets. 
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If a single publication presented several case studies, the mean effect was 

calculated (in order to minimize within-study dependence); however, if the 

moderators differed then, they were considered as independent case studies in the 

meta-analysis (Koricheva et al. 2013). In cases where several priming outcomes 

had a common control, the total number of replications of the control group was 

divided by the number of treatments to avoid overweighting. If papers presented 

results that had been carried out by distinct groups, e.g. the design of some of the 

on-station trials, which included both researcher-led and farmer-led experimental 

and participatory trials, these data were considered as independent. Although these 

observations cannot be considered fully independent, this approach is commonly 

used in both plant biology and ecology meta-analyses and allows greater statistical 

power (Castagneyrol and Jactel 2012; Mayerhofer et al. 2013; Shrestha et al. 2016). 

The resulting dataset contained 129 case studies derived from 44 papers, which 

covered 17 crops across ten countries. 

2.3.2. Effect Size and Meta-Analysis 

The natural log response ratio (lnR) of the experimental mean divided by the 

control mean was used as metric of treatment effect (Hedges et al. 1999): 

𝑙𝑛𝑅 = ln (
𝑋𝑒

𝑋𝑐
)  

where 𝑋𝑒 and 𝑋𝑐 are the experimental and control mean. Given that more than 50 

% of the case studies did not provide a measure of variance, case studies were 

weighted using nonparametric variance (𝑉𝑙𝑛𝑅) (Adams et al. 1997): 

𝑉𝑙𝑛𝑅 =
𝑛𝑒 + 𝑛𝑐

𝑛𝑒 ∗ 𝑛𝑐
 

where 𝑛𝑒 and 𝑛𝑐 are experimental and control number of paired observations 

respectively. 

Bias-corrected bootstrapped 95 % confidence intervals based on 10,000 

iterations were calculated for overall effect sizes (Adams et al. 1997) and 

represented as a percentage change relative to controls (%), transforming them 

back by (exp(LRR) − 1 × 100) for easier interpretation, where LRR is the weighted 

summary effect size across case studies. Overall effect sizes were considered 
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significant when their confidence intervals did not overlap (Gurevitch and Hedges 

1999). 

A random effects model was chosen because of the high variation expected 

between studies due to the diversity of crops and environmental factors. In addition, 

the aim of this study was to obtain mean effects that can be generalized to different 

scenarios, which is best done with random effects models (Borenstein et al. 2009).  

To investigate the relationship between emergence and yield, pairs of effect 

sizes of ‘time to 50 % emergence’ and ‘final emergence’, and pairs of final 

emergence and ‘yield’ from the same case studies were analysed using time to 50 

% emergence and final emergence as moderators, respectively. The influence of 

each moderator was assessed with FM (test of moderator) by meta-regression using 

restricted maximum likelihood with Knapp-Hartung adjustment (Viechtbauer 2010; 

Inthout et al. 2014), assuming a fixed effect across levels and a random effect within 

levels (Borenstein et al. 2009). Given the importance of soil interactions, papers 

reporting laboratory-based experiments were omitted from these specific analyses. 

To further quantify the extent of yield benefits that can be ascribed to emergence, a 

hypothesized regression line where changes in final emergence are equal to 

increments in yield was compared against the weighted linear regression obtained 

from the meta-regression using linear hypothesis testing. 

All calculations were conducted with metafor (Viechtbauer 2010), car (Fox et al. 

2016) and boot packages (Canty and Ripley 2012) in R version 3.3.0 (R 

Development Core Team 2016). 

2.3.3. Moderator variables 

Sub-group analysis allowed further exploration of variables in terms of explaining 

variability and identification of possible trends (Borenstein et al. 2009). We 

considered levels within moderators to be significantly different from one another 

when their confidence intervals did not overlap (Gurevitch and Hedges 1999). 

The effect of climate on total yield was accounted for by categorizing papers as 

either ‘temperate’, ‘tropical’ or ‘dry’ according to the Köppen-Geiger climate 

classification (Kottek et al. 2006) (Table S2.1). Dry climates were further subdivided 
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into ‘semi-arid’ or ‘arid’ to account for potential evapotranspiration as a function of 

temperature and cycle of precipitation (Kottek et al. 2006). For this purpose, the 

high-resolution Köppen-Geiger climate world map (http://koeppen-geiger.vu-

wien.ac.at/present.htm) was loaded into Google Earth Pro (Wuthrich 2006) and the 

location of the case studies in each paper used to determine the climate group. 

When geographical coordinates were not reported, the location of the experimental 

station or the nearest city at which the study took place was used. 

Based on yield-limiting factors, three agronomic scenarios were commonly 

identified across the case studies and used for evaluation of on-farm seed priming 

on yield. The first scenario included case studies where crops were grown without 

major nutrient and water limitations. The second scenario contained case studies 

where crops were grown under rain-fed conditions and low soil fertility was identified 

as a major constraint (by authors stating that there were low levels of the main 

macronutrients or other known nutrient deficiencies in the area). The third scenario 

contained case studies where salinity was identified as the main constraint or when 

trials were designed to test the effect of salinity. These scenarios were named as 

‘non-stressed’, ‘nutrient deficient’ and ‘salinity stressed’, respectively. Case studies 

not mentioning or giving ambiguous descriptions about any of these factors were 

omitted for categorical analyses. 

2.3.4. Dataset overview 

Overall, our analysis comprised work conducted in 10 countries across the 

Middle East, South Asia and sub-Saharan Africa. The three most globally cultivated 

cereals, wheat (Triticum aestivum), maize (Zea mays) and rice (Oryza sativa), 

comprised 46 % of case studies, whilst 19 % of case studies included essential 

cereals common in semi-arid areas: sorghum (Sorghum bicolor), millet (Pennisetum 

glaucum and Eleusine coracana) and barley (Hordeum vulgare). Legumes, 

including chickpea (Cicer arietinum), mungbean (Vigna radiata), cowpea (Vigna 

unguiculata) and horsegram (Macrotyloma uniflorum), represented 21 % of the case 

studies. Cash crops, such as sesame (Sesamum indicum), cotton (Gossypium 

hirsutum) and groundnut (Arachis hypogaea), represented 11 % of case studies, 

and minor crops, fennel (Foeniculum vulgare), korarima (Aframomum corrorima) 

http://koeppen-geiger.vu-wien.ac.at/present.htm
http://koeppen-geiger.vu-wien.ac.at/present.htm
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and Dracocephalum kotschyi Boiss (the last two grown for their spice and medicinal 

properties) accounted for 3 % of case studies analysed. 

The dataset of time to 50 % emergence was mainly characterized by case 

studies using small-scale trials (three to four replications) testing the response of 

varieties or cultivars to on-farm seed priming and, to a lesser extent, different 

soaking durations. The growing conditions included field trials (46 %), pots trials (25 

%) and lab experiments (29 %); most case studies were carried out with monocots 

(83 %). The final emergence dataset encompassed small-scale trials and medium 

size trials repeated over two to three seasons. More than half of the case studies in 

this dataset were conducted in the field (61 %), with fewer laboratory (22 %) and pot 

trials (17 %). Monocot (56 %) and dicot species (44 %) were almost equally 

represented in this dataset. For the yield dataset (65 case studies), most of the 

experiments were conducted under field conditions (with only three pot trials), in 

both irrigated and in rain-fed plots. Over half of the case studies were carried out at 

research farms, commonly testing priming treatments on different cultivars or 

varieties over several seasons, averaging 15 experimental replications per study. 

The remaining 43 % of the case studies were mainly participatory trials carried out 

by local farmers following local practices and constraints. The average experimental 

replications for these case studies was 38, and the biggest study accounted for 108 

trials of wheat across the state of Guajarat in India (Harris et al. 2001b). 

2.3.5. Publication Bias and Sensitivity Analysis 

Studies showing negative results are less likely to be published; therefore, effect 

sizes in meta-analyses could be overestimated (Gurevitch and Hedges 1999). 

Consequently, indirect methods such as rank correlation tests and funnel plots of 

effect size vs. variance are commonly used to detect bias (Gurevitch and Hedges 

1999; Koricheva and Gurevitch 2014). We conducted Kendall’s tau test, where 

significant correlation between effect size and corresponding sample size would 

indicate asymmetry in the funnel plot and therefore, potential publication bias (Begg 

and Mazumdar 1994; Viechtbauer 2010). However, no significant relationship 

between effect size and increasing number of replicates for any of the three datasets 

in our analysis was seen (Table S2.2). We also performed ‘trim and fill’ funnel plots 
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to detect potential missing studies. The trim and fill method is a funnel-based test 

that imputes values that would compensate for the most extreme values in one side 

of the funnel (Duval et al. 2000). In our meta-analysis, trim and fill imputed 12 and 

15 potential missing case studies in time to 50 % emergence and yield datasets, 

respectively. In both cases, adjusted summary effects would further deviate from 

zero suggesting that our results may be conservative (Figure S2.1). 

Sensitivity analyses are also important to determine the robustness of the results 

(Koricheva and Gurevitch 2014). Leave-one-out meta-analysis, i.e. recalculating 

summary effect size omitting the study with highest effect size for each variable and 

observing the deviation introduced by this modification, was performed to test 

robustness of the summary effects. The removal of the study with largest influence 

in the yield dataset (Harris et al. 2001b) increased the summary effect by 1.42 %. 

The study with the largest influence on final emergence was Finch-Savage et al. 

(2004), whose removal changed the summary effect by 1.89 %. Lastly, the study 

with biggest impact on the time to 50 % emergence dataset was Harris et al. 

(2001b), and its removal decreased the overall effect size by 6.04 %. In conclusion, 

we did not find evidence of publication bias in our datasets, and although the time 

to 50 % emergence dataset presented some sensitivity, all three datasets were 

suitable for meta-analysis. 

2.3.6. Data availability 

The dataset generated and analysed during the current study is available in the 

Stirling Online Repository for Research Data repository as Electronic 

Supplementary Material 1 (ESM1) at http://hdl.handle.net/11667/123. 

2.4. Results and discussion 

2.4.1. ‘On-farm’ seed priming: an inexpensive technology for increased food 

security 

Our meta-analysis showed that on-farm seed priming has a significantly positive 

effect on crop performance, from nascence until harvest, relative to conventional 

(‘control’) seed sowing (Figure 2.2). Although there is substantial variation (ranging 

from − 36 to − 7 %), on-farm seed priming significantly decreases the time to 

http://hdl.handle.net/11667/123
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emergence by 22 % compared with non-primed seeds. On average, the number of 

plants emerged increased by 11 %. Ultimately, yields increased by 21 % compared 

with non-primed seeds, and only six out the 65 case studies reported negative 

effects on yield (ESM1). 

 

Figure 2.2. Summary analyses of the response of crops to ‘on farm’ seed priming. 

Numbers in parentheses indicate number of case studies. Error bars represent 

back-transformed 95 % bootstrap CIs. 

Improved crop performance following on-farm seed priming can have important 

implications for smallholders’ food production. Higher yield is often accompanied by 

higher straw biomass, which is especially remunerative in mixed crop-livestock 

systems. Enhanced plant density reduces costs and the labour needed for re-

sowing, and can also increase the willingness of farmers to invest in fertilizers, as 

the risk of plant stand failure is lower. Faster emergence typically results in plants 

reaching flowering and harvest stages earlier (e.g. by several weeks), giving farmers 

more labour flexibility, for example, by facilitating more optimal sowing for the 

subsequent crop or including an extra crop in rotation systems, or even by allowing 

migration for off-season work (Harris et al. 1999, 2001a; Virk et al. 2006). 

Furthermore, the benefits are not restricted to the traits accounted for in our data, 

as faster development combined with the improved vigour and more uniform 

emergence in crops from on-farm primed seeds may save labour allocated to 

weeding. Although it is tempting to suggest that these benefits may increase net 
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incomes, additional costs such as extra fertilizer or extra costs associated with 

harvesting, processing and storing greater yields, together with access to markets, 

will determine the final return from adopting on-farm seed priming. 

2.4.2. Relationships between early growth and yield on crops grown from ‘on-farm’ 

primed seeds 

To further investigate the relationships between rate of emergence, crop 

establishment and yield, we conducted separate analyses of the effect of time to 50 

% emergence on final emergence and the effect of final emergence on yield of crops 

from ‘on-farm’ primed seeds relative to non-primed. Final emergence versus time to 

50 % emergence showed that in general, quicker emergence conferred by on-farm 

seed priming relative to non-primed seeds produced a higher number of 

successfully emerged seedlings (Figure 2.3a). Although this relationship was 

significant (P < 0.01), it must be interpreted with caution due to the relatively small 

number of case studies. Meta-regression of yield versus final emergence (relative 

to crops from non-primed seeds) showed a positive relationship (Figure 2.3b), 

although this relationship was not found significant. We found no difference between 

the hypothesized line and the meta-regression line (P > 0.05), which demonstrates 

that higher yields are proportional to improvements in emergence. However, in over 

two-thirds of the case studies, improvements in yield were proportionally higher than 

the expected gain due solely to improvement in final emergence. This suggests that 

increments in yield due to ‘on-farm’ seed priming are not only a consequence of 

rapid and more prolific emergence, but that additional benefits may persist long after 

emergence. 
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Figure 2.3. a) Relationship between final emergence and time to 50 % emergence 

relative to crops from non-primed seeds (n = 12). b) Relationship between field and 

final emergence relative to crops grown from non-primed seeds. Solid line 

represents the weighted model regression line and dotted line represents the 

hypothesized regression line where changes in final emergence cause equal 

changes in yield (n = 22). Bubble size represents the weight of each study in the 

meta-regression. 

Rapid emergence is crucial for the vulnerable seedling to avoid abiotic and biotic 

stresses and ensure high crop establishment (Gardarin et al. 2016). ‘On-farm’ seed 



56 

 

priming facilitates rapid emergence by accelerating germination through two 

complementary mechanisms. Firstly, it ensures water availability and the successful 

completion of phase I (the imbibition phase) prior to sowing, rather than relying on 

the seed imbibing soil moisture in the field where the water supply can be restricted 

or discontinuous (Wojtyla et al. 2016). Throughout the imbibition phase, both 

mechanical and biochemical changes, e.g. embryo enlargement, respiration, protein 

synthesis and DNA repair, are initiated (Gallardo et al. 2001; Weitbrecht et al. 2011; 

Steinbrecher and Leubner-Metzger 2017). All these processes prepare the seed for 

cell elongation (phase II, the lag phase); therefore, ‘on-farm’ primed seeds are 

developmentally more advanced than dried seeds, resulting in a ‘head start of 

germination’ (Chen and Arora 2013). Secondly, ‘on-farm’ primed seeds are only 

externally dried so that, once in the field, seeds need to absorb less water from the 

soil to complete phase III (the post-germination phase) when the radicle emerges 

from the seed coat. Furthermore, it has been reported that seed soaking enhances 

the production of the enzyme α-amylase (Ashraf and Foolad 2005; Farooq et al. 

2017), which plays a crucial role in starch mobilization and provides the embryo with 

carbohydrates for respiration during germination and seedling growth (Ashraf and 

Foolad 2005; Farooq et al. 2017). As a result, seedlings from ‘on-farm’ primed seeds 

have more developed roots before the common limiting factors such as declining 

soil moisture, crust formation and/or high salinity prevent successful emergence. 

Our results suggest that the gains in yield due to ‘on-farm’ seed priming can be 

mainly attributed to enhanced emergence, i.e. rapid emergence leads to better crop 

establishment, which is conducive to higher yields. However, advanced 

establishment may also be coupled with higher vigour of individual plants, which is 

translated into significantly more tillers, more fruits (cobs/panicles/pods) per plant, 

greater number of grain and 1000-grain weight, or straw yield (Harris 2006; Rashid 

et al. 2006; Harris et al. 2007; Farooq et al. 2008). In addition to these physiological 

benefits, other circumstantial benefits are frequently observed, for example, earlier 

maturation decreases crop exposure to end of season drought, disease and pest 

attacks (Harris et al. 2001a; Rashid et al. 2006). It is also likely that seed priming 

exerts important metabolic changes during early plant growth that are able to persist 

until later stages of development (Ashraf and Foolad 2005; Chen and Arora 2013); 
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for example, there is evidence for enhanced disease resistance (Musa et al. 2001; 

Rashid et al. 2004a; Harris et al. 2005) or drought tolerance (Wojtyla et al. 2016). 

2.4.3. What modulates the ‘priming’ response?  

It is important not only to identify the context where ‘on-farm’ seed priming can 

best be applied, but also understand the potential situations where it can be 

counterproductive. Therefore, a subgroup analysis of moderators was conducted to 

examine potential factors that influence the effect of seed priming. 

Climate  

It is clear that yield benefits are more evident under low and unpredictable rain 

conditions. The largest response to ‘on-farm’ seed priming was seen in areas with 

dry climates (Figure 2.4a) with significantly higher yields for both arid (22 %) and 

semi-arid (28 %) climates compared to temperate climates (11 %). Variation in yield 

between seasons due to ‘on-farm’ seed priming has been frequently attributed to 

rainfall profiles, with greater yield increments commonly reported during rainy 

seasons with limited precipitation (Rashid et al. 2006; Virk et al. 2006; Ousman and 

Aune 2011). Low soil moisture and high evapotranspiration can slow and interrupt 

imbibition, which is conducive to emergence failure (Harris 1996); however, ‘on-

farm’ seed priming can offset a lack of soil moisture, as seeds have already imbibed 

water prior to sowing. 



58 

 

 

Figure 2.4. Sub-grouped summary effect sizes and 95 % CIs for priming effect on 

crop yield. Comparisons among (a) levels of climate, (b) levels of yield-limiting 

factors and (c) levels of plant type. Numbers in parentheses indicate number of case 

studies. Error bars represent back-transformed 95 % bootstrap confidence intervals. 

Importantly, in crust-prone soils, if rainfall occurs before emergence, shoots from 

‘on-farm’ primed seeds could be mechanically impeded, whilst the later emerging 

non-primed seedling may find more favourable soil strength (Murungu et al. 2004a). 

Equally, if rainfall is considerably delayed after sowing, seedlings from ‘on-farm’ 

primed seeds may be damaged as germination has already been initiated and a 

lack of water could kill the developing seedling, whereas non-primed seeds will not 
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initiate germinate until the rain comes (Murungu et al. 2003; Rashid et al. 2006). 

However, the occurrence of these events seems to be very rare (Murungu et al. 

2003; 2004a), and our data at emergence stage is consistent with the yield 

subgrouping, i.e. showing the higher benefits under dry climates (ESM1). 

The interaction between soil temperature and ‘on-farm’ seed priming, however, 

is less clear. Primed maize seed is more sensitive to elevated temperature under 

both dry and wet soil conditions (Finch-Savage et al. 2004; Murungu et al. 2004b). 

For the former, internal seed moisture may induce heat stress by acting as a thermal 

conductor in soils of higher temperatures, while wet soils may exacerbate prolonged 

hypoxia (Finch-Savage et al. 2004). Conversely, late sown wheat and chickpea 

plants from ‘on-farm’ primed seeds have shown increased tolerance to chilling 

temperatures (Farooq et al. 2008, 2017), possibly due to enhanced carbohydrate 

supply to the germinating embryo, which together with an accumulation of trehalose, 

can protect proteins and membranes from oxidative damage under abiotic stress. 

Yield-limiting factors 

Figure 2.4b shows that crops from ‘on-farm’ seed grown under ‘salinity stress’ or 

in nutrient deficient soils had significantly higher yields compared to crops from ‘on-

farm’ seed grown under non-stressed environments (approximately 16 % 

difference). In saline environments, germination is delayed or inhibited through 

reduced water availability and/or accumulation of toxic Na+ and Cl−. However, 

primed seeds are already hydrated and therefore less subjected to these constraints 

(Ibrahim 2016; Savvides et al. 2016). Importantly, case studies growing crops in 

conditions defined as non-stressed were mostly from research-managed trials using 

fertilizers and pesticides, whilst case studies grouped as nutrient deficient were 

mainly from farmer-managed trials with limited access to fertilizers and pesticides, 

and therefore more accurately reflect resource-poor farming conditions in marginal 

areas. These data indicate that ‘on-farm’ seed priming can compensate, to some 

extent, for low-yielding environments and the lack of inputs that would further limit 

yields. Under low fertility environments, the quicker development of seedlings from 

‘on-farm’ primed seeds allows greater uptake from fertilizers, before nutrients are 

leached from the soil surface or become volatized (Harris et al. 2001b; Rashid et al. 

2006). 
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Declining soil fertility together with limited access to affordable mineral fertilizers 

is a major constraint for achieving optimal yields in marginal areas of developing 

countries (Chianu et al. 2012). However, low-cost strategies that combine ‘on-farm’ 

seed priming with low amounts of inorganic fertilizers have been carried out to 

alleviate nutrient deficiencies with promising results (Aune and Ousman 2011; 

Ousman and Aune 2011). ‘On-farm’ seed priming in combination with micro-dosing, 

i.e. application of small amounts of fertilizer in the planting pocket, demonstrated 

greater fertilizer use efficiency than micro-dosing alone for all the crops tested (Aune 

and Ousman 2011; Ousman and Aune 2011). Small amounts of micronutrients 

added to the water used for ‘on-farm’ seed priming, e.g. ZnSO4, can also be highly 

cost-effective (Harris et al., 2007; 2008).  

Plant type 

‘On-farm’ seed priming of all the major tropical crops produces similar or greater 

yields than traditionally sown crops in almost all cases (ESM1). However, decreased 

performance following ‘on-farm’ seed priming has also been occasionally reported 

for barley (Rashid et al. 2006), pearl millet (Aune and Ousman 2011), rice (Rehman 

et al. 2011), sesame (Ousman and Aune 2011), maize (Ali et al. 2008), wheat (Islam 

et al. 2015) and cotton (Murungu et al. 2004b); although for each of these crops, 

there are also studies showing an increased performance (e.g. Harris et al. (2007); 

Farooq et al. (2008); Rashid et al. (2006). Importantly, negative results are rarely 

attributed to the incompatibility of priming with the crop, but rather to untimely 

adverse environmental conditions. The largest yield loss due to ‘on-farm’ seed 

priming was 8 % for pearl millet in a series of on-station trials; however, in this study, 

the farmer-managed replicates registered a 30 % increase in yield (e.g. Harris et al. 

(2007); Farooq et al. (2008); Rashid et al. (2006). Therefore, we have found no 

consistent evidence of negative interactions between specific crops and ‘on-farm’ 

seed priming, which suggests that this is therefore a safe practice for all crop species 

trialled so far. 

The effect of categorising case studies by plant type on total yield is shown in 

Figure 2.4c. On average, the yield increase of cereals (monocots) was 13 % less 

than dicots. Dicot plants, broadly represented by legumes with 18 out of 23 case 

studies, responded better to ‘on-farm’ seed priming averaging a 28 % yield increase. 
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This is in line with our final emergence data where greater effect sizes generally 

belonged to dicotyledonous crops (ESM1). Cereals were commonly grown with 

irrigation or during the rainy season, whilst legumes were sown as a component of 

the rotation after cereals in the post-rainy season or in fallow lands that were 

unsuitable for the main crop. In these marginal contexts, the benefit of seed being 

hydrated prior to sowing leads to more rapid emergence and establishment. 

We cannot conclude from our data whether specific crops are more responsive 

to ‘on-farm’ seed priming than others; however, ‘on-farm’ seed priming may facilitate 

the use of legumes into rotational and intercropping systems. Currently, in both 

rotational and intercropping systems, the adoption of legumes is largely discouraged 

due to poor establishments of the legume component. In rotation, legumes are 

commonly grown utilizing residual soil moisture remaining during the dry season, 

and with no additional fertilization, whilst in intercropping systems, the planting of a 

legume companion is delayed in order to avoid shading and competition (Masvaya 

et al. 2017).  Therefore, ‘on-farm’ seed priming may ameliorate these unfavourable 

planting conditions and boost the benefits of cereal-legume cropping systems, e.g. 

by improving soil fertility and providing an additional income. 

2.5. Conclusion and perspectives 

In developing regions of the world, tackling yield reductions due to both natural 

and socio-economic constraints, e.g. increasingly unpredictable rainfalls, declining 

soil fertility and limited access to inputs and resources, requires inexpensive and 

sustainable strategies to ensure food production and self-sufficiency. This is the first 

study quantifying the potential of ‘on-farm’ seed priming for sustainably increasing 

food production at a global scale, and our results have shown that it is a valid 

approach to closing yield gaps. The literature considered in our meta-analysis 

encompassed a representative number of agro-environments where ‘on-farm’ seed 

priming can be practiced and gives us the basis to draw the following conclusions. 

‘On-farm’ seed priming attenuates the negative effects of adverse planting 

conditions, and low inputs, by facilitating rapid and enhanced crop establishment 

that may also result in improved individual plant performance. These effects are 
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more evident in semi-arid and arid regions and, given that millions of hectares in dry 

climates are experiencing yield reductions, these findings could have important 

implications. Our results have also highlighted that crops grown in marginal lands 

can especially benefit from this intervention. This is particularly important for farmers 

with limited access to mineral fertilizers where to a large extent an input of N is 

dependent on N2 fixed by legumes. 

‘On-farm’ seed priming can be seen as a starting point towards sustainable 

intensification in marginal areas of the developing world. This technology requires 

very few resources and technical knowledge, and its benefits would be compatible 

with a range of other sustainable strategies such as smart use of farmyard manure, 

micro-dosing and water harvesting practices. Therefore, our results provide the 

evidence needed to encourage governmental institutions and policymakers in 

developing countries to promote the adoption of ‘on-farm’ seed priming as 

recommended practice. 
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Chapter 3: Optimisation of ‘on-farm’ seed priming soaking 

times for barley (Hordeum vulgare L.) 
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3.1. Abstract 

A traditional and low-cost technique named ‘on-farm’ seed priming is increasingly 

being recognised as an effective approach to maximise crop establishment. It 

consists of anaerobically soaking seeds in water before sowing resulting in rapid 

and uniform germination, and enhanced seedling vigour. The extent of these 

benefits depends on the duration soaking time, which must be long enough to allow 

pre-germinative metabolism to be arrested but prevent radicle emergence. Current 

determination of optimal soaking time by germination assays and mini-plot trials is 

resource-intensive, as it is species/genotype- and seed quality-specific, and only 

provides retrospective information of its effectiveness. Therefore, this study aimed 

to determine the potential of seed respiration rate (an indicator of metabolic activity) 

and seed morphological changes during barley priming as predictors of the priming 

benefits and, thus, facilitate determination of optimal soaking times. A series of 

germination tests revealed that germination speed is mostly attributable to rapid 

hydration of embryo tissues rather than to pre-germinative advancement as the 

greatest gains occurred before the resumption of metabolic activities. Germination 

uniformity, however, was not significantly improved until seed were primed for at 

least 8 h, i.e. after a first respiration burst was initiated, suggesting the occurrence 

of key metabolic activities at this stage with effects on the rate at which the 

germination programme proceeds. The maximum seedling vigour was attained 

when the priming process was stopped just before the beginning of the 

differentiation of embryonic axes (20 h) after which vigour began to decrease (‘over-

priming’). The onset of embryonic axes elongation was preceded by a second burst 

of respiration, which can be used as a marker for priming optimisation. Thus, 

monitoring of seed respiration provides a rapid and inexpensive alternative to the 

current practice. The method could easily be implemented for determining the 

optimal soaking times of other cereal seeds and carried out by research agricultural 

institutions to provide recommended optimal soaking times for common cereal 

varieties within a specific region. 

3.2. Introduction 

Seed germination involves an array of coupled morphological and respiratory 

changes that make up three distinct phases each of which are characterised by the 
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dynamics of water uptake.  Germination commences with ‘imbibition’ (phase I), a 

profuse uptake of water by the dry seed and a gradual increase of seed size, 

although this phase is associated with no or little metabolic activity (Bewley et al. 

2013). This is then followed by the onset of seed respiration as a result of the 

resumption of pre-germinative activity, primarily attributed to the activation of 

mitochondrial energy production, which has been associated with the resumption of 

phosphorylation to produce ATP (Botha et al. 1992; Ma et al. 2017). Subsequently, 

the ‘lag’ phase (phase II) involve intense metabolic activity (including the 

transcription and translation of new genes) and stabilisation of water uptake and 

respiration rate takes place (Bove et al. 2002). Lastly, active mobilisation of reserves 

to the growing embryo causes another profuse increase of seed respiration and 

demand for water uptake, leading to the emergence of the radicle through the seed 

coat, which marks the end of germination sensu stricto and the beginning of seedling 

growth (‘post-germination’ or phase III) (Bove et al. 2002; Bewley et al. 2013). 

‘On-farm’ seed priming is a farmer-managed type of seed treatment that differs 

from industrial priming strategies as it simply consists of anaerobically soaking 

seeds in water for a number of hours prior to sowing (Harris 2006). Seeds are 

subsequently surface-dried for 1-2 hours (to avoid clumping) and sown soon after. 

Once sown, seeds spend significant amounts of time absorbing water from the soil. 

However, by controlling the transition through the germination phases, i.e. allowing 

seeds to undergo the pre-germinative phases I and II but preventing the start of 

phase III, ‘on-farm’ primed seed retains the benefits of pre-germinative 

advancements and, concurrently, preserving desiccation tolerance (Harris 2006; 

Bewley et al. 2013). Subsequently, this can lead to quicker emergence and 

enhanced seedling vigour (and ultimately yield) when the primed seed is sown in 

the field as demonstrated for a range of crops (Carrillo-Reche et al. 2018). 

Importantly, to fully exploit this method of seed priming, the safe limit (the maximum 

length of time that seeds can be soaked without germination taking place before 

sowing) for each crop and cultivar first needs to be determined. However, the 

optimal duration for soaking seeds (in terms of yield benefits) is not necessarily the 

same as the safe limit, e.g. priming seeds to the safe limit could lead to seeds 

biochemically arrested at a very advanced stage in the transition from phase II to 

phase III (Salimi and Boelt 2019).  Therefore, as seed soaking times are specific to 
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each crop species/genotype or even seed quality, the major obstacle for the 

determination of optimal ‘on-farm’ seed priming protocols is the large number of 

trials needed (Paparella et al. 2015; Salimi and Boelt 2019; Forti et al. 2020).   

Currently, optimal ‘on-farm’ seed priming times have been determined for a 

range of crops by testing different seed soaking times (usually on moist filter paper) 

followed by sowing in mini-plot trials at research stations (e.g., Harris et al., 1999; 

Rashid et al., 2004, 2006; Virk et al., 2006). However, this process is resource-

intensive and information on the soaking times from these trials are limited to the 

specific crop variety and trial conditions; published or recommended soaking times 

therefore tend to be conservative, and are likely to compromise any yield benefits 

that would have been gained from utilising ‘on-farm seed priming. Thus, farmers 

performing ‘on-farm’ seed priming have used conservative soaking times, for 

simplicity commonly “overnight”, despite this most likely being far from the optimum 

(Harris 2006). Consequently, there is a need for the development of cost-effective 

methods to rapidly determine optimal soaking times for ‘on-farm’ seed priming. For 

example, increases in respiration at the end of phase II are associated with the 

initiation of starch metabolism and have been used to predict seedling vigour of 

different species and cultivars (Patanè et al. 2006; Patanè and Avola 2013; Wang 

et al. 2016). Therefore, detecting indicators of seed metabolic changes (as the flux 

of either O2 uptake or CO2 release) during seed soaking could provide a useful 

marker for the optimisation of ‘on-farm’ seed priming.  Using barley as a model crop, 

this chapter aimed to determine: a) whether seed morphology and/or seed 

respiration changes can be used to detect metabolic changes that occur during ‘on-

farm’ seed priming; and b) whether changes in morphology and/or respiration are 

associated with optimal soaking times and, thus, can be used as a marker for 

optimising the duration of ‘on-farm’ seed priming. 

3.3. Material and methods 

3.3.1. Plant material and priming treatments 

Barley (Hordeum vulgare L.) cultivars Concerto (Limagrain, Rothwell, UK) and 

RGT Planet (RAGT Seeds, Ickleton, UK) were chosen for this study as they 

represent a benchmark variety of spring barley in the UK and a modern elite cultivar 
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respectively, although they are more correctly representative of genotype x 

environment x management differences as genotype represents only one factor in 

seed batch comparisons. The priming treatments applied in all experiments 

consisted of seeds soaked in distilled water (1:6 (w/v)) in 100 mL plastic pots, at 20 

°C in the dark. After treatment, seeds were allowed to air-dry on paper towel for an 

hour (unless specified otherwise). In all cases, non-primed dry seeds were used as 

controls.  

3.3.2. Effect of ‘on-farm’ seed priming soaking times on germination 

Soaking times and moisture content determination 

Samples of 150 seeds were soaked for either 4, 8, 12, 16, 20, 24 or 28 h (28h 

was established as the upper limit as it was when the coleorhiza tip became visible 

for some seeds) in triplicate for each soaking time. A subsample of unsoaked seeds 

were oven dried at 103 °C for 17 h to determine initial moisture content (Mci). The 

soaked samples were weighed before and after each soaking time to determine final 

moisture content (Mc), which was calculated as:  

𝑀𝑐 =
𝑊𝑖 ∗ 𝑀𝑐𝑖 + ∆𝑊

𝑊𝑓
 

where Wi and Wf are seed weight before and after drying respectively, and ∆W the 

difference between Wf and Wi. 

Respiration measurements 

Immediately after soaking, the concentration of CO2 released by the seeds was 

measured with an EGM-4 CO2 gas analyser (PP Systems, Amesbury, 

Massachusetts, USA). Plastic pots containing soaking seeds were hermetically 

closed with a lid connected to the infrared analyser through inlet and outlet tubing, 

in order to create a closed system to monitor the flux of [CO2]. The net CO2 flux was 

calculated as the increment within 1 min (average of three sequential readings 

representing one replicate) prior to allowing CO2 to accumulate within the tubing 

system for 15 s (modified from Patanè et al. (2006)). Seed respiration rates (SRR), 

expressed as μmol CO2 s-1 g-1 seed DW (dry weight), for each soaking time were 

calculated as follows: 
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𝑆𝑅𝑅 = (
Δ𝐶𝑂2

Δ𝑡
) 𝑥 (

𝑉

𝑅𝑇
) 

where ΔCO2/Δt (μmol CO2 s-1) is the change in CO2 concentration over the 

measurement time; V (m3) is the total volume of the system (volume of priming pot, 

tubing and gas analyser); R (kPa m3 mol-1 K-1) is the ideal gas constant; and T (K) 

is the temperature in the incubator.  

Histological observations 

To examine the morphology changes over time, seeds were transversally 

sectioned with a razor blade after each soaking time. Seed embryo structures were 

observed under a stereomicroscope (magnification x 9, Leica GZ6) and 

photographed using a digital camera (Nikon Coolpix 950).  

 Germination test 

One hundred seeds per soaking time were placed over four sheets of paper 

towel covered with another two sheets previously moistened with 30 ml of sterile 

distilled water in plastic containers (304 x 216 x 55mm) with lids, and incubated at 

20 ºC in darkness for 72 h. Seeds were counted as having germinated when the 

radicle length was greater than 2 mm. In order to accurately determine germination 

dynamics, counts were made every 2 h from the start of germination until cumulative 

germination was above 75 %. After 72 h, remaining germinated seeds were 

counted. Each soaking time and germination assay were carried out three times. 

Desiccation tolerance test 

To simulate a delay before “sowing”, the same soaking times were repeated (as 

above) and allowed to air-dry on paper towel for 30 days at 20 °C in the dark, and 

then germination tests carried out as described above.   

3.3.3. Effect of ‘on-farm’ seed priming soaking times on seedling vigour 

Based on the Germination test results, soaking times of 16, 20 and 24 h were 

selected for seedling vigour testing. A standard International Seed Testing 

Association (ISTA) cold test (Hampton and TeKrony 1995) was carried out, where 

seeds sown in vermiculite in three seed tray inserts (60 cells per tray). All treatments 

were equally present in each trait and their position was randomised within each 
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tray. Trays were watered to reach 80 % saturation, covered with aluminium foil to 

avoid evaporation, and kept at 10 °C in the dark. This setup provided high water 

availability, good aeration of the substrate and low temperature to minimise any 

potential head-start related to seed water content. In all cases, un-soaked seeds 

were also sown as a positive control. After seven days, the trays were uncovered 

and moved to a growth chamber at 20 °C, 12 h photoperiod and 70 % relative 

humidity for 5 days. Each tray was watered with 75 mL of distilled water every other 

day and emergence recorded daily. After 5 days, seedlings were removed from the 

inserts and categorised as either healthy (viable enough to turn into a healthy plant), 

or abnormal, e.g. damaged, or deformed or decayed as a result of infection (Figure 

3.1 for illustration of abnormality criteria). All healthy seedlings were dried at 110 °C 

for 17 h to obtain dry weights. The experiment was repeated three times. 

 

Figure 3.1. Evaluation criteria for seedling abnormalities. a) Damaged seedling 

missing side roots, b) seedling with a deformed etiolated shoot, c) decayed seedling 

presenting a fungal infection around the seed coat; d) un-germinated seed due to a 

primary infection around the germ; and e) non-viable seed. 

3.3.4. Data analysis 

Indices for time to 50 % germination (G50), time to 50 % emergence (E50), 

uniformity (U), calculated as the time interval between 25% and 75% of seeds to 

germinate/emerge, the percentage of total germinated seeds (%TG), and the 

percentage of healthy emerged seedlings (%TE) were calculated using the 
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‘Germinator’ tool (Joosen et al. 2010). Effect of cultivar (Cv), soaking time (Tr) and 

their interaction on germination variables were assessed by analysis of variance 

(ANOVA) and emergence variables by linear mixed-effects model (LMM), with 

experiment repetitions as a random term, in R version 3.3.0 (R Development Core 

Team 2016). Assumption of normality and homoscedasticity of variances were 

checked by QQ-plots and residuals against fitted value plots respectively. When 

these assumptions were not met, data was transformed. G50 data from Germination 

test were square root transformed and continuous proportional data, i.e., percentage 

of germination (%TG) and percentage of germination (%TE) were arcsine 

transformed to approximate normality. Post-hoc Fisher’s LSD tests were performed 

to separate significant differences at P values < 0.05 with predictmeans package 

(Luo et al. 2014). P values were adjusted to avoid Type I errors (false positives) 

using the Benjamini–Hochberg correction (Waite and Campbell 2006). Means for 

significant main effects are presented based on the highest order of factorial 

combination that was significant in the ANOVA or LMM. 

In order to investigate the relative contribution of initial moisture content and 

advancement of germination to speed of germination at each germination phase, 

moisture content (Mc) and cumulative CO2 (ΣCO2) at the moment of sowing were 

used as predictors of G50. Data from both cultivars were pooled for this test. Relative 

importance of predictor variables and their bootstrapped 95% confidence intervals 

were calculated with the relaimpo package (Grömping 2006) in R. Absence of 

collinearity between the two variables was verified by variance inflation factor. 

3.4. Results 

3.4.1. Changes in seed morphology and respiration during ‘on-farm’ seed priming 

Barley seeds showed clear morphological differences indicative of the transition 

from one germination phase to another (Figure 3.2). After the first 4 h of imbibition 

the wetting of the embryonic tissues was visually evident. This was reflected in 

moisture content as almost half of the total water absorbed occurred within the first 

4 h of soaking, which is characteristic of the phase I “imbibition” stage (Figure 3.3a). 

From 4 h to 20 h, no major morphological changes were observed, although the 

overall seed size increased gradually concurrent with a progressive increase in 
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moisture content. Typically, differentiation and expansion of the embryonic axis 

began at 24 h, accompanied by seed coat loosening and wetting of the endosperm. 

At 28 h, emergence of the coleorhiza tip through the micropylar was visually 

distinguishable for most of the seeds. Soaking times beyond 28 h did not result in 

further visual morphological development of the seed and only marginal increments 

in moisture content. 

 

Figure 3.2. Structural morphology of barley seeds at the end of each soaking time. 

Transversal embryo observation by stereomicroscopy. From left to right, red arrows 

show wetting of the germ, wetting of the endosperm, expansion of the coleorhiza, 

expansion of the coleoptile and emergence of the radicle tip. 

The initiation of respiration about 4 h after imbibition marked the primary 

activation of germinative metabolism (Figure 3.3b). The onset of respiration was 

followed by a steep rise in respiration until about 16 h where the rate of respiration 

became constant. This plateau, characteristic of the phase II “lag” stage, was 

punctuated by a second release of CO2 after 20 h of soaking, which corresponds 
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with the major morphological changes at 24 h (Figure 3.2). This burst of respiration 

declined by 28 h, and soaking times beyond this did not result in further increases 

of water content or seed respiration that typically mark the onset of phase III.  

 

Figure 3.3. The effects of ‘on-farm’ seed priming on, (a) seed moisture content, (b) 

seed respiration rate and (c) cumulative respiration at specific intervals for Concerto 

(open circles) and RGT Planet (closed triangles) barley seeds. Vertical bars show ± 

SE (only if the SE is greater than the symbol size). 

Respiration curves for both cultivars showed a similar triphasic-like shape with 

some disparity in the initiation in respiration (Figure 3.3b), i.e., the onset of cultivar-

specific respiration. For RGT Planet, this occurred within the first 4 h of soaking, 

whereas for Concerto this happened after 4 h. Cumulatively, although RGT Planet 
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had earlier metabolism, both cultivars had released similar amounts of CO2 by the 

end of the experiment (Figure 3.3c). This cumulative respiration was later used as 

a proxy of seed germination advancement (ΣCO2). 

3.4.2. Effect of different soaking times on germination parameters 

Germination tests were carried out to determine the most promising soaking 

times for each cultivar. There was a significant interaction between cultivar and 

soaking time (P < 0.001) in time to 50 % emergence. Longer soaking times reduced 

the time to 50 % germination, although the residual increment after each soaking 

interval decreased progressively to a minimum between 24 and 28 h (Table 3.1). 

For both cultivars, the most effective durations were ≥ 16 h. In terms of uniformity of 

germination, soaking time but not cultivar had a significant effect (P < 0.001). 

Soaking times greater than 4 h significantly improved uniformity, with 16 h being the 

most effective soaking duration for both cultivars (Table 3.2). However, regarding 

%TG, there was no soaking time effect (P = 0.13) but cultivar effect (P < 0.001) with 

Concerto having 7 % more than RGT Planet. Overall, soaking times exerted very 

similar effects on germination parameters of both cultivars, thus, based on these 

results, soaking times of 16 h, 20 h and 24 h were selected for the subsequent 

seedling vigour tests. Although 28 h soaking time achieved similar values to those 

of the selected soaking times, it was considered excessively long as the coleorhiza 

tip was visible in some seeds, indicative of ‘over-priming’ (liable to loss of vigour, 

desiccation and damage during sowing). 
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Table 3.1. Effect of seed priming on time to 50 % germination (G50). Values followed 

by different letters within a column (for each cultivar), differ significantly from each 

other (LSD test; P < 0.05). 

Cultivar (Cv) Soaking time (Tr) G50 (h)1 

Concerto 0 h 36.9 (6.07a) 

 4 h  22.8 (4.77b) 

 8 h  21.4 (4.62c) 

 12 h  20.8 (4.56c) 

 16 h  18.9 (4.34d) 

 20 h 18.6 (4.31d) 

 24 h 18.0 (4.24e) 

 28 h 17.7 (4.21e) 

RGT Planet 0 h 34.5 (5.87a) 

 4 h 23.9 (4.89b) 

 8 h 20.8 (4.56c) 

 12 h 20.7 (4.55c) 

 16 h 19.8 (4.45d) 

 20 h 19.0 (4.36e) 

 24 h 16.7 (4.09f) 

 28 h 16.1 (4.02g) 

LSDCv x Tr  (0.06) 

df   32 

LSD: least significant differences for the interaction; df: degrees of freedom for the residual term. 
1Back-transformed means and means on the transformed scale (between brackets). 
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Table 3.2. Effect of seed priming on uniformity of germination (U) and total 

germination (%TG). Values followed by different letters within a column (for each 

main effect), differ significantly from each other (LSD test; P < 0.05). 

Main effects Levels U (h) %TG1 

Cultivar (Cv) Concerto 3.74 98.3 (1.44a) 

 RGT Planet 3.72 91.2 (1.27b) 

    

Treatment (Tr) 0 h 4.70z 95.4 (1.36) 

 4 h 4.56z 96.4 (1.38) 

 8 h 3.55y 96.0 (1.37) 

 12 h 3.56y 95.9 (1.37) 

 16 h 3.08y 96.4 (1.38) 

 20 h 3.42y 94.8 (1.34) 

 24 h 3.59y 94.0 (1.32) 

 28 h 3.40y 93.9 (1.32) 

LSDCv  0.24 (0.03) 

LSDTr  0.48 (0.06) 

df   32 32 

LSD: least significant differences for the interaction; df: degrees of freedom for the residual term. 

1Back-transformed means and means on the transformed scale (between brackets). 

 

The proportional contribution of moisture content (expressed as the moisture 

content at sowing) and germination advancement (expressed as accumulated CO2 

at the moment of sowing) to time to 50 % germination was resolved through linear 

regression for each phase (Table 3.3). At imbibition, 97 % of the total variability was 

explained by the model and showed that reductions in time to 50 % germination can 

be largely ascribed to the moisture content rather than cumulative CO2 (90 % vs. 7 

%) (Figure 3.4). However, this situation was reversed during the lag phase as 

cumulative CO2 contributed 1.5-fold more than moisture content to the total 

explained variance (87 %).  
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Table 3.3. Linear regression coefficients of time to 50 % emergence (G50) as 

response variable and, moisture content (Mc) and cumulative CO2 (ΣCO2) as 

explanatory variables. R2 is the coefficient of determination; and RSE is the residual 

standard error. 

Germination phase Equation R2 RSE P value 

Imbibition G50 = 47.04 – 0.923 Mc – 0.007 ΣCO2 0.97 1.17 < 0.001 

Lag G50 = 22.77 – 0.052 Mc – 0.003 ΣCO2 0.87 0.63 < 0.001 

 

 

Figure 3.4. Percentage of variance explained by moisture content (Mc) and 

Cumulative CO2 (ΣCO2) to time to 50 % germination during phase I “imbibition” and 

phase II “lag”. Vertical bars show 95% bootstrap confidence intervals. 

3.4.3. Vigour: optimization of soaking times and desiccation tolerance 

In order to assess the effect of cultivar and treatment on timing of germination, 

a cold test was designed that would attribute potential changes in biomass to greater 

vigour rather than initial water content at sowing. No differences in emergence of 

healthy seedlings were found in relation to cultivar (P = 0.12), treatment level (P = 

0.80), or their interaction (P = 0.73) indicating that seed viability remained unaffected 



77 

 

under prolonged exposure to soaking and high moisture (Table S3.1). Similarly, no 

significant differences for time to 50 % emergence were found among soaking times 

and control (P = 0.49); therefore, the experimental design was effective for 

counteracting the effect of initial moisture content (Table S3.1).  

In contrast, both main effects significantly affected biomass but not the 

interaction, indicating that the effect of soaking time was similar for both cultivars 

(Figure 3.5). Soaking for 20 h produced the highest amount of biomass of all soaking 

times and was significantly higher than seeds soaked for 16 h (P < 0.01) and 24 h 

(P < 0.05). Based on these results, 20 h was considered the optimum soaking time 

for both cultivars.  

  

Figure 3.5. Average dry weight of seedlings at the end of the cold test. Linear mixed-

effects model P values are for factor cultivar (Cv) and soaking time (Tr). Bars with 

different letters differ significantly according to LSD test (P < 0.05). LSDCv = 0.02; 

LSDTr = 0.02. Vertical bars show the mean + SE. 

Analysis of variance for the effect of desiccation on time to 50 % emergence 

showed significant differences for cultivar and soaking time (P < 0.001) but not for 

the interaction (P = 0.94). The seeds of RGT Planet were more affected than 

Concerto by the 30-day desiccation period (Table 3.4). For both cultivars, seeds 

soaked for 24 and 28 h needed significantly longer to attain 50 % of germination 

compared with the rest of the soaking times. Soaking for 8 h yielded the shortest 

time to 50 % emergence and 28 h soaking the longest time. Differences in total 

germination were due to cultivar effect (P < 0.001), where again RGT Planet was 

more sensitive to desiccation. No significant differences among soaking times (P = 

0.27) or the interaction (P = 0.40) were found (Table 3.4). Comparison of time to 50 
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% germination and total germination of (unsoaked) control treatments relative to the 

corresponding control showed a negative effect in germination performance that 

was attributable to storage conditions (i.e. 30 d at 20 °C). These effects were most 

apparent for RGT Planet with +26.4 and -4.5 % change in time to 50 % germination 

and total germination respectively; whilst the effect for Concerto was minor, +1.8 

and -0.7 % respectively.   

Table 3.4. Effect of desiccation after different soaking times on time to 50% 

germination (G50) and total germination (%TG). Values followed by different letters 

within a column (for each main effect), differ significantly from each other (LSD test; 

P < 0.05). 

Main effects Levels G50 (h) %TG1 

Cultivar (Cv) Concerto 38.3b 98.3 (1.44a) 

 RGT Planet 44.2a 91.2 (1.27b) 

    

Treatment (Tr) 0 h 40.6xy 95.4 (1.36) 

 4 h 40.1xy 96.4 (1.38) 

 8 h 39.6x  96.0 (1.37) 

 12 h 40.6xy 95.9 (1.37) 

 16 h 40.9xy 96.4 (1.38) 

 20 h 41.5y 94.8 (1.34) 

 24 h 43.3z 94.0 (1.32) 

 28 h 43.4z 93.9 (1.32) 

LSDCv  0.2 (0.03) 

LSDTr  1.3 (0.06) 

df   32 32 

LSD: least significant differences for the interaction; df: degrees of freedom for the residual term 
1Back-transformed means and means on the transformed scale (between brackets). 

 

3.5. Discussion 

3.5.1. Seed respiration as a tool for detecting the activation of metabolic processes 

during ‘on-farm’ seed priming  

The present work has shown that monitoring of CO2 flux patterns is a reliable 

tool for detecting key germination events during ‘on-farm’ seed priming. As under 

regular germination conditions, barley respiration during priming describes a 
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triphasic curve where the transition from one germination phase to another is 

marked by a burst of seed respiration, providing useful information on the timing of 

metabolic changes that occur during the course of priming. The highest biomass for 

both cultivars was attained in seeds primed for 20 h, which morphologically, 

corresponds with stopping the priming process just before the elongation of embryo 

tissues into coleoptile and coleorhiza; and before the second burst of CO2 flux. 

Therefore, both seed morphology and CO2 flux patterns can be used as a marker 

for ‘on-farm’ priming optimisation.  

Unlike regular germination, the continuation of phase III beyond its initiation is 

impeded during ‘on-farm’ seed priming, and longer soaking times do not result in 

further development of the coleorhiza tip nor a sharp increment of water uptake. Due 

to the hypoxic conditions within the seed, the energy demands for early barley seed 

development are mostly provided through oxygen-independent metabolic pathways, 

e.g. glycolysis and alcohol fermentation (Østergaard et al. 2004; Zhang et al. 2004). 

CO2 is released as a waste product of mitochondrial phosphorylation for ATP 

production and stabilised when oxygen is depleted during the lag phase (Rosental 

et al. 2014; Ma et al. 2017). However, in late phase II, the further development of 

the embryo requires oxygen-dependent cycles such as tricarboxylic acid (TCA) that 

are more efficient for active mobilization of storage reserves (38 mol ATP vs. 2 ATP 

per mol of glucose) and cannot be fulfilled by anaerobic respiration alone (He et al. 

2015; Ma et al. 2017). When exogenous O2 is available, a profuse second burst of 

CO2 flux, attributable to TCA taking place in the newly synthesised mitochondria and 

mobilisation of reserves, is followed by the appearance of the coleorhiza tip and 

more water uptake (Bewley et al. 2013; Ma et al. 2017). However, this second burst 

declines soon after and is not followed by an increase of water uptake under the 

hypoxic conditions imposed by ‘on-farm’ seed priming. Although respiration remains 

active, possibly through fermentation and the NO cycle (Ma et al. 2016), further root 

development is impeded.  

Sectioning and observation of seed morphology seems useful for detecting the 

beginning of phase III, which corresponds with the elongation of the coleoptile and 

coleorhiza tissues in the embryo, but not for other metabolic processes. As observed 

for other cereal seeds, although some enlargement of the seed size throughout 
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soaking could be seen by eye, actual changes in seed structures are minimal even 

under the microscope until phase III (An and Lin 2011; He et al. 2015). 

Cultivars showed distinct seed vigour from one another, although this was not 

only due to genotype differences but also likely to differential seed quality (as 

manifested by the notable deterioration of RGT Planet germination performance 

after a storage period under unfavourable conditions). However, both cultivars 

performed similarly with an optimal soaking time of 20 h, suggesting that seed vigour 

and/or seed quality have minor influence in soaking times. Although it is tempting to 

generalise that 20 h is the optimal soaking time for barley, it is still to be elucidated 

the extent to what seed vigour and/or seed quality components can influence 

priming soaking times. Seed phenotypical characteristics (e.g. seed coat, grain 

composition and size), ageing and the make-up of the maternal tissues are known 

to alter the germination process and, by extension, likely to affect seed priming 

soaking times (Finch-Savage and Bassel 2016; Salimi and Boelt 2019).  

3.5.2. Mechanistic of the priming benefits: Timing and contribution of its drivers 

In order to better leverage ‘on-farm’ seed priming, it is critical to understand the 

timing and contribution of the two main drivers for rapid germination: 1) a hydrated 

seed, and 2) being developmentally more advanced than dry seeds at the moment 

of sowing. Much of the moisture content of a germinating seed is gained within the 

first few hours of imbibition, and the rapid germination of ‘on-farm’ primed seeds can 

be mainly ascribed to the rapid hydration of internal tissues rather than to the 

germination advancement gained during the soaking time.  In this study, few hours 

of soaking (~4 h) were sufficient to dramatically reduce the time for germination 

relative to dry seeds (35 % out of the 53 % average total gain), after which residual 

gains from longer soaking times were gradually ascribable to developmental 

advancement. Longer soaking times (≥8 h) are needed to significantly enhance 

uniformity of germination, after which no further improvements in uniformity are 

attained. This suggests the occurrence of metabolic changes at early lag phase 

which completion ensures that all seeds have reached, by way of checkpoint, a 

common stage in the germination programme.  

It follows from the above discussion that simply soaking for several hours, e.g. 8 

h as equivalent to the “overnight” practice proposed for most tropical crops (Harris 
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2006), is enough to obtain significant germinative benefits from planting hydrated 

seeds. However, if primed seeds are sown in soil at field capacity, this rapid 

hydration effect compared to dry seeds may be limited, although the benefits of 

being developmentally advanced still remain. In an agricultural context yield benefits 

associated with sowing hydrated seeds will vary depending on local soil moisture, 

with the most beneficial associated with sowing ‘on-farm’ primed seeds in water-

stressed soils (Carrillo-Reche et al. 2018). Imbibition is primarily a passive process 

and is a driver for the resumption of metabolic activity (reflected by the increase in 

respiration) and so the priming duration must be long enough to ensure that the 

germination process is sufficiently advanced to enable pre-germinative benefits 

once the seed is sown. Since the actual timing for these events will vary depending 

on cultivar, seed quality and priming conditions (e.g. temperature), focusing on the 

germination advancement stages rather than a particular soaking time seems to be 

the best strategy for the optimisation and standardisation of ‘on-farm’ seed priming 

in order to maximise seed vigour.  

Seedling vigour is the most important seed quality trait as the post-germination 

pre-emergence seedling growth phase is considered the most vulnerable stage and, 

thereby, the usefulness of seed priming (Finch-Savage and Bassel 2016). When the 

advantage of partial hydration is kept out of the equation, enhanced seedling vigour 

is evident when the priming process is stopped just before the beginning of the 

differentiation of embryo tissues into coleoptile and coleorhiza, but not before or 

after, highlighting the specificity of optimal priming protocols. At this stage, most of 

the pre-germinative metabolism has already taken place, i.e. mitochondrial 

multiplication, gene transcription, synthesis of amino acids and new proteins, but is 

still prior to the induction of post-germinative metabolism, i.e. cell division and 

expansion, which ensures that root emergence only occurs after sowing (He et al. 

2015; Wojtyla et al. 2016; Ma et al. 2017). Furthermore, there is increasing evidence 

that the activation of cellular repair is the key process enhancing seed vigour 

following seed priming, so that it is likely that this optimal soaking time corresponds 

with the maximum DNA repair and antioxidant response to recover from prior 

oxidative damage (Sharma and Maheshwari 2015; Wojtyla et al. 2016; Forti et al. 

2020). However, these invigorating effects are not arrested when seeds are 

dehydrated to their original moisture content and then allowed to ‘re-germinate’. 
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Dehydration, unfavourable storage conditions, and re-hydration lead to extensive 

oxidative damage that may revoke the seed repair attained during the priming 

process (El-Maarouf-Bouteau et al. 2013; Waterworth et al. 2019).  

The onset of embryonic axes elongation can be understood as the milestone 

marking the transition from seed to seedling and, although technically falls within 

the ‘safe limits’ (as no germination is externally visible even when let air-dry), must 

be prevented. The declines in seed/seedling performance in both desiccation and 

vigour tests at and after this milestone are clear signs of excessively long priming 

duration (‘over-priming’). The probable reason for this phenomenon is the loss of 

desiccation capacity, which is controlled by Type I and Type II proteins that 

accumulate/deplete as an adaptative mechanism for preparing the seed for 

germination or to extend the lifespan of the dry seed (Chen and Arora 2013). Type 

II proteins such as aquaporins, which are essential for water transport between cells 

and cell expansion for radicle protrusion, accumulate gradually over the course of 

germination (Chen and Arora 2013; Lutts et al. 2016). Whereas, Type I proteins 

such as late embryogenesis abundant proteins (which are involved in preventing 

membrane disintegration and protecting mitochondrial enzymes under dehydration, 

and are common in dry seeds), are progressively depleted after imbibition, and thus 

compromise desiccation tolerance (Grelet et al. 2005; Yang et al. 2007; An and Lin 

2011).  

In addition to the Type I/II protein balance, it is possible that the excessive 

accumulation of toxic fermentation products, primarily ethanol and lactic acid, in 

response to the prolonged hypoxic conditions during ‘on-farm’ seed priming 

conditions could also play a role in the gradual loss of vigour (Benvenuti and 

Macchia 1995). These fermentative products are effectively removed by lactate 

dehydrogenase and alcohol dehydrogenase, but at high concentrations they may 

become more difficult to eliminate (Benvenuti and Macchia 1995; Bewley et al. 

2013). 

3.5.3. Implications and practical considerations of ‘on-farm’ seed priming  

In practice, farmers using ‘on-farm’ seed priming need to be able to distinguish 

between ‘optimal’ and ‘safe’ soaking times. When conditions allow seeds to be sown 
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within a few hours after priming, optimising soaking times to produce maximal 

moisture content and advancement benefits would be the best strategy. Air humidity 

and a long drying period after priming may impair the optimal soaking times by, for 

example, promoting the proliferation of fungal damage. Thus, when there is a risk 

of delayed sowing (e.g. due to heavy rain, or having to passively dry seeds overnight 

after priming), shorter soaking times can ensure that germination does not occur 

before planting. Current safe recommendations for ‘on-farm’ seed priming of barley 

is for “overnight” priming (~8 h) (Harris 2006).  

It is important that farmers can obtain information on optimal soaking times for 

their own seeds and specific ‘on-farm’ priming conditions. From the methods 

proposed in this study for determining optimal soaking times, sectioning for 

microscopic observation of seed morphological changes is the simplest option. 

Having identified embryo axis differentiation as the marker for “over-priming”, this 

method could be performed by farmers with a razor blade and a magnifying glass.  

However, the reproducibility of this within the farm context would be a challenge, 

and specific training for the identification of these subtle embryo differences would 

be required. The second method of monitoring seed respiration as a marker is a 

non-invasive technique and allows the accurate identification of both the initiation of 

phase II (which can be used for recommendation of safe limits) and the initiation of 

phase III (for recommendation of optimal soaking time). Although this method is not 

designed to be carried out by farmers, it could be performed by agricultural 

institutions for providing recommendations of general practices for common 

varieties within their region produced under comparable growing conditions. Both 

methods represent a much more rapid and cost-effective alternative to the current 

optimisation approach through a series of germination assays and mini-plot trials 

and, therefore, could facilitate the widescale adoption of ‘on-farm’ seed priming. 

3.4. Conclusions  

This study emphasises the importance of the two drivers of ‘on-farm’ seed 

“priming” benefits: moisture content and advanced germination at the moment of 

sowing. In an agricultural context, the former largely determines the time to 

germination but the magnitude will vary depending on soil moisture. However, the 

extent of the benefits from germination advancement will depend on the moment of 
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stopping the priming process and, thereby, the importance of optimising the soaking 

times in order to exploit the full benefits from this technology. Therefore, it is 

proposed that to achieve maximum seedling performance priming is stopped prior 

to the differentiation of the embryonic axis and/or the second burst of respiration. 

This optimal timing can be deduced from morphological observation of the 

embryonic axis or CO2 flux patterns for each cultivar and priming conditions. These 

methods could easily be implemented for determining the optimal soaking times of 

other cultivars of barley. Extrapolation of these methods to other crops seems 

feasible although further testing would be required as seed respiration and 

germination rates can vary greatly depending on crop-specific characteristics of the 

seed, e.g. starch seeds versus oil seeds. 
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Chapter 4: Field performance and trans-generational 

effects of 'on-farm' seed priming and chitosan seed 

treatments on spring barley (Hordeum vulgare L.)  
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4.1 Abstract 

Industrial seed priming is an effective strategy to enhance establishment and 

stress tolerance, however, it has not been adopted for arable crops in temperate 

agriculture because it is not commercially viable. Low-cost farmer-managed ‘on-

farm’ seed priming and/or chitosan-based seed elicitor treatments may offer 

economic alternatives. Increased adaptation to stresses triggered by the application 

of elicitors can be passed to the next generation, but this has not been scaled-up to 

a field-based agricultural context. Therefore, a field experiment was conducted in 

2018 to determine whether chitosan-based seed treatments (applied at 0.5 to 5 g l-

1), and ‘on-farm’ seed priming treatments (20 h and 24 h priming), either alone or in 

combination, could improve spring barley production in a European context. Seed 

collected from 2018 were sown in 2019 to assess whether the increased adaptation 

to stress acquired by the application of seed treatments can be passed to the next 

generation. Results from 2018 showed positive grain yield in response to all seed 

treatments, although yield increases were only significant when chitosan was 

applied to seeds at the lowest concentrations (14.9 % improvement relative to the 

control). For grain number, the effect of seed treatments was more evident, showing 

significant responses for chitosan at the lowest concentrations, 20 h priming and 

their combination (16, 12.5 and 13.2 % increase respectively). Mechanistically, 

crops from primed seeds showed improved emergence and seedling vigour that led 

to a greater number and size of tillers being retained for grain filling. However, these 

effects were not carried through to their progeny for the same traits measured in 

2019. Similarities to the 2018 results were only found for yield, but it could not be 

determined whether this was simply by chance or if there was an underlying trend. 

Overall, these findings suggest that ‘on-farm’ seed priming, and chitosan-based 

treatments can be effective to ensure that yield potential is not restricted at an early 

stage in the crop season. However, it seems unlikely that these seed treatments 

can impart transgenerational legacies. If any effects, these are likely to be mild and 

the high climatic variability from season to season will hamper the linkage of 

inherited traits with their parent crop under field conditions. 
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4.2 Introduction 

Cereal crops integrate two characteristic phases, (1) emergence to anthesis, 

which sets the structures for resource capture and grain formation (potential grain-

bearing tillers), and (2) anthesis to ripening, which centres on the production of 

photoassimilates and the mobilisation of reserves to the grain. The former phase 

determines the grain number per m2 (G no.) whereas the second phase determines 

the grain weight; both parameters together form the grain yield (GY). It is 

increasingly thought that barley yield is sink-limited, i.e., it produces more assimilate 

than can be stored by the grain (Bingham et al., 2007; Serrago et al., 2013; Kennedy 

et al., 2017), thus, producing more grains per ear, or more grain-bearing tillers per 

unit of area, would increase yield at no physiological cost since it would close this 

imbalance. However, producing more grains per ear offers little room for 

improvement as, unlike other cereals (e.g., wheat), barley only produces one fertile 

grain per spikelet. Therefore, increasing G no. by securing enough grain-bearing 

tillers early in the season could be a viable strategy to increase barley yields.  

‘On-farm’ seed priming ensures good establishment in cereal crops (Rashid et 

al., 2006; Harris et al., 2008; Sime & Aune, 2019; Murungu et al., 2004). The 

simplicity and low cost of ‘on-farm’ seed priming allows cereal farmers of developing 

countries to benefit from increases in yield under the varied environmental 

conditions of low-input agriculture (Harris, 2006); however, ‘on-farm’ seed priming 

has not yet been tested in conventional agricultural systems of temperate climatic 

zones. Industrial seed priming is mostly performed commercially by seed companies 

in developed countries and limited to high value vegetable seeds (e.g., tomato, 

lettuce and pepper) due to the need for advanced technology and high energy costs 

(Paparella et al., 2015).  

Chitosan is an active molecule that has attracted attention for its capacity to 

induce plant growth under both abiotic and biotic stresses (Xing et al., 2015; 

Hidangmayum et al., 2019). Chitosan is a naturally abundant biodegradable 

polysaccharide, mainly obtained from the exoskeletons of crustaceans and insects, 

and its application in agriculture is environmentally sustainable and inexpensive 

compared to common agrichemicals (Kashyap et al., 2015). Applying chitosan to 

seeds can enhance germination and seedling vigour, and elicit a range of  defence 
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responses in young seedlings (Sharathchandra et al., 2004; Reddy et al., 1999; Lan 

et al., 2016; Guan et al., 2009). However, field-scale data quantifying the effects of 

chitosan seed treatments on yield are limited (Wang et al., 2015).  

Studies have shown that the increased adaptation to stresses triggered by the 

application of elicitors can be passed to the next generation. For example, Walters 

and Paterson (2012) demonstrated that the progeny from of barley plants that had 

been treated with the elicitor saccharin, had enhanced  resistance to 

rhynchosporium (causal agent Rhynchosporium commune) compared to the 

progeny from mock treated barley plants. This phenomenon where the progeny 

acquires the ‘primed state’ of defence from the maternal plant is known as 

transgenerational defence priming (Martinez-Medina et al., 2016). A wide variety of 

abiotic stresses can also imprint transgenerational responses, for example, plants 

grown from the seeds of parental plants subjected to N-deficiency or drought can 

demonstrate a ‘stress memory’ and respond more rapidly to similar environmental 

challenges (Kou et al., 2011; Walter et al., 2013). Currently, the study of 

transgenerational effects has been confined to lab experimentation although there 

is an urgent need to understand the application under field conditions. If effective 

adaptation occurs following chitosan and/or ‘on-farm’ seed priming treatments, and 

this results in greater yields, it is important to understand whether this capacity could 

also be inherited by the progeny of those plants.  

Therefore, the aims of this study were to determine, a) whether ‘on-farm’ seed 

priming and chitosan seed treatments can increase crop yields in a temperate field-

scale agricultural context; b) whether these treatments affect source:sink ratios and 

thus create trade-offs in grain quality; and c) whether crop trait effects conferred by 

elicitor treatments can be carried over to the next generation for spring barley. 

4.3 Material and methods 

4.3.1 Trial 2018 

Plant material and preparation of seed treatments 

A spring barley trial was prepared (spring, 2018) at the Balruddery farm 

(56°28'52.0"N, 3°07'52.6"W) on a sandy loam. Two cultivars were used: Concerto, 

which is considered a benchmark variety for spring barley in the UK, and RGT 
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Planet, a modern elite cultivar. Based on previous findings (Chapter 3), seeds were 

‘on-farm’ seed primed during 20 h and 24 h which, morphologically, corresponded 

to stopping priming prior to differentiation of the embryonic axis or at the beginning 

of differentiation and expansion of embryonic axis respectively. Chitosan was 

applied as ChitoPlant® (ChiPro GmbH, Bremen, Germany) to the seeds either alone 

or in combination with ‘on-farm’ seed priming based on the manufacturer 

recommended doses. In total there were nine seed treatments and an untreated 

control (Table 4.1). Approximately 4,500 seeds (calculated by weight from the 

thousand grain weight of each cultivar) for each individual treatment were added to 

2 l plastic buckets containing distilled water (1:5 (w/v) ratio). For chitosan treatments, 

powdered chitosan was added at a concentration of either 0.5, 2.5 or 5 g l-1. Seeds 

were then incubated at 20 °C for either 20 or 24 h (seed priming treatments). The 

seeds that were treated with chitosan only (i.e. no ‘on-farm seed priming treatment) 

were soaked in a chitosan solution for 15 min. After soaking, seed priming 

treatments were oven dried at 50 °C until moisture content reached 27-30 % 

(sufficiently dry to avoid clumping within the seed pipe during drilling). The moisture 

content of untreated seeds and chitosan only treatments ranged from 12 to 16 %. 

Subsequently, seeds were reweighed and split into four equal weight portions, which 

provided the four replicates for each cultivar x seed treatment combination; and 

packed in envelops ready for sowing. 

Site, experimental design and crop husbandry 

The trial was laid out using a randomized complete block design, with four 

replicates at Balruddery Farm (56°28'52.0"N 3°07'52.6"W), which belongs to the 

James Hutton Institute, Dundee (UK). Plots were sown on the 19th April with an 

eight-row plot seeder in small plots (1.55 x 2 m) at 360 seed per m2. A total of 240 

kg ha-1 of 22-4-14 fertiliser (7.5 sulphate [SO4]) was applied in two equal splits (at 

sowing and in mid-May). Adjoining guards (of barley plants) surrounding the 

experimental plots were also sown to minimize potential edge effects. Weeds were 

controlled with pre-emergence herbicide Stomp® Aqua (BASF, Cheadle, UK) at a 

rate of 2.9 l ha-1. 
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Table 4.1. Factor levels and resulting seed treatments in trial 2018. 

Cultivar Priming 
duration (h) 

Chitosan 
conc. (g l-1) 

Seed treatment 
code 

Concerto 0 0 NP 

  0.5 NP+0.5 

  5 NP+5 

 20  0 P20 

  0.5 P20+0.5 

  5 P20+5 

 24  0 P24 

  0.5 P24+0.5 

  2.5 P24+2.5 

  5 P24+5 

    

RGT Planet 0 0 NP 

  0.5 NP+0.5 

  5 NP+5 

 20  0 P20 

  0.5 P20+0.5 

  5 P20+5 

 24  0 P24 

  0.5 P24+0.5 

  2.5 P24+2.5 

  5 P24+5 

 

In-field measurements 

Seedling emergence for each plot was estimated after the appearance of the 

first emerged seedlings (15 days after sowing (DAS)). In order to count the same 

section on each visit, a 0.5-meter section parallel to the row orientation was 

delimited by pinning two sticks on the soil between the central rows of each plot. 

Seedlings at both side rows of the marked section were counted 15, 17, 22 and 29 

DAS until the counts from the latest visit coincided with the counts from the previous 

visit (from 22 to 29 DAS).  

A single image of each plot was taken at tillering, stem elongation and booting 

with a digital camera (FinePix S4500, Fujifilm) with an objective 24–720 mm set at 

the minimum focal length. The camera was set to an automatic exposure time and 

an aperture with no flash; the images were stored as JPEG with native resolution of 

4288 x 3216 pixels. The camera was hand-held pointing downwards from one 

border of the plot at approximately 1.5 m above the ground level and near the centre 
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of the plot but slightly angled to capture the whole plot in a single image. Pictures 

cropped to eliminate soil from the spaces in between the plots (Figure 4.1) prior to 

calculating the canopy area using CerealScanner plugin (Kefauver et al. 2018; 

https://integrativecropecophysiology.com/software-development/cerealscanner/), 

in FIJI (Schindelin et al., 2012), which is a specialist plugin for characterisation of 

early vigour in cereals (Fernandez-Gallego et al., 2019).  

Figure 4.1. Example of images taken for calculating the canopy cover. 

 

Crop height (H), taken from four representative plants per plot, was measured 

from ground level to the base of the highest fully expanded leaf ligule or, after ear 

emergence, to the base of the highest ear. These measurements were taken at stem 

elongation, booting and grain filling. The number of days from sowing to GS55 

(when approximately 50% of the stems showed half-emerged spikes) was recorded 

for each plot. To evaluate potential differences in photosynthetic potential, leaf 

chlorophyll content (LC) was estimated with a SPAD-502 chlorophyll meter (Minolta, 

Tokyo, Japan). Five readings were taken from each of four representative flag 

leaves per plot at booting, anthesis and grain filling. 

https://integrativecropecophysiology.com/software-development/cerealscanner/


92 

 

Yield and grain quality 

At ripening, grain was collected with a combine harvester and dried at constant 

moisture. Grain was passed through a 2.5 mm sieve to eliminate the ‘screenings’ 

(i.e. the small/broken grain and awns), and subsequently weighed. The percentage 

of grain retention (Retention %) was calculated from the difference in weight before 

and after sieving. A subsample of cleaned grain was used to determine grain N 

concentration (GN) and moisture content determined by using a calibrated near-

infra red grain analyser (Infratec 1241, FOSS, Sweden). Thousand grain weight 

(TGW) was calculated using a MARVIN Seed Analyser (GTA Sensorik, 

Neubrandenburg, Germany). The grain weight of each plot was then adjusted to 

85% dry matter to obtain grain yield (GY) and grain number (G no.) calculated from 

the GY and TGW.  

4.3.2 Trial 2019: Transgenerational effects of seed treatments 

To assess the potential transgenerational effects of seed treatments harvested 

seeds from the previous season were sown, on 5 April 2019,  at equal grain number 

proportion of seeds m-2 at a close location to the first trial (56°29'05.0"N, 

3°06'35.4"W). Due to limiting space, only the seven most promising treatments in 

terms of yield and control were put forward for this trial and so P24+0.5 and P24+2.5 

were discarded. 

The experimental design and crop husbandry were the same as in 2018 except 

that the second split of fertilisers was omitted. Measurements of canopy cover, yield 

components and grain quality were recorded as described above. At late anthesis 

(GS69 approximately), characteristic disease lesions of yellow rust (causal agent 

Puccinia striiformis f.sp. hordei) and rhynchosporium were observed. Disease 

severity of yellow rust (DSY) and rhynchosporium (DSR) were scored on a 

continuous scale (0 – 100 %) at plot level following the Agriculture and Horticulture 

Development Board (AHDB) Cereal trials protocol (HGCA, 2019). 

4.3.3 Weather conditions 

Mean temperature, accumulated precipitation and relative humidity data were 

collected by an automated meteorological station situated at a maximum distance 

of 1.2 km. from the experimental area. Meteorological data for the growing seasons 
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of 2015-2017 (earliest data available since implementation of the station at the site) 

were averaged for estimation of typical climate conditions at the site (Stanley et al., 

2019). All weather data was supplied by the Natural Environment Research Council 

through the COSMOS‐UK project (https://cosmos.ceh.ac.uk/). 

4.3.4 Data organisation and analysis  

All analyses were performed using R version 3.3.0 (R Development Core Team, 

2016). To investigate associations between yield and grain quality and measured 

phenotypical traits, Pearson correlations were calculated. Interpretation of 

associations was assisted with dendrograms generated by hierarchical clustering 

algorithm, which groups most similar variables together, using Euclidean distances 

and Complete linkage method. 

The data collected during the farm visits was organised according to Table 4.2, 

where the first sets of variables were aimed at describing establishment, the second 

set of variables described canopy cover at different stages and so on, for each 

individual seed treatment. These individual variables and groups of variables were 

used to perform a multiple factor analysis (MFA). MFA allows analysis of the 

relationship between individual variables and the groups of variables and a global 

characterization of the individual treatments by integrating these multiple groups of 

variables simultaneously. In brief, a principal component analysis (PCA) is 

performed for each group of variables, whilst within-group variable influences are 

balanced by dividing each variable by the square root of the 1st eigenvalue of the 

group to which it belongs (partial analyses). Subsequently, these normalised data 

are concatenated into a matrix to compute a global PCA where the influence of each 

variable group is the same (global analysis) (Abdi & Williams, 2010; Pagès, 2004). 

Only the two main dimensions were kept for analysis.  

  

https://cosmos.ceh.ac.uk/
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Table 4.2. Individual variables and variable grouping. 

Phenotypic 
traits / Groups 
of variablesa 

Measurement DASb Phenological 
stage 

Growth 
stagec 

Individual 
variable 
code 

Establishment Plant counts 15 
Seedling 
Growth 

11 E15 

 Plant counts 17 
Seedling 
Growth 

11 E17 

 Plant counts 22 
Seedling 
Growth 

11-12 E22 

Canopy Cover Green area 29 Tillering 21 GATi 

 Green area 43 
Stem 
Elongation 

32-33 GASE 

 Green area 57 Booting 41-49 GABo 

Height Height 43 
Stem 
Elongation 

32-33 HSE 

 Height 64 Booting 45-51 HBo 

 Height 110 Grain Filling 87 HGF 

Photosynthetic 
potential 

Leaf chlorophyll  57 Booting 41-49 LCBo 

 Leaf chlorophyll 82 Anthesis 69-71 LCAt 

 Leaf chlorophyll 99 Grain Filling 77-83 LCGF 

Yield Grain weight  Harvest 91-93 GY 
 Grain no.  Harvest  G no. 

Grain Quality TGW  Post-harvest  TGW 

 Grain N  Post-harvest  GN 
aEach variable group is used in the MFA. 
bDAS: days after sowing 
cGrowth stages according to Zadock scale 

Effect of cultivar (Cv), seed treatment (Tr) and their interactions on yield 

components and grain quality were analysed using mixed effects models with 

replicate plots as a random effect. Assumption of normality and homoscedasticity of 

variances were checked by QQ-plots and residuals against fitted value plots 

respectively. Arcsine transformation was applied to DSY and DSR to meet normal 

distribution. Post hoc Fisher’s LSD tests were performed to separate significant 

differences at P values < 0.05 with predictmeans package (Luo et al., 2014). P 

values were adjusted to avoid Type I errors (false positives) using the Benjamini–

Hochberg correction (Waite & Campbell, 2006). 
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4.4 Results 

4.4.1 Trial 2018 

Yield components and grain quality 

All seed treatments showed improved GY relative to the control (NP) although 

only NP+0.5 was significantly greater (14.9 % improvement) (Table 4.3). For G no., 

the treatment effect was more evident with treatments NP+0.5, P20 and P20+0.5 

showing significantly greater grain per m2, i.e. 16, 12.5 and 13.2 % increase relative 

to the control. There was a significant impact of cultivar (P < 0.001) and treatment 

(P < 0.01) in GY and G no. Whilst P20+0.5 attained the greatest GY and G no. for 

cultivar RGT Planet, cv Concerto did better with either 20 h soaking or with 0.5 g l-1 

chitosan alone (Table S4.1), however, this variation did not result in a significant 

cultivar × treatment interaction. RGT Planet (the most recent elite cultivar of the two) 

had greater yield performance relative to Concerto.  

The effect of treatment on grain quality had a significant effect but, after post-

hoc analysis, this difference was not enough for discrimination of the treatments 

from the control for any of the grain quality parameters. The effect of P24 with 

chitosan tended to have greater GN, although this was not statistically different from 

the control. There was a significant effect of cultivar (P < 0.01) in Retention %, RGT 

Planet retained a greater percentage than Concerto; but not of treatment or cultivar 

× treatment interaction (Table S4.1). 
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Table 4.3. Mean cultivar and treatment effects for yield and grain quality traits: grain 

yield (GY), grain number (G no.), thousand grain weight (TGW), and grain nitrogen 

(GN) on 2018 trial. Values followed by different letters, within a column, differ 

significantly from each other: LSD test (P > 0.05). Significance levels of main effects 

Cultivar (Cv) and Treatment (Tr); * P < 0.05, ** P < 0.01, *** P < 0.001, ns non-

significant. 

  Yield  Grain Quality 

Main effects Levels GY (t ha-1) G no. (m-2)  TGW (g) GN (%) 

Cultivar (Cv) Concerto 4.02b 7,914b  49.7a 1.57a 

 RGT Planet 4.49a 8,733a  50.1a 1.56a 

       
Treatment 
(Tr) NP 3.96y 7,627x 

 
50.7z 1.56zy 

 NP+0.5 4.55z 8,846z  50.2z 1.54zy 

 NP+5 4.34zy 8,475zyx  49.9z 1.56zy 

 P20 4.41zy 8,578zy  50.2z 1.55zy 

 P20+0.5 4.35zy 8,630zy  49.2z 1.55zy 

 P20+5 4.34zy 8,439zyx  50.2z 1.51y 

 P24 4.09zy 8,097zyx  49.3z 1.57zy 

 P24+0.5 4.01y 7,930xy  49.3z 1.59z 

 P24+2.5 4.19zy 8,332zyx  49.2z 1.59z 

 P24+5 4.31zy 8,282yx  50.9z 1.60z 

       

Cv  *** ***  ns ns 

Tr  ** **  * ** 

Cv x Tr  ns ns  ns ns 
Seed treatment codes are in Table 4.1. Seed treatments significantly different from NP are shown 

in bold. 

Pearson correlations and hierarchical clustering 

Pearson correlations were calculated to explore the relationships between yield 

components and grain quality, as well as their links to the phenotypical traits during 

crop growth across individual seed treatments (Figure 4.2). GY was strongly 

correlated to G no. (R = 0.97), although TGW was not correlated to either of the two 

yield components (R = 0.20 and -0.06 respectively). GN had a moderate negative 

relationship with G no. (R = -0.47) and GY (R = -0.51). Relationships between 

consecutive GA measurements changed from moderately to strongly correlated to 

GY as the crop advanced (R = 0.44, 0.66 and 0.76 at tillering, stem elongation and 

booting respectively) but particularly to G no. (R = 0.53, 0.75, 0.84 respectively) 

showing a strong correlation at the booting stage. Height measurements at booting 
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were also highly associated with GY and G no. (0.65, 0.66 respectively). TGW was 

moderately correlated to LC at booting and at grain feeling (R = 0.55 and 0.42 

respectively) and weakly at anthesis (R = 0.32). Only weak or very weak 

associations were found for GN and phenotypical traits.  

Figure 4.2. Correlation matrix and dendrogram representing associations among 

phenotypical traits, yield and grain quality parameters. Darker blue shows greater 

positive correlation whilst darker red shows greater negative. The length of the 

dendrogram branches represents the distance between variables or clusters of 

variables calculated from Pearson correlations. Traits abbreviations are as in Table 

4.2. 

 

Hierarchical clustering (represented by a dendrogram in Figure 4.2) provided an 

overview of these relationships at a higher level. This method split data into two 

main blocks. In the right-hand block, emergence counts and GA were closely 

connected and, in turn, linked to yield parameters and height at booting. In the left-

hand block, branches among variables were generally longer, illustrating a lower 

degree of association between these variables. TGW appeared to be linked to LC 

measurements whilst height measurements at stem elongation and grain filling, and 

GN seemed fused arbitrarily at higher distances.  



98 

 

Multiple Factor Analysis (MFA) dimensions and individual treatments  

Only groups of variables with clear association, i.e. Establishment, Canopy 

Cover and Yield, were further used to characterise treatments phenotypical 

differences in an MFA. The analysis returned two main dimensions, which 

encompassed 86 % of the total phenotypical trait variance. All variables were 

strongly positively correlated to the first MFA dimension. The three groups of 

variables Canopy Cover, Yield and Establishment groups contributed similarly (37, 

34 and 30 % respectively) to the construction of this dimension (Figure 4.3). 

Treatments towards the right side in Figure 4.4, e.g. RGT Planet P20+0.5 and 

NP+0.5 were considered the highest rating for these variables and Concerto P24+5 

and NP the lowest. In the second dimension, 47 % of loadings belonged to 

Establishment variables (towards upper side) and 38 % to Yield variables (towards 

down side). Thus, for example, Establishment rating was proportionally greater than 

its Yield for Concerto NP, whilst the opposite was the case for RGT Planet P20.  

 
Figure 4.3. Relationships between individual variables and groups of variables 

(variable codes are in Table 4.2). Variables with arrows closer to the circle are more 

represented in the global analysis. 

It is evident that the two cultivars had distinct growth responses to the different 

treatments (Figure 4.4). Individual treatment effects of RGT Planet tended to appear 
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in, or close to, the right quadrats whilst treatment effects for Concerto were mostly 

in, or close to, the left quadrats. Both cultivars showed positive responsiveness to 

the seed treatments (with the exception of P24+0.5 of Concerto) in terms of canopy 

cover, yield and establishment. This was represented by the cv Concerto treatments 

being projected to the right hand-side of their cultivar control (NP). However, the 

second dimension showed that treatment effects on Concerto were more evident in 

yield than in establishment, whilst the opposite seemed to be norm for RGT Planet. 

In addition, specific seed treatments exerted varying responses on the cultivars. For 

example, whilst both NP+0.5 treatments were well separated from their respective 

controls for both cultivars; P20 treatment had a divergent effect as Concerto P20 

was well separated from Concerto NP but RGT Planet P20 was scarcely separated 

from RGT Planet NP. Thus, treatment effects were cultivar-dependent, i.e., 

treatments did not necessarily produce similar effects in both cultivars.  

 
Figure 4.4. Representation of individual treatments on the basis of the first two 

dimensions by cultivar. Ellipses represent 95 % CIs for Concerto (light grey) and 

RGT Planet (dark grey). 
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Factor level decomposition 

In order to resolve overall effects of ‘on-farm’ seed priming soaking times and 

chitosan concentration on the phenotypic traits, data was averaged for each factor 

level (centroid) and broken down into each phenotypical trait (partial points) (Figure 

4.5). MFA analysis of ‘on-farm’ seed priming depicted a clear differentiation between 

P20 treatments and controls in terms of yield performance (Figure 4.5a). P24 

treatments performed halfway between the control and P20 treatments for all traits, 

although not clearly separated from the control in terms of establishment. All 

chitosan centroids were on the right, distant from the control, revealing overall 

positive effects on the x axis correlated variables (Figure 4.5b). However, 

differentiation among concentration levels was less evident, with 0.5 g l-1 chitosan 

(+0.5) slightly separated to the up-right side due to greater effects on Establishment.  
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Figure 4.5. Projection of the groups of variables (coloured squares) onto the global 

analysis according to (a) ‘on-farm’ seed priming levels, 20 h (P20) and 24 h priming 

(P24); and (b) chitosan concentrations levels, 0.5 (+0.5), 2.5 (+2.5) and 5 g l-1 (+5) 

against untreated (NP) in 2018. Each dark square of a given factor level is the 

centroid of the treatments belonging to this level.  

4.4.2 Meteorological conditions 

There were contrasting weather conditions for the two experimental seasons 

especially in terms of precipitation (Figure 4.6). Compared with the average of the 

three previous seasons (318.4 mm precipitation and 79.1 % relative humidity), the 
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2018 season was considered very dry with 189.8 mm of accumulated precipitation 

and an average relative humidity of 78 % during the period from sowing to harvest. 

Conversely, the 2019 season was considered humid with an average of 395.3 mm 

rainfall and 86 % relative humidity. Average mean daily air temperature was 13.3°C 

for 2018 and 12.2°C for 2019, which was slightly warmer than the average of the 

three prior seasons (11.7°C). 

4.4.3 Trial 2019: evaluation of transgenerational effects 

Yield components, grain quality and disease 

The mild weather conditions of 2019 were reflected in greater GY (23 % more 

on average) than 2018; however, yield components were not significantly affected 

by cultivar or seed treatment (Table 4.4). Although P20 and NP+0.5 had the greatest 

G no. as occurred in the 2018 trial, this was not significant relative to the control. 

There was a slightly significant interaction between cultivar and seed treatment for 

TGW (P < 0.05) due to the control having significantly greater TWG than P20+5 in 

Concerto, and P24+5 than P24 in RGT Planet. GN was unaffected by cultivar or 

seed treatments.  

Low and very low levels of yellow rust (DSY) and rhynchosporium (DSR) 

respectively developed at late anthesis (Table S4.2). No differences between 

cultivars or treatments were found. 
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Figure 4.6. Climatic conditions during, (a) season 2018 and (b) season 2019. Daily 

mean temperature represented by red lines, daily precipitation by turquoise bars 

and daily mean relative humidity and by blue lines. Data provided by COSMOS-UK. 
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Table 4.4. Mean cultivar and treatment effects for yield and grain quality traits: grain 

yield (GY), grain number (G no.), thousand grain weight (TGW), and grain nitrogen 

(GN) on 2019 trial. Values followed by different letters, within a column, differ 

significantly from each other: LSD test (P > 0.05). Significance levels of main effects 

Cultivar (Cv) and Treatment (Tr); ns non-significant, * P < 0.05. 

  Yield  Grain Quality 

Main effects Levels GY (t ha-1) G no. (m-2)  TGW (g) GN (%) 

Cv Concerto 5.26a 11,030a  44.0a 1.57a 

 RGT Planet 5.27a 11,170a  43.6a 1.57a 

       

Tr NP 5.32z 11,143z  44.1z 1.56z 

 NP+0.5 5.32z 11,340z  43.3z 1.57z 

 NP+5 5.38z 11,268z  44.0z 1.57z 

 P20 5.41z 11,344z  44.1z 1.55z 

 P20+0.5 5.23z 10,939z  43.9z 1.60z 

 P20+5 5.13z 11,006z  42.9z 1.58z 

 P24 5.08z 10,761z  43.4z 1.57z 

 P24+5 5.29z 10,997z  44.3z 1.57z 

       

Cv  ns ns  ns ns 

Tr  ns ns  ns ns 

Cv x Tr  ns ns  * ns 
Seed treatment codes are in Table 4.1. Seed treatments significantly different from NP are shown in 
bold. 

Multiple Factor Analysis (MFA) dimensions and individual treatments  

The main two dimensions encompassed 79.7 % of the total variance of the traits 

measured in this trial with most of the groups of variables having high loadings in 

both dimensions (Figure 4.7). The top right quadrat was dominated by Canopy 

Cover and Yield variables indicating a positive correlation between them. However, 

Establishment variables (on the top left quadrat) showed low positive relationship to 

green area at tillering and no relationship with yield variables. These trait by trait 

correlations contrasted with the ones in 2018, where the set of Establishment, 

Canopy Cover and Yield variables were positively and closely related.  
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Figure 4.7. Relationships between individual variables and groups of variables 

(variable codes are in Table 4.2). Variables with arrows closer to the circle are more 

represented in the global analysis. Thin arrows are more strongly correlated to 

dimension 1, while thick arrows are more strongly correlated to dimension 2.  

Unlike 2018 trial, there was no clear differentiation between cultivars for the 

measured phenotypic traits (Figure S4.1). This is in line with the low differences 

observed in yield and grain quality parameters between cultivars. Similarly, effects 

of ‘on-farm’ seed priming or chitosan concentrations were minimal relative to the 

control (Figure S4.2).  

4.5 Discussion 

4.5.1 Effect of ‘on-farm’ seed priming and chitosan on yield components 

This is the first study on a field-scale of ‘on-farm’ seed priming of cereals in a 

European conventional agricultural system. Barley responded positively to all 

combinations of ‘on-farm’ seed priming and chitosan treatments, with substantial 

increases in GY and G no. The priming duration of 20 h gave consistently greater 

yield components than the 24 h treatments and, thus, confirms that the optimal 

soaking time of 20 h for these two cultivars (as hypothesised in Chapter 3) can be 
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successfully translated to field-scale conditions. Although P24 brought seeds closer 

to germination (up to the state of embryo differentiation), it probably also entailed a 

loss of desiccation tolerance and a greater accumulation of toxic fermentative 

products from the prolonged hypoxic conditions that would compromise the vigour 

of the future seedling. Seed priming for 20 h should not be taken as the optimal 

soaking times for all barley cultivars however, as the precise duration will vary 

depending on cultivar and priming conditions (e.g. temperature) (Paparella et al., 

2015). For example, Rashid et al. (2006) found in a series of trials with local 

Pakistani cultivars and an old US cultivar that the optimal soaking time varied 

between 12-16 h.  

Although there is little available data linking chitosan seed application and effect 

on yield (Wang et al., 2015), a number of studies have demonstrated enhanced 

germination, seedling growth and protective effects for cereal crops when chitosan 

is applied as a seed treatment (Sharathchandra et al., 2004; Reddy et al., 1999; 

Guan et al., 2009; Siddaiah et al., 2018). However, the implications for barley, 

beyond the early growth stages and subsequent yield performance have not yet 

been determined. In this trial, greater yield components were generally obtained at 

the lowest chitosan dose tested (0.5 g l-1). However, this trend was reversed when 

chitosan treatments were combined with P24 as higher concentrations of chitosan 

tended to produce higher yields, validating that the activity of chitosan as a plant 

regulator is concentration-dependent (Yang et al. 2019). Solutions containing high 

concentrations of chitosan may create a film around the seed that hamper water 

absorption (Jabeen & Ahmad, 2013) or induce cell apoptosis (Li et al., 2019); 

although it is not clear why the concentration of the chitosan would interact with a 

longer seed priming duration. Perhaps prolonged hypoxia during P24 priming may 

generate excessive nitric oxide and fermentative products and the antioxidant 

properties of chitosan can counteract these effects to some extent. 

Genetic background of the cultivar also determined which treatments were more 

beneficial and the magnitude of response to them. For example, RGT Planet was 

less sensitive to the duration of ‘on-farm’ seed priming, whereas 24 h priming 

seemed excessively long for Concerto. The combination of the highest performing 

priming duration and chitosan concentration (i.e. P20+0.5) did not always result in 

an additive value effect. Whilst P20+0.5 was indeed the best treatment for RGT 
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Planet, Concerto achieved greater yields with either 20 h soaking or with 0.5 g l-1 

chitosan alone illustrating a genetic response to specific treatments. In general, 

combined priming/chitosan treatments did not significantly differ from their 

corresponding single priming or chitosan treatments, suggesting that the treatment 

combinations were not necessarily complementary. It is possible that ‘on-farm’ seed 

priming and chitosan have overlapping mechanisms of action, at least, on their 

direct metabolic effects on seed development. The former promotes α-amylase 

production during germination, which plays a crucial role in starch mobilization, and 

provides the embryo and the subsequent young seedling with carbohydrates for 

respiration (Ashraf & Foolad, 2005); and the accumulation of antioxidants and 

soluble phenolics in the seedlings (Farooq et al., 2017). Likewise, chitosan 

significantly stimulates amylases and the production of antioxidants in germinating 

seeds (Lan et al., 2016) as well as upregulating metabolites involved in 

photosynthetic C fixation and N assimilation of seedlings (Zhang et al., 2017). 

Therefore, both have similar mechanisms resulting in rapid germination and 

seedling growth which, in turn, may be translated into improved crop stands. 

4.5.2 Understand the mechanism for yield variation 

The concatenated positive association of establishment, vegetative growth and 

yield in this trial suggested that seed treatments provide a head start at emergence 

that is upheld until harvest resulting in greater yields. Likewise, the fact that GY was 

very strongly correlated to G no. rather than to TGW, also pointed towards tillering-

stem elongation, which is when G no. are largely defined in barley (Ugarte et al., 

2007; Arisnabarreta & Miralles, 2008; Křen et al., 2014); as the key stages for the 

GY variation in this study.  

The tillering and stem elongation stages are sensitive to mean temperature 

(Ugarte et al., 2007). Cold temperatures allow appropriate tiller formation whilst 

warm temperatures can hasten stem elongation causing yield losses up to 46 % 

that cannot be recovered even if there is a good flush of re-tillering in later stages of 

the crop cycle (Ugarte et al., 2007; García del Moral & García del Moral, 1995). 

Thus, in the 2018 season it is likely that the relatively warm mean temperature during 

tillering-stem elongation, together with the lack of rain, constrained tiller production 

in this study. Consequently, plots with greater plant populations and fully emerged 
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seedlings at the beginning of the tillering stage, e.g. 20 h primed and/or chitosan 

alone treated plots in this study, had a greater chance of retaining more shoots to 

booting.  

The number of shoots together with vigorous growth was involved in tiller survival 

as indicated by the increasingly stronger association of canopy cover (estimated as 

green area) throughout tillering, stem elongation and the booting stages, to grain 

number. Although greater canopy cover would not necessarily mean greater vigour 

(as it could simply derive from the increased plant numbers at seedling growth 

stage), the fact that height at booting was also strongly positively correlated to G no. 

suggests enhanced vigour per shoot as a mechanism. A number of vigour-related 

traits have been linked to survival of tillers with anteriority. Tillers with greater rate 

of leaf emergence, with at least one-third of the height of their main stem at stem 

elongation or with greater leaf area and canopy size before stem elongation have 

been found to be more fertile in barley (Kirby & Jones, 1977; Kennedy et al., 2017; 

García del Moral & García del Moral, 1995). Thus, these results highlight the 

importance of ensuring good sized tillers that are able to intercept more light prior 

to GS31 and minimise pre-anthesis tiller mortality (Kennedy et al. 2017). Although 

re-tillering may take place during heading and anthesis if environmental conditions 

are favourable, its contribution to yield is commonly negligible (Kennedy et al., 

2017). 

4.5.3 Effects on source-sink ratios and grain quality 

It is conceivable that if G no. is significantly increased, inter-plant resource 

competition may also increase, unbalancing source-sink ratio and compromising 

attainment of full TGW potential. Nevertheless, there was no association between 

TGW and G no., so it is unlikely that source capture was compromised in this trial. 

However, given that plant densities were relatively low in this trial, it cannot be ruled 

out that under more restricted conditions in terms of available assimilates per shoot 

it may have a negative impact in TGW.  

There is a general view that crops that stay greener for longer can maximise 

TGW resulting in a higher percentage of grain retention. In an effort to non-invasively 

monitor this process, photosynthetic potential was estimated (expressed as 

chlorophyll content of the flag leaf) from pre-anthesis to ripening, and showed a 
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moderate association with TGW. Seeds soaked for 20 h showed low photosynthetic 

capacity when compared to the control average, however, this did not affect either 

TGW or percentage of grain retention of these plants indicating that they were not 

constrained by these effects in this trial. Assuming that post-anthesis spike 

photosynthesis (which is another important source of photoassimilates for grain 

filling) followed a similar pattern as the measure of leaf photosynthesis, this can be 

explained by the fact that mobilisation of stem soluble carbohydrate to the grain can 

be more efficient than maintaining photosynthetic activity in latter stages of grain 

filling (Serrago et al., 2013; Bingham et al., 2007). Thus, taken together, the results 

of this trial reinforce the view that barley is not commonly source-limited during grain 

filling (Serrago et al., 2013; Bingham et al., 2007; Kennedy et al., 2017). 

4.5.4 Transgenerational effects of elicitor treatments 

The contrasting weather conditions between the 2018 and the 2019 season 

resulted in very distinct crop development during each season. Whilst establishment 

played a crucial role in 2018, no link was found between establishment and 

subsequent canopy development in 2019 indicating that establishment was not a 

limiting factor during 2019. This was also evident at cultivar level. Whilst RGT 

outperformed Concerto in 2018, especially in terms of yield (which was expected 

given that RGT Planet is known to be a higher yielding cultivar than Concerto 

(HGCA, 2019)); both cultivars performed similarly during 2019.  

This study has provided no evidence of transgenerational effects following either 

chitosan or ‘on-farm’ seed priming in spring barley. Although seed treatments did 

exert changes in 2018 that resulted in better overall performance, those effects were 

not carried through to their progeny for the traits measured in 2019. Resemblance 

to 2018 results can only be found for yield components, but not for other traits, as 

NP+0.5 and P20 repeated among the highest values for yield components, but it 

cannot be determined whether this was simply by chance or there was an underlying 

trend. In this respect, these results depict a similar picture to the only data available 

of in-field elicitor-induced transgenerational effects (Adrian Newton (James Hutton 

Institute), unpublished data). Therefore, it can be hypothesised that either (1) there 

is no transgenerational effect associated with these treatments, or (2) there is an 
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underlying transgenerational effect, but their effects are too mild to be detected 

under field conditions. 

Chitosan and ‘on-farm’ seed priming may not exert the type of stimulus needed 

to produce adaptative changes onto the next generation. Transgenerational effects 

are caused by elicitors or stress events in the maternal plants that produce long-

lasting epigenetic changes, e.g., DNA methylation and histone modifications; or 

accumulation of transcriptional factors that are passed on to their progeny (Ramírez-

Carrasco et al., 2017; Walter et al., 2013). In this respect, there is increasing 

evidence of elicitors, such as β-Aminobutyric acid (BABA) and salicylic acid 

derivates, and abiotic stresses, such as heat stress, drought or N-deficiency that 

can facilitate transgenerational changes (Ramírez-Carrasco et al., 2017; Walter et 

al., 2013; Kou et al., 2011). Similarly, both ‘on-farm’ seed priming and chitosan seed 

treatment can be perceived as a first stress/elicitation event to the maternal plant. 

The former represents an abiotic stress due to the hypoxic conditions of the 

treatment and/or membrane damage caused by rapid uncontrolled imbibition (Chen 

& Arora, 2013). This rapid imbibition of seeds, during ‘on-farm’ seed priming, is 

known to disrupt cell membranes and cause localised cell death in cotyledons and 

the embryonic axis of seeds producing reactive oxygen species (ROS) (Powell & 

Matthews, 1978; Bailly, 2004). In contrast, chitosan may be perceived as a biotic 

stress that mimics pathogen-associated molecular pattern molecules (PAMPs), 

widely known to induce systemic acquire resistance (SAR) (Iriti & Varoni, 2017; 

Alexandersson et al., 2016). However, there is currently no evidence of whether 

seed priming related stresses or chitosan can induce changes at an epigenetic level.  

Apart from the nature of the elicitor/stress, the timing might be also an important 

factor. Although epigenetic effects through seed treatments have been suggested 

as a plausible strategy to imprint transgenerational benefits, the experimental 

evidence is lacking (Chen & Arora, 2013; Worrall et al., 2012). It is conceivable that 

transgenerational benefits will be more likely to pass onto the progeny when the 

triggering stimulus (either stress or elicitor) takes place during the period of maternal 

seed development so that the progeny seeds are directly bestowed with the priming 

state. For example, progeny from oilseed rape and wheat that were drought-

stressed during flowering of the maternal plants have demonstrated higher vigour 

and adaptability to subsequent stresses than the progeny seeds from non-stressed 
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maternal plants (Hatzig et al., 2018; Tabassum et al., 2017). Therefore, chitosan 

could be a potential candidate for transgenerational legacy if applied, for example, 

as a leaf spray.  

The other possible explanation is that there were transgenerational effects but 

they were mild, and the optimal conditions experienced during 2019 did not provide 

a sufficiently challenging environment that would have shown expression of these 

effects. Some physiological legacies, not necessarily involving epigenetic changes, 

such as seedling vigour can be inherited from the maternal plant through alterations 

in seed composition such as a greater accumulation of protein content and storage 

metabolites (Hatzig et al., 2018; Richards, 2000). However, warm temperatures and 

well distributed rainfall throughout the season would have hampered detection of 

these potential effects. Moreover, disease severity (yellow rust and 

rhynchosporium) was at a low level and too late in the season to constitute a 

challenge for enabling differentiation of potential effects on defence priming.  

The high variability of the experimental field conditions significantly influenced 

both crop development and the challenge stimuli (disease and/or drought and the 

timing of occurrence), which hampered any observation of induced heritable traits. 

Moreover, a greater understanding of the elicitor/stress stimulus, timing and mode 

of applications need to be gathered first at lab level before moving on to field 

experimentation. Molecular and epigenetic markers would allow a more robust 

method for associating phenotypes with transgenerational memory. This can be 

done, for example, by quantifying the transcript levels of marker defence genes such 

as PATHOGENESIS RELATED GENE-1 (PR-1) or methylation patterns such as 

Cytosine methylation, as has been done for elucidation of transgenerational defence 

priming and N-deficiency memory respectively (Ramírez-Carrasco et al., 2017; Kou 

et al., 2011).  

4.6 Conclusions 

Successful establishment before GS31 is a bottleneck for attaining enough yield 

bearing structures in spring barley, therefore, seed treatments and elicitors could be 

a timely and convenient approach to ensure that yield potential is not restricted early 

in the crop season. This study suggests that chitosan-based and ‘on-farm’ seed 

priming treatments (separately or in combination) can improve shoot vigour which, 
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ultimately, results in greater yields without causing side effects. It is foreseeable that 

these seed treatments are especially beneficial under stress conditions such as 

rapidly drying seed beds or when competing with weeds for light where enhanced 

growth will reduce tiller mortality. However, data on the effects of contrasting 

climates, soil types and genetic background are now needed to more clearly define 

the potential benefits that these seed treatments can deliver. 

Whether chitosan-based and ‘on-farm’ seed priming treatments can impart 

transgenerational legacies remains unknown. The high variability of climatic 

conditions from season to season is likely to be a major burden assessing 

transgenerational effects in the field as it hampers the linkage of potentially inherited 

traits with their parent crop. Additionally, practical questions such as elicitor/stress 

stimulus and timing of the application in crop species need to be further tested under 

controlled conditions before moving on to field experimentation. Currently, the 

molecular and epigenetic basis of transgenerational memory are still largely 

unknown and, thus, will require further research before they can be exploited in 

sustainable agriculture. 
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Chapter 5: In-field evaluation of host defences induced by 

seed treatments on winter barley (Hordeum vulgare L.) 
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5.1. Abstract 

Control of cereal foliar diseases depends largely on the application of non-

sustainable chemical fungicides. Enhancing host defences, i.e. induced resistance, 

disease tolerance and/or escape, in combination with current disease management 

regimes may be a valuable strategy to reduce pesticide use and provide durable 

disease control as part of integrated pest management (IPM) programmes. Since 

both ‘on-farm’ seed priming (OSP) and chitosan priming (CHP) have been reported 

to confer varying levels of host defence, this study sought to investigate their 

potential to deliver disease control as a strategy for the sustainable management of 

crop pathogens in winter barley. Field experiments were conducted at two different 

field sites, and included fungicide and non-fungicide treatments, three cultivars, and 

OSP, CHP and a control treatment (NP) as seed treatments at each site. Results 

showed no significant effects of seed treatments on disease severities of powdery 

mildew (Blumeria graminis) or rhynchosporium (Rhynchosporium commune), 

except for powdery mildew at one of the sites. Further analysis revealed that these 

differences were due to a negative association between post-stem elongation 

powdery mildew levels and rate of stem elongation in the non-fungicide treatments, 

where OSP showed the highest rate and lower disease severity. Estimated 

tolerance varied by cultivar but not by treatment. At both sites, strong negative 

correlations were found between canopy size and senescent tissue (mostly 

attributable to powdery mildew infection) at advanced tillering. Overall, no evidence 

was found to suggest that chitosan or ‘on-farm’ seed priming can induce resistance. 

It is likely that the continuous interactions with biotic and abiotic elements hinder the 

expression of potential induced resistance in field crops. These field trials, however, 

enabled the identification of candidate traits to deliver disease tolerance (and 

escape) for primary and secondary spreads of powdery mildew, such as large 

canopies and rapid stem elongation respectively. The greater remaining healthy 

tissue of large canopies may allow them to compensate for a loss of radiation 

interception in primary infections. Rapid stem elongation can limit the upward spread 

of powdery mildew by developing upper leaves away from the optimal microclimate 

for the fungus lower down the stem. Thus, seed treatments may deliver disease 

tolerance and escape traits, but these benefits will be conditional upon conferring 

successful establishment and vigour first. 
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5.2. Introduction 

Plant host defence against pathogens and parasites can involve three elements, 

i.e. ‘resistance’, which is the capacity of a crop to eliminate or limit pests and 

pathogens by genetic and molecular mechanisms, ‘tolerance’, which is the ability to 

maintain performance in the presence of expressed disease and ‘escape’, which is 

the ability to restrict the dispersal of spores within the canopy and hence the spread 

of the disease (Walters et al. 2012; Ney et al. 2013).  

A number of natural and synthetic substances that have the potential to induce 

host resistance have been identified. These so-called plant defence elicitors include 

chitosan, which acts as a priming stimulus for systemic resistance by mimicking 

pathogen-associated molecular pattern molecules (PAMPs) (Alexandersson et al. 

2016; Iriti and Varoni 2017). Chitosan can induce resistance in crop plants against 

a wide range of pathogens including via direct application to seeds. For example, 

seeds from tomato, pearl millet and wheat immersed in a chitosan solution had 

subsequent protection against Fusarium oxysporum, Sclerospora graminicola and 

Fusarium graminearum respectively, through the accumulation of defence-related 

secondary metabolites, e.g. beta-1,3 glucanase and ferulic acid (Benhamou 1994; 

Reddy et al. 1999; Sharathchandra et al. 2004). Similarly, induced resistance 

responses have been associated with crops following ‘on-farm’ priming of seeds 

(Rashid et al. 2004a; Harris et al. 2005), with reports of a decrease of 20 % in downy 

mildew (causal agent Sclerospora graminicola) infection of pearl millet after ‘on-

farm’ seed priming (Harris et al. 2005). It was hypothesised that the anaerobic 

conditions of the treatment may trigger an accumulation of phytohormones involved 

in induced resistance that, upon pathogen attack, could accelerate and strengthen 

defence responses (Harris et al. 2005). 

In addition to induced resistance, seed priming with water or chitosan may have 

other physiological effects that result in traits that can confer a varying degree of 

disease tolerance and/or escape. For example, chitosan application can result in a 

larger canopy size (Chapter 4) and therefore an increased net photosynthetic rate 

(Khan et al. 2002), both of which are candidate traits that can lead to tolerance of 

foliar diseases in cereal crops (Bingham et al. 2009). Enhanced crop vigour 

following ‘on-farm’ seed priming, can lead to considerably decreased severity of the 
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symptoms caused by mungbean yellow mosaic virus (MYMV) due to the improved 

state of readiness of the plant to defend itself (i.e. plant ‘tolerance’) (Rashid et al. 

2004a). The rapid emergence of crops following ‘on-farm’ seed priming can reduce 

the size of the ‘infection window’ available to soil-borne diseases such as collar rot 

(Sclerotium rolfsii) and Fusarium wilt (Musa et al. 2001), whilst the decreased time 

to maturity can reduce exposure to late-season pests (i.e. ‘escape’) (Harris et al. 

1999). Increased height or rapid stem extension may also be traits that confer 

disease escape, for example by hampering the spread of disease to upper leaves 

by splash-spread diseases such as rhynchosporium (Rhynchosporium commune), 

(Walters et al. 2012). 

Effective control of diseases solely through induced resistance, tolerance and/or 

escape mechanisms is unlikely; however, unlike fungicides or genetic-mediated 

resistance, these strategies are broad-spectrum and so do not generate pathogen 

selective pressure. Enhancing host defences, in combination with current disease 

management regimes, may be a valuable strategy to reduce pesticide use and 

provide durable disease control in integrated pest management (IPM) programmes 

of cereal grains (Walters et al. 2012). In barley, it is especially important to protect 

crops from early epidemics during the vegetative growth as yield largely relies on 

maximising tiller production and survival (Walters et al. 2012). Thus, IPM findings in 

winter barley, with more overwintering disease and more routinely exposed to 

pathogens than the spring crop, may be particularly valuable as strategy to retain 

side tillers that might otherwise be lost to disease (Zhan et al. 2008).  

Therefore, the overall aim of this chapter is to investigate the potential of ‘on-

farm’ seed priming and chitosan-based seed treatments to deliver disease control 

as a strategy for the sustainable management of winter barley pathogens. The 

specific objectives of this work were to test the hypotheses that ‘on-farm’ seed 

priming and chitosan seed dressing can: (a) induce disease resistance; b) confer 

disease tolerance; c) confer disease escape; and d) increase crop yields in a 

temperate field-scale agricultural context. 
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5.3. Material and methods 

5.3.1. Plant material and preparation of seed treatments 

Three winter barley genotypes with differential disease ratings to common foliar 

diseases, according to Agriculture and Horticulture Development Board (AHDB), 

were selected (Table 5.1). Seed treatments consisted of an ‘on-farm’ seed priming 

treatment (OSP), 0.5 g l-1 chitosan (CHP) applied as ChitoPlant® (ChiPro GmbH, 

Bremen, Germany) at a concentration based on findings from Chapter 4, and a non-

primed control (NP), which consisted of dry seeds. Preliminary tests were carried 

out to determine the optimal ‘on-farm’ seed priming duration for each cultivar as 

described in Chapter 3 Respiration measurements. The optimal priming durations 

were 20, 24 and 28 h for SY Venture, KWS Tower and KWS Cassia respectively 

(see Figure S5.1). 

Approximately 13,400 seeds (calculated by weight from the thousand grain 

weight of each cultivar) of each cultivar were poured into labelled 5 l plastic buckets 

containing either distilled water or 0.5 g l-1 chitosan solution (1:5 (w/v) ratio). These 

buckets were then incubated at 20 °C for the corresponding optimal priming 

durations for each cultivar, or for 15 min for CHP treatments. After soaking, OSP 

seeds were oven dried at 50 °C until moisture content was reduced to 27-31 % 

(sufficiently dry to avoid clumping within the seeder drill piping). The moisture 

content of the NP and CHP treatments ranged from 12 to 16 %. Subsequently, seed 

were reweighed and split into twelve equal weight portions, which provided the 

twelve replicates for each cultivar x seed treatment combination; and packed in 

envelops for sowing. 

Table 5.1. Details of cultivars used in both growth trials. 

Cultivar Date 
listed 

Type Resistance 
mildewa 

Resitance 
rynchosporiuma 

SY Venture 2012 Two-row malting 6 5 

KWS  Cassia 2010 Two-row feed 4 5 

KWS  Tower 2014 Two-row feed 5 6 
aResistance ratings according to AHDB Recommended list 2018 on a scale of 1–9, with higher 
values indicating higher resistance of the variety.  
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5.3.2. Field sites, experimental design and crop husbandry 

Winter barley trials were conducted at two sites near Dundee (UK) (Table 5.2). 

The first site, Balruddery, was selected as a representative site for growing barley 

within a rotation. The second site, Mylnefield, has had barley repeatedly cultivated 

as a monoculture and has been used as a disease nursery for cultivar testing for 

over 30 years.  

Table 5.2. Details of both growth trials. 

Site Sowing 
date 

Latitude, 
longitude 

Elevation 
(m) 

Soil 
texture 

Previous crops Harvest 
date 

Balruddery 17 Oct. 56°29'03.5"N 
3°06'34.4"W 

118 Sandy 
loam 

Barley (2017), 
Peas (2018) 

31 Jul. 

Mylnefield 29 Oct. 56°27'21.4"N 
3°04'25.2"W 

13 Sandy 
loam 

Barley from 
1986 

2 Aug. 

 

In both sites, the experimental design consisted of two fungicide treatments, 

either no fungicide (F0) or fungicide (F1) applied alternately per column; and three 

replicates (Figure 5.1). Fungicides were applied with a hand pump rucksack (Table 

5.3). Weeds were controlled with pre-emergence herbicides Pincer® (Agform, 

Wickham, UK) and PicoMax® (BASF, Cheadle, UK) at 0.6 and 3 l ha-1 respectively. 

Adjoining guards of barley surrounding each column were sown to act as a buffer 

for the fungicide applications and to reduce potential edge effects. Each column 

contained 18 plots and was split in two sub-reps with the nine cultivar × seed 

treatment combinations randomized within each sub-rep. Thus, each fungicide × 

cultivar × seed treatment combination comprised six replicates.   



119 

 

 
Figure 5.1. Experimental design at both sites. Whole plots were arranged along 

columns and sub-plots by rows, with guards in the middle of the whole plots and 

sub-plots. Fungicide was applied alternately per column (either none (F0) or full 

treatment (F1)) and sub-replicated in the same column. Each sub-replicate 

contained nine plots where cultivars x seed treatments combinations were 

randomised. 

Plots were sown with an eight-row plot seeder (1.55 x 2.00 m) at 360 seed m-2 

together with a seedbed application of 350 kg ha-1 of 0:20:30 

nitrogen:phosphorus:potassium (N:P:K). Approximately, a total of 340 kg ha-1 of 

29:0:0 (7 sulphate [SO4]) was applied at each site. At Balruddery, a half dose was 

applied in March and the other half in April, whereas a full dose was applied in March 

at Mylnefield. This was done because an irrigation system was installed in 

Mylnefield at the beginning of April, which would have interfered with the second 

fertiliser application. The objective of this irrigation system was to promote 

rhynchosporium spore dispersal by simulating rain via the overhead sprinklers 

(Rightrain, Ringwood, UK) distributed across the experimental field. Irrigation was 

provided from developmental stage GS31 to 71 and consisted of applications of 

approximately 15 mm of water three times a week. 
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Table 5.3. Fungicide programme and active substances. 

Treatment Commercial 
product 

Active substance Rate (l/ha) GS applieda 

T0 Proline  
Corbel 

Prothioconazole  
Fenpropimorph 

0.5 
0.5 

GS 30 

     

T1 Siltra Xpro 
Rover 500  
Vegas 

Bixafen & prothioconazole  
Chlorothalonil  
Cyflufenamid 

0.6 
1 
0.3 

GS 31-32 

     

T2 Tucana 
Imprex 
Joules 
Proline  

Pyraclostrobin 
Fluxapyroxad  
Chlorothalonil 
Prothioconazole 

1 
2 
1 
0.3 

GS 49 

aThere were 19 days between T0 and T1 application and 29 days between T1 and T2 application at 
both sites. Specific timing of applications can be found in Figure 5.3.  

5.3.3. In-field imaging 

Image collection 

Images of each plot were collected from the stage of emergence of the first 

seedlings to approximately stage GS71-75 (specific timing of image acquisition are 

shown in figure 5.2). Where possible, images were taken between the hours of 

10:00 – 14:00, particularly on overcast days. Images were taken 80 cm above the 

canopy with a Canon EOS 1200D digital camera (Canon, Japan). The camera was 

held parallel to the ground with a monopod and focused near the central area of the 

plot. The camera was set at 18 mm focal length, automatic aperture with no flash 

and 1/250 shutter speed. The images were stored as JPEG with native resolution 

of 3456 x 5184 pixels. Prior to the first images being collected, a 1 m section, parallel 

to the row orientation, was delimited by placing two sticks on the soil between the 

central rows of each plot. This allowed posterior conversion of pixels to m2 as the 

long side of the picture (5184 pixels) captured the two sticks at the extremes of the 

picture (approximately equivalent to 1 m). 

Image processing for emergence counts 

An image capturing the delimited area per plot was used for seedling counts 

(Figure S5.2a for illustration), and emergence counts in the same section of the plot 

in each visit. Seedlings at both side rows of the marked section were counted with 

a cell counter plugin and zoomed 50x in FIJI software (version 2.0.0-rc-49/1.52s) 

(Schindelin et al. 2012) (Figure S5.2b for illustration). Images for emergence counts 

were taken every 2-3 days from the appearance of the first emerged seedlings until 
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it was considered that emergence had reached its end, i.e., when count numbers 

from the latest visit coincided with the counts from the previous visit.   

Image processing for total plant tissue and percentage of senescent tissue 

estimation at advanced tillering 

A single image per plot capturing the delimited area was taken to evaluate early 

vigour and the severity of an early powdery mildew epidemic at the end of advanced 

tillering. The timing of image acquisition was at approximately three and two weeks 

after the first observation of disease symptoms at Balruddery and Mylnefield 

respectively, and 35 and 23 days before the T0 fungicide application respectively. 

To facilitate image segmentation, image acquisition was carried out on a cloudy day 

to avoid overly bright leaves, and several hours after a rain event whilst the soil was 

still humid, which improved the colour contrast between the green shoot and the 

soil. Segmentation of soil, green plant tissue and senescent tissue was performed 

using FIJI software (Figure S5.3 for illustration). In brief, pixels within each picture 

were automatically classified into two clusters depending on their distance to a 

cluster centroid generated by the k-means++ algorithm using the k-means 

Clustering plugin (https://github.com/ij-plugins/ijp-toolkit/wiki/k%E2%80%90means-

Clustering) in FIJI. This roughly classifies pictures into two layers containing 

dark/brownish (attributable to soil), greenish and yellowish/light brown pixels 

(attributable to plant tissue). The layer corresponding to plant tissue was retained 

and most of the stones and small particles within the area eliminated setting a 

threshold for particles with high circularity. Subsequently, the resultant RGB image 

was converted to CIELab colour space (Commission Internationale de l'Eclairage, 

L* lightness, a* green–red component, b* blue–yellow component) to more finely 

classify pixels by colour thresholding. Pixels from 0 to 255, 0 to 105 and 120 to 255 

degrees for the channels L*, a* and b* were considered greenish and from 0 to 255, 

106 to 135 and 120 to 255 degrees for the channels L*, a* and b* were considered 

yellowish. At least ten randomly selected images per site were visually inspected to 

verify the quality of the segmentation before bulk processing. Total plant tissue 

(TPT) cover was calculated as the sum of greenish pixels and yellowish pixels and 

converted to m2 being expressed as m2 of TPT m-2 of soil. Percentage of senescent 

tissue (PST) was calculated from the proportion of yellowish pixels in the total plant 

tissue.  

https://github.com/ij-plugins/ijp-toolkit/wiki/k%E2%80%90means-Clustering
https://github.com/ij-plugins/ijp-toolkit/wiki/k%E2%80%90means-Clustering
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Image processing for canopy green cover 

One or two images of each plot were taken (reliant on weather conditions) that 

targeted the central rows of the plot, but not necessarily from the delimited area, 

from plants at stages GS30 to GS71-75 approximately every fortnight. Canopy 

green area was calculated using CerealScanner plugin (Kefauver et al. 2018; 

https://integrativecropecophysiology.com/software-development/cerealscanner/), 

in FIJI, which is a specialist plugin for the characterisation of canopy growth in 

cereals (Fernandez-Gallego et al. 2019).  

5.3.4. In-field measurements 

Disease severity 

Disease severity of powdery mildew (Blumeria graminis) and rhynchosporium 

were scored on a continuous scale (0 – 100 %) at plot level following the AHDB 

Cereal trials protocol (HGCA, 2019) from GS30 (approximately when T0 was 

applied) until the distinction between chlorotic and senescent tissue was no longer 

possible (approximately after GS69). Disease scorings and image acquisition for 

canopy cover were carried out as close as practically possible (maximum 3 d 

between the two measurements) and approximately every fortnight.  

Height and maturity 

Crop height was measured after visually determining the most representative 

part of the average plot height at stages GS31, GS33, GS49 and GS71. At 

Balruddery, only the GS71 measurement (final height) was performed. Height was 

taken from the ground level to the base of the highest fully expanded leaf ligule or, 

after ear emergence, to the base of the highest ear. The number of days from sowing 

to GS49 (when approximately 50% of the stems showed awns visible) was recorded 

for each plot as an estimate of time to crop maturity.  

5.3.5. Yield and grain quality 

At ripening, grain was collected with a combine harvester and dried at constant 

moisture. Grain was passed through a 2.5 mm sieve, for elimination of remaining 

awns and small/broken seeds, and weighed. A subsample of cleaned grain was 

used to determine grain N concentration (GN), and moisture content determined by 

https://integrativecropecophysiology.com/software-development/cerealscanner/
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using a calibrated near-infra red grain analyser (Infratec 1241, FOSS, Sweden). 

Thousand grain weight (TGW) was calculated using a MARVIN Seed Analyser (GTA 

Sensorik, Neubrandenburg, Germany). The grain weight of each plot was then 

adjusted to 85 % dry matter to obtain grain yield (GY) and grain number (G no.) 

calculated from the GY and TGW.  

5.3.6. Meteorological conditions 

Mean temperature, accumulated precipitation and relative humidity data were 

collected by an automated meteorological station situated at a maximum distance 

of 300 m from the experimental area (Figure 5.2). Balruddery weather data was 

supplied by the Natural Environment Research Council through the COSMOS‐UK 

project (https://cosmos.ceh.ac.uk/) and Mylnefield weather data by the James 

Hutton Institute. 

https://cosmos.ceh.ac.uk/
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Figure 5.2. Climatic conditions and key activities during the growing season at (a) 

Balruddery and (b) Mylnefield. Daily mean temperature (red lines), daily precipitation 

(turquoise bars) and daily mean relative humidity (blue lines). Climatic data provided 

by COSMOS-UK and the James Hutton Institute. Green ticks over the upper box 

bar represent an image acquisition event and brown ticks represent a disease score 

event. 
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5.3.7. Data analysis  

Disease scores and canopy green cover were integrated over time using the 

trapezoidal method (Waggoner and Berger 1987) and named area under disease 

progress curve (AUDPC), and healthy area duration (HAD). AUDPC measures the 

proportion of disease-induced green area loss over time, whilst HAD can be 

considered a measure of the size of the canopy and the remaining area of healthy 

photosynthetic tissue (Bingham et al. 2009; Walters et al. 2012).  

All analyses were performed using R version 3.3.0 (R Development Core Team 

2016). Effect of fungicide (Fun), cultivar (Cv), seed treatment (Tr) and their 

interactions in crop traits or disease (e.g., GY, AUDPC, TGW) were analysed using 

mixed effects models. Spatial effects of column and/or subrep were tested selecting 

the model with lower Bayesian information criterion (BIC) and accounted as random 

effects. Assumption of normality and homoscedasticity of variances were checked 

by QQ-plots and residuals against fitted value plots respectively. Percentage of 

senescent tissue (PST) data was log10 transformed to meet normal distribution. 

Post-hoc Fisher’s LSD tests were performed to separate significant differences at P 

values < 0.05 with predictmeans package (Luo et al. 2014). P values were adjusted 

to avoid Type I errors (false positives) using the Benjamini–Hochberg correction 

(Waite and Campbell 2006). 

Assessments of specific candidate traits that may confer tolerance or escape 

characteristics were performed using pairwise correlations for each cultivar. 

Pearson’s correlation between early growth (expressed as TPT) and percentage 

disease symptoms (PST) was calculated to investigate whether a larger canopy can 

confer tolerance in pre-stem elongation epidemics. Spearman’s correlation was 

calculated to investigate whether height can be involved in escape of secondary 

spread of disease to upper leaves. Specifically, AUDPC accumulated after anthesis 

in the top four leaves (i.e., flag leaf, leaf 2, leaf 3 and leaf 4 (see Figure 1.2 for 

illustration)) was correlated against height rate from GS33 (when leaf 3 and leaf 2 

emerge) to GS49 coinciding with the rapid stem extension phase.  

Disease tolerance was estimated according to Foulkes et al. (2006) with some 

modifications. The degree of ‘tolerance’ was modelled by linear regression as the 

slope of the relationship between GY and HAD including Cv and Tr as moderator 
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variables. Site and spatial effects of row x column within sites were controlled for by 

including them as random effects. In order to generate sufficient GY-HAD variation 

for estimation of slopes, data from both sites was pooled and the effect of fungicide 

treatments was accounted for as variation in HAD (Parker et al. 2004; Foulkes et al. 

2006). To validate this approach, the regression slopes were visually checked, by 

specifically making sure that, (a) data was dispersed along the fitted line (i.e., did 

not show fungicide/untreated clusters), and (b) slopes did not excessively deviate 

from the fitted tolerance line (Figure S5.4). Failure to fulfil these conditions would 

have undermined the analysis by producing spurious results. 

5.4. Results 

5.4.1. Emergence and early growth 

Chitosan priming had a positive effect on emergence compared to non-primed 

seeds, with 22 and 13 more seedlings m-2 at Balruddery and Mylnefield respectively 

at the end of the seedling growth stage, although this increase was only significant 

at the Balruddery site (P < 0.01) (Figure 5.3). The effect of ‘on-farm’ seed priming 

(OSP) was significantly related to earliness in emergence (first count event) at 

Balruddery (P < 0.01) but not at Mylnefield. However, this earliness in emergence 

was not translated into a significant number of seedlings at the end of the seedling 

growth stage in either of the sites. 
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Figure 5.3. Emergence over time. Only seed treatment (Tr) effect is presented as 

the effect of cultivar (Cv) was not significant across time points. Asterisks denote 

significant differences (* P < 0.05, ** P < 0.01) against the non-primed control at 

each time point (LSD test). Error bars show ± SE. 

Total plant tissue (TPT) produced by advanced tillering was estimated using 

image segmentation. Both sites yielded very similar results with TPT varying by 

cultivar and seed treatment, but with no interaction between them indicating that the 

seed treatment effect was similar between the cultivars (Figure 5.4). KWS Cassia 

and KWS Tower produced significantly more TPT than SY Venture (P < 0.001). 

Non-primed seeds had the greatest TPT overall, whilst plants grown from ‘on-farm’ 

primed seeds had significantly less TPT at both sites. These results contrasted with 

the significant CHP impact on final emergence, indicating that the effects on 

emergence did not continue during development up to advanced tillering. 
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Figure 5.4. Total plant tissue estimated by image segmentation at advanced tillering 

at Balruddery (a) and Mylnefield (b). P values from analysis of deviance are for 

cultivar (Cv), and seed treatment (Tr) effects and the Cv x Tr interaction. Bars with 

different letters are significantly different from each other (LSD test). Error bars show 

the mean +SE. 

5.4.2. Effect of vigour as candidate trait for tolerance 

At the time of image acquisition for image segmentation, both sites were infected 

with powdery mildew (Blumeria graminis f.sp. hordei). Most plots at Mylnefield 

presented discoloured yellow leaves (indicative of the infection depleting the leaf of 

nutrients) with some grey/brown leaf tips; whilst, at Balruddery, damaged tissue was 
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predominantly grey/brown (indicative of an older infection) and also covered with 

whitish pustules expanding to healthy tissue. Consequently, there was a greater 

percentage of senescent tissue across cultivars and treatments at Balruddery than 

at Mylnefield (42 % compared with 29 %). As for TPT, there were no interactions 

between factors in any of the trails. The main effects, cultivar (Cv) and seed 

treatment (Tr) are shown in Figure 5.5, and post-hoc analyses ranked cultivars as 

SY Venture > KWS Cassia > KWS Tower. Seed treatments showed a similar pattern 

at both sites with OSP having significantly more senescent tissue than non-primed 

seeds. 
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Figure 5.5. Percentage of senescent tissue estimated by image analysis at 

advanced tillering in Balruddery (a) and Mylnefield (b). P values from analysis of 

deviance are for cultivar (Cv), and seed treatment (Tr) effects and the Cv x Tr 

interaction. Bars with different letters are significantly different from each other (LSD 

test). Error bars show the mean +SE. 

In order to investigate whether plants with larger canopies tend to be more 

infected during an early disease event, Pearson’s correlations between total plant 

tissue and percentage of senescent tissue (PST) were plotted. A consistent negative 
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correlation at both sites for all three cultivars was evident (P ≤ 0.05), with the 

relationship being stronger at Mylnefield (Figure 5.6). 

 

Figure 5.6. Relationship between total plant tissue and percentage of senescent 

tissue at Balruddery (a) and Mylnefield (b). 

5.4.3. Disease severity and resistance 

Powdery mildew and rhynchosporium were the dominant diseases, although 

with varying severity and timing between the two sites. Powdery mildew pustules 

appeared earlier at Balruddery (approximately two months before the start of stem 

elongation and before the first fungicide applications) covering up to 22 % of the leaf 

area (assessed by visual scoring), whilst at Mylnefield the first pustules appeared 

about a month later, covering up to 14 % of the leaf area. However, with the 

appearance of new leaves at the end of stem elongation, powdery mildew infection 

was reduced to very low levels (< 5 %) at Balruddery whilst, at Mylnefield, a new 

outbreak arose and affected parts of leaves 3 and 4 (up to 16 % of the total scored 

leaf area). At Mylnefield, rhynchosporium lesions at traceable levels appeared just 

before anthesis whilst, at Balruddery, there were no rhynchosporium lesions until 

mid-late anthesis; however, similar levels of severity were recorded at milk 

development at both sites. In terms of visible lesions, fungicide controlled the 

second rise of powdery mildew, which occurred after stem elongation, and 

completely prevented a rhynchosporium outbreak in both sites. 
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Area under disease progress curve (AUDPC) was used to integrate the periodic 

measurements of disease scores over time as an estimate of disease intensity. The 

main differences in AUDPC were due to the effect of genetic variation (cultivar 

effect) on both diseases (Table 5.4). At both sites, KWS Tower was the most 

resistant followed by SY Venture and, lastly, by KWS Cassia. At Balruddery, 

fungicide applications did not significantly reduce powdery mildew AUDPC, largely, 

because much of the mildew scored corresponded with lesions produced before the 

first fungicide application rather than connected to the effectiveness of the fungicide 

controlling the disease. The interaction between fungicide and cultivar for the 

powdery mildew AUDPC at Mylnefield was due to the fungicide being more effective 

at controlling powdery mildew in cultivar KWS Cassia compared to SY Venture. 

However, the interaction between fungicide and cultivar for the rhynchosporium 

AUDPCs was due to the complete prevention of rhynchosporium lesions in 

fungicide-treated plots at both sites. The effect of treatments on AUDPC was only 

perceptible at Mylnefield for powdery mildew where OSP showed the lowest AUDPC 

(Table 5.5). Similarly, the rhynchosporium AUDPC was also the lowest for OSP, 

although this was not significantly different from NP (P = 0.27).  

Table 5.4. Analysis of deviance P values for fungicide, cultivar and treatment on 

HAD (calculated form GS30 to GS71-75) and AUDPCs (from GS30 to GS69). 

Site Term 
AUDPC  

powdery mildew 

AUDPC 

rhynchosporium 
HAD 

Balruddery Fun 0.069 < 0.001 0.435 

 Cv < 0.001 < 0.001 < 0.001 

 Tr 0.954 0.136 0.007 

 Fun x Cv 0.212 < 0.001 0.365 

 Fun x Tr 0.563 0.165 0.176 

 Cv x Tr 0.870 0.243 0.669 

 Fun x Cv x Tr 0.701 0.285 0.372 

     

Mylnefield Fun 0.003 < 0.001 0.056 

 Cv < 0.001 < 0.001 < 0.001 

 Tr 0.040 0.189 0.053 

 Fun x Cv < 0.001 < 0.001 0.940 

 Fun x Tr 0.079 0.190 0.232 

 Cv x Tr 0.981 0.458 0.706 

 Fun x Cv x Tr 0.943 0.457 0.118 
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Most of the variation in healthy area duration (HAD) was accounted for by the 

cultivar effect (P < 0.001). The effect of seed treatment was significant at Balruddery 

but not at Mylnefield (Table 5.4). Post-hoc analysis revealed that NP had 

significantly greater HAD than OSP (P < 0.01) and CHP (P < 0.05) at Balruddery 

and Mylnefield respectively (Table 5.5). 

Table 5.5. Effect of seed treatments on healthy area duration (HAD) and AUDPCs. 

Values in each row followed by different letters differ significantly from each other: 

LSD test (P > 0.05). 

 Tr 

 NP OSP CHP 

AUDPC powdery mildew    

Balruddery 723a 724a 725a 

Mylnefield 453ab 427b 462a 

AUDPC rhynchosporium*    

Balruddery 156a 189a 176a 

Mylnefield 135a 115a 141a 

HAD    

Balruddery 6,440a 6,243b 6,395a 

Mylnefield 5,989a 5,898ab 5,809b 

*values correspond to F0 as there was no AUDPC for rhynchosporium under F1. 
Seed treatments significantly different from NP are shown in bold. 

 
 

5.4.4. Effect of stem elongation rate as a candidate trait for disease ‘escape’ 

To further explore whether the AUDPC variance found at Mylnefield was to some 

extent due to involvement of disease escape mechanisms, a correlation analysis 

between rate of stem elongation and AUDPCs from anthesis to grain filling was 

performed for the plots with no fungicide application (Figure 5.7). For the case of 

powdery mildew, this correlation was significantly negative for all cultivars showing 

an average elongation rate above 2.4 cm d-1 (P < 0.01). However, the same was 

not applicable for rhynchosporium disease as no significant association was found. 

Stem elongation rate variation was strongly driven by cultivar (P < 0.001) and, to a 

lesser extent, by Tr (P < 0.05). OSP had significantly greater height rate (P < 0.05) 

(Table S5.1). 
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Figure 5.7. Relationship between stem elongation rate from GS33 to GS49 against 

(a) powdery mildew AUDPC and (b) rhynchosporium AUDPC from anthesis in 

Mylnefield. R: correlation coefficient. 

 

5.4.5. Effects on yield and yield components  

Yields were greater at Balruddery (7.73 t ha-1) than at Mylnefield (6.68 t ha-1), 

which was mainly attributed to differences in average grain number (13,600 and 

11,500 respectively) rather than in TWG (56.68 g vs. 57.8 g respectively). There 

was a significant grain yield response to fungicide application (P < 0.05) with 

averaged increments across Cv and Tr of 2.02 t ha-1 at Balrudery and of 1.15 t ha-1 

at Mylnefield relative to plots with no fungicide application (Table 5.6). This grain 

yield response was primarily due to increasing grain number (25 and 13 % relative 

to F0 at Balrudery and Mylnefield respectively) rather than through increments in 

TGW (4 and 5 % respectively). The effect on TGW was significant at Mylnefield (P 

< 0.001), although not at Balruddery (P = 0.06). The interaction between fungicide 

application and cultivar at Balruddery was significant (P < 0.05). KWS Tower 

showed a higher fungicide benefit (2.52 t ha-1) compared with SY Venture (1.92 t 

ha-1) or KWS Cassia (1.62 t ha-1), despite KWS Cassia being the cultivar with less 

disease lesions. By contrast, there was no interaction between fungicide and cultivar 

at Mylnefield indicating that all cultivar genotypes responded to the same extent to 

fungicide application. Although seed treatments did not significantly alter yield at 

Mylnefield they did at Balruddery: post-hoc analysis showed that grain yield was 



135 

 

significantly lower for OSP compared to NP by having a negative impact on grain 

number, as TGW remained unaffected (Table 5.7). 

Table 5.6. Analysis of deviance P values for fungicide, cultivar and treatment on 

agronomic variables. 

Site Term GY (t ha-1) G no. (m-2) TGW (g) 

Balruddery Fun 0.010 0.009 0.060 

 Cv < 0.001 < 0.001 < 0.001 

 Tr 0.028 0.005 0.264 

 Fun x Cv 0.003 0.041 0.022 

 Fun x Tr 0.193 0.281 0.237 

 Cv x Tr 0.864 0.819 0.609 

 Fun x Cv x Tr 0.762 0.829 0.436 

     

Mylnefield Fun 0.015 0.045 < 0.001 

 Cv 0.047 < 0.001 < 0.001 

 Tr 0.072 0.076 0.983 

 Fun x Cv 0.630 0.738 0.023 

 Fun x Tr 0.103 0.243 0.103 

 Cv x Tr 0.793 0.817 0.969 

 Fun x Cv x Tr 0.082 0.111 0.460 

 
Table 5.7. Effect of seed treatment on grain yield (GY), grain number (G no.) and 

thousand grain weight (TGW). Values between the two farms for each parameter 

not sharing the same letter differ significantly from each other: LSD test (P > 0.05). 

 Tr 

 NP OSP CHP 

GY (t ha-1)    

Balruddery 7.89a 7.54b 7.77ab 

Mylnefield 6.75a 6.77a 6.51a 

G no. (m-2)    

Balruddery 13,929a 13,211b 13,736a 

Mylnefield 11,692a 11,723a 11,281a 

TGW (g)    

Balruddery 56.5a 57.0a 56.5a 

Mylnefield 57.8a 57.8a 57.8a 

Seed treatments significantly different from NP are shown in bold. 

 

5.4.6. Effects on overall tolerance 

Overall disease tolerance was represented as the slope of grain yield against 

HAD where the steepness of the slope shows the degree of tolerance (the steeper, 
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the more intolerant). There was a significant interaction between HAD and Cv (P < 

0.001) indicating that the cultivars had different degrees of tolerance (Figure 5.8a). 

KWS Tower and Venture had similar degrees of tolerance whilst KWS Cassia was 

significantly less tolerant (Figure 5.9a). However, treatments did not have a 

significant effect on tolerance (P = 0.21) (Figure 5.8b). In general, crops from CHP 

treated seeds had a less steep slope than the non-primed control but these 

differences in slope were not significant (Figure 5.9b).  

 
Figure 5.8. Disease tolerance estimated as the slope of GY on HAD across sites 

and fungicide treatments. a) Cultivar effect with all seed treatments pooled together, 

and b) seed treatment effect with all cultivars pooled together. Solid line represents 

regression line and dashed lines represent 95 % confidence intervals. 
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Figure 5.9. Effect sizes for estimated slopes within (a) cultivar and (b) treatment 

factor. Error bars represent 95% confidence intervals (CI). Effect sizes closer to zero 

represent more tolerant levels with each factor. Levels within factor are considered 

to be significantly different from one another when their CI do not overlap. 

5.5. Discussion 

‘On-farm’ seed priming and chitosan seed dressing offers limited scope to control 

disease in winter barley of temperate agriculture, either alone or as a complement 

to fungicides, regardless of the cultivar of choice. This study has illustrated the 

varied responses of diseases to conventional management, i.e., varietal resistance 

and fungicides; however, seed treatments do not seem to complement the control 

of disease. 

5.5.1. Induced resistance 

These trials indicate that disease symptoms are primarily controlled by genetic-

mediated resistance, (i.e., the cultivar), and, secondarily, by fungicides that can 

further control the development of disease lesions on new leaves after GS32. 

However, in general, neither chitosan nor ‘on-farm’ seed priming further decreased 

the appearance of lesions, which would have been indicative of induced disease 

resistance. These results are consistent with those of Wang et al. (2015) who found 
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no effect on disease in a series of winter wheat field trials following chitosan seed 

dressing.  

The continual interactions between multiple abiotic and biotic agents can 

compromise the ability of elicitors to further promote host resistance in the field 

(Walters et al. 2013; Alexandersson et al. 2016; Iriti and Varoni 2017). For example, 

Walters et al. (2011) ascribed the poor response to elicitors applied to spring barley 

against powdery mildew and rhynchosporium to the potential for crops already being 

in an induced state before the application of the elicitors. Stresses such as 

overwinter cold acclimation, which induces transcription of a wide array of 

pathogenesis-related (PR) genes (Kuwabara and Imai 2009), could also mask 

elicitor-induced disease resistance. Another possibility is that resistance could also 

be induced by soil microbial communities as demonstrated by Wiese et al. (2003) 

where high organic matter soils showed lower mildew infection, whilst the 

application of the elicitor Acibenzolar-S-methyl (ASM) could only reduce infection in 

mineral soils. Thus, a more efficient strategy may be to promote elicitor applications 

to seeds where there is direct pathogen interaction, such as with seed- and soil-

borne diseases. In this respect, some chitosan-based seed treatments have shown 

promising results as an organic alternative to control seedling blight and foot rot 

diseases caused by Fusarium species in wheat and barley (Reddy et al. 1999; Khan 

et al. 2006; Orzali et al. 2014).  

5.5.2. Tolerance  

It is particularly important to protect barley crops from early epidemics during the 

vegetative growth as barley yield largely relies on maximising tiller production and 

survival (Walters et al. 2012). Therefore, modelling of tolerance traits have 

suggested that a large canopy can be a trait for tolerating foliar diseases (Bingham 

and Topp 2009). A large canopy can reduce the impact of disease on growth as the 

remaining healthy tissue can potentially compensate for the loss of radiation 

interception (Bingham and Topp 2009). This mechanism of tolerance is also 

supported in this study as a larger canopy tended to have a lower proportion of 

senescent tissue under moderate and high disease severities of powdery mildew. 

Conversely however, it is also plausible that a larger canopy could increase the 

potential for trapping more spores or facilitate the spread to adjacent plants of both 
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wind-borne and splash-spread pathogens such as Blumeria graminis and 

Rhynchosporium commune. The fact that this relationship was strong under 

moderate severity but less prominent under high severity suggests that this may be 

possible in the event of very strong epidemics.  

In these field trials, seed treatments did not increase canopy size, in fact, ‘on-

farm’ seed priming resulted in a slightly reduced early vigour and presented more 

senescent tissue compared to plants sown from untreated seeds. A similar picture 

emerges when HAD is considered as a measure of plant fitness over time, indicating 

that some loss of vigour occurred overwinter and remained for the rest of the crop 

cycle. This loss of fitness is difficult to explain, although it is possible that ‘on-farm’ 

seed priming washes off important components of seed exudates, which are needed 

to establish beneficial associations with soil microbial communities such as 

rhizobacteria (Lamichhane et al. 2018). This may explain the magnitude of this 

lessened vigour at Balruddery, which has a richer environment in terms of microbial 

communities (as an arable field in a crop rotation) when compared to Mylnefield (in 

barley monoculture for over 30 years).  

There seems to be a compromise between disease tolerance and attainable 

yield, particularly when the disease pressure is low (Parker et al. 2004; Bingham et 

al. 2009). This compromise is illustrated by the less tolerant cultivar (KWS Cassia) 

having the greatest attainable yield and vice versa for the less tolerant cultivar (KWS 

Tower) at high HAD. This is likely because modern varieties have been bred to 

perform near maximum radiation use efficiency under fungicide conditions, so that 

a loss in photosynthetically active tissue by disease translates into a more 

noticeable drop in yield (Parker et al. 2004). Although it might be tempting to suggest 

that chitosan may have some effect on overall tolerance, these differences were 

marginal and only evident in the most intolerant cultivar when compared to the non-

primed control. Taken together, these results of overall tolerance suggest that 

elicitor seed treatments are only likely to benefit highly intolerant genotypes under 

high disease pressure.  

Tolerance is the complex result of multiple traits operating at organ, plant and 

crop level (Ney et al. 2013) so that, complementary to particular candidate traits, the 

slope from representing yield unit against healthy tissue unit (HAD) was used to 
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more holistically evaluate tolerance. However, some caution must be taken when 

interpreting yield-HAD slopes. Although fungicides are useful to manipulate the 

disease severity and yield responses needed to fit reliable slopes, fungicides can 

have other physiological effects beyond controlling disease symptoms (Bingham et 

al. 2012; Ney et al. 2013). For example, triazoles and strobilurins have been found 

to alter N partitioning and increase yields even when disease symptoms are absent, 

which could bias the results (Ruske et al. 2003; Bingham et al. 2012).  

The approach used in this study for estimation of overall tolerance included some 

modifications of methods previously applied in wheat (e.g., Parker et al. 2004; Collin 

et al. 2018). Firstly, HAD has been calculated from GS30, instead of from post-

anthesis. Unlike wheat, barley tiller and spikelet formation are sensitive to variations 

in radiation interception (Arisnabarreta and Miralles 2008), hence, this approach 

allows an integration of canopy development stages into the calculation. Secondly, 

instead of constructing HAD from the integration of total planar area of individual 

sampled plants over time, HAD was calculated from in-field images taken above the 

canopy over time. This approach is non-destructive and at a field-scale provides a 

better representation of in-field crop architecture. In addition, zenithal images give 

more weight to the upper leaf layer, which intercept most of the incident radiation, 

than to the underlying leaf layers in the calculation, and thus represents a more 

realistic picture of radiation interception. However, this method should be tested on 

a larger number of cultivars and environments in order for it to be more widely 

validated.  

5.5.3. Disease escape 

Disease ‘escape’ can constrain the spread of late epidemics (from ear 

emergence onwards) to the upper leaves, which contribute the most sink tissue for 

ear formation and grain filling (Walters et al. 2012). In this study, it was found that 

rapid vertical growth may provide a certain degree of disease escape against 

powdery mildew but not necessarily to rhynchosporium. Successful attachment of 

powdery mildew primary germ tube to the leaf surface requires high humidity 

(Newton and Dashwood 1998). Frequent irrigation created conditions of high 

humidity at ground level, which in combination with the warm temperatures during 

late April 2019, provided the ideal microclimate for powdery mildew conidia 
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germination. Thus, it is likely that crops with rapid stem extension developed their 

upper leaves away from this optimal microclimate and before the pathogen became 

established, which resulted in fewer powdery mildew lesions post-anthesis. 

Similarly, height-related traits such as rapid stem elongation, final height or the 

distance of the leaf layers to the soil surface have been found negatively associated 

with amounts of the hemi-biotrophic pathogens Mycosphaerella graminicola and 

rhynchosporium in winter wheat and in spring barley respectively (Lovell et al. 1997; 

Bingham et al. 2008). However, this relationship between stem elongation and 

disease lesions may not be so straightforward for rhynchosporium in winter barley. 

Pathogen load is not only determined by splash dispersed conidia from lower 

infected leaves during the early spring precipitation. Earlier overwinter infection may 

represent another source of pathogen load, as rhynchosporium growths also 

systemically while remaining asymptomatic and, thus, hamper this relationship.  

Whether seed priming can consistently increase height rate and/or other height-

related traits is still unclear. The effect of ‘on-farm’ seed priming on plant height is 

either associated with positive effects (Murungu et al. 2004a; Harris 2006; Harris et 

al. 2007) or no effect (Farooq et al. 2008; Aune and Ousman 2011). However, it 

seems clear that potential effects on phenology are simply the result of quicker 

establishment that enables a faster growth rate throughout the crop cycle (Murungu 

et al. 2004a) and, thus, exploiting escape benefits will be conditional upon having 

this prior effect on establishment. 

5.5.4. Yield 

‘On-farm’ seed priming and/or chitosan seed dressing have limited scope for 

improving winter barley yields and even may result in lower yields. These results 

contrast with those obtained in Chapter 4 with spring barley where both ‘on-farm’ 

seed priming and chitosan seed dressing substantially increased grain yields. The 

mechanism for yield benefits in spring barley was the improved emergence and 

seedling vigour that lead to a greater number, and more vigorous, tillers being 

retained for grain filling. However, the same mechanism to enhance winter barley 

yields does not seem as effective. Although positive effects on emergence density 

can be gained (chitosan seed dressing seems to provide improved final emergence 
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more consistently than ‘on-farm’ seed priming), those were not sufficiently high to 

prevail until advanced tillering. 

The mismatch between emergence and canopy cover at advanced tillering in 

winter crops may be due to the extent of the benefit of earlier emergence, which 

may be more limited under typically more humid conditions of autumn-sown crops 

than those for spring crops. Although crops grown from ‘on-farm’ primed seeds can 

attain some earlier emergence, the benefits associated with having moisture already 

within the seed will be rapidly offset if sown in a damp seedbed. Winter barley is 

also a more plastic crop than spring barley (García del Moral and García del Moral 

1995), and the extended canopy formation period (typically from October to 

beginning of April) and lower rate of growth imposed by colder temperatures, 

favours tillering and may allow crops with less initial vigour to catch up. In agreement 

with these observations, seed priming or chitosan seed dressing have shown limited 

practical use for enhancing establishment of winter cereals in temperate climatic 

zones (Giri and Schillinger 2003; Subedi and Ma 2005; Wang et al. 2015). However, 

there could be considerable benefits for winter cereals grown in semi-arid regions 

(Rashid et al. 2006; Farooq et al. 2008). In contrast to temperate zones, winter crops 

are sown at the beginning of the dry period using the residual water from the rainy 

season. It is under these circumstances where planting hydrated seeds can make 

the difference between securing or aborting emergence (Wojtyla et al. 2016). 

5.6. Conclusions 

Providing sustainable disease control from seed treatments is attractive for 

practical and sustainable reasons when compared to spraying fields with fungicides. 

However, the extent of how seed treatments can complement IPM in conventional 

temperate agricultural systems seems limited. Inducing resistance from the seed is 

burdened by continuous interactions with biotic and abiotic elements that offset the 

expression of induced resistance in field crops. Seed treatments can deliver disease 

tolerance and escape traits, but these benefits will be conditional upon conferring 

successful establishment and vigour first. Thus, chitosan-based and ‘on-farm’ seed 

priming treatments may be better placed for using with spring crops or in semi-arid 

agriculture where the added vigour at emergence can more clearly surpass other 

interactions and facilitate the expression of tolerance and/or escape traits. A better 
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understanding of the spermosphere and the impact of seed treatments in seed 

exudates is also required to design more effective treatments for conventional 

agriculture. 
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Chapter 6: General discussion 
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6.1 Scope of the research 

The aim of this thesis was firstly, to determine the potential contribution of ‘on-

farm’ seed priming to increase food production in the developing world by holistically 

analysing the accumulated knowledge of low-input agricultural systems in the 

developing world (where it has been so far utilised). Scientific reports have generally 

supported its adoption; however, there was a need to quantitatively put into 

perspective its potential role in sustainably improving food security in the developing 

world. Secondly, this thesis aimed to determine the effectiveness of ‘on-farm’ seed 

priming to sustainably intensify barley production in conventional agricultural 

systems of the UK and Europe. This has never before been investigated and, with 

the increasing pressure to reduce chemical use (including those used in chemical 

seed treatments), non-chemical treatments and biopesticides are set to increasingly 

gain importance in more agroecological cropping schemes. Pivotal for achieving this 

aim was providing fundamental data on how seeds behave during ‘on-farm’ seed 

priming and how this adds value to the seed, as well as methods for optimisation of 

‘on-farm’ seed priming. This was motivated by evidence of underuse and misuse of 

‘on-farm’ seed priming by farmers due to a lack of information. At the same time, it 

was foreseeable that optimisation was a requirement if ‘on-farm’ seed priming is to 

be implemented in the high standards of conventional or organic agriculture in the 

developed world. 

6.2 Can ‘on-farm’ seed priming significantly contribute to 

enhance crop yields in the developing world? 

After the first scientific report about ‘on-farm seed priming (Harris 1996), there 

has been a steady stream of research accumulating a large number of independent 

case studies around the world. Although these reports have generally reported 

positive outcomes, whether this form of priming can significantly enhance crop 

yields and, thus, actually contribute to food security had never been holistically 

examined. However, tackling this question in an experimental way, i.e. setting trials 

in representative locations with a wide range of crops would require an enormous 

amount of resources. Therefore, a quantitative meta-analysis was used and showed 

a remarkable average yield increase of 21 % across a representative number of 
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agri-environments relative to the non-primed (farmers practice) confirming the large 

potential of ‘on-farm’ seed priming to intensify crop production in developing 

countries (Chapter 2). Gains in yield can be mainly attributed to enhanced 

emergence, i.e. rapid emergence leads to better crop establishment, which is 

conducive to higher yields. This was also experimentally demonstrated for spring 

barley (Chapter 4) where improved emergence and seedling vigour conferred by 

seed priming treatments enabled crops to attain a greater number, and more 

vigorous tillers for grain filling stage. Overall, these results also emphasise the 

importance of seedling emergence for determining the rest of the crop development 

and, thereby, the value of seed priming treatments (Paparella et al. 2015; 

Lamichhane et al. 2018).  

Seedbeds with inadequate moisture or subjected to high temperatures are likely 

to benefit the most from ‘on-farm’ seed priming and the greatest benefits can be 

expected for crops grown in arid and semi-arid climates (between 14 % and 34 % 

in yield). Likewise, under high saline or nutrient-deficient environments yield benefits 

were estimated between 17 % and 30 %. ‘On-farm’ seed priming reproduces the 

early stages of germination so that, at the moment of sowing, primed seeds have 

two direct agronomical advantages relative to non-primed seeds: (1) seeds are more 

advanced in the germination process, and (2) seeds are already hydrated. As 

demonstrated in Chapter 3, this partial hydrated state at sowing, commonly 

represents the biggest contribution of the two. Thus, under the low and 

unpredictable rain of arid and semi-arid climates this partial hydration can become 

crucial to secure completion of germination without suffering from a discontinuous 

water availability. Under saline soils, it follows a similar mechanism. Salinity 

produces both negative water potentials and oxidative stress which increases the 

time to emergence and, in turn, the vulnerability of the seed (Ibrahim 2016). Being 

hydrated and proximal to germination completion, primed seeds have a head start 

to quickly become a seedling before the salt stress comes insurmountable or at a 

fitness cost for the plant (Ibrahim 2016). Similarly, earlier rooting may facilitate 

absorption of nutrients before they are leached down in deficient-nutrient soils 

(Harris et al. 2001a). 

‘On-farm’ seed priming benefits are not confined to adverse environments.  

Primed crops grown in warm temperate regions can be expected to attain significant 
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yield increases (between 9 % and 14 %), as well as those under more conventional 

management (i.e. fertilisers use and irrigated) are also likely to perceive significant 

benefits (between 5 % and 15 %). It is in these environments where developmental 

advantages are more pronounced. When the advantage of partially hydration is kept 

out of the equation, significant seedling vigour benefits can be obtained if priming is 

properly optimised (Chapter 3). It is hypothesised that part of the invigorating effect 

of ‘on-farm’ priming is due to the moderate abiotic stress generated during the 

soaking. The hypoxic conditions and/or membrane damage caused by rapid 

uncontrolled imbibition can trigger accumulation of proteins, enzymes and mRNA 

that leads to adaptative responses during subsequent stress events encountered 

during seedling growth (Rajjou et al. 2012; Chen and Arora 2013; Wojtyla et al. 

2016). 

6.3 The barley case: can ‘on-farm’ seed priming enhance yields 

in a European conventional agricultural system? 

It follows from the above discussion that there is no reason why ‘on-farm’ seed 

priming would not deliver similar benefits to temperate agriculture of industrialised 

countries. Commercial seed priming treatments have not been adopted for arable 

crops in temperate agriculture because they are not commercially viable, i.e. too 

costly and too much handling for seeds with low economic margin (Taylor and 

Harman 1990; Paparella et al. 2015). In this situation, low-cost farmer-managed ‘on-

farm’ seed priming may have a niche for sustainable intensification. This question 

was addressed in this research through field trials using barley (both spring and 

winter sown) as model crop. Barley was chosen for its socio-economic importance 

in both developing and developed countries, i.e., it is used as a staple food in 

marginal areas of the developing world and is of economic importance in European 

agriculture (Newton et al. 2011). In conjunction with ‘on-farm’ seed priming, chitosan 

was also applied to seeds to provide a positive control and, potentially, another 

environmentally sustainable seed treatment. Chitosan is an abundant 

biodegradable polymer which can elicit plant defences and stimulate growth so that 

also fitted the remit of sustainable intensification (Kashyap et al. 2015).  
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Table 6.1. Percentage change of equivalent ‘on-farm’ seed priming (OSP) and 

chitosan (CHP) treatment in spring and winter barley relative to non-primed 

(farmers’ practice). 

Barley 
type 

Treatment Final 
emergence 

Canopy 
cover at 
tillering 

Canopy at 
stem 
elongation 

Canopy 
cover at 
booting 

Yield Reference 

Springa 
OSP 6.9 6.3 9.3 5.3 11.5 

Chapter 4 
CHP 23.6 19.3 19.8 10 14.9 

Winterb 
OSP 2.2 -2.4 -4.3 -0.9 -2.1 

Chapter 5 
CHP 6.2 0.4 -2.2 -1.2 -2.5 

aAverage across two cultivars 
bAverage across three cultivars and two sites 

 
The results from these trials showed marked differences between spring and 

winter crops in their response to chitosan-based and ‘on-farm’ seed priming 

treatments. Spring barley responded with enhanced emergence to treatments that 

later continued with comparably proportional increments in vegetation cover 

throughout canopy development (Table 6.1). The yield improvement due to ‘on-farm’ 

seed priming in this trial agreed with the predicted yield effect of ‘on-farm’ primed 

crops relative to non-primed for warm temperate climates in Chapter 2. Chitosan 

treatments largely exceeded the values of ‘on-farm’ seed priming for canopy cover, 

however, this was not translated into a proportional yield gain. This is possibly 

because the relationship between canopy size and radiation interception is 

nonlinear and, up to certain canopy size, further gains in light interception are 

progressively smaller (Bingham et al. 2007). By contrast, winter barley does not 

seem to respond positively to chitosan-based or ‘on-farm’ seed priming seed 

treatments. Although both treatments can give a slight boost to emergence relative 

to untreated seeds, this advantage is neutralised or reverted by advanced tillering 

indicating that growth of treated crops are potentially affected over the winter period. 

This is in line with a paucity of literature where commercial seed priming treatments 

have also shown limited practical use for enhancing establishment of winter cereals 

in temperate climates (Giri and Schillinger 2003; Subedi and Ma 2005).  
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Figure 6.1. Changes in seed respiration rate during ‘on-farm’ seed priming for each 

cultivar. Asterisks denote significant differences in seed respiration (*** P < 0.001) 

at a soaking time relative to its immediate previous soaking time within each cultivar 

(LSD test). The soaking interval prior to the significant increase in respiration was 

taken as the optimal priming duration. Error bars show ± SE. 

 

Whilst stimulating emergence and early growth may be beneficial in spring 

barley, this may actually be counterproductive for winter cereals. Interestingly, the 

much higher respiration rate of spring cultivars relative to winter cultivars also 

supports such a hypothesis (Figure 6.1). Seed respiration rate has previously been 

used as a proxy of seedling vigour (Wang et al. 2016), and the distinct respiration 

rates may reflect an active genetic selection towards cultivars with higher seedling 

vigour for spring-sown cultivars, however, this may not have been a trait of interest 

for breeders of winter cultivars. Thus, it is possible that a slow-paced growth habit 

prior to winter is part of the adaptative mechanism for overwinter acclimation and 
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altering this process through seed treatments may result in vigour penalties at the 

end of the cold period. 

Overall, there are several reasons to advise against the use of seed priming in 

winter barley in particular, and likely to be generalised to other winter crops of 

temperate climates. Firstly, it is clear that prompt emergence associated with sowing 

partially hydrated seed will be limited under typically more humid conditions of 

autumn-sown crops than those for spring crops. Secondly, the plasticity of winter 

barley, i.e. the greater capacity to produce more tillers and to adjust their number 

according to resources available, will allow crops with less initial vigour to catch up 

(García del Moral and García del Moral 1995). There is also a risk that, if sowing is 

followed by substantial rain that results in flooded soils, primed seeds may suffer 

from more prolonged hypoxic conditions (Rashid et al. 2006). Lastly, it is also 

possible that accelerating emergence may be undesirable as it could somehow alter 

the mechanics of overwinter acclimation. However, these conditions do not seem to 

apply to winter cereals grown in tropical and subtropical regions, which do not 

overwinter (Rashid et al. 2006; Farooq et al. 2008). In contrast to temperate zones, 

winter crops are sown at the beginning of the dry period (rabi season) using the 

residual water from the rainy season. It is under these circumstances where planting 

hydrated seeds can make the difference between securing or aborting emergence 

(Wojtyla et al. 2016). 

In spring barley, by contrast, both ‘on-farm’ seed priming and chitosan 

treatments seem to confer an early vigour advantage that enables them to 

accumulate biomass more rapidly throughout the growing season. Spring barley 

yield is predominantly sink-limited in temperate climates, so that N-fertilisers are 

commonly applied at sowing and prior to stem elongation to encourage tillering and 

the development of well-sized shoots before stem elongation. In such high-input 

systems, it is likely that the initially more vigorous crops from treated seed are able 

to capture more N before it is lost, through leaching or volatised, at each N 

application and, thus, maintaining greater canopies (with more viable tillers) for grain 

filling. Vigour is an effective trait for higher N uptake during early growth in wheat so 

that it is likely to be similarly effective in barley (Liao et al. 2004; Pang et al. 2014). 

These results are promising and data on the effects of contrasting climates, soil 

types and genetic background are now needed to more clearly define the potential 
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benefits that these seed treatments can deliver. If confirmed, it would be opportune 

to suggest the inclusion of seed priming and elicitor treatments as one more 

management practice to ensure that yield potential is not restricted early in the crop 

season. 

6.3.1 Can ‘on-farm’ seed priming enhance host defences in a European 

conventional agricultural system? 

Yield improvements delivered by ‘on farm’ seed priming often exceed the 

expected gain due to better establishment, i.e., its direct agronomical advantage 

(Chapter 2). Increased disease tolerance, escape from pests and diseases or 

induction of plant defences have been postulated within these studies as indirect 

priming effects to explain this establishment-yield mismatch in several occasions 

e.g., Rashid et al. (2004; Harris et al. (2005). This information, added to the need 

for more sustainable integrated disease management strategies, motivated the 

assessment of the interaction between seed treatments and disease.  

The absence of disease to detectable levels in spring barley and the general 

poor response of winter barley to seed treatments restricted the evaluation of 

potential disease tolerance and/or escape. These field trials, however, enabled 

identification of candidate traits to deliver disease tolerance and escape. It was 

found that a greater canopy size can provide certain degree of tolerance to pre stem 

elongation powdery mildew infection in winter barley (Chapter 5). The greater 

remaining healthy tissue can potentially compensate for this loss of radiation 

interception (Bingham and Topp 2009). Interestingly, it was also found that rapid 

stem elongation can limit secondary spreads of powdery mildew and, hence, provide 

certain level of disease escape. Thus, it remains to be resolved whether the vigour 

benefits shown in spring barley, which were manifested as both greater canopy and 

height, would also provide a certain degree of tolerance and escape in the event of 

primary and secondary powdery mildew infections or other diseases. 

Evaluation of the induction of generational and transgenerational defences 

through seed treatments in the field have also been addressed in this work 

(Chapters 4 and 5); however, no evidence was found to suggest that chitosan or 

‘on-farm’ seed priming produce such effects. There is still the possibility that these 

effects were minor and remained unseen. As it has been previously suggested for 
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other elicitors, the continuous interactions with biotic and abiotic elements hinders 

the expression of potential induced resistance in field crops (Walters et al. 2013; 

Alexandersson et al. 2016; Iriti and Varoni 2017). Importantly, climatic conditions 

also play a major role in the detection of induced resistance and will influence the 

occurrence and intensity of the triggering stimuli (the external factor(s) that activates 

a stress response). This escalates another level of uncertainty in transgenerational 

effects as conditions can be very different from season to season. Thus, it is 

appropriate to suggest that, for the detection of these generational and 

transgenerational effects, field phenotyping needs to be coupled with molecular and 

epigenetic markers specifically involved in the defence induction (Ramírez-Carrasco 

et al. 2017). This would allow the reliable linking of defence priming and 

transgenerational memory in the field.  

6.4 Optimisation of ‘on-farm’ seed priming is key for greater 

exploitation and adoption 

Finding the optimal seed priming protocol for each crop species and genotype 

is key to getting the most out of the technology and, in turn, maximise seed 

performance (Paparella et al. 2015). However, this can be both expensive and time 

consuming as it involves performing numerous germination assays and mini-plot 

trials that can only provide retrospective indications of the effectiveness (Rajjou et 

al. 2012; Paparella et al. 2015). For simplicity, farmers preforming ‘on-farm’ seed 

priming have used conservative soaking times, commonly “overnight”, despite this 

most likely being far from the optimum (Harris 2006). Therefore, alternative methods 

that allow the rapid determination of optimal soaking times are critical to enable both 

economic and practical exploitation of this technology.  

The findings in Chapter 3 confirmed that soaking for a few hours, e.g. 8 h as 

equivalent to the “overnight” practice proposed for most tropical crops (Harris 2006), 

is enough to obtain the benefits from planting hydrated seeds. However, to obtain 

the additional developmental advantages requires longer soaking times. In barley, 

the maximum seedling vigour was acquired when the priming process was stopped 

just before the beginning of the differentiation of embryo tissues into coleoptile and 

coleorhiza (20 h) after which vigour began to decrease. This was consistently 

demonstrated both by seedling vigour testing in controlled environment cabinets and 
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in the field. The onset of embryonic axes elongation represents the optimal point of 

seed development and can be understood as the milestone marking the transition 

from seed to seedling. At this point, the advancement of several pre-germinative 

processes characteristic of phase II, i.e., gene transcription, synthesis of new 

proteins and amino acids, mitochondrial and DNA repair can be attained (He et al. 

2015; Wojtyla et al. 2016; Ma et al. 2017). Beyond this point, further embryo 

development also entails loss of desiccation tolerance and accumulation of toxic 

fermentative, which can compromise the vigour of the future seedling.  

The development of novel cost-effective methods for the determination of the 

‘optimal’ soaking time was an important objective of this thesis. Accurate 

identification of developmental stages of germinating seeds can be very challenging, 

although the monitoring of seed respiration during ‘on-farm’ seed priming was 

shown to be an effective approach. The onset of embryonic axes elongation is 

typically preceded by a second burst of CO2 flux (indicative of the activation of starch 

mobilisation that enable radicle emergence), which can be used as a marker. Figure 

6.1 highlights how the timing of the peak is specific to each cultivar and, 

correspondingly, it is the ‘optimal’ priming treatment. The major disadvantage of this 

method is the need for specialised equipment and staff, which makes it only within 

the reach of agricultural research institutions. Alternatively, observation of embryo 

morphology can be also used for relatively large seeds such as grains. This method 

is simple and affordable, although still difficult to be reproducible in an ‘on-farm’ 

context as specific training for the identification of subtle embryo differences would 

be required.  

Although these approaches could not be used reliably by farmers to optimise 

their own priming protocols for their own seeds, the methods presented in Chapter 

3 could be carried out by extension workers and research agricultural institutions to 

provide recommended ‘safe’ and ‘optimal’ soaking times for the common varieties 

within a specific region. These methods represent a much more rapid and cost-

effective alternative to the current optimisation approach through a series of 

germination assays and mini-plot trials (e.g., Harris et al. 1999; Rashid et al. 2004, 

2006; Virk et al. 2006). Therefore, if properly exploited by extension workers and 

research agricultural institutions, these methods could facilitate the widescale 

adoption of ‘on-farm’ seed priming.  
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6.5 Concluding remarks 

This research has provided robust and quantitative evidence to confirm ‘on-

farm’ seed priming as a valuable technology to increase crop yields and, hence, 

food security in the developing world. The benefits of ‘on-farm’ seed priming come 

at almost no financial cost, which together with the simplicity of the method allows 

all farmers access to this seed priming technology. These characteristics makes ‘on-

farm’ seed priming an excellent entry point for resource-poor farmers to take part in 

agricultural intensification (Aune and Bationo 2008). These findings are of significant 

relevance and can provide the evidence to governmental institutions and 

policymakers in developing countries to promote ‘on farm’ seed priming as a 

recommended practice. 

Farmers using ‘on-farm’ seed priming need to be able to distinguish between 

‘optimal’ and ‘safe’ soaking times to attain maximum benefit from this technology. 

When conditions allow seeds to be sown within a few hours after priming, ‘optimal’ 

soaking times produce maximal moisture content and seed advancement benefits 

would be the best strategy. When there is a risk of delayed sowing, shorter (‘safe’) 

soaking times must be used. Observation of seed respiration patterns by CO2 flux 

seems an especially effective tool to rapidly find cultivar-specific ‘optimal’ soaking 

times without the need for a cumbersome series of germination assays and mini-

plot trials. Therefore, these findings can contribute to a better exploitation of ‘on-

farm’ seed priming and, thus, enhance its adoption. 

‘On-farm’ seed priming technology and chitosan elicitor treatments are 

promising practices to sustainably intensify spring barley production in a European 

agriculture context. Crops from primed seeds show improved emergence and 

seedling vigour that lead to a greater number, with more vigorous tillers being 

retained for grain filling. It is hypothesised that this additional vigour is maintained 

throughout canopy expansion due to enabling a greater uptake of N-fertilisers. Thus, 

it may be interesting to include seed treatments and elicitors as one more 

management practice to ensure that yield potential is not restricted at an early stage 

in the crop season. Further research should explore indirect beneficial effects 

derived from enhanced growth such as greater disease tolerance or greater 

competition with weeds for light which may reduce tiller mortality.  
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By contrast, does not seem likely that winter barley benefits from such 

invigorating seed treatments. Although ‘on-farm’ seed priming and chitosan 

treatments can promote emergence, this advantage is reversed by advanced 

tillering and may imply a fitness cost that continues for the rest of the crop cycle 

resulting in small yield penalties. It is suspected that seed treatments alter somehow 

the adaptative mechanism for overwinter acclimation resulting in a fitness cost. By 

extension, seed treatments offer limited scope to increase disease tolerance or 

escape in winter barley, either alone or as a complement to fungicides. 
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Supplementary material 

Table S2.1. Levels within each potential variable affecting priming performance.  

Moderator variables Levels Short description 

Study type Field 
Pots 
Labs 

Research stations and farmers’ plots 
Pots placed on field and greenhouses 
Incubators and controlled environment 
chambers 

   

Climatea Temperate  
Equatorial  
Semi-arid  
Arid  

Cfb, Csa and Cwa 
Aw 
BSh and BSk 
BWh 

   

Yield-limiting factor Non-stressed 
 
Nutrient deficient 
 
Salinity 
 

No major nutrient or water limitations 
identified 
Nutrient deficiencies identified as the 
major constraint 
Saline water or soil identified as the main 
constraint 

   

Plant type Monocots 
 
Dicots 

Barley, sorghum, wheat, rice, pearl millet, 
maize, korarima and finger millet 
Chickpea, cotton, cowpea, groundnut, 
sesame, Dracocephalum kotschyi Boiss, 
fennel, mungbean and horsegram 

aKoppen climate classes (Kottek et al. 2006). 

Table S2.2. Measures used for publication bias characterisation of each effect 

size. 

Response 

variables 

Summary effect Publication bias 

No. 

studies 
LRRa 

Kendall’s 

tau 

P value 

(Kendall’s tau) 

No. 

imputeb  

‘Corrected’ 

LRRc  

Time to 

50% 

emergence 

24 -0.244 -0.228 0.147 11 -0.434 

Final 

emergence 
41 0.104 0.067 0.560 0 0.104 

Yield 65 0.191 0.139 0.110 15 0.205 

aNatural log of weighted summary effect size across case studies. bNumber of case studies imputed 
by the Duval and Tweedie ‘trim and fill’ method. cCorrected summary effect after imputing missing 
case studies using Duval and Tweedie ‘trim and fill’ method. 
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Figure S2.1. Funnel plots for each of the three datasets. The vertical line indicates the fixed effect estimate. Open circles represent 

case studies imputed by the Duval and Tweedie ‘trim and fill’ method. 
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Table S3.1. Effect of seed priming soaking time on time to 50 % emergence (E50) 

and the percentage of healthy emerged seedlings (%TE). 

Cultivar Treatment E50 (h) %TEa 

Concerto 0 h 188.6 99.7 (1.51) 

 16 h 186.5 98.3 (1.44) 

 20 h 187.8 98.1 (1.43) 

 24 h 185.9 97.9 (1.43) 

RGT Planet 0 h 186.8 96.7 (1.39) 

 16 h 188.0 95.2 (1.35) 

 20 h 187.8 97.7 (1.42) 

 24 h 186.3 97.1 (1.40) 

LSDCv x Tr  3.5 (0.16) 

df   62 62 

LSD: least significant differences for the interaction; df: degrees of freedom for the residual term. 
aBack-transformed means and means on the transformed scale (between brackets). 

  



186 

 

Table S4.1. Mean values of grean area (GA), grain yield (GY), grain number (G 

no.), thousand grain weight (TGW), and grain nitrogen (GN) for all the seed 

treatments during 2018. grain yield (GY), grain number (G no.), thousand grain 

weight (TGW), grain nitrogen (GN) and percentage of grain retention (Retention 

%) on 2018 trial. Only LSD values for significant main effects or interaction are 

shown. Treatment abreviations are as in Table 4.1.  

Cultivar / 
Treatment 

GATi 
(%) 

GASE 
(%) 

GABo 
(%) 

GY (t 
ha-1) 

G no. 
(m-2) TGW (g) 

GN 
(%) 

Retention % 
> 2.5 mma 

Concerto 12.3 40.9 56.5 4.02 7,914 49.7 1.57 93.5 

NP 11.3 33.3 52.6 3.76 7,154 51.4 1.58 93.6 

NP+0.5 14.9 47.5 62.0 4.39 8,682 49.4 1.56 93.6 

NP+5 12.7 44.0 58.6 4.13 8,205 49.1 1.57 93.4 

P20 13.0 42.2 58.6 4.29 8,414 49.8 1.57 93.9 

P20+0.5 12.1 41.2 57.8 3.98 7,898 49.2 1.55 93.7 

P20+5 12.7 41.5 56.2 4.17 8,084 50.3 1.49 93.5 

P24 14.2 44.0 55.6 3.76 7,562 48.6 1.58 93.3 

P24+0.5 10.6 35.8 50.5 3.57 7,153 48.9 1.59 93.2 

P24+2.5 11.9 42.6 57.7 4.14 8,250 49.0 1.58 93.4 

P24+5 9.4 37.1 55.0 4.05 7,737 51.4 1.61 93.2 
RGT 

Planet 12.9 44.4 60.7 4.49 8,733 50.1 1.56 93.8 

NP 12.3 44.9 59.7 4.15 8,101 50.0 1.54 92.8 

NP+0.5 13.5 46.4 61.9 4.70 9,009 51.0 1.53 93.5 

NP+5 10.7 45.0 60.0 4.56 8,744 50.7 1.54 94.0 

P20 9.6 40.1 57.9 4.54 8,741 50.6 1.54 94.3 

P20+0.5 13.4 47.1 62.0 4.72 9,362 49.2 1.55 94.0 

P20+5 14.8 44.6 61.8 4.51 8,794 50.1 1.52 94.2 

P24 15.3 45.5 61.5 4.43 8,633 50.0 1.56 93.8 

P24+0.5 14.3 44.9 60.6 4.44 8,707 49.7 1.59 94.0 

P24+2.5 12.5 43.4 61.5 4.25 8,414 49.4 1.60 93.5 

P24+5 12.5 42.4 59.7 4.57 8,828 50.5 1.60 94.1 
Grand 
mean  12.6 42.7 58.6 4.26 8,324 49.9 1.56 93.7 

         

LSDCv  2.9 2.2 0.14 268   0.2 

LSDTr    0.32 300 0.6 0.05  

LSDCv x Tr         
aPercentage of screened grain after passing through a 2.5 mm mesh. 

Cultivar means and Grand mean in bold.
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Table S4.2. Mean values of disease score for yellow rust (DSY), disease score 

for rhynchosporium (DSR), grain yield (GY), grain number (G no.), thousand 

grain weight (TGW), and grain nitrogen (GN) for all the seed treatments during 

2018. grain yield (GY), grain number (G no.), thousand grain weight (TGW), grain 

nitrogen (GN) and percentage of grain retention (Retention %) on 2019 trial. Only 

LSD values for significant main effects or interaction are shown. Treatment 

abreviations are as in Table 4.1. 

Cultivar / 
Treatment 

DSY 
(%) 

DSR 
(%) 

GY  
(t ha-1) 

G no. 
(m-2) TGW (g) 

GN  
(%) 

Retention % > 
2.5 mma 

Concerto 5.47 1.03 5.26 11,030 44.0 1.57 90.6 

NP 5.50 1.22 5.29 10,951 44.5 1.56 90.0 

NP+0.5 5.50 0.94 5.40 11,274 44.2 1.56 91.3 

NP+5 5.75 1.14 5.26 10,953 44.2 1.58 91.6 

P20 5.75 0.74 5.41 11,412 43.9 1.55 90.2 

P20+0.5 5.00 0.69 5.30 11,040 44.2 1.60 91.9 

P20+5 6.00 1.47 5.19 11,253 42.6 1.58 87.1 

P24 5.00 1.66 4.95 10,256 44.2 1.57 91.8 

P24+5 5.25 0.38 5.33 11,103 44.2 1.59 90.5 

RGT Planet 5.58 0.76 5.27 11,169 43.6 1.57 89.9 

NP 5.38 0.83 5.20 11,091 43.3 1.60 89.7 

NP+0.5 5.75 1.39 5.33 11,503 42.8 1.57 88.8 

NP+5 5.25 0.60 5.55 11,756 43.6 1.57 91.2 

P20 5.50 0.39 5.33 11,089 44.4 1.56 91.0 

P20+0.5 5.50 0.58 5.27 11,069 43.8 1.58 91.3 

P20+5 5.00 0.48 5.15 10,913 43.5 1.56 90.1 

P24 7.00 0.66 5.05 11,056 42.0 1.59 86.6 

P24+5 5.25 1.14 5.31 10,873 45.0 1.53 90.9 

Grand mean  5.52 0.90 5.27 11,100 43.8 1.57 90.3 

        

LSDCv        

LSDTr        

LSDCv x Tr     1.4  1.9 
aPercentage of screened grain after passing through a 2.5 mm mesh. 

LSD: least significant differences for the interaction; df: degrees of freedom for the residual 

term. 

Cultivar means and Grand mean in bold. 
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Figure S4.1. Representation of individual treatments on the basis of the first two 

dimensions by cultivar in 2019. 
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Figure S4.2. Projection of the groups of variables (coloured squares) onto the 

global analysis according to (a) ‘on-farm’ seed priming levels, 20 h (P20) and 24 

h priming (P24); and (b) chitosan concentrations levels, 0.5 (+0.5), 2.5 (+2.5) and 

5 g l-1 (+5) against untreated (NP) in 2019. Each dark square of a given factor 

level is the centroid of the treatments belonging to this level. 
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Figure S5.1. Changes in seed respiration rate during ‘on-farm’ seed priming for 

each cultivar. Data are means ± SE (n = 3 replicates of 150 seeds soaked in 

distilled water (1:6 (w/v)) in 100 ml plastic pots, at 20 °C in the dark) for each 

soaking time and cultivar. Asterisks denote significant differences in seed 

respiration (*** P < 0.001) at a soaking time relative to its immediate previous 

soaking time within each cultivar (LSD test). The soaking interval prior to the 

significant increase in respiration was taken as the optimal priming duration. 
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Figure S5.2. Illustration of seedling counting method. a) Shows the area of the 

picture counted and, (b) shows the zoom at which seedlings are counted using 

the Cell Counter plugin in FIJI to record the counts. 

  

a) 

b) 



Figure S5.3. Flowchart of image processing for total plant tissue and percentage 
of senescent tissue estimation.

Original RGB image

Green tissue selection 

in CIELab

Extaction of total green tissue 

area from binary image 

Small particles cleaning

+ creation of binary mask 

Paste of binary mask

over original RGB image

K-mean clustering

Extaction of total damaged tissue

area from binary image 

Damaged tissue selection 

in CIELab
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Table S5.1. Final height and time to 50 % GS49 averaged by fungicide and seed 

treatment. Values in each row followed by different letters differ significantly from 

each other: LSD test (P > 0.05).  

 F0  F1 

Site NP WP CP  NP WP CP 

Stem elongation 
rate (cm d-1) 

       

Balruddery - - -  - - - 

Mylnefield 2.39a 2.49b 2.39a  2.44a 2.39a 2.42a 

Final height (cm)        

Balruddery 71.3a 72.3a 71.9a  74.3 a 73.1 a 73.0 a 

Mylnefield 72.2a 72.6a 71.3a  74.9 a 73.4 a 72.9 a 

Time to 50 % 
GS49 (d) 

       

Balruddery 211.5a 212.0a 211.3a  211.3a 211.3a 211.4a 

Mylnefield 209.1a 209.2a 208.8a  209.3a 208.9a 208.9a 

 
 
 

 
Figure S5.4. Visual diagnosis of linearity by loess smoothed line (in red). As data 

was dispersed along the fitted line (i.e., does not show fungicide/untreated 

clusters), and the loess smoothed line did not excessively deviate from the fitted 

tolerance line, the dataset was considered suitable for tolerance analysis. 

 


