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Linking urban air pollution with residents’ willingness to pay 

for greenspace: A choice experiment study in Beijing 

1   INTRODUCTION 

There exists a substantial body of literature that seeks to measure the economic value of 

green amenities such as parks and forests.1 This strand of literature is by and large intended to 

inform land-use decision making as to whether the net benefits of green amenities outweigh 

the benefits of other competing land-use options. The findings of previous studies exhibit 

considerable heterogeneity in terms of the relative value of greenspace and the determinants 

of this value (Bateman & Jones, 2003; Brander & Koetse, 2011; D'Amato et al., 2016; 

Ferraro et al., 2012; Ninan & Inoue, 2013). Such heterogeneity has likely sprung from 

methodological dissimilarities, the features of green amenities being valued and the 

characteristics of those who benefit. Possible determinants of value which have been 

explored include local socioeconomic and demographic features such as income levels 

(Perino et al., 2014; Schindler, Le Texier, & Caruso, 2018) and age (Arnberger & Eder, 

2011), the presence of substitute outdoor recreation sites (Schaafsma, Brouwer, Gilbert, van 

den Bergh, & Wagtendonk, 2013; Thiene, Swait, & Scarpa, 2017), the proximity to and 

conditions of existing green amenities (Czajkowski, Budziński, Campbell, Giergiczny, & 

Hanley, 2017), perceptions of nuisances associated with improperly managed greenspaces 

such as crime (Troy & Grove, 2008) and other antisocial behaviour (Andrews, Ferrini, & 

Bateman, 2017), and the timing of visits to green amenities such as seasons (Bartczak, 

Englin, & Pang, 2012) or weekdays versus weekends (Bertram, Meyerhoff, Rehdanz, & 

Wüstemann, 2017).  

     In this paper, we investigate the connections between urban air pollution and the value of 

green amenities. We consider three possible ways in which these two environmental issues 

are linked. First, where people choose to live in a city, as reflected by their exposure to air 

pollution, may indicate their preferences for greenspace through a residential sorting effect 

(Bayer, Keohane, & Timmins, 2009; Klaiber & Phaneuf, 2010; Roback, 1982; Wu & 

Plantinga, 2003; Yinger, 2015): residents of heavily polluted neighbourhoods may have a 

lower appreciation of environmental amenities in general, including greenspace. Further, air 

pollution may have direct implications for the use value of greenspace. On the one hand, air 

pollution may devalue green amenities as local recreational resources, by forcing people to 

reduce outdoor activities on high pollution days (Bresnahan, Dickie, & Gerking, 1997; Graff 

Zivin & Neidell, 2009), which may presumably include visits to green amenities. On the 

other hand, residents of severely polluted areas may derive additional benefits from 

greenspace, as trees are able to enhance air quality by absorbing and diffusing ambient 

pollutants such as particulate matters (Lin et al., 2017), ozone and nitrogen dioxide (Kroeger 

et al., 2014), and may be an offsetting source of utility for those living in highly-polluted 

1 Recent systematic reviews have been conducted by Barrio (2010), Brander (2011), D’Amato (2016), Ferraro 

(2012), Ninan (2013), Perino (2014), Siikamäki (2015) and their co-authors. 
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urban environments. The nexus between air pollution and the value of green amenities is 

hence ambiguous and open to empirical investigation.  

     We undertook choice experiment surveys in different parts of Beijing to elicit the value of 

green amenities in the form of the public’s willingness to pay (WTP) for increases in the area 

of three types of greenspace. We purposefully valued three types of green amenities whose 

values might be differently reflected by air pollution exposure: a neighbourhood park near the 

respondents’ home, a city park in central Beijing, and a national park in an outlying location. 

We then used real-time pollution data to help explain the spatial heterogeneity in WTP for 

these three types of green space, whilst controlling for other possible influencing factors.  

     Neighbourhood parks are likely to provide direct air purification services for communities 

nearby, and our results indeed suggest that respondents exposed to higher levels of annual 

pollution are willing to pay more for a new neighbourhood park. In contrast, WTP for the city 

park and national park is more likely to be linked with pollution levels via the residential 

sorting and reduced visits mechanisms. Yet our data shows no evidence for such connections.  

     Pursuing this research agenda can offer appealing insights for scientific and policymaking 

communities from several angles. To start with, it has practical implications for land-use 

decision making. Urban residents’ preferences for greenspace are largely context-dependent. 

It is preferable yet expensive to directly investigate such preferences in every context. In the 

absence of such information, understanding the main factors that explain or indicate 

preference heterogeneity takes on pronounced importance, as this would help us more 

accurately adjust preferences elicited in other settings for the context being considered, and 

thereby identify the optimal location and timing to create or remove greenspace (Choi & 

Koo, 2018; Czajkowski et al., 2017). In that sense, this study contributes to the literature on 

benefit transfer (e.g. Johnston, Rolfe, Rosenberger, & Brouwer, 2015), since the benefits of 

urban green amenities can be adjusted for variations in local air pollution levels, similar to 

adjusting for income and cultural differences (Hynes, Norton, & Hanley, 2013). Moreover, 

this study adds to a recent yet rapidly growing body of evidence on the non-health impacts of 

air pollution, such as work productivity (Archsmith, Heyes, & Saberian, 2018; Graff Zivin & 

Neidell, 2012), labour supply (Hanna & Oliva, 2015), property value (Bayer et al., 2009), 

demand for health insurance (Chang, Huang, & Wang, 2018), and zoo and observatory visits 

(Graff Zivin & Neidell, 2009).  

     The remainder of the paper is structured as follows. Section 2 sets up our proposed 

conceptual linkages between air pollution and WTP for greenspace. Section 3 describes the 

study area, the choice experiment and the data on air pollution. Section 4 reports the methods 

and results of our main econometric analysis. Section 5 performs a series of ancillary 

econometric analysis to test the robustness of our findings. The paper concludes in Sections 6 

with a summary and discussion of the key findings.  
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2   CONCEPTUAL LINKAGES BETWEEN AIR POLLUTION AND WILLINGNESS 

TO PAY FOR GREENSPACE 

A key message of this paper is that information useful for helping to explain the 

heterogeneity in WTP for greenspace may be found within air quality data. This section 

provides a theoretical discussion of this nexus in a residential sorting framework. Our 

theoretical framework conforms to the classic residential sorting model of Roback (1982), but 

is directly adapted from the model’s recent variants developed by Bayer et al. (2009), Wu and 

Plantinga (2003), and Yinger (2015).    

     Our model assumes that each residential location (s) is characterised by its house price (rs) 

and environmental amenities including air quality (Qs) and greenspace (Gs). A household (i) 

prefers a location that maximises its utility subject to its budget constraint:  

𝑚𝑎𝑥 𝑈𝑖𝑠 = 𝑍𝑖𝑠
𝛼𝑖𝐻𝑖𝑠

𝛽𝑖𝐸𝑠
𝛾𝑖, (2.1) 

𝑠. 𝑡. 𝑝𝑍𝑖𝑠 + 𝑟𝑠𝐻𝑖𝑠 + 𝑇𝑆 = 𝐼𝑖 − 𝐶𝑖𝑠 = 𝐵𝑖𝑠. (2.2) 

     In the above expressions, household i’s utility in location s (Uis) is a combination of the 

housing floor area His, and the quantities of a non-housing composite good Zis and a 

composite environmental amenity Es(Qs,Gs).
2 The composite amenity accommodates both 

site-specific amenities (e.g. air quality and neighbourhood parks in a residential location) and 

distance-dependent amenities (e.g. city parks and national parks associated with each 

residential location via distance or proximity), following Wu and Plantinga (2003). We start 

with a basic model where air quality and greenspace independently enter the utility function. 

For now, we leave aside the ‘direct’ connections between air quality and greenspace (namely 

the air purification effect of greenspace and reduced visits to greenspace due to air pollution), 

which will be explored later. But this simplification should be particularly applicable to 

national parks, as presumably there exist no such ‘direct’ connections between local air 

pollution loads and national parks outside of the city. To enhance the generality of the model, 

we only assume that 
𝜕𝐸𝑆

𝜕𝑄𝑆
> 0 and 

𝜕𝐸𝑆

𝜕𝐺𝑆
> 0 but do not specify the functional form of Es.

3    

     Positive parameters αi, βi and γi describe the household’s preferences or tastes when 

making trade-offs among His, Zis and Es. Our model describes residential location decision-

making within one city, and therefore assumes that all households face the same price of Zis 

(p) in all locations. Further, for each residential location s, all households take the same house 

price rs as exogenous, but can choose different house prices by choosing different locations. 

The travel cost of park visits Ts(Gs) is assumed to be a location specific function of the 

characteristics of greenspace Gs, where the travel costs to visit location specific green 

amenities (such as neighbourhood parks) are assumed neglectable, and for distance-

dependent amenities (such as city parks and national parks), both the travel cost per trip and 

 
2 The utility function has standard properties: 

𝜕𝑈𝑖𝑠

𝜕𝑍𝑖𝑠
> 0, 

𝜕2𝑈𝑖𝑠

𝜕𝑍𝑖𝑠
2 < 0, 

𝜕𝑈𝑖𝑠

𝜕𝐻𝑖𝑠
> 0, 

𝜕2𝑈𝑖𝑠

𝜕𝐻𝑖𝑠
2 < 0, 

𝜕𝑈𝑖𝑠

𝜕𝐸𝑠
> 0, and 

𝜕2𝑈𝑖𝑠

𝜕𝐸𝑠
2 < 0.  

3 Es could include other environmental amenities such as quiet (or lower noise). We have omitted these for 

brevity. It can be proved that this simplification would not affect the theoretical discussion as long as 
𝜕𝐸𝑆

𝜕𝑄𝑆
> 0 

and 
𝜕𝐸𝑆

𝜕𝐺𝑆
> 0.   
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the number of visits are assumed to primarily depend on the distance of parks.4  Moreover, a 

household’s income Ii is not affected by its residential location within the city, but the cost of 

commute Cis depends on where this household chooses to live. We further assume that Cis is 

fixed once a household decides its residential location. Therefore, Cis translates into a shift of 

a household’s budget constraint (Bis).   

     To solve this maximisation problem, we substitute the budget constraint for Zis in the 

utility function and differentiate the utility function with respect to His. We then set the 

resulting expression equal to zero and solve for His, which yields:  

𝐻𝑖𝑠 =
𝛽𝑖

𝛼𝑖+𝛽𝑖

𝐵𝑖𝑠−𝑇𝑆

𝑟𝑠
. (2.3) 

Substituting (2.3) into the budget constraint and solving for Z give:  

𝑍𝑖𝑠 =
𝛼𝑖

𝛼𝑖+𝛽𝑖

𝐵𝑖𝑠−𝑇𝑆

𝑝
. (2.4) 

The indirect utility function can be obtained by substituting (2.3) and (2.4) into the utility 

function:  

𝑉𝑖𝑠 = 𝜙𝑖𝑠[𝐵𝑖𝑠 − 𝑇𝑆]𝛼𝑖+𝛽𝑖𝐸𝑠
𝛾𝑖, (2.5) 

where 𝜙𝑖𝑠 = (
1

𝛼𝑖+𝛽𝑖
)

𝛼𝑖+𝛽𝑖
(

𝛼𝑖

𝑝
)

𝛼𝑖
(

𝛽𝑖

𝑟𝑠
)

𝛽𝑖
.  

     The marginal WTP for an amenity equals the marginal rate of substitution between the 

amenity and the budget (Bayer et al., 2009). For air quality, the marginal WTP can be 

expressed as:  

𝜕𝑉𝑖𝑠
𝜕𝑄𝑠
𝜕𝑉𝑖𝑠
𝜕𝐵𝑖𝑠

=
[𝐵𝑖𝑠−𝑇𝑆]𝛾𝑖

(𝛼𝑖+𝛽𝑖)𝐸𝑠

𝜕𝐸𝑆

𝜕𝑄𝑆
. (2.6) 

Similarly, the marginal WTP for greenspace can be written as:  

𝜕𝑉𝑖𝑠
𝜕𝐺𝑠
𝜕𝑉𝑖𝑠
𝜕𝐵𝑖𝑠

=
[𝐵𝑖𝑠−𝑇𝑆]𝛾𝑖

(𝛼𝑖+𝛽𝑖)𝐸𝑠

𝜕𝐸𝑆

𝜕𝐺𝑆
−

𝜕𝑇𝑆

𝜕𝐺𝑆
. (2.7) 

     Suppose households i and j have opted to live in different neighbourhoods, and i’s 

neighbourhood has better air quality. This is because i has a higher marginal WTP for air 

quality at each location specific level Qs, otherwise i would not have outbid j and obtained a 

higher level of air quality (Yinger, 2015), assuming that both households face the same 

implicit price or cost of air quality at Qs:  

[𝐵𝑖𝑠−𝑇𝑆]𝛾𝑖

(𝛼𝑖+𝛽𝑖)𝐸𝑠

𝜕𝐸𝑆

𝜕𝑄𝑆
>

[𝐵𝑗𝑠−𝑇𝑆]𝛾𝑗

(𝛼𝑗+𝛽𝑗)𝐸𝑠

𝜕𝐸𝑆

𝜕𝑄𝑆
. (2.8) 

 
4 We found in our survey data a strong dependency of the number of visits on the distance of parks. According 

to our respondents, more than 40% of their park visits in the past year were within a 1km radius of their homes, 

and more than 70% were within a 2km radius. For parks located further than 2km, the number of visits rapidly 

decline along distance following a steep exponential decay pattern.   
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Since 
𝜕𝐸𝑆

𝜕𝑄𝑆
> 0 and 

𝜕𝐸𝑆

𝜕𝐺𝑆
> 0, the above inequality will remain unchanged if we first multiply 

both sides by (
𝜕𝐸𝑆

𝜕𝑄𝑆
)

−1 𝜕𝐸𝑆

𝜕𝐺𝑆
 and then subtract the same term 

𝜕𝑇𝑆

𝜕𝐺𝑆
:  

[𝐵𝑖𝑠−𝑇𝑆]𝛾𝑖

(𝛼𝑖+𝛽𝑖)𝐸𝑠

𝜕𝐸𝑆

𝜕𝐺𝑆
−

𝜕𝑇𝑆

𝜕𝐺𝑆
>

[𝐵𝑗𝑠−𝑇𝑆]𝛾𝑗

(𝛼𝑗+𝛽𝑗)𝐸𝑠

𝜕𝐸𝑆

𝜕𝐺𝑆
−

𝜕𝑇𝑆

𝜕𝐺𝑆
. (2.9) 

     This suggests that those living in less polluted zones of a city are willing/able to pay more 

for both local air quality and greenspace. In other words:  

     Hypothesis 1: willingness to pay for any type of greenspace investment is lower in areas 

with higher urban air pollution. 

     Recall that this hypothesis is derived from a simplified model that does not concern the 

‘direct’ connections between air quality and greenspace. Therefore, this hypothesis is 

particularly applicable to national parks that are outside central Beijing and hence less likely 

to have such connections with air pollution loads in residential locations in the city’s central 

zones.  

  

     We next introduce the ‘direct’ connections between air quality and greenspace into the 

model. As we discussed above, urban residents’ utility derived from greenspace may depend 

on air pollution levels. We hence factor in this dependency as a pollution-related multiplier 

[δ(Qs)] of greenspace in the utility function. The utility function now becomes:  

𝑈𝑖𝑠 = 𝑍𝑖𝑠
𝛼𝑖𝐻𝑖𝑠

𝛽𝑖 {𝐸𝑠[𝑄𝑠 , 𝛿(𝑄𝑠)𝐺𝑠]}𝛾𝑖 . (2.10) 

We assume that 
𝜕𝐸𝑆

𝜕𝛿(𝑄𝑠)
> 0 for simplicity. But the sign of 

𝜕𝛿(𝑄𝑠)

𝜕𝑄𝑠
 can be ambiguous. On the 

one hand, residents of more polluted zones may better appreciate local greenspace on account 

of its air-cleaning functions, which would imply an increase in the utility received from 

greenspace in response to a decrease in air quality [
𝜕𝛿(𝑄𝑠)

𝜕𝑄𝑠
< 0]. On the other hand, in those 

more polluted locations, pollution levels may remain relatively high despite the air-cleaning 

functions of greenspace. In that case, people may prefer to spend more time indoors to reduce 

pollution exposure, which would reduce their onsite activities in parks and lead to a decrease 

in the utility derived from greenspace. Or putting it another way, better air quality would 

allow people to visit greenspace more often and hence obtain higher utility from greenspace 

[
𝜕𝛿(𝑄𝑠)

𝜕𝑄𝑠
> 0]. Therefore, the utility associated with greenspace can be directly affected by 

pollution in two opposite directions, making it difficult to unambiguously predict the sign of 
𝜕𝛿(𝑄𝑠)

𝜕𝑄𝑠
.  

     Despite that, households living in less polluted neighbourhoods still have higher marginal 

WTP for air quality:  

𝜕𝑉𝑖𝑠
𝜕𝑄𝑠
𝜕𝑉𝑖𝑠
𝜕𝐵𝑖𝑠

>

𝜕𝑉𝑗𝑠

𝜕𝑄𝑠
𝜕𝑉𝑗𝑠
𝜕𝐵𝑗𝑠

, or 
[𝐵𝑖𝑠−𝑇𝑆]𝛾𝑖

(𝛼𝑖+𝛽𝑖)𝐸𝑠
𝛺 >

[𝐵𝑗𝑠−𝑇𝑆]𝛾𝑗

(𝛼𝑗+𝛽𝑗)𝐸𝑠
𝛺, (2.11) 



6 

 

where 𝛺 = [
𝜕𝐸𝑆

𝜕𝑄𝑆
+

𝜕𝐸𝑆

𝜕𝛿(𝑄𝑆)

𝜕𝛿(𝑄𝑆)

𝜕𝑄𝑆
].  

     We can still multiply both sides of this inequality by 𝛺−1 𝜕𝐸𝑆

𝜕𝐺𝑆
 and then subtract 

𝜕𝑇𝑆

𝜕𝐺𝑆
 to 

compare the two households’ marginal WTP for greenspace. But there exists uncertainty as to 

which household has a higher WTP for greenspace, since the sign of 𝛺−1 is unknown due to 

the ambiguous sign of 
𝜕𝛿(𝑄𝑠)

𝜕𝑄𝑠
, given that other derivatives are known to be positive [

𝜕𝐸𝑆

𝜕𝐺𝑆
> 0, 

𝜕𝐸𝑆

𝜕𝑄𝑆
> 0 and 

𝜕𝐸𝑆

𝜕𝛿(𝑄𝑠)
> 0].  

     If 
𝜕𝛿(𝑄𝑠)

𝜕𝑄𝑠
> 0, which suggests that the decisive direct link between pollution and 

greenspace lies in reduced outdoor activities under severe pollution, it would be certain that 

𝛺−1 > 0, and the theoretical prediction would be qualitatively in line with Equation (2.9):  

     Hypothesis 2: households living in less polluted neighbourhoods should be willing to pay 

more for greenspace, due to not only residential sorting, but also because higher air quality 

enables them to visit greenspace more often.  

     On the contrary, if 
𝜕𝛿(𝑄𝑠)

𝜕𝑄𝑠
< 0, which implies that the utility associated with greenspace is 

dominantly affected by its air-cleaning functions, there would be the possibility that 𝛺−1 < 0, 

in which case the inequality would change sign:  

[𝐵𝑖𝑠−𝑇𝑆]𝛾𝑖

(𝛼𝑖+𝛽𝑖)𝐸𝑠

𝜕𝐸𝑆

𝜕𝐺𝑆
−

𝜕𝑇𝑆

𝜕𝐺𝑆
<

[𝐵𝑗𝑠−𝑇𝑆]𝛾𝑗

(𝛼𝑗+𝛽𝑗)𝐸𝑠

𝜕𝐸𝑆

𝜕𝐺𝑆
−

𝜕𝑇𝑆

𝜕𝐺𝑆
. (2.12) 

This suggests the possibility that:  

     Hypothesis 3: if people regard investing in new local green space as a means of reducing 

their own exposure to air pollution, willingness to pay for new urban greenspace will be 

higher where local air pollution loads are higher, despite residential sorting. 

     This situation is most likely to arise in the case of neighbourhood parks, which should be 

most directly helpful for a neighbourhood’s local air quality.  

 

3   STUDY AREA AND DATA   

This section outlines the local context of Beijing where we collected our data. Further, we 

provide details about our choice experiment survey and air pollution data. This unique dataset 

has enabled us to empirically explore the linkages between air pollution and WTP for green 

space.   

 

3.1   Study Area  

The geographic scope of this study is the six central districts of Beijing, as shown by Figure 

1. The six districts together occupy an area similar in size to London or New York City, 
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accommodate over 12 million people, and had a GDP on a par with Finland in 2016 (Beijing 

Municipal Bureau of Statistics, 2017).  

 

Figure 1   Locations of the surveyed communities and air quality monitoring stations  

Notes: spot – community/village; triangle – air quality monitoring station.  

      

     In this vibrantly developing and densely populated area, properties are becoming 

increasingly expensive, even by the standards of high-income countries. According to the 

Bloomberg Global City Housing Cost Index 2018, Beijing is positioned within the world’s 

top ten cities with the highest housing costs. This implies considerably high opportunity costs 

of creating and retaining green amenities within Beijing. Despite this, the city’s urban green 

amenities are surprisingly well developed. Beijing’s dry climate and inland location have left 

greenspaces as one of the few types of environmental amenity available to its residents. In 

2016, the per capita area of greenspaces came to 40m2, higher than the per capita housing 

area (32m2).  

     Air pollution is a serious problem in the city (Guan & Liu, 2014; Zhao et al., 2018; Zhong, 

Cao, & Wang, 2017). Frequent outbreaks of severe and prolonged pollution episodes have 

caused widespread concern among the public. Many people pay close attention to real-time 

pollution reports, which are commonly available in various types of media, and take 

precautionary actions such as reducing outdoor activities and wearing anti-pollution face 

masks (Zhang & Mu, 2018). Moreover, as can be seen in Figure 2, there exists conspicuous 

heterogeneity in pollution levels across different zones within Beijing. The spatial 

distribution of pollution levels appears largely associated with proximity to another city, 

Baoding, which is considered the most polluted city in China, according to the World Health 

Organisation. The public’s high awareness of the temporal and spatial variations in pollution 

may have noticeable implications for their perception and utilisation of the city’s green 

infrastructure. Against this background, it is particularly pertinent to investigate the 

hypothesised connections between air pollution and WTP for greenspace in Beijing noted 

above.  
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Figure 2   Pollution distribution around Beijing 

Note: Figure 2 uses a grey scale to visualise location-specific average Air Quality Index (AQI) grades from 22 

Apr. 2016–22 Apr. 2017, where black represents an average AQI grade above 3 (higher pollution) and white 

represents an average AQI grade below 1.5 (lower pollution). The AQI is an aggregate measure of the 

concentrations of six pollutants, which is typically reported in six ordinal grades (1–6). The map was 

interpolated using the original AQI data and the Kriging method.   

 

3.2   Choice Experiment Valuing Greenspace 

This study conducted a choice experiment to elicit Beijing residents’ WTP for increases in 

three types of greenspace, namely neighbourhood parks, city parks and national parks. Table 

1 presents an example choice question, which contains two alternative programmes that 

hypothetically creates different types of parks at different costs to a respondent’s household, 

and a status quo option that allows the respondent to opt-out.  

 

Table 1   Example choice question 

Suppose the municipal government was considering the following 3 options, which option would you 

prefer the most?  

 1 – Programme A 2 – Programme B 3 – No Programme 

Number and distance of 

neighbourhood parks 

1 additional park 

1,500 m away 
No additional parks No additional parks 

Number and distance of 

city parks  

1 additional park 15 

km away 
No additional parks No additional parks 

Number and distance of 

national parks  

1 additional park 60 

km away 

1 additional park 20 

km away 
No additional parks 

Monthly payment of your 

household (CNY) for the 

next 3 years. 

80 30 No payment 
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Please choose one:    

 

     Prior to the choice tasks, we used 3D architectural animation videos (Figure 3) and 

narratives to convey the parks’ features to our respondents. The neighbourhood park would 

be situated in the respondent’s community and hence near their home (500m–1.5km away). It 

would occupy a small piece of land (1ha, roughly the size of a football pitch) and have green 

vegetation in 60% of its area. Additionally, it would feature exercise equipment, playgrounds 

and other basic facilities. The city park would be created in central Beijing and was assumed 

to be 5–15km away from the respondent’s home. It would have a larger size (5ha) but the 

same vegetation cover rate (60%). There would be more attractions and facilities, such as 

sports grounds, water-based recreational facilities, cafés, dinners and parking places. The 

national park would be developed 20–60km away in outlying areas of Greater Beijing. It 

would primarily serve nature conservation purposes, but would also be accessible for nature-

based and low-impact recreational activities. It would spread over a mountain landscape 

(200ha) mostly covered by vegetation. It would provide fewer artificial attractions and 

facilities compared to the other two types of parks, although there would be hotels for 

overnight stays. When designing these features, we consulted China’s Code for the Design of 

Urban Greenspaces (Ministry of Housing and Urban-Rural Development, 2016) and solicited 

advice from the Beijing Municipal Bureau of Forestry and Parks.  

 

a) 

 
  

b) 

 

 c) 

 

Figure 3   Screenshots of videos of parks 

Notes: a) – neighbourhood park, b) – city park, and c) – national park.  

 

     As can be seen in Table 2, the first three attributes specify the number and distance of the 

three types of parks. The distance of parks and the associated travel costs constitute an 

important determinant of the number of park visits and hence the use value of parks. We have 

mentioned in Section 2 that over 70% of our respondents’ park visits in the past year were 
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within a 2km radius of their homes, and for parks located further than 2km, the number of 

visits rapidly decline along distance following a steep exponential decay pattern. We 

therefore explicitly designed different distance levels into the choice experiment. Aside from 

distance and travel costs, the three types of parks also differ on other aspects such as size and 

facilities, as described above. The valuation of the three types of parks therefore covers all 

these differences. The fourth attribute represents a special tax payment that would be 

collected conditional on majority agreement and exclusively used to create those additional 

parks (Carson & Groves, 2007; Champ, Boyle, & Brown, 2017; Johnston et al., 2017).5 

Attribute levels were derived from focus group meetings and pilot surveys.  

 

Table 2   Attribute levels 

Attribute Levels 

Number and distance of 

neighbourhood parks 

No additional parks, 1 additional park 1.5 km away, 1 

additional park 1 km away, 1 additional park 500 m 

away  

Number and distance of city parks  

No additional parks, 1 additional park 15 km away, 1 

additional park 10 km away, 1 additional park 5 km 

away 

Number and distance of national parks 

No additional parks, 1 additional park 60 km away, 1 

additional park 40 km away, 1 additional park 20 km 

away 

Monthly payment (CNY per household) 5, 10, 20, 30, 50, 80 

Note: CNY 6.75 = USD 1 in 2017.  

 

     We selected a subset of all possible choice sets to optimise D-efficiency, which helps 

enhance the precision of the parameter estimates in the choice models. This approach requires 

initial input of the choice model estimates (priors), which were obtained from our pilot 

surveys. This procedure gave rise to 16 choice sets (as exemplified by Table 1), which were 

randomly sorted into four blocks. Each respondent was presented with four choice sets. 

     We conducted focus group meetings with residents’ representatives of the study area, 

officers of the Beijing Municipal Bureau of Forestry and Parks, experts and surveyors. The 

questionnaire was then tested in four rounds of pilot surveys with university students and 

 
5 We tested the payment mechanism in our focus group meetings and pilot surveys, and did not observe any 

strong protest responses particularly associated with the payment mechanism. We also tested a voluntary 

donation payment mechanism, but there were more respondents always choosing the ‘no programme’ option in 

the donation scenario than in the tax payment scenario, which is not surprising since a new greenspace would be 

a nonexclusive public good and a voluntary payment mechanism is likely to induce free-riding. The stated 

preference literature therefore typically recommends a binding payment mechanism (e.g. a tax or compulsory 

fee) conditional on majority agreement (Johnston et al., 2017). The payment period was specified to be 3 years 

because the Chinese government periodically updates its socioeconomic development plans every 5 years and 

civil servants are expected to achieve these plans. The hypothetical park development programme in our choice 

experiment was described as a means to achieve the municipal government’s 13th five year (2016–2020) plans 

regarding urban greenspace development. There was 3 years left in the 13th five year period at the time when the 

choice experiment surveys were conducted. Therefore the payment period was intentionally specified to be 3 

years to enhance the credibility of the park development programme.  
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residents of the study area. The full survey was implemented in April–May 2017 as face-to-

face interviews with 224 households at their homes. The sample was randomly drawn from 

56 communities/villages via a stratified random sampling procedure that used the study area’s 

administrative divisions as strata.6 Figure 1 visualises the spatial representativeness of our 

sample. In addition to the choice experiment, our questionnaire included demographic and 

attitudinal questions, which allowed us to control for factors that correlate both with pollution 

exposure and with WTP for green amenities. We will discuss these variables in more detail in 

Section 4 where we describe our discrete choice models. 

     We conducted mean comparisons between our sample characteristics and government 

statistics for the population of our study area to assess the representativeness of our sample. 

As shown in Table A1 in the appendix, we focused on five commonly considered 

demographic and socioeconomic characteristics at the household level, namely age, 

education, gender, household size and income. We only found a statistically significant mean 

difference in age (indicated by a p-value below 10%), although the magnitude of the 

difference (6.10%) is hardly substantial. This implies that on average the sampled households 

tend to be slightly older than the population of our study area. For the other four variables, 

the differences between the sample and population means are not only statistically 

insignificant but also limited in size, since the magnitudes of the differences are all below 

5%. These results suggest that on average the sampled households can reasonably represent 

the population we wish to study in terms of the five characteristics mentioned above. Despite 

that, we controlled for age in all our regression models to account for potential selection bias.          

 

3.3   Data on Air Pollution  

Beijing deployed 35 automatic air quality monitoring stations across the municipality in late 

2012. Since then, these stations have been measuring and recording the hourly concentrations 

of a variety of air pollutants, including particulate matter (PM2.5 and PM10), sulphur dioxide 

(SO2), nitrogen dioxide (NO2), ozone (O3) and carbon monoxide (CO). In addition, these 

stations generate an hourly Air Quality Index (AQI) that aggregates the concentrations of the 

six pollutants. The AQI values are categorised into six ordinal grades, with accompanying 

health messages and recommended actions.7 We extracted these hourly data from the 

webpage of the Municipal Environmental Monitoring Centre. Moreover, the webpage 

 
6 The six central districts of Beijing are divided into 103 subdistricts (‘jiedao’) and 31 towns. Below the sub-

district (or town) level, the third tire of the administrative hierarchy consists of 1,912 communities (‘shequ’) and 

303 villages. We first randomly selected the same proportion of subdistricts/towns in each district, and then two 

communities/villages in each subdistrict/town. We next obtained the residents’ housing numbers, which enabled 

us to randomly draw 10 households from each community/village. However, the response rate was considerably 

low – only 25% of the initially sampled households participated in our survey after two attempts. We surveyed 

non-responding households’ neighbours as substitutes, to ensure that we had four responding households evenly 

in each community/village.  
7 For instance, Grade 1 indicates excellent air quality that has no adverse implications for human health and 

hence requires no precautionary actions. At the other end of the scale, Grade 6 indicates severe air pollution, 

which is likely to pose substantial health threats to all people (children and the elderly in particular), and the 

public would be advised against outdoor activities. 
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provides the geographic coordinates of the air quality monitoring stations, which were used to 

map the air pollution data to the 56 communities that we surveyed for the choice experiment.    

     As shown in Figure 2, there exists considerable spatial heterogeneity in pollution levels 

across our study area. The annual average AQI grade of the most polluted residential block 

that we surveyed (2.84) is 12% higher than that of the least polluted block (2.54). To provide 

a better sense of the magnitude of this difference, if the sample mean (over all 56 

neighbourhoods) of the annual average AQI grade was increased by 12% (a change from 2.64 

to 2.96), it would come close to the threshold (3) of whether or not a particular hour/day 

should be regarded as ‘polluted’ and whether the public should be advised to reduce or avoid 

outdoor activities. In fact, the annual number of polluted days (with a daily average AQI 

above 3) in the most polluted residential block (92 days) is three weeks more than that in the 

least polluted block (70 days), which provides a more intuitive measurement of the sizeable 

variation in pollution levels in our sample. Figure A1 in the appendix presents the 

distributions of the annual average AQI and number of polluted days across different 

residential blocks.  

 

4   ECONOMETRIC MODELS AND RESULTS  

We estimated two mixed logit models to test the hypothesised connections between air 

pollution and WTP for green amenities. This section reports the specifications of these 

models and estimation procedures, followed by estimation results.  

 

4.1   Specifying and Estimating the Mixed Logit Models  

We analysed our data using the discrete choice model, which describes choice makers’ utility 

generating process underlying their preferences among the alternatives in each choice 

question. An alternative is assumed preferable if it gives the highest level of utility. The 

deterministic part of the utility depends on choice attributes and levels (Table 2) as well as 

characteristics of respondents and their residential locations (Table 3). The mixed logit model 

allows the utility parameters to flexibly vary across choice makers (Greene, 2012; Train, 

2009). This implies that the same aspects may induce heterogenous implications for the 

utility levels of different choice makers.  

 

Table 3   Definition and description of explanatory variables  

Variable Mean SD Min Max 

Panel 1: Characteristics of respondents (obs. = 224) 

Age (household mean) 45.60 14.03 19 85 

Cars (number of cars owned by a respondent’s household) 0.51 0.55 0 2 

Elderly & children (whether a respondents’ household has  

     members older than 60 or younger than 16,  

     binary: 0 = no; 1 = yes) 

0.57 0.50 0 1 
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Income (household monthly income per capita, CNY 1,000) a  4.96 2.73 0.63 15.00 

Park-air (whether a respondent considered parks able to clean the  

     air, binary: 0 = no; 1 = yes) 

0.43 0.50 0 1 

Panel 2: Characteristics of respondents’ residential blocks (obs. = 56) 

House price (CNY 1,000/m2)  77.29 24.52 30 130 

Park 1km (number of parks within 1km) 1.17 1.11 0 4 

Pollution (average AQI grade in the recent year) b 2.64 0.08 2.54 2.84 

Population density (1,000 people/km2) c 18.93 10.13 3.09 39.00 

Traffic (average time in minutes needed to drive 1km) d 1.64 0.13 1.41 1.94 

Notes:  
a CNY 6.75 = USD 1 in 2017. 
b The variable was measured as the average AQI grades in the recent year leading up to the earliest interview 

date (22 Apr. 2016–22 Apr. 2017), using data from the closest air quality monitoring station to each 

respondent’s neighbourhood. We used AQI grades (1–6) instead of the original values, as the public are more 

familiar with the former.  
c Data source: Beijing Statistical Yearbook (Beijing Municipal Bureau of Statistics, 2017). 
d Data source: Baidu Q-Traffic Dataset (Liao et al., 2018). This dataset contains average traffic speeds on 15,073 

geo-referenced road segments for every 15 minutes of the two months when we conducted our surveys (April 

and May 2017). This allowed us to generate the variable ‘Traffic’ which measures the average time needed to 

drive 1km in a 10km radius of each neighbourhood we surveyed, since 10km is the average distance of the city 

park in our choice experiment. We also explored the average traffic speeds in a 40km radius (which is the 

average distance of the national park in our choice experiment), but this radius would cover almost all road 

segments in the traffic dataset, which would lead to very little variation in the average traffic speeds among 

different neighbourhoods.   

 

     The utility function is assumed to be a linear combination of the cost attribute 𝑥𝑐𝑖𝑘 (the 

‘monthly payment’ attribute in Table 2) a vector of non-monetary attributes 𝒙𝒏𝒊𝒌, where 

choice-makers are indexed by 𝑖, alternatives by 𝑘:  

𝑈𝑖𝑘 = −𝜆𝑐𝑖𝑥𝑐𝑖𝑘 + 𝝀𝒏𝒊𝒙𝒏𝒊𝒌 + 𝜀𝑖𝑗𝑡. (4.1) 

This utility function underlies the mixed logit model in preference space where the 

coefficients −𝜆𝑐𝑖 and 𝝀𝒏𝒊 respectively capture the marginal utility of 𝑥𝑐𝑖𝑘 and 𝒙𝒏𝒊𝒌. Since 

costs usually reduce utility levels, 𝜆𝑐𝑖 is assumed to be lognormally distributed among 

choice-makers, so that −𝜆𝑐𝑖 only takes negative values. This can be achieved by estimating a 

normally distributed parameter 𝑙𝑛𝜆𝑐𝑖, which can be used to recover 𝜆𝑐𝑖. Each non-monetary 

attribute in Table 2 is disaggregated into a park attribute and its interaction with distance 

which respectively indicate whether and where a new park would be created.8 The 

 
8 We coded distance as a continuous variable to facilitate the aggregation of the WTP of households living at 

different distances of a new park. It would be difficult to derive such an aggregate value without assuming any 

continuous functional relationship between WTP and distance. However it is certainly not advisable to 

extrapolate the WTP for a park that has a very different location from the distance levels specified in our choice 

experiment, such as a national park in one’s neighbourhood or a neighbourhood park outside the city, since the 

distance levels in our choice experiment were purposefully specified according to the nature of each park type. 

We tested whether assuming the continuity of distance would affect our main results. We recoded distance as an 

ordinal variable which takes the value –1 for the closest distance of each type of park, 0 for the medium distance 

and 1 for the longest distance. We next interacted this discrete variable with the number of each type of park and 
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coefficients on these non-monetary attributes are assumed to be normally distributed. The 

marginal WTP estimate for a non-monetary attribute is given by minus one times the 

marginal utility ratio between this attribute and the cost attribute: 

𝒘𝒊 = −
𝝀𝒏𝒊

−𝜆𝑐𝑖
=

𝝀𝒏𝒊

𝜆𝑐𝑖
. (4.2) 

The distribution of WTP is simulated by taking a random draw from the estimated 

distribution of 𝜆𝑛𝑖, dividing it by a random draw from the estimated distribution of 𝜆𝑐𝑖, and 

repeating the procedure a large number of times (100,000 in this study), as per Train and 

Weeks (2005) and Hole and Kolstad (2012).  

     In our mixed logit models, the variable ‘pollution’ is interacted respectively with the 

means of the random coefficients on the three park attributes and an alternative specific 

constant (ASC) ‘status quo’.9 Our primary interest is in the estimated coefficients on these 

interaction terms, which capture the association between pollution loads near the 

respondents’ residential locations with their mean WTP for the three types of parks.  

We start with a parsimonious specification (Model 1 in Table 4) that only includes the 

attributes of the choice experiment, the status quo ASC and the aforementioned interaction 

terms that involve the pollution variable. Further, we tested the robustness of our findings 

using a richer specification (Model 2 in Table 4) that controls for a number of observed 

variables (Panels 2 and 3 of Table 3) that characterise the respondents and their residential 

locations. These control variables enter the mixed logit model as interaction terms with the 

status quo ASC. To avoid over-parameterising the model, we were deliberately selective in 

adding control variables. We first invoke our theoretical model described in Section 2 to 

select factors other than pollution which correlate with WTP for additional green amenities. 

The variables ‘income’ and ‘cars’ respectively proxy a household’s income Ii and the cost of 

commute Cis, which jointly represent the budget constraint (𝐵𝑖𝑠 = 𝐼𝑖 − 𝐶𝑖𝑠). The variable 

‘house price’ controls for location specific house prices 𝑟𝑠. The price of the non-housing 

composite good (𝑝) was assumed homogenous across all locations in Beijing and hence can 

be dropped from the regression model. The travel cost of park visits Ts was assumed to 

primarily depend on the distance of parks, and therefore has been captured by the distance 

attributes of the choice experiment. Moreover, Model 2 controls for congestion levels 

(measured by the variable ‘traffic’), which could on the one hand correlate with pollution 

levels, and on the other, with travel costs and hence the use value of parks. The availability of 

 
reestimated the choice models. The estimates were found considerably stable regardless of whether distance was 

coded in a continuous or discrete manner.  
9 The pollution variable (and other characteristics of the respondents and their residential locations listed in 

Table 3) cannot enter a mixed logit model independently. This is because these factors are common to all 

alternatives and would be cancelled out in the choice process, unless the utility changes induced by an 

alternative depend on these factors, which would be captured by the interaction terms. We also estimated 

another two mixed logit models that contain an interaction term between ‘pollution’ and the logarithm of the 

random coefficient on the cost attribute (Models A1 and A2 in the appendix). In both models, the coefficient of 

this interaction term has a p-value greater than 0.5 and is therefore statistically indistinguishable from zero. 

Dropping this interaction term improves both models’ goodness of fit, according to the Akaike and Bayesian 

information criteria. Moreover, we had qualitatively similar findings as to the relationship between pollution and 

preferences for parks, especially in the preferred specification (Model A2). We have thus opted to drop the 

interaction term between ‘pollution’ and the cost attribute to facilitate the estimation of WTP.   



15 

 

existing greenspace to each household (𝐺𝑠) is reflected by the variables ‘park 1km’ and 

‘population density’ jointly. Turning to the ‘direct’ connections between pollution exposure 

and utility derived from greenspace, we consider that whether trees’ air-cleaning functions 

enter a respondent’s decision-making process [via the multiplier 𝛿(𝑄𝑠) in our theoretical 

model] depends on this person’s awareness of such effects, which is captured by the variable 

‘park-air’. Further, although Beijing’s residents well understand the necessity to reduce 

outdoor activities in severe pollution, they are likely to be particularly concerned if there are 

elderly people or young children in their households, who tend to be more vulnerable to 

pollution. The presence of such vulnerable household members is indicated by the binary 

variable ‘elderly & children’. Lastly, Model 2 controls for each household’s mean age, since 

the sample mean of this variable was found statistically different from the population mean of 

our study area. If these factors are not adequately controlled for, they might lead to biased 

estimates for the association that we wish to assess between air pollution and WTP for green 

amenities.  

     The mixed logit models were estimated in R using the simulated maximum likelihood 

estimation method (Sarrias & Daziano, 2017) with 1,000 Halton draws.10 We estimated an 

independent random parameter for the cost attribute, the three park attributes and their 

interaction terms with distance, and the ‘status quo’ ASC, to accommodate any remaining 

unobserved heterogeneity that is unexplained by the observables. The random coefficient of 

the cost attribute has a lognormal distribution, and all other random coefficients are assumed 

to be normally distributed.  

 

4.2   Estimation Results  

This section reports the original estimates of the two mixed logit models (Table 4) and the 

distributions of WTP for the three types of parks evaluated at different pollution levels (Table 

5 and Figure 4).      

4.2.1   Willingness to pay for a neighbourhood park 

Starting with the neighbourhood park, we first find in both Models 1 and 2 (Table 4) that 

respondents living in a more polluted environment would have a better appreciation of the 

neighbourhood park, according to the positive and statistically significant estimate on the 

interaction term ‘Neighbourhood park × Pollution’. We give more weight to the specification 

of Model 2, as it controls for a number of potential confounders and fits the data better 

according to the Akaike and Bayesian information criteria. Despite that, comparing Models 1 

and 2 offers insights into the impact of adding controls to the model. It can be seen that both 

models give highly consistent estimates for the ‘neighbourhood park’ attribute and its 

interaction terms with ‘distance’ and ‘pollution’. We centred the variables ‘distance’ and 

‘pollution’ when interacting them with the park attributes and the status quo ASC. Therefore, 

the coefficient on each park attribute is directly interpretable as the change in utility 

associated with a new park at the mean distance and pollution level. Our results hence 

 
10 We progressively increased the number of draws until the estimates stabilised.  
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suggest that our respondents’ utility gains of having a new neighbourhood would be 

increased by almost six times (7.88/1.35 = 5.8) or become nearly seven times as much [(1.35 

+ 7.88)/1.35 = 6.8] had they experienced a one-unit increase in the average AQI grade in the 

past year (compared to the actual mean level, which is 2.62). Yet, this interpretation refers to 

an extreme scenario: the average AQI grade in the past year would have been greater than 

three had it been increased by one unit from the actual mean level (2.62). This implies that 

the entire year would have been ‘moderately polluted’ on average on the six-point index, so 

that the public might be advised to reduce or avoid outdoor activities throughout the year 

according to the interpretation of the AQI grades. We will next present the distributions of 

WTP for a new neighbourhood park evaluated at the sample minimum, mean and maximum 

pollution levels, to facilitate a more tangible understanding of the magnitude of the 

dependence of WTP on pollution exposure.  

     Table 5 and Figure A2 (Appendix I) illustrate the estimated distributions of WTP 

evaluated at different pollution levels. As mentioned earlier, Models 1 and 2 allow the 

coefficient of the cost attribute to vary across individuals following a lognormal distribution, 

rather than assume it fixed, as it is often unrealistic to assume that all individuals have the 

same marginal utility of income (Meijer & Rouwendal, 2006). But the resulting WTP 

distribution can be highly skewed, which implies that many respondents have unreasonably 

high WTP to have or avoid an attribute (Hole & Kolstad, 2012; Train & Weeks, 2005). Table 

5 shows that the WTP distributions for a new neighbourhood park are right-skewed, as the 

means are substantially higher than the medians. Panel 1 of Figure A2 further reveals that 

these WTP distributions all have a long and thick right-tail, which becomes more evident at 

higher pollution levels. This suggests that the means and standard deviations of WTP are 

likely to be enlarged by extreme values in the positive direction. Moreover, there are 

implications for using the means to measure the impacts of pollution exposure on WTP, since 

the WTP distributions appear to have more skewness at higher pollution levels. For 

comparison, we reestimated the mixed logit models and WTP distributions assuming a fixed 

cost parameter, which are detailed in the appendix (Tables A2 and A3, and Figure A3). It can 

be seen from the Akaike and Bayesian information criteria that the mixed logit models with a 

fixed cost parameter (Models A3 and A4) have a worse fit, which further inclines us to the 

models with a lognormally distributed random cost parameter (Models 1 and 2). That said, 

the means and standard deviations of WTP derived from Models 1 and 2 are systematically 

higher in absolute value than those from Models A3 and A4. Such discrepancies tend to be 

increasingly sizeable at higher pollution levels.  

     Despite that, the median WTP estimates produced by the two approaches are closely 

comparable, as the median is typically more robust to extreme values. We have thus resorted 

to the median WTP estimates obtained from Model 2 to provide a flavour of the typical 

magnitude of WTP for a new neighbourhood park and its dependence on pollution loads. 

These estimates suggest that at the sample mean pollution level, our respondents would 

typically be willing to pay CNY 13.77 (USD 2.04) per household per month for one 

additional neighbourhood park. They would be willing to pay an extra CNY 22 (USD 3.26) 

per household per month had they on average experienced the sample maximum pollution 

level in the past year (which represents a 7% increase in the average AQI grade). In contrast, 
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the typical WTP would be reduced to CNY 3.95 (USD 0.59) per household per month at the 

sample minimum pollution level (or a 4% decrease in the average AQI grade).  

     To obtain an aggregate measure of WTP, we begin with the estimate on the interaction 

term ‘Neighbourhood park × Distance’, which implies that only those living within a radius 

(R = 2.61km at the sample mean pollution level) around the new neighbourhood park would 

have utility gains. We assume that the typical WTP declines linearly with distance in 

proportion to the decline in utility gains, integrate the typical WTP per household per month 

out of its distance decay function over a circle with radius R, and multiply the result by 

household density times the area of the circle to approximate the aggregate monthly WTP. 

Lastly, the aggregate monthly WTP is summed over the payment period (three years), where 

future payments are converted to present values using a discount rate of 8%.11 The present 

value of the total WTP for a new neighbourhood park at the sample mean pollution level 

amounts to CNY 53.72mln (USD 7.96mln). At the sample maximum pollution level, the 

present value of the total WTP would rise strikingly to CNY 321.51mln (USD 47.63mln), 

owing to a considerable increase in the typical WTP as well as an extension of the radius 

where WTP exists. On the other hand, the total WTP would shrink to CNY 9.53mln (USD 

1.41mln) at the sample minimum pollution level. As a reference point, Beijing’s fixed asset 

investment in new parks in 2017 averaged at CNY12.42mln (USD 1.84) per hectare (Beijing 

Municipal Bureau of Statistics, 2017).12 Recall that the size of the neighbourhood park 

described in our choice experiment was exactly one hectare. In a cost-benefit line of thinking, 

the WTP for a new neighbourhood park at the current or a higher pollution level is likely to 

outweigh the costs of creating such a park. Yet, the conclusion might be reversed if the city’s 

air quality improves.  

     Taken together, our results lend support to Hypothesis 3 that residents of more polluted 

zones would be willing to pay more for neighbourhood parks on account of their air cleaning 

functions. Our attitudinal questions reveal that 43% of our respondents considered parks 

effective in reducing pollution. As will be seen in the next section, we find evidence that the 

awareness of this effect is likely to be strengthened under greater pollution exposure, which is 

explicable by a selective learning mechanism where a more polluted environment tends to 

draw more attention to pollution-related issues (Chang et al., 2018). The jury is out on the 

other two hypotheses that postulate an opposite relationship between the extents of pollution 

exposure and fondness for parks via the residential sorting and reduced visits mechanisms, 

which might be outweighed by parks’ air purification effect and hence become indiscernible. 

In contrast, the implications of people’s pollution exposure for their attitudes towards the city 

and national parks would be more relevant to Hypotheses 1 and 2, as these parks are assumed 

to be distant from respondents’ homes and thus less instrumental in reducing their pollution 

exposure.   

 
11 The discount rate is recommended by the National Development and Reform Committee of China and the 

Ministry of Housing and Urban-Rural Development of China (2006).  
12 This does not account for the opportunity costs of land (the foregone benefits of alternative land-use options), 

as parks in Beijing are typically developed on public land which is freely allocated for public infrastructures and 

cannot be developed for other purposes. 
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Table 4   Mixed logit model estimates 

 Model 1  Model 2 

 Mean SD  Mean SD 

Payment: ln(–coef.) –2.54*** 1.61***  –2.64*** 1.23*** 

 (0.19) (0.19)  (0.21) (0.19) 

Neighbourhood park 1.32*** 1.57***  1.35*** 1.42** 

 (0.33) (0.58)  (0.34) (0.55) 

Neighbourhood park × Distance –0.79*** 0.49  –0.84*** 0.64 

 (0.26) (1.02)  (0.28) (0.86) 

Neighbourhood park × Pollution 7.62**   7.88**  

 (3.66)   (3.64)  

City park –0.08 0.20  –4.35×10–3 0.73 

 (0.25) (0.84)  (0.27) (0.60) 

City park × Distance 0.03 3.45×10–3  0.04 3.64×10–3 

 (0.03) (0.09)  (0.03) (0.09) 

City park × Pollution –0.94   –1.29  

 (2.84)   (3.04)  

National park 0.74*** 0.04  0.80*** 0.35 

 (0.22) (0.89)  (0.24) (0.65) 

National park × Distance –4.92×10–3 0.03*  –0.01 0.03** 

 (0.01) (0.02)  (0.01) (0.01) 

National park × Pollution 0.56   0.34  

 (2.29)   (2.38)  

Status quo –0.90 6.85***  1.36 4.56*** 

 (0.79) (1.07)  (1.81) (0.82) 

Status quo × Age    0.02  

    (0.03)  

Status quo × Cars    1.30  

    (0.84)  

Status quo × Elderly & children    1.53*  

    (0.86)  

Status quo × House price    0.04*  

    (0.02)  

Status quo × Income    –3.05***  

    (0.72)  

Status quo × Park 1km    1.29***  

    (0.48)  

Status quo × Park air    –7.28***  

    (1.47)  

Status quo × Pollution –9.94   –1.90  

 (8.14)   (7.12)  
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Status quo × Population density    –0.11*  

    (0.05)  

Status quo × Traffic    –5.07  

    (4.05)  

Log–likelihood –591.68   –528.19  

AIC 1,223.36   1,114.38  

BIC 1,319.32   1,253.52  

Obs. (number of choices) 896   896  

Note: 
a The estimates for ‘payment’ refer to the logarithms of the opposite coefficients. All other estimates represent 

untransformed coefficients.   
b Asterisks indicate statistical significance: * p-value < 0.10, ** p-value < 0.05, *** p-value < 0.01. Standard 

errors are in parentheses. Significant results are highlighted in bold italics (up to the 10% significance level).  

 

 

Table 5   WTP estimates  

 Model 1  Model 2 

 Mean Median SD  Mean Median SD 

Neighbourhood park (min pollution)  22.22 2.75 231.43  15.16 3.95 93.27 

Neighbourhood park (mean pollution) 60.64 10.24 293.70  40.62 13.77 121.82 

Neighbourhood park (max pollution) 128.00 29.31 450.51  86.60 35.77 184.30 

City park (min pollution)  0.61 0.06 28.26  4.02 0.98 45.97 

City park (mean pollution) –3.84 –0.49 34.92  –0.27 –0.02 46.49 

City park (max pollution) –12.21 –2.57 48.60  –7.88 –2.08 49.18 

National park (min pollution)  30.99 8.57 95.20  22.80 9.60 48.55 

National park (mean pollution) 33.69 9.30 103.42  23.99 10.12 51.19 

National park (max pollution) 38.64 10.66 118.48  25.95 11.12 53.50 

Note: 

Unit of measurement: CNY per household per month for three years. CNY 6.75 = USD 1 in 2017.  

 

 

4.2.2   Willingness to pay for a city park 

Turning next to the city park, we can see in both Models 1 and 2 that the negative sign of the 

coefficient of the interaction term ‘City park × Pollution’ is in line with Hypotheses 1 and 2, 

which expect that residents of a more polluted neighbourhood would care less about parks 

because 1) their residential location decisions reflect their lower appreciation of 

environmental amenities in general, and 2) they may spend more time indoors to mitigate 

pollution exposure, which would reduce their onsite usage of parks. However, the estimated 

interaction effect is statistically insignificant (p-value = 0.74 in Model 1 and 0.67 in Model 2) 

and has a limited size in WTP terms. Table 5 shows that the median WTP derived from 

Model 2 would only be reduced by CNY 2.06 (USD 0.31) per household per month when the 
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mean pollution level rises to the sample maximum level. As depicted in Panel 2 of Figure A2, 

such an increase in pollution would shift the WTP distribution to the left, but to a 

considerably limited extent. These findings suggest no discernible connection between 

people’s pollution exposure and preferences for city parks.  

     Another interesting finding is a general lack of willingness to pay for the city park. The 

marginal utility estimate for the city park is negative, size-wise negligible and statistically 

insignificant in both models (p-value = 0.73 in Model 1 and 0.99 in Model 2). In addition, the 

interaction term ‘city park × distance’ has a positive estimate and a p-value (0.13 in Model 2) 

that comes close to the conventional threshold level for statistical significance (0.10), which 

somewhat suggests the possibility that the respondents prefer a city park located further 

away. In our choice experiment, different types of parks were characterised by features such 

as size, facilities and location which are intrinsically different according to the nature of each 

park type. Such differences exist not only in the information provided during our choice 

experiment but also in respondents’ a priori experiences with different types of parks. The 

estimated WTP is associated with all these features and experiences, and is therefore likely to 

vary across different park types. For instance, the observed lack of willingness to pay for a 

new city park is likely attributable to certain dis-amenities associated with city parks in the 

context of Beijing, such as exacerbated crowdedness, noise and traffic congestion. In 

comparison, the neighbourhood and national parks are less likely to cause such concerns: the 

neighbourhood park is small in size and features basic green infrastructures and facilities, 

which thus would not occupy much space or attract large numbers of visitors; the national 

park is located at least 20km away and hence may not have a direct effect on the respondents’ 

residential environment. 

 

4.2.3   Willingness to pay for a national park 

We find no indication of the dependence of WTP for new national parks on pollution 

exposure, as shown by the insignificant estimate on the interaction term ‘National park × 

Pollution’ in the two mixed logit models (p-value = 0.81 in Model 1 and 0.89 in Model 2). 

Similarly, the WTP distribution is not responsive to changes in pollution, as can be seen in 

Table 5 and Figure A2. These results are particularly helpful in testing the residential sorting 

effect described by Hypothesis 1, as the other two hypotheses are less relevant to the national 

park. On the one hand, pollution in central Beijing is less likely to discourage trips to the 

city’s outlying natural areas, where pollution is presumably a lesser concern. On the other 

hand, the distant location of the national park (20–60km away) would likely preclude it from 

instantly and continuously providing air purification services for our respondents. In other 

words, WTP for the national park is more likely to be linked with pollution levels via the 

residential sorting mechanism. If this hypothesis was true, respondents living in more 

polluted areas would be less enthusiastic about environmental amenities in general and hence 

have lower WTP for the national park. Yet our results find no evidence for such connection.  

     Our respondents expressed a sizeable WTP for increases in national parks irrespective of 

pollution levels. The median WTP for a new national park comes to CNY 10.12 (USD 1.50) 

per household per month, according to Model 2 which has the preferred specification. 
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Further, the coefficient on the interaction term ‘National park × Distance’ is indistinguishable 

from zero in terms of both the magnitude and statistical significance, which implies that WTP 

would not decline over distance.13 Therefore, we can aggregate the typical WTP over all 

households in our study area for the three-year payment period, which amounts to CNY 

1.45bln (USD 215.41mln) in total, or CNY 7.27mln (USD 1.08mln) per hectare, since the 

size of the new national park was set to 200ha. The per hectare WTP estimate, despite its 

considerable magnitude, is notably lower than the fixed asset investment required for 

developing new parks (CNY12.42mln or USD 1.84 per hectare), which implies that public 

spending on additional national parks may not be good value of money. Despite that, it is 

worth noting that the fixed asset investment estimate is an average over all types of parks and 

is thus likely to overstate the costs of developing national parks, which typically require far 

fewer facilities per unit of area compared to neighbourhood and city parks. Lastly, the 

estimated per hectare WTP for a new neighbourhood park (CNY 53.72mln or USD 7.96mln) 

is substantially higher than that for a new national park. This is likely because a 

neighbourhood park would provide higher use values for an urban resident in the Chinese 

context, where neighbourhood parks are visited far more often than other types of green 

amenities (Chen & Jim, 2011).  

 

5   ROBUSTNESS TESTS  

In this section, we formally probe the robustness of our mixed logit estimates to potential 

endogeneity of pollution, and the validity of using these estimates to test the hypothesised 

mechanisms that link pollution exposure with WTP for urban greenspace.  

 

5.1   Robustness tests using instrumental variable estimation 

Although we have carefully included a number of control variables in Model 2, it is usually 

difficult to identify and control for all relevant factors that correlate with both pollution levels 

and people’s preferences for urban greenspace. We performed instrumental variable (IV) 

estimation to formally assess the impact of potential cofounders. Following Czajkowski et al. 

(2017), we adopted a two-stage procedure to facilitate the IV estimation, as it is not advisable 

to directly instrument explanatory variables in mixed logit models (Train, 2009). As detailed 

in Appendix II, we first derived ‘individual specific’ parameters for the park attributes and 

the status quo ASC, or more precisely, the conditional means of these parameters for 

subgroups of individuals who, when faced with the same alternatives (characterised by the 

attributes), would make the same choices. In the second stage, we regressed these conditional 

 
13 Despite that, the estimated standard deviation of the marginal utility parameter on the interaction term 

National park × Distance is statistically significant and much larger in size than the mean estimate. This 

random parameter (characterised by both the mean and standard deviation estimates) accommodates both 

observed and unobserved individual heterogeneity in preferences for the distance of a new national park, such 

as individual heterogeneity in travel costs, since individuals who spend more time travelling the same distance 

should be more sensitive to the distance of a new national park.   
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means in a linear setting against pollution and all other explanatory variables listed in Table 

3, where pollution can be instrumented in the usual way.    

 

 

  

      

     As discussed earlier in Section 3, Figure 2 reveals that the spatial heterogeneity of 

Beijing’s pollution appears largely associated with proximity to Baoding, the most polluted 

city in China. We therefore constructed an instrumental variable for pollution using the 

distance from a respondent’s residential location to the borderline between Beijing and 

Baoding. . Aside from pollution, we cannot think of any other particular reasons that Beijing 

residents would opt to live closer to or further away from Baoding. Studies on inter-city trips 

[e.g. Liu et al. (2014)] typically found fewer trips from Beijing to Baoding than to other 

neighbouring cities such as Tianjin. This is not surprising, since Beijing has higher paid 

employment opportunities and better public services (e.g. healthcare and education), and 

Baoding is less often considered as a popular holiday destination. Therefore it would be more 

likely that Baoding residents move towards Beijing, rather than the other way around. 

Moreover, we tested whether distance to Baoding coincides with certain spatial patterns, such 

as the spatial distributions of income levels and existing greenspaces (using the ‘income’ and 

‘park 1km’ variables described in Table 3). The correlation coefficients turned out to be 0.11 

and –0.06, respectively, which can hardly be regarded as substantial. In addition, we 

conducted a placebo test, where we attempted to use distance to Baoding (together with other 

control variables listed in Table 3) to explain the average AQI grade of the hours (in the past 

year before our surveys) that had a low wind speed (below 1m/s on average) in the past 8 

hours.14 The reasoning is that local pollution levels in Beijing at these less windy times were 

less likely affected by intercity pollution transmission. Therefore if the instrument still has a 

sizeable and statistically significant estimate, this would imply that the instrument has likely 

picked up the effects of some unobserved factors. We repeated this placebo test using the 

average AQI grade of the hours that had a low wind speed in the past 12 hours as the 

dependent variable. The ‘less windy hours’ defined in the two ways mentioned above 

respectively represent about 18% and 15% of all the hours of the past year, which are not 

trivial proportions of the pollution data. As can be seen in Table A4 in Appendix I, the 

estimate on the instrument is statistically insignificant in both placebo tests (p-value > 0.4), 

and is much smaller in size compared to that in the actual first stage of our instrumental 

variable estimation (where the dependent variable is the annual average AQI of all hours). 

Moreover, both placebo tests have a much smaller R2 (0.196 and 0.189, respectively) 

compared to the actual first stage of our instrumental variable estimation (0.53), and the R2 of 

the placebo tests would only become marginally lower if the instrument is dropped (0.194 

 
14 We considered the wind speed in the past 8 hours instead of the wind speed in each hour individually because 

intercity transmission of pollution takes time. The average distance between the communities we surveyed and 

the borderline of Baoding divided by the average wind speed equals 8.5.    
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and 0.185, respectively). These results to some extent provide corroborating evidence for the 

validity of the instrument.   

     Table A5 in Appendix I  presents the IV estimation results. Reassuringly, we find that the 

estimated effects of pollution on utility changes of having new parks are qualitatively similar 

to the mixed logit estimates in terms of the sign and statistical significance. For instance, in 

Model A9, the positive and statistically coefficient on ‘pollution’ implies that respondents 

exposed to higher pollution levels tend to have higher utility gains from a new neighbourhood 

park, which provides further corroborating evidence for Hypothesis 3. This echoes the 

positive and statistically significant coefficient on the interaction term ‘Neighbourhood park 

× Pollution’ in our mixed logit models, although the two sets of estimates differ in size. The 

F statistics from the weak IV tests, which are markedly greater than the frequently invoked 

rule of thumb (10), provides substantive evidence against the null hypothesis of weak 

identification. An endogeneity test that compares the estimates given by Models A8 and A9 

finds no statistically significant difference (p-value = 0.34), which easies the concern about 

endogeneity bias. Further, throughout Models A10–A13, the small and insignificant 

coefficient on ‘pollution’ provides no evidence for the hypothesised connections between 

people’s pollution exposure and their preferences for city and national parks, which 

resembles the mixed logit estimates, and the endogeneity tests find no detectable 

inconsistency between OLS and 2SLS estimates.  

     The only new finding that slightly deviates from our mixed logit analysis concerns 

people’s inclination for the status quo. We can see in Model A15 that higher pollution 

exposure would decrease the propensity to choose the status quo option. The estimate is 

considerably large in magnitude and strongly significant. The 2SLS estimate significantly 

differs from its OLS counterpart according to the endogeneity test (p-value = 0.02), which 

indicates that the variable ‘pollution’ is likely to be endogenous when explaining people’s 

preferences for the status quo. In comparison, the coefficient on the interaction term ‘Status 

quo × Pollution’ in our mixed logit models has the same negative sign but is statistically 

insignificant, which is similar to the OLS estimate and prone to endogeneity bias. However, 

the new evidence would not overturn our findings so far regarding the implications of 

pollution exposure for preferences of parks. It is thoroughly understandable that individuals 

living in pollution hotspots are less likely to choose the status quo or ‘no park’ option because 

they are found to care more about neighbourhood parks than residents of less polluted zones, 

whilst have similar tastes for city and national parks. In other words, the reluctance to 

maintain the status quo simply represents another indication of a stronger demand for a new 

neighbourhood park. 

 

5.2   Robustness tests using alternative dependent variables 

Up to this point, we have been contrasting the results for the three different types of parks to 

test the hypothesised mechanisms that link pollution exposure with preferences for urban 

greenspace. To strengthen our hypothesis testing, we conducted econometric analysis that 

more directly speaks to the hypothesised attitudinal and behavioural rationales behind the 
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heterogenous preferences for parks across locations with different pollution loads. Using our 

survey data, we constructed: 1) a binary variable that indicates whether the respondent was 

generally supportive of the creation of additional parks, 2) a censored variable that records 

the number of the respondent’s visits to parks in the past year, and 3) a binary variable that 

indicates whether the respondent was aware of parks’ air-cleaning functions. We regressed 

the three variables individually on pollution exposure as a direct examination of the 

hypothesised mechanisms behind the observed nexus between pollution exposure and WTP 

for parks. The two binary variables were modelled in a probit setting, whereas the censored 

variable in a tobit setting. Further, we instrumented pollution using the additional instrument 

introduced above (distance to Baoding) as a precautionary measure against endogeneity bias. 

The standard errors were clustered at the community/village level.  

     Table 6 displays the estimation results of these ancillary regressions. As shown in Panel 1, 

Model 4 gives a positive and statistically significant estimate on ‘pollution’, which translates 

into a stronger demand in more polluted zones for new parks. This lends no support to 

Hypothesis 1 that people’s residential location decisions, as reflected by local air pollution 

loads, indicate their preferences for parks (in which case we should have observed a weaker 

demand in more polluted zones for new parks). One possibility is that the residential sorting 

effect is outweighed by the aforementioned higher WTP in more polluted locations for the 

neighbourhood park and hence cannot be identified. Alternatively, it is possible that 

residential sorting in Beijing is precluded or hampered by certain constraints such as high 

costs of moving, since a prerequisite for the validity of the residential sorting theorem is ‘full 

mobility’ or ‘costless moving’ (Bayer & McMillan, 2012), which might clash with Beijing’s 

local contexts. Turning next to Panel 2, we find that long-term pollution exposure has no 

statistically significant implications for park visitation (p-value = 0.16 in Model 5 and 0.77 in 

Model 6). Both estimates, albeit sizeable, have a positive sign, which is inconsistent with the 

expectation of Hypothesis 2 and therefore still provides no evidence that favours Hypothesis 

2. Indeed, previous studies that found reduced outdoor activities on heavily polluted days 

mostly regarded such behaviour as temporary defensive responses to transitory pollution 

episodes [e.g. Bresnahan et al. (1997) and Graff Zivin and Neidell (2009)]. There might exist 

a greater degree of uncertainty in extrapolating the short-term impact of pollution episodes on 

park visitation to a longer period, as people can always reschedule outdoor activities when air 

quality improves. Lastly, we can see in Panel 3 that a more polluted living environment is 

indeed able to induce a broader awareness of parks’ air-cleaning functions, according to the 

positive and statistically significant coefficient on ‘pollution’ in Models 7 and 8. This finding 

further substantiates Hypothesis 3 and justifies our interpretation of the observed higher WTP 

in more polluted areas for a new neighbourhood park.    

 

Table 6   Estimation results using alternative dependent variables 

Panel 1: Dependent variable: whether support the creation of additional parks 

 Model 3 (Probit)  Model 4 (Probit-IV) 

     Pollution  4.09  10.63*** 

 (2.76)  (2.45) 
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Panel 2: Dependent variable: number of visits to parks in the past year 

 Model 5 (Tobit)   Model 6 (Tobit-IV) 

     Pollution  16.56  6.07 

 (11.72)  (21.03) 

Panel 3: Dependent variable: whether consider parks able to clean the air 

 Model 7 (Probit)  Model 8 (Probit-IV) 

     Pollution  3.94***  4.08* 

 (1.34)  (2.30) 

Instrumented variable:    

     Pollution  No  Yes 

Excluded instrument:    

     Distance to Baoding   Yes 

Clustered standard errors Yes  Yes 

Obs. (number of respondents) 224 

Note: 
a These models have controlled for all other explanatory variables in Table 3. For brevity, we have omitted 

estimates for control variables.  
b Asterisks indicate statistical significance: * p-value < 0.10, ** p-value < 0.05, *** p-value < 0.01. Standard 

errors are in parentheses. Significant results are highlighted in bold italics (up to the 10% significance level).  

 

6   DISCUSSION AND CONCLUDING REMARKS 

This paper presents the first study that formally explores the linkages between pollution 

exposure and WTP for green amenities in and around a city. This study builds upon a strand 

of literature that seeks to discern the spatial patterns of people’s preferences about green 

amenities [e.g. Czajkowski et al. (2017)]. In this study, a choice experiment survey was 

conducted in Beijing to elicit WTP for three types of green amenities, namely a 

neighbourhood park within each respondent’s community, a city park in central Beijing and a 

national park in the city’s outlying natural areas. We next sought to explain the spatial 

heterogeneity of WTP using pollution levels measured by air quality monitoring stations, 

whilst controlling for potential confounders. Our findings provide practical insights for land-

use decision making, in terms of which kind of investment in greenspace is most valued by 

people living in different parts of Beijing.  

     We set out 3 hypotheses about the likely links between air pollution and WTP for new 

green space in and around Beijing. Hypotheses 1 and 2 postulated that willingness to pay for 

any type of greenspace investment should be higher in areas with lower urban air pollution, 

because, 1) those who care more about environmental amenities would sort themselves into 

less polluted residential locations, and 2) better air quality enables people to visit greenspace 

more often. We did not find any evidence to support either hypothesis, especially in light of 

the insignificant findings for the national park. Air pollution in Beijing has only recently 

become a concern in the past decade. It is possible that many households with higher demand 

for environmental amenities have difficulties relocating to less polluted neighbourhoods if the 

costs of moving house are considerably high. Alternatively, many households making 

residential location decisions may prioritise some chiefly important needs, such as 
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affordability of housing and proximity to the workplace (Bayer & McMillan, 2012), which 

may be less substitutable by environmental amenities. Further, the hypothesised reduced 

visits to parks on heavily polluted days may be more of a temporary defensive reaction to 

transitory pollution episodes [e.g. Bresnahan et al. (1997) and Graff Zivin and Neidell 

(2009)]. In contrast, high average pollution loads over longer periods of time may not 

necessarily lead to a perpetual decrease in total outdoor activities, since people may increase 

outdoor activities on unpolluted days as a compensation for being forced indoors during 

pollution episodes. For instance, in the one-year period prior to our interview dates, the 

respondents on average experienced 76 polluted days (with an API above three) that are 

considered unsafe for outdoor activities. This implies that they may still be able to reschedule 

their outdoor activities in the remaining four fifths of the one-year period. Of course, our 

statistically insignificant findings pertaining to Hypotheses 1 and 2 are largely inconclusive 

and should not be over-interpreted, since ‘absence of evidence is not evidence of absence’.  

     Hypothesis 3 was that willingness to pay for new local greenspace should be higher where 

local air pollution loads are higher, if people regard investing in new local greenspace as a 

means of reducing their own exposure to air pollution. But there should be no such link 

between local air pollution loads and WTP for greenspace outside of the city. We found 

evidence to support this hypothesis, as WTP for the neighbourhood park is significantly 

higher where local pollution levels are higher. As mentioned above, the equilibrium of 

residential sorting for air quality may have not been fully achieved in Beijing. In that case, 

the law of diminishing marginal utility would expect that households living with lower levels 

of air quality would obtain higher levels of marginal utility from air quality improvements, 

and hence have higher marginal WTP for measures that improve air quality, such as 

expanding local greenspace. Moreover, living in neighbourhoods with worse air quality may 

arouse more attention in pollution’s adverse consequences and parks’ air cleaning functions, 

a phenomenon explicable in terms of selective learning (Chang et al., 2018).  

     Admittedly, it is possible that the residential sorting and reduced visits mechanisms 

described in Hypotheses 1 and 2 indeed exist in our case, but have been outweighed by the 

effects of parks’ air purification services described in Hypothesis 3 and hence become 

unobservable. Our empirical results only capture the ‘overall indication’ of preferences about 

greenspace conveyed by the spatial distribution of pollution loads, after all kinds of 

connections between the two environmental issues have jointly taken effect. We are thus 

inclined to place more emphasis on the evidence that favours Hypothesis 3 than on the null 

results concerning Hypotheses 1 and 2. In addition, the connections between pollution levels 

and WTP for greenspace in this study involve both use and non-use values. For instance, 

Hypotheses 2 and 3 concerning park visits and parks’ air purification services largely focus 

on use values, whereas in Hypothesis 1, how much people care about environmental 

amenities in general could relate to both use and non-use values. Our stated WTP estimates 

have captured both types of values, which we do not attempt to disaggregate. For instance, 

we found that our respondents visited neighbourhood parks much more often (more than once 

a week on average) than national parks (less than once a year on average) in the past year. 

Moreover, these national parks are located far away outside the city and therefore contribute 

less to air quality near people’s homes in the city. These suggest that the use values of 
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national parks are likely to be rather limited. Yet the estimated median WTP per household 

for a new national park, although indeed much lower than that for a new neighbourhood park, 

is still sizeable, as shown in Table 5. On pragmatic grounds, such ‘overall indication’ (the 

aggregate implication of different mechanisms for the total value of greenspace which 

includes both use and non-use values) would suffice to proffer recommendations to urban 

land-use decision-making, since a cost benefit analysis would primarily consider the total 

benefits and costs of creating or removing greenspace, and would not need to disaggregate 

benefits into use and non-use values. 

. For benefit transfer practitioners, our results show that urban air pollution data contain 

useful information for helping to explain and predict heterogeneity in the value of new 

investments in greenspace. 

     It is worth noting that a few recent studies found that peoples’ behaviour and choices with 

regard to pollution may depend more on their subjective perceptions of pollution levels than 

on objectively measured pollution levels [e.g. Rousseau, Franck & de Jaeger (2019)]. In this 

study, we used measured pollution data to partly explain responses to the choice experiment, 

but it seems likely that for residents of Beijing, variations in measured levels across time and 

between people will be largely correlated with perceived levels, simply because people in 

Beijing regularly check data on measured levels. Therefore, potential discrepancies between 

perceived and measured pollution levels may arguably be a lesser concern in our case. 

     The hedonic approach would be an alternative way to test whether households with similar 

tastes in environmental amenities will cluster via residential sorting. For instance, Klaiber & 

Phaneuf (2010) used housing transaction data to estimate a discrete choice model (among 

different residential locations) which gives the implicit price of open space and its 

dependency on household characteristics such as income levels and the number of children. If 

there is a measure of people’s preference for air quality (preferably before they choose where 

to live), it can then be used in a residential location choice model like the model of Klaiber & 

Phaneuf (2010) to explore whether it has implications for the implicit price of new 

greenspace, and the marginal benefits of this new greenspace to individuals in different 

locations.     
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APPENDIX I   SUPPLEMENTARY TABLES AND FIGURES 

 

Table A1   Comparison of sample characteristics with governmental statistics 

Variable Sample mean Gov. stats Diff. Diff. % p-value 

Age (years) 45.60 42.98 2.62 6.10% 0.01 

Education (years) 11.47 11.63 –0.16 –1.38% 0.40 

Gender (binary: 0 = female; 1 = male)  0.53 0.51 0.02 3.92% 0.16 

Household size  

     (number of household members) 

2.808 2.807 0.001 0.04% 0.98 

Income (household monthly income  

     per capita, CNY 1,000) 

4.96 5.18 –0.22 –4.25% 0.24 

Note: 

Governmental statistics were sourced from Beijing Statistical Yearbook 2017 (Beijing Municipal Bureau of Statistics, 2017). 

 

 

 

a) 

 

b) 

 

Figure A1   Distribution of pollution levels across residential blocks 
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Panel 1: Distributions of WTP for a neighbourhood park  

a) 

 

b) 

 
    

Panel 2: Distributions of WTP for a city park 

c) 

 

d) 

 
    

Panel 3: Distributions of WTP for a national park 

e) 

 

f) 

 

Figure A2   Distributions of WTP estimates  

Note: 

These are kernel density plots using 100,000 draws from the simulated distributions of WTP.  
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Table A2   Mixed logit models with different specifications  

 Model A1  Model A2  Model A3  Model A4  Model A5 

 Mean SD  Mean SD  Mean SD  Mean SD  Mean SD 

Payment: ln(–coef.) –2.44*** 1.57***  –2.70*** 1.16***        –2.49*** 1.67*** 

 (0.24) (0.19)  (0.17) (0.17)        (0.23) (0.16) 

Payment × Pollution: ln(–coef.) –2.06   –1.25           

 (3.12)   (1.91)           

Payment: coef.       –0.06***   0.05***     

       (0.01)   (0.01)     

Neighbourhood park 1.35*** 1.93***  1.27*** 1.50***  1.02*** 2.07***  1.04*** 1.80***  1.32*** 1.97*** 

 (0.39) (0.62)  (0.33) (0.53)  (0.31) (0.44)  (0.29) (0.39)  (0.36) (0.68) 

Neighbourhood park × Distance –0.85*** 0.57  –0.79*** 0.34  –0.82*** 0.07  –0.82*** 0.02  –0.78*** 0.18 

 (0.30) (1.08)  (0.25) (1.15)  (0.22) (0.72)  (0.22) (0.72)  (0.26) (2.85) 

Neighbourhood park × Pollution 7.04   6.33*   7.87**   7.36**     

 (4.37)   (3.67)   (3.45)   (3.22)     

City park –0.10 0.81  –0.06 0.14  –0.05 0.08  –0.02 0.03  –0.14 0.14 

 (0.27) (0.83)  (0.25) (1.47)  (0.23) (0.50)  (0.22) (0.50)  (0.25) (0.85) 

City park × Distance 0.04 0.03  0.04 0.02  0.05** 3.19×10–3  0.05** 1.74×10–3  0.04 0.01 

 (0.03) (0.10)  (0.02) (0.07)  (0.02) (0.06)  (0.02) (0.06)  (0.03) (0.09) 

City park × Pollution –0.92   –1.21   –1.33   –1.54     

 (3.13)   (2.79)   (2.73)   (2.67)     

National park 0.79*** 0.17  0.78*** 0.17  0.70*** 0.01  0.71*** 0.05  0.76*** 0.10 

 (0.26) (0.77)  (0.22) (0.54)  (0.19) (0.58)  (0.19) (0.41)  (0.22) (1.00) 

National park × Distance –0.01 0.02  –4.76×10–3 0.03*  –0.01 0.04***  –0.01 0.04***  –3.63×10–3 0.02 

 (0.01) (0.02)  (0.01) (0.02)  (0.01) (0.01)  (0.01) (0.01)  (0.01) (0.02) 

National park × Pollution 0.54   0.74   0.94   0.92     

 (2.42)   (2.26)   (2.19)   (2.16)     

Status quo –0.76 6.91***  1.18 4.51***  0.49 6.13***  1.14 3.91***  –0.96 6.51*** 
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 (0.70) (1.27)  (2.03) (0.74)  (0.57) (0.84)  (1.60) (0.58)  (0.80) (1.04) 

Status quo × Age    0.02      0.03     

    (0.04)      (0.03)     

Status quo × Cars    1.75*      1.55*     

    (0.98)      (0.79)     

Status quo × Elderly & children    1.57*      1.56**     

    (0.88)      (0.78)     

Status quo × House price    0.03      0.03     

    (0.02)      (0.02)     

Status quo × Income    –2.98***      –2.73***     

    (0.69)      (0.55)     

Status quo × Park 1km    1.38***      1.08***     

    (0.48)      (0.40)     

Status quo × Park air    –6.93***      –5.85***     

    (1.33)      (0.96)     

Status quo × Pollution –6.16   0.31   –7.91   –1.84     

 (8.74)   (7.16)   (7.24)   (6.08)     

Status quo × Population density    –0.08      –0.09**     

    (0.05)      (0.04)     

Status quo × Traffic    –4.67      –3.05     

    (4.21)      (3.51)     

Log–likelihood –591.84   –528.68   –610.94   –545.18   –595.87  

AIC 1,225.67   1,117.37   1,259.89   1,146.35   1223.74  

BIC 1,326.43   1,261.31   1,351.05   1,280.69   1300.50  

Obs. (number of choices) 896   896   896   896   896  

Note: 

Asterisks indicate statistical significance: * p-value < 0.10, ** p-value < 0.05, *** p-value < 0.01. Standard errors are in parentheses. Significant results are highlighted in bold italics 

(up to the 10% significance level). 
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Table A3   WTP estimates assuming a fixed cost parameter 

 Model A3  Model A4 

 Mean Median SD  Mean Median SD 

Neighbourhood park (min pollution)  3.40 3.33 36.99  4.74 4.68 32.94 

Neighbourhood park (mean pollution) 18.35 18.45 37.01  19.05 19.01 32.96 

Neighbourhood park (max pollution) 45.76 45.78 36.98  45.42 45.44 32.93 

City park (min pollution)  1.61 1.61 1.40  2.62 2.62 0.56 

City park (mean pollution) –0.92 –0.91 1.40  –0.41 –0.41 0.56 

City park (max pollution) –5.53 –5.53 1.40  –5.94 –5.94 0.56 

National park (min pollution)  10.66 10.66 0.27  13.12 13.12 0.90 

National park (mean pollution) 12.46 12.46 0.27  11.31 11.31 0.90 

National park (max pollution) 15.75 15.75 0.27  16.40 16.40 0.90 

Note: 

Unit of measurement: CNY per household per month for three years. CNY 6.75 = USD 1 in 2017. 

 

 

Panel 1: Distributions of WTP for a neighbourhood park  

a) 

 

b) 

 
    

Panel 2: Distributions of WTP for a city park 

c) 

 

d) 

 
    

Panel 3: Distributions of WTP for a national park 
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e) 

 

f) 

 

Figure A3   Distributions of WTP estimates assuming a fixed cost parameter 

 

 

Table A4   Placebo tests of instrument validity 

 Model A5 Model A6 Model A7 

 DV: average AQI of ‘less windy hrs’ DV: average AQI of all hrs 

Distance to Baoding 1.25×10-3 2.18×10-3 –6.22×10-3*** 

 (2.32×10-3) (2.82×10-3) (9.00×10-4) 

Control variables (Table 3) Yes Yes Yes 

R2 0.20 0.19 0.53 

Clustered standard errors Yes Yes Yes 

Obs. 224 224 224 

Note: 
a The dependent variable (DV) of Model A5 is the average AQI grade of the hours (in the past year before our 

surveys) that had a low wind speed (below 1m/s on average) in the past 8 hours, whereas the DV of Model A6 is 

the average AQI grade of the hours (in the past year before our surveys) that had a low wind speed (below 1m/s 

on average) in the past 12 hours. Model A7 is the first stage of the instrument variable models in Table 6.  
b Standard errors were clustered at the community/village level to address unobserved within-cluster 

correlation. 
c Asterisks indicate statistical significance: * p-value < 0.10, ** p-value < 0.05, *** p-value < 0.01. 

 

 

Table A5   Estimation results using conditional means of mixed logit coefficients   

 OLS Estimates  2SLS Estimates 

Panel 1: Dependent variable: marginal utility of neighbourhood park 

 Model A8  Model A9  

     Pollution  1.56  3.12* 

 (1.24)  (1.77) 

Panel 2: Dependent variable: marginal utility of city park 

 Model A10  Model A11  

     Pollution  –4.32×10–3  0.07 

 (0.04)  (0.07) 
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Panel 3: Dependent variable: marginal utility of national park 

 Model A12  Model A13  

     Pollution  0.02  0.02 

 (0.06)  (0.09) 

Panel 4: Dependent variable: marginal utility of status quo 

 Model A14  Model A15  

     Pollution  –5.50  –17.05** 

 (5.30)  (6.58) 

Instrumented variable:    

     Pollution  No  Yes 

Excluded instrument:    

     Distance to Baoding   Yes 

Weak IV test (H0: Weak IV):          

     Cragg–Donald Wald F stat.   120.49 

     Kleibergen–Paap Wald rk F stat.   41.96 

R2 from the first stage   0.52 

Clustered standard errors Yes  Yes 

Obs. (number of respondents) 224 

Note: 
a These models have controlled for all other explanatory variables in Table 3. For brevity, we have omitted 

estimates for control variables.  
b Standard errors were clustered at the community/village level to address unobserved within-cluster correlation.  
c Asterisks indicate statistical significance: * p-value < 0.10, ** p-value < 0.05, *** p-value < 0.01. Standard 

errors are in parentheses. Significant results are highlighted in bold italics (up to the 10% significance level).  

 

 

APPENDIX II   TWO-STAGE PROCEDURES FOR IV ESTIMATION 

We first estimated a mixed logit model (Model A5 in Appendix I) that only contains the 

attributes of our choice experiment and the status quo ASC. The model assumes a 

lognormally distributed random coefficient for the cost attribute, and a normally distributed 

random coefficient for all other explanatory variables. The distribution of the coefficient 

vector 𝝀 for all individuals is denoted as 𝑔(𝝀|𝜽), where the vector 𝜽 consists of the 

distribution’s parameters, such as the mean and variance. Let ℎ(𝝀|𝑦, 𝒙, 𝜽) represent the 

conditional distribution of 𝝀 for a subgroup of individuals who, when faced with the same 

alternatives (characterised by the attribute vector x), would make the same choices y. The 

conditional distribution is given by Bayes’ rule:  

ℎ(𝝀|𝑦𝑖 , 𝒙𝒊, 𝜽) =
𝑃(𝑦𝑖|𝒙𝒊, 𝝀)𝑔(𝝀|𝜽)

𝑃(𝑦𝑖|𝒙𝒊, 𝜽)
, (A2.1) 

where 𝑃(𝑦𝑖|𝒙𝒊, 𝝀) represents the probability of the decision-makers’ choices. The mean of the 

conditional distribution can be expressed as:  

𝝀̅𝒊 = ∫ 𝝀 ∙ ℎ(𝝀|𝑦𝑖 , 𝒙𝒊, 𝜽)𝑑𝝀. (A2.2) 
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𝝀̅𝒊 can be simulated after substituting (A2.2) into (A2.1), which captures each individual’s 

tastes conditional on their choices (Train, 2009).   

     In the second stage, we regressed these conditional means in a linear setting against 

pollution and all other explanatory variables listed in Table 3, where pollution can be 

instrumented in the usual way. 
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