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1. Introduction
The proposed algorithm detects globally the symmetry

axes inside an image plane. The main steps are as fol-

lows: We firstly extract edge features using Log-Gabor fil-

ters with different scales and orientations. Afterwards, we

use the edge characteristics associated with the textural and

color information as symmetrical weights for voting trian-

gulation. In the end, we construct a polar-based voting his-

togram based on the accumulation of the symmetry contri-

bution (local texture and color information), in order to find

the maximum peaks presenting as candidates of the primary

symmetry axes.

Our contribution is twofold. Firstly, we extract edge fea-

tures upon the application of Log-Gabor filters for symme-

try detection instead of using Gabor filters. Secondly, we

propose a similarity measure based on color image infor-

mation, to improve the symmetry magnitude estimation in

the voting step. In addition, we evaluate the proposed meth-

ods over all public datasets for reflection symmetry (single

and multiple cases), in comparison with state-of-the-art al-

gorithms.

The remaining part of the paper is organized as fol-

lows. In section 2, we explain Log-Gabor transform and its

feature-based application on a gray-scale image. In section

3, textural and color histograms of window-based features

are described in details. In section 4, we illustrate the de-

tection of symmetry candidates through triangulation and

voting processes. Experimental details and results are pre-

sented in section 5. Finally, section 6 contains conclusion

and future work.

2. Log-Gabor Edge Detection
Log-Gabor filter consists of logarithmic transformation

of a Gabor filter in the Fourier domain, which suppresses

the negative effect of the DC component:

Ĝ(η, α; s, o) = Ĝs(η) Ĝo(α) (1)

Ĝs(η) = exp(−
(log( η

ηs
))2

2(log(ση))2
) U(η) (2)

Ĝo(α) = exp(−
|atan( sin(α−αo)

cos(α−αo)
)|

2σ2
α

) (3)

where (η, α) are the log-polar coordinates representing ra-

dial and angular components over S scales and O orien-

tations, associated with the frequency centers (ηs, αo) and

their bandwidths (ση, σα). Ĝs(η) is multiplied by low-pass

Butterworth filter U(η) of order 15, and frequency 0.45, to

eliminate any extra frequency at Fourier corners.

The modulus of complex wavelet coefficients Is,o(x, y)
are computed on an image I (width W and height H)

over multiple scales s ∈ {1, . . . , S} and orientations o ∈
{ zπO , z = 0, . . . , O − 1} as follows:

I →
GS

IGS
FT→ ÎGS (4)

Is,o(x, y) = |FT−1(ÎGS × Ĝ)| (5)

where ÎGS is the gray-scale version of the image I in fre-

quency domain, and FT (.), FT−1(.) are the Fourier trans-

form and its inverse.

Figure 1 presents an example of Log-Gabor response Is,o
on a natural image with a blurring background. Amplitude

map J(x, y) = max
s,o

Is,o(x, y) highlights the edge details

of the foreground object in a sharp way, accompanied by

precise angular values in the corresponding orientation map

φ(x, y). Upon a spatial sampling of the input image I us-

ing non-interleaved cells along a regular grid (stride and
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(a) Input (b) Amplitude (c) Orientation

Figure 1: Log-Gabor response: (a) Input image. (b) Amplitude map J ∈ [0, 1]. (c) Orientation map φ ∈ [−90◦, 90◦].

cell size are proportional to the maximum image dimension

max(W,H)). A feature point pi is extracted within each

cellDi containing edges using the wavelet response of Log-

Gabor filter Is,o(Di), associated with its maximum wavelet

response Ji = J(pi) along side with the corresponding ori-

entation φi and color in HSV color space ψi.

3. Textural and Color Histograms
The textural and color information around an edge seg-

ment are prominent similarity characteristics for natural im-

ages, describing the symmetrical behavior of local edge ori-

entation, and the balanced distribution of luminance and

chrominance components. Hence, we introduce two his-

tograms: Firstly, neighboring textural histogram hi of size

N :

hi(n) =
∑
r∈Di

Jr �Φn
(φr), (6)

Φn = [
nπ

N
,
(n+ 1)π

N
[, n = 0, . . . , N − 1

where � is the indicator function. hi is l1 normalized and

circular shifted with respect to the orientation of the maxi-

mum magnitude φi among the neighborhood cell Di. Sec-

ondly, the local HSV histogram gi of size C with sub-

sampling rate (Chu : Csa : Cva)

gi(c) =
∑
r∈D∗

i

�Ψc
(ψr), (7)

c = (chu, csa, cva),

chu ∈ {0, . . . , Chu − 1},
csa ∈ {0, . . . , Csa − 1},
cva ∈ {0, . . . , Cva − 1},

Ψc = [ 2c
huπ

Chu , 2(c
hu+1)π
Chu [× [ c

sa

Csa ,
csa+1
Csa [× [ c

va

Cva ,
cva+1
Cva [

whereD∗i is the neighborhood window around feature point

pi , ψc is a sub-sampled set of HSV space, in terms of

three components: hue (hu), saturation (sa) and value (va).

l1 normalization is applied to gi(.) for bin-wise histogram

comparison.

4. Symmetry Triangulation and Voting

A set of feature pairs (pi, pj) of size
P (P−1)

2 are elected

such that i �= j, and P is the number of feature points.

Then, we compute the symmetry candidate axis based a tri-

angulation process with respect to the image origin. This

candidate axis is parametrized by angle θi,j (orientation of

the bisector of the pair segment (pi, pj)), and displacement

ρi,j (distance of the image origin to this bisector) and has a

symmetry weight ωi,j defined as follows:

ωi,j = ω(pi, pj) = m(i, j) t(i, j) q(i, j) (8)

m(i, j) = |τ iR(T⊥ij )τ j | (9)

t(i, j) =

N∑
n=1

min(hi(n), h̃j(n)) (10)

q(i, j) =
C∑

c=1

min(gi(c), gj(c)) (11)

where τ i = [cos(φi), sin(φi)]
T , R(T⊥ij ) is the reflection

matrix with respect to the perpendicular of the line connect-

ing (pi, pj) [3, 4], and h̃j is the reverse version of hj his-

togram. l1 normalization is applied to symmetry weights

ω.

A symmetry histogram H(ρ, θ) is defined as the sum of

the symmetry weights of all pairs of feature points such as:

H(ρ, θ) =
∑
pi,pj

i�=j

ωi,jδρ−ρi,j
δθ−θi,j (12)

where δ is the Kronecker delta.

the voting histogram H(ρ, θ) is smoothed using a Gaus-

sian kernel to output a proper density representation, in
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which the major symmetry peaks are selected by reaching-

out clear extreme spots using well-known non-maximal

suppression technique [1, 6]. The spatial boundaries of each

symmetry axis is computed through the convex hull of the

associated voting pairs.

5. Results and Discussions
This section describes the details of public symmetry

datasets, evaluation metrics, and experimental settings for

performance comparison of the proposed work.

5.1. Datasets description

Five public datasets of reflection symmetry detection

are used from three different databases: (1) PSU datasets

(single, multiple): Liu’s vision group proposed symmetry

groundtruth for Flickr images (# images = # symmetries

= 157 for single case, # images = 142 and # symmetries

= 479 for multiple case) in ECCV20101, CVPR20112 and

CVPR20133. (2) AVA dataset (single): Elawady et. al

[4] provided axis groundtruth4 for some professional pho-

tographs (# images = # symmetries = 253 for single case)

from large-scale aesthetic-based dataset called AVA [7]. (3)

NY datasets (single, multiple): Cicconet et al. [2] intro-

duced a symmetry database (# images = # symmetries = 176

for single case, # images = 63 and # symmetries = 188 for

multiple case) in 20165, providing more stable groundtruth.

5.2. Evaluation metrics

Assuming a symmetry line defined by two endpoints

(a = [ax, by]
T , b = [bx, by]

T ), quantitative comparisons

are fundamentally performed by considering a detected

symmetry candidate SC = [aSC , bSC ]T as a true posi-

tive (TP) respect to the corresponding groundtruth GT =
[aGT , bGT ]T if satisfying the following two conditions:

T (atan(

abs(

∣∣∣∣vSC
x vGT

x

vSC
y vGT

y

∣∣∣∣)
< vSC , vGT >

)) < γ , (13)

√
(tSC

x − tGT
x )2 + (tSC

y − tGT
y )2 < ζ , (14)

vSC = (aSC − bSC), vGT = (aGT − bGT ) ,

tSC =
(aSC + bSC)

2
, tGT =

(aGT + bGT )

2
,

T (Γ) =

{
π − Γ, if Γ > π

2

Γ, otherwise

1http://vision.cse.psu.edu/research/symmetryCompetition/index.shtml
2http://vision.cse.psu.edu/research/symmComp/index.shtml
3http://vision.cse.psu.edu/research/symComp13/content.html
4http://github.com/mawady/AvaSym
5http://symmetry.cs.nyu.edu/

The conditions represent angular and distance con-

straints between detected and groundtruth axes. These con-

straints are upper-bounded by the corresponding thresholds

γ and ζ, which are defined in table 1. Furthermore, the pre-

cision and recall rates are defined by selecting the symmetry

peaks according to the candidates’ amplitude normalized by

the highest detection score, to show the performance curve

for each algorithm. In addition, we used the maximum F1

score identifying a unique comparison measure, to show the

overall accuracy of each symmetry algorithm.

Table 1: Threshold values of evaluation metrics across dif-

ferent reflection symmetry competitions.

Competitions γ ζ

CVPR2011 [8] 10◦ 20%× len(GT )
CVPR2013 [5] 10◦ 20%×min{len(MT ), len(GT )}

5.3. Experimental settings

We compare the proposed methods (Lg: without color

information and LgC: with color information) against three

state-of-the-art approaches: Loy and Eklundh (Loy2006)

[6], Cicconet et al. (Cic2014) [3], and Elawady et al.

(Ela2016) [4]). Their source codes are used with default pa-

rameter values for performance comparison. In Log-Gabor

edge detection, we set the number of scales S and num-

ber of orientations O to 12 and 32. We also set the ra-

dial bandwidth ση to 0.55 and the angular bandwidth σα
to 0.2. In textural and color histogram calculations, we de-

fine the number of bins for textural N and color C to 32
and 32 (sampling rate Chu : Csa : Cva = 8 : 2 : 2)

respectively. In case of gray-scale images, contrast values

are used instead of color information in HSV color space.

In symmetry voting, we declare the 2D histogram space of

ρ =
√
W 2 +H2 displacement bins and θ = 360 orienta-

tion bins for extrema selection.

5.4. Performance analysis

In our experimental evaluation, the algorithms are ex-

ecuted to detect and compare the global symmetries in-

side synthetic and real-world images. Table 2 shows the

true positive rates for the proposed methods (Lg and LgC)

against Loy and Eklundh (Loy) [6], Cicconet et al. (Cic) [3],

and Elawady et al. (Ela) [4]. LgC performs the best result

among most cases in single and multiple symmetry, due to

the importance of color information for the voting compu-

tations in colorful images. At the same time, Lg has the top

2nd result, and sometimes the top 1st results in gray-scale or

low-saturated images. Ela [4] ranked as the top 3rd result,

due to the utilization of small grids to compute window-

based features. Thanks for the advantage of SIFT features,
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(a) PSU (b) AVA (c) NY

(d) PSUm (e) NYm

Figure 2: Using evaluation metrics CVPR2013 [5], Precision-Recall curves on: (1) four single-case symmetry (a,b,c)

datasets, and (2) three multiple-case symmetry (d,e) datasets to show the overall superior performance of our proposed

methods ( Lg2017 and LgHSV2017) against the three prior algorithms (Loy2006 [6], Cic2014 [3], and Ela2016 [4]). The

maximum F1 scores are qualitatively presented as square symbols along the curves, and quantitatively indicated between

parentheses inside the top-right legends. Best seen on screen (zoom-in for details).

Table 2: Using evaluation metrics CVPR2013 [5], compar-

ison of the true positive rates based on top detection for the

proposed methods against the state-of-art algorithms. Sym-

metry datasets are presented as: single-case (first 3 rows)

and multiple-case (last 2 rows), highlighting between paren-

thesis the number of images for each dataset. Top 1st and

2nd values are in Bold and underlined respectively.

Datasets Loy[6] Cic[3] Ela[4] Lg LgC

PSU(157) 81 90 97 109 116
AVA(253) 174 124 170 191 197
NY(176) 98 92 109 125 132

PSUm(142) 69 68 67 74 79
NYm(63) 32 36 36 39 40

Loy [6] is still strong competent to be ranked as the top 4th

result in general. Cic [3] has the lowest performance.

Figure 2 presents performance results in terms of pre-

cision and recall curves for single-case and multiple-

case symmetry datasets, plus values of the maximum F1

score to measure the performance of the proposed algo-

rithms (Lg2017 and LgHSV2017) against Loy and Ek-

lundh (Loy2006) [6], Cicconet et al. (Cic2014) [3], and

Elawady et al. (Ela2016) [4]. In single-case symmetry,

our method Lg2017 outperforms the other concurrent al-

gorithms (Loy2006, Cic2014, and Ela2016) in the context

of using only gray-scale version of involved images. Fur-

thermore, color version of our method LgHSV2017 exploits

slightly improvement over gray-scale one Lg2017. On the

other hand, Only LgHSV2017 has better precision perfor-

mance among others in PSUm and NYm datasets, due to

many local symmetry groundtruth existing inside multiple-

case mirror axes.

6. Conclusion

In this paper, we detect global symmetry axes inside an
image using the edge characteristics of Log-Gabor wavelet
response. For the purpose of improving our results, we ad-
ditionally use textural and color histograms as local sym-
metrical measure around edge features. We show that the
proposed methods provide a great improvement over single
and multiple symmetry cases in different datasets. Future
work will focus on improving the voting representations,
respect to the number of symmetry candidate pairs, result-
ing a precise selection of symmetrical axis peaks and their
corresponding voting features.
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