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Abstract

Let G be a connected r-regular graph (r > 3) of order n with a tree of
order t as a star complement for an eigenvalue µ 6∈ {−1, 0}. It is shown that
n ≤ 1

2
(r+1)t− 2. Equality holds when G is the complement of the Clebsch

graph (with µ = 1, r = 5, t = 6, n = 16).
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1. Introduction

Let G be a graph of order n with an eigenvalue µ of multiplicity k. A star set for
µ in G is a set X of k vertices such that G−X does not have µ as an eigenvalue.
In this situation, G − X is called a star complement for µ. Star sets and star
complements exist for any eigenvalue of any graph (see [5, Chapter 5]). If G is
regular, µ 6∈ {−1, 0} and t = n − k then t > 2 and k ≤ 1

2(t + 1)(t − 2) with
equality if and only if G is an extremal strongly regular graph [1, Theorem 3.1].
The regular graphs with a star as a star complement are described in [9], and
those with a generalized star as a star complement are investigated in [7], but the
techniques used there do not extend to an arbitrary tree as a star complement.

Now suppose that G is r-regular, r > 2 and µ 6∈ {−1, 0}. If r = 3, then
k ≤ 2t with equality if and only if µ = 1 and G is the Petersen graph [6, Theorem
1.1]. If r > 3, then k < r−1

r+1n, equivalently 2k < (r− 1)t [8, Theorem 3.4], and in
this case we let 2k = (r − 1)t− a (a ∈ N). In [8, Section 5] it is shown that if G
has a tree as a star complement for µ, then a 6∈ {1, 2}. On the other hand, the
complement of the Clebsch graph is an example in which a = 4 and K1,5 is a star
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complement for the eigenvalue 1. To close the gap, we develop new tools which
enable us to show that a 6= 3. Thus n ≤ 1

2(r+ 1)t− 2 whenever r > 3 and G has
a tree as a star complement of order t for an eigenvalue different from −1 and 0.

It follows from the preliminary results in Section 2 that when r > 3 and
a = 3 we have t ≤ 23 and n ≤ 275. This leaves an uncomfortably large number
of possibilities for the parameters involved, but many are excluded by the new
results in Section 3. These results also serve to reduce substantially the arguments
required in the remaining cases, which are ruled out individually in Sections 4, 5
and 6.

2. Preliminaries

The fundamental properties of star sets and star complements are established in
[5, Chapter 5]. We shall require the following results, where we write u ∼ v to
mean that vertices u and v are adjacent. For any U ⊆ V (G), we write GU for
the subgraph of G induced by U , and ∆U (v) for the set {u ∈ U : u ∼ v}. For the
subgraph H of G it is convenient to write ∆H(v) for ∆V (H)(v).

Theorem 2.1 ([5], Theorem 5.1.7). Let X be a set of k vertices in G and suppose

that G has adjacency matrix

(
AX B⊤

B C

)

, where AX is the adjacency matrix

of GX .

(i) Then X is a star set for µ in G if and only if µ is not an eigenvalue of C
and

(1) µI −AX = B⊤(µI − C)−1B.

(ii) If X is a star set for µ, then the eigenspace E(µ) consists of the vectors
(

x

(µI − C)−1Bx

)
(
x ∈ R

k
)
.

Let H = G − X, where X is a star set for µ. In the notation of Theorem
2.1, C is the adjacency matrix of H, while the columns bu (u ∈ X) of B are the
characteristic vectors of the H-neighbourhoods ∆H(u) (u ∈ X). We write 〈x,y〉
for x⊤(µI − C)−1y

(
x,y ∈ R

t
)
, where t = n− k. Equation (1) shows that

(2) 〈bu,bv〉 =







µ if u = v,
−1 if u ∼ v,
0 otherwise,

and we deduce the following from Theorem 2.1.
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Lemma 2.2. If X is a star set for µ, and µ 6∈ {−1, 0}, then the neighbourhoods

∆H(u) (u ∈ X) are non-empty and distinct.

We write j for an all-1 vector, its length determined by context. Recall that
µ is a main eigenvalue of G if E(µ) is not orthogonal to j, and that in an r-regular
graph, every eigenvalue other than r is non-main. The next observation follows
from Theorem 2.1(ii).

Lemma 2.3. If X is a star set for the non-main eigenvalue µ, then 〈bu, j〉 = −1
for all u ∈ X.

Proof. See [5, Proposition 5.2.4].

Lemma 2.4. If G is r-regular of order n and µ < r, then 〈j, j〉 = n/(µ− r).

Proof. See [8, Lemma 2.4].

Lemma 2.5. Let µ be an eigenvalue of the graph G. If G is connected, then G
has a connected star complement for µ.

Proof. See [5, Theorem 5.1.6].

We write E(G) for the edge-set of G, and for subsets U, V of V (G) we write
E(U, V ) for the set of edges between U and V . When H = G−X it is convenient
to write X for V (H). The authors of [3] have determined all the graphs with a
star set X for which E(X,X) is a perfect matching, equivalently all the graphs
for which B = I in Equation (1). Their result is the following.

Theorem 2.6. Let G be a graph with X as a star set for the eigenvalue µ. If

E(X,X) is a perfect matching, then one of the following holds.

(a) G = K2 and µ = ±1,

(b) G = C4 and µ = 0,

(c) G is the Petersen graph and µ = 1.

Now let G be a connected regular graph of degree r > 3 and order n, with
an eigenvalue µ 6∈ {−1, 0, r} of multiplicity k = 1

2((r − 1)t − a) (a > 0). By
Lemma 2.6 we may take H (= G−X) to be a connected star complement for µ.
Let {f1, . . . , ft} be the standard orthonormal basis of Rt. Most of the following
observations in this section are extracted from [8].

Let Q = {i ∈ X : |∆H(i)| = 1} and R = X \Q. Let Q′ be the set of vertices
in X with a neighbour in Q, and let R′ = X \Q′. By Lemma 2.2, E(Q,Q′) is a
matching when Q 6= ∅. We take X = {1, . . . , k}, Q = {1, . . . , q}, X = {1′, . . . , t′}
and Q′ = {1′, . . . , q′} with ∆H(i) = {i′} (i = 1, . . . , q). Without loss of generality,
bi = fi (i = 1, . . . , q).
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Lemma 2.7. Suppose that S is a non-empty subset of X such that 〈fi, j〉 = −1
when i′ ∈ S, and 〈fi, j〉 = 0 when i′ 6∈ S. Then µ ≥ 1 and GS is regular of degree

1 + µ. In particular, µ ≥ 1 and H is not a tree.

Proof. See [8, Lemma 3.3].

Lemma 2.8. If j ∈ R, then bj is not a linear combination of the vectors bi

(i ∈ Q). Thus each vertex in R is adjacent to a vertex in R′.

Proof. If bj = Σi∈Qaibi, then Σi∈Qai ≥ 2, and by Lemma 2.3 we have −1 =
〈bj , j〉 = Σi∈Qai〈bi, j〉 = −Σi∈Qai ≤ −2, a contradiction.

By Lemma 2.2 we have |∆H(j)| ≥ 2 for all j ∈ R, and so

(3) q + 2(k − q) ≤ |E(X,X)| = rt− 2|E(H)| ≤ (r − 2)t+ 2.

It follows that if q = t− b, then b ≤ a+ 2. Moreover, Equations (2) and (3)
together show that 2|E(H)| ≤ 2t + a − b. Note that b ≥ 1 for otherwise R = ∅
by Lemma 3.1, and then Theorem 2.6 affords a contradiction. Since t > 1, no
vertex of H is isolated in H, and so by Lemma 2.8, we have

k − q ≤ |E(R,R′)| ≤ (r − 1)(t− q),

equivalently 1
2(r − 1)t− 1

2a ≤ t+ (r − 2)b. Hence

(4) t ≤ 2b+
a+ 2b

r − 3
≤ 5a+ 8.

This inequality distinguishes the case r > 3 from the case r = 3: when r > 3 only
finitely many graphs arise for prescribed a. Accordingly the general strategy,
formulated in [8], is to eliminate successive values of a until we reach a sharp
upper bound.

For i ∈ R let |∆H(i)| = 1 + gi (gi ≥ 1) and g = Σi∈Rgi. Then g ≥ k − q.

Lemma 2.9. If H is a tree, then

(i) g = 1
2((r − 3)t+ a+ 4),

(ii) g − (k − q) = a+ 2− b.

Proof. The first assertion follows from the observation that

k + g = |E(X,X)| = rt− 2|E(H)| = (r − 2)t+ 2.

Part (ii) follows since q = t− b.

In subsequent sections we deal with the case in which H is a tree and a = 3.
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3. The Case a = 3, Preparations

In this section we take G be a connected regular graph of degree r > 3 and order
n, with an eigenvalue µ 6∈ {−1, 0} of multiplicity k = 1

2((r − 1)t− 3), and with a
tree H (= G−X) of order t as a star complement for µ. Note that r is even and
t is odd. By Equation (4), we have t ≤ 23 and so n ≤ 1

2(t− 1)(t+ 2) ≤ 275.

Lemma 3.1. (i) r ≤ t, (ii) t ≥ 7, (iii) µ = 1.

Proof. The first assertion follows from the inequality k ≤ 1
2(t + 1)(t − 2) [1].

For (ii), suppose by way of contradiction that t ≤ 5. Then r = 4 and t = 5,
whence k = 6. This contradicts [2, Theorem 2.7], which shows that k ≤ 2t−5 for
quartic graphs. For (iii), we note first that µ is an integer, for otherwise µ has an
algebraic conjugate which is a second eigenvalue of multiplicity k. Then 2k < n,
whence (r−3) t < 3, a contradiction. Now suppose that the eigenvalues different
from µ are µ1, . . . , µt, with mean d. Then kµ + td = 0 and kµ2 + Σt

i=1µ
2
i = nr.

Accordingly we have

t∑

i=1

(µi − d)2 =

t∑

i=1

µ2
i − td2 = (t+ k)r− µ2

(

k + t

(
k2

t2

))

= (t+ k)

(

r −
µ2k

t

)

.

It follows that k ≤ rt/µ2. If µ 6= 1, then k ≤ rt/4 and we obtain the contradiction
(r − 2) t ≤ 6.

The next result turns out to be more powerful than Lemma 2.7 for eliminating
various configurations. Here we write yi for 〈fi, j〉 (i = 1, . . . , t). Note that by
Lemma 2.3, yi = −1 (i = 1, . . . , q).

Lemma 3.2. Suppose that Z = {i′ ∈ X : yi 6∈ Z} 6= ∅ and q > 0. Then

(i) GZ is not connected,

(ii) |Z| 6∈ {1, 2, 3}.

Proof. We note first that if y = (y1, . . . , yt)
⊤, then (I − C)−1j = y, whence

(5) yi = 1 +
∑

j∼i

yj (i = 1, . . . , t).

For (i), suppose by way of contradiction that GZ is connected. Note that |Z| < t
because y1 = −1. Therefore X \ Z contains a vertex i′ adjacent to Z. Since
yi ∈ Z, Equation (5) shows that ∆H(i′) contains at least two vertices in Z. Since
GZ is connected, H contains a cycle, a contradiction.

For (ii), suppose first that i′ ∈ Z. Then Equation (5) shows that i′ has a
neighbour in Z, and so |Z| ≥ 2. Moreover, if Z = {i′, j′}, then i′ ∼ j′ and we have
a contradiction from (i). If Z = {h′, i′, j′}, then without loss of generality, h′ 6∼ j′

since H has no 3-cycle. Each of h′, j′ has a neighbour in Z and so necessarily
h′ ∼ i′ ∼ j′; then again we have a contradiction from (i).



626 P. Rowlinson

Theorem 3.3. If r − 1 does not divide n, then b ≥ 4.

Proof. From Lemma 2.4, we have n = (1 − r)〈j, j〉 = (1 − r)Σt
i=1yi. Hence if

r − 1 does not divide n, then Z 6= ∅. We may suppose that q > 0 for otherwise
b = t ≥ 7 by Lemma 3.1(ii). Hence |Z| ≥ 4 by Lemma 3.3(ii). Since yi = −1
(i = 1, . . . , q), we have Z ⊆ R′, and so b ≥ 4.

tt t t t tt

t t t t tt t t t
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Q′ R′

Figure 1. The case b = 5, (t, r, n) = (7, 4, 16), r3r4r5r6r7 = 33100.

In view of Lemma 2.8 we may partition R as Rq+1∪̇ · · · ∪̇Rt, where each
vertex of Ri is adjacent to i′ (i = q + 1, . . . , t). Let ri = |Ri| (i = q + 1, . . . , t).
Unless otherwise stated we order X so that rq+1 ≥ · · · ≥ rt. Then r − 1 ≥ rq+1,
and we order X so that u < v whenever u ∈ Ri and v ∈ Rj with i < j. We write
rq+1rq+2 · · · rt for the partition k − q = rq+1 + rq+2 + · · · + rt and say that R
admits the partition rq+1rq+2 · · · rt. Figure 1 illustrates the labelling of vertices
in a (quartic) graph of order 16 in which R admits the partition 33100. Such
diagrams can be used to follow the detailed arguments in subsequent sections.
Note that any partition Rq+1∪̇ · · · ∪̇Rt determines k − q edges in E(R,R′), and
g further edges are required to complete E(R,X).

On occasion it is convenient to consider an extremal partition of R, where
successive Ri are chosen as follows: Rq+1 is a neighbourhood ∆X(i′) (i′ ∈ R′) of
largest size, and for q + 2 ≤ i ≤ t, Ri is a set ∆X(j′) ∩ (R \ (Rq+1∪̇ · · · ∪̇Ri−1))
(j′ ∈ R′) of largest size. (This construction determines an ordering of R′.) An
extremal partition has the properties (i) r − 1 ≥ rq+1 ≥ · · · ≥ rt ≥ 0, (ii) if j < t
and Rj ⊆ ∆X(i′), then i′ is not adjacent to any vertex in Rj+1∪̇ · · · ∪̇Rt. For
the most part we do not require a partition to be extremal because we need the
flexibility to substitute edges and re-order vertices.

Theorem 3.4. Suppose that the partition Rq+1∪̇ · · · ∪̇Rt is extremal.

(i) If Rt 6= ∅, then yi ∈ Z for all i ∈ X.

(ii) If g = k − q (equivalently b = a+ 2), then Rt = ∅.
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Proof. (i) We have yj = −1 for all j′ ∈ Q′. We show that yj ∈ Z (j = q+1, . . . , t)
by induction on i = t + 1 − j. If i = 1, then consider u ∈ Rt. We have −1 =
〈bu, j〉 = Σ{yh : h′ ∈ ∆H(u)}. Since ∆H(k) \ {t′} ⊆ Q′, we have −1 = −gk + yt,
whence yt ∈ Z. Now suppose that i > 1 and all of yj+1, . . . , yt are integers. If
u ∈ Rj , then ∆H(u) \ {j′} ⊆ Q′∪̇{(j + 1)′, . . . , t′}. Since yh ∈ Z for every h′ in
this set, again the equality −1 = 〈bu, j〉 shows that yj ∈ Z.

(ii) When g = k − q, we have gi = 1 for all i ∈ R. We suppose by way of
contradiction that Rt 6= ∅; now we can refine the argument for (i). If u ∈ Rt,
then 〈bu, j〉 = yh + yt for some h′ ∈ Q′, and so yt = 0. Now suppose that j < t
and each of yj+1, . . . , yt is −1 or 0. If u ∈ Rj , then 〈bu, j〉 = yh + yj for some
h′ ∈ Q′∪̇{(j + 1)′, . . . , t′}. Then yh is −1 or 0, and so the same is true of yj . It
follows by induction that yj ∈ {−1, 0} for all j′ ∈ X, and so Lemma 2.7 affords
a contradiction

4. The Case a = 3, the Details When b ≤ 3

Throughout Sections 4, 5 and 6, G denotes a connected regular graph of degree
r>3 and order n, with an eigenvalue µ 6∈{−1, 0} of multiplicity k= 1

2((r−1)t−3),
and with a tree H (= G−X) of order t as a star complement for µ. We use the
notation of Section 3 with a = 3; then b ≤ 5. By Lemma 3.1 we have µ = 1, r ≤ t
and t ≥ 7, where r is even and t is odd. By Lemma 2.9, we have g = 1

2((r−3)t+7)
and g = (k − q) + 5− b. We make implicit use of Equation (4) and Lemmas 2.2,

2.3, 2.4. We write u
∗
∼ v to mean that u ∼ v without loss of generality, and

u ∼ Q′ to mean that u is adjacent to a vertex in Q′. In this section we eliminate
the cases b = 1, 2, 3. If b = 1, then (t, r, n) = (7, 4, 16), and so Theorem 3.3
affords a contradiction.

If b = 2, then the possibilities for (t, r, n) are (11, 4, 26), (9, 4, 21), (7, 4, 16).
Theorem 3.3 eliminates the first and last of these, so we let (t, r, n) = (9, 4, 21).
Then g = 8, q = 7, k = 12 and by Lemma 2.4 we have 〈j, j〉 = −7. Here
R8 = {8, 9, 10} andR9 = {11, 12}. Since 8′ is not isolated inH, both ∆H(11)\{9′}
and ∆H(12)\{9′} are contained in Q′. Hence either (a) g11 = g12 = 1 and y9 = 0
or (b) g11 = g12 = 2 and y9 = 1. In case (a), y8 = 0 since Σ9

i=1yi = −7, and
without loss of generality both ∆H(8) \ {8′} and ∆H(9) \ {8′} are contained in
Q′. Hence g8 = g9 = 1, and then g10 = 4 because g = 8. Now 〈b10, j〉 6= −1, a
contradiction. In case (b), y8 = −1 and so 〈bi, j〉 ∈ {−gi−1,−gi+1} (i = 8, 9, 10).
It follows that gi = 2 (1 = 8, 9, 10), giving the contradiction g = 10.

If b = 3, then the possibilities for (t, r, n) are (15, 4, 36), (13, 4, 31), (11, 4, 26),
(9, 6, 30), (9, 4, 21), (7, 6, 23), (7, 4, 16). Those with t 6= 9 or 15 are eliminated by
Theorem 3.3. If (t, r, n) = (15, 4, 36), then |R13| = |R14| = |R15| = 3 and each of
R13, R14, R15 has a vertex i ∼ Q′ such that gi = 1. Hence y13 = y14 = y15 = 0
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and Lemma 2.7 affords a contradiction. An entirely analogous argument disposed
of the case (t, r, n) = (9, 6, 30).

Now suppose that (t, r, n) = (9, 4, 21); then g = 8, q = 6, k = 12, 〈j, j〉 = −7
and r7r8r9 ∈ {330, 321, 222}. If r7r8r9 = 330, then without loss of generality
either (a) g7 = g8 = g10 = g11 = 1 or (b) g7 = g10 = g11 = g12 = 1 and
g8 = g9 = 2. In case (a), without loss of generality each of the vertices 7, 10 has a
neighbour in Q′ and so y7 = y8 = 0. Since Σ9

i=1yi = −7 we have y9 = −1, and so
Lemma 2.7 affords a contradiction. In case (b), we have the same contradiction
if vertex 7 has a neighbour in Q′. Accordingly 7 ∼ 9′ and so y7 + y9 = −1. Then
y8 = 0. If 8 ∼ 9′, then −1 = 〈b8, j〉 = −1+ y7+ y9, a contradiction. Hence 8 6∼ 9′

and −1 = −2 + y7; therefore y7 = 1 and y9 = −2. Now 7′ is an endvertex in H,
and if ∆H(7′) = {j′}, then 1 = 1 + yj by Equation (5). Hence j′ = 8′ (also an
endvertex of H), and so H is not connected, a contradiction.

If r7r8r9 = 321, then R7 = {7, 8, 9}, R8 = {10, 11} and R9 = {12}. We
assume that 12 6∼ 8′ because otherwise R admits 330. If g12 = 3 then y9 = 2
and gi = 1 (i = 7, 8, 9, 10, 11). Each of R7,R8 has a neighbour in Q′ and so
y7 = y8 = 0. Then 〈j, j〉 = −4, a contradiction. If g12 = 2, then y9 = 1 and we

may take g7 = g8 = g10 = 1. In this case, if 7 6∼ Q′ and 8 6∼ Q′, then 7
∗
∼ 8′

and 8 ∼ 9′; then y7 = −2, y8 = 1, 〈j, j〉 = −6, a contradiction. Accordingly

7
∗
∼ Q′, and so y7 = 0, y8 = −2, 10 ∼ 9′, g11 = 2. Then 〈b11, j〉 ∈ {−2,−4},

a contradiction. Hence g12 = 1 and y9 = 0. Suppose first that at least two of
g7, g8, g9 are equal to 1, say g7 = g8 = 1. If 7 6∼ Q′ and 8 6∼ Q′, then 7

∗
∼ 8′

and 8 ∼ 9′, whence y7 = −1, y8 = 0 and Lemma 2.7 affords a contradiction.
Consequently, 7

∗
∼ Q′, y7 = 0, y8 = −1 and we invoke Lemma 2.7 again. It

follows that we may take g7 = 1 and g8 = g9 = 2. Then g10 = g11 = g12 = 1,
10

∗
∼ 9′, y8 = 0, y7 = −1 and we appeal to Lemma 2.7 once more.

If r7r8r9 = 222 then we may assume that g7 = g8 = g9 = 1 and that R
does not admit 321. Then each of the vertices 7, 8, 9 is adjacent to Q′ and so
y7 = y8 = 0. Hence y9 = −1 and we obtain a contradiction from Lemma 2.7.

We conclude that b ≥ 4.

5. The Case a = 3, the Details When b = 4

Here g = k−q+1 by Lemma 2.9(ii). It follows from Lemma 3.2 that if r−1 does
not divide n, then yj 6∈ Z for all j′ ∈ R′, and in this case, by Theorem 3.4(i), it
suffices to eliminate all partitions with rt = 0. The possibilities for (t, r, n) are
(19, 4, 46), (17, 4, 41), (15, 4, 36), (13, 4, 31), (11, 6, 37), (11, 4, 26), (9, 8, 39),
(9, 6, 30), (9, 4, 21), (7, 6, 23), (7, 4,16).

If (t, r, n) = (19, 4, 46) or (17, 4, 41), then we find readily that yj ∈ {−1, 0}
for all j ∈ X, a contradiction.
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If (t, r, n) = (15, 4, 36), then q = 11, k − q = 10, g = 11, 〈j, j〉 = −12 and
either (a) r12r13r14r15 = 3331 or (b) r12r13r14r15 = 3322 and R does not admit
3331. In both cases, again yj ∈ {−1, 0} for all j ∈ X.

If (t, r, n) = (13, 4, 31), then q = 9, k − q = 9, g = 10, 〈j, j〉 6∈ Z and we may
assume that r10r11r12r13 = 3330. In this case, each of R10, R11, R12 has a vertex
i ∼ Q′ with gi = 1. Hence y10 = y11 = y12 = 0, a contradiction.

If (t, r, n) = (11, 6, 37), then r8r9r10r11 = 5554 and we find that yj = 0 for
all j′ ∈ R′. Then Lemma 2.7 affords a contradiction.

If (t, r, n) = (11, 4, 26), then q = 7, k − q = 8, g − 9, 〈j, j〉 6∈ Z and we may
assume that r8r9r10r11 = 3320. Without loss of generality g8 = g9 = g10 = 1.
Since y8 6= 0, ∆H(i) = {7′, j′} where j′ ∈ {10′11′}, and so we have two vertices
in R8 with the same H-neighbourhood.

If (t, r, n) = (9, 8, 39), then q = 5, k−q = 25, g = 26 and 〈j, j〉 6∈ Z. Note that
r7 = 7 and so R7 has a least 6 vertices with anH-neighbourhood of size 2. At least
three of these vertices have an H-neighbourhood of the form {j′, 6′} (j′ ∈ Q′),
and so y6 = 0, a contradiction.

If (t, r, n) = (9, 6, 30), then q = 5, k − q = 16, g = 17 and 〈j, j〉 = −6.
Note that r6 ∈ {4, 5}. If r6 = 5, then r6r7r8r9 ∈ {5551, 5542, 5533, 5443} and
for h ∈ {6, 7, 8}, Rh has a vertex i such that ∆H(i) = {j′, h′} (j′ ∈ Q′). Then
y6 = y7 = y8 = 0, y9 = −1, and we have a contradiction from Lemma 2.7. It
follows that r6 = r7 = r9 = r9 = 4, and we may assume that |∆R(j

′)| = 4 for
all j′ ∈ R′. Then ∆H(i) \ {j′} ⊆ Q′ for all i ∈ ∆R(j

′) (j = 6, 7, 8, 9). Hence
y6 = y7 = y8 = y9 = 0 and 〈j, j〉 = −5, a contradiction.

If (t, r, n) = (9, 4, 21), then q = 5, k − q = 7, g = 8, 〈j, j〉 = −7 and
r6r7r8r9 ∈ {3310, 3220, 3211, 2221}. Suppose first that r6r7r8r9 = 3310. Without

loss of generality, g6 = g7 = g8 = g9 = g10 = 1. Then 6
∗
∼ Q′ and so y6 = 0. If

g11 = 1, then similarly y7 = 0, while g12 = 2. Now 〈b12, j〉 = −1 + y8 + y9 or
−2 + y8. In the first case, we have the contradiction 〈j, j〉 = −5; in the second
case, y8 = 1, y9 = −3, degH(8′) = 3 and the equation y8 = 1 + Σj′∼8′yj cannot

be satisfied. Hence g11 = 2, g12 = 1. If y7 6= 0, then 9
∗
∼ 8′, 10 ∼ 9′ and so

y7 + y8 = y7 + y9 = −1 while y7 + y8 + y9 = −2, a contradiction. Hence y7 = 0,
y8 + y9 = −2, 12 6∼ 9′, 12 ∼ Q′, y8 = 0; then y9 = −2 and ∆H(11) = {j′, 7′, 8′}
for some j′ ∈ Q′. By Equation (5) we have 6′ ∼ Q′, 7 ∼ Q′ and so 8′ 6∼ 6′, 8′ 6∼ 7′.
Again the equation y8 = 1 + Σj′∼8′yj cannot be satisfied.

Now suppose that r6r7r8r9 = 3220. We may assume that g6 = g7 = g9 =
g10 = g11 = 1 and that R does not admit 3310. Then 9

∗
∼ Q′ and y7 = 0. If

g8 = 1, then g12 = 2; also y6 = 0 for otherwise 6
∗
∼ 7′, 7

∗
∼ 8′, 8 ∼ 9′ and R admits

3310. Similarly 11 6∼ 7, while 11 6∼ 9′ because y8 + y9 = −2. Hence 11 ∼ Q′,
y8 = 0, y9 = −2 and 〈b12, j〉 ∈ {−2,−3}, a contradiction. Hence g8 = 2 and

g12 = 1, 11
∗
∼ Q′ and y8 = 0, y6 + y9 = −2, 6 6∼ 9′. By Lemma 2.7, y6 6= −1 and

so 6 6∼ 7′, 6 6∼ 8′. Hence 6 ∼ Q′, y6 = 0, y9 = −2 and again 〈b8, j〉 ∈ {−2,−3}.



630 P. Rowlinson

Now suppose that r6r7r8r9 = 3211. We may assume that g6 = g7 = g9 =
g11 = 1 and that R does not admit 3310 or 3220; in particular, 11 ∼ Q′ and so
y8 = 0. If g8 = 1, then y6 = 0 for otherwise 6

∗
∼ 7′, 7

∗
∼ 8′, 8 ∼ 9′ and y6 + y7 =

y6+y8 = y6+y9 = −1, while y6+y7+y8+y9 = −2; then y6 = y7 = y8 = y9 = −1
2

and 〈b11, j〉 = −3
2 , a contradiction. If g12 = 1, then g10 = 2, 12 ∼ Q′ and y9 = 0;

then y7 = −2 and 〈b10, j〉 6= −1. Therefore g12 = 2, g10 = 1, 10
∗
∼ Q′, y7 = 0,

y9 = −2 and 〈b12, j〉 6= −1. Hence g8 = 2, g12 = 1, 9
∗
∼ Q′, 12 ∼ Q′ and so

y7 = y9 = 0; then y6 = −2 and 〈b8, j〉 6= −1.

Lastly suppose that r6r7r8r9 = 2221. We may assume that g6 = g7 = g8 =
g9 = g10 = 1 and that R does not admit 3310, 3220 or 3211. If g11 = 1, then
6

∗
∼ Q′, 8

∗
∼ Q′, 10

∗
∼ Q′ and so y6 = y7 = y8 = 0, y9 = −2 and 〈b12, j〉 6= −1.

Hence g11 = 2 and g12 = 1. Now 12 ∼ Q′, 6
∗
∼ Q′, 8

∗
∼ Q′ and so y6 = y7 = y9 = 0,

y8 = −2 and 〈b11, j〉 6= −1.

If (t, r, n) = (7, 6, 23), then q = 3, k− q = 13, g = 14 and 〈j, j〉 6∈ Z. If r4 = 5,
then R4 has a vertex i, with a neighbour in Q′, such that gi = 1; then y4 = 0, a
contradiction. Hence r4 = 4 and we may assume that |∆R(j

′)| ≤ 4 for all j′ ∈ R′.
If r5 = 4, then R5 has two vertices with the sameH-neighbourhood (since y5 6= 0),
and so r4r5r6r7 = 4333. We may assume that gi = 1 for all i 6∈ {7, 13}, and since

y4 6= 0 we have 4
∗
∼ 5′, 5

∗
∼ 6′, 6 ∼ 7′. Then y4+y5 = y4+y6 = y4+y7 = −1. Since

8 6∼ 4′, 9 6∼ 4′ and y5 6= 0, we have 8
∗
∼ 6′ and 9 ∼ 7′; then y5+y6 = y5+y7 = −1.

It follows that y4 = y5 = y6 = y7 = −1
2 and so 〈j, j〉 = −5, a contradiction.

If (t, r, n) = (7, 4, 16), then q = 3, k− q = 6, g = 7, 〈j, j〉 6∈ Z, and r4r5r6r7 ∈
{3300, 3210, 3111, 2220, 2211}. If r4r5r6r7 = 3300, then we may assume that g4 =
g5 = g6 = 1. Since y4 6= 0, R4 has two vertices with the same H-neighbourhood.

Suppose that r4r5r6r7 = 3210. We may assume that g4 = g5 = g7 = 1 and
that R does not admit 3300; in particular, 9 6∼ 5′. If g6 = 1, then 4

∗
∼ 5′, 5

∗
∼ 6′,

6 ∼ 7′ and y4+y5 = y4+y6 = y4+y7 = −1. Now 9 6∼ 7′ for otherwise y6+y7 = −1
or 0 and 〈j, j〉 ∈ Z. Hence 9 ∼ Q′ and y6 = 0 or 1, a contradiction. Hence g6 = 2

and gi = 1 for all i 6= 6; then 7
∗
∼ 6′, 8

∗
∼ 7′ and y5 + y6 = y5 + y7 = −1. Since

y6 6= 0, we have ∆H(9) = {6′, 7′} and so y6 + y7 = −1. Now, considering the
three possibilities for {∆H(4),∆H(5)}, we find that y4 = y5 = y6 = y7 = −1

2 , a
contradiction as before.

Suppose that r4r5r6r7 = 3111. We may assume that g7 = 1 and that R does
not admit 3210. Then 7 ∼ Q′ and y5 = 0, a contradiction.

Suppose that r4r5r6r7 = 2220. We may assume that g4 = g5 = g6 = g7 =
g8 = 1 and that R does not admit 3210. Then R has 5 vertices adjacent to 7′, a
contradiction.

Lastly suppose that r4r5r6r7 = 2211. We may assume that g4 = g5 = g6 =
g8 = 1 and that |∆R(j

′)| ≤ 2 for all j′ ∈ R′. But, then 4
∗
∼ 6′, 5 ∼ 7′, 8 ∼ 7′ and

we have the contradiction |∆R(7
′)| = 3.

We conclude that b = 5.



On Trees as Star Complements in Regular Graphs 631

6. The Case a = 3, the Details When b = 5

Here g = k − q and so gi = 1 for all i ∈ R. By Lemma 3.2, if 〈j, j〉 6∈ Z,
then at most one of yq+1, . . . , yt is an integer. By Theorem 3.4(ii), it suffices
to eliminate all partitions for which rt = 0. The possible values of (t, r, n) are
(23, 4, 56), (21, 4, 51), (19, 4, 46), (17, 4, 41), (15, 4, 36), (13, 6, 44), (13, 4, 31),
(11,10, 59), (11, 8, 48), (11, 6, 37), (11, 4 26), (9, 8, 39), (9, 6, 30), (9, 4, 21),
(7, 6, 23), (7,4,16). The cases (23, 4, 56), (21, 4, 51), (19, 4, 46), (13, 6, 44),
(11,10, 59) are eliminated by Lemma 2.7.

If (t, r, n) = (17, 4, 41), then q = 12, k − q = 12, 〈j, j〉 6∈ Z and r13r14r15r16 =
33330. Each of R13, R14, R15, R16 has a vertex adjacent to Q′ and so y13 = y14 =
y15 = y16 = 0, a contradiction.

If (t, r, n)= (15, 4, 36), then q =10, k−q = 11, 〈j, j〉 =−12 and r11r12r13r14r15
= 33320. Each of R11, R12, R13, R14 has a vertex adjacent to Q′ and so y11 =
y12 = y13 = y14 = 0, y15 = −2. Moreover, degH(14′) = 2. By Equation (5), each
of 11′, 12′, 13′ is adjacent to Q′, and so the equation y14 = 1 + Σj′∼14′yj cannot
be satisfied.

If (t, r, n) = (13, 4, 31), then q = 8, k− q = 10, 〈j, j〉 6∈ Z and r9r10r11r12r13 ∈
{33310, 33220}. If r9r10r11r12r13 = 33310, then each of R9, R10, R11 has a vertex
adjacent to Q′ and so y9 = y10 = y11 = 0, a contradiction. If r9r10r11r12r13 =
33220 and R does not admit 33310, then similarly y11 = y12 = 0, a contradiction.

If (t, r, n) = (11, 8, 48), then q = 6, k − q = 31 and no partition has rt = 0,
contradicting Theorem 3.4(ii).

If (t, r, n) = (11, 6, 37), then q = 6, k − q = 20, 〈j, j〉 6∈ Z and r7r8r9r10r11 =
55550. In this case, we have y7 = y8 = y9 = y10 = 0, a contradiction.

If (t, r, n) = (11, 4, 26), then q = 6, k − q = 9, 〈j, j〉 6∈ Z and r7r8r9r10r11
is one of 33300, 33210, 32220. If r7r8r9r10r11 = 33300, then y7 = y8 = y9 = 0,
a contradiction. Suppose that r7r8r9r10r11 = 33210 and that R does not admit
33300; then 15 6∼ 9′. Also, 15 6∼ Q′ for otherwise y10 = 0, y7 6= 0, y8 6= 0, 7

∗
∼ 9′,

10
∗
∼ 9′ and 9′ is isolated in H. Hence 15 ∼ 11′ and y10+y11 = −1. If y8 6= 0, then

10
∗
∼ 9′, 11

∗
∼ 10′, 12

∗
∼ 11′, 7

∗
∼ Q′ and so y8 + y9 = y8 + y10 = y9 + y11 = −1,

y7 = 0. Then y8 = y9 = y10 = y11 = −1
2 and 〈j, j〉 = −8, a contradiction.

If r7r8r9r10r11 = 32220 and R does not admit 33300 or 33210, then each of
R8, R9, R10 has a vertex adjacent to Q′, and so y8 = y9 = y10 = 0, a contradiction.

If (t, r, n) = (9, 6, 30), then q = 4, k − q = 17, 〈j, j〉 = −6 and r5r6r7r8r9
is one of 55520, 55430, 54440. In all cases, each of R5, R6, R7, R8 has a vertex
with a neighbour in Q′, and so y5 = y6 = y7 = y8 = 0, y9 = −2. In particular,
no vertex in R5 is adjacent to 8′ or 9′. Hence two vertices in R5 have the same
H-neighbourhood, a contradiction.

If (t, r, n) = (9, 4, 21), then q = 4, k − q = 8, 〈j, j〉 = −7 and r5r6r7r8r9 is
one of 33200, 33110, 32210, 22220. Suppose that r5r6r7r8r9 = 33200. If y6 6= 0,



632 P. Rowlinson

then 8
∗
∼ 7′, 9

∗
∼ 8′ and 10 ∼ 9′, whence y6 + y7 = y6 + y8 = y6 + y9 = −1.

Also, 5
∗
∼ Q′ and so y5 = 0. If y7 6= 0, then y7 + y8 = y7 + y9 = −1 and we

have y6 = y7 = y8 = y9 = −1
2 ; then y5 = −1 and so 〈b5, j〉 6= −1. Hence

y7 = y8 = y9 = 0 and y6 = −1, y5 = −2 and again 〈b5, j〉 6= −1. Accordingly

y6 = 0, and similarly y5 = 0. If y7 6= 0, then again 11
∗
∼ 8′, 12 ∼ 9′ and

we find that y7 = 1 and y8 = y9 = −2. Now degH(7′) = 2 and the equation
y7 = 1+Σj′∼7′yj shows that ∆H(7′) = {5′, 6′}. Hence the vertices 5′, 6′, 7′ induce
a component of H, a contradiction. Therefore y5 = y6 = y7 = 0 and we have
y8 + y9 = −3, while no vertex in R5∪̇R6 is adjacent to 7′. In this situation, we
use Equation (5) to reconstruct H as far as necessary to obtain a contradiction.

For j′ ∈ X, let dj = degH(j′), with d1 ≥ d2 ≥ d3 ≥ d4. If there is no edge
from X to {8′, 9′}, then d1 = d2 = d3 = d4 = d5 = d6 = 1, d7 = 2, d8 = d9 = 4
and H consists of two stars of order 5 intersecting in {7′}. Now Equation (5)
shows that y8 + y9 = −1, a contradiction. If there is an edge from X to {8′, 9′},
say from X to 8′, then y8 = −1, and so y9 = −2, d9 = 4, d8 ∈ {1, 2, 3}. Note
that if j′ ∈ Q′ and dj = 1, then j′ ∼ 9′ by Equation (5).

If d8 = 3, then d2 = d3 = d4 = 1 and so 2′, 3′, 4′, are adjacent to 9′. If the
fourth neighbour of 9′ is j′, then j′ is not an endvertex of H, and yj = 0 by
Equation (5). Hence j′ = 7′ and by Equation (5), 0 = y7 = 1+(−2)+yh, whence
yh = 1, a contradiction.

If d8 = 2, then we may repeat the preceding argument when d2 = d3 = d4 =
1. Hence d1 = d2 = 2, d3 = d4 = 1 and as before 3′, 4′ are adjacent to 9′. If
9′ ∼ 5′, then ∆H(9′) = {3′, 4′, 5′, j′}, where dj > 1 and yj = −1. If j′ = 1′, then
∆H(1′) = {9′, 1′}, where dh > 1 and yh = 0; hence h′ = 7′ and ∆H(7′) = {1′, l′},
where dl > 1 and yl = 0. No such l exists and so j′ 6= 1′; similarly j′ 6= 2′.
Therefore ∆H(9′) = {3′, 4′, 5′, 8′}. A similar argument shows that 8′ ∼ 7′. Now
∆H(7′) = {8′, i′}, where 0 = y7 = 1 + (−1) + yi; then yi = 0 and so i′ is an
endvertex of H, a contradiction. Hence 9′ 6∼ 5′, and similarly 9′ 6∼ 4′; therefore
9′ ∼ 7′. By Equation (5) we have ∆(7

′) = {9′, j′} where 0 = y7 = 1 + (−2) + yj ,
and so yj = 1, a contradiction.

If d8 = 1, then d4 = 1 and by Equation (5), 8′ ∼ 9′, 4′ ∼ 9′. Let ∆H(9′) =
{4′, 8′, i′, j′}, where yi = 0, yj = −1. Then i′ is an endvertex of H for otherwise
i′ = 7′, ∆H(7′) = {9′, h′} where yh = 1. Hence i′ = 5′ without loss of generality,
and dj = 2 or 3. If dj = 3, then by Equation (5), ∆H(j′) = {6′, 7′, 9′}, ∆H(7′) =
{j′, h′} where yh = 0. This is a contradiction because X has only three vertices
h′ such that yh = 0. Hence dj = 2, ∆H(j′) = {9′, h′} where yh = 0 and h′ is
not an endvertex of H. Thus h′ = 7′ and ∆H(7′) = {j′, l′} where yl = 0 and l′

is not an endvertex of H. No choice remains for l and so we have eliminated the
partition 33200.

Now suppose that r5r6r7r8r9 = 33110 and that R does not admit 33200.
Then 11 6∼ 8′ and 12 6∼ 7′. If y6 6= 0, then 8

∗
∼ 7′, 8

∗
∼ 8′, 10 ∼ 9′ and so
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y6 + y7 = y6 + y8 = y6 + y9 = −1. If also 11 ∼ 9′, then y8 + y9 = −1, y6 = y7 =
y8 = y9 = −1

2 , y5 = −1, 〈b5, j〉 6= −1. Hence 11 6∼ 9′, and similarly 12 6∼ 9′.
Since ∆H(11) 6= ∆H(12), we may assume that 11 ∼ Q′; then y7 = 0 = y8 = y9,
y6 = −1, y5 = −2 and again 〈b5, j〉 6= −1. Therefore y6 = 0, and similarly y5 = 0.
If 12 ∼ 9′, then 11 6∼ 9′, 11 ∼ Q′ and y7 = 0. Since also y8 + y9 = −1, we find
that 〈j, j〉 = −5, a contradiction. Hence 12 6∼ 9′, 12 ∼ Q′ and y8 = 0. Similarly
11 ∼ Q′ and y7 = 0. Hence y9 = −3 and by Equation (5), ∆H(9′) = Q′. On the
other hand, each vertex of R is adjacent to Q′ and so |E(Q′, X)| = 12, whence
d1 = d2 = d3 = d4 = 1. Accordingly 5 6∼ Q′ and the equation y5 = 1 + Σj′∼5′yj
cannot be satisfied.

Now suppose that r5r6r7r8r9 = 32210 and that R does not admit 33200 or
33110. If y6 6= 0 and y7 6= 0, then 8

∗
∼ 8′, 9 ∼ 9′, 10

∗
∼ 8′, 11 ∼ 9′ and we find that

R does admit 33110. Accordingly we may assume that y6 = 0. If y7 6= 0, then
10

∗
∼ 8′, 11 ∼ 9′; moreover 12 6∼ 9′ for otherwise y7+ y8 = y7+ y9 = y8+ y9 = −1

whence y7 = y8 = y9 = −1
2 , y5 = −3

2 and 〈b5, j〉 6= −1. Hence 12 ∼ Q′ and
y8 = 0, y7 = −1, y9 = 0, y5 = −2 and again 〈b5, j〉 6= −1. Hence y6 = y7 = 0.

If y5 6= 0, then 5
∗
∼ 6′, y5 = −1, y8 + y9 = −2 and so 12 6∼ 9′, 12 ∼ Q′,

y8 = 0, y9 = −2. From Equation (5) we find in turn that 5′ ∼ 9′, 6′ ∼ Q′ and

7′ ∼ Q′. We also have 6
∗
∼ 7′, 7 ∼ 8′ and d8 ≤ 2. If d8 = 2, then by Equation

(5), 8′ ∼ 7′ and 8′ ∼ Q′, while if d8 = 1, then 8′ ∼ 7′. In either case, each of
6′, 7′, 8′ is adjacent to Q′ and so the equation y9 = 1+Σj′∼9′yj cannot be satisfied.
Therefore y5 = y6 = y7 = 0, y8 + y9 = −3, 12 6∼ 9′, 12 ∼ Q′, y8 = 0, y9 = −3.
Then each vertex of X is adjacent to Q′ and so d1 = d2 = d3 = d4 = 1. Now the
equation y1 = 1 + Σj′∼1′yj cannot be satisfied.

Lastly suppose that r5r6r7r8r9 = 22220 and that R does not admit 33200,
33110 or 32210. Then each of R5, R6, R7, R8 has a vertex adjacent to Q′ and
so y5 = y6 = y7 = y8 = 0, y9 = −3. Then 9′ 6∼ X and each vertex of X is
adjacent to Q′. Therefore d1 = d2 = d3 = d4 = 1. By Equation (5), ∆H(9′) = Q′

and so the subgraph induced by 5′, 6′, 7′, 8′ is 2-regular. Hence H has a cycle, a
contradiction.

If (t, r, n) = (7, 6, 23), then q = 2, k − q = 14 and 〈j, j〉 = −23
5 . Let

R3∪̇R4∪̇R5∪̇R6∪̇R7 be an extremal partiton of R, and suppose by way of contra-
diction that |R3| ≥ 4. If R3 contains a vertex adjacent to Q′, then y3 = 0, 5

∗
∼ 4′

and y4 = −1, contradicting Lemma 3.2. Hence 3
∗
∼ 4′, 4

∗
∼ 5′, 5

∗
∼ 6′, 6 ∼ 7′ and

we have y3+y4 = y3+y5 = y3+y6 = y3+y7 = −1. Since R3 6= R we may consider
a vertex v ∈ R4. If v ∼ Q′, then yj ∈ {−1, 0} for all j′ ∈ X, contradicting Lemma
2.7. Therefore v ∼ R′ and y3 = y4 = y5 = y6 = y7 = −1

2 , whence 〈j, j〉 = −11
2 , a

contradiction. It follows that |R3| = |R4| = |R5| = R6| = 3, and |R7| = 2. Now
Theorem 3.4(ii) affords a contradiction.

If (t, r, n) = (7, 4, 16), then q = 2, k − q = 7, 〈j, j〉 = −16
3 and r3r4r5r6r7 is

one of 33100, 32200, 32110, 22210. Suppose that r3r4r5r6r7 = 33100 (Figure 1).
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We may assume that y4 6= 0, and then 6 ∼ 5′, 7
∗
∼ 6′, 8 ∼ 7′ and y4 + y5 =

y4 + y6 = y4 + y7 = −1. If also y3 6= 0, then similarly 4 ∼ 5′, 5
∗
∼ 6′, 5 ∼ 7′

and y3 + y5 = y3 + y6 = y3 + y7 = −1. In this case, if y5 6= 0, then 9
∗
∼ 6′,

y3 = y4 = y5 = y6 = y7 = −1
2 and 〈j, j〉 = −9

2 , a contradiction. Therefore y5 = 0
and we have yj ∈ {−1.0} for all j′ ∈ X, contradicting Lemma 2.7. Hence y3 = 0,
and so y5 6= 0. Now 9 ∼ 6′, y5+y6 = −1, y4 = y5 = y6 = y7 = −1

2 and 〈j, j〉 = −4,
a contradiction.

Suppose that r3r4r5r6r7 = 32200 and that R does not admit 33100. If R3

contains a vertex adjacent to Q′, then y3 = 0 and yj = −1 for some j > 3, a
contradiction. Hence without loss of generality there are just two possibilities:
(a) 3 ∼ 5′, 4 ∼ 6′, 5 ∼ 7′, (b) 3 ∼ 4′, 4 ∼ 5′, 5 ∼ 6′. In case (a), y3 + y5 =

y3+y6 = y3+y7 = −1, and if y4 6= 0, then 6
∗
∼ 6′, 7 ∼ 7′, y4+y6 = y4+y7 = −1,

y3 = y4 = y5 = y6 = y7 = −1
2 , whence 〈j, j〉 = −9

2 , a contradiction. Hence
y4 = 0 and so yj 6∈ Z (j = 4, 5, 6, 7). Since R does not admit 33100, we have

8 6∼ 4′ and 9 6∼ 4′, and so 6
∗
∼ 6′, 9 ∼ 7′. Then y5 + y6 = y5 + y7 = −1,

y3 = y5 = y6 = y7 = −1
2 and so 〈j, j〉 = −4, a contradiction. In case (b),

y3+y4 = y3+y5 = y3+y6 = −1. Now y5 6= 0 for otherwise y3 = −1, contradicting
Lemma 3.2. Hence 8

∗
∼ 6′, 9 ∼ 7′, y5 + y6 = y5 + y7 = −1 and 〈j, j〉 = −9

2 , a
contradiction.

Suppose that r3r4r5r6r7 = 32110 and that R does not admit 33100 or 32200.
If y4 6= 0, then 6

∗
∼ 6′ and 7 ∼ 7′ because R does not admit 32200. Moreover

8 6∼ 4′ and 8 6∼ 6′ because R does not admit 33100, and 8 6∼ 7′ because R
does not admit 32200. Hence 8 ∼ Q′ and y5 = 0, yj 6∈ Z (j = 3, 4, 6, 7) and
9 6∼ Q′. Also, 9 6∼ 4′ since R does not admit 33100, and 9 6∼ 5′ since R does
not admit 32200. Therefore 9 ∼ 7′, y6 + y7 = −1 = y4 + y6 = y4 + y7, whence
y4 = y6 = y7 = −1

2 . Since y3 6= 0, we see on considering ∆H(3),∆H(4),∆H(5),
that we may assume that 3 ∼ 5′ or 3 ∼ 6′. In the former case, y3 + y5 = −1
and so y3 = −1, contradicting Lemma 3.2. In the latter case, y3 + y6 = −1,
y3 = y4 = y6 = y7 = −1

2 and 〈j, j〉 = −4, a contradiction. We conclude that
y4 = 0, and so y5 and y6 are not integers. Hence ∆H(8) ∪ ∆H(9) ⊆ {5, 6, 7},
contrary to the assumption that R does not admit 32200.

Lastly suppose that r3r4r5r6r7 = 22210 and that R does not admit 33100,
32200 or 32110. By Lemma 3.2, we may assume that y4 and y5 are non-zero.
Then 5

∗
∼ 6′, 6 ∼ 7′, 7

∗
∼ 6′, 8 ∼ 7′. Then R admits 32210, contrary to the

assumption.

We have proved that if r > 3, then a 6= 3. From [8], we know that a 6= 1 or
a 6= 2, and so 2k ≤ (r − 1)t− 4, equivalently we have the following.

Theorem 6.1. Let G be an r-regular graph of order n with a tree of order t as
a star complement for an eigenvalue different from −1 and 0. If r > 3, then

n ≤ 1
2(r + 1)t− 2.
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Equality holds in Theorem 5.1 when G is the complement of the Clebsch
graph, i.e., the strongly regular graph Cl5 with parameters (16, 5, 0, 2) and
spectrum −3(5), 1(10), 5. Here K1,5 is a star complement for the eigenvalue 1.

7. Concluding Remarks

We mention two possible generalizations, the first concerning the case a = 4.
Here t ≤ 28, and with sufficient time and patience the same methods can be used
to determine whether Cl5 is the sole example that arises when a = 4.

Secondly suppose that the (connected) star complement H is not a tree.
If a ≤ 4, then 2|E(H)| ≤ 2t + 3 and so H is unicyclic or bicyclic. If H is
unicyclic, then b ≤ a, and if H is bicyclic, then b ≤ a − 2. In particular, if
a = 3 and H is bicyclic, then b = 1 and Equation (4) shows that t = 7. In
this case, the possibilities for H can be identified from the list in [4], and then
the possibilities for G can be determined by traditional methods using the star
complement technique [5, p.145]. A similar remark applies when H is a tree of
order 7, in which case one would need to consider each of the nine trees without
1 as an eigenvalue.
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