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1  | INTRODUC TION

Aeromonas salmonicida is the aetiological agent of furunculosis, a po-
tentially lethal infection of many species of fish that manifests typically 
as an ulcerative disease (Gudmundsdóttir, 1998; Menanteau-Ledouble, 
Kumar, Saleh, & El-Matbouli, 2016; Wiklund & Dalsgaard, 1998). Of the 
five subspecies of this Gram-negative pathogen, A. salmonicida subsp. 
salmonicida (i.e., typical isolates) largely causes infections in salmo-
nid species, whereas the remaining four subspecies (i.e., the atypical 

isolates: achromogenes, masoucida, smithia and pectinolytica; Martin-
Carnahan & Joseph, 2005) affect non-salmonid fish (Menanteau-
Ledouble et al., 2016). Non-salmonid cleaner fish, such as ballan 
wrasse (Labrus bergylta Ascanius, 1767) and lumpfish (Cyclopterus lum-
pus Linnaeus, 1758), are cultured for deployment at Atlantic salmon 
(Salmo salar Linnaeus, 1758) farms as a biological approach to control 
populations of sea lice (mainly Lepeophtheirus salmonis Krøyer, 1837), 
which are exoparasitic crustaceans causing great concern for salmon 
producers (Brooker et al., 2018). However, being a relatively newly 

 

Received: 1 May 2020  |  Revised: 13 July 2020  |  Accepted: 14 July 2020

DOI: 10.1111/jfd.13232  

O R I G I N A L  M A N U S C R I P T

Antibiotics modulate biofilm formation in fish pathogenic 
isolates of atypical Aeromonas salmonicida

Andrew P. Desbois  |   Kira J. Cook |   Elizabeth Buba

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2020 The Authors. Journal of Fish Diseases published by John Wiley & Sons Ltd

Institute of Aquaculture, Faculty of Natural 
Sciences, University of Stirling, Stirling, UK

Correspondence
Andrew P. Desbois, Institute of Aquaculture, 
Faculty of Natural Sciences, University of 
Stirling, Stirling, FK9 4LA, United Kingdom.
Email: ad54@stir.ac.uk

Funding information
EB is a PhD candidate supported by a 
scholarship from the Commonwealth 
Scholarship Commission.

Abstract
Atypical Aeromonas salmonicida causes furunculosis infections of non-salmonid 
fish, which requires antibiotic therapy. However, antibiotics may induce biofilm in 
some bacteria, which protects them against hostile conditions while allowing them 
to persist on surfaces, thus forming a reservoir for infection. The aim of this study 
was to determine whether atypical isolates of A. salmonicida increased biofilm in the 
presence of two antibiotics, florfenicol and oxytetracycline. A microtitre plate assay 
was used to quantify biofilm in the presence and absence of each antibiotic. Fifteen 
of 28 isolates formed biofilms under control conditions, while 23 of 28 isolates in-
creased biofilm formation in the presence of at least one concentration of at least 
one antibiotic. For oxytetracycline, the most effective concentration causing biofilm 
to increase was one-quarter of that preventing visible bacterial growth, whereas for 
florfenicol it was one-half of this value. This is the first study to demonstrate that a 
bacterial pathogen of fish increases biofilm in response to antibiotics. Biofilm forma-
tion may increase the risk of re-infection in culture systems and this lifestyle favours 
the transmission of genetic material, which has implications for the dissemination of 
antibiotic-resistance genes and demonstrates the need for enhanced disease preven-
tion measures against atypical A. salmonicida.
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farmed species, where culture conditions continue to be optimised, 
means that cleaner fish can be susceptible to bacterial infections, and 
atypical isolates of A. salmonicida are one key pathogen responsible for 
disease outbreaks (Brooker et al., 2018; Hjeltnes, Bang-Jensen, Bornø, 
Haukaas, & Walde, 2019). A raft of routine biosecurity measures is 
taken to prevent infections and protective vaccines are in develop-
ment (Biering, Vaagnes, Krossoy, Gulla, & Colquhoun, 2016; Erkinharju 
et al., 2017; Scarfe, Lee, & O’Bryen, 2011), but antibiotics remain the 
only treatment option once a disease outbreak has occurred. Few anti-
biotics are approved for use in aquaculture in the United Kingdom and 
Norway where the cleaner fish are cultured, with florfenicol and oxy-
tetracycline being two of the most commonly prescribed agents (The 
Norwegian Veterinary Institute, 2016; UK-VARSS, 2019).

Isolates of A. salmonicida are capable of attaching to solid ma-
terials and forming biofilms (Carballo, Seoane, & Nieto, 2000; Dias, 
Borges, Saavedra, & Simões, 2018), which are consortia of microor-
ganisms typically surviving on a surface and surrounded by layers 
of non-cellular material, such as polysaccharides, lipids and nucleic 
acids, that provide a structure to protect against environmental chal-
lenges and insults (Davey & O’Toole, 2000; Olsen, 2015). Bacteria 
in biofilms show altered gene expression and metabolism allowing 
them to persist in unfavourable conditions, including the presence of 
antibiotics and disinfectants (Bernier & Surette, 2013; Davies, 2003; 
Olsen, 2015; Song, Duperthuy, & Wai, 2016). Thus, biofilms can con-
stitute a reservoir for infection and this can happen in aquaculture 
systems (Bourne, Høj, Webster, Swan, & Hall, 2006; Karunasagar, 
Otta, & Karunasagar, 1996; King et al., 2004). Of further concern, 
conditions in a biofilm also provide an environment conducive to 
the exchange of genetic materials such as plasmids, which may carry 
genes encoding for the mechanisms of antibiotic resistance and viru-
lence (Dallaire-Dufresne, Tanaka, Trudel, Lafaille, & Charette, 2014; 
Olsen, 2015; Talagrand-Reboul, Jumas-Bilak, & Lamy, 2017). 
Interestingly, antibiotics and disinfectants can themselves induce 
certain species of bacteria to form biofilms (Hoffman et al., 2005; 
Kaplan, 2011; Ranieri, Whitchurch, & Burrows, 2018; Tezel, Akçelik, 
Yüksel, Karatuğ, & Akçelik, 2016; Waack & Nicholson, 2018; Wang 
et al., 2010). Though various fish pathogenic bacteria can form bio-
films, there have been no previous studies of whether antibiotics can 
induce or increase biofilm formation. Knowing whether fish patho-
gens form biofilms in response to antibiotics may provide support 
to pursue additional infection prevention measures and to develop 
alternatives to antibiotics for treatment.

Therefore, the aim of this present study was to determine 
whether biofilm of atypical isolates of A. salmonicida was increased 
in the presence of florfenicol or oxytetracycline.

2  | MATERIAL S AND METHODS

2.1 | Bacteria isolates and preparation of inoculums

This present study used 28 isolates of atypical A. salmonicida col-
lected during 2013–2019 from five sites in the United Kingdom, 

including a ballan wrasse hatchery, and identified according to the 
methods of Papadopoulou et al. (2020). Four isolates were from 
lumpfish, with the remainder deriving from ballan wrasse. The iden-
tity of each isolate was confirmed by conventional bacterial cul-
ture, phenotypic tests and sequencing of vapA and 16S rRNA genes 
(Papadopoulou et al., 2020; Table S1). Colonies of atypical A. sal-
monicida isolates are typically cream in colour, translucent, circular 
and convex. Meanwhile, the cells are Gram-negative bacilli or short 
rods, non-motile, oxidase-positive, typically fermentative, resistant 
to vibrio static agent 0129 (10 and 150 µg per disc) and cause ag-
glutination in a specific latex agglutination immunodiagnostic test 
for A. salmonicida (MONO-As; Bionor Laboratories AS) (Table S1). 
Routinely, all isolates were stored long term on cryobeads (Technical 
Service Consultants Ltd) at −70°C and were recovered on to tryp-
tone soya agar (TSA; Oxoid) at 22°C for 72 hr when required. Then, 
ca. 5 ml of tryptone soya broth (TSB) in a universal was inoculated 
with 5−7 colonies from each plate and incubated at 22°C for 48 hr 
at 140 revolutions per minute (RPM). Each culture was adjusted to 
an A600 of 0.5 ± 0.02 with TSB, diluted 100-fold in this medium and 
then used as inoculum in the biofilm assay.

2.2 | Biofilm assay

A microtitre plate biofilm assay modified from O’Toole (2011) was 
prepared to quantify the biofilm of each isolate formed in the ab-
sence of antibiotics and in the presence of different concentrations 
of florfenicol and oxytetracycline (Sigma-Aldrich Ltd). For each an-
tibiotic, 96-well microtitre plates (flat-bottomed, Cell+; Sarstedt) 
were prepared to contain up to 10 doubling dilutions across the 
plate in triplicate, with TSB medium controls in columns 1 and 2 
(each well contained a final volume of 150 µl). The concentration of 
florfenicol in column 12 on each plate was 8 mg/L, but for oxytet-
racycline, where the isolates varied in susceptibility to this antibiotic 
(determined in preliminary trials; data not shown), the plates were 
prepared to contain 2, 8 or 32 mg/L in this column. Each well was 
inoculated with 10 µl of inoculum, except for the uninoculated con-
trol wells of column 1 that received 10 µl TSB medium only. Batches 
of microtitre plates were sealed in plastic (zip-lock) bags to reduce 
evaporation and incubated at 22°C for 96 hr without shaking (in a 
preliminary trial, 14/23 isolates formed more biofilm at 96 hr than 
72 hr; data not shown). After incubation, plates were examined 
to determine the minimum inhibitory concentration (MIC), which 
was the lowest concentration where bacterial growth was not vis-
ible by naked eye. Then, each well on the plate was washed four 
times with sterile water according to O’Toole (2011), before 150 µl 
of 0.1% crystal violet (Sigma-Aldrich Ltd) was added to each well. 
The plate was incubated at room temperature for 15 min before the 
wells were washed four more times. Each plate was allowed to dry at 
room temperature for 3 hr, and then 150 µl of 30% acetic acid (Fisher 
Scientific) was added to solubilize the crystal violet. This solution 
was pipetted into a fresh microtitre plate to allow the measurement 
of the A550 of each well.
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2.3 | Data analyses and statistical testing

To determine whether each isolate formed a biofilm under control 
(i.e., non-antibiotic) conditions, a two-way Student's t tests com-
pared the mean A550 values of the non-inoculated control wells 
(n = 6) with the inoculated control wells (n = 6) using QuickCalcs 
(www.graph pad.com; GraphPad).

To determine whether biofilm formation differed in the pres-
ence of sub-MIC concentrations of each antibiotic, two-way 
Student's t tests compared the mean A550 values of the inoculated 
control wells on each microtitre plate (n = 6) with each set of tripli-
cate wells containing a sub-MIC concentration of antibiotic (a "sub-
MIC concentration" of antibiotic is defined here to be those wells 
where bacterial growth was visible by examination with the naked 
eye). Holm's correction was applied to account for multiple compar-
isons, and p < .05 was considered to indicate a significant difference 
between groups.

3  | RESULTS

Fifteen of the 28 atypical A. salmonicida isolates formed biofilms to 
varying extents under control conditions, as indicated by a significant 
difference between mean A550 values of the uninoculated and inocu-
lated controls (Figure 1). The 13 isolates not forming a biofilm under 
control conditions included at least two isolates (i.e., SAIC-CF-022 
and SAIC-CF-024) where biofilm was detected in one or more in-
oculated control wells (i.e., a high A550 value) but where A550 values 
appeared to vary sufficiently between the wells to explain the lack 
of significant difference compared with the uninoculated controls.

For 23 of the 28 isolates, exposure to at least one sub-MIC con-
centration of at least one antibiotic caused a significant increase in 
biofilm, either by the isolate being induced to form a biofilm when it 
had not under control conditions (10/13 isolates) or by increasing the 
overall quantity of biofilm formed (13/15 isolates; Figure 1, Figure S1, 
Figure S2). At least one sub-MIC concentration of oxytetracycline 

F I G U R E  1   Biofilm produced by 28 
isolates of atypical A. salmonicida in the 
absence (white bars; n = 6) and presence 
(grey bars; n = 3) of florfenicol (a) or 
oxytetracycline (b). Note that the grey 
bars are the A550 values of the antibiotic 
concentration that gave the greatest 
quantity of biofilm and was significantly 
different from the inoculated control 
(i.e., absence of antibiotic) by two-way 
Student's t tests (Holm's corrected for 
multiple comparisons). Error bars are 
standard error. ~ = indicates isolates 
that did not form biofilm in the absence 
of antibiotics under these incubation 
conditions (i.e., no significant difference 
compared with uninoculated control wells 
by two-way Student's t test)

http://www.graphpad.com
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increased biofilm formation in 19/28 isolates, while at least one 
concentration of florfenicol increased biofilm formation in 17/28 
isolates (Figure 1, Figure S1, Figure S2). For 13/28 isolates, both 
oxytetracycline and florfenicol each increased biofilm (Figure 1). For 
oxytetracycline, a concentration equal to the one-quarter of that 
preventing any visible growth by naked eye (i.e., the MIC as defined 
in this present study) was most effective at increasing biofilm forma-
tion, whereas for florfenicol it was one-half of this value (Table 1). 
Importantly, no visible growth was detected in any of the uninocu-
lated control wells (data not shown).

For 10 isolates, a small number of sub-MIC concentrations of 
florfenicol (six isolates) and oxytetracycline (three isolates) or both 
(one isolate) caused slight, but significant, reductions in biofilm com-
pared with the inoculated control wells, which most likely resulted 
from reduced bacterial growth decreasing the total biomass in the 
well (Figure S1, Figure S2).

4  | DISCUSSION

Antibiotics can induce or increase biofilm formation in various bac-
teria and, to our knowledge, this is the first report of such a response 
in a fish pathogen, specifically in this case A. salmonicida.

Biofilm formation by Aeromonas spp., including A. salmonicida, has 
been reported previously (Chenia & Duma, 2017; Dias et al., 2018; 
Gavín et al., 2002; Hossain, Wickramanayake, Dahanayake, & 
Heo, 2020; Igbinosa, Igbinosa, & Okoh, 2015; Talagrand-Reboul 
et al., 2017). In this present study, more than half (15/28) of the atyp-
ical A. salmonicida isolates from cleaner fish formed biofilm in vitro 
in the absence of antibiotics, which concurs with a previous study 
of A. salmonicida collected from the mussel Mytilus coruscus where 
8/14 isolates formed biofilm (Hossain et al., 2020). Meanwhile, Dias 
et al. (2018) reported all eight isolates of A. salmonicida from red 
deer and tawny owl were capable of forming biofilms in vitro. Thus, 
the present study confirms that A. salmonicida is capable of forming 
biofilm, which is important given that pathogenic bacteria in biofilm 
communities are potential sources of infection in aquatic animal 

culture facilities (Bourne et al., 2006; Karunasagar et al., 1996; King 
et al., 2004). In aquaculture, biofilms form most apparently on nets, 
cages and the sides of tanks, and these have to be removed by thor-
ough cleaning, but biofilms can also form on equipment and in pipes 
where they are far more difficult to disrupt.

Florfenicol and oxytetracycline, two antibiotics used commonly 
in aquaculture to treat bacterial infections of fish, each induced or 
increased biofilm in approximately two-thirds of the atypical A. sal-
monicida isolates. This response was isolate-dependent with some 
isolates increasing biofilm in the presence of just one of the antibiot-
ics, while others responded similarly to both; the extent of increase 
in biofilm also differed between isolates and antibiotic concentra-
tions. Antibiotics belonging to chloramphenicol and tetracycline 
families have been shown to induce biofilm in bacteria previously 
(Kaplan, 2011), but in regard of the specific antibiotics used in this 
present study, this is the first report of florfenicol causing such a re-
sponse in a bacterium, although oxytetracycline has been shown to 
increase biofilm in the swine pathogen Streptococcus suis (Waack & 
Nicholson, 2018). Ten of the 28 atypical A. salmonicida isolates only 
showed the potential to form biofilm in the presence of antibiotic, 
demonstrating that numerous culture conditions may need to be 
tested if seeking to determine the biofilm-forming potential of a par-
ticular bacterium. In addition to antibiotics, many other environmen-
tal factors can influence biofilm formation including temperature, 
nutrient availability, surface properties (e.g., charge, texture, mate-
rial) and the presence of salt, chelating agents and membrane-per-
turbating compounds (Ansari, Jafri, Ahmad, & Abulreesh, 2017; Cai, 
De La Fuente, & Arias, 2013; Chenia & Duma, 2017; Talagrand-
Reboul et al., 2017). All of the isolates showed evidence for being 
able to form biofilm in vitro under at least one of the culture con-
ditions employed in this present study, thus further confirming fish 
pathogenic isolates of atypical A. salmonicida to be capable of this 
phenotype. It is interesting to speculate whether the ability to form 
biofilm is more prevalent in fish pathogenic isolates of atypical A. 
salmonicida because a positive association between biofilm forma-
tion and the expression of virulence factors has been established 
for some bacteria (Naves et al., 2008; Rodrigues et al., 2018; Wand, 
Bock, Turton, Nugent, & Sutton, 2012), though this is not universal.

The most effective concentrations of antibiotics causing the 
greatest increase in biofilm in the atypical A. salmonicida isolates 
were typically between one-half and one-quarter of that prevent-
ing visible growth of the bacterium, which is similar to observations 
reported for other bacteria (Kaplan, 2011). Increased biofilm may be 
a response to stress detected through the inhibition of growth, and 
antibiotic concentrations causing greatest stress will likely be close 
to those arresting growth completely (Bernier & Surette, 2013). 
Bacteria in biofilms are better protected against environmental in-
sults such as antibiotics, as far greater concentrations are needed to 
kill cells in a biofilm compared with a planktonic existence (Davey & 
O’Toole, 2000; Olsen, 2015; Olson, Ceri, Morck, Buret, & Read, 2002), 
while increased production of extracellular polymeric substances by 
bacteria growing in a biofilm provides one explanation because this 
can bind antibiotics to prevent penetration into the biofilm structure 

TA B L E  1   Concentration of antibiotic causing greatest 
significant increase in biofilm in atypical A. salmonicida isolates 
as a fraction of the concentration inhibiting visible growth (i.e., 
the minimum inhibitory concentration [MIC]). For florfenicol, a 
concentration equal to one-half of the MIC increased biofilm the 
most for the greatest number of isolates (9/28 isolates), whereas 
for oxytetracycline a concentration equal to one-quarter of the 
MIC increased biofilm for the most isolates (11/28 isolates). This 
table does not include isolates where biofilm was not increased 
significantly, or where an MIC was not determined (four isolates 
and one isolate for florfenicol and oxytetracycline, respectively)

Antibiotic

Fraction of MIC (no. of isolates)

1/16 1/8 1/4 1/2

Florfenicol 4 9

Oxytetracycline 1 2 11 4
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(Mulcahy, Charron-Mazenod, & Lewenza, 2008; Olsen, 2015; Wang 
et al., 2019). Bacteria growing in biofilms show other alterations in 
behaviour and gene expression that can further explain decreased 
susceptibility to antibacterial agents including reduced metab-
olism (Knudsen, Fromberg, Ng, & Gram, 2016; Olsen, 2015; Song 
et al., 2016; Sun, Chen, Lin, & Lin, 2017). There are various proposed 
mechanisms by which antibiotic exposure increases biofilm, includ-
ing the release of compounds such as DNA from damaged and dead 
bacteria that permit adherence to a surface or augment an estab-
lished biofilm structure, and through induction of stress responses 
and increases in the production of secondary messengers that mod-
ulate gene expression such as cyclic di-guanosine monophosphate or 
the alarmone (p)ppGpp (Bernier & Surette, 2013; Ranieri et al., 2018; 
Talagrand-Reboul et al., 2017). Notably, quorum sensing mediated 
by acylated homoserine lactones has been implicated in biofilm for-
mation by Aeromonas spp., including A. salmonicida (Liu, Yan, Feng, & 
Zhu, 2018; Talagrand-Reboul et al., 2017).

That two of the most commonly prescribed antibiotics used in 
aquaculture increased biofilm formed by A. salmonicida gives cause 
for concern because this response improves the survivability of the 
bacteria in the presence of the antibiotic, thus potentially driving 
persistence in culture systems. Moreover, this bacterial response 
may drive the selection and transmission of antibiotic-resistance 
genes, not only because biofilm conditions favour the transmission 
of genetic material such as plasmids that often contain antibiot-
ic-resistance genes, but also because the architecture of a biofilm 
means bacteria within can be exposed to non-lethal antibiotic con-
centrations that permit selection for less susceptible strains (Mah 
& O’Toole, 2001; Olsen, 2015; Talagrand-Reboul et al., 2017). 
Furthermore, Scornec, Bellanger, Guilloteau, Groshenry, and Merlin 
(2017) demonstrated that several antibiotics at sub-MIC concentra-
tions could induce the transfer of mobile genetic elements between 
bacteria. Therefore, the induction of biofilm by sub-MIC concentra-
tions of antibiotics may be an underappreciated mechanism favour-
ing the selection and dissemination of antibiotic-resistance genes in 
fish pathogens and associated environmental bacteria.

There was variability between replicates of control cultures (i.e., 
not exposed to antibiotics), as well as cultures exposed to different 
concentrations of antibiotics, and this variability prevented the de-
tection of statistical significance between certain groups. For ex-
ample, variability in biofilm formation in replicate control wells of 
isolate SAIC-CF-106 (A550 = 0.196 ± 0.026 [mean ± standard error], 
range = 0.071 to 0.252) meant differences between the inoculated 
control wells and the groups of wells containing sub-MIC concen-
trations of antibiotics failed to reach statistical significance, even 
though these isolates certainly seemed to increase biofilm formation 
in response to the antibiotics (e.g., isolate SAIC-CF-106, oxytetra-
cycline at 0.03125 mg/L: A550 = 0.387 ± 0.135). Similarly, isolates 
SAIC-CF-022 and SAIC-CF-029 did not form biofilms in the pres-
ence of sub-MIC concentrations of antibiotics by our statistical anal-
yses; however, a closer examination of the data reveals that biofilm 
was detected in some wells (isolate SAIC-CF-022, oxytetracycline 
at 0.015625 mg/L: A550 = 0.435 ± 0.050; isolate SAIC-CF-029, 

oxytetracycline at 0.03125 mg/L: A550 = 0.425 ± 0.177). This vari-
ability between wells with bacteria incubated under "identical" con-
ditions is difficult to explain, and the reasons underlying this will not 
be determined by enhancing the power of statistical tests through 
increasing the number of replicates used, and more research needs 
to be performed to understand more completely these observations.

This present study was performed in vitro and under a specific set 
of conditions, and whether the observations described herein occur 
in aquaculture facilities under operating conditions remains to be 
confirmed. The environmental conditions on a fish farm, such as salt 
concentrations, nutrient concentrations and temperature, as well as 
the physical nature of the surface structures to which the bacteria can 
adhere, will exert a great influence on biofilm produced by the bac-
teria (Ansari et al., 2017; Carballo et al., 2000). Furthermore, natural 
biofilms consist of many different species of bacteria and other organ-
isms and the effects of being in such a diverse community on biofilm 
formation in the absence or presence of antibiotics remain unknown. 
Practically, sub-MIC concentrations of antibiotics could be achieved 
in water or in the fish during and after therapeutic application in feed, 
as the agents could leach into the water (Xu & Rogers, 1994) or pass 
through the fish unmetabolised (Leal, Santos, & Esteves, 2019). This 
latter suggestion is of particular relevance in the culture of ballan 
wrasse, a stomachless species, as antibiotic dosing regimens used for 
this species are largely adapted from studies in salmonids that have 
grossly different gut physiology and longer gastrointestinal tracts for 
absorbing drugs (Le et al., 2019). Studies of concentrations of antibi-
otic residues in culture system water during and after therapy may 
help to quantify the risks around antibiotic resistance raised above.

This present study further highlights the need to implement better 
infection prevention strategies that reduce the need for antibiotics in 
aquaculture, including investment in enhanced biosecurity measures, 
alternatives to antibiotics (e.g., phage therapy), vaccines and addi-
tional prevention measures such as probiotics (Menanteau-Ledouble 
et al., 2016). Moreover, it may be that enhanced cleaning protocols 
would be beneficial after application of antibiotic or technology could 
be developed to eliminate residues from culture water during and 
after treatment to reduce antibiotic concentrations and the bacte-
ria exposure window. Vaccines are a critical component of infection 
prevention in aquaculture, and numerous vaccines are available for a 
suite of fish diseases, including furunculosis caused by A. salmonicida 
(Adams, 2019; Menanteau-Ledouble et al., 2016). Indeed, autogenous 
vaccines are being applied to prevent outbreaks of atypical A. salmoni-
cida in cleaner fish (Adams, 2019), but this present study further sup-
ports the need to develop an effective commercial vaccine.

To conclude, antibiotics are a critical tool in the veterinarian's ar-
moury to treat infections of fish, but this present study provides fur-
ther evidence for the negative impact of antibiotic use in aquaculture 
because exposure to these agents encouraged biofilm formation by 
a bacterial pathogen, which may increase the risk of re-infection in 
culture systems and favour the transmission of antibiotic-resistance 
genes. The findings strengthen the case for prudent antibiotic usage in 
aquaculture and support the introduction of enhanced infection pre-
vention measures, including the development of protective vaccines.
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