
Science of the Total Environment 744 (2020) 140898

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv
Chronic urban hotspots and agricultural drainage drive microbial
pollution of karst water resources in rural developing regions
Sarah J. Buckerfield a,⁎, Richard S. Quilliama, Luc Bussiere a, Susan Waldron b, Larissa A. Naylor b,
Siliang Li c, David M. Oliver a

a Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
b School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
c Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• Karst water resources in paddy farming
areas vulnerable to microbial contami-
nation

• Land use is the most important control
of average E. coli concentration inwater.

• Water draining from urban land is con-
sistently highly contaminated.

• Water draining from agricultural land is
consistently moderately contaminated.

• Transient higher E. coli concentrations
associated with rainfall and paddy
drainage
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Contamination of surface and groundwater systems with human and animal faecal matter leads to exposure of
reliant populations to disease causing micro-organisms. This exposure route remains a major cause of infection
and mortality in developing countries, particularly rural regions. To meet the UN's sustainable development
goal 6: Ensure availability and sustainable management of water and sanitation for all, we need to identify the
key controls on faecal contamination across relevant settings. We conducted a high-resolution spatial study of
E. coli concentration in catchment drainagewaters over 6months in amixed land-use catchment in the extensive
karst region extending across impoverished southwest China. Using a mixed effects modelling framework, we
tested how land-use, karst hydrology, antecedentmeteorological conditions, agricultural cycles, hydrochemistry,
and position in the catchment system affected E. coli concentrations. Land-use was the best predictor of faecal
contamination levels. Sites in urban areaswere chronically highly contaminated, butwater draining from agricul-
tural land was also consistently contaminated and there was a catchment wide pulse of higher E. coli concentra-
tions, turbidity, and discharge during paddy field drainage. E. coli concentration increased with increasing
antecedent rainfall across all land-use types and compartments of the karst hydrological system (underground
and surface waters), but decreased with increasing pH. This is interpreted to be a result of processes affecting
pH, such as water residence time, rather than the direct effect of pH on E. coli survival. Improved containment
and treatment of humanwaste in areas of higher population densitywould likely reduce contamination hotspots,
and further research is needed to identify the nature and distribution of sources in agricultural land.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Faecal contamination of catchment drinkingwater sources increases
the risk of human exposure to pathogenic micro-organisms. Consump-
tion of faecally-contaminated water causes an estimated 1.8 million
deaths annually and is the leading cause of waterborne disease
(Brusseau et al., 2019). Due to reliance on untreated catchment water
resources and a lack of sewage infrastructure and distribution networks,
this impact is predominantly felt in developing countries, and in partic-
ular, rural regions (Bain et al., 2014; Bivins et al., 2017; UNICEF and
WHO, 2019). Faecal contamination is often evaluated using faecal indi-
cator organisms (FIOs), such as E. coli, which are easier and cheaper to
quantify than specific pathogens and thus useful for initial assessment
of the potential for public health risk from water sources (Edberg
et al., 2000).

Faecal contamination of drinking water can originate from both
point (e.g. sewage discharge) and diffuse (e.g. agricultural runoff)
sources, making characterisation of controls on delivery of microbial
contaminants to aquatic environments inherently difficult (Cho et al.,
2016). Some studies have identified temporal variables, such as rainfall
and source availability, to be major controls of E. coli delivery to drain-
age networks (Buckerfield et al., 2019a; McKergow and Davies-Colley,
2010; Sinclair et al., 2009), while others recognise a key role of
spatially-distributed chronic point sources such as leaking septic tanks
or livestock crossing points that are independent of rainfall/discharge
conditions (Murphy et al., 2015; Neill et al., 2018). In karst drainage sys-
temswhere point recharge via swallow or sinkholes is amajor source of
recharge to the aquifer, the presence of sources surrounding the swal-
low or sink holes during recharge periods is generally a critical control
on microbial water quality at discharge springs (Ender et al., 2018;
Pronk et al., 2006). Existing evidence suggests catchments are often
complex systems within which interactions between spatial and tem-
poral controls ultimately govern the rate of E. coli delivery to receiving
waters, often depending on climate and agricultural cycles, and hydrol-
ogy. In larger and/or more complex catchments, where delineation of
drainage networks and source distribution is more difficult, there is
greater uncertainty in the relative importance of those controls, and
how theymight interact to influencemicrobial water quality, hindering
assessment and modelling (Dymond et al., 2016).

Karst catchments are hydrologically complex and represent a key
example of landscape systems that are less well understood with re-
spect to microbial pollution (Buckerfield et al., 2019b). Karst is a unique
geological terrain developed in highly-soluble rocks (Ford andWilliams,
2007), where dissolution-developed cavities allow surface water
and entrained contaminants to infiltrate directly into the groundwater
system. Dissolution along existing planes of weakness such as fractures
and faults results in extremely rapid flow pathways in underground
conduits (White, 2018). Efficient hydrological pathways result in
diminished capacity for E. coli die-off or removal by natural filtration
processes before water re-emerges at springs, used worldwide for
drinking and domestic purposes (Schiperski et al., 2016; Stevanović,
2018).

The southwest-China karst region is one of themost extensive in the
world, characterised by the highest poverty rates in China (Cao et al.,
2015). The rural population is at high risk of contracting infections
due to living in impoverished conditions in close proximity with live-
stock (Yang et al., 2017), and high rates of acute diarrheal disease are
observed in children (Zhang et al., 2016). Managing microbial water
quality to help sustain ecosystem services for poor communities in
this fragile karst environment is therefore a high priority and faecal con-
tamination of drinkingwater supplies in China is receiving increased re-
search attention (e.g. Hong et al., 2010; Ye et al., 2013). However, as is
the case worldwide, and particularly for developing regions, most stud-
ies focus on points of human exposure, and very few studies in China
have conducted high resolution spatial and temporal sampling at the
catchment scale (Oliver et al., 2018; Xue et al., 2018).
The aim of this research, therefore, was to assess which spatiotem-
poral variables are most significant as predictors of E. coli concentration
in an agricultural karst setting. This spatially high resolution study ac-
commodates longer timeframe temporal changes in spatial controls,
and complements a high temporal resolution study sampling high dis-
charge conditions (Buckerfield et al., 2019a). The study sitewas a devel-
oping region of China, meaning results hold relevance for other
developing regions of the world with similar conditions. Specifically,
we generated repeated spatial and temporal measures of E. coli concen-
trations and relevant water quality parameters over a six month sam-
pling campaign, and from this determined the significance of land-use,
hydrological, and meteorological predictors of microbial water quality
using a mixed modelling approach.

2. Materials and methods

2.1. Study catchment

Water samples were collected from 30 sites distributed across the
Houzhai (HZ) catchment, which drains a land area of 73.5 km2

(Fig. 1). Samples were collected twice a month (an approximately
2 week interval) between 12/04/2018 and 08/10/2018 (total 11 sam-
ples/site). This sixmonth period encompassed the end of the dry season
(and harvest of dry season crops), the wet season (a full paddy rice
crop), and transition into the following dry season. The sites were se-
lected to: (i) provide a cross-section of the hydrological system from
the headwaters to the outlet; (ii) represent the different land-uses;
(iii) sample progressively down the major tributaries; and (iv) provide
good representation of the types of water bodies and outlets within the
surface and ground water compartments of the karst hydrological sys-
tem. As such, siteswere distributed as evenly as possiblewithin the con-
straints of their abundance/accessibility in the catchment between
epikarst springs (discharging water from hillslope epikarst, all forested
in this study), valley outlet springs (higher order springs discharging
water from entire valley systems), sinkholes (formed by bedrock col-
lapse, providing surface connectivity with the groundwater system),
surface rivers, and reservoir outlets. Paddy and dry land agriculture
are practiced in the HZ catchment, and residents are often dependent
on catchment water resources for drinking, domestic, and irrigation
purposes (Buckerfield et al., 2019b). The hydrological distance of each
sample site from the outlet of the catchment was calculated assuming
shortest flow-path length using maps of topography, underground,
and surface drainage systems in QGIS v.2.14.10-Essen, and field obser-
vations. The flow-path length for individual sampling sites was calcu-
lated as the longest possible flow path for water reaching each site.

2.2. Microbiological analysis

Grabwater samples were collected aseptically, returned to the labo-
ratory in a cool box, and processed within 14 h of collection to deter-
mine E. coli concentration. E. coli were enumerated using the standard
method of membrane filtration (Environment Agency, 2009) following
methods in Buckerfield et al. (Buckerfield et al., 2019a).

2.3. Water quality, discharge, and meteorological data

Sample temperaturewas recorded in situ, and electrical conductivity
(EC) and pHweremeasured in the laboratorywithin 30 h of data collec-
tion using aWTW inoLabMulti 9430 IDS benchtopmeter. Turbiditywas
measured in triplicate using a laboratory turbiditymeter. V-notchweirs
at four sites (UG5: 1.25 km2, UG6: 2.4 km2, SW14: 17.7 km2, and UG1:
73.5 km2, Fig. 1) provide infrastructure for water level loggers (GB/
T3091-2008 pressure transducers) recordingwater depth at a 5 minute
interval, from which stream discharge (Q) was derived using
established rating curves (Zhang et al., 2017). In-stream temperature,
turbidity, pH, and EC data was available for six sites (four shared with



Fig. 1. Catchment map showing location of sampling sites, land-use, location of major underground conduits and surface rivers, elevation, and average E. coli concentration across all
sampling dates for all sites. Sites are coloured according to surrounding land-use and the size of the circles is proportional to the average E. coli concentration at that site (log10 CFU/
100 mL). Site descriptions: SW = surface water, UG = underground outlet (of sub-catchment), ES = epikarst spring, SH = sinkhole. Elevation ranges from 1552 m above sea level
(masl) in the east, where forested karst cones delineate the headwaters, to 1212 masl at the outlet in the west (at the site marked SW18). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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the Q data) at a 15 minute interval, from Aqua TROLL 600 multi-
parameter sondes. Rainfall, temperature, and relative humidity data
was obtained from a rain gauge at Lahoetain (site SW14, Fig. 1).
Table 1 provides a summary of the rationale behind the parameters con-
sidered in this study, either as potential predictors of E. coli concentra-
tion or as a tracer of a relevant process.

2.4. Data analysis and modelling procedure

All statistical analyses and modelling were conducted in R version
3.6.1 (R Core Team, 2019). E. coli concentration data was log10 trans-
formed, bringing the distribution closer to a normal distribution. A
Wilcox signed-rank test was used to test whether the mean of samples
taken on any given date or site was significantly different to themean of
all samples, as a means of identifying potential one-off influences that
were not incorporated into the model as a predictor. Correlation be-
tween water quality variables was tested using a repeated measures
correlation coefficient (Bakdash and Marusich, 2017).

2.4.1. Random Forest algorithm: identifying relevant predictor variables
Numerous temporal and spatial predictors are potentially relevant

to E. coli concentration (Table 1), and it is possible to represent a num-
ber of these predictors in different ways (e.g. categorical, continuous).
To identify the most important predictors for testing in a linear mixed
effects model, and the best representation of each predictor, the full
suite of potential predictors was first tested using the Random Forest
(RF) algorithm. Random Forest is a machine learning algorithm capable
of handling a large number of predictor variables and ranking their im-
portance, without being affected by variable collinearity (Liaw and
Wiener, 2007). Average antecedent meteorological conditions over a
range of time frames prior to sampling, a range of continuous and cate-
gorical representations of land-use and position in the karst system, and
a temporal predictor marking the timing of paddy field discharge were
tested. A Mann-Whitney U test was used to test whether the mean
E. coli and water quality parameters of groups defined by categorical
splitting were significantly different from each other (significance
threshold: p b 0.05). A full list of predictors included in the random for-
est algorithm is given in SI (Supplementary Information) Table S1.

2.4.2. Model selection with a mixed effects model structure
Mixed effectsmodels estimate variance associatedwith groupmem-

bership and account for pseudo-replication in hypothesis tests
(McNeish and Kelley, 2018). We checked for multi-collinearity of pre-
dictors using variance inflation factors (VIFs), with VIF N 5 considered
as the threshold for predictors being collinear (Dormann et al., 2013).
We assessedmodel quality by visual examinations of model diagnostics
for each potential model. Residuals for the entire model, residuals for
each continuous predictor, and residuals for each level of randomeffects
were checked for non-linearity or non-constant variance, and quantile
plots were checked for normality. Temporal autocorrelation was tested
for by: (i) checking whether residuals followed any time related trend;
(ii) inspecting residuals as a function of time; and (iii) correlation-lag
plots.

Model selection was performed using the widely-employed proce-
dure of stepwise simplification from the most complex possible model
containing predictors identified using Random Forest, as outlined in
Harrison et al. (2018), and implemented in R (MuMIn package;
Barton, 2019, lme4 package; Bates et al., 2015). Non-significant



Table 1

Parameter Relevance to E. coli concentration References

Land-use Different land-use types are often characterised by different source types (e.g. urban land
with point sources, agricultural with diffuse), which can result in contrasting contaminant
export patterns from regions of different land-use.

Rochelle-Newall et al., 2016
Selvakumar and Borst, 2006
Schreiber et al., 2015

Karstic hydrology Different compartments in the karst system may be characterised by different conditions for
survival (e.g. lack of sunlight in the underground compartments, different native microbial
communities), or susceptibility to contamination (e.g. sinkholes being used for rubbish
disposal, direct connectivity of springs with sink holes).

Personné et al., 1998
John and Rose, 2005
Personné et al., 2004
He et al., 2010
Lindsey et al., 2010

Catchment characteristics Characteristics related to catchment size and dimensions, such as flow-path length,
contributing catchment area, stream morphology, and stream order can affect how E. coli
is transported, stored, exported from, or attenuated in catchments.

Harmel et al., 2010
McGuire et al., 2005

Rainfall, discharge Rainfall and associated increase in discharge can result in delivery of E. coli to drainage
networks from surface stores via overland flow, re-suspension of stream-bed and conduit
hosted E. coli, and flooding/failure of septic systems/waste infrastructure

Buckerfield et al., 2019a
McKergow and Davies-Colley, 2010

Relative humidity and
air temperature

Temperature and relative humidity affect the growth and persistence of E. coli in the
environment

McCarthy et al., 2012

Water temperature Typically, increasing water temperature is associated with increasing mortality in laboratory
studies. Higher temperatures in Summer may provide more favourable conditions for
growth on land in some settings. Tracer of water residence time

Nasser and Oman, 1999
Badgley et al., 2019
Chen and Chang, 2014
Martin and Dean, 1999

Electrical conductivity • High electrical conductivity associated with contaminated water including human sewage
and agricultural run-off

• Contrasting electrical conductivity associated with different residence times, due to
increasing levels of carbonate/mineral dissolution with increasing residence time

de Sousa et al., 2014
Harwell et al., 2008
Toran et al., 2006

pH Contrasting pH associated with different compartments of karst/varying residence times,
e.g. higher pCO2 in soil waters results in lower pH than water residing in the rock matrix with
high levels of dissolved carbonate

Liu et al., 2004
Liu et al., 2007

Turbidity (as a proxy for
suspended sediment)

• E. coli is commonly associated with sediment, both suspended and stored in stream-beds.
• Increased turbidity due to re-suspension of stream bed sediment or influx of water from
overland flow pathways under high discharge may be associated with higher E. coli
concentration

Rügner et al., 2013
Garcia-Aljaro et al., 2017
Kim et al., 2010
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parameters were sequentially removed in order of least significance,
and at each stage themore complexmodel was comparedwith the sim-
plifiedmodel using parametric bootstrapping (number of simulations=
1000) (Halekoh and Højsgaard, 2014). A simplified model was used for
the four siteswith discharge data to test for the significance of discharge
at the time of sampling as a predictor. A threshold p-value of 0.05 was
used to determine whether the simpler model provided a significantly
poorer fit (Shang and Cavanaugh, 2008). Akaike's Information Criterion
(AIC) was used for the one case of non-nested model comparison (test-
ing land use versus karst system as the categorical predictor) because
parametric bootstraps cannot be used to compare non-nested models.
A threshold delta AIC value of 7 was considered as evidence that two
models produced significantly different fit (Fabozzi et al., 2014).

Several methods of representing spatial-autocorrelation were
tested. The approach yielding the best model fit is described here and
details of all tested approaches are given in SI Table S2. The influence
of upstream sites on downstream sites was calculated as a function of
the inverse of their hydrological separation distance and the observed
E. coli concentration at upstream sites, then weighted by average Q at
the catchment outlet on the sample date. The discharge weighting on
each sample datewas calculated as a fraction of themaximumobserved
Q on all sample dates, which was given a weighting of 1. The result is a
concentration ‘contribution’ to each site from all other sites for each
time point (which will be zero for non-flow connected sites), and
which increases with Q.

3. Results

3.1. Spatial and temporal variation in E. coli concentration

Variation in E. coli concentration was dominantly spatial; average
variance by site was 0.57 log10 CFU/100 mL (n = 30 sites), compared
with 1.33 log10 CFU/100mL by date (n= 11 sample days). Mean values
for individual sites varied by 4.29 log10 CFU/100 mL (Figs. 1, 2), com-
pared with variation between dates of 0.8 log10 CFU/100 mL (Fig. 3).
The catchment wide mean E. coli concentration taken across all sites
on the 19th September 2018 was significantly higher than the mean
of all samples, and significantly lower on the 12th April. E. coli concen-
tration ranged from below detection (b10 CFU/100 mL) at epikarst
springs on forested hillslopes (e.g. ES8) to 8 log10 CFU/100 mL at a con-
taminated site downstream of a sewage treatment plant (SW15). Sam-
ples from sites classified as ‘urban’ (n = 8) (see categorical
representations of land use, SI Table S1) showed significantly higher
E. coli concentrations than samples from agricultural sites (n = 19),
and samples from forested sites (n = 3) were significantly lower than
agricultural sites (SI Table S3). When classified according to compart-
ment in the karst system (see categorical representation of position in
the karst system, SI Table S1), epikarst springs were significantly
lower in E. coli concentration than other compartments of the karst sys-
tem, which were not significantly different.

3.2. Meteorological, discharge, and water quality parameters

Meteorological conditions during the sampling period followed nor-
mal regional trends, with highest monthly precipitation in June
(279 mm, 1982–2012 average 258 mm), and hottest average tempera-
ture in July (27.5, 1982–2012 average 23.6 °C) (Climate-Data.Org,
2012). The range in average temperature, relative humidity, and total
rainfall during the 24 h prior to sampling captured for the sample
dates in this studywas 18.5–25.4 °C, 78–99.6%, and 0.0–9.4mm, respec-
tively. Total rainfall in the 24 h prior to sampling never exceeded 10% of
the maximum daily rainfall that occurred during the study period
(March–October 2018, SI Fig. S1). ThemaximumQ during the study pe-
riod was also low relative to the range observed in this catchment (SI
Fig. S2); Q at the four sites with pressure transducers was highest on
the 19/9/2018 for all sites, reaching 57%, 11%, 54%, and 67% ofmaximum
Q recorded during the study period at UG5, UG6, SW14, and UG1 re-
spectively (Fig. 4). Discharge and turbidity were highest on 19/9/2018
for all sites (Fig. 4). There was a weak but significant negative correla-
tion between pH and rainfall (repeated measures r = −0.27, p =
3.8 × 10−6), and a weak negative correlation between pH and EC (re-
peated measures r = −0.28, p = 0.015).



Fig. 2. Violin plots (which show data density), withmean and standard deviation (black circle, vertical bar within each violin) of E. coli concentration by site. Number of samples per site is 11.
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Somewater quality parameters showed clusteringwithin the groups
defined by categorical classification of sites according to surrounding
land use or position in the karst system. Sample EC increased signifi-
cantly in the order: forested sites b agricultural sites b urban sites, and
epikarst springs b sinkholes/surface water sites b valley outlet springs
(SI Table S3). Sample temperaturewas lowest at epikarst springs, higher
in valley outlet springs, and highest in surface waters/sinkholes (all sig-
nificantly different; p b 0.05), and lower at forested sites than agricul-
tural or urban sites. Turbidity was significantly lower at forested sites
than urban or agricultural sites, and at epikarst springs than other com-
ponents of the karst system (p b 0.05).

3.3. Predictor variables selected using random Forest algorithm

Land use variables produced the largest increase in mean squared
error (MSE)with RFwhen randomly permuted (SI Fig. S3). Both contin-
uous and categorical representations of land use produced a N90% in-
crease in MSE. Variables describing the position of sites in the karst
structure (categorical) and position in the catchment system (continu-
ous) produced N50% increase in MSE, while water quality and rainfall
Fig. 3. Violin plots (showing data density) and mean/standard deviation (black circle,
vertical bar) for each sampling date. Number of samples per date is 30. Colouring
indicates mean of all samples from given date is significantly different from mean of all
samples (red: significantly higher, blue: significantly lower, dashed line: mean of all
samples). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
in the previous 24 or 48 h produced N20% increase. The remaining me-
teorological variables (temperature, relative humidity, solar radiation)
resulted in a b20% increase. Variance Inflation Factors showed air tem-
perature and solar radiation, and rainfall amount (over a 24 or
48 hour timeframe) and rainfall intensity to be collinear, so measures
of these variables were not included simultaneously in any models.
3.4. Linear mixed effects modelling results

The best performing model containing only significant predictors
(p b 0.05) incorporated land-use as a categorical predictor (with
urban, forested, and agricultural land-use categories defined by domi-
nant land-use in a 100m radius), and rainfall and pH as continuous pre-
dictors (Table 2). Rainfall amount in the previous 24 and 48 hwere both
significant (not included simultaneously) and produced the same effect
size. The effect size of rainfall (0.056) translates to a 1 log10 unit increase
in E. coli concentration per 18 mm rainfall, and the effect size of pH
(−0.73) translates to a 1.4 log10 unit decrease in E. coli concentration
per unit increase in pH. Site and date as random effects explained 27%
and 5% of the variance not explained by fixed effects respectively. In-
cluding land use and karst hydrology simultaneously as categorical pre-
dictors resulted in non-convergent models. Although site type in the
karst architecture (e.g. epikarst spring, sinkhole, etc.) was a significant
predictor (categorical), models incorporating karst hydrology never
performed as well as models incorporating land use as a predictor
(delta AIC N20 for all karst models versus all land use models). Incorpo-
rating a fixed effect autocorrelation structure, where the contribution of
E. coli from upstream sites toflow-connected downstream sites was cal-
culated as a function of their hydrological separation distance, produced
improvement on models without the spatial autocorrelation structure
(SI Table S4). Weighting the autocorrelation structure by discharge at
the outlet and scaling the whole contribution from upstream sites by a
factor of 10 produced the best performing model, using parametric
bootstrapping (threshold p b 0.05) for model comparison (Halekoh
and Højsgaard, 2014). For the four sites with pressure transducers,
there was no relationship between E. coli concentration and Q but rain-
fall in the previous 24 h had a similar effect size as for the full dataset
(0.06).

The predicted E. coli concentration, and 95% confidence interval,
were calculated using the best performing model, and are visually
depicted in Fig. 5 with the observational data. Observations are sepa-
rated by land-use classification, and E. coli concentration is shown as a



Fig. 4. Selected meteorological and hydrological parameters through the sampling period (2018): (a) Rainfall, (b) discharge at four sites with pressure transducers, and (c) turbidity at
same four sites as discharge in (b). Due to differences in scale, sites have been split between two axes for discharge and turbidity measurements.
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function of rainfall in the previous 24 h, one of the two temporal predic-
tors found to be significant.

4. Discussion

The high-resolution spatial dataset collected in this karst terrain
study spans a full paddy rice crop cycle and the monsoon, including
the transitions between dry and wet seasons. The higher spatial than
temporal variability in E. coli concentration suggests spatial controls
are most relevant to average faecal contamination levels in this mixed
land-use setting. Modelling identified land-use and individual site char-
acteristics to be the most significant controls on average E. coli concen-
tration, regardless of location of the sampled water source in the
catchment. However, periods of higher catchment-wide E. coli concen-
trations corresponding with rainfall in the proceeding days, and dis-
charge of paddy fields, suggest these temporal controls (rainfall, and
particular agricultural activities) can become more important controls
of catchment-wide E. coli concentrations than immediate surrounding
Table 2
Parameters for the best performingmodel based on parametric bootstrapping (PB)model selec
the coefficient back-transformed to the original parameter space is given. The intercept is for an
intercept deviations from this level are given for the other categories of land-use (forested and

Fixed effects

Value Std. error PB p-va

Intercept (log10 CFU/100 mL) 2.07 0.12 b0.001
Land use (forest) (log10 CFU/100 mL) −0.95 0.28 0.003
Land use (urban) (log10 CFU/100 mL) 1.31 0.20 b0.001
Sample pH −0.73 0.05 0.001
Rain in previous 24 h (mm) 0.056 0.06 0.01
land-use for transient periods. Faecal contamination of karst water re-
sources is common worldwide and the E. coli concentrations observed
in this study are comparable to concentrations observed in this karst re-
gion in China and other karst regions of the world with human or live-
stock inputs (He et al., 2016, Heinz et al., 2009, Howell et al., 1995, Lan
et al., 2014, Sinreich et al., 2013). Drinking water guidelines set by the
World Health Organization specify that zero faecal coliforms should be
present in a 100 mL sample, although this is frequently not achieved
and low concentrations can present a sufficiently low health risk
(World Health Organization, 2017). The cause for concern lies in the
high concentrations observed at selected sites, and the lack of access
to an alternative supply, a problem still encountered across much of
rural China (Liu, 2015).

4.1. Spatial controls

The consistently high E. coli concentrations observed at urban sites
suggest urban land is a chronic source in this region. Urban land is a
tion. The continuous predictors (rainfall amount and sample pH)were scaled in themodel;
arbitrarily chosen level of the categorical predictor (agricultural land, in this model), and
urban).

Random effects

lue Groups Variance Std. dev % variance explained

Site 0.17 0.41 27%
Date 0.02 0.16 5%
Residual 0.42 0.65



Fig. 5. Observed E. coli concentration (coloured circles, jittered to show data density), predicted values from best performing model (solid lines), and lower and upper bounds of 95%
confidence interval (shaded regions). Rainfall amount refers to rainfall in the proceeding 24 h, as implemented as a predictor in the model. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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major source of faecal contamination to catchment drainage systems
under both low and high discharge conditions in many settings, al-
though this may not be solely a result of human inputs (Sauer et al.,
2011; Templar et al., 2016; Young and Thackston, 1999). Scavenging
dogs are prevalent in residential areas, and water buffalo, used in farm
labour, are typically housed in villages. Thus, multiple sources are likely
to contribute to an E. coli signal in water draining urban environments
(Ahmed et al., 2008; Suprihatin et al., 2003; Whitlock et al., 2002).
Sites located in agricultural land were also consistently contaminated,
implicating agricultural drainage waters are a source of E. coli. Crop
fertilisation with organic fertiliser is widespread in this region, and is
likely to be amajor source of faecal contamination. Farmers are severely
limited by labour availability, and encouragement to planmanureman-
agement is lacking (Oliver et al., 2020),meaning optimummanagement
for pathogen inactivation (such as use of digesters) may not occur. Buf-
falo and horses grazing in agricultural land or drinking near settlements
may contribute a significant faecal source particularly if defecating in or
aroundwaterways (O'Callaghan et al., 2019),which could potentially be
reduced by fencing off waterways (Muirhead, 2019). Containing and
treating humanwaste would likely produce the single biggest improve-
ment in microbial water quality in this region, but measures such as
containment of waste away from watercourses would be necessary to
address the problem of scavenging animals. Further research is needed
to identify which E. coli sources in agricultural land are responsible for
most export, and employing source tracking methods could provide
valuable information onwhich species are relevant to faecal contamina-
tion across land-use types.

The lack of significant differences between sites locatedwithin differ-
ent compartments of the karst system (except for epikarst springs) could
be a result of the connectivity between the underground and surface
water systems, a feature of well-developed karst hydrology (Ford and
Williams, 2007). Relevant to both human and animal sources is the
thin soil cover, rapid infiltration rates, and presence of sink holes that re-
sult from collapse of the karstic bedrock of this region.When sources are
present around sinkholes, they present critical source areas (CSAs),
where high sources of pollutants coincide with high potential for hydro-
logical transfer (Heathwaite et al., 2005). Karst rocky desertification
resulting in thin or absent soil cover, a major form of environmental
degradation in this region, may also enhance transfer of sediment and
contaminants from the land surface to receiving waters by increasing
runoff ratios (Dai et al., 2017). Buffers strips around sinkholes may re-
duce some of these enhanced risks posed by the karstic hydrology. In ad-
dition, all forested sites were classified as epikarst springs, meaning both
factors related to land-use and hydrology may be relevant to the signifi-
cantly lower E. coli concentrations at these sites. The low density or ab-
sence of people and livestock in such areas, and scarcity of wildlife
more generally in the region (Zhang et al., 2008), would be expected to
result in low risk of E. coli contamination (Porter et al., 2017), but the lim-
ited number of forested/epikarst sites (three) also places larger uncer-
tainty around how representative the sites are of these categories.

The superior performance of models incorporating a spatial auto-
correlation structure supports the need for continued improvement in
representation of flow-connectivity between sample sites if we are to
correctly attribute pollution source contributions. Discharge weighting
of the spatial autocorrelation structure has been shown to improve
model predictions of faecal coliforms in larger catchment systems (Jat
and Serre, 2018). Indeed, tracer-tests have shown thatflow connectivity
is important for pollutant transfer at sites along more major tributaries
in the lower reaches of this catchment under low Q, and becomes rele-
vant to the whole catchment under conditions of high Q (Barna et al.,
2020). Processes promoting E. coli die-off (e.g. U.V. radiation, predation)
or sequestration (e.g. in sediments) during low discharge conditions
will also counteract the progressive loading moving down drainage
channels through the catchment.

4.2. Temporal controls

Incidental events are likely to impact on short term E. coli concentra-
tion. The only date on which catchment wide E. coli concentration was
significantly higher was during discharge of paddy fields, and combined
with the elevated turbidity andQat the four siteswith pressure transduc-
ers, this suggests temporal changes in land-use due to agricultural cycles
influence faecal contamination levels. Although there was rainfall in the
24 (and 48) hours prior to sampling, it was comparable to the 25th
April, when paddy fields were not being discharged, and the rainfall pro-
duced minimal increase in Q and turbidity. Livestock manure is used
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extensively to fertilise paddy (and other) crops, and E. colimaybe capable
of lengthy survival in the sediments. The faecal matrix would provide a
protective niche from sunlight, and associationwith sediment once fields
are flooded may provide nutrients and shelter from predation (Garzio-
Hadzick et al., 2010; Jamieson et al., 2004). There is hence potential for
E. coli remobilisation when rice is harvested and the crops are drained
(Buckerfield et al., 2019b). Seasonality in E. coli export from agricultural
land has been observed in similar agricultural – socioeconomic – climatic
settings (Rochelle-Newall et al., 2016), and a range of other catchments in
different agricultural-climatic settings (Kay et al., 2008; Tetzlaff et al.,
2012). A multi-year sampling campaign, across multiple catchments
and countries, would allow for this seasonality to be statistically tested
and strengthen conclusions about the effects of agricultural cycles. Events
in the cultural calendar, as well as agricultural, may also impact on short-
term E. coli concentrations in rural settings where sewage infrastructure
is lacking. Chinese New Year, for example, involves mass human migra-
tion from cities back to rural home-towns (Dou and Miao, 2017), which
will result in a short term increase in sewage production.

The association of antecedent 24/48 h rainfall with significantly
higher E. coli concentration across all land-use types is consistent with
E. coli dynamics observed during a targeted study on rainfall-driven ef-
fects in this catchment (Buckerfield et al., 2019a), and most other stud-
ies assessing the effect of rainfall events, or high Q, on FIO export
(Crowther et al., 2002; Olds et al., 2018). It is imperative to combine
low and high Q sampling to improve catchment models and export es-
timates. Some studies in rural catchments that have targeted both low
and high-flow conditions have estimated that over 90% of annual
E. coli export occurs during high Q periods (Davies-Colley et al., 2008;
McKergow and Davies-Colley, 2010).

The significant decrease in E. coli concentration with increasing pH
could be a result of increasing mortality or growth inhibition with
high pH water (Parhad and Rao, 1974). However, the pH values ob-
served in this catchment were only slightly alkaline (average across all
sites = 8.01), and are unlikely to result in significant reduction in
E. coli survival rates (McFeters and Stuart, 1972). The high pH may re-
flectwater that has resided in the karst system for longer, thusmore op-
portunity for E. coli concentrations to decline via processes such as die-
off or sedimentation. The weak but significant negative correlation be-
tween pH and rainfall provides some evidence that pH decreases fol-
lowing rainfall, a relationship often observed due to the lower pH of
rainfall than water that has been resident in karst (Yang et al., 2012),
and the weak negative correlation with EC could be a result of fertiliser
washed off during rainfall. Constrainingwater residence times using, for
example, stable water isotopes would help elucidate whether pH is af-
fecting E. coli survival, or solely a feature of water derived from particu-
lar hydrological pathways.

4.3. Further factors affecting variation in E. coli concentration

The substantial variance explained by ‘Site’ as a random predictor in
all models, and corresponding improvement in model fit, indicates that
there are site characteristics not explained by the tested representations
of spatial predictors. This could be a result of several factors, including:
(a) variation in hydrological connectivity between E. coli sources and
sampling sites due to variable levels of infrastructure, such as the pres-
ence of impermeable concrete surfaces built to facilitate access to sink-
holes at some sites (Murphy et al., 2015); (b) use of sampling sites for
different purposes (e.g. drinking water collection with clean vessels, or
livestock watering points), and (c) inadequate representation of the
heterogeneity of the karst system, a ubiquitous problem in modelling
of karst hydrology (Hartmann et al., 2014). Representation of these at-
tributes could be explored through mechanisms such as
(a) introducing a metric describing the vulnerability of the surface sur-
rounding the site to overlandflow, (b) surveyingwhat different sites are
used for, and (c) extraction of aquifer properties (such as infiltration
rate) from available hydrological models.
4.4. Transferability across rural developing regions

This case studywas conducted in one of the poorest regions of China,
where the key drivers of poverty are resource scarcity, ecosystemdegra-
dation, mountainous topography and remoteness, and population pres-
sure (Liu et al., 2017). Evidence suggests themost effectivemeasures for
improving microbial water quality and reducing microbial waterborne
disease depends on several factors including the level of poverty
(Ashbolt, 2004). Although the exact agricultural, hydrological, climatic,
and socio-economic characteristics of this study area will not be shared
with other developing regions, the general findings can be used to in-
form on the most likely causes of poor microbial water quality in rural
farming districts under comparable development pressures. For exam-
ple, the wider southwest China karst region, which consistently suffers
from high rural poverty rates (Jiang et al., 2014), and neighbouring
Vietnam, which shares the vulnerability to water contamination im-
posed by karstic bedrock, and similar land-use pressures from agricul-
ture and population (Ender et al., 2018; Tuyet, 2001). Further,
although China has achieved unprecedented rates of poverty allevia-
tion, the story of economic growth bringing uneven prosperity, charac-
teristically leaving behind rural populations, is one shared with other
countries, such as Indonesia, Brazil, Mexico, and Bangladesh (Jalan and
Ravallion, 2002; Yang et al., 2015). With the World Bank estimating
that 736 million people still live in poverty, 79% of those people being
in rural regions (World Bank, 2018), it is imperative that we focus on
developing solutions that are practical for the characteristics of rural
populations, with stronger mechanisms for co-producing science at
the policy-practice interface (Zheng et al., 2019).
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