
molecules

Article

Enthalpies of Combustion and Formation of Severely
Crowded Methyl-Substituted 1,3-dioxanes.
The Magnitudes of 2,4- and 4,6-diaxial
Me,Me-Interactions and the Chair–2,5-twist
Energy Difference

Kalevi Pihlaja 1,* , Henri Kivelä 1,* , Pirjo Vainiotalo 2 and William V. Steele 3

1 Department of Chemistry, University of Turku, FI-20500 Turku, Finland
2 Department of Chemistry, University of Joensuu, FI-80100 Joensuu, Finland; pirjo.vainiotalo@joensuu.fi
3 Department of Chemistry, University of Stirling, Stirling FK9 4LA, Scotland, UK; wsteele@utk.edu
* Correspondence: kpihlaja@utu.fi (K.P.); hemiki@utu.fi (H.K.); Tel.: +358-505532470 (K.P.)

Received: 25 May 2020; Accepted: 11 June 2020; Published: 15 June 2020
����������
�������

Abstract: Enthalpies of combustion of 2,2-trans-4,6- (1) and 4,4,6,6-tetramethyl- (2) and 2,4,4,6,6- (3)
and 2,2,4,4,6-pentamethyl-1,3-dioxanes (4) were determined to estimate their enthalpies of formation
in the gas phase. By comparing the latter with the corresponding enthalpies estimated based on the
various bond–bond interactions allowed to determine the chair–2,5-twist energy difference (∆HCT =

29.8 kJ mol–1) for 1 since C-13 shift correlations indicate that it escapes to the 2,5-twist form where
the 2-methyl groups are isoclinal and 4- and 6-methyl groups pseudoequatorial to avoid syn-axial
interactions. Compounds 2 and 3 in turn give the values 21.0 and 21.6 kJ mol–1 for the 4,6-diaxial
Me,Me-interaction. Finally compound 4, which retains the chair conformation to avoid pseudoaxial
interactions in the twist forms gives the value 19.5 kJ mol–1 for the 2,4-diaxial Me,Me-interaction
indicating that its chair form appears to be somewhat deformed.

Keywords: crowded 1,3-dioxanes; enthalpies of combustion; enthalpies of formation; chair-2,5-twist
energy difference; syn-axial Me,Me-interactions

1. Introduction

We have thoroughly studied the conformations of various heterocycles [1], especially those of
methyl-substituted 1,3-dioxanes [1] (pp. 91–96). Our oxygen-containing compounds allowed us,
together with the literature data [2], to assemble sets of bond–bond interactions which together with
the enthalpies of formation of gaseous atoms and bond energies allow the estimation of enthalpies
of formation. The latter do not cover e.g., the 2,4- and 4,6-diaxial Me,Me-interactions present in
2,2,4,4,6-pentamethyl- (4) or 4,4,6,6-tetra- (2) and 2,4,4,6,6- pentamethyl-1,3-dioxanes (3) and e.g.,
the chair–2,5-twist energy difference in 1,3-dioxanes. This is why we have determined earlier the
enthalpies of combustion and formation of gaseous 2,2-trans-4,6-tetramethyl-1,3-dioxane [3,4] (1) which
is known, based on C-13 chemical shift correlations, to attain a 2,5-twist form [1,5] and determine
those of 2–4 which, again based on C-13 chemical shift correlations [1,5], seem to retain the chair
conformation [1,4].
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2. Results

2.1. Preparation of the Studied Compounds

2.1.1. Starting Materials

• 2-Methyl-2,4-pentanediol was a commercial product from Fluka AG (Buchs, Switzerland).
• 2,4-Dimethyl-2,4-pentanediol was prepared with Grignard reaction from ethyl β-methyl,β-

hydroxybutyrate and methyliodide [6]. Its boiling point was 363–365 K at 1.7 kPa.

2.1.2. 1,3-Dioxanes

• 4,4,6,6-tetramethyl-1,3-dioxane (2) was prepared with the method developed by Rondestvedt [7]
from 2,4-dimethyl-2,4-pentanediol and paraformaldehyde (formaldehyde polymer) in
dichloromethane using p-toluenesulfonic acid as catalyst. After the distillation, the product
was allowed to stand on saturated sodium bisulfite solution until all unreacted aldehyde was
removed. Final purification was carried out on a Perkin Elmer F 21 preparative gas chromatograph
using a 4.5 m steel column including 20% Carbowax 20M as the liquid phase and Chromosorb G
(60/80 mesh) as the solid phase. The boiling point was 349 K at 6.9 kPa and 427.6 K at normal
pressure. Water content was 0.05 ± 0.005% (Scheme 1).

• 2,4,4,6,6-pentamethyl-1,3-dioxane (3) was prepared by boiling equimolar amounts of paraldehyde
(acetaldehyde polymer) and 2,4-dimethyl-2,4-pentanediol in hexane with p-toluenesulfonic acid
as catalyst in a water entrainment unit [7]. The raw product was purified as above. The boiling
point was 353 K at 8.6 kPa and 423.7 K at normal pressure. Water content was 0.06 ± 0.005%.

• 2,2,4,4,6-pentamethyl-1,3-dioxane (4) was prepared by boiling equimolar amounts of acetone and
2-methyl-2,4-pentanediol in hexane with p-toluenesulfonic acid as catalyst in a water entrainment
unit [7]. The raw product was purified as above. The boiling point was 420.1 K at normal pressure.
No water was found. For NMR characterization of 1–4, see Refs. [5,8–11].
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Scheme 1. Predominant conformations of 1–4. 1: 2,2-trans-4,6-dimethyl-1,3-dioxane (4,6-dipseudo- 
equatorial 2,5-twist), 2: 4,4,6,6-tetramethyl-1,3-dioxane (chair), 3: 2,4,4,6,6-pentamethyl-1,3-dioxane 
(2-equatorial chair), 4: 2,2,4,4,6-pentamethyl-1,3-dioxane (6-equatorial chair). 

Scheme 1. Predominant conformations of 1–4. 1: 2,2-trans-4,6-dimethyl-1,3-dioxane (4,6-dipseudo-
equatorial 2,5-twist), 2: 4,4,6,6-tetramethyl-1,3-dioxane (chair), 3: 2,4,4,6,6-pentamethyl-1,3-dioxane
(2-equatorial chair), 4: 2,2,4,4,6-pentamethyl-1,3-dioxane (6-equatorial chair) [12].

2.2. Combustion Experiments

The enthalpies of combustion and formation of gaseous trans-2,2,4,6-tetramethyl-1,3-dioxane (1)
were published earlier [3,4]. Those of compounds 2–4 were determined as described in Materials and
Methods and are listed in Tables 1–3. Table 4 in turn lists the enthalpies of formation of gaseous atoms,
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the bond energies and the bond–bond interactions [2] for the estimation of the enthalpies of formation
of theoretically strain free gaseous compounds 1 to 4 shown in Scheme 1.

Table 1. Combustion results of 4,4,6,6-tetramethyl-1,3-dioxane (2, C8H16O2). e◦(calor.) =

(10219.8 ± 2.5) J K−1, −∆uc
◦(gel.) = (18817.3 ± 8.4) J g−1, ∆nRT = −7.4 kJ mol−1.

Experiments 1

1. 2. 3. 4. 5. 6. 7. 8.

m(2)/g 0.51757 0.49777 0.47285 0.53899 0.47061 0.54141 0.55610 0.53846
m(gel.)/g 0.12393 0.12088 0.12393 0.12193 0.12535 0.12237 0.12395 0.12592
ef(cont.)/
JK−1 17.77 17.62 17.55 17.85 17.55 17.85 17.92 17.85

∆T/K 1.95944 1.88722 1.81222 2.02888 1.80666 2.03722 2.09000 2.03444
q(ign)/J 67.78 37.32 67.36 68.53 65.14 82.26 71.80 83.81
q(HNO3)/J 32.30 40.58 40.00 43.30 38.83 44.22 44.94 43.47
q(H2SO4)/J 4.06 3.97 4.06 4.02 4.14 4.02 4.06 4.14
q(gel.)/J 2332.04 2274.63 2332.04 2294.38 2358.73 2302.66 2332.41 2369.48
q∑/J 7.49 7.20 6.86 7.78 6.82 7.82 8.03 7.78
−∆uc

◦/
kJg−1 34.0366 34.0652 34.0532 34.0508 34.0448 34.0138 34.0509 34.0216

−∆Uc
◦/

kJmol−1 4908.5 4912.6 4910.9 4910.6 4909.7 4905.2 4910.6 4906.4

Results (kJ mol−1) 2

∆Uc
◦(l) −4909.3 ± 2.4 ∆Hvap 47.4 ± 2

∆Hc
◦(l) −4916.7 ± 2.4 ∆Hf

◦(g) −470.6 ± 4.1
∆Hf

◦(l) −518.0 ± 3.2
1 For explanation of the quantities, see Refs. [3,4,13]. 2 The values refer to 298.15 K.

Table 2. Combustion results of 2,4,4,6,6-pentamethyl-1,3-dioxane (3, C9H18O2). e◦(calor.) =

(10215.7 ± 2.1) J K−1, −∆uc
◦(gel.) = (19440.2 ± 6.4) J g−1, ∆nRT = −8.7 kJ mol−1.

Experiments 1

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

m(3)/mg 459.317 454.329 429.039 471.094 510.543 514.600 468.487 461.188 454.690 434.877 488.729
m(gel)/mg 126.090 133.500 122.400 123.635 121.10 123.330 115.245 126.145 128.000 130.035 128.375
ef(cont.)/JK−1 17.55 17.55 17.40 17.62 17.77 17.77 17.55 17.55 17.55 17.47 17.70
∆T/K 1.82555 1.82000 1.71166 1.85944 1.98722 2.00944 1.83444 1.82888 1.81166 1.74777 1.92611
q(ign)/J 63.86 61.50 66.19 73.81 40.42 62.68 56.82 59.75 61.50 65.02 41.00
q(HNO3)/J 39.37 36.69 35.56 39.83 41.55 41.97 38.66 39.37 38.07 40.17 41.21
q(gel.)/J 2451.24 2595.29 2379.48 2403.50 2354.42 2397.56 2240.41 2452.28 2488.35 2451.24 2595.29
q∑/J 6.69 6.61 6.23 6.86 7.45 7.49 6.82 6.69 6.61 6.32 7.11
−∆uc

◦/ kJg−1 35.0883 35.0407 35.0182 35.0253 35.0755 35.0379 35.0614 35.0253 35.0574 35.0481 35.0347
−∆Uc

◦/kJmol−1 5552.4 5544.8 5541.3 5542.4 5544.4 5550.3 5548.1 5542.4 5547.5 5546.0 5543.9

Results (kJ mol−1) 2

∆Uc
◦(l) −5545.8 ± 2.8 ∆Hvap 46.8 ± 2

∆Hc
◦(l) −5554.5 ± 2.8 ∆Hf

◦(g) −512.8 ± 5.8
∆Hf

◦(l) −559.6 ± 3.8
1 For explanation of the quantities, see Refs. [3,4,13]. 2 The values refer to 298.15 K.

Table 3. Results of the combustions of 2,2,4,4,6-pentamethyl-1,3-dioxane (4, C9H18O2). ρ(4)
= 0.9240 g cm−3, ε(calor.) = 2261.6 ± 0.7 J Ω−1, cp(4) = 2.07 J K−1 g−1, ∆uc

◦(cotton fuse) =

−16.240 kJ g−1,∆uc
◦(polythene) = (−46.350 ± 0.015) kJ g−1, ∆nRT = −11.15 kJ mol−1.

Experiments 1

1. 2. 3. 4. 5.

m(4)/g 0.025647 0.027543 0.035429 0.027748 0.025409
m(polythene)/g 0.020400 0.020750 0.021006 0.020076 0.021756
∆m(cotton)/g 0.001375 0.001198 0.001354 0.001452 0.001259
nl(H2O)/mol 0.05551 0.05551 0.05551 0.05551 0.05551
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Table 3. Cont.

Experiments 1

1. 2. 3. 4. 5.

∆R/Ω 0.821414 0.857100 0.984095 0.847644 0.844729
−∆Rε(calor.)/kJ 1.85771 1.93842 2.22563 1.91658 1.91044
−∆Tε(cont.)/kJ 0.01257 0.01312 0.01506 0.01296 0.01293
∆E(Wash.)/kJ 0.00350 0.00370 0.00484 0.00378 0.00348
∆E(ign)/kJ 0.00178 0.00125 0.00118 0.00100 0.00145
−∆uc

◦/kJg−1 34.9811 34.9886 34.9530 34.9813 35.0112

Results (kJ mol−1) 2

∆uc
◦(l) (−34.9830 ± 0.018) kJ g−1 ∆Hf

◦(l) −567.1
∆Uc

◦(l) −5535.85 ± 2.94 ∆Hvap 46.2
∆Hc

◦(l) −5547.00 ± 2.94 ∆Hf
◦(g) −520.9

1 For explanation of the quantities, see Ref. [14]. 2 The values refer to 298.15 K.

Table 4. The values of the enthalpies of formation ∆Hf
◦ of gaseous atoms, the bond energies Eb and the

bond–bond interactions needed to estimate the enthalpies of formation for the theoretically strain-free
gaseous compounds 1 to 4.

∆Hf
◦/kJ mol−1 Eb/kJ mol−1 Bond–Bond Interactions/kJ mol−1

C(g) 716.7 C–C 330.1 ΓCCC 11.71
H(g) 218.0 C–H 415.85 ΓCCO 24.01
O(g) 249.2 C–O 327.95 ΓCOC 23.72

ΓOCO 54.75
∆CCC −3.27
∆CCO −6.52
∆OCO −14.30

3. Discussion

The enthalpies of vaporization of gaseous 1–4 (Scheme 1) were estimated from Equation (1) which
Wadsö derived for weakly associated compounds [12]. E.g., in the case of nine gaseous secondary
amines [13] the calculated enthalpies of vaporization deviated on the average from the experimental
ones only by ± 0.5 kJ mol−1.

∆Hvap(25 ◦C)/kJ mol−1 = 20.9 + 0.172
(
tbp/◦C

)
. (1)

Compound 1: The theoretical strain-free (sf) enthalpy of formation for gaseous 1 was obtained
from the following equation (the various parameters are given in Table 4):

−∆Hf,sf
◦(1, g) = −8∆Hf

◦(C, g) − 16∆Hf
◦(H, g) − 2∆Hf

◦(O, g) + 6Eb(CC) + 16Eb(CH) + 4Eb(CO)

+4ΓCCC + 8ΓCCO + 2ΓCOC + ΓOCO + 4∆CCO + 2∆OCO

= −5733.6− 3488.0− 498.4 + 1980.6 + 6653.6 + 1311.8 + 46.8 + 192.08 + 47.44 + 54.75–26.08–28.6
= 512.5 kJ mol−1.

(2)

The corrected experimental enthalpy of formation of liquid 1, −526.3 kJ mol−1, was given in Ref. [4].
The enthalpy of vaporization of 1 evaluated from equation (1) (tbp = 132.2 ◦C) equals 43.6 kJ mol−1

and hence ∆Hf
◦(1,g) = −482.7 kJ mol−1. Accordingly the value of ∆HCT(2,5) equals 512.5−482.7 =

29.8 kJ mol−1 which was already quoted in Ref. [5].



Molecules 2020, 25, 2762 5 of 6

Compounds 2 and 3:

−∆Hf,sf
◦(2, g) = −8∆Hf

◦(C, g) − 16∆Hf
◦(H, g) − 2∆Hf

◦(O, g) + 6Eb(CC) + 16Eb(CH) + 4Eb(CO)

+7ΓCCC + 6ΓCCO + 2ΓCOC + ΓOCO + 2∆CCC + 6∆CCO

= −5733.6− 3488.0− 498.4 + 1980.6 + 6653.6 + 1311.8 + 82.0 + 144.07 + 47.44 + 54.75− 6.54− 39.12
= 508.6 kJ mol−1.

(3)

The experimental enthalpy of formation of gaseous 2, −470.6 kJ mol−1, is given in Table 1. Thus,
the total strain in 2 is 508.6–470.6 = 38.0 kJ mol−1. This is including two 2-Hax,4-Meax interactions [4]
(17.0 kJ mol−1) together with the syn-axial 4,6-Me,Me interaction. Accordingly, the latter is equal to
38.0−17.0 = 21.0 kJ mol−1.

Similarly:

−∆Hf,sf
◦(3, g) = −9∆Hf

◦(C, g) − 18∆Hf
◦(H, g) − 2∆Hf

◦(O, g) + 7Eb(CC) + 18Eb(CH) + 4Eb(CO)

+7ΓCCC + 8ΓCCO + 2ΓCOC + ΓOCO + 2∆CCC + 6∆CCO + ∆OCO

= −6450.3− 3924.0− 498.4 + 2310.7 + 7485.3 + 1311.8 + 82.0 + 192.08 + 47.44 + 54.75− 6.54− 39.12− 14.3
= 551.4 kJ mol−1.

(4)

The evaluated enthalpy of gaseous 3, −512.8 kJ mol−1, is given in Table 2. Thus the total
strain in 3 is 551.4 − 512.8 = 38.6 kJ mol−1. This includes again two 2-Hax,4-Meax interactions [4]
(17.0 kJ mol−1) together with the syn-axial 4,6-Me,Me interaction. Accordingly, the latter equals
38.6 − 17.0 = 21.6 kJ mol−1. So on the average 4,6-diaxial Me,Me-interaction equals 21.3 kJ mol−1.

In order to determine syn-axial 2,4-Me,Me-interaction we must evaluate the theoretical enthalpy
of formation for the strain-free gaseous 4:

−∆Hf,sf
◦(4, g) = −9∆Hf

◦(C, g) − 18∆Hf
◦(H, g) − 2∆Hf

◦(O, g) + 7Eb(CC) + 18Eb(CH) + 4Eb(CO)

+6ΓCCC + 9ΓCCO + 2ΓCOC + ΓOCO + ∆CCC + 6∆CCO + 2∆OCO

= −6450.3− 3924.0− 498.4 + 2310.7 + 7485.3 + 1311.8 + 70.3 + 216.1 + 47.44 + 54.75− 3.27− 39.12− 28.6
= 552.6 kJ mol−1.

(5)

The experimental enthalpy of formation of gaseous 4, −520.9 kJ mol−1, is given in Table 3.
Accordingly, the total interactions in 4 are 552.6 − 520.9 = 31.7 kJ mol−1. This includes one
2-Meax,6-Hax [4], one 4-Meax,6-Hax interaction [4], i.e., 8.5 + 3.7 = 12.2 kJ mol−1. Thus the magnitude
of 2,4-diaxial Me,Me-interaction is equal to 31.7 − 12.2 = 19.5 kJ mol−1. In other words the syn-axial
Me,Me-interactions do not differ too much from each other but appear to indicate that the chair form
of 4 can be somewhat more deformed than those of 2 and 3. If compound 1 would exist also in the
chair form its total strain should be practically equal to that, 31.7 kJ mol−1, in 4. However, it is only
29.8 kJ mol−1 which supports its existence in the 2,5-twist form.

4. Materials and Methods

The standard enthalpy of combustion of 2,2,4,4,6-pentamethyl-1,3-dioxane (4) was determined on
the high-precision aneroid static-bomb combustion calorimeter built and tested in Stirling. The detailed
structure and procedure were as described earlier [14]. The standard enthalpies of combustion of
4,4,6,6-tetra- (2) and 2,4,4,6,6-pentamethyl-1,3-dioxanes (3) were in turn determined by burning them
in oxygen in an adiabatic bomb calorimeter No. 1221 manufactured by Parr instruments Co., Illinois,
USA. The bomb and procedure were described earlier as well [3,4].
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